

Measurement Techniques

JUAN NEGREIRA

M.Sc. Civil Engineering / TeknL PhD candidate Department of Construction Sciences Division of Engineering Acoustics

Measurement Techniques

JUAN NEGREIRA

30th January 2014

Outline

- Introduction
- Signals
- Exitation Sources
- Measurement Devices
- Errors in Measurements
- Examples
- Conclusions

• Paradigm of natural sciences

- <u>Theory</u>: explanained and generalised experimental results
- <u>Prediction</u>: use theory to predict consequences
- Experiment: observation / measurement of phenomena

Eisenhart [1876-1965]: "To measure is to assign <u>numerical values</u> to <u>concepts</u> of physical quantities to symbolise the relations which exist between them regarding special properties"

- Experimental process to acquire new knowledge of a "product"
- Process: planned actions for quantitative comparison of a measurand with an unit
- Measurand: physical quantity to be measured
- Measurement equipment: software, standards, aparatus...

Signals

Signals

- Acquisition: voltage-time
 - Unequivocally related to the measurand

• Noise: changes the smooth signal to a "jagged" curve

- Signal to noise ratio (SNR)
 - SNR>1 means Signal>Noise
 - Filtering

Juan Negreira | Struct. Dyn. (VSMN10) | Measurement Techniques | 30-Jan-14

$$SNR = \frac{P_{signal}}{P_{noise}}$$

D

Getting ready for the analysis

- To get the signal into a computer, one needs to digitalise it
- Digitalise (also digitise): conversion from analogue signal to a stream of discrete values (numbers)
- Δt between two consecutive values: given by sampling frequency

Sampling Frequency

- The red dots (samples) do not truly represent the signal
- The sampling frequency must be twice the higher frequency in the signal

NYQUIST-SHANNON CRITERIA

Nyquist-Shannon Sampling Criteria

Let *x*(*t*) be a continuous-time signal and *X*(*f*) its FT

$$X(f) \stackrel{Def}{=} \int_{-\infty}^{+\infty} x(t) e^{i2\pi ft} dt$$

x(t) is said to be bandlimited to a one-sided baseband bandwidth, B, if:

 $X(f) = 0 \qquad \forall \qquad \left| f \right| > B$

The the sufficient condition for "exact" reconstructability from samples at uniform sample rate is:

$$f_s > 2B \Leftrightarrow B < \frac{f_s}{2}$$
; $T = \frac{1}{f_s}$

2B is called the Nyquist rate and it is a property of the band-limited signal, while $(f_s/2)$ is called the Nyquist frequency and is a property of the sampling system

Aliasing

- If Nyquist-Shannon criteria is not fulfilled (bad sampling)
 - Two different continuous signals become indistinguishable

- Example: <u>Helicopter</u>: Stroboscopic effect
- Example: Image aliasing (Sampling / Pixel density wrong)

How to analyse the data?

- Waveform: amplitude as a function of time
- Spectrum: frequencies contained in the signal
- Leap between domains: FT
- In practice, software apply FFT

FFT example (Matlab)

&Juan Negreira; May 2011

%Calculates the discrete fourier transform of the timedomain signal y(t)
%Y:amplitude of the frequency components
%f:frequencies[Hz]
%Only the unique points are returned ie. f lies in 0 <= f <= Fs/2</pre>

%% Introducing the time signal dt=1/100: et=4: xData=0:dt:et; yData=3*sin(4*2*pi*xData); %% Calculating the FFT %Number of points in input data NFFT=length(vData); %Nyquist frequency Fn=1/(xData(2)-xData(1))/2; %Absolute value of the FRF FFTY=abs(fft(vData)); NumUniquePts=ceil((NFFT+1)/2); % fft symmetric, throw away second half FFTY=FFTY(1:NumUniquePts); % Take magnitude of Y 2.5 Yfft=abs(FFTY); itude % Multiply by 2 to take into account the fact that we % threw out second half of FFTY above Yfft=Yfft*2: % Account for endpoint uniqueness o 4 Yfft(1) = Yfft(1)/2;% We know NFFT is even Yfft(length(Yfft))=Yfft(length(Yfft))/2; % Scale the FFT so that it is not a function of the length of y. Yfft=Yfft/length(yData); %Frequencies freq=(0:NumUniquePts-1)*2*Fn/NFFT; %% Plotting time signal and FFT subplot (2,1,1) plot(xData, yData); grid on axis([0 et -8 8]) xlabel('Time [s]'); ylabel('Amplitude') subplot(2,1,2)plot(freq, Yfft);grid on xlabel('Frequency [Hz]'); ylabel('Amplitude')

FFT example (Matlab)

University

FFT example (Matlab)

INIVERSITY

Resonance

- Resonance (def.):
 - Tendency to oscillate at a greater amplitude at some frequencies
- Depends on:
 - Mass
 - Stiffness
 - Damping
- Examples:
 - Earthquake design
 - <u>Tacoma Bridge</u>
 - <u>Cup</u>
 - <u>Plate (mode shapes)</u>

Excitation Sources

Excitation Sources (Floor Vibrations)

- Standardised
 - Tapping machine
 - Rubber tire
- Non-Standardised
 - Shaker
 - Japanese Ball
 - Impact Hammer
 - Human Walking

Excitation Sources (Acoustics)

- Standardised
 - Loudspeakers
- Non-Standardised
 - Cap-gun
 - Baby-crying
 - Impulse

Measurement Devices

Sensors and Transducers

- Transducers: detection
- Sensors: detect and communicate
 - Parameters:
 - » Sensitivity: "electrical output / mechanical input", [mV/ms⁻²]
 - » Frequency response: sensitivity over whole spectra
 - » Phase response: time delay between input and output
 - » Resolution: smallest input increment reliably detected
 - » Dynamic Range: output proportional to input
 - » Saturation: maximum output capability
 - » Weight < 0.1 x weight specimen to be measured
 - » Environmental characteristics: temperature, humidity...
 - » Repeatability / Reproducibility
 - » Eccentricity

Calibration

• What is it?

