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Preface

CALFEM©R is an interactive computer program for teaching the finite element method
(FEM). The name CALFEM is an abbreviation of ”Computer Aided Learning of the Finite
Element Method”. The program can be used for different types of structural mechanics
problems and field problems.

CALFEM, the program and its built-in philosophy have been developed at the Division of
Structural Mechanics, Lund University, starting in the late 70’s. Many coworkers, former
and present, have been engaged in the development at different stages.

This release represents the latest development of CALFEM. The functions for finite element
applications are all MATLAB functions (.m-files) as described in the MATLAB manual.
We believe that this environment increases the versatility and handling of the program
and, above all, the ease of teaching the finite element method. CALFEM also works with
Octave, presently with exception for some graphical functions.

Lund, September 2, 2019

The authors
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1 Element functions

1.1 Introduction

The group of element functions contains functions for computation of element matrices
and element forces for different element types. The element functions have been divided
into the following groups

Spring element

Bar elements

Heat flow elements

Solid elements

Beam elements

Plate element

For each element type there is a function for computation of the element stiffness matrix
Ke. For most of the elements, an element load vector f e can also be computed. These
functions are identified by their last letter -e.

Using the function assem, the element stiffness matrices and element load vectors are
assembled into a global stiffness matrix K and a load vector f . Unknown nodal values of
temperatures or displacements a are computed by solving the system of equations Ka = f
using the function solveq. A vector of nodal values of temperatures or displacements for a
specific element is formed by the function extract.

When the element nodal values have been computed, the element flux or element stresses
can be calculated using functions specific to the element type concerned. These functions
are identified by their last letter -s.

For some elements, a function for computing the internal force vector is also available.
These functions are identified by their last letter -f.
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1.2 Spring element

The spring element, shown below, can be used for the analysis of one-dimensional spring
systems and for a variety of analogous physical problems.

k
u1 u2

●●

Quantities corresponding to the variables of the spring are listed in Table 1.

Problem type Spring Nodal dis- Element Spring
stiffness placement force force

Spring k u P N

Bar
EA

L
u P N

Thermal conduction
λA

L
T H̄ H

Electrical circuit
1

R
U Ī I

Groundwater flow
kA

L
φ H̄ H

Pipe network
πD4

128μL
p H̄ H

Table 1: Analogous quantities



Interpretations of the spring element

Problem type Quantities Designations

Spring

k
u2, P2

N N

●●

●●

u1, P1

k
u
P
N

spring stiffness
displacement
element force
spring force

Bar E, A

N N

L

u2, P2u1, P1

L
E
A
u
P
N

length
modulus of elasticity
area of cross section
displacement
element force
normal force

Thermal
conduction

��

�

�� �� ���

�

L
λ
T
H̄
H

length
thermal conductivity
temperature
element heat flow
internal heat flow

Electrical
circuit

R
U2U1

I1

I

●●
I2

R
U
Ī
I

resistance
potential
element current
internal current

Ground-
water
flow

��

�

�� �� ���

�

L
k
φ
H̄
H

length
permeability
piezometric head
element water flow
internal water flow

Pipe
network
(laminar
flow)

��
�

����	�

��

�

	�

L
D
μ
p
H̄
H

length
pipe diameter
viscosity
pressure
element fluid flow
internal fluid flow

Table 2: Quantities used in different types of problems
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The following functions are available for the spring element:

Spring functions
spring1e Compute element matrix
spring1s Compute spring force
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spring1e Spring element

Purpose:

Compute element stiffness matrix for a spring element.

k
u1 u2

●●

Syntax:

Ke=spring1e(ep)

Description:

spring1e provides the element stiffness matrix Ke for a spring element.

The input variable

ep = [ k ]

supplies the spring stiffness k or the analog quantity defined in Table 1.

Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke =

[
k −k

−k k

]

where k is defined by ep.
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Spring element spring1s

Purpose:

Compute spring force in a spring element.

N N
●●

Syntax:

es=spring1s(ep,ed)

Description:

spring1s computes the spring force es in a spring element.

The input variable ep is defined in spring1e and the element nodal displacements ed
are obtained by the function extract.

The output variable

es = [ N ]

contains the spring force N , or the analog quantity.

Theory:

The spring force N , or analog quantity, is computed according to

N = k [ u2 − u1 ]
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1.3 Bar elements

Bar elements are available for one, two, and three dimensional analysis. In this manual,
only two dimensional elements are shown.

Two dimensional bar elements
bar2e Compute element matrix
bar2s Compute normal force
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Two dimensional bar element bar2s

Purpose:

Compute normal force in a two dimensional bar element.

x

y N

N

Syntax:

es=bar2s(ex,ey,ep,ed)
es=bar2s(ex,ey,ep,ed,eq)
[es,edi]=bar2s(ex,ey,ep,ed,eq,n)
[es,edi,eci]=bar2s(ex,ey,ep,ed,eq,n)

Description:

bar2s computes the normal force in the two dimensional bar element bar2e.

The input variables ex, ey, and ep are defined in bar2e and the element nodal dis-
placements, stored in ed, are obtained by the function extract. If distributed loads
are applied to the element, the variable eq must be included. The number of evalua-
tion points for section forces and displacements are determined by n. If n is omitted,
only the ends of the bar are evaluated.

The output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N(0)
N(x̄2)

...
N(x̄n−1)
N(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(x̄2)

...
u(x̄n−1)
u(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the normal force, the displacement, and the evaluation points on the local
x̄-axis. L is the length of the bar element.

Theory:

The nodal displacements in global coordinates

ae = [ u1 u2 u3 u4 ]T

are also shown in bar2e. The transpose of ae is stored in ed.
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Two dimensional bar element bar2s

The nodal displacements in local coordinates are given by

āe = Gae

where the transformation matrix G is defined in bar2e.

The displacement u(x̄) and the normal force N(x̄) are computed from

u(x̄) = Nāe +up(x̄)

N(x̄) = DEABāe +Np(x̄)

where

N =
[
1 x̄

]
C−1 =

[
1− x̄

L
x̄
L

]

B =
[
0 1

]
C−1 =

1

L

[
−1 1

]

up(x̄) = − qx̄
DEA

(
x̄2

2
− Lx̄

2

)

Np(x̄) = −qx̄
(
x̄− L

2

)
where DEA, L, qx̄ are defined in bar2e and

C−1 =

[
1 0

− 1
L

1
L

]
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1.4 Heat flow elements

Heat flow elements are available for one, two, and three dimensional analysis. For one
dimensional heat flow the spring element spring1 is used.

A variety of important physical phenomena are described by the same differential equa-
tion as the heat flow problem. The heat flow element is thus applicable in modelling differ-
ent physical applications. Table 3 below shows the relation between the primary variable
a, the constitutive matrix D, and the load vector fl for a chosen set of two dimensional
physical problems.

Problem type a D fl Designation

Heat flow T λx , λy Q T = temperature
λx , λy = thermal
conductivity
Q = heat supply

Groundwater flow φ kx , ky, Q φ = piezometric
head
kx, ky = perme-
abilities
Q = fluid supply

St. Venant torsion φ
1

G zy
,
1

Gzx
2Θ φ = stress function

Gzy, Gzx = shear
moduli
Θ = angle of torsion
per unit length

Table 3: Problem dependent parameters
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Heat flow elements

●

●

●

T2

T3

T1

flw2te

●

●

●

●

T4 T3

T1

T2

flw2qe
flw2i4e

●

●

●

●

●

●

●

●

T4

T3

T1

T2

T7

T6T8

T5

flw2i8e

●

●

●
●

●

●

●

●

T4 T3

T1 T2

T7

T6

T8

T5

flw3i8e

2D heat flow functions
flw2te Compute element matrices for a triangular element
flw2ts Compute temperature gradients and flux
flw2qe Compute element matrices for a quadrilateral element
flw2qs Compute temperature gradients and flux
flw2i4e Compute element matrices, 4 node isoparametric element
flw2i4s Compute temperature gradients and flux
flw2i8e Compute element matrices, 8 node isoparametric element
flw2i8s Compute temperature gradients and flux

3D heat flow functions
flw3i8e Compute element matrices, 8 node isoparametric element
flw3i8s Compute temperature gradients and flux
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flw2te Two dimensional heat flow elements

Purpose:

Compute element stiffness matrix for a triangular heat flow element.

