Theory exam in Structural Dynamics 2010-03-02 kl. 13-15

The test consists of 6 questions giving the maximum of 15 points. Each question should be answered on a separate paper. No helping aids are permitted on this test, except calculator. Do not forget to write your name on each submitted paper.

1) (2 p)

Write the standard form of the equation of motion for a damped single dof system according to the figure, using ω_n and $\zeta = c / (2m\omega_n)$.

Also derive the expression for the steady state displacement amplitude, if c=0.

2) (2 p)

Consider the two dof system below

Show, using free body diagrams, that the system can be defined by the following matrices

$$\mathbf{m} = \begin{bmatrix} m & 0 \\ 0 & m \end{bmatrix} \qquad \mathbf{c} = \begin{bmatrix} c & 0 \\ 0 & c \end{bmatrix} \qquad \mathbf{k} = \begin{bmatrix} k & -k \\ -k & k \end{bmatrix}$$

3) (3 p)

Write the complex form of the system in question 2) if mass number two is subjected to a steady state sinusoidal force with amplitude p_o and angular frequency ω . In deriving the complex system of equations consider the force to be a real variable.

Also use the complex system to write an equation for the elongation of the spring by expressing an equation in terms of $u^* = u_2^* - u_1^*$. Derive the amplitude of elongation from u^* and determine a resonance frequency from this derivation. What is the amplitude of the elongation at resonance?

Continue, next page \rightarrow

4) (3 p)

Determine eigen-values and eigen-vectors for the system in question 2) i.e. solve

 $\left(\mathbf{k}-\omega^2\mathbf{m}\right)\boldsymbol{\Phi}=0$

What is the physical interpretation of the lowest eigen-value?

Show that the damping of the system in question 2) is of the Classical form.

5) (2 p)

Explain the main advantages of reducing a system of equations by using modal truncation when a numerical solution is sought.

Shortly explain the difference between modal truncation and the use of Ritz vectors.

6) (3 p)

Give a short description of the following terms in relation to earth-quake analysis:

- Response history
- Response spectrum
- Design spectrum

By response you can, if you want, use the displacement to be specific in the description.