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Preface

CALFEM® is an interactive computer program for teaching the finite element method
(FEM). The name CALFEM is an abbreviation of ” Computer Aided Learning of the Finite
Element Method”. The program can be used for different types of structural mechanics
problems and field problems.

CALFEM, the program and its built-in philosophy have been developed at the Division of
Structural Mechanics, Lund University, starting in the late 70’s. Many coworkers, former
and present, have been engaged in the development at different stages.

This release represents the latest development of CALFEM. The functions for finite element
applications are all MATLAB functions (.m-files) as described in the MATLAB manual.
We believe that this environment increases the versatility and handling of the program
and, above all, the ease of teaching the finite element method. CALFEM also works with
Octave, presently with exception for some graphical functions.

Lund, September 20, 2019

The authors
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1 Introduction

The computer program CALFEM is a MATLAB toolbox for finite element applications.
This manual concerns mainly the finite element functions, but it also contains descriptions
of some often used MATLAB functions.

The finite element analysis can be carried out either interactively or in a batch oriented
fashion. In the interactive mode the functions are evaluated one by one in the MATLAB
command window. In the batch oriented mode a sequence of functions are written in a file
named .m-file, and evaluated by writing the file name in the command window. The batch
oriented mode is a more flexible way of performing finite element analysis because the
.m-file can be written in an ordinary editor. This way of using CALFEM is recommended
because it gives a structured organization of the functions. Changes and reruns are also
easily executed in the batch oriented mode.

A command line consists typically of functions for vector and matrix operations, calls to
functions in the CALFEM finite element library or commands for workspace operations.
An example of a command line for a matrix operation is

C=A+F

where two matrices A and B’ are added together and the result is stored in matrix C .
The matrix B’ is the transpose of B. An example of a call to the element library is

Ke = barle(k)

where the two-by-two element stiffness matrix K° is computed for a spring element with
spring stiffness k, and is stored in the variable Ke. The input argument is given within
parentheses () after the name of the function. Some functions have multiple input argu-
ments and/or multiple output arguments. For example

[lambda, X] = eigen(K, M)

computes the eigenvalues and eigenvectors to a pair of matrices K and M. The output
variables - the eigenvalues stored in the vector lambda and the corresponding eigenvectors
stored in the matrix X - are surrounded by brackets [ | and separated by commas. The
input arguments are given inside the parentheses and also separated by commas.

The statement
help  function

provides information about purpose and syntax for the specified function.
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The available functions are organized in groups as follows. Each group is described in a
separate chapter.

Groups of functions

General purpose
commands for managing variables, workspace, output etc

Matrix functions for matrix handling
Material functions for computing material matrices

Element functions for computing element matrices and element forces

System functions for setting up and solving systems of equations
Statement
functions for algorithm definitions

Graphics functions for plotting
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2 General purpose functions

The general purpose functions are used for managing variables and workspace, control of
output etc. The functions listed here are a subset of the general purpose functions described
in the MATLAB manual. The functions can be divided into the following groups

Managing commands and functions
help Online documentation
type List .m-file
what Directory listing of .m-, .mat- and .mex-files
. Continuation
% Write a comment line

Managing variables and the workspace
clear Remove variables from workspace
disp Display variables in workspace on display screen
load Retrieve variable from disk and load in workspace
save Save matrix bank variable on disk
who, List directory of variables in workspace
whos

Working with files and controlling the command window
diary Save session in a named file
echo Control output on the display screen
format Control the output display format
quit Stop execution and exit from the CALFEM program
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clear

Purpose:

Remove variables from workspace.

Syntax:

clear

clear namel name2 names ...
Description:

clear removes all variables from workspace.

clear namel name?2 name3 ... removes specified variables from workspace.

Note:

This is a MATLAB built-in function. For more information about the clear function,
type help clear.
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diary

Purpose:

Save session in a disk file.

Syntax:

diary filename
diary off
diary on

Description:

diary filename writes a copy of all subsequent keyboard input and most of the resulting
output (but not graphs) on the named file. If the file filename already exists, the
output is appended to the end of that file.

diary off stops storage of the output.

diary on turns it back on again, using the current filename or default filename diary

if none has yet been specified.

The diary function may be used to store the current session for later runs. To make
)

this possible, finish each command line with semicolon ’;” to avoid the storage of
intermediate results on the named diary file.

Note:

This is a MATLAB built-in function. For more information about the diary function,
type help diary.
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disp

Purpose:

Display a variable in matrix bank on display screen.
Syntax:

disp(A)
Description:

disp(A) displays the matrix A on the display screen.

Note:

This is a MATLAB built-in function. For more information about the disp function,
type help disp.
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echo

Purpose:

Control output on the display screen.

Syntax:
echo on
echo off
echo
Description:
echo on turns on echoing of commands inside Script-files.
echo off turns off echoing.

echo by itself, toggles the echo state.

Note:

This is a MATLAB built-in function. For more information about the echo function,
type help echo.
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format

Purpose:

Control the output display format.

Syntax:
See the listing be

Description:

low.

format controls the output format. By default, MATLAB displays numbers in a short
format with five decimal digits.

Command Result
format short 5 digit scaled fixed point

format long

15 digit scaled fixed point

format short e 5 digit floating point

format long e

Note:

16 digit floating point

Example

3.1416

3.14159265358979
3.1416e+-000
3.141592653589793e+000

This is a MATLAB built-in function. For more information about the format func-
tion, type help format.
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help

Purpose:

Display a description of purpose and syntax for a specific function.

Syntax:

help function name

Description:
help provides an online documentation for the specified function.
Example:

Typing
>> help barle

yields

Ke=barle(ep)

PURPOSE
Compute element stiffness matrix
for spring (analog) element.

INPUT: ep = [k]; spring stiffness or analog quantity.

OUTPUT: Ke : stiffness matrix, dim(Ke)= 2 x 2

Note:

This is a MATLAB built-in function. For more information about the help function,
type help help.
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load

Purpose:

Retrieve variable from disk and load in workspace.

Syntax:
load filename
load filename.ext
Description:
load filename retrieves the variables from the binary file filename.mat.

load filename.ext reads the ASCII file filename. ezt with numeric data arranged in m
rows and n columns. The result is an m-by-n matrix residing in workspace with the
name filename, i.e. with the extension stripped.

Note:

This is a MATLAB built-in function. For more information about the load function,
type help load.
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quit

Purpose:
Terminate CALFEM session.

Syntax:
quit
Description:

quit filename terminates the CALFEM without saving the workspace.

Note:

This is a MATLAB built-in function. For more information about the quit function,
type help quit.
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save

Purpose:

Save workspace variables on disk.

Syntax:
save filename
save filename variables
save filename variables -ascii

Description:

save filename writes all variables residing in workspace in a binary file named file-
name.mat

save filename variables writes named variables, separated by blanks, in a binary file
named filename.mat

save filename variables -ascii writes named variables in an ASCII file named filename.

Note:

This is a MATLAB built-in function. For more information about the save function,
type help save.
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type

Purpose:
List file.

Syntax:
type filename

Description:

type filename lists the specified file. Use path names in the usual way for your
operating system. If a filename extension is not given, .m is added by default. This
makes it convenient to list the contents of .m-files on the screen.

Note:

This is a MATLAB built-in function. For more information about the type function,
type help type.
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what

Purpose:

Directory listing of .m-files, .mat-files and .mex-files.

Syntax:

what
what dirname

Description:
what lists the .m-files, .mat-files and .mex-files in the current directory.
what dirname lists the files in directory dirname in the MATLAB search path. The
syntax of the path depends on your operating system.

Note:

This is a MATLAB built-in function. For more information about the what function,
type help what.
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who, whos

Purpose:

List directory of variables in matrix bank.

Syntax:
who
whos
Description:
who lists the variables currently in memory.

whos lists the current variables and their size.

Examples:
who

Your variables are:

A B C

K M X

k lambda

whos

name size elements bytes density complex
A 3-by-3 9 72 Full No
B 3-by-3 9 72 Full No
C  3-by-3 9 72 Full No
K 20-by-20 400 3200 Full No
M 20-by-20 400 3200 Full No
X 20-by-20 400 3200 Full No
k  1-by-1 1 8 Full No

lambda  20-by-1 20 160 Full No

Grand total is 1248 elements using 9984 bytes

Note:

These are MATLAB built-in functions. For more information about the functions,
type help who or help whos.
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Purpose:

Continuation.

Syntax:

Description:

An expression can be continued on the next line by using ... .

Note:
This is a MATLAB built-in function.
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%

Purpose:

Write a comment line.

Syntax:

% arbitrary text

Description:

An arbitrary text can be written after the symbol %.

Note:
This is a MATLAB built-in character.
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3 Matrix functions

The group of matrix functions comprises functions for vector and matrix operations and
also functions for sparse matrix handling. MATLAB has two storage modes, full and sparse.
Only nonzero entries and their indices are stored for sparse matrices. Sparse matrices are
not created automatically. But once initiated, sparsity propagates. Operations on sparse
matrices produce sparse matrices and operations on a mixture of sparse and full matrices
also normally produce sparse matrices.

The following functions are described in this chapter:

Vector and matrix operations
[]()= Special characters
B Special characters
; Create vectors and do matrix subscripting
+ -/  Matrix arithmetic
abs Absolute value
det Matrix determinant
diag Diagonal matrices and diagonals of a matrix
inv Matrix inverse
length Vector length
max Maximum element(s) of a matrix
min Minimum element(s) of a matrix
ones Generate a matrix of all ones
size Matrix dimensions
sqrt Square root
sum Sum of the elements of a matrix
Zeros Generate a zero matrix

Sparse matrix handling
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spy Visualize sparsity structure
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R

Purpose:

Special characters.

Syntax:

[10)

Y

Description:

Examples:

Brackets are used to form vectors and matrices.

Parentheses are used to indicate precedence in arithmetic expressions and to
specify an element of a matrix.

Used in assignment statements.

Matrix transpose. X' is the transpose of X. If X is complex, the apostrophe
sign performs complex conjugate as well. Do X." if only the transpose of the
complex matrix is desired

Decimal point. 314/100, 3.14 and 0.314el are all the same.
Comma. Used to separate matrix subscripts and function arguments.

Semicolon. Used inside brackets to end rows. Used after an expression to
suppress printing or to separate statements.

By the statement

a=2

the scalar a is assigned a value of 2. An element in a matrix may be assigned a value
according to

A(2,5) =3

The statement

D=[12:3 4

results in matrix

-5

stored in the matrix bank. To copy the contents of the matrix D to a matrix E, use

E=D

The character ’ is used in the following statement to store the transpose of the matrix
A in a new matrix F

Note:

F=A

These are MATLAB built-in characters.

MATRIX
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Purpose:
Create vectors and do matrix subscripting.
Description:

The colon operator uses the following rules to create regularly spaced vectors:

j: k isthesameas[j,j+ 1, .., k]
j:i:kisthesameas [, j+1i,j+ 2i, ..., k]

The colon notation may also be used to pick out selected rows, columns, and elements
of vectors and matrices:

A(:,j) is the j :th column of A
A(i,: ) is thei :th row of A

Examples:

)

The colon ;" used with integers

d=1:4
results in a row vector
d:[l 23 4]

stored in the workspace.

The colon notation may be used to display selected rows and columns of a matrix on
the terminal. For example, if we have created a 3-times-4 matrix D by the statement

D=[d; 2xd; 3xd]
resulting in
1 4
D=1|2 8
3

S BN

3
6
9

—

2

columns three and four are displayed by entering

3 4
D(:,3:4)=|6 8
9 12

In order to copy parts of the D matrix into another matrix the colon notation is used
as

E(3:4,2:3)=D(1:2,3:4)
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Assuming the matrix E was a zero matrix before the statement is executed, the result

will be
0 00O
0 00O
E= 0 340
0 6 80
Note:

This is a MATLAB built-in character.
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+ =%/

Purpose:

Matrix arithmetic.

Syntax:

A+ B
A—-B
AxB
A/s

Description:

Matrix operations are defined by the rules of linear algebra.

Examples:

An example of a sequence of matrix-to-matrix operations is
D=A+B-C

A matrix-to-vector multiplication followed by a vector-to-vector subtraction may be
defined by the statement

b=c—Axx
and finally, to scale a matrix by a scalar s we may use

B=A/s

Note:
These are MATLAB built-in operators.
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abs

Purpose:

Absolute value.
Syntax:
B=abs(A)

Description:
B=abs(A) computes the absolute values of the elements of matrix A and stores them
in matrix B.

Examples:

Assume the matrix

7 4
=155
The statement D=abs(C) results in a matrix
7 4
it

stored in the workspace.

Note:

This is a MATLAB built-in function. For more information about the abs function,
type help abs.
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det

Purpose:

Matrix determinant.
Syntax:

a=det(A)
Description:

a=det(A) computes the determinant of the matrix A and stores it in the scalar a.

Note:

This is a MATLAB built-in function. For more information about the det function,
type help det.
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diag

Purpose:

Diagonal matrices and diagonals of a matrix.

Syntax:
M=diag(v)
v=diag(M)

Description:

For a vector v with n components, the statement M=diag(v) results in an n x n
matrix M with the elements of v as the main diagonal.

For a n x n matrix M, the statement v=diag(M) results in a column vector v with n
components formed by the main diagonal in M.
Note:

This is a MATLAB built-in function. For more information about the diag function,
type help diag.

MATRIX 3-8



full

Purpose:

Convert sparse matrices to full storage class.

Syntax:
A=full(S)

Description:

A=full(S) converts the storage of a matrix from sparse to full. If A is already full,

full(A) returns A.

Note:

This is a MATLAB built-in function. For more information about the full function,
type help full.
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inv

Purpose:

Matrix inverse.

Syntax:
B=inv(A)

Description:

B=inv(A) computes the inverse of the square matrix A and stores the result in the
matrix B.

Note:

This is a MATLAB built-in function. For more information about the inv function,
type help inv.
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length

Purpose:

Vector length.
Syntax:

n=length(x)
Description:

n=length(x) returns the dimension of the vector x.

Note:

This is a MATLAB built-in function. For more information about the length function,
type help length.
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max

Purpose:

Maximum element(s) of a matrix.

Syntax:
b=max(A)

Description:

For a vector a, the statement b=max(a) assigns the scalar b the maximum element
of the vector a.

For a matrix A, the statement b=max(A) returns a row vector b containing the
maximum elements found in each column vector in A.

The maximum element found in a matrix may thus be determined by
c=max(max(A)).

Examples:

Assume the matrix B is defined as
-7 4
o= 75 5]

The statement d=max(B) results in a row vector

d:[—3 4}

The maximum element in the matrix B may be found by e=max(d) which results in
the scalar e = 4.

Note:

This is a MATLAB built-in function. For more information about the max function,
type help max.

MATRIX 312



Purpose:

Minimum element(s) of a matrix.

Syntax:
b=min(A)

Description:

For a vector a, the statement b=min(a) assigns the scalar b the minimum element of
the vector a.

For a matrix A, the statement b=min(A) returns a row vector b containing the min-
imum elements found in each column vector in A.

The minimum element found in a matrix may thus be determined by c=min(min(A)).

Examples:

Assume the matrix B is defined as
-7 4
o= 5 )

The statement d=min(B) results in a row vector

d=| -7 -8]
The minimum element in the matrix B is then found by e=min(d), which results in
the scalar e = —8.
Note:

This is a MATLAB built-in function. For more information about the min function,
type help min.
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ones

Purpose:

Generate a matrix of all ones.
Syntax:

A=ones(m,n)
Description:

A=ones(m,n) results in an m-times-n matrix A with all ones.

Note:

This is a MATLAB built-in function. For more information about the ones function,
type help ones.
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size

Purpose:

Matrix dimensions.

Syntax:
d=size(A)
[m,n]=size(A)
Description:

d=size(A) returns a vector with two integer components, d=[m,n], from the matrix
A with dimensions m times n.

[m,n]=size(A) returns the dimensions m and n of the m x n matrix A.

Note:

This is a MATLAB built-in function. For more information about the size function,
type help size.
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sparse

Purpose:

Create sparse matrices.

Syntax:
S=sparse(A)
S=sparse(m,n)

Description:

S=sparse(A) converts a full matrix to sparse form by extracting all nonzero matrix
elements. If S is already sparse, sparse(S) returns S.

S=sparse(m,n) generates an m-times-n sparse zero matrix.

Note:

This is a MATLAB built-in function. For more information about the sparse function,
type help sparse.
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SpY

Purpose:

Visualize matrix sparsity structure.

Syntax:
spy(S)
Description:

spy(S) plots the sparsity structure of any matrix S. S is usually a sparse matrix, but
the function also accepts full matrices and the nonzero matrix elements are plotted.