 Comparison between the value indicated in a device and a reference known value

- Why calibrate?
 - Repeatability
 - Transference
 - Equipment exchange
 - Fulfillment of quality standards

Calibration

- Examples:
 - Sound level meter:

– Accelerometers:

Microphones

- Acoustical-to-electric transducer (sound \rightarrow electric signal)
- Scalar pressure sensors with an omnidirectional response

Microphones

- Requirements:
 - Good acoustic and electric performance
 - Minor influence from the environment
 - High stability of sensitivity and frequency response
 - High suitability for measurement
 - Comprehensive specifications and performance description.

Accelerometers

• Mechanical, piezoelectric, hall effect, capacitive...

Others

- Gyroscopes
 - Measure or maintaining orientation
 - Based on conservation of angular momentum

- LVDT Sensors
 - Linear Variable Differential Transformers
 - Output voltage proportional to the displacement of the core

Others

- Pressure Sensors
 - Output voltage proportional to the pressure
- Interferometers
 - Output voltage if obstacle detected
- Velocity Pickups
 - Voltage proportional to the relative velocity between elements
- SmartPhones
 - Different sensors

In-situ Vibratory Measurements

Video

In-situ Vibratory Measurements

Video

Errors in Measurements

- Ideal measurements: no errors
- Real ones always do
- Clear defined processes to identify every source of error
- Measurement system errors can only be defined in relation to the solution of a real specific measurement task

VoIA

- Value of Information Analysis (VoIA)
 - How much do I want to "pay" for my information / output?

VoIA

- Value of Information Analysis (VoIA)
 - How much do I want to "pay" for my information/output?

UNIVERSITY

The issue of scale...

Errors in Measurements

- <u>Before</u> the measurement:
 - Uncertainty
 - Reliability / Confidence
 - Risk
 - Probability
- After the measurement:

- Error:
$$\Delta \mathbf{X} = \mathbf{X}_{real} - \mathbf{X}_{measured}$$

NOTE: the concept of error presumes a knowledge of the correct value and it's therefore an abstraction

Quality of Measurements

- Lack of systematic deviation from a true value: <u>accuracy</u>
- <u>Bias</u>: average deviation from a true value
- Lack of scatter: precision
 - Repeatability (variability when measuring by 1 person)
 - Reproducibility (variability caused by changing operator)

Accuracy / Bias / Precision

Accuracy = Bias + Precision

a) high bias + low precision = low accuracy
b) low bias + low precision = low accuracy
c) high bias + high precision = low accuracy
d) low bias + high precision = high accuracy

Error "Chain"

- Measurement system type. Common errors:
 - Input error
 - Sensor error
 - Signal Transmission error 1
 - Transducer error
 - Signal Transmission error 2
 - Converter error
 - Signal Transmission error 3
 - Computer error
 - Signal Transmission error 4
 - Indication error

Figure 1. Measurement chain.

Types of Errors

- Systematic error (bias)
 - Permanent deflection in same direction from true value
 - It can be corrected
 - Types:
 - » Lack of gauge resolution
 - » Lack of linearity
 - » Drift
 - » Hysteresis

Types of Errors

- Gross errors
 - Human mistakes

$$X_{true} = X_{measured} + e_{syst} + e_{random}$$

- Random error
 - Remains after correct gross and systematic errors
 » It cannot be corrected
 - Short-term scattering of values around a mean value
 - Varies in an unpredictable way
 - Expressed by statistical methods
 - Reasons
 - » Lack of equipment sensitivity
 - » Noise
 - » Imprecise definition

Examples of Errors

• Wire error

Examples of Errors

• Music and external impact

Examples of Errors

- Step motor (2 Hz / 4.5 Hz)
 - Harmonic signal?

More Examples of Real Measurements

Prefabricated Wooden Buildings

• Timber volume element (TVE)-based building

- Method (numerical prediction tools):
 - Calibration FE model with in-situ measurements
 - Modify features in the model

FE Model TVE-based building

JUND

Calibration (Preliminary Results)

• Measurements

Simulations

Case A wide 3 TVE 0,1 0,09 0,08 0,07 ration [m/s^2] 0,05 0,04 0,03 0,02 0,01 0 5 9 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 1 3 7 Frequency [Hz]

—Floor —Ceiling —Wall Down

T-junctions

One plate no glue frequency 36Hz

Wall-Floor Building Element

Psycho-Vibrations

- Subjective: 31 subjects / 5 floors
 - Walking
 - Seated
- Objective measurements

- 310 data files (subjective)
- 30 data files (objective)
- Always planned actions!!

Flanking Transmission

Conclusions

- To measure: acquire knowledge of a new product
 - Analyses prior to measurements
 - Measurement plan based on analyses and purpose
- Signals: frequency and time domain
 - Nyquist-Shannon criteria
 - Resonance
- Excitation sources
- Measurement devices
- Errors
 - Measurements: accompanied by a quality statement
- Document the process (pictures, notes...)

Thank you for your attention!

Juan.Negreira@construction.lth.se

LUND UNIVERSITY