T2

T3

T1 ●

(x1,y1)

●

●

(x3,y3)

(x2,y2)

x

y

Syntax:

Ke=flw2te(ex,ey,ep,D)
[Ke,fe]=flw2te(ex,ey,ep,D,eq)

Description:

flw2te provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a triangular heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex
and ey, the element thickness t is supplied by ep and the thermal conductivities (or
corresponding quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 ]
ey = [ y1 y2 y3 ]

ep = [ t ] D =

[
kxx kxy
kyx kyy

]

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke = (C−1)T
∫
A
B̄

T
D B̄ t dA C−1

fel = (C−1)T
∫
A
N̄

T
Q t dA

with the constitutive matrix D defined by D.

The evaluation of the integrals for the triangular element is based on the linear
temperature approximation T (x, y) and is expressed in terms of the nodal variables
T1, T2 and T3 as

T (x, y) = Neae = N̄ C−1ae
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Two dimensional heat flow elements flw2te

where

N̄ = [ 1 x y ] C =

⎡
⎢⎣ 1 x1 y1
1 x2 y2
1 x3 y3

⎤
⎥⎦ ae =

⎡
⎢⎣ T1

T2

T3

⎤
⎥⎦

and hence it follows that

B̄ = ∇N̄ =

[
0 1 0
0 0 1

]
∇ =

⎡
⎢⎢⎢⎣

∂

∂x
∂

∂y

⎤
⎥⎥⎥⎦

Evaluation of the integrals for the triangular element yields

Ke = (C−1)T B̄
T
D B̄ C−1 t A

fel =
QAt

3
[ 1 1 1 ]T

where the element area A is determined as

A =
1

2
detC
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flw2ts Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in a triangular heat flow element.

Syntax:

[es,et]=flw2ts(ex,ey,D,ed)

Description:

flw2ts computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a triangular heat flow element.

The input variables ex, ey and the matrix D are defined in flw2te. The vector ed
contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 ]

The output variables

es = qT = [ qx qy ]

et = (∇T )T =

[
∂T

∂x

∂T

∂y

]

contain the components of the heat flux and the temperature gradient computed in
the directions of the coordinate axis.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = B̄ C−1 ae

q = −D∇T

where the matrices D, B̄, and C are described in flw2te. Note that both the tem-
perature gradient and the heat flux are constant in the element.
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Two dimensional heat flow elements flw2qe

Purpose:

Compute element stiffness matrix for a quadrilateral heat flow element.

T2

T4

T1

●

(x1,y1)

●

●

(x4,y4)

(x2,y2)

T3
● (x3,y3)

x

y
●

T5

Syntax:

Ke=flw2qe(ex,ey,ep,D)
[Ke,fe]=flw2qe(ex,ey,ep,D,eq)

Description:

flw2qe provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a quadrilateral heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex
and ey, the element thickness t is supplied by ep and the thermal conductivities (or
corresponding quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ t ] D =

[
kxx kxy
kyx kyy

]

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.

Theory:

In computing the element matrices, a fifth degree of freedom is introduced. The
location of this extra degree of freedom is defined by the mean value of the coordinates
in the corner points. Four sets of element matrices are calculated using flw2te. These
matrices are then assembled and the fifth degree of freedom is eliminated by static
condensation.
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flw2qs Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in a quadrilateral heat flow element.

Syntax:

[es,et]=flw2qs(ex,ey,ep,D,ed)
[es,et]=flw2qs(ex,ey,ep,D,ed,eq)

Description:

flw2qs computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a quadrilateral heat flow element.

The input variables ex, ey, eq and the matrix D are defined in flw2qe. The vector ed
contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 T4 ]

The output variables

es = qT = [ qx qy ]

et = (∇T )T =

[
∂T

∂x

∂T

∂y

]

contain the components of the heat flux and the temperature gradient computed in
the directions of the coordinate axis.

Theory:

By assembling four triangular elements as described in flw2te a system of equations
containing 5 degrees of freedom is obtained. From this system of equations the
unknown temperature at the center of the element is computed. Then according to
the description in flw2ts the temperature gradient and the heat flux in each of the
four triangular elements are produced. Finally the temperature gradient and the
heat flux of the quadrilateral element are computed as area weighted mean values
from the values of the four triangular elements. If heat is supplied to the element,
the element load vector eq is needed for the calculations.
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Two dimensional heat flow elements flw2i4e

Purpose:

Compute element stiffness matrix for a 4 node isoparametric heat flow element.

T4

●

●

●

(x4,y4) ●

x

y

T3

T1

(x1,y1)

(x3,y3)

(x2,y2)

T2

Syntax:

Ke=flw2i4e(ex,ey,ep,D)
[Ke,fe]=flw2i4e(ex,ey,ep,D,eq)

Description:

flw2i4e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a 4 node isoparametric heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex and
ey. The element thickness t and the number of Gauss points n

(n× n) integration points, n = 1, 2, 3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ t n ] D =

[
kxx kxy
kyx kyy

]

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.
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flw2i4e Two dimensional heat flow elements

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫
A
BeT D Be t dA

fel =
∫
A
NeT Q t dA

with the constitutive matrix D defined by D.

The evaluation of the integrals for the isoparametric 4 node element is based on a
temperature approximation T (ξ, η), expressed in a local coordinates system in terms
of the nodal variables T1, T2, T3 and T4 as

T (ξ, η) = Neae

where

Ne = [ N e
1 N e

2 N e
3 N e

4 ] ae = [ T1 T2 T3 T4 ]
T

The element shape functions are given by

N e
1 =

1

4
(1− ξ)(1− η) N e

2 =
1

4
(1 + ξ)(1− η)

N e
3 =

1

4
(1 + ξ)(1 + η) N e

4 =
1

4
(1− ξ)(1 + η)

The Be-matrix is given by

Be = ∇Ne =

⎡
⎢⎢⎢⎣

∂

∂x
∂

∂y

⎤
⎥⎥⎥⎦Ne = (JT )−1

⎡
⎢⎢⎢⎣

∂

∂ξ
∂

∂η

⎤
⎥⎥⎥⎦Ne

where J is the Jacobian matrix

J =

⎡
⎢⎢⎢⎣

∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

⎤
⎥⎥⎥⎦

Evaluation of the integrals is done by Gauss integration.
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Two dimensional heat flow elements flw2i4s

Purpose:

Compute heat flux and temperature gradients in a 4 node isoparametric heat flow
element.

Syntax:

[es,et,eci]=flw2i4s(ex,ey,ep,D,ed)

Description:

flw2i4s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a 4 node isoparametric heat flow element.

The input variables ex, ey, ep and the matrix D are defined in flw2i4e. The vector ed
contains the nodal temperatures ae of the element and is obtained by extract as

ed = (ae)T = [ T1 T2 T3 T4 ]

The output variables

es = q̄T =

⎡
⎢⎢⎢⎢⎢⎣

q1x q1y

q2x q2y
...

...

qn
2

x qn
2

y

⎤
⎥⎥⎥⎥⎥⎦

et = (∇̄T )T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂T

∂x

1 ∂T

∂y

1

∂T

∂x

2 ∂T

∂y

2

...
...

∂T

∂x

n2

∂T

∂y

n2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎣

x1 y1
x2 y2
...