Note:

This is a MATLAB built-in function. For more information about the spy function,
type help spy.
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sqrt

Purpose:

Square root.

Syntax:
B=sqrt(A)

Description:

B=sqrt(A) computes the square root of the elements in matrix A and stores the result
in matrix B.

Note:

This is a MATLAB built-in function. For more information about the sqrt function,
type help sqrt.
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sum

Purpose:

Sum of the elements of a matrix.

Syntax:
b=sum(A)

Description:

For a vector a, the statement b=sum(a) results in a scalar a containing the sum of
all elements of a.

For a matrix A, the statement b=sum(A) returns a row vector b containing the sum
of the elements found in each column vector of A.

The sum of all elements of a matrix is determined by c=sum(sum(A)).

Note:

This is a MATLAB built-in function. For more information about the sum function,
type help sum.
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zeros

Purpose:

Generate a zero matrix.
Syntax:

A=zeros(m,n)
Description:

A=zeros(m,n) results in an m-times-n matrix A of zeros.

Note:

This is a MATLAB built-in function. For more information about the zeros function,
type help zeros.
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4 Material functions

The group of material functions comprises functions for constitutive models. The available
models can treat linear elastic and isotropic hardening von Mises material. These material
models are defined by the functions:

Material property functions
hooke Form linear elastic constitutive matrix
mises Compute stresses and plastic strains for isotropic hardening
von Mises material
dmises Form elasto-plastic continuum matrix for isotropic hardening
von Mises material
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hooke

Purpose:

Compute material matrix for a linear elastic and isotropic material.

Syntax:
D = hooke(ptype,E,v)

Description:
hooke computes the material matrix D for a linear elastic and isotropic material.
The variable ptype is used to define the type of analysis.

plane stress.

plane strain.

axisymmetry.
three dimensional analysis.

ptype =

=~ W N

The material parameters E and v define the modulus of elasticity £ and the Poisson’s
ratio v, respectively.

For plane stress, ptype=1, D is formed as

1 v 0

D: E 1% 1 O
1 —12 0 0 1—v

2

For plane strain, ptype=2 and axisymmetry, ptype=3, D is formed as

l—-v v v 0
E v 1—-v v 0
D=
(1+v)(1—-2v) v v 1—v 0
0 0 0 +(1—2v)

For the three dimensional case, ptype=4, D is formed as

[1—v v v 0 0 0 i
v 1—-v v 0 0 0
E v v 1—v 0 0 0
T (rv)(-2)| 0 0 0 la-2) 0 0
0 0 0 0 i(1-2v) 0
L 0 0 0 0 0 i(1-2v)
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mises

Purpose:
Compute stresses and plastic strains for an elasto-plastic isotropic hardening von
Mises material.

Syntax:
[es,deps,st|=mises(ptype,mp,est,st)

Description:

mises computes updated stresses es, plastic strain increments deps, and state variables
st for an elasto-plastic isotropic hardening von Mises material.

The input variable ptype is used to define the type of analysis, cf. hooke. The vector
mp contains the material constants

mp=|[Evh]

where FE is the modulus of elasticity, v is the Poisson’s ratio, and h is the plastic
modulus. The input matrix est contains trial stresses obtained by using the elas-
tic material matrix D in plants or some similar s-function, and the input vector st
contains the state parameters

st=[yioy €]

at the beginning of the step. The scalar yi states whether the material behaviour
is elasto-plastic (yi=1), or elastic (yi=0). The current yield stress is denoted by o,
and the effective plastic strain by €’ £r-

The output variables es and st contain updated values of es and st obtained by
integration of the constitutive equations over the actual displacement step. The
increments of the plastic strains are stored in the vector deps.

If es and st contain more than one row, then every row will be treated by the com-
mand.
Note:

It is not necessary to check whether the material behaviour is elastic or elasto-plastic,
this test is done by the function. The computation is based on an Euler-Backward
method, i.e. the radial return method.

Only the cases ptype=2, 3 and 4, are implemented.
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dmises

Purpose:
Form the elasto-plastic continuum matrix for an isotropic hardening von Mises ma-
terial.

Syntax:
D=dmises(ptype,mp,es,st)

Description:

dmises forms the elasto-plastic continuum matrix for an isotropic hardening von Mises
material.

The input variable ptype is used to define the type of analysis, cf. hooke. The vector
mp contains the material constants

mp=|[Evh]

where FE is the modulus of elasticity, v is the Poisson’s ratio, and h is the plastic
modulus. The matrix es contains current stresses obtained from plants or some
similar s-function, and the vector st contains the current state parameters

st=[yioy €]

where yi=1 if the material behaviour is elasto-plastic, and yi=0 if the material
behaviour is elastic. The current yield stress is denoted by o,, and the current
effective plastic strain by ef,.

Note:
Only the case ptype=2 is implemented.
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5 Element functions

5.1 Introduction

The group of element functions contains functions for computation of element matrices
and element forces for different element types. The element functions have been divided
into the following groups

Spring element

Bar elements

Heat flow elements

Solid elements

Beam elements

Plate element

For each element type there is a function for computation of the element stiffness matrix
K¢. For most of the elements, an element load vector f¢ can also be computed. These
functions are identified by their last letter -e.

Using the function assem, the element stiffness matrices and element load vectors are
assembled into a global stiffness matrix K and a load vector f. Unknown nodal values of
temperatures or displacements a are computed by solving the system of equations Ka = f
using the function solveq. A vector of nodal values of temperatures or displacements for a
specific element is formed by the function extract.

When the element nodal values have been computed, the element flux or element stresses
can be calculated using functions specific to the element type concerned. These functions
are identified by their last letter -s.

For some elements, a function for computing the internal force vector is also available.
These functions are identified by their last letter -f.
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5.2 Spring element

The spring element, shown below, can be used for the analysis of one-dimensional spring
systems and for a variety of analogous physical problems.

AW —

Quantities corresponding to the variables of the spring are listed in Table 1.

Problem type Spring | Nodal dis- | Element | Spring
stiffness | placement force force
Spring k u P N
EA
Bar - w P N
Thermal conduction % T H H
. . 1 _
Electrical circuit - U 1 1
A _
Groundwater flow % 0] H H
D4 _
Pipe network 172T8,u 7 D H H

Table 1: Analogous quantities



Interpretations of the spring element

Problem type Quantities Designations
/k k| spring stiffness
sping | e A || dsplacement
pring P | element force
M |
L | length
uy, P, Uy P, E | modulus of elasticity
B — ——— | A | area of cross section
ar E A .
| L | u | displacement
N N P | element force
A — | N | normal force
L | length
Thermal H, A | thermal conductivity
conduction T | temperature
H | element heat flow
‘ H | internal heat flow
|
R | resistance
. R .
Electrical u, - U, U | potential
circuit Lo L I | element current
7 I | internal current
L | length
Ground- k | permeability
water ¢ | plezometric head
flow H | element water flow
H | internal water flow
L | length
Pipe i i
It) § ) D.u p2 D p'1pe @ameter
ne WF)I” _ 7 _ W | viscosity
(laminar H, H, |p | pressure
flow) | L | H | element fluid flow
H | internal fluid flow
Table 2: Quantities used in different types of problems
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The following functions are available for the spring element:

Spring functions

springle
springls

Compute element matrix
Compute spring force

5.2 -3
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springle Spring element

Purpose:

Compute element stiffness matrix for a spring element.

Syntax:
Ke=springle(ep)

Description:
springle provides the element stiffness matrix Ke for a spring element.

The input variable
ep=[k]
supplies the spring stiffness k or the analog quantity defined in Table 1.

Theory:

The element stiffness matrix K¢, stored in Ke, is computed according to

[k -k
- ]

where k is defined by ep.
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Spring element springls

Purpose:

Compute spring force in a spring element.

A

Syntax:
es=springls(ep,ed)
Description:

springls computes the spring force es in a spring element.

The input variable ep is defined in springle and the element nodal displacements ed
are obtained by the function extract.

The output variable
es=[N]
contains the spring force N, or the analog quantity.

Theory:

The spring force N, or analog quantity, is computed according to

N:k?[UQ—Ul]
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5.3 Bar elements

Bar elements are available for one, two, and three dimensional analysis.

One dimensional bar elements

barle Compute element matrix
barls Compute normal force
barlwe Compute element matrix for bar element with elastic support
barlws Compute normal force for bar element with elastic support
Two dimensional bar elements
bar2e Compute element matrix
bar2s Compute normal force
bar2ge Compute element matrix for geometric nonlinear element
bar2gs Compute normal force and axial force for geometric nonlinear ele-
ment
Three dimensional bar elements
bar3e Compute element matrix
bar3s Compute normal force

ELEMENT
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One dimensional bar element barle

Purpose:

Compute element stiffness matrix for a one dimensional bar element.

ul u2
= '
) X ()

Syntax:

Ke=barle(ex,ep)
[Ke,fe]=barle(ex,ep,eq)

Description:

barle provides the element stiffness matrix Ke for a one dimensional bar element.
The input variables

ex =[x 3| ep=[FE A]
supply the element nodal coordinates x; and x5, the modulus of elasticity E, and
the cross section area A.
The element load vector fe can also be computed if uniformly distributed load is
applied to the element. The optional input variable

€q = { 4z }
then contains the distributed load per unit length, ¢z.

Ox

[ — — — — — — — ]
> X

X

Theory:

The element stiffness matrix K¢, stored in Ke, is computed according to
~Dpa| 1 -1
L | -1 1

where the axial stiffness D4 and the length L are given by

Ke

DEA:EA, L:sz—l'l

The element load vector ff, stored in fe, is computed according to

o Wl |1
7% 1]

2.3 -3 ELEMENT



barls One dimensional bar element

Purpose:

Compute normal force in a one dimensional bar element.

[ [] \

Syntax:

es=barls(ex,ep,ed)
es=barls(ex,ep,ed,eq)
[es,edi]=Dbarls(ex,ep,ed,eq,n)
[es,edi,eci]=Dbarls(ex,ep,ed,eq,n)

Description:
barls computes the normal force in the one dimensional bar element barle.

The input variables ex and ep are defined in barle and the element nodal displace-
ments, stored in ed, are obtained by the function extract. If distributed load is applied
to the element, the variable eq must be included. The number of evaluation points
for normal force and displacement are determined by n. If n is omitted, only the
ends of the bar are evaluated.

The output variables

N(0) u(0) 0
N(Z2) u(Z2) To
es = : edi = : eci = :
N(Zf'n_l) U(Zf'n_l) jn—l
N(L) u(L) L

contain the normal force, the displacement, and the evaluation points on the local
z-axis. L is the length of the bar element.

Theory:

The nodal displacements in local coordinates are given by

a= |
Uz

The transpose of a° is stored in ed.

The displacement u(z) and the normal force N(Z) are computed from

u(z) = Na® + u,()

N(Z) = DpaBa® + N,(7)
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One dimensional bar element barls

where
N=[1 z|C'=[1-% %]
B:[o 1]0—1:%[—1 1}
(@2 Li
W) =g (55
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barlwe One dimensional bar element with elastic support

Purpose:

Compute element stiffness matrix for a one dimensional bar element with elastic
support.

EA Ky

o X )

Syntax:

Ke=barlwe(ex,ep)
[Ke,fe]=barlwe(ex,ep,eq)

Description:

barlwe provides the element stiffness matrix Ke for a one dimensional bar element
with elastic support. The input variables

ex =[x X9 | ep=[E Ak;]
supply the element nodal coordinates z; and zo, the modulus of elasticity E, the
cross section area A and the stiffness of the axial springs k;.
The element load vector fe can also be computed if uniformly distributed load is
applied to the element. The optional input variable

€q = { dz }
then contains the distributed load per unit length, ¢z.

Ox

[ — — — — — — — ]
> X

X

Theory:
The element stiffness matrix K¢, stored in Ke, is computed according to
K=K+ K¢
_ D 1 -1
Ky = TEA [ -1 1 ]
11
) [ 5 ]
6 3

where the axial stiffness D4 and the length L are given by
DEA:EA, L:ZL'Q—I'l

The element load vector ff, stored in fe, is computed according to
po_ Gl |1
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One dimensional bar element with elastic support barlws

Purpose:

Compute normal force in a one dimensional bar element with elastic support.

[ L1 \

Syntax:

es=barlws(ex,ep,ed)
es=barlws(ex,ep,ed,eq)
[es,edi]=Dbarlws(ex,ep,ed,eq,n)
[es,edi,eci]=barlws(ex,ep,ed,eq,n)

Description:

barlws computes the normal force in the one dimensional bar element barlwe.

The input variables ex and ep are defined in barlwe and the element nodal displace-
ments, stored in ed, are obtained by the function extract. If distributed load is applied
to the element, the variable eq must be included. The number of evaluation points
for normal force and displacement are determined by n. If n is omitted, only the
ends of the bar are evaluated.

The output variables

N(0) ] u(0) 0
N(Zy) u(Zs) T
es = : edi = : eci = :
N(Zp-1) w(Zp_1) Tp_1
N(L) | I u(L) | L

contain the normal force, the displacement, and the evaluation points on the local
z-axis. L is the length of the bar element.

Theory:

The nodal displacements in local coordinates are given by

_ Uy
a‘=| _
Uz

The transpose of a® is stored in ed.

The displacement u(Z) and the normal force N(Z) are computed from

u(z) = Na® + u,(z)

N(Z) = DpaBa® + N,(7)
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One dimensional bar element with elastic support

barlws
where
N=[1 z|C'=[1-% %]
_ 1
B=[0 1]01:5[—1 1]

Ny(z) = ks | 2L 322L [ Clac — g, (7 - §)

in which Dgyu, L, kz and ¢z are defined in barlwe and

|
1
L

S =

|
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Two dimensional bar element bar2e

Purpose:

Compute element stiffness matrix for a two dimensional bar element.

Syntax:
Ke=bar2e(ex,ey,ep)
[Ke,fe]=bar2e(ex,ey,ep,eq)
Description:

bar2e provides the global element stiffness matrix Ke for a two dimensional bar ele-
ment.

The input variables

ex =[x; Xz

ey=1[y1 y2] e =[EA]

supply the element nodal coordinates x1, y;, 2, and ys, the modulus of elasticity F,
and the cross section area A.

The element load vector fe can also be computed if uniformly distributed axial load
is applied to the element. The optional input variable

eq=| g |

then contains the distributed load per unit length, ¢z.

Theory:
The element stiffness matrix K¢, stored in Ke, is computed according to
K*=G"Ke G
where

_ _DEA[ 1 —1‘| G:[nzz Nyz 0 0

0 0 ngz Nyz
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bar2e Two dimensional bar element

where the axial stiffness D4 and the length L are given by

Dpa=FEA; L= \/(332 —21)? + (Y2 — n1)?
and the transformation matrix G contains the direction cosines

T — Iy Y=
Ngz =

I Myr = T

The element load vector ff, stored in fe, is computed according to

ff - GT
where
se  @L |1
r=5 1]
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Two dimensional bar element

bar2s

Purpose:

Compute normal force in a two dimensional bar element.

Syntax:

es=bar2s(ex,ey,ep,ed)
es=bar2s(ex,ey,ep,ed,eq)
[es,edi]=Dbar2s(ex,ey,ep,ed,eq,n)
[es,edi,eci]=Dbar2s(ex,ey,ep,ed,eq,n)

Description:

bar2s computes the normal force in the two dimensional bar element bar2e.

The input variables ex, ey, and ep are defined in bar2e and the element nodal dis-
placements, stored in ed, are obtained by the function extract. If distributed loads
are applied to the element, the variable eq must be included. The number of evalua-
tion points for section forces and displacements are determined by n. If n is omitted,

only the ends of the bar are evaluated.

The output variables

N(0) u(0)
N(72) u(Z2)
es = : edi = : eci =
N(Zp-1) U(ZTn-1)
N(L) u(L) i

jnfl

L

contain the normal force, the displacement, and the evaluation points on the local

z-axis. L is the length of the bar element.

Theory:

The nodal displacements in global coordinates

a®=|u; uy us u4]T

are also shown in bar2e. The transpose of a® is stored in ed.

5.3 - 11
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bar2s Two dimensional bar element

The nodal displacements in local coordinates are given by

a® = Ga®
where the transformation matrix G is defined in bar2e.

The displacement u(Z) and the normal force N(Z) are computed from

uw(z) = Na°® Hu,(z)

N(Z) = DpaBa® +N,(z)

where
N=[1z|C'=[1-% %]
1
B:[o 1]01:5[—1 1}
up(T) = —po (7022_%)

Ny(T) = —qz (ff - %)

where Dgy, L, gz are defined in bar2e and

|

|

SN =
= o
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Two dimensional bar element bar2ge

Purpose:

Compute element stiffness matrix for a two dimensional geometric nonlinear bar.

