
# Finite Element Method - flow problems

## VSMN25

## **Course programme 2017**



### Finite Element Method – flow problems

The course aims at giving the ability to analyse various types of flow problems by means of the finite element (FE) method. The FE formulation containing: direct approach, strong and weak formulations, approximating functions and weighted residual methods is studied. Focus is on flow problems: heat flow, diffusion and groundwater flow in steady-state and transient conditions. Design assignments are studied to illustrate the procedure of transferring a design problem into a model and to a FE-analysis.

#### **Course Plan**

The lectures are held 8.15-10.00 and the problem-solving classes are held 10.15-12 at dates and locations according to the schedule below.

At some exercises, computer labs are booked in either V:Dator11 and V:Dator12 or, V:Dator24 and V:Dator25 according to the schedule below.

| Day      | Room                             | <b>Chapter in</b> "Introduction to the<br>Finite element method"                                                       | Exercise problems                                             |
|----------|----------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Tue 29/8 | A:B<br>V:P1, P2<br>V:Dator11, 12 | <ol> <li>Introduction</li> <li>3 Repetition</li> <li>Presentation of hand-in assignment 1.</li> </ol>                  | 2-1, 2-2, 2-3, 2-4<br>3-1, 3-2, 3-3, 3-5, 3-8                 |
| Fri 1/9  | A:B<br>V:P1, P2<br>V:Dator24, 25 | 4 Strong and weak formulation<br>1-dim. heat flow                                                                      | 4-1, 4-2, 4-3, 4-4, 4-5                                       |
| Tue 5/9  | V:B<br>V:P1, P2<br>V:Dator11, 12 | 5 Gradient, Gauss theorems,<br>Green-Gauss theorem                                                                     | 5-1, 5-2, 5-3, 5-4, 5-5                                       |
| Fri 8/9  | V:B<br>V:P1, P2                  | 6 Strong and weak formulation,<br>2- and 3-dim. heat flow<br>Hand in of assignment 1 (8/9, 08.15)                      | 6-1, 6-2, 6-3                                                 |
| Tue 12/9 | MA 4<br>V:P1, P2                 | 7 Approximating functions                                                                                              | 7-1, 7-2, 7-3, 7-4, 7-5,7-6,7-7<br>7-8, 7-9, 7-11, 7-10, 7-12 |
| Fri 15/9 | V:B<br>V:P1, P2                  | 8 Weighted residual methods                                                                                            | 8-1                                                           |
| Tue 19/9 | V:B<br>V:P1, P2                  | 9 FEM-formulation, 1-dim. heat flow                                                                                    | 9-1, 9-2, 9-3, 9-4, 9-5                                       |
| Fri 22/9 | V:B<br>V:P1, P2<br>V:Dator24, 25 | <ul> <li>10 FEM-formulation,</li> <li>2- and 3-dim. heat flow</li> <li>Presentation of hand-in assignment 2</li> </ul> | 10-1, 10-2, 10-3                                              |

| Day       | Room                             | Chapter in "Introduction to the<br>Finite element method"                                                          | Exercise problems                           |
|-----------|----------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| Tue 26/9  | V:B<br>V:P1, P2<br>V:Dator11, 12 | <ul><li>10 FEM-formulation,</li><li>2- and 3-dim. heat flow</li></ul>                                              | 10-4, 10-5, 10-6                            |
| Fri 29/9  | V:B<br>V:P1, P2<br>V:Dator24, 25 | 11 Element mesh and node numbering                                                                                 | 11-1, 11-2, 11-3, 11-4, 11-5,<br>11-6, 11-7 |
| Tue 3/10  | A:B<br>V:P1, P2<br>V:Dator11, 12 | T Transient heat flow<br>- basic equations, 1-dim<br>- integration in time<br>Presentation of hand-in assignment 3 | T-1                                         |
| Fri 6/10  | V:B<br>V:P1, P2<br>V:Dator24, 25 | T Transient heat flow<br>- 2- and 3-dim.<br>Hand in of assignment 2 (6/10, 08.15)                                  | T-1                                         |
| Tue 10/10 | V:P1, P2<br>V:Dator11, 12        | Time for work with assignment                                                                                      |                                             |
| Fri 13/10 | V:B<br>V:P1, P2                  | Repetition<br>Hand in of assignment 3 (13/10, 08.15)                                                               |                                             |
| Thu 26/10 | MA 9                             | Examination 14:00-19:00                                                                                            |                                             |

Literature ( The books are available at KFS )

- Ottosen, N.S., Petersson, H.: Introduction to the Finite Element Method, Prentice Hall 1992.
- Olsson, K.-G and Heyden, S.: Introduction to the finite element method, Problems, Byggnadsmekanik, Lund 2001.
- (*OPTIONAL*): CALFEM ver 3.4 A finite element toolbox to MATLAB, Dep. of Struc. Mech. and Dep. of Solid Mechanics, Lund 2004.
- Handed-out material.

#### **Computer programs**

The educational MATLAB toolbox CALFEM will be used continuously during the course. CALFEM will be available in the students' computer laboratory and can be downloaded from the course homepage.

#### Hand-in assignments

Two compulsory hand-in assignments are included in the course. Groups of 2-3 students work together to solve the assignments and write reports. The first assignment is smaller aiming at introducing the use of CALFEM. The other one is a larger application assignment.

The assignments will be judged and awarded points according to the table below. The points will be accounted for in the final grade:

Assignment 1: max 2p, minimum 0p Assignment 2: max 9p, minimum points required for passing 4.5p Assignment 3: max 9p, minimum points required for passing 4.5p

The assignments must be handed in no later than what is indicated in the course programme. A too late handed in assignment 1 gives 0p and assignment 2 and 3 give 4.5p each when passed.

The following criteria are used for judging the assignments:

Ability to

- state the assumptions made,
- perform calculations,
- summarize and draw conclusions,
- limit to important matters and give a proper and logical account of them.

#### Examination

In addition with the hand-in assignments, a written examination is given at 26/10-2017, 14.00-19.00 in MA 9. The maximum number of points and the requirement for passing are:

|             | Max. points | Requirement for passing |
|-------------|-------------|-------------------------|
| Examination | 40p         | 20p                     |

#### Grades

For a final grade it is required that the hand-in assignments and the examination are passed. The points achieved for the hand-in assignments and the examination are summed to get a final grade according to the following:

| Points  | Grade |
|---------|-------|
| 29 - 39 | 3     |
| 40 - 49 | 4     |
| 50 - 60 | 5     |

Allowed means of assistance during examination: Calculator.

#### Teachers

| Kent Persson  | 046 - 222 81 52 | kent.persson@construction.lth.se  |
|---------------|-----------------|-----------------------------------|
| Jens Malmborg | -               | jens.malmborg@construction.lth.se |

This programme together with other course information is available on the web at the homepage of the div. of Structural Mechanics: <u>http://www.byggmek.lth.se/</u>