...
xn2 yn2

⎤
⎥⎥⎥⎥⎦

contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw2i4e.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = Be ae

q = −D∇T

where the matrices D, Be, and ae are described in flw2i4e, and where the integration
points are chosen as evaluation points.
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flw2i8e Two dimensional heat flow elements

Purpose:

Compute element stiffness matrix for an 8 node isoparametric heat flow element.

x

y

●

●

●

●

●

●

●

●

T4

T3

T1

T2

T7

T6T8

T5

Syntax:

Ke=flw2i8e(ex,ey,ep,D)
[Ke,fe]=flw2i8e(ex,ey,ep,D,eq)

Description:

flw2i8e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for an 8 node isoparametric heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex and
ey. The element thickness t and the number of Gauss points n

(n× n) integration points, n = 1, 2, 3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 . . . x8 ]
ey = [ y1 y2 y3 . . . y8 ]

ep = [ t n ] D =

[
kxx kxy
kyx kyy

]

If the scalar variable eq is given in the function, the vector fe is computed, using

eq = [ Q ]

where Q is the heat supply per unit volume.
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Two dimensional heat flow elements flw2i8e

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫
A
BeT D Be t dA

fel =
∫
A
NeT Q t dA

with the constitutive matrix D defined by D.

The evaluation of the integrals for the 2D isoparametric 8 node element is based on a
temperature approximation T (ξ, η), expressed in a local coordinates system in terms
of the nodal variables T1 to T8 as

T (ξ, η) = Neae

where

Ne = [ N e
1 N e

2 N e
3 . . . N e

8 ] ae = [ T1 T2 T3 . . . T8 ]
T

The element shape functions are given by

N e
1 = −1

4
(1− ξ)(1− η)(1 + ξ + η) N e

5 =
1

2
(1− ξ2)(1− η)

N e
2 = −1

4
(1 + ξ)(1− η)(1− ξ + η) N e

6 =
1

2
(1 + ξ)(1− η2)

N e
3 = −1

4
(1 + ξ)(1 + η)(1− ξ − η) N e

7 =
1

2
(1− ξ2)(1 + η)

N e
4 = −1

4
(1− ξ)(1 + η)(1 + ξ − η) N e

8 =
1

2
(1− ξ)(1− η2)

The Be-matrix is given by

Be = ∇Ne =

⎡
⎢⎢⎢⎣

∂

∂x
∂

∂y

⎤
⎥⎥⎥⎦Ne = (JT )−1

⎡
⎢⎢⎢⎣

∂

∂ξ
∂

∂η

⎤
⎥⎥⎥⎦Ne

where J is the Jacobian matrix

J =

⎡
⎢⎢⎢⎣

∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

⎤
⎥⎥⎥⎦

Evaluation of the integrals is done by Gauss integration.

1.4 – 13 ELEMENT



flw2i8s Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in an 8 node isoparametric heat flow
element.

Syntax:

[es,et,eci]=flw2i8s(ex,ey,ep,D,ed)

Description:

flw2i8s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in an 8 node isoparametric heat flow element.

The input variables ex, ey, ep and the matrix D are defined in flw2i8e. The vector ed
contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 . . . T8 ]

The output variables

es = q̄T =

⎡
⎢⎢⎢⎢⎢⎣

q1x q1y

q2x q2y
...

...

qn
2

x qn
2

y

⎤
⎥⎥⎥⎥⎥⎦

et = (∇̄T )T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂T

∂x

1 ∂T

∂y

1

∂T

∂x

2 ∂T

∂y

2

...
...

∂T

∂x

n2

∂T

∂y

n2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎣

x1 y1
x2 y2
...

...
xn2 yn2

⎤
⎥⎥⎥⎥⎦

contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw2i8e.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = Be ae

q = −D∇T

where the matrices D, Be, and ae are described in flw2i8e, and where the integration
points are chosen as evaluation points.
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Three dimensional heat flow elements flw3i8e

Purpose:

Compute element stiffness matrix for an 8 node isoparametric element.

z
x

y

●

●

●
●

●

●

●

●

T4 T3

T1 T2

T7

T6

T8

T5

Syntax:

Ke=flw3i8e(ex,ey,ez,ep,D)
[Ke,fe]=flw3i8e(ex,ey,ez,ep,D,eq)

Description:

flw3i8e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for an 8 node isoparametric heat flow element.

The element nodal coordinates x1, y1, z1 x2 etc, are supplied to the function by ex,
ey and ez. The number of Gauss points n

(n× n× n) integration points, n = 1, 2, 3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 . . . x8 ]
ey = [ y1 y2 y3 . . . y8 ]
ez = [ z1 z2 z3 . . . z8 ]

ep = [ n ] D =

⎡
⎢⎣ kxx kxy kxz
kyx kyy kyz
kzx kzy kzz

⎤
⎥⎦

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫
V
BeT D Be dV

fel =
∫
V
NeT Q dV
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flw3i8e Three dimensional heat flow elements

with the constitutive matrix D defined by D.

The evaluation of the integrals for the 3D isoparametric 8 node element is based on
a temperature approximation T (ξ, η, ζ), expressed in a local coordinates system in
terms of the nodal variables T1 to T8 as

T (ξ, η, ζ) = Neae

where

Ne = [ N e
1 N e

2 N e
3 . . . N e

8 ] ae = [ T1 T2 T3 . . . T8 ]
T

The element shape functions are given by

N e
1 =

1

8
(1− ξ)(1− η)(1− ζ) N e

2 =
1

8
(1 + ξ)(1− η)(1− ζ)

N e
3 =

1

8
(1 + ξ)(1 + η)(1− ζ) N e

4 =
1

8
(1− ξ)(1 + η)(1− ζ)

N e
5 =

1

8
(1− ξ)(1− η)(1 + ζ) N e

6 =
1

8
(1 + ξ)(1− η)(1 + ζ)

N e
7 =

1

8
(1 + ξ)(1 + η)(1 + ζ) N e

8 =
1

8
(1− ξ)(1 + η)(1 + ζ)

The Be-matrix is given by

Be = ∇Ne =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
∂

∂y
∂

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ne = (JT )−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂ξ
∂

∂η
∂

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ne

where J is the Jacobian matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂x

∂η

∂x

∂ζ
∂y

∂ξ

∂y

∂η

∂y

∂ζ
∂z

∂ξ

∂z

∂η

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Evaluation of the integrals is done by Gauss integration.
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Purpose:

Compute heat flux and temperature gradients in an 8 node isoparametric heat flow
element.

Syntax:

[es,et,eci]=flw3i8s(ex,ey,ez,ep,D,ed)

Description:

flw3i8s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in an 8 node isoparametric heat flow element.

The input variables ex, ey, ez, ep and the matrix D are defined in flw3i8e. The vector
ed contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 . . . T8 ]

The output variables

es = q̄T =

⎡
⎢⎢⎢⎢⎢⎣

q1x q1y q1z

q2x q2y q2z
...

...
...

qn
3

x qn
3

y qn
3

z

⎤
⎥⎥⎥⎥⎥⎦

et = (∇̄T )T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂T

∂x

1 ∂T

∂y

1 ∂T

∂z

1

∂T

∂x

2 ∂T

∂y

2 ∂T

∂z

2

...
...

...

∂T

∂x

n3

∂T

∂y

n3

∂T

∂z

n3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎣

x1 y1 z1
x2 y2 z2
...

...
...

xn3 yn3 zn3

⎤
⎥⎥⎥⎥⎦

contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw3i8e.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = Be ae

q = −D∇T

where the matrices D, Be, and ae are described in flw3i8e, and where the integration
points are chosen as evaluation points.
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2 System functions

2.1 Introduction

The group of system functions comprises functions for the setting up, solving, and elimi-
nation of systems of equations. The functions are separated in two groups:

Static system functions

Dynamic system functions

Static system functions concern the linear system of equations

Ka = f

where K is the global stiffness matrix and f is the global load vector. Often used static
system functions are assem and solveq. The function assem assembles the global stiffness
matrix and solveq computes the global displacement vector a considering the boundary
conditions. It should be noted that K, f , and a also represent analogous quantities in
systems others than structural mechanical systems. For example, in a heat flow problem
K represents the conductivity matrix, f the heat flow, and a the temperature.