(*X2,Y2)

Syntax:
Ke=bar2ge(ex,ey,ep,Qx)

Description:

bar2ge provides the element stiffness matrix Ke for a two dimensional geometric
nonlinear bar element.

The input variables

ex =[x |

ey=1[y1 ¥2] ep=[EA]

supply the element nodal coordinates z1, y1, x2, and ys, the modulus of elasticity F,
and the cross section area A. The input variable

QX:[QE]

contains the value of the axial force, which is positive in tension.

Theory:
The global element stiffness matrix K€, stored in Ke, is computed according to
K°=G"K°G
where
1 0 -1 0 0 O 0 0
rre DE'A 0 0 0 0 Qj; 0 1 0 —1
K=="T"11 0o 1 ofl"Z|o 0o o o
0O 0 0 0 0 —1 0 1
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bar2ge Two dimensional bar element

Ngz  Nyz 0 0

G | Mes My 0 0
0 0 Ngz  Nyz

0 0 Ngg  Nygy

where the axial stiffness Dg4 and the length L are given by

Dpa=FEA; L= \/(332 —21)? + (Y2 — 1)?
and the transformation matrix G contains the direction cosines

. X2 — I _ _Y2—
Ngz = Nyg = Nyz = —Nay = L

L
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Two dimensional bar element bar2gs

Purpose:

Compute axial force and normal force in a two dimensional bar element.

Syntax:
[es,Qx]=Dbar2gs(ex,ey,ep,ed)
[es,Qx]=Dbar2gs(ex,ey,ep,ed,eq)
[es,Qx,edi]=bar2gs(ex,ey,ep,ed,eq,n)
[es,Qx,edi,eci|=Dbar2gs(ex,ey,ep,ed,eq,n)

Description:

bar2gs computes the normal force in the two dimensional bar elements bar2g.

The input variables ex, ey, and ep are defined in bar2ge and the element nodal
displacements, stored in ed, are obtained by the function extract. The number of
evaluation points for section forces and displacements are determined by n. If n is
omitted, only the ends of the bar are evaluated.

The output variable Qx contains the axial force (J; and the output variables

N(0) u(0) [0 ]
N(Zy) u(Z) T
es = : edi = : eci =
N(Zp-1) w(Tp_1) Tn—1
N(L) u(L) L]

contain the normal force, the displacement, and the evaluation points on the local
z-axis. L is the length of the bar element.

Theory:
The nodal displacements in global coordinates are given by
e T
a‘=[u; us uz uy]

The transpose of a° is stored in ed. The nodal displacements in local coordinates are
given by

a‘ = Ga“
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bar2gs Two dimensional bar element

where the transformation matrix G is defined in bar2ge. The displacements associ-
ated with bar action are determined as

_ Uq

e

a = _
bar [ Us ‘|

The displacement u(Z) and the normal force N(Z) are computed from

u(r) = Nag,,

N(z) = DpaBa;,
where

N=[1z]Cc'=[1-

|8
it
| I

B=[0 1]0—1:%[—1 1]

where Dg4 and L are defined in bar2ge and
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Three dimensional bar element bar3e

Purpose:

Compute element stiffness matrix for a three dimensional bar element.

(X2Y2:2)

E A

(Xp,Y1,21)

X

Syntax:
Ke=bar3e(ex,ey,ez,ep)
[Ke,fe]=bar3e(ex,ey,ez,ep,eq)
Description:

bar3e provides the global element stiffness matrix Ke for a three dimensional bar
element.

The input variables
ex =[x; Xz
ey = [x1 x2 | ep=[EA]
ez=[y1 y2 ]

supply the element nodal coordinates xi, y1, 21, T2, y2, and 25, the modulus of
elasticity E, and the cross section area A.

The element load vector fe can also be computed if uniformly distributed axial load
is applied to the element. The optional input variable

€q = { 4z }
then contains the distributed load per unit length, ¢z.

Theory:
The element stiffness matrix K¢, stored in Ke, is computed according to
K*=G"Ke G
where
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bar3e Three dimensional bar element

where the axial stiffness D4 and the length L are given by

DEA:EA; L= \/(xg—x1)2+(y2—y1)2—|—(22—21)2
and the transformation matrix G contains the direction cosines

X2 — Iy Y= i
Ngz =

I yr = ez = 77

The element load vector ff, stored in fe, is computed according to

fi =G"f;
where

76_qiL 1

r=5 1]
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Three dimensional bar element

bar3s

Purpose:

Compute normal force in a three dimensional bar element.

~

Syntax:
es=bar3s(ex,ey,ez,ep,ed)
es=bar3s(ex,ey,ez,ep,ed,eq)
[es,edi]=Dbar3s(ex,ey,ez,ep,ed,eq,n)
[es,edi,eci]=Dbar3s(ex,ey,ez,ep,ed,eq,n)

Description:

N

4 /T@/

bar3s computes the normal force in a three dimensional bar element bar3e.

The input variables ex, ey, and ep are defined in bar3e and the element nodal displace-
ments, stored in ed, are obtained by the function extract. The number of evaluation
points for section forces and displacements are determined by n. If n is omitted, only

the ends of the bar are evaluated.

The output variables

N(0) u(0) 0
N(z5) u(Zy) T
es = : edi = : eci = :
N(Zp-1) w(Tp_1) Tp1
N(L) u(L) L

contain the normal force, the displacement, and the evaluation points on the local
Z-axis. L is the length of the bar element.

Theory:

The nodal displacements in global coordinates are given by

ae:[ul Uo U3 Ug Us UG]T

The transpose of a® is stored in ed.
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Three dimensional bar element

bar3s

The nodal displacements in local coordinates are given by

a‘* = @Ga°

where the transformation matrix G is defined in bar3e.

The displacement u(Z) and the normal force N(Z) are computed from

uw(z) = Na° +u,(z)

N(Z) = DpaBa® +N,(2)

where
N=[1z|C'=[1-% %]
1
B:[o 1]01:5[—1 1}
up(T) = —po (7022_%)

Ny(T) = —qz (ff - %)

where Dgy, L, gz are defined in bar3e and

|

|

SN =
= o
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5.4 Heat flow elements

Heat flow elements are available for one, two, and three dimensional analysis. For one
dimensional heat flow the spring element springl is used.

A variety of important physical phenomena are described by the same differential equa-
tion as the heat flow problem. The heat flow element is thus applicable in modelling differ-
ent physical applications. Table 3 below shows the relation between the primary variable
a, the constitutive matrix D, and the load vector f; for a chosen set of two dimensional
physical problems.

Problem type a D f; | Designation

Heat flow T Az s Ay @ | T = temperature
Az , Ay = thermal
conductivity

) = heat supply

Groundwater flow | ¢ ks, ky, @ | ¢ = piezometric
head

ky, k, = perme-
abilities

) = fluid supply

1 1

St. Venant torsion | ¢ . a
2y zx

20 | ¢ = stress function

G.y, G.; = shear
moduli

© = angle of torsion
per unit length

Table 3: Problem dependent parameters
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Heat flow elements

T3 Ty T,

flw2te flw2qe

T, T3

Ts

flw2i8e flw3i8e

2D heat flow functions

flw2te Compute element matrices for a triangular element
flw2ts Compute temperature gradients and flux
flw2qe Compute element matrices for a quadrilateral element
flw2gs Compute temperature gradients and flux
flw2ide Compute element matrices, 4 node isoparametric element
flw2ids Compute temperature gradients and flux
flw2i8e Compute element matrices, 8 node isoparametric element
flw2i8s Compute temperature gradients and flux

3D heat flow functions
flw3i8e Compute element matrices, 8 node isoparametric element
flw3i8s Compute temperature gradients and flux

0.4 -3
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flw2te Two dimensional heat flow elements

Purpose:

Compute element stiffness matrix for a triangular heat flow element.

Ts
(X3,Y5)

T, (X2,Y>)
(Xp.y1)

Syntax:
Ke=flw2te(ex,ey,ep,D)
[Ke,fe]=flw2te(ex,ey,ep,D,eq)
Description:

flw2te provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a triangular heat flow element.

The element nodal coordinates xi, y;, =2 etc, are supplied to the function by ex
and ey, the element thickness ¢ is supplied by ep and the thermal conductivities (or
corresponding quantities) k,, ks, etc are supplied by D.

ex =[x xy x3] ke Ko
ep=|t D= Y
ey=[v1 ¥2 u3] p=11] l Kye Ky

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq=[Q]
where () is the heat supply per unit volume.

Theory:

The element stiffness matrix K and the element load vector f], stored in Ke and fe,
respectively, are computed according to

K° = (C )T / B"DBtdA C!
A
£ =(CcY /NTQtdA
A

with the constitutive matrix D defined by D.

The evaluation of the integrals for the triangular element is based on the linear

temperature approximation 7'(x,y) and is expressed in terms of the nodal variables
Tl, TQ and T3 as

T(x,y) = Na* = N C'a°
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Two dimensional heat flow elements flw2te

where
B I T
N=[1zy] C=1|1 23 a‘ = | Ty
1 x3 ys T3

and hence it follows that

9
_ - 010 oz
N I
dy

Evaluation of the integrals for the triangular element yields
K=CHYB ' DBC't4

=y

where the element area A is determined as

A:ldetC
2
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flw2ts Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in a triangular heat flow element.

Syntax:
[es,et]=flw2ts(ex,ey,D,ed)

Description:

flw2ts computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a triangular heat flow element.

The input variables ex, ey and the matrix D are defined in flw2te. The vector ed
contains the nodal temperatures a® of the element and is obtained by the function
extract as

ed = (ae)T = [Tl T2 Tg]

The output variables

es=q' =[¢ q]

ar or
et = (VD' = | =— —
(VT) [ or Oy ]
contain the components of the heat flux and the temperature gradient computed in
the directions of the coordinate axis.

Theory:
The temperature gradient and the heat flux are computed according to
VI =BC!'a‘
q=-DVT

where the matrices D, B, and C are described in flw2te. Note that both the tem-
perature gradient and the heat flux are constant in the element.
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Two dimensional heat flow elements filw2qe

Purpose:

Compute element stiffness matrix for a quadrilateral heat flow element.

(X4:Ys) (X3,Y3)

Syntax:

Ke=flw2qe(ex,ey,ep,D)
[Ke,fe]=flw2qe(ex,ey,ep,D,eq)

Description:

flw2ge provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a quadrilateral heat flow element.

The element nodal coordinates x1, y;, ¥ etc, are supplied to the function by ex
and ey, the element thickness ¢ is supplied by ep and the thermal conductivities (or
corresponding quantities) k,,, k,, etc are supplied by D.

ex =[xy Ty X3 T4 ] kyw ki ]
ep=|t D= Y
ey =[v1 Y2 Ys Ya| p=11] [ Kyo Ky

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq=[Q]

where @) is the heat supply per unit volume.

Theory:

In computing the element matrices, a fifth degree of freedom is introduced. The
location of this extra degree of freedom is defined by the mean value of the coordinates
in the corner points. Four sets of element matrices are calculated using flw2te. These
matrices are then assembled and the fifth degree of freedom is eliminated by static
condensation.
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filw2qgs Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in a quadrilateral heat flow element.

Syntax:

[es,et]=flw2qgs(ex,ey,ep,D,ed)
[es,et]=flw2qs(ex,ey,ep,D,ed,eq)

Description:

flw2gs computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a quadrilateral heat flow element.

The input variables ex, ey, eq and the matrix D are defined in flw2ge. The vector ed
contains the nodal temperatures a® of the element and is obtained by the function
extract as

ed= (@) =Ty Th Ty T, ]

The output variables

es=q" =[q q]

or oT
et = (V)T = | — —
(VT) [ or Oy ]
contain the components of the heat flux and the temperature gradient computed in
the directions of the coordinate axis.

Theory:

By assembling four triangular elements as described in flw2te a system of equations
containing 5 degrees of freedom is obtained. From this system of equations the
unknown temperature at the center of the element is computed. Then according to
the description in flw2ts the temperature gradient and the heat flux in each of the
four triangular elements are produced. Finally the temperature gradient and the
heat flux of the quadrilateral element are computed as area weighted mean values
from the values of the four triangular elements. If heat is supplied to the element,
the element load vector eq is needed for the calculations.
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Two dimensional heat flow elements flw2ide

Purpose:

Compute element stiffness matrix for a 4 node isoparametric heat flow element.

Ty T,
(X4’y4) (X3’y3)

Syntax:
Ke=flw2i4e(ex,ey,ep,D)
[Ke,fe]=flw2ide(ex,ey,ep,D,eq)
Description:

flw2ide provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a 4 node isoparametric heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex and
ey. The element thickness ¢t and the number of Gauss points n

(n X n) integration points, n =1,2,3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) k,,, kg etc are supplied by D.

ex = [ Ty X9 T3 T4 ] kmz kx
ep=[t n D= v
ey=1[vy1 Y2 Y3 Y] P=1 ] l Kya Ky

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq=[Q]

where () is the heat supply per unit volume.
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flw2ide Two dimensional heat flow elements

Theory:

The element stiffness matrix K¢ and the element load vector f], stored in Ke and fe,
respectively, are computed according to

Ke:/BeTDBetdA
A
f;f:/NeTQtdA

A

with the constitutive matrix D defined by D.

The evaluation of the integrals for the isoparametric 4 node element is based on a

temperature approximation 7'(§,n), expressed in a local coordinates system in terms
of the nodal variables T}, T5, T3 and T} as

T(¢,n) = Néa®
where
Ne=[Nf N§ N N¢|  a*=[T0 b Ts T, |"

The element shape functions are given by

1 1
Ni=(1-8(1-n) Nj=1(1+601-n)
1 1
Ny =71+ +n)  Ny=7(01-81+n)
The B®matrix is given by
9 9
e e __ &c e __ T\—1 a€ e
B¢ = VN° = g N¢=(J") g N
dy an
where J is the Jacobian matrix
or on
g_ | 9 on
|9y Oy
0§ On

Evaluation of the integrals is done by Gauss integration.

ELEMENT 5.4 - 10



Two dimensional heat flow elements flw2i4s

Purpose:

Compute heat flux and temperature gradients in a 4 node isoparametric heat flow
element.

Syntax:
[es,et,eci]=flw2ids(ex,ey,ep,D,ed)
Description:

flw2ids computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a 4 node isoparametric heat flow element.

The input variables ex, ey, ep and the matrix D are defined in flw2i4e. The vector ed
contains the nodal temperatures a® of the element and is obtained by extract as

ed:(ae)T:[Tl T2 T3 T4]

The output variables

4 gy
2 2
es=q’ = q"’” q_y
@ @
[ ort  or' ]
ox y
or® 0T’ o
= T a.. a . T2 Yo
: 2 / 2 Tp2 Yn2
or"™ oJr"
L Ox oy

contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw2ide.

Theory:

The temperature gradient and the heat flux are computed according to
VT =B°a°
q=-DVT

where the matrices D, B¢, and a® are described in flw2i4e, and where the integration
points are chosen as evaluation points.
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flw2i8e Two dimensional heat flow elements

Purpose:

Compute element stiffness matrix for an 8 node isoparametric heat flow element.

Syntax:

Ke=flw2i8e(ex,ey,ep,D)
[Ke,fe]=flw2i8e(ex,ey,ep,D,eq)

Description:

flw2i8e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for an 8 node isoparametric heat flow element.

The element nodal coordinates x1, y1, 2 etc, are supplied to the function by ex and
ey. The element thickness ¢t and the number of Gauss points n

(n x n) integration points, n =1,2,3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) k,,, kg etc are supplied by D.

ex=|[xy 3y T3 ... Tg] ko Ka
ep=|[t n D= Y
ey=[v% Y2 Ys ... Us| P = ] [ky:v Kyy

If the scalar variable eq is given in the function, the vector fe is computed, using

eq=[Q]

where () is the heat supply per unit volume.
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Two dimensional heat flow elements

Theory:

The element stiffness matrix K¢ and the element load vector f], stored in Ke and fe,

respectively, are computed according to
K= [ BT DBt dA
A

f;f:/NeTQtdA
A

with the constitutive matrix D defined by D.

The evaluation of the integrals for the 2D isoparametric 8 node element is based on a
temperature approximation 7'(§,n), expressed in a local coordinates system in terms

of the nodal variables T to Ty as
T(&,nm) = Nea®

where

N°=[Nf N NS ... N;] a°=

The element shape functions are given by

1

N = (10— n)(1+E+n)
Ny =11+ - M1~ E+1)

N = (141 +n)(1—E—)

Nf=—3(1- O+ n)(1+E~n)

The B®matrix is given by

9
e e &c e T\—1
B¢ = VN° = P N¢=(J")
Ay
where J is the Jacobian matrix
or on
g_ | 9 on
| %y Yy
9§ On

(T, Ty Ty ... Ts]"

N = 21— )
N =2 (1+6)(1 1)
N = L(1-€)(1 +0)

Ne= 21—~ )

O | e

Evaluation of the integrals is done by Gauss integration.
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flw2i8s Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in an 8 node isoparametric heat flow
element.

