FE-Modelling

To create a simplified model of the

- geometry,
- material,
- loading and
- boundary conditions

that produce results with as small deviations as possible from the real behaviour.

Finite Element Method – FEM

•Deformations

•Heat transfer

•Fluid- or gas flow

•Diffusion

•etc. ...

Engineering Computations – FEM

- Modelling
 - Geometry
 - Material
 - Loading, Boundary conditions
- Software
 - Static
 - Dynamic (Implicit, Explicit)
 - Multiphysic (Coupled problems)
- Execution
 - Serial / parallel
- Example

FEM – Work Flow

Pre-processor \implies FE-solver \implies Post-processor

Geometry

From CAD-software ...

... or FE-preprocessor

Material

- Isotropic / anisotropic
- Linear
 - Elastic
 - Time dependent, (viscoelastic / creep)
- Non-linear
 - Elastic-plastic
 - Time dependent, (viscoplastic / creep)

Loading and Boundary Conditions

• Loads

- Point-, Line-, Surface- and Body-loads

- Boundary displacements
 - Prescribed displacements, constraint equations ...
- Contact
 - Deformable bodies in contact with other deformable- or rigid bodies
- Friction
 - Coulumb, stick-slip ...

Contact conditions - example

Contact conditions - example

Solvers

- Implicit integration in time
 - Direct solution of linear equation system
 - Equilibrium after each time step
 - Large time steps, (unconditional stable)
- Explicit integration in time
 - Solution by determining solution in next time step by only considering the past. (Central difference, Forward Euler method)
 - Contain only matrix and vector multiplications, (lumped mass och linear element approximations)
 - No equilibrium
 - Very small time-steps, (conditional stable)

Solvers

- Implicit method
 - Static or dynamic
 - ABAQUS/Standard
 - NASTRAN
 - Marc
 - Cosmos
 - ...
- Explicit method
 - Dynamic for rapidly changing events (Short time durations)
 - ABAQUS/Explicit
 - Marc
 - LS-Dyna
 - ...

Computer Systems

- Single processor
 - Serial
 - Cheap (or expensive)
- Multiprocessor (Fast internal communication)
 - Serial / Parallel
 - Very expensive (If more than a few processors)
- Cluster (Fairly slow intercommunication)
 - Serial / Parallel
 - Cheap

Lunarc

Alarik:

- 208 nodes
- 16 CPU cores/node
 - 32-128 GB ram/node

Aurora:

- 200 nodes
- 20 CPU cores/node
- 64 GB ram/node
 - and, GPU nodes

MAX IV

- Synchrotron light source

- Max. vibration RMS 26 nm (26 10⁻⁹ m), 1s
- Diameter of human hair, ~75 μ m (75 10⁻⁶ m)
- 3000 times

- Linear accelerator ~ 500m
- Storage ring
 Perimeter ~700m

MAX IV - investigation of vibration reducing measures

Peter Persson and Kent Persson

Some results of measures

- Soil stabilisation
 - Reduction of vibrations from external loading ca 25%.
 - Reduction of vibrations from internal lloading ca 50%.
- Cut-off wall
 - Reduction of vibrations from external loading up to ca 45%.
- Shaped terrain
 - Reduction of vibrations from external loading up to 40%.
 (Need long distance between source and building)

MAX IV – vibrations from office building

Ola Flodén and Kent Persson

MAX IV – vibrations from office building

MAX IV – example vibrations from office building

Assignment 2

Tacoma Narrows Bridge

Assignment Dynamic analysis of a bridge

- Calculate eigenvalues and eigenmodes
- Calculate response for impulse load (transient)
- Determine the number of modes needed for the impulse load (modal reduction)

Eigenmodes

Step: Step-2 Made 6: Value = 1.24124E+DS Freq = 56.072 (cycles/time) Primary Var: U, Magnitude Deformed Var: U Deformation Scale Factor: +1.000e-01

ABAQUS-tutorials

- Tutorials on the course homepage:
 - Tutorial 1-3 modelling of static analyses
 - Tutorial 4 modelling of different types of dynamic analyses