Dynamic system functions are related to different aspects of linear dynamic systems of
coupled ordinary differential equations according to

C ḋ+K d = f

for first-order systems and
Md̈+Cḋ+Kd = f

for second-order systems. First-order systems occur typically in transient heat conduction
and second-order systems occur in structural dynamics.
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2.2 Static system functions

The group of static system functions comprises functions for setting up and solving the
global system of equations. It also contains a function for eigenvalue analysis, a function
for static condensation, a function for extraction of element displacements from the global
displacement vector and a function for extraction of element coordinates.

The following functions are available for static analysis:

Static system functions
assem Assemble element matrices
coordxtr Extract element coordinates from a global coordinate matrix.
eigen Solve a generalized eigenvalue problem
extract Extract values from a global vector
red Reduce the size of a square matrix
solveq Solve a system of equations
statcon Perform static condensation

Dynamic system function
step1 Carry out step-by-step integration in first-order systems



assem Static system functions

Purpose:

Assemble element matrices.
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Syntax:

K=assem(edof,K,Ke)
[K,f]=assem(edof,K,Ke,f,fe)

Description:

assem adds the element stiffness matrix Ke, stored in Ke, to the structure stiffness
matrix K, stored in K, according to the topology matrix edof.

The element topology matrix edof is defined as

edof = [el dof1 dof2 . . . dofned︸ ︷︷ ︸
global dof.

]

where the first column contains the element number, and the columns 2 to (ned+ 1)
contain the corresponding global degrees of freedom (ned = number of element de-
grees of freedom).

In the case where the matrix Ke is identical for several elements, assembling of these
can be carried out simultaneously. Each row in Edof then represents one element,
i.e. nel is the total number of considered elements.

Edof =

⎡
⎢⎢⎢⎢⎣

el1
el2
...

elnel

dof1 dof2 . . . dofned
dof1 dof2 . . . dofned
...

...
...

dof1 dof2 . . . dofned

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
one row for each element

If fe and f are given in the function, the element load vector f e is also added to the
global load vector f .

SYSTEM 2.2 – 2



Static system functions coordxtr

Purpose:

Extract element coordinates from a global coordinate matrix.
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Syntax:

[Ex,Ey,Ez]=coordxtr(Edof,Coord,Dof,nen)

Description:

coordxtr extracts element nodal coordinates from the global coordinate matrix Coord
for elements with equal numbers of element nodes and dof’s.

Input variables are the element topology matrix Edof, defined in assem, the global
coordinate matrix Coord, the global topology matrix Dof, and the number of element
nodes nen in each element.

Coord =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1 [z1]
x2 y2 [z2]
x3 y3 [z3]
...

...
...

xn yn [zn]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Dof =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k1 l1 ... m1

k2 l2 ... m2

k3 l3 ... m3
...

... ...
...

kn ln ... mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

nen = [ nen ]

The nodal coordinates defined in row i of Coord correspond to the degrees of freedom
of row i in Dof. The components ki, li and mi define the degrees of freedom of node
i, and n is the number of global nodes for the considered part of the FE-model.
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coordxtr Static system functions

The output variables Ex, Ey, and Ez are matrices defined according to

Ex =

⎡
⎢⎢⎢⎢⎣

x1
1 x2

1 x3
1 ... xnen

1

x1
2 x2

2 x3
2 ... xnen

2

...
...

...
...

...
x1

nel x2
nel x3

nel ... xnen
nel

⎤
⎥⎥⎥⎥⎦

where row i gives the x-coordinates of the element defined in row i of Edof, and
where nel is the number of considered elements.

The element coordinate data extracted by the function coordxtr can be used for
plotting purposes and to create input data for the element stiffness functions.
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Static system functions eigen

Purpose:

Solve the generalized eigenvalue problem.

Syntax:

L=eigen(K,M)
L=eigen(K,M,b)
[L,X]=eigen(K,M)
[L,X]=eigen(K,M,b)

Description:

eigen solves the eigenvalue problem

| K− λM |= 0

where K and M are square matrices. The eigenvalues λ are stored in the vector L
and the corresponding eigenvectors in the matrix X.

If certain rows and columns in matrices K and M are to be eliminated in computing
the eigenvalues, b must be given in the function. The rows (and columns) that are
to be eliminated are described in the vector b defined as

b =

⎡
⎢⎢⎢⎢⎣

dof1
dof2
...

dofnb

⎤
⎥⎥⎥⎥⎦

The computed eigenvalues are given in order ranging from the smallest to the largest.
The eigenvectors are normalized in order that

XTMX = I

where I is the identity matrix.
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extract Static system functions

Purpose:

Extract element nodal quantities from a global solution vector.
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Syntax:

ed=extract(edof,a)

Description:

extract extracts element displacements or corresponding quantities ae from the global
solution vector a, stored in a.

Input variables are the element topology matrix edof, defined in assem, and the global
solution vector a.

The output variable

ed = (ae)T

contains the element displacement vector.

If Edof contains more than one element, Ed will be a matrix

Ed =

⎡
⎢⎢⎢⎢⎢⎢⎣

(ae)T1

(ae)T2
...

(ae)Tnel

⎤
⎥⎥⎥⎥⎥⎥⎦

where row i gives the element displacements for the element defined in row i of Edof,
and nel is the total number of considered elements.

SYSTEM 2.2 – 6



Static system functions extract

Example:

For the two dimensional beam element, the extract function will extract six nodal
displacements for each element given in Edof, and create a matrix Ed of size (nel × 6).

Ed =

⎡
⎢⎢⎢⎢⎣
u1 u2 u3 u4 u5 u6

u1 u2 u3 u4 u5 u6
...

...
...

...
...

...
u1 u2 u3 u4 u5 u6

⎤
⎥⎥⎥⎥⎦
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red

Purpose:

Reduce the size of a square matrix by omitting rows and columns.

Syntax:

B=red(A,b)

Description:

B=red(A,b) reduces the square matrix A to a smaller matrix B by omitting rows and
columns of A. The indices for rows and columns to be omitted are specified by the
column vector b.

Examples:

Assume that the matrix A is defined as

A =

⎡
⎢⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎤
⎥⎥⎥⎦

and b as

b =

[
2
4

]

The statement B=red(A,b) results in the matrix

B =

[
1 3
9 11

]
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Static system functions solveq

Purpose:

Solve equation system.

Syntax:

a=solveq(K,f)
a=solveq(K,f,bc)
[a,r]=solveq(K,f,bc)

Description:

solveq solves the equation system

K a = f

where K is a matrix and a and f are vectors.

The matrix K and the vector f must be predefined. The solution of the system of
equations is stored in a vector a which is created by the function.

If some values of a are to be prescribed, the row number and the corresponding values
are given in the boundary condition matrix

bc =

⎡
⎢⎢⎢⎢⎣

dof1
dof2
...

dofnbc

u1

u2
...

unbc

⎤
⎥⎥⎥⎥⎦

where the first column contains the row numbers and the second column the corre-
sponding prescribed values.

If r is given in the function, support forces are computed according to

r = K a− f
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step1 Dynamic system functions

Purpose:

Reduce system of equations by static condensation.

Syntax:

[K1,f1]=statcon(K,f,b)

Description:

statcon reduces a system of equations

K a = f

by static condensation.

The degrees of freedom to be eliminated are supplied to the function by the vector

b =

⎡
⎢⎢⎢⎢⎣

dof1
dof2
...

dofnb

⎤
⎥⎥⎥⎥⎦

where each row in b contains one degree of freedom to be eliminated.

The elimination gives the reduced system of equations

K1 a1 = f1

where K1 and f1 are stored in K1 and f1 respectively.

Purpose:

Compute the dynamic solution to a set of first order differential equations.

Syntax:

Tsnap=step1(K,C,d0,ip,f,pbound)
[Tsnap,D,V]=step1(K,C,d0,ip,f,pbound)

Description:

step1 computes at equal time steps the solution to a set of first order differential
equations of the form

Cḋ+Kd = f(x, t),

d(0) = d0.

The command solves transient field problems. In the case of heat conduction, K and
C represent the n× n conductivity and capacity matrices, respectively.