Syntax:
[es,et,eci]=flw2i8s(ex,ey,ep,D,ed)
Description:

flw2i8s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in an 8 node isoparametric heat flow element.

The input variables ex, ey, ep and the matrix D are defined in flw2i8e. The vector ed

contains the nodal temperatures a® of the element and is obtained by the function
extract as

ed:(ae)T:[Tl T2 T3 Tg]

The output variables

4z 9y
2 2
es=q’ = qm q_y
w2 2
4; 4y
[ ort  oT!' ]
ox oy
oT?  9T>2 1 N
_ — — T
af”Q aan e e
L 9z Oy

contain the heat flux, the temperature gradient, and the coordinates of the integra-

tion points. The index n denotes the number of integration points used within the
element, cf. flw2i8e.

Theory:

The temperature gradient and the heat flux are computed according to
VT =B°a°
q=-DVT

where the matrices D, B¢, and a® are described in flw2i8e, and where the integration
points are chosen as evaluation points.
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Three dimensional heat flow elements flw3i8e

Purpose:

Compute element stiffness matrix for an 8 node isoparametric element.

Syntax:
Ke=flw3i8e(ex,ey,ez,ep,D)
[Ke,fe]=flw3i8e(ex,ey,ez,ep,D,eq)
Description:

flw3i8e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for an 8 node isoparametric heat flow element.

The element nodal coordinates 1, y1, 21 T2 etc, are supplied to the function by ex,
ey and ez. The number of Gauss points n

(n X n X n) integration points, n =1,2,3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) k.., k;, etc are supplied by D.

ex=|[xy 3y T3 ... Tg] kyw Kuy Ko
ey=[v Y2 ys ... Us] ep=[n] D= kys kyy Fky
ez=1[2 20 23 ... 23] koo Koy ks

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq=[Q]

where (@) is the heat supply per unit volume.

Theory:

The element stiffness matrix K and the element load vector f}, stored in Ke and fe,
respectively, are computed according to

wz/BJDBwv
1%

ﬁ:AN”QW
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flw3i8e Three dimensional heat flow elements

with the constitutive matrix D defined by D.

The evaluation of the integrals for the 3D isoparametric 8 node element is based on
a temperature approximation T'(£,n, (), expressed in a local coordinates system in
terms of the nodal variables 77 to Tx as

T(¢,m,¢) = N°a®
where
Ne=[Nf N NS ... N$]  a*=[TV b Ty ... Ty]"
The element shape functions are given by
1 1
Nf=<(-1-n1-¢  Ny=Z(1+&1-n1-()

Ni= 1+ O1+n(1-¢)  Nf= (1= +n)(1 -0

8
1 1
Ne=S(=1-m+Q)  Ni=31+81-n+()
1 1
Ne=S(04+91+m1+0) N =1 1+n)(1+0)
The B®matrix is given by
- a - - g -
ox o€
Be — VN@ — g Ne — (JT>71 g Ne
dy on
0 )
L 92 L o¢ |
where J is the Jacobian matrix
9§ on O¢
j_|% % 9y
| 06 on 8¢
L 0¢ On OC |

Evaluation of the integrals is done by Gauss integration.
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Three dimensional heat flow elements flw3i8s

Purpose:
Compute heat flux and temperature gradients in an 8 node isoparametric heat flow
element.

Syntax:
[es,et,eci]=flw3i8s(ex,ey,ez,ep,D,ed)

Description:

flw3i8s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in an 8 node isoparametric heat flow element.

The input variables ex, ey, ez, ep and the matrix D are defined in flw3i8e. The vector
ed contains the nodal temperatures a® of the element and is obtained by the function
extract as

ed:(ae)T:[Tl T2 T3 Tg]

The output variables

G 4 q
2 2 2
es — qT — qa: q.y qz
R R
dr: 49y 4.
[ ort or' or' ]
ox oy 0z
or* or* or? oA
_ a2 A- Ao x z
et= (VD) =| Ox dy 0z eci = ’ 3{2 ’
’ 3 ’ 3 ’ 3 Tp3d Ypd 2p3
oT oT oT
| Ox oy 0z

contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw3i8e.

Theory:

The temperature gradient and the heat flux are computed according to
VT =B°a°
q=-DVT

where the matrices D, B¢, and a® are described in flw3i8e, and where the integration
points are chosen as evaluation points.
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5.5 Solid elements

Solid elements are available for two dimensional analysis in plane stress (panels) and plane
strain, and for general three dimensional analysis. In the two dimensional case there are
a triangular three node element, a quadrilateral four node element, two rectangular four
node elements, and quadrilateral isoparametric four and eight node elements. For three
dimensional analysis there is an eight node isoparametric element.

The elements are able to deal with both isotropic and anisotropic materials. The triangular
element and the three isoparametric elements can also be used together with a nonlinear
material model. The material properties are specified by supplying the constitutive matrix
D as an input variable to the element functions. This matrix can be formed by the functions
described in Section 4.
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Solid elements

plange
Ug
Uz
o>
U,
U,
planre
plantce plani4e
7
4
8
Uy
s
Uy
plani8e

soli8e
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2D solid functions

plante Compute element matrices for a triangular element

plants Compute stresses and strains

plantf Compute internal element forces

plange Compute element matrices for a quadrilateral element
plangs Compute stresses and strains

planre Compute element matrices for a rectangular Melosh element
planrs Compute stresses and strains

plantce  Compute element matrices for a rectangular Turner-Clough element
plantcs  Compute stresses and strains

plani4de  Compute element matrices, 4 node isoparametric element
plani4s Compute stresses and strains
plani4f Compute internal element forces

plani8e  Compute element matrices, 8 node isoparametric element
plani8s Compute stresses and strains
plani8f Compute internal element forces

3D solid functions

soli8e Compute element matrices, 8 node isoparametric element
soli8s Compute stresses and strains
soli8f Compute internal element forces
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Two dimensional solid elements plante

Purpose:

Compute element matrices for a triangular element in plane strain or plane stress.

Syntax:
Ke=plante(ex,ey,ep,D)
[Ke,fe]=plante(ex,ey,ep,D,eq)
Description:

plante provides an element stiffness matrix Ke and an element load vector fe for a
triangular element in plane strain or plane stress.

The element nodal coordinates x1,y;, 2 etc. are supplied to the function by ex and
ey. The type of analysis ptype and the element thickness ¢ are supplied by ep,

ptype =1 plane stress
ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 x 3) to (6 x 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see

Section 4.
ex =[x T3 x3]
ep = | ptype t
ey =11 v us] p = [ptype t]
_ Dll D12 D13 D14 [D15] [DIG]
D21 D22 D23 D24 [D25] [DQG]
D D D
D _ D;i D;z D;i or D — D31 D32 D33 D34 [D35 ] [D36]
DR Du Do Di Du  [Dis] [Dis]
[Ds1] [Dsa] [Dss] [Dsa] [Dss] [Dse]
| [De1] [De2] [Des] [Des] [Des] [Des]
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plante Two dimensional solid elements

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

be
“= (]
Y

containing loads per unit volume, b, and b,, is then given.

Theory:

The element stiffness matrix K and the element load vector f], stored in Ke and fe,
respectively, are computed according to

K¢ = (C YT / B'DBtdAC™!
A
£ =(CcY /NTbtdA
A

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the triangular element is based on a linear dis-
placement approximation u(z,y) and is expressed in terms of the nodal variables u;,
U,y ..., Ug aS

u(r,y) =N°a*=NC'a°

where
| ug < |1 z y 000
“—[uy] N—lOO(Jlxy
[ 1 rr U 0 O 0 —Ul_
0 0 0 1 rr U U9
o 1 T2 Y2 O 0 0 e us
C=10 0 01 2 | & |u
1 T3 Ys 0 0 0 Uus
_O 0 0 1 T3 Ys | L Us |

The matrix B is obtained as

— a -
9 0
_ - - 0
B =VN where V= 0 —
dy
9 9
L Oy Ox |

If a larger D-matrix than (3 x 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 x 3) matrix by static condensation using o,, = 0,, = 0,, = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.

ELEMENT 2.5 -6



Two dimensional solid elements plante

If a larger D-matrix than (3 x 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 x 3) matrix using €,, = v,. = 7y, = 0. This implies that a
(3 x 3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals for the triangular element yields

K'=C Y)Y B DBC'tA
. At
f] :?[bx by by b, by b, ]

where the element area A is determined as

1 1 1 %

A= —det 1 T2 Y2
2

L a3 ys
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plants Two dimensional solid elements

Purpose:

Compute stresses and strains in a triangular element in plane strain or plane stress.

Syntax:

[es,et]=plants(ex,ey,ep,D,ed)

Description:

plants computes the stresses es and the strains et in a triangular element in plane
strain or plane stress.

The input variables ex, ey, ep and D are defined in plante. The vector ed contains
the nodal displacements a® of the element and is obtained by the function extract as

ed=(a%)" =[u; uy ... ug]

The output variables

es=o =

Oz Oyy [022] Ony [022] [0y:] ]

=

et=¢ Exx 5yy [522] ’Va:y [sz] [%/ZH

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress €,, # 0, and for plane strain o,, # 0.

Theory:

The strains and stresses are computed according to
e=BC!af
o= De

where the matrices D, B, C and a® are described in plante. Note that both the
strains and the stresses are constant in the element.
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Two dimensional solid elements plantf

Purpose:
Compute internal element force vector in a triangular element in plane strain or
plane stress.

Syntax:
ef=plantf(ex,ey,ep,es)

Description:

plantf computes the internal element forces ef in a triangular element in plane strain
or plane stress.

The input variables ex, ey and ep are defined in plante, and the input variable es is
defined in plants.

The output variable
ef =7 = [ fi fio .. fis]
contains the components of the internal force vector.
Theory:

The internal force vector is computed according to

£ = (c—l)T/ B o t dA
A

where the matrices B and C are defined in plante and o is defined in plants.

Evaluation of the integral for the triangular element yields

fe=(C B ot A

)
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planqge Two dimensional solid elements

Purpose:

Compute element matrices for a quadrilateral element in plane strain or plane stress.

(Xuy1)

Syntax:

Ke=plange(ex,ey,ep,D)
[Ke,fe]=planqge(ex,ey,ep,D,eq)

Description:

plange provides an element stiffness matrix Ke and an element load vector fe for a
quadrilateral element in plane strain or plane stress.

The element nodal coordinates x1, y1, x5 etc. are supplied to the function by ex and
ey. The type of analysis ptype and the element thickness ¢ are supplied by ep,

ptype = 1 plane stress
ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 x 3) to (6 x 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex =[x1 Ty X3 T4

ep = |ptype t
ey:[yl Ys Us y4] p [pyp ]

Dll D12 D13 D14 [D15] [D16]
D21 D22 D23 D24 [D25] [D26]
D D D
D_ DH D12 D13 or D — D3y Ds;  Dss  Dsy [Dss] [Dsg]
Do D D Dy Dy Dis Du [Dis] [Dig]
[Ds1] [Ds2] [Dss] [Dsa] [Dss] [Dse]
| [De1] [De2] [De3] [Des] [Des] [Des] |
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Two dimensional solid elements plange

If uniformly distributed loads are applied on the element, the element load vector fe
is computed. The input variable

ba
“=[]
Y

containing loads per unit volume, b, and b,, is then given.

Theory:

In computing the element matrices, two more degrees of freedom are introduced.
The location of these two degrees of freedom is defined by the mean value of the
coordinates at the corner points. Four sets of element matrices are calculated using
plante. These matrices are then assembled and the two extra degrees of freedom are
eliminated by static condensation.
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plangs Two dimensional solid elements

Purpose:

Compute stresses and strains in a quadrilateral element in plane strain or plane
stress.

Syntax:

[es,et]=plangs(ex,ey,ep,D,ed)
[es,et]=plangs(ex,ey,ep,D,ed,eq)

Description:

plangs computes the stresses es and the strains et in a quadrilateral element in plane
strain or plane stress.

The input variables ex, ey, ep, D and eq are defined in plange. The vector ed contains
the nodal displacements a® of the element and is obtained by the function extract as

ed=(a%)" =[u; uy ... ug]

If body forces are applied to the element the variable eq must be included.
The output variables

es=o! = [O’xw Oyy [Uzz] Ozy [sz] [Uyz] ]

T =

et=¢ Exx 5yy [522] ’Va:y [sz] [%/ZH

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress ., # 0, and for plane strain o, # 0.

Theory:

By assembling triangular elements as described in plange a system of equations con-
taining 10 degrees of freedom is obtained. From this system of equations the two
unknown displacements at the center of the element are computed. Then according
to the description in plants the strain and stress components in each of the four trian-
gular elements are produced. Finally the quadrilateral element strains and stresses
are computed as area weighted mean values from the values of the four triangular
elements. If uniformly distributed loads are applied on the element, the element load
vector eq is needed for the calculations.
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Two dimensional solid elements

planre

Purpose:

Compute element matrices for a rectangular (Melosh) element in plane strain or

plane stress.

Syntax:

Ke=planre(ex,ey,ep,D)

[Ke,fe]=planre(ex,ey,ep,D,eq)

Description:

(X4,Y2) ‘

(X,y1)

Ug Ug
Uz U
.
(X3,Y2)
u, Uy,
U Uz
(X2Y-)

planre provides an element stiffness matrix Ke and an element load vector fe for a
rectangular (Melosh) element in plane strain or plane stress. This element can only

be used if the element edges are parallel to the coordinate axis.

The element nodal coordinates (x1,y;) and (x3,ys) are supplied to the function by
ex and ey. The type of analysis ptype and the element thickness t are supplied by ep,

ptype = 1 plane stress

ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 x 3) to (6 x 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see

Section 4.
ex = [x1 x3]
ep = | ptype t
ey = (11 5] p = [ptype t]
i Dll D12 D13 D14 [D15] [DIG]_
D21 D22 D23 D24 [D25] [D26]
D D D
D _ Dll D12 D13 or D — D31 D32 D33 D34 [D35 ] [D36]
Dt D Do Du Do Di  Du  [Dis] [Dis]
sLTEr e [Ds1] [Ds2] [Dss] [Dsa] [Dss] [Dse]
| [De1] [De2] [Des] [Des] [Des] [Des] |
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planre Two dimensional solid elements

If uniformly distributed loads are applied on the element, the element load vector fe
is computed. The input variable

ba
“=[]
Y

containing loads per unit volume, b, and b,, is then given.

Theory:
The element stiffness matrix K and the element load vector f], stored in Ke and fe,
respectively, are computed according to
K= [ BT DBt dA
A
£ = / NT bt dA
A

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the rectangular element is based on a bilinear
displacement approximation u(x,y) and is expressed in terms of the nodal variables

Uy, Ug, ..., Ug as
u(z,y) = N°a°
where
Uy
v [Zﬂ Ne:[]\g 1316 ]\ég ]\(;2@ J\(;g 135 ]\gf J\?j ar= |
Uus

With a local coordinate system located at the center of the element, the element
shape functions Ny — N{ are obtained as

Np= (o =)y — )
Nf = (o = 22)(y — )
Ni= 1o —a)(y-v)
Ny = —%w(x—xg)(y—yl)

where

1 1
a = 5(1‘3—1'1) and b= 5(3/3_3/1)
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Two dimensional solid elements

planre

The matrix B¢ is obtained as

[0
e 0
- ~ 0
B°=VN° where V=| 0 —
dy
9 9
L Jy Ox

If a larger D-matrix than (3 x 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 x 3) matrix by static condensation using o,, = 0,, = 0,, = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix

respectively.

If a larger D-matrix than (3 x 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 x 3) matrix using €,, = 7., = 7, = 0. This implies that a
(3 x 3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original

D-matrix.

Evaluation of the integrals for the rectangular element can be done either analytically
or numerically by use of a 2 x 2 point Gauss integration. The element load vector ff

yields

8

<

8

£ = abt

8

<

8

@‘@‘@‘@‘@@‘@‘0‘@‘

T
<
L
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planrs Two dimensional solid elements

Purpose:

Compute stresses and strains in a rectangular (Melosh) element in plane strain or
plane stress.

Ug Ug
Uz Ug
PN Sy
y U, Uy Oxx Oxx
) ., =
Oyy

Syntax:
[es,et]=planrs(ex,ey,ep,D,ed)

Description:

planrs computes the stresses es and the strains et in a rectangular (Melosh) element
in plane strain or plane stress. The stress and strain components are computed at
the center of the element.

The input variables ex, ey, ep and D are defined in planre. The vector ed contains
the nodal displacements a® of the element and is obtained by the function extract as

ed=(a%)" =[u; uy ... ug]

The output variables

o

es =0 Ozx Oyy [Uzz] Oy [Jibz] [O'yz] ]

o

et=¢ Exx Eyy [gzz] Yy [’Yzz} [’sz”

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress €,, # 0, and for plane strain o,, # 0.

Theory:
The strains and stresses are computed according to
e =DB‘a"®
oc=De

where the matrices D, B¢, and a® are described in planre, and where the evaluation
point (x,y) is chosen to be at the center of the element.
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Two dimensional solid elements plantce

Purpose:

Compute element matrices for a rectangular (Turner-Clough) element in plane strain
or plane stress.

Ug Ug
Uz U
(X4,Y2) (X3,Y2)
y U, U,
U Uz
(X,y1) (X2Y-)

Syntax:

Ke=plantce(ex,ey,ep)
[Ke,fe]=plantce(ex,ey,ep,eq)

Description:

plantce provides an element stiffness matrix Ke and an element load vector fe for a
rectangular (Turner-Clough) element in plane strain or plane stress. This element
can only be used if the material is isotropic and if the element edges are parallel to
the coordinate axis.

The element nodal coordinates (x1,y;) and (x3, y3) are supplied to the function by ex
and ey. The state of stress ptype, the element thickness ¢t and the material properties
E and v are supplied by ep. For plane stress ptype = 1 and for plane strain ptype = 2.

ex =[x w3 |

ep=|ptype t E v
ey = (1 us] p = [ ptyp ]

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

ba
«= (]
Y

containing loads per unit volume, b, and b,, is then given.
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plantce Two dimensional solid elements

Theory:

The element stiffness matrix K and the element load vector f], stored in Ke and fe,
respectively, are computed according to

Ke:/BeTDBetdA
A
ff:/NeTbtdA

A

where the constitutive matrix D is described in hooke, see Section 4, and the body
force vector b is defined by eq.

The evaluation of the integrals for the Turner-Clough element is based on a dis-
placement field u(z, y) built up of a bilinear displacement approximation superposed
by bubble functions in order to create a linear stress field over the element. The
displacement field is expressed in terms of the nodal variables uq, us, ..., ug as

e

u(z,y) = N°a

where
o | U Ne o | MTONs Ny Ny Ny N Np —Ng ¢ U2
| | N§ Nf —N§ N5 N§ Ny —N§ Nj :

usg

With a local coordinate system located at the center of the element, the element
shape functions Ny — N¢ are obtained as

N = (a—a)(b— )
N§ = (-t 2)(b—y)
N§ = %‘b(a-kx)(b-i—y)
N = (a—2)(b+y)
NE = & (2 = 4?) + v(a® — 2?)]
Ni = oo [0 =) + o o)

where

1 1
a = 5(1‘3—1'1) and b= 5(3/3_3/1)
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Two dimensional solid elements plantce

The matrix B¢ is obtained as

o0x
- - 0
B¢ = VN° where V = 0 =
dy
0 0
L Jy Ox |

Evaluation of the integrals for the Turner-Clough element can be done either ana-
lytically or numerically by use of a 2 x 2 point Gauss integration. The element load
vector ff yields

8

<

8

£ = abt

8

<

8

@‘@‘@‘@‘@0‘@‘0‘@‘

T
<
L
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plantcs Two dimensional solid elements

Purpose:
Compute stresses and strains in a Turner-Clough element in plane strain or plane
stress.
Ug Ug
Uy Ug
o ny
y U, { Uy Oxx Oxx
u u
1 s 3 ny
Oyy
X
Syntax:

[es,et]=plantcs(ex,ey,ep,ed)

Description:

plantcs computes the stresses es and the strains et in a rectangular Turner-Clough ele-
ment in plane strain or plane stress. The stress and strain components are computed
at the center of the element.

The input variables ex, ey, and ep are defined in plantce. The vector ed contains the
nodal displacements a® of the element and is obtained by the function extract as

ed:(ae)T:[ul Uy ... US]

The output variables

es=o! =

Oz Oyy [022] Oy [022] [0y:] ]

"=

et=¢ Exx Eyy [gzz] Yy [’Yzz} [’sz”

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress €., # 0, and for plane strain o, # 0.

Theory:

The strains and stresses are computed according to
e =B‘a°’
oc=De

where the matrices D, B¢, and a® are described in plantce, and where the evaluation
point (z,y) is chosen to be at the center of the element.

ELEMENT 5.5 -20



Two dimensional solid elements planide

Purpose:

Compute element matrices for a 4 node isoparametric element in plane strain or
plane stress.

Syntax:
Ke=plani4e(ex,ey,ep,D)
[Ke,fe]=planide(ex,ey,ep,D,eq)
Description:

plani4e provides an element stiffness matrix Ke and an element load vector fe for a 4
node isoparametric element in plane strain or plane stress.

The element nodal coordinates 1, y1, 2 etc. are supplied to the function by ex and
ey. The type of analysis ptype, the element thickness ¢, and the number of Gauss
points n are supplied by ep.

ptype = 1 plane stress (n X n) integration points
ptype = 2 plane strain n=1273

The material properties are supplied by the constitutive matrix D. Any arbitrary D-
matrix with dimensions from (3 x 3) to (6 x 6) maybe given. For an isotropic elastic
material the constitutive matrix can be formed by the function hooke, see Section 4.

ex =[x Ty X3 T4

ep = |ptype t n
ey = (11 1 vs va] p = [ptyp ]

Dll D12 D13 D14 [D15] [DIG]
D21 D22 D23 D24 [D25] [DQG]
D D D
D_ DH D12 D13 or D — D31 D3y D33 Dsy [Dss] [Dsg]
Dzi D:Q«;z Dij Dy Dy Dy3s Dy [Dys] [Das]
[Ds1] [Ds2] [Ds3] [Dsa] [Dss] [Dse]
| [De1] [De2] [De3] [Dea] [Des] [Des] |

If different D; -matrices are used in the Gauss points these D; -matrices are stored
in a global vector D. For numbering of the Gauss points, see eci in plani4s.

D,
p—|

D, 2
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planide Two dimensional solid elements

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

be
=[]
Y

containing loads per unit volume, b, and b,, is then given.

Theory:

The element stiffness matrix K and the element load vector f}, stored in Ke and fe,
respectively, are computed according to

Ke:/ B’ D Bt dA

A
£ = / N b ¢ dA
A

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the isoparametric 4 node element is based on a
displacement approximation u(&, n), expressed in a local coordinates system in terms

of the nodal variables uq, uo, ..., ug as
u(,n) = N°a°
where
Uy
| ug e | NY 0O Ny O Ny O Nf O e | U2
“‘luy] N_[o Ny O Ny 0 Ny o0 Nf| T
us

The element shape functions are given by

Ni=t1-gi-n) N =i(1+e-n)

4 4
Ni= 20+ +n)  Nj=7(1-8(1+n)

The matrix B€ is obtained as

ox

- - 0

B°=VN° where V=| 0 —

dy

9 9

L dy Ox |

and where

2 2 or 0
Or | 1| 0§ | 9§ On
) Tl oy
dy on 9§ On
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Two dimensional solid elements planide

If a larger D-matrix than (3 x 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 x 3) matrix by static condensation using o,, = 0,, = 0,, = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.

If a larger D-matrix than (3 x 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 x 3) matrix using €,, = 7., = 7, = 0. This implies that a
(3 x 3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals is done by Gauss integration.
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plani4s Two dimensional solid elements

Purpose:

Compute stresses and strains in a 4 node isoparametric element in plane strain or
plane stress.

Syntax:
[es,et,eci]=planids(ex,ey,ep,D,ed)

Description:

plani4s computes stresses es and the strains et in a 4 node isoparametric element in
plane strain or plane stress.

The input variables ex, ey, ep and the matrix D are defined in plani4e. The vector ed
contains the nodal displacements a® of the element and is obtained by the function
extract as

ed:(ae)T:[ul Uy ... US]

The output variables

[ 1 1 1 1 1 1] ]
Oy ayy [azz] aa:y [amz] {O’yz}
2 2 2 2 2 2
es — O’T _ Ozz Uyy [gzz] gzy [gzz] {O-yz}
n2 n2 n2 n2 n2 n2
L Orx ayy [O'zz} azy [O':vz} [O'yz}
[ 1 1 1 1 1 1] ]
€rz Eyy [Ezz] ’yzy [’yzz] [’yyz} T U1
2 2 2 2 2 2 T
et = ET — €ra gyy [622] ’ymy [’ya:z] [’yyz} eci = .2 y.2
n? n? n? n? n? n2 Tp2 Yp2
L Crx 5yy [522} /ny [sz} [/sz} ] " "

contain the stress and strain components, and the coordinates of the integration
points. The index n denotes the number of integration points used within the ele-
ment, cf. plani4e. The number of columns in es and et follows the size of D. Note
that for plane stress ¢,, # 0, and for plane strain o, # 0.
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Two dimensional solid elements plani4s

Theory:
The strains and stresses are computed according to
e =B‘a"®
c=De

where the matrices D, B¢, and a® are described in plani4e, and where the integration
points are chosen as evaluation points.
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plani4f Two dimensional solid elements

Purpose:
Compute internal element force vector in a 4 node isoparametric element in plane
strain or plane stress.

Syntax:
ef=plani4f(ex,ey,ep,es)

Description:

plani4f computes the internal element forces ef in a 4 node isoparametric element in
plane strain or plane stress.

The input variables ex, ey and ep are defined in plani4e, and the input variable es is
defined in plani4s.

The output variable
ef =7 =[fufo .. fis]
contains the components of the internal force vector.

Theory:

The internal force vector is computed according to
£e = / B0 t dA
A

where the matrices B® and o are defined in plani4e and planids, respectively.

Evaluation of the integral is done by Gauss integration.
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Two dimensional solid elements plani8e

Purpose:

Compute element matrices for an 8 node isoparametric element in plane strain or

plane stress.
7 3
4
8 6

A u2
& JL
2

(xuy) W

Syntax:

Ke=plani8e(ex,ey,ep,D)
[Ke,fe]=plani8e(ex,ey,ep,D,eq)

Description:

plani8e provides an element stiffness matrix Ke and an element load vector fe for an
8 node isoparametric element in plane strain or plane stress.

The element nodal coordinates 1, y;, z9 etc. are supplied to the function by ex and
ey. The type of analysis ptype, the element thickness ¢, and the number of Gauss
points n are supplied by ep.

ptype = 1 plane stress (n X n) integration points

ptype = 2 plane strain n=12,3
The material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 x 3) to (6 x 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex=[x1 T3 ... xg]

ep = |ptype t n
ey:[yl Yo ... yg] p [pyp ]

_ Dll D12 D13 D14 [D15] [D16]_
D21 D22 D23 D24 [D25] [D26]
D D D
D_ DH D12 D13 or D — D3y Ds;  Dss  Dsy [Dss] [Dsg]
Do D Du Dy Dy Dis Du [Dis] [Dis]
[Ds1] [Dsa] [Dss] [Dsa] [Dss] [Dse]
| [De1] [De2] [De3] [Des] [Des] [Des] |

If different D; -matrices are used in the Gauss points these D; -matrices are stored
in a global vector D. For numbering of the Gauss points, see eci in plani8s.
D,
Dy
D= .
D,
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plani8e Two dimensional solid elements

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

ba
“=[s]
Y

containing loads per unit volume, b, and b,, is then given.

Theory:

The element stiffness matrix K and the element load vector f}, stored in Ke and fe,
respectively, are computed according to

Ke:/BeTDBetdA
A
f‘f:/NeTbtdA

A

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the isoparametric 8 node element is based on a
displacement approximation u(,n), expressed in a local coordinates system in terms

of the nodal variables uq, us, ..., ug as
u(é,n) = N° a°
where
Uy
| U e | Ny O Ny O ... N§ O e | U2
“—[uy] N_lo Ny O N5 ... 0 Ng| T
U1e

The element shape functions are given by

Ni=—(0-O0-m+etn  No= (1-)1-n)
Ny =040 -mA-E+n)  N=2(0+O0 )
Ni= 0400 +mI—E-n)  N=_(1-)1+n)
Ni=—(0-04mte—n No=s0-0 )

The matrix B€ is obtained as

0
E 0
- - 0
B = VIN° where V=] 0 —
dy
9 9
L dy Ox |
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Two dimensional solid elements

plani8e

and where
o 9 0z
or | rv-1| 0§ RS
o |79 o
dy on o3

If a larger D-matrix than (3 x 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 x 3) matrix by static condensation using o,, = 0,, = 0,, = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix

respectively.

If a larger D-matrix than (3 x 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 x 3) matrix using €,, = v,. = 7Yy, = 0. This implies that a
(3 x 3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original

D-matrix.

Evaluation of the integrals is done by Gauss integration.
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plani8s Two dimensional solid elements

Purpose:

Compute stresses and strains in an 8 node isoparametric element in plane strain or
plane stress.

7 3 Oyy
A 2 T Oyy
8 [ ] 6
y U, / JO" Oxx Oxx
/1 5
} N c
Uy 2 Y
Gyy
X

Syntax:
[es,et,eci]=plani8s(ex,ey,ep,D,ed)

Description:

plani8s computes stresses es and the strains et in an 8 node isoparametric element in
plane strain or plane stress.

The input variables ex, ey, ep and the matrix D are defined in plani8e. The vector ed
contains the nodal displacements a® of the element and is obtained by the function
extract as

ed:(ae)T:[ul Uy ... ulG]

The output variables

[ 1 1 1 1 1 1] ]
Oy ayy [azz] azy [azz] {Jyz}
2 2 2 2 2 2
es = O'T — Uwa: Uyy [Uzz] Umy [Umz] {O-yz}
n2 n2 n2 n2 n2 n2
L P Uyy {O-zz} Uzy {O-xz} {O-yz}
[ 1 1 1 1 1 1] ]
£ £ 9 [ }
xT yy [ zz] ’yzy [’yzz] Wyz T U1
2 2 2 2 2 2 xr
et — ET _ Erx Eyy [Ezz] ’ya:y h/a:z] [’yyz} eci — .2 y.2
n? n? n? n? n? n? Tp2  Yp2
Ao o o i B

contain the stress and strain components, and the coordinates of the integration
points. The index n denotes the number of integration points used within the ele-
ment, cf. plani8e. The number of columns in es and et follows the size of D. Note
that for plane stress ¢,, # 0, and for plane strain o, # 0.
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Two dimensional solid elements plani8s

Theory:
The strains and stresses are computed according to
e =B‘a"®
c=De

where the matrices D, B¢, and a® are described in plani8e, and where the integration
points are chosen as evaluation points.
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plani8f Two dimensional solid elements

Purpose:
Compute internal element force vector in an 8 node isoparametric element in plane
strain or plane stress.

Syntax:
ef=plani8f(ex,ey,ep,es)

Description:

plani8f computes the internal element forces ef in an 8 node isoparametric element
in plane strain or plane stress.

The input variables ex, ey and ep are defined in plani8e, and the input variable es is
defined in plani8s.

The output variable
ef:fz‘eT =[fa fiz .- fie]
contains the components of the internal force vector.

Theory:

The internal force vector is computed according to
£e = / B0 t dA
A

where the matrices B® and o are defined in plani8e and plani8s, respectively.

Evaluation of the integral is done by Gauss integration.
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Three dimensional solid elements soli8e

Purpose:

Compute element matrices for an 8 node isoparametric solid element.

Syntax:
Ke=soli8e(ex,ey,ez,ep,D)
[Ke,fe]=soli8e(ex,ey,ez,ep,D,eq)
Description:

soli8e provides an element stiffness matrix Ke and an element load vector fe for an 8
node isoparametric solid element.

The element nodal coordinates x1, ¥y, 21, 2 etc. are supplied to the function by ex,
ey and ez, and the number of Gauss points n are supplied by ep.
(n x n) integration points, n =1,2,3

The material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions (6 x 6) may be given. For an isotropic elastic material the
constitutive matrix can be formed by the function hooke, see Section 4.

Dll D12 D16
ex:[l‘l Ty ... 33'8] D21 D22 D26
ey=[y v ... ys] ep=[n] D=}
ez:[21 Zo ... 2’8] ’ : ' :

D61 D62 D66

If different D; -matrices are used in the Gauss points these D; -matrices are stored
in a global vector D. For numbering of the Gauss points, see eci in soli8s.

Dy
p_| >
D,
If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

by
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soli8e Three dimensional solid elements

containing loads per unit volume, b, , b,, and b,, is then given.