The initial conditions are given by the vector d0 containing initial values of d. The
time integration procedure is governed by the parameters given in the vector ip
defined as

ip = [dt T α [nsnap nhist timei ... dofi ... ]] ,
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Dynamic system functions step1

︸ ︷︷ ︸
list of
nsnap
moments

︸ ︷︷ ︸
list of
nhist
dofs

where dt specifies the time increment in the time stepping scheme, T total time and
α a time integration constant; see [1]. The parameter nsnap denotes the number of
snapshots stored in Tsnap. The selected elapsed times are specified in (timei ... ),
whereas nhist is the number of time histories stored in D and V. The selected degrees-
of-freedom are specified in (dofi ... ). The following table lists frequently used values
of α:

α = 0 Forward difference; forward Euler,

α = 1
2

Trapezoidal rule; Crank-Nicholson,

α = 1 Backward difference; backward Euler.

The matrix f contains the time-dependent load vectors. If no external loads are
active, the matrix corresponding to f should be replaced by []. The matrix f contains
the time-dependent prescribed values of the field variable. If no field variables are
prescribed the matrix corresponding to pbound should be replaced by []. Matrix f is
organized in the following manner:

f =

⎡
⎢⎢⎢⎢⎣
time history of the load at dof1
time history of the load at dof2
...
time history of the load at dofn

⎤
⎥⎥⎥⎥⎦ .

The dimension of f is

(number of degrees-of-freedom)× (number of timesteps + 1).

The matrix pbound is organized in the following manner:

pbound =

⎡
⎢⎢⎢⎢⎣
dof1 time history of the field variable
dof2 time history of the field variable
...

...
dofm2 time history of the field variable

⎤
⎥⎥⎥⎥⎦ .

The dimension of pbound is

(number of dofs with prescribed field values)× (number of timesteps + 2).

The time history functions can be generated using the command gfunc. If all the
values of the time histories of f or pbound are kept constant, these values need to be
stated only once. In this case the number of columns in f is one and in pbound two.
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It is highly recommended to define f as sparse (a MATLAB built-in function). In
most cases only a few degrees-of-freedom are affected by the exterior load, and hence
the matrix contains only few non-zero entries.

The computed snapshots are stored in Tsnap, one column for each requested snapshot
according to ip, i.e. the dimension of Tsnap is (number of dofs) × nsnap. The
computed time histories of d and ḋ are stored in D and V, respectively, one line
for each requested degree-of-freedom according to ip. The dimension of D is nhist×
(number of timesteps + 1).
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3 Statements and macros

Statements describe algorithmic actions that can be executed. There are two different
types of control statements, conditional and repetitive. The first group defines conditional
jumps whereas the latter one defines repetition until a conditional statement is fulfilled.
Macros are used to define new functions to the MATLAB or CALFEM structure, or to
store a sequence of statements in an .m-file.

Control statements
if Conditional jump
for Initiate a loop
while Define a conditional loop

Macros
function Define a new function
script Store a sequence of statements
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4 Graphics functions

The group of graphics functions comprises functions for element based graphics. Mesh
plots, displacements, section forces, flows, iso lines and principal stresses can be displayed.
The functions are divided into two dimensional, and general graphics functions.

Two dimensional graphics functions
dispbeam2 Draw displacements for beam element
eldraw2 Draw undeformed finite element mesh
eldisp2 Draw deformed finite element mesh
eldia2 Draw section force diagram
elflux2 Plot flux vectors
eliso2 Draw isolines for nodal quantities
elprinc2 Plot principal stresses
scalfact2 Determine scale factor
scalgraph2 Draw graphic scale
secforce2 Draw section force diagram for bar or beam element

General graphics functions in MATLAB
plot Plot lines and points in 2D space
fill Draw filled 2D polygons
axis Axis scaling and appearance
clf Clear current figure
figure Create figures
grid Grid lines
hold Hold current graph
print Print graph or save graph to file
text Add text to current plot
title Titles for 2D and 3D plots
xlabel,
ylabel,
zlabel

Axis labels for 2D and 3D plots
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eldraw2

Purpose:

Draw the undeformed mesh for a two dimensional structure.

Syntax:

eldraw2(Ex,Ey)
eldraw2(Ex,Ey,plotpar)
eldraw2(Ex,Ey,plotpar,elnum)

Description:

eldraw2 displays the undeformed mesh for a two dimensional structure.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr.

The variable plotpar sets plot parameters for linetype, linecolor and node marker.

plotpar = [ linetype linecolor nodemark ]

linetype = 1 solid line linecolor = 1 black
2 dashed line 2 blue
3 dotted line 3 magenta

4 red

nodemark = 1 circle
2 star
0 no mark

Default is solid black lines with circles at nodes.

Element numbers can be displayed at the center of the element if a column vector
elnum with the element numbers is supplied. This column vector can be derived from
the element topology matrix Edof,

elnum=Edof(:,1)

i.e. the first column of the topology matrix.

Limitations:

Supported elements are bar, beam, triangular three node, and quadrilateral four
node elements.

4 – 3 GRAPHICS



eldisp2

Purpose:

Draw the deformed mesh for a two dimensional structure.

Syntax:

[sfac]=eldisp2(Ex,Ey,Ed)
[sfac]=eldisp2(Ex,Ey,Ed,plotpar)
eldisp2(Ex,Ey,Ed,plotpar,sfac)

Description:

eldisp2 displays the deformed mesh for a two dimensional structure.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr, and the element displacements Ed formed by the function extract.

The variable plotpar sets plot parameters for linetype, linecolor and node marker.

plotpar=[ linetype linecolor nodemark ]

linetype = 1 solid line linecolor = 1 black
2 dashed line 2 blue
3 dotted line 3 magenta

4 red

nodemark = 1 circle
2 star
0 no mark

Default is dashed black lines with circles at nodes.

The scale factor sfac is a scalar that the element displacements are multiplied with
to get a suitable geometrical representation. The scale factor is set automatically if
it is omitted in the input list.

Limitations:

Supported elements are bar, beam, triangular three node, and quadrilateral four
node elements.
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elflux2

Purpose:

Draw element flow arrows for two dimensional elements.

Syntax:

[sfac]=elflux2(Ex,Ey,Es)
[sfac]=elflux2(Ex,Ey,Es,plotpar)
elflux2(Ex,Ey,Es,plotpar,sfac)

Description:

elflux2 displays element heat flux vectors (or corresponding quantities) for a number
of elements of the same type. The flux vectors are displayed as arrows at the element
centroids. Note that only the flux vectors are displayed. To display the element mesh,
use eldraw2.

Input variables are the coordinate matrices Ex and Ey, and the element flux matrix
Es defined in flw2ts or flw2qs.

The variable plotpar sets plot parameters for the flux arrows.

plotpar=[ arrowtype arrowcolor ]

arrowtype = 1 solid arrowcolor = 1 black
2 dashed 2 blue
3 dotted 3 magenta

4 red

Default, if plotpar is omitted, is solid black arrows.

The scale factor sfac is a scalar that the values are multipied with to get a suitable
arrow size in relation to the element size. The scale factor is set automatically if it
is omitted in the input list.

Limitations:

Supported elements are triangular 3 node and quadrilateral 4 node elements.
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eliso2

Purpose:

Display element iso lines for two dimensional elements.

Syntax:

eliso2(Ex,Ey,Ed,isov)
eliso2(Ex,Ey,Ed,isov,plotpar)

Description:

eliso2 displays element iso lines for a number of elements of the same type. Note that
only the iso lines are displayed. To display the element mesh, use eldraw2.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr, and the element nodal quantities (e.g displacement or energy potential) matrix
Ed defined in extract.