Theory:

The element stiffness matrix K and the element load vector f], stored in Ke and fe,
respectively, are computed according to

Ke:/ BT D B® dV

1%
f£ = / N b dV
1%

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the isoparametric 8 node solid element is based
on a displacement approximation u(,n, (), expressed in a local coordinates system
in terms of the nodal variables wuy, us, ..., ugy as

u(§,n,¢) = N°a

where
Uy
Uy N0 0 Ny O O ...Ng O O Us
u= | u, N°¢ = 0O Ny O 0 Ny O ... 0 Ng O a‘ =
U, 0 0 NNy O O Ny... 0O O Ng
U4

The element shape functions are given by

1 1

Nf= 1= -n)1-Q  N= (-1 -n)(1+0)
Nf= 1+ O1-n)(1-0)  Ng=(1+8(1-n)(1+0)
Ni= S+ O1+m(-¢) N =1+ +n)(1+0)

Ni= 1= 4m1-0  Ni=(1-1+n)(1+0)

The B¢ matrix is obtained as

B¢ = VN°¢
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Three dimensional solid elements soli8e

where
-5 -
9 0 0
0
R 0] 0
0 0 oz o
= 0z 0 T\—1 2
Voo oo, o | -0
Oy Ox 0 o
0,0 7 | ac
0z or
9 9
I 0z 0Oy |
o5 on I
j_ | % 9y 9
| o o &
L 9& dn OC |

Evaluation of the integrals is done by Gauss integration.
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soli8s Three dimensional solid elements

Purpose:

Compute stresses and strains in an 8 node isoparametric solid element.

Syntax:

[es,et,eci]=soli8s(ex,ey,ez,ep,D,ed)

Description:
soli8s computes stresses es and the strains et in an 8 node isoparametric solid element.

The input variables ex, ey, ez, ep and the matrix D are defined in soli8e. The vector
ed contains the nodal displacements a® of the element and is obtained by the function

extract as

ed:(ae)T:[ul Uy ... U24]

The output variables

r-1 1 1 1 1 1
Oz Uyy 02 Uzy Oz Uyz
2 2 2 2 2 2
es — O'T — Ozz ayy Oz azy Oz Uyz
3 3 3 3 3 3
n n n n n n
L Ozx ayy 02 aa}y Oz Jyz
r -1 1 1 1 1 1

6:)::)3 Eyy gzz PYa:y ’yzz ’yyz I U 21

2 2 2 2 2 2 T

15 € € . 2 Y2 22

et — ET — T vy 2z sz Vzz ’yyz eci = ) ] )
3 3 3 3 3 3

n n n n n n XT3 3 Zp3

L €zz 6yy €22 sz Vaz /sz " Yn "

contain the stress and strain components, and the coordinates of the integration
points. The index n denotes the number of integration points used within the ele-
ment, cf. soli8e.
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Three dimensional solid elements soli8s

Theory:
The strains and stresses are computed according to
e =B‘a"®
c=De

where the matrices D, B¢, and a® are described in soli8e, and where the integration
points are chosen as evaluation points.
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soli8f Three dimensional solid elements

Purpose:

Compute internal element force vector in an 8 node isoparametric solid element.

Syntax:

ef=soli8f(ex,ey,ez,ep,es)

Description:
soli8f computes the internal element forces ef in an 8 node isoparametric solid element.

The input variables ex, ey, ez and ep are defined in soli8e, and the input variable es
is defined in soli8s.

The output variable
ef =" =[fua fio ... fioa]
contains the components of the internal force vector.

Theory:

The internal force vector is computed according to
fe = / B o dV
1%
where the matrices B and o are defined in soli8e and soli8s, respectively.

Evaluation of the integral is done by Gauss integration.
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5.6 Beam elements

Beam elements are available for one, two, and three dimensional linear static analysis.
Two dimensional beam elements for nonlinear geometric and dynamic analysis are also
available.

1D beam elements
beamle Compute element matrices
beamls  Compute section forces
beamlwe Compute element matrices for beam element on elastic foundation
beamlws Compute section forces for beam element on elastic foundation

2D beam elements

beam2e  Compute element matrices
beam2s  Compute section forces
beam2te Compute element matrices for Timoshenko beam element
beam2ts Compute section forces for Timoshenko beam element
beam2we Compute element matrices for beam element on elastic foundation
beam2ws Compute section forces for beam element on elastic foundation
beam2ge Compute element matrices for geometric nonlinear beam element
beam2gs Compute section forces for geometric nonlinear beam element
beam2gxe Compute element matrices for geometric nonlinear exact beam el-

ement
beam2gxs Compute section forces for geometric nonlinear exact beam element
beam2de Compute element matrices for dynamic analysis
beam2ds Compute section forces for dynamic analysis

3D beam elements
beam3e  Compute element matrices
beam3s  Compute section forces
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One dimensional beam element beamle

Purpose:

Compute element stiffness matrix for a one dimensional beam element.

u, ! Us
u 4
sl 38
———=X |
(x;) E, I (x2)

><‘

Syntax:
Ke=beamle(ex,ep)
[Ke,fe]|=beamle(ex,ep,eq)
Description:

beamle provides the global element stiffness matrix Ke for a one dimensional beam
element.

The input variables
ex =[x x| ep=[F I]

supply the element nodal coordinates x; and x5, the modulus of elasticity £ and the
moment of inertia 1.

The element load vector fe can also be computed if uniformly distributed load is
applied to the element. The optional input variable

ea=| |
then contains the distributed load per unit length, gj.

Yq

@ |
D ¢ )

<Y
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beamle One dimensional beam element

Theory:

The element stiffness matrix K¢, stored in Ke, is computed according to

12 6L 12 6L

Dg; | 6L 41 —6L 2L2
T3 | —12 6L 12 —6L
6L 202 —6L 4L2

[ €

where the bending stiffness Dg; and the length L are given by
DE]IE[7 L:l'g—l’l

The element loads ff stored in the variable fe are computed according to

S

L 12
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One dimensional beam element beamls

Purpose:

Compute section forces in a one dimensional beam element.

.,

M(\[/D ™

y ! | |

Syntax:

es=beam1s(ex,ep,ed)
es=beam1s(ex,ep,ed,eq)
[es,edi,eci]=beam1s(ex,ep,ed,eq,n))

Description:

beamls computes the section forces and displacements in local directions along the
beam element beamle.

The input variables ex, ep and eq are defined in beamle, and the element displace-
ments, stored in ed, are obtained by the function extract. If distributed loads are
applied to the element, the variable eq must be included. The number of evaluation
points for section forces and displacements are determined by n. If n is omitted, only
the ends of the beam are evaluated.

The output variables

V(0) M(0) ] v(0) 0
V(Z9) M (z5) v(Z2) Ty
es = : : edi = : eci = :
V(Zpo1) M(Zp_1) (Zp_1) Tn1
V(L)  M(L) | L o(l) ] . L]

contain the section forces, the displacements, and the evaluation points on the local
Z-axis. L is the length of the beam element.
Theory:

The nodal displacements in local coordinates are given by

Uy
. s

us
Uy

where the transpose of a® is stored in ed.
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beamls One dimensional beam element

The displacement v(Z), the bending moment M(z) and the shear force V(z) are
computed from

v(z) = Na® +u,(z)
M(z) = Dp/Ba® +M,(7)

_ dB _, _

dB .
%:[0 0 0 6}0
_ g zt Lz’ L%
v(T) = = - —
Dpr \24 12 24

1 0 0 0

. 0o 1 0 0
C =|_3 » 3 _1
L2 L L2 L

2 1 _2 1

L3 L2 L3 L2
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One dimensional beam element with elastic support beamlwe

Purpose:

Compute element stiffness matrix for a one dimensional beam element on elastic

support.
(——X |
@i ilEIiillle)
ky
X
Syntax:

Ke=beamlwe(ex,ep)
[Ke,fe]=beamlwe(ex,ep,eq)

Description:

beamlwe provides the global element stiffness matrix Ke for a one dimensional beam
element with elastic support.

The input variables
ex =[x x| ep=[FE I ky]

supply the element nodal coordinates x; and x5, the modulus of elasticity F, the
moment of inertia I, and the spring stiffness in the transverse direction ;.

The element load vector fe can also be computed if uniformly distributed load is
applied to the element. The optional input variable

ea=| g |
then contains the distributed load per unit length, g.

Yq

@ |
BE——X ]

<Y
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beamlwe One dimensional beam element with elastic support

Theory:
The element stiffness matrix K¢, stored in Ke, is computed according to

K = K + K¢

12 6L 12 6L
Dgr | 6L 4L2 —6L 2L2
L3 | —12 —6L 12 —6L

6L 2L* —6L AL2

RS =

156 220 54 —13L
ge_ ML | 220 41?130 3L
s 420 | 54 13L 156 —22L
—13L —3L* —22L 4L?

where the bending stiffness Dg; and the length L are given by
DE]IE[7 L:l'g—l’l

The element loads ff stored in the variable fe are computed according to

S
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One dimensional beam element with elastic support beamlws

Purpose:

Compute section forces in a one dimensional beam element with elastic support.

.,

M(\[/D ™

y ! | |

Syntax:

es=beam1lws(ex,ep,ed)
es=beam1lws(ex,ep,ed,eq)
[es,edi,eci]=beamlws(ex,ep,ed,eq,n))

Description:

beamlws computes the section forces and displacements in local directions along the
beam element beamlwe.

The input variables ex, ep and eq are defined in beamlwe, and the element displace-
ments, stored in ed, are obtained by the function extract. If distributed loads are
applied to the element, the variable eq must be included. The number of evaluation
points for section forces and displacements are determined by n. If n is omitted, only
the ends of the beam are evaluated.

The output variables

V(0) M(0) ] v(0) 0
V(Z9) M (z5) v(Z2) Ty
es = : : edi = : eci = :
V(Zpo1) M(Zp_1) (Zp_1) Tn1
V(L)  M(L) | L o(l) ] . L]

contain the section forces, the displacements, and the evaluation points on the local
Z-axis. L is the length of the beam element.
Theory:

The nodal displacements in local coordinates are given by

Uy
. s

us
Uy

where the transpose of a® is stored in ed.
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beamlws One dimensional beam element with elastic support

The displacement v(Z), the bending moment M(z) and the shear force V(z) are
computed from

v(z) = Na® +u,(z)
M(z) = Dp/Ba® +M,(7)

_ dB_, _

dB

%:[0 0 0 6]0—1

zt—2Lz3+L3z2 T

24

ZO—3L2z3 421372 —4 =3 22
vy (7) = — ky 120 Cla® + O Lz Lz
- —=6 323 42
p Dp; | 2°-4AL° 43105 Dg;
360
Z71—5L*T34+4L5z2
840

24 12 * 24

6z2—6Lz+L?
12
10291274213 =2 = 2
(T) = —ky Lo C'a®+gqy v L + L
5 —46LO T+L 2 2 12
2175 —15L%z+4L5
420

’ﬁ<
—~
&I
~—
Il
o
<
ot
8
)
| S
h
w
Q
L
V]|
o
|
=)
<
—
Kl
|
o |t
~

1 0 0 0

. 0o 1 0 0
C =|_35 2 3 _1
L2 L L2 L

2 1 _2 1
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Two dimensional beam element beam?2e

Purpose:

Compute element stiffness matrix for a two dimensional beam element.

Us

(*X2,Y2)

Syntax:
Ke=beam?2e(ex,ey,ep)
[Ke,fe]=beam?2e(ex,ey,ep,eq)
beam2e provides the global element stiffness matrix Ke for a two dimensional beam

element.

The input variables

ex =[x |

ey=1[y1 ¥2] ep =L AT

supply the element nodal coordinates x1, y;, 2, and ys, the modulus of elasticity F,
the cross section area A, and the moment of inertia I.

The element load vector fe can also be computed if a uniformly distributed transverse
load is applied to the element. The optional input variable

eq:{qi qu}

then contains the distributed loads per unit length, ¢z and gj.
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beam?2e Two dimensional beam element

Theory:

The element stiffness matrix K¢, stored in Ke, is computed according to

K* = G'K°G
where
R
Ke B 0 622151 4DLEI 0 _6251 QDLEI
a9 0 P00
0 —12L€E1 _ 6251 0 1253151 _ 6?51
I 0 6€2EI 2Dgs 0 _61251 4DLE1 |
Nz Nyz 0 0 0 07
Ngg Nyg 0 0 0 0
0 0 1 O 0 0
G= 0 0 0 ngg ng O
0 0 0 0 0 1]

where the axial stiffness Dga, the bending stiffness Dg; and the length L are given

by

Dgpa=FEA; Dpr=FEI;, L= \/@2 — 1)+ (y2 — 1)

The transformation matrix G contains the direction cosines

- X2 — I _ Y=
Maz =My = — Myz = TTey = 7
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Two dimensional beam element beam?2e

The element loads ff° stored in the variable fe are computed according to
fle — GTfle

where

)
&I
~

S
~

=
‘hw
[N}

h

qz

h

QgL2
L 12
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beam?2s Two dimensional beam element

Purpose:

Compute section forces in a two dimensional beam element.

y y /\ M V
M, M Oj\/ N
P& N\
N, Vi N VY

Syntax:

[es|=beam2s(ex,ey,ep,ed)
[es]|=beam2s(ex,ey,ep,ed,eq)
[es,edi]=beam2s(ex,ey,ep,ed,eq,n)
[es,edi,eci]=beam2s(ex,ey,ep,ed,eq,n)

Description:

beam2s computes the section forces and displacements in local directions along the
beam element beam?2e.

The input variables ex, ey, ep, and eq are defined in beam2e.

The element displacements, stored in ed, are obtained by the function extract. If a
distributed load is applied to the element, the variable eq must be included. The
number of evaluation points for section forces and displacements are determined by
n. If n is omitted, only the ends of the beam are evaluated.

The output variables

N(0) V(0) M(0) u(0) v(0)
N(z9) V(Z9) M (z5) u(Tq) v(Z2)
es = : : : edi = : : eci =
N(Zp—1) V(Tpo1) M(Zp-1) UW(Tp-1) v(Tp-1)
N(L) V(L)  M(L) | L u(L) (L) i

contain the section forces, the displacements, and the evaluation points on the local
Z-axis. L is the length of the beam element.

Theory:
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Two dimensional beam element beam?2s

The nodal displacements in local coordinates are given by

where G is described in beam2e and the transpose of a° is stored in ed. The dis-
placements associated with bar action and beam action are determined as

Us
e __ U1 —e . fL3
Apar [ ﬂ4 ‘| ’ Apeam fL5
Ug

The displacement u(z) and the normal force N(Z) are computed from

u(Z) = Nparay,, + up(j)

N(Z) = DgaBpad® +N,(7)

o
o
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=
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Q.
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[¢)
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=
(o

The displacement v(Z), the bending moment M(Z) and the shear force V(z) are
computed from

U('i.) = Nbeamﬁieam _'_Up(j.)
M(E) = DE[Bbeamake)eam _'_Mp('i.)

dB eam —e _
V(‘/Z‘) = _DEI CZ’L’ Apeam +‘/p(‘r)
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beam?2s Two dimensional beam element

where

Nyeam = [ 1z 7% 7° } Ck:elam

Bieam = [0 0 2 62 | Cpl,

deeam_ -1
- =000 6]|Cl,

VR CA v
P Dpr\24 12 24

M,y(Z) = gy (%2 —- 5 +%>

1 0 0 0

_ 0 1 0 0
Cl =

beam _3 _2 3 _1

L2 L L2 L

2 1 2 1

Z 17 I 12
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Two dimensional Timoshenko beam element beam?2te

Purpose:

Compute element stiffness matrix for a two dimensional Timoshenko beam element.

Us

(*X2,Y2)

Syntax:
Ke=beam2te(ex,ey,ep)
[Ke,fe]=beam?2te(ex,ey,ep,eq)
Description:

beam2te provides the global element stiffness matrix Ke for a two dimensional Tim-
oshenko beam element.

The input variables

ex =[x |

ep=|EFGAIEK,
ey=1[y1 2] P=1 ]

supply the element nodal coordinates x1, y1, 2, and yo, the modulus of elasticity
E, the shear modulus G, the cross section area A, the moment of inertia I and the
shear correction factor k,.

The element load vector fe can also be computed if uniformly distributed loads are
applied to the element. The optional input variable

eq:{qi qu}

then contains the distributed loads per unit length, ¢z and ¢j.

5.6 — 17 ELEMENT



beam?2te Two dimensional Timoshenko beam element

Theory:

The element stiffness matrix K¢, stored in Ke, is computed according to
K°=G'K‘G

where G is described in beam2e, and K¢ is given by

- EA EA -
== 0 0 —== 0 0
0 12E1 6EI 0 __12BI 6EI
L3(14p)  L2(1+p) L3(1+p)  L*(14p)
0 6EI 4EI(1+4) 0 __S6EI 2EI(1-4)
Ke— L2(14p)  L(l+p) L2(1+p)  L(14p)
n EA EA
—= 0 0 == 0 0
0 __12BI _ _6EI 0 12EI __ 6EI
L3(1+p)  L2(1+p) L3(1+p) L2(1+p)
0 6EI 2EI(1-4) 0 _ _SEI 4EI(1+4)
L L2(1+4p) L(1+4p) L2(14p)  L(14p)
with
 12E1
M= TG Ak,
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Two dimensional Timoshenko beam element beam?2ts

Purpose:

Compute section forces in a two dimensional Timoshenko beam element.

V

n

n (j\/ \\

M

Syntax:

es=beam2ts(ex,ey,ep,ed)
es=beam2ts(ex,ey,ep,ed,eq)
[es,edi,eci]=beam2ts(ex,ey,ep,ed,eq,n)

Description:

beam?2ts computes the section forces and displacements in local directions along the
beam element beam?2te.

The input variables ex, ey, ep and eq are defined in beam2te. The element displace-
ments, stored in ed, are obtained by the function extract. If distributed loads are
applied to the element, the variable eq must be included. The number of evaluation
points for section forces and displacements are determined by n. If n is omitted, only
the ends of the beam are evaluated.

The output variables
es=[NVM] edi=[uv] eci = [X]

consist of column matrices that contain the section forces, the displacements and
rotation of the cross section (note that the rotation € is not equal to %), and the
evaluation points on the local x-axis. The explicit matrix expressions are

N, Vi M, u v 0 9_?

N, Vo My | By B | ’
es = ) ) . edi=| . . . eci = :

N Vo M, W T O )

where L is the length of the beam element.

Theory:
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beam?2ts Two dimensional Timoshenko beam element

The evaluation of the section forces is based on the solutions of the basic equations

d*u d30 d*v
FA—+q¢: =0 EFl— —q¢; =0 Fl—
a2 e aws 7 T
(The equations are valid if g; is not more than a linear function of ). From these
equations, the displacements along the beam element are obtained as the sum of the

homogeneous and the particular solutions

u()
u=| 9(z) | =u,+u,
0(z)
where
[ qzLx x
1—- =
i (2) QEA( L)
Up\T 272 - - -
o o L°T x qz LT x
w,=NC'Ga° w = | 5,z |=|% 1— 224+ 2= (1-=2
& g ngxg 25T ) Tagant T
p
q; L% 2% T
il Y
L 12EI( L)( L)
and
1 2 0 0 0 0
N=|00 1 z 22 z3 C“:Gilk
100 0 122 3(z* + 2a) s
1 0 0 0 O 0 i
001 0 o0 0 Uy
C_OOOlO 6 ae_uz
|1 L 0 0 0 0 B :
0 0 1 L L? L3 Ug
L0 0 0 1 2L 3(L*+2a) |

The transformation matrix G and nodal displacements a® are described in beam?2e.
Note that the transpose of a® is stored in ed.

Finally the section forces are obtained from

du dv do
N =FA— =GAky(— — M= EI—
dz V=G ks(da‘: 9) dz
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Two dimensional beam element on elastic support beam2we

Purpose:

Compute element stiffness matrix for a two dimensional beam element on elastic
support.

Syntax:
Ke=beam?2we(ex,ey,ep)
[Ke,fe]=beam2we(ex,ey,ep,eq)
Description:

beam2we provides the global element stiffness matrix Ke for a two dimensional beam
element with elastic support.

The input variables
ex =[x 3| ex=1[y1 yo] ep=[FE A I ki ky]

supply the element nodal coordinates z1, xs, y1, and ys, the modulus of elasticity F,
the cross section area A, the moment of inertia I, the spring stiffness in the axial
direction kz, and the spring stiffness in the transverse direction ;.

The element load vector fe can also be computed if uniformly distributed loads are
applied to the element. The optional input variable

eq:{qf QQ}

then contains the distributed load per unit length, ¢z and ¢j.
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beam2we Two dimensional beam element on elastic support

Theory:

The element stiffness matrix K¢, stored in Ke, is computed according to

K¢ = GTK°G
where
K¢ = KS + KE
[ Dga __Dpga T
=z 0 0 £ 0 0
0 12D g 6Dp; 0 _ 12Dg; 6Dg1
L3 L? L3 L?
0 6Dgs 4Dgg 0 __ 6Dg; 2Dg;
Ke _ L? L L2 L
07 | _Dga EA
Z 0 0 £ 0 0
0 —12Dg; _ 6Dg; 0 12Dg; _ 6Dgr
3 L2 3 L2
0 6Dpr 2Dpr 0 _6Dgr 4Dpr
L L2 L L2 L J
[ 140k 0 0 70k; 0 0 T

0 156k; 22k;L O B5dk;  —13kyL
L 0  22%k,L 4k L* 0  13k;L —3k,L?
sTA0 | 0k: 0 0  140k; 0 0
0 54ky; 13kl 0 156k; —22kyL
0  —13k;L —3kyL?* 0  —22k;L  4k,L*

[ ngz ngz 00 0 0

Ngg Nyg 0 0 0 0

0 0 1 0 0 0
0 0 0 0 0 1)

where the axial stiffness Dg4, the bending stiffness Dg; and the length L are given
by

Dga=FEA; Dpr=FEIl;, L= \/(372 — 1)+ (Y2 — y1)?

The transformation matrix G contains the direction cosines

- X2 — Iy _ Y=
Maz =My = — Myz = TTey = 7

The element loads ff° stored in the variable fe are computed according to

fle — GTI:le

ELEMENT 5.6 — 22



Two dimensional beam element on elastic support beam2we

where
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beam2ws Two dimensional beam element on elastic support

Purpose:

Compute section forces in a two dimensional beam element with elastic support.

Syntax:

es=beam2ws(ex,ey,ep,ed)
es=beam2ws(ex,ey,ep,ed,eq)
[es,edi,eci]=beam2ws(ex,ey,ep,ed,eq,n))

Description:

beam2ws computes the section forces and displacements in local directions along the
beam element beam2we.

The input variables ex, ey, ep and eq are defined in beam2we, and the element
displacements, stored in ed, are obtained by the function extract. If distributed
loads are applied to the element, the variable eq must be included. The number of
evaluation points for section forces and displacements are determined by n. If n is
omitted, only the ends of the beam are evaluated.

The output variables

N(0) V()  M(0) u(0)  v(0)
N(z5) V() M (Z5) u(Z2) v(Zg)
es = : : : edi = : : eci =
N(Zp-1) V(Tp-1) M(ZTp-1) w(ZTpo1) v(Tpo1)
N(L) V(L) M(L) | - u(L) v(L) I

contain the section forces, the displacements, and the evaluation points on the local
Z-axis. L is the length of the beam element.

Theory:
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Two dimensional beam element on elastic support beam2ws

The nodal displacements in local coordinates are given by

where G is described in beam2we and the transpose of a® is stored in ed. The
displacements associated with bar action and beam action are determined as

Us

_ Uy _ ug
e _ . e _

Apar = l ﬂ4 ‘| ) Apeam — fL5

Ug

The displacement u(z) and the normal force N(Z) are computed from

u(Z) = Npg,ap,, + up@)

N(Z) = DgaBpa@a® +N,(7)

ks 2 e m _ i} _
7\ — —Lz z3-L°%z —1ze qz z2 Lz
uy(z) = [ z }C ap,, -— (— — =
D bar “bar D 2 2
Dga 2 6 EA
7) — 2z—L 3z%-L2 —1ze = __ L
Np(l') = ks { 2 6 } Cbarabar — 4z (l’ - 5)

in which Dgy, kz, L, and ¢z are defined in beam2we and

|

The displacement v(Z), the bending moment M(Z) and the shear force V(Z) are
computed from

Ch = [

|l Ly
= o

U(j) = Nbeamageam +Up(‘i‘)
M(E) = DE[Bbeamake)eam _'_Mp('i.)

deeam 3¢
dr beam

V(z) = —Dg; +V,(z)
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beam2ws Two dimensional beam element on elastic support

where

Nyeam = [ 1z 7% 7° }Ck:elam
Bieam = [0 0 2 62 | Cpl,

=000 6]|Cy

zt—2Lz3+ L3272
24
79 _3L27342[3%2 _ _ _
B kg z°—3 19[:20+ T . qg .’L’4 L.’L‘3 L2$2
Up(x) = - =6 47373 1 7452 Cheambeam T of +
Z7—5L4z3+4L5%2
840

632—6 LT+ L2 T

12
=3 2~ 3
B 10z 79‘50 420 o .TQ Lt LQ
MP(:E) = _k:@ 5z4—AL3z+L4 Cbeamabeam t+aqy 5 - 7 + E
60
217° —15L*%4+4L°
420

— _ 20 -1 =e P L
%(x) - kﬂ 5z3_L3 Cbeamabeam — 4y (‘T - 5)

in which Dgr, ky, L, and gy are defined in beam2we and

1 0 0 0

» 0 1 0 0
C —

beam A 3 1

L2 L L2 L

2 1 2 1

3 2 T3 12
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Two dimensional geometric nonlinear beam element beam2ge

Purpose:

Compute element stiffness matrix for a two dimensional nonlinear beam element with
respect to geometrical nonlinearity.

Us

(*X2,Y2)

Syntax:

Ke=beam2ge(ex,ey,ep,Qx)
[Ke,fe]=beam?2ge(ex,ey,ep,Qx,eq)

beam2ge provides the global element stiffness matrix Ke for a two dimensional beam
element with respect to geometrical nonlinearity.

The input variables
ex =[x 3|
ey=[y 1]

supply the element nodal coordinates z1, y1, x2, and ys, the modulus of elasticity F,
the cross section area A, and the moment of inertia I and

QX:[QE]

contains the value of the predefined axial force )z, which is positive in tension.

ep=[F A T]

The element load vector fe can also be computed if a uniformly distributed transverse
load is applied to the element. The optional input variable

eq=[gy]

then contains the distributed transverse load per unit length, ¢;. Note that eq is a
scalar and not a vector as in beam?2e.

Theory:

The element stiffness matrix K¢, stored in the variable Ke, is computed according to

K¢ =G'K°G
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beam2ge Two dimensional geometric nonlinear beam element

where K¢ is given by

K=K+ K¢
with
[ Dea 0 0 —Pea 0 0 ]
0 12Dgr 6Dgr O __12Dpgr 6Dgr
L3 L? L3 L?
0 6Dgpr 4Dgr O __6Dpgg 2Dgpr
KSI b L2 L 5 L2 L
_rYEA 0 O LEA O O
o —12Dg; __ 6Dgg - 12Dg; __6Dgr
O L3 L2 O L3 L2
0 6122EI 2DLE1 0 o 6€2EI 4DLE1
[0 0 0 0 0 0 |
6 1 6 1
0 5z % 0 =355 1
1 2L 1 L
k-0, |V v B 0w 7w
7 1o 0 0 0 0 0
6 1 6 1
0 =5z =16 0 352 —10
1 L 1 2L
10 %5 —3% 0 —-% i
—nm Nyz 0 0 0 0]
0O 0 1 0 0 0
G= 0 0 0 ng ng O
0 0 0 ngg ng O
0 0 0 0 0 1]

where the axial stiffness Dga, the bending stiffness Dg; and the length L are given
by

Dpa=EA; Dpr=FEI;, L= \/(332 —21)* + (g2 — 1)
The transformation matrix G contains the direction cosines

To — I - — —n Y=
x — = laxy —
L Y Y L

Ngz = Ny =

The element loads ff stored in fe are computed according to
fle — GTfle

where

|
N |t~
ol S
bo|
ol
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Two dimensional geometric nonlinear beam element beam2gs

Purpose:
Compute section forces in a two dimensional nonlinear beam element with geomet-

rical nonlinearity.

\Z

M, '}\/ N,

Syntax:

[es,Qx]=beam2gs(ex,ey,ep,ed,Qx)
[es,Qx]=beam2gs(ex,ey,ep,ed,Qx,eq)
[es,Qx,edi|=beam2gs(ex,ey,ep,ed,Qx,eq,n)
[es,Qx,edi,eci]=beam2gs(ex,ey,ep,ed,Qx,eq,n)

Description:

beam2gs computes the section forces and displacements in local directions along the
geometric nonlinear beam element beam?2ge.

The input variables ex, ey, ep, Qx, and eq are described in beam2ge. The element
displacements, stored in ed, are obtained by the function extract. If a distributed
transversal load is applied to the element, the variable eq must be included. The
number of evaluation points for section forces and displacements are determined by
n. If n is omitted, only the ends of the beam are evaluated.

The output variable Qx contains )z and the output variables

NO) V() M) ] u(©0)  v(0)
N(z2)  V(Z2)  M(Z2) u(Zz)  v(22)
es = : : : edi = : : eci =
N(Zp-1) V(Tp-1) M(ZTp-1) w(ZTpo1) v(Tpo1)
N(L) V(L) M(L) | - u(L) v(L) I

contain the section forces, the displacements, and the evaluation points on the local
Z-axis. L is the length of the beam element.

Theory:
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beam2gs Two dimensional geometric nonlinear beam element

The nodal displacements in local coordinates are given by

o
Us
us
Uy
Us
Ug

where G is described in beam2ge and the transpose of a® is stored in ed. The
displacements associated with bar action and beam action are determined as

R R R
Ug
The displacement u(Z) is computed from
u(Z) = Nparap,,
where

lq’bar:[1 j}cgalr:{l_%

]
| I

where L is defined in beam2ge and

|

The displacement v(Z), the rotation 6(z), the bending moment M (Z) and the shear
force V(z) are computed from

Char = [

S =
~= o

U('i.) = Nbeamﬁﬁeam _'_Up(j.)

dNbeam —e _
dr Apeam _'_ep (l‘)

0(z) =

M(E) = DE'IBbeamaebeam "‘Mp(j')

deeam 3¢
dr beam

V(z) = —Dgr +Vp(7)

Nieam = | 1 2 22 7 | Cplyn

=01 2z 322 | Cyl,
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Two dimensional geometric nonlinear beam element beam2gs

deeam -1
= =[0 00 6]Cplh
- 0 T
_ Qz 0 . — ¢ (' Lz* L7
Up(l') = _DEI (%7Lg3+]4i§2) Cbeamabeam DEI ﬂ - ﬁ + 24
L (%*3L220$3+L?§2)
- 0 T
) Qs 0 o q (8 Lz* L’z
9 - C e Yy - -
p( ) Dy (%_L;CQ_’_%) beambeam T Dy \ 6 1 + 19
L (%_QL;O#""L?)
0 T
_ 0 —1 ze z2 Lz | L?
Mp(l') = Qa’: o 12 Cbeamabeam + dy (7 T2 + E)
(x 7L:)3+T)
0 T
_ 0 -1 ze T L
V;;(IL') = Qi Cbeamabeam — Ay (‘/L‘ - 5)

(22-1L)

(s22-287)

in which Dgy, L, and gz are defined in beam2ge and

1 0 0 0
0 1 0 0

Crl =
beam = | 3 _2 3 _1
L? L L2 L
2 1 2 1
7 17 T 1%

An updated value of the axial force is computed as
Qs =Dpa 0 1]Cplap,
The normal force N(Z) is then computed as

N(z) = Qz + 0(z)V (2)
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beam2gx Two dimensional geometric nonlinear exact beam element

Purpose:

Compute element stiffness matrix for a two dimensional nonlinear beam element with
exact solution.

Us

(*X2,Y2)

Syntax:
Ke=beam2gx(ex,ey,ep,N)
[Ke,fe]=beam2gx(ex,ey,ep,N,eq)
Description:

beam2gx provides the global element stiffness matrix Ke for a two dimensional beam
element with respect to geometrical nonlinearity.

The input variables ex, ey, and ep are described in beam2e, and
N=[N]

contains the value of the predefined normal force N, which is positive in tension.
The element load vector fe can also be computed if a uniformly distributed transverse
load is applied to the element. The optional input variable

eq =[]

then contains the distributed transverse load per unit length, ¢;. Note that eq is a
scalar and not a vector as in beam2e

ELEMENT 5.6 — 32



Two dimensional geometric nonlinear exact beam element beam2gx

Theory:

The element stiffness matrix K¢, stored in the variable Ke, is computed according to
K‘=G'K°G

where G is described in beam2e, and K¢ is given by

[ £A 0 o £ 0 0 ]
0 12E1¢5 6EI ¢2 0 12EI ¢5 6EI ¢2
e |0 Ee e 0 e Mo
- EA EA
-£4 0 0 £4 0 0
L L
0 _1%].3@[ 6EI ¢2 0 1%].3@[ 6E1¢2
L 0 e %@ 0 —%5dy s

For axial compression (N < 0), we have

kL kL 1 E2L?
= — t E— - —_—
¢1 CO ¢2 12 (1 — ¢1)

1 3
9 9 O3 = Z¢1 + Z%

Gy = —%% + g@ 5 = P12

with
T
k= Z\/ﬁ

For axial tension (N > 0), we have

kL kL 1 K*L?