If isov is a scalar it determines the number of iso lines to be displayed. If isov is a
vector it determines the values of the iso lines to be displayed (number of iso lines
equal to length of vector isov).

isov = [ isolines]
isov = [ isovalue(1) ... isovalue(n) ]

The variable plotpar sets plot parameters for the iso lines.

plotpar=[ linetype linecolor textfcn ]

arrowtype = 1 solid arrowcolor = 1 black
2 dashed 2 blue
3 dotted 3 magenta

4 red

textfcn = 0 the iso values of the lines will not be printed
1 the iso values of the lines will be printed at the iso lines
2 the iso values of the lines will be printed where the cursor indicates

Default is solid, black lines and no iso values printed.

Limitations:

Supported elements are triangular 3 node and quadrilateral 4 node elements.
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scalfact2

Purpose:

Determine scale factor for drawing computational results.

Syntax:

[sfac]=scalfact2(ex,ey,ed)
[sfac]=scalfact2(ex,ey,ed,rat)

Description:

scalfact2 determines a scale factor sfac for drawing computational results, such as
displacements, section forces or flux.

Input variables are the coordinate matrices ex and ey and the matrix ed containing
the quantity to be displayed. The scalar rat defines the ratio between the geometric
representation of the largest quantity to be displayed and the element size. If rat is
not specified, 0.2 is used.
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scalgraph2

Purpose:

Draw a Graphic scale.

Syntax:

scalgraph2(sfac,magnitude)
scalgraph2(sfac,magnitude,plotpar)

Description:

scalgraph2 draws a graphic scale to visualise the magnitude of displayed computa-
tional results. The input variable sfac is a scale factor determined by the function
scalfact2 and the variable

magnitude = [ S x y ]

specifies the value corresponding the length of the graphic scale S, and (x, y) are the
coordinates of the starting point. If no coordinates are given the starting point will
be (0,-0.5).

The variable plotpar sets the the graphic scale colour.

plotpar=[colour ]

colour = 1 black
2 blue
3 magenta
4 red
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Purpose:

Draw the section force diagrams of a two dimensional bar or beam element in its
global position.

Syntax:

secforce2(ex,ey,es,plotpar,sfac)
[sfac]=secforce2(ex,ey,es)
[sfac]=secforce2(ex,ey,es,plotpar)

Description:

The input variables ex and ey are defined in bar2e or beam2e and the input variable

es =

⎡
⎢⎢⎢⎢⎣

S1

S2
...

Sn

⎤
⎥⎥⎥⎥⎦

consists of a column matrix that contains section forces. The values in es are com-
puted in e.g. bar2s or beam2s.

The variable plotpar sets plot parameters for the diagram.

plotpar=[ linecolour elementcolour ]

linecolour = 1 black elementcolour = 1 black
2 blue 2 blue
3 magenta 3 magenta
4 red 4 red

The scale factor sfac is a scalar that the section forces are multiplied with to get a
suitable graphical representation. If sfac is omitted in the input list the scale factor
is set automatically.

The input variable

eci =

⎡
⎢⎢⎢⎢⎣

x̄1

x̄2
...

x̄n

⎤
⎥⎥⎥⎥⎦

specifies the local x̄-coordinates of the quantities in es.
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5 User’s Manual, examples

5.1 Introduction

This set of examples is defined with the ambition to serve as a User’s Manual. The examples
are written as .m-files (script files) and supplied together with the CALFEM functions.

The User’s Manual examples are separated into three groups:

Static analysis

Dynamic analysis

Nonlinear analysis

In this manual, only static examples are shown. The static linear examples illustrate finite
element analysis of different structures loaded by stationary loads.
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5.2 Static analysis

This section illustrates some linear static finite element calculations. The examples deal
with structural problems as well as field problems such as heat conduction.

Static analysis

exs1 Linear spring system

exs2 One-dimensional heat flow

exs3 Plane truss

exs4 Plane truss analysed using loops

exs8 Two dimensional diffusion

The introductory example exs1 illustrates the basic steps in the finite element method for
a simple structure of one-dimensional linear springs. The linear spring or analogy element
is also used in example exs2 to solve a problem of heat conduction in a wall. A plane
truss consisting of three bars is analysed in exs3. In example exs4 a plane truss consisting
of ten bars is analysed using loops. First the analysis is performed by defining coordinate
data for each element directly, and then it is shown how this data can be obtained from
global coordinate data. A simply supported beam is analysed in example exs5. Element
forces and the support forces are calculated. A two dimensional plane frame is analysed
in example exs6. A structure built up from both beams and bars is analysed in example
exs7. Graphics facilities are also explained in examples exs6, exs7, and exs8.

Note: The examples listed above are supplied as .m-files under the directory examples.
The example files are named according to the table.
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exs1 Static analysis

Purpose:

Show the basic steps in a finite element calculation.

Description:

The general procedure in linear finite element calculations is carried out for a simple
structure. The steps are

• define the model

• generate element matrices

• assemble element matrices into the global system of equations

• solve the global system of equations

• evaluate element forces

Consider the system of three linear elastic springs, and the corresponding finite
element model. The system of springs is fixed in its ends and loaded by a single load
F .

●●●
3

3

2

1

2
1

k

2k

2k

F

The computation is initialized by defining the topology matrix Edof, containing ele-
ment numbers and global element degrees of freedom,

>> Edof=[1 1 2;

2 2 3;

3 2 3];

the global stiffness matrix K (3×3) of zeros,

>> K=zeros(3,3)

K =

0 0 0

0 0 0

0 0 0
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Static analysis exs1

and the load vector f (3×1) with the load F = 100 in position 2.

>> f=zeros(3,1); f(2)=100

f =

0

100

0

Element stiffness matrices are generated by the function spring1e. The element prop-
erty ep for the springs contains the spring stiffnesses k and 2k respectively, where
k = 1500.

>> k=1500; ep1=k; ep2=2*k;

>> Ke1=spring1e(ep1)

Ke1 =

1500 -1500

-1500 1500

>> Ke2=spring1e(ep2)

Ke2 =

3000 -3000

-3000 3000

The element stiffness matrices are assembled into the global stiffness matrix K ac-
cording to the topology.

>> K=assem(Edof(1,:),K,Ke2)

K =

3000 -3000 0

-3000 3000 0

0 0 0

>> K=assem(Edof(2,:),K,Ke1)

K =

3000 -3000 0

-3000 4500 -1500

0 -1500 1500
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exs1 Static analysis

>> K=assem(Edof(3,:),K,Ke2)

K =

3000 -3000 0

-3000 7500 -4500

0 -4500 4500

The global system of equations is solved considering the boundary conditions given
in bc.

>> bc= [1 0; 3 0];

>> [a,r]=solveq(K,f,bc)

a =

0

0.0133

0

r =

-40.0000

0

-60.0000

Element forces are evaluated from the element displacements. These are obtained
from the global displacements a using the function extract.

>> ed1=extract(Edof(1,:),a)

ed1 =

0 0.0133

>> ed2=extract(Edof(2,:),a)

ed2 =

0.0133 0

>> ed3=extract(Edof(3,:),a)

ed3 =

0.0133 0
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Static analysis exs1

The spring forces are evaluated using the function spring1s.

>> es1=spring1s(ep2,ed1)

es1 =

40

>> es2=spring1s(ep1,ed2)

es2 =

-20

>> es3=spring1s(ep2,ed3)

es3 =

-40
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exs2 Static analysis

Purpose:

Analysis of one-dimensional heat flow.

Description:

Consider a wall built up of concrete and thermal insulation. The outdoor temperature
is −17◦C and the temperature inside is 20◦C. At the inside of the theral insulation
there is a heat source yielding 10 W/m2.
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The wall is subdivided into five elements and the one-dimensional spring (analogy)
element spring1e is used. Equivalent spring stiffnesses are ki = λA/L for thermal
conductivity and ki = A/R for thermal surface resistance. Corresponding spring
stiffnesses per m2 of the wall are:

k1 = 1/0.04 = 25.0 W/K
k2 = 1.7/0.070 = 24.3 W/K
k3 = 0.040/0.100 = 0.4 W/K
k4 = 1.7/0.100 = 17.0 W/K
k5 = 1/0.13 = 7.7 W/K

A global system matrix K and a heat flow vector f are defined. The heat source inside
the wall is considered by setting f4 = 10. The element matrices Ke are computed
using spring1e, and the function assem assembles the global stiffness matrix.

The system of equations is solved using solveq with considerations to the boundary
conditions in bc. The prescribed temperatures are T1 = −17◦C and T6 = 20◦C.

>> Edof=[1 1 2

2 2 3;

3 3 4;

4 4 5;

5 5 6];
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Static analysis exs2

>> K=zeros(6);

>> f=zeros(6,1); f(4)=10

f =

0

0

0

10

0

0

>> ep1=[25]; ep2=[24.3];

>> ep3=[0.4]; ep4=[17];

>> ep5=[7.7];

>> Ke1=spring1e(ep1); Ke2=spring1e(ep2);

>> Ke3=spring1e(ep3); Ke4=spring1e(ep4);

>> Ke5=spring1e(ep5);

>> K=assem(Edof(1,:),K,Ke1); K=assem(Edof(2,:),K,Ke2);

>> K=assem(Edof(3,:),K,Ke3); K=assem(Edof(4,:),K,Ke4);

>> K=assem(Edof(5,:),K,Ke5);

>> bc=[1 -17; 6 20];

>> [a,r]=solveq(K,f,bc)

a =

-17.0000

-16.4384

-15.8607

19.2378

19.4754

20.0000

r =

-14.0394

0.0000

-0.0000

0

0.0000

4.0394
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exs2 Static analysis

The temperature values Ti in the node points are given in the vector a and the
boundary flows in the vector r.

After solving the system of equations, the heat flow through the wall is computed
using extract and spring1s.

>> ed1=extract(Edof(1,:),a);

>> ed2=extract(Edof(2,:),a);

>> ed3=extract(Edof(3,:),a);

>> ed4=extract(Edof(4,:),a);

>> ed5=extract(Edof(5,:),a);

>> q1=spring1s(ep1,ed1)

q1 =

14.0394

>> q2=spring1s(ep2,ed2)

q2 =

14.0394

>> q3=spring1s(ep3,ed3)

q3 =

14.0394

>> q4=spring1s(ep4,ed4)

q4 =

4.0394

>> q5=spring1s(ep5,ed5)

q5 =

4.0394

The heat flow through the wall is q = 14.0 W/m2 in the part of the wall to the left
of the heat source, and q = 4.0 W/m2 in the part to the right of the heat source.
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Static analysis exs3

Purpose:

Analysis of a plane truss.

Description:

Consider a plane truss consisting of tree bars with the properties E = 200 GPa,
A1 = 6.0 · 10−4 m2, A2 = 3.0 · 10−4 m2 and A3 = 10.0 · 10−4 m2, and loaded by a
single force P = 80 kN. The corresponding finite element model consists of three
elements and eight degrees of freedom.
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The topology is defined by the matrix

>> Edof=[1 1 2 5 6;

2 5 6 7 8;

3 3 4 5 6];

The stiffness matrix K and the load vector f, are defined by

>> K=zeros(8);

f=zeros(8,1); f(6)=-80e3;

The element property vectors ep1, ep2 and ep3 are defined by

>> E=2.0e11;

>> A1=6.0e-4; A2=3.0e-4; A3=10.0e-4;

>> ep1=[E A1]; ep2=[E A2]; ep3=[E A3];

and the element coordinate vectors ex1, ex2, ex3, ey1, ey2 and ey3 by

>> ex1=[0 1.6]; ex2=[1.6 1.6]; ex3=[0 1.6];

>> ey1=[0 0]; ey2=[0 1.2]; ey3=[1.2 0];
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exs3 Static analysis

The element stiffness matrices Ke1, Ke2 and Ke3 are computed using bar2e.

>> Ke1=bar2e(ex1,ey1,ep1)

Ke1 =

1.0e+007 *

7.5000 0 -7.5000 0

0 0 0 0

-7.5000 0 7.5000 0

0 0 0 0

>> Ke2=bar2e(ex2,ey2,ep2)

Ke2 =

1.0e+007 *

0 0 0 0

0 5.0000 0 -5.0000

0 0 0 0

0 -5.0000 0 5.0000

>> Ke3=bar2e(ex3,ey3,ep3)

Ke3 =

1.0e+007 *

6.4000 -4.8000 -6.4000 4.8000

-4.8000 3.6000 4.8000 -3.6000

-6.4000 4.8000 6.4000 -4.8000

4.8000 -3.6000 -4.8000 3.6000

Based on the topology information, the global stiffness matrix can be generated by
assembling the element stiffness matrices

>> K=assem(Edof(1,:),K,Ke1);

>> K=assem(Edof(2,:),K,Ke2);

>> K=assem(Edof(3,:),K,Ke3)
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Static analysis exs3

K =

1.0e+008 *

Columns 1 through 7

0.7500 0 0 0 -0.7500 0 0

0 0 0 0 0 0 0

0 0 0.6400 -0.4800 -0.6400 0.4800 0

0 0 -0.4800 0.3600 0.4800 -0.3600 0

-0.7500 0 -0.6400 0.4800 1.3900 -0.4800 0

0 0 0.4800 -0.3600 -0.4800 0.8600 0

0 0 0 0 0 0 0

0 0 0 0 0 -0.5000 0

Column 8

0

0

0

0

0

-0.5000

0

0.5000

Considering the prescribed displacements in bc, the system of equations is solved
using the function solveq, yielding displacements a and support forces r.

>> bc= [1 0;2 0;3 0;4 0;7 0;8 0];

>> [a,r]=solveq(K,f,bc)

a =

1.0e-002 *

0

0

0

0

-0.0398

-0.1152

0

0
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exs3 Static analysis

r =

1.0e+004 *

2.9845

0

-2.9845

2.2383

0.0000

0.0000

0

5.7617

The vertical displacement at the point of loading is 1.15 mm. The section forces es1,
es2 and es3 are calculated using bar2s from element displacements ed1, ed2 and ed3
obtained using extract.

>> ed1=extract(Edof(1,:),a);

>> N1=bar2s(ex1,ey1,ep1,ed1)

N1 =

-2.9845e+004

>> ed2=extract(Edof(2,:),a);

>> N2=bar2s(ex2,ey2,ep2,ed2)

N2 =

5.7617e+004

>> ed3=extract(Edof(3,:),a);

>> N3=bar2s(ex3,ey3,ep3,ed3)

N3 =

3.7306e+004

i.e., the normal forces are N1 = −29.84 kN, N2 = 57.62 kN and N3 = 37.31 kN.
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Static analysis exs4

Purpose:

Analysis of a plane truss.

Description:

Consider a plane truss, loaded by a single force P = 0.5 MN.

2 m 2 m

2 m

P = 0.5 MN

30o

The corresponding finite element model consists of ten elements and twelve degrees
of freedom.
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A = 25.0 · 10−4 m2

E = 2.10 · 105 MPa

The topology is defined by the matrix

>> Edof=[1 1 2 5 6;

2 3 4 7 8;

3 5 6 9 10;

4 7 8 11 12;

5 7 8 5 6;

6 11 12 9 10;

7 3 4 5 6;

8 7 8 9 10;

9 1 2 7 8;

10 5 6 11 12];
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exs4 Static analysis

A global stiffness matrix K and a load vector f are defined. The load P is divided
into x and y components and inserted in the load vector f.

>> K=zeros(12);

>> f=zeros(12,1); f(11)=0.5e6*sin(pi/6); f(12)=-0.5e6*cos(pi/6);

The element matrices Ke are computed by the function bar2e. These matrices are
then assembled in the global stiffness matrix using the function assem.

>> A=25.0e-4; E=2.1e11; ep=[E A];

>> Ex=[0 2;

0 2;

2 4;

2 4;

2 2;

4 4;

0 2;

2 4;

0 2;

2 4];

>> Ey=[2 2;

0 0;

2 2;

0 0;

0 2;

0 2;

0 2;

0 2;

2 0;

2 0];

All the element matrices are computed and assembled in the loop

>> for i=1:10

Ke=bar2e(Ex(i,:),Ey(i,:),ep);

K=assem(Edof(i,:),K,Ke);

end;

The displacements in a and the support forces in r are computed by solving the
system of equations considering the boundary conditions in bc.

>> bc=[1 0;2 0;3 0;4 0];

>> [a,r]=solveq(K,f,bc)
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Static analysis exs4

a =

0

0

0

0

0.0024

-0.0045

-0.0016

-0.0042

0.0030

-0.0107

-0.0017

-0.0113

r =

1.0e+005 *

-8.6603

2.4009

6.1603

1.9293

0.0000

-0.0000

-0.0000

-0.0000

0.0000

0.0000

0.0000

0.0000

The displacement at the point of loading is −1.7 · 10−3 m in the x-direction and
−11.3 · 10−3 m in the y-direction. At the upper support the horizontal force is
−0.866 MN and the vertical 0.240 MN. At the lower support the forces are 0.616
MN and 0.193 MN, respectively.

Normal forces are evaluated from element displacements. These are obtained from
the global displacements a using the function extract. The normal forces are evaluated
using the function bar2s.

ed=extract(Edof,a);

>> for i=1:10

N(i,:)=bar2s(Ex(i,:),Ey(i,:),ep,ed(i,:));

end
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exs4 Static analysis

The obtained normal forces are

>> N

N =

1.0e+005 *

6.2594

-4.2310

1.7064

-0.1237

-0.6945

1.7064

-2.7284

-2.4132

3.3953

3.7105

The largest normal force N = 0.626 MN is obtained in element 1 and is equivalent
to a normal stress σ = 250 MPa.

To reduce the quantity of input data, the element coordinate matrices Ex and Ey can
alternatively be created from a global coordinate matrix Coord and a global topology
matrix Coord using the function coordxtr, i.e.

>> Coord=[0 2;

0 0;

2 2;

2 0;

4 2;

4 0];

>> Dof=[ 1 2;

3 4;

5 6;

7 8;

9 10;

11 12];

>> [ex,ey]=coordxtr(Edof,Coord,Dof,2);
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Purpose:

Analysis of two dimensional diffusion.

Description:

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

1 2

3 4

5 6

7 8

x

y

c = 0

c = 0

c = 10-3 kg/m3

c = 0

0.1 m

0.1 m

Description:

Consider a filter paper of square shape. Three sides are in contact with pure water
and the fourth side is in contact with a solution of concentration c = 1.0·10−3 kg/m3.
The length of each side is 0.100 m. Using symmetry, only half of the paper has to
be analyzed. The paper and the corresponding finite element mesh are shown. The
following boundary conditions are applied

c(0, y) = c(x, 0) = c(0.1, y) = 0
c(x, 0.1) = 10−3

The element topology is defined by the topology matrix

>> Edof=[1 1 2 5 4

2 2 3 6 5

3 4 5 8 7

4 5 6 9 8

5 7 8 11 10

6 8 9 12 11

7 10 11 14 13

8 11 12 15 14];
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exs8 Static analysis

The system matrices, i.e. the stiffness matrix K and the load vector f, are defined by

>> K=zeros(15); f=zeros(15,1);

Because of the same geometry, orientation, and constitutive matrix for all elements,
only one element stiffness matrix Ke has to be computed. This is done by the function
flw2qe.

>> ep=1; D=[1 0; 0 1];

>> ex=[0 0.025 0.025 0]; ey=[0 0 0.025 0.025];

>> Ke=flw2qe(ex,ey,ep,D)

>> Ke =

0.7500 -0.2500 -0.2500 -0.2500

-0.2500 0.7500 -0.2500 -0.2500

-0.2500 -0.2500 0.7500 -0.2500

-0.2500 -0.2500 -0.2500 0.7500

Based on the topology information, the global stiffness matrix is generated by as-
sembling this element stiffness matrix Ke in the global stiffness matrix K

>> K=assem(Edof,K,Ke);

Finally, the solution is calculated by defining the boundary conditions bc and solving
the system of equations. The boundary condition at dof 13 is set to 0.5·10−3 as an
average of the concentrations at the neighbouring boundaries. Concentrations a and
unknown boundary flows r are computed by the function solveq.

>> bc=[1 0;2 0;3 0;4 0;7 0;10 0;13 0.5e-3;14 1e-3;15 1e-3];

>> [a,r]=solveq(K,f,bc);

The element flows q are calculated from element concentration Ed

>> Ed=extract(Edof,a);

>> for i=1:8

Es=flw2qs(ex,ey,ep,D,Ed(i,:));

end
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Results

a= r=

1.0e-003 * 1.0e-003 *

0 -0.0165

0 -0.0565

0 -0.0399

0 -0.0777

0.0662 0.0000

0.0935 0

0 -0.2143

0.1786 0.0000

0.2500 0.0000

0 -0.6366

0.4338 0.0000

0.5494 -0.0000

0.5000 0.0165

1.0000 0.7707

1.0000 0.2542

Es =

-0.0013 -0.0013

-0.0005 -0.0032

-0.0049 -0.0022

-0.0020 -0.0054

-0.0122 -0.0051

-0.0037 -0.0111

-0.0187 -0.0213

-0.0023 -0.0203
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The following .m-file shows an alternative set of commands to perform the diffusion
analysis of exs8. By use of global coordinates, an FE-mesh is generated. Also plots
with flux-vectors and contour lines are created.

% ----- System matrices -----

K=zeros(15); f=zeros(15,1);

Coord=[0 0 ; 0.025 0 ; 0.05 0

0 0.025; 0.025 0.025; 0.05 0.025

0 0.05 ; 0.025 0.05 ; 0.05 0.05

0 0.075; 0.025 0.075; 0.05 0.075

0 0.1 ; 0.025 0.1 ; 0.05 0.1 ];

Dof=[1; 2; 3

4; 5; 6

7; 8; 9

10;11;12

13;14;15];

% ----- Element properties, topology and coordinates -----

ep=1; D=[1 0;0 1];

Edof=[1 1 2 5 4

2 2 3 6 5

3 4 5 8 7

4 5 6 9 8

5 7 8 11 10

6 8 9 12 11

7 10 11 14 13

8 11 12 15 14];

[Ex,Ey]=coordxtr(Edof,Coord,Dof,4);

% ----- Generate FE-mesh -----

eldraw2(Ex,Ey,[1 3 0],Edof(:,1));

pause; clf;

% ----- Create and assemble element matrices -----

for i=1:8

Ke=flw2qe(Ex(i,:),Ey(i,:),ep,D);

K=assem(Edof(i,:),K,Ke);

end;

% ----- Solve equation system -----

bc=[1 0;2 0;3 0;4 0;7 0;10 0;13 0.5e-3;14 1e-3;15 1e-3];
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[a,r]=solveq(K,f,bc)

% ----- Compute element flux vectors -----

Ed=extract(Edof,a);

for i=1:8

Es(i,:)=flw2qs(Ex(i,:),Ey(i,:),ep,D,Ed(i,:))

end

% ----- Draw flux vectors and contour lines -----

sfac=scalfact2(Ex,Ey,Es,0.5);

eldraw2(Ex,Ey,[1,3,0]);

elflux2(Ex,Ey,Es,[1,4],sfac);

pltscalb2(sfac,[2e-2 0.06 0.01],4);

pause; clf;

eldraw2(Ex,Ey,[1,3,0]);

eliso2(Ex,Ey,Ed,5,[1,4]);
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Contour lines

In the upper left corner, the contour lines should physically have met at the corner
point. However, the drawing of the contour lines for the planqe element follows the
numerical approximation. A finer element mesh will bring the contour lines closer
to the corner point.

Along the symmetry line, the contour lines should physically be perpendicular to the
boundary. This will also be improved with a finer element mesh.

With the MATLAB functions colormap and fill a filled contour of the concentrations
can be plotted.

colormap(’jet{\’})

fill(Ex’,Ey’,Ed’)

axis equal

Filled contour
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