¢1 = —-coth — ¢2:—Em

1 3
9 9 O3 = Z¢1 + Z¢2

Gy = —%% + ;@ G5 = P12

with
T
k= Z\/—_P
The parameter p is given by
_ NL?
P TRl
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beam2gx Two dimensional geometric nonlinear exact beam element

The equivalent nodal loads ff stored in the variable fe are computed according to
fle — GTfle

where

L 1 T

_ 1 L
fe_gLlo = = - L
L4 {0 > ¥ 0 3 12¢]

For an axial compressive force, we have

b =6 2 _1+coskL
- "\ (kL)?  kLsinkL

and for an axial tensile force

b =6 1+coshkL_ 2
~ "\ kLsinhkL  (kL)?
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Two dimensional geometric nonlinear exact beam element beam2gxs

Purpose:

Compute section forces in a two dimensional nonlinear beam element.

\Z

M, ‘j\/ N,

Syntax:
es=beam2gxs(ex,ey,ep,ed,N)
es=beam2gxs(ex,ey,ep,ed,N,eq)

Description:

beam2gxs computes the section forces at the ends of the nonlinear beam element
beam2gx.

The input variables ex, ey, and ep are defined in beam2e, and the variables N and eq
in beam2gx. The element displacements, stored in ed, are obtained by the function
extract. If a distributed transversal load is applied to the element, the variable eq
must be included.

The output variable

o [NV
TN v M

contains the section forces at the ends of the beam.
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beam2gxs Two dimensional geometric nonlinear exact beam element

Theory:
The section forces at the ends of the beam are obtained from the element force vector
P=[-N, —Vi =M, N, Vyu My]"
computed according to
P-K°Ga' —ff
The matrix G is described in beam2e. The matrix K¢ and the nodal displacements

ae:[ul Uo U3 Ug Us UG]T

are described in beam2gx. Note that the transpose of a® is stored in ed.
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Two dimensional beam element for dynamic analysis beam2de

Purpose:

Compute element stiffness, mass and damping matrices for a two dimensional beam

element.
Us
(X2,Y2)
y! T
'@ C'M
(Xp.y1)
X
Syntax:

[Ke,Me]=beam2de(ex,ey,ep)
[Ke,Me,Ce|=beam2de(ex,ey,ep)
Description:

beam2de provides the global element stiffness matrix Ke, the global element mass
matrix Me, and the global element damping matrix Ce, for a two dimensional beam
element.

The input variables ex and ey are described in beam2e, and
ep=[FE A I m | ay a1]]

contains the modulus of elasticity F, the cross section area A, the moment of inertia
I, the mass per unit length m, and the Raleigh damping coefficients a¢ and a;. If ag
and a, are omitted, the element damping matrix Ce is not computed.
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beam2de Two dimensional beam element for dynamic analysis

Theory:

The element stiffness matrix K¢ the element mass matrix M° and the element
damping matrix C¢, stored in the variables Ke, Me and Ce, respectively, are computed
according to

K‘=G'KG M°*=G'M‘G C*=GTCG
where G and K¢ are described in beam?2e.

The matrix M¢ is given by

[ 140 0 0 70 0 0
0 156 22L O o4 —13L
M — mL | 0  22L 412 0 13L —3L?
420 | 70 0 0 140 0 0
0 o4 13L 0 156 —22L
0 —13L —-3L* 0 —22L 4I2

and the matrix C¢ is computed by combining K¢ and M¢

Ce = (loMe + alKe
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Two dimensional beam element for dynamic analysis beam2ds

Purpose:

Compute section forces for a two dimensional beam element in dynamic analysis.

\Z

M, ‘j\/ N,

Syntax:

es=beam2ds(ex,ey,ep,ed,ev,ea)

Description:

beam2ds computes the section forces at the ends of the dynamic beam element
beam2de.

The input variables ex, ey, and ep are defined in beam2de. The element displace-
ments, the element velocities, and the element accelerations, stored in ed, ev, and ea
respectively, are obtained by the function extract.

The output variable

o [NV
TN VM,

contains the section forces at the ends of the beam.
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beam2ds Two dimensional beam element for dynamic analysis

Theory:

The section forces at the ends of the beam are obtained from the element force vector

P=[-N, —Vi =M, N, Vyu My]"
computed according to

P=K‘Ga*+C°Ga°+M°G a°
The matrices K¢ and G are described in beam2e, and the matrices M¢ and C¢ are
described in beam2d. The nodal displacements

e T

a :[Ul Uo U3 Ug Us UG]

shown in beam2de also define the directions of the nodal velocities

- €

a = 1[4y Uy Uz Uy Us Ug |

and the nodal accelerations
P S V4
a = [ U1 Uy U3 Ug Uy Ug ]

Note that the transposes of a®, a®, and a® are stored in ed, ev, and ea respectively.
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Three dimensional beam element beam3e

Purpose:

Compute element stiffness matrix for a three dimensional beam element.

tuy

(Xp,Y1,21) S

» U3

Syntax:
Ke=beam3e(ex,ey,ez,e0,ep)
[Ke,fe]=beam3e(ex,ey,ez,e0,ep,eq)
Description:

beam3e provides the global element stiffness matrix Ke for a three dimensional beam
element.

The input variables

ex =[x |
ey =[y1 v2]  eo=[uz ys 2|
ez=1[2 2]

supply the element nodal coordinates x1, y;, etc. as well as the direction of the local
beam coordinate system (Z, 9, Z). By giving a global vector (zz,ys, z5) parallel with
the positive local Zz axis of the beam, the local beam coordinate system is defined.
The variable

supplies the modulus of elasticity F, the shear modulus G, the cross section area
A, the moment of inertia with respect to the y axis [, the moment of inertia with
respect to the z axis Iz, and St. Venant torsion constant K.

The element load vector fe can also be computed if uniformly distributed loads are
applied to the element. The optional input variable

ed=[¢ ¢ 9 o]
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beam3e

Three dimensional beam element

then contains the distributed loads. The positive directions of ¢z, gz, and ¢z follow
the local beam coordinate system. The distributed torque gz is positive if directed
in the local Z-direction, i.e. from local 7 to local z. All the loads are per unit length.

Theory:

The element stiffness matrix K¢ is computed according to

K¢ =G'K*G
where
[ Dga
L 12Dg;
0 T35
0
0
0
. 0 GDEQIZ
K°=| _pu, R
L 12Dg1.
0 — L
0
0
0
o
where
[ Ngz nyi Nz
Ny Tyy Nay
Ngz nyi Uz
0 0 0
0 0 0
0 0 0
G = 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

|

where the axial stiffness Dy, the bending stiffness Dgy,, the bending stiffness Dy,
and the St. Venant torsion stiffness Dgg are given by

DEA:EA, DEIEZEIE;

The length L is given by

Dg

, = Ely;

L= \/(902 — 21+ (Y2 —y1)* + (22 — 21)?

DGK = GKU

ELEMENT

5.6 — 42

0 0 -2 g o 0 0 0
O 6l)E2]5 O _12DEIZ O O O GDEQIE
6Dg;- L L3 12Dgr- 6DE; L
- L2 Y O O O L3 4 O - L2 Y O
o 0 0 0 0 —Ee o 0
P9 0 0 PP 2Ew g
0 4D[}:;IZ 0 6[2212 0 0 0 2D512
0 0 £ma 0 o 0 0 0
O _6DE] O 12Dgy. O O 0 _GDE],
6DE]— L2 L3 12DE]— GDE]— L2
=+ 0 0 0 L 0 —5E 0
o 0 0 0 0 Bax o 0
ey 0 0 6115;113 0 4foz7 0
2DEr. 6DEr. 4DEpr.
0 == 0 2= 0 0 0 s
o 0 0 0 0 0 0]
o 0 0 0 0 0 O
o 0 0 0 0 0 ©
n 0 0 0 0 0 0
n., 0 0 0 0 0 0
n.. 0 0 0 0 0 0
0 ngz nygz n.z 0 0 0
0 Ngg  Nyg  MNzg 0 0 0
0 ngz ngz n.z 0 0 0
0 0 0 0 Nez Nyz Naz
0 0 0 0 ngg Ny Ny
0 0 0 0 mez nyz Nez |




Three dimensional beam element beam3e

The transformation matrix G contains direction cosines computed as

_ za—1 _ Y2—uy1 _ z—21
Moz = PEE e = B N = B
.= Zz J—C A A
Ngz = 7. Nyz = 1 Nz = 1.
Ngg = NyzNzz — Nzzlyz Nyyg = NzzNaz — NazNzz Nag = NazNyz — NyzNaz
Y

where

L; = a2+ y?+ 22

The element load vector ff, stored in fe, is computed according to
fle — GTfle

where
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beam3s Three dimensional beam element

Purpose:

Compute section forces in a three dimensional beam element .

Syntax:

[es|=beam3s(ex,ey,ez,e0,ep,ed)
[es|=beam3s(ex,ey,ez,e0,ep,ed,eq)
[es,edi]=beam3s(ex,ey,ez,e0,ep,ed,eq,n)
[es,edi,eci]=beam3s(ex,ey,ez,e0,ep,ed,eq,n)

Description:

beam3s computes the section forces and displacements in local directions along the
beam element beam3e.

The input variables ex, ey, ez, eo, ep, and eq are defined in beam3e.

The element displacements, stored in ed, are obtained by the function extract. If a
distributed load is applied to the element, the variable eq must be included. The
number of evaluation points for section forces and displacements are determined by
n. If n is omitted, only the ends of the beam are evaluated.

The output variables
N(©O)  V5(0)  Vi(0)  T(0)  My(0)  M:(0)
N(zz)  Vy(@2)  Va(@2)  T(Z2)  My(T2)  Ms(T2)
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Three dimensional beam element beam3s

u(0) v(0) w(0) ©(0) 0
u(@2)  v(T2)  w(@2)  p(T2) To
edi = : : : : eci =
U(Tn-1) V(ZTno1) W(Tno1) @(Tn-1) Tn—1
ul) o) w@)  el) L

contain the section forces, the displacements, and the evaluation points on the local
Z-axis. L is the length of the beam element.

Theory:

The nodal displacements in local coordinates are given by

Uy
Ug

L ,I-T[/12 -
where G is described in beam3e and the transpose of a° is stored in ed. The dis-
placements associated with bar action, beam action in the Zgy-plane, beam action in

the zz-plane, and torsion are determined as

U2 u3
_ Uiy _ lig _ — s _ Uiy
acl;ar = 7 3 ageam,é = 7 3 ageam,g = o ; a‘forsion = o
ur us Ug U10
U1 —U11

The displacement u(Z) and the normal force N(Z) are computed from

u(Z) = Npg,ap,, + up@)

N(Z) = DgaBpad® +N,(7)

where

o
o
=
|
| —
—_
Kl
| I
Q
ol
—
|
—_
|
&
]
| I
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beam3s Three dimensional beam element

~a (7~ 3)

¢z are defined in beam3e and
Char = [ ]

The displacement v(Z), the bending moment M;(Z) and the shear force Vj;(Z) are

computed from

in which Dg4, L, an

= =
~= o

U(i‘) = Nbeamﬁieam,é +/Up('i.>

Mé(f) = DEIszeaméf)eam,z "—Mi,p(f)

in which Dgr_, L, and gy are defined in beam3e and

1 0 0 0

» 0 1 0 0
C —

beam 3 2 3 _1

L2 L L2 L

2 1 2 1

3 2 T3 12

The displacement w(Z), the bending moment My(z) and the shear force Vz(z) are

computed from

w(j) = Nbeamageam,g +wp(j)
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Three dimensional beam element

beam3s
M ('i.) = DEIngeamﬁEeam@ _'_Myvp('f)
dB eam —e _
‘/5(‘%) _DEIy db beam,y +Vt§,p(x>
where
(3 qz <x4 Lz3 L2x2>
w —
b Dpr. \24 12 24
_ 72 7 2
Myp(T) = ¢z (7 -2+ 52)
Vep(T) =gz (f - é)
. . . deeam
in which Dgy,, L, and gz are defined in beam3e and Npeam, Bpeam, and ——— are
given above.

T

The displacement ¢(Z) and the torque T'(Z) are computed from

‘P(@ = Niorsion&orsion T Spp(f)

T(i‘) = DGKBtorsionﬁe _'_Tp(‘/z.)

where

Ntorsion = Nbar

Btorsion = Bbar

Tp(i) = —qu (E - L)

in which Dgg, L, and q,, are defined in beam3e.
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5.7 Plate element

Only one plate element is currently available, a rectangular 12 dof element. The element
presumes a linear elastic material which can be isotropic or anisotropic.

Plate elements

U b Uy
Uy Uug
Upg | Uz
U3 Us
| u
L B o us
v
re <
platre

Plate functions
platre Compute element matrices
platrs Compute section forces
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Plate element platre

Purpose:

Compute element stiffness matrix for a rectangular plate element.

U Uy
(.00 Uy ug

L

rel
U, i, (x3.y3)

Syntax:

Ke=platre(ex,ey,ep,D)
[Ke,fe]=platre(ex,ey,ep,D,eq)

Description:

platre provides an element stiffness matrix Ke, and an element load vector fe, for a
rectangular plate element. This element can only be used if the element edges are
parallel to the coordinate axis.

The element nodal coordinates 1, y1, o etc. are supplied to the function by ex and
ey, the element thickness ¢ by ep, and the material properties by the constitutive
matrix D. Any arbitrary D-matrix with dimensions (3 x 3) and valid for plane stress
may be given. For an isotropic elastic material the constitutive matrix can be formed
by the function hooke, see Section 4.

B D1 Dy Dis
ey=[y1 Y2 Y3 Ya] D3y D3y Dsg

If a uniformly distributed load is applied to the element, the element load vector fe
is computed. The input variable

eq =g ]

then contains the load ¢, per unit area in the z-direction.
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platre Plate element

Theory:

The element stiffness matrix K and the element load vector f;, stored in Ke and fe

respectively, are computed according to
K° = (CHT / B"DBdAC!
A
£ [ N'q a
A

where the constitutive matrix

-~ 3
D=—D
12

and where D is defined by D.

The evaluation of the integrals for the rectangular plate element is based on the
displacement approximation w(z,y) and is expressed in terms of the nodal variables

Uy, U2, ... , U2 aS
_ e ¢ _ W -1 e
w(z,y) =N°a*=NC " a

where

N:{l v oy 2 xy Yyt 2 2Py w2y ay?

(1 —a —b a® ab ¥ —d® —a?b —ab® —b* @%b
0 0 1 0 —a —2b 0 a*> 2ab 3b*> —a?
0 -1 0 2a b 0 —3a® —2ab —b* 0 3ab
1 a —=b a® —ab bV a® —a’b ab® —b> —a’b
0 0 1 0 a —-2b 0 a®* —2ab 3V* &
C— 0 -1 0 —2a b 0 —3a®> 2ab —b* 0 3a%b
"1 a b a® ab VWV @& @a*b ab® b b
0 0 1 0 a 26 0 a®> 2ab 3* o
0 -1 0 —2a —b 0 —3a® —2ab —b* 0 —3a%b
1 —a b a> —ab bV —a® a?b —ab® b —ad’b
0 0 1 0 —a 2b 0 a®> —2ab 3b* —a°
0 -1 0 22 —b 0 —3a® 2ab —b* 0 —3a®
a‘=[u uy ... up ]T

and where

1 1
a = 5(1‘3—1'1) and b= 5(3/3_3/1)

The matrix B is obtained as
B . 000 200®6xr 2y 0 0 6xy O
B=vN=|000O0O02 0 0 2¢r 6y 0 6xy
000020 0 4 4y 0 622 6y>

ab?
—3ab?
b3
—ab?
3ab?
b3
ab®
3ab?
-3
—ab?
—3ab?
b3
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Plate element platre

where

SPC I
022

82

Ay?

82

0xdy |

4+
I

2

Evaluation of the integrals for the rectangular plate element is done analytically.
Computation of the integrals for the element load vector ff° yields
1., L 1L, L, 1 L, L, 1 L, L,7"
£ =q.L,L, |~ -y =z - v = - _v = - _Zv¥ _ ==
4 24 24 4 24 24 4 24 24 4 24 24
where

Ly=x3—2; and L,=y3—y
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platrs Plate element

Purpose:

Compute section forces in a rectangular plate element.

Up
(x4.V4) Ui

e

M,

Syntax:
[es,et]=platrs(ex,ey,ep,D,ed)

Description:

platrs computes the section forces es and the curvature matrix et in a rectangular
plate element. The section forces and the curvatures are computed at the center of
the element.

The input variables ex, ey, ep and D are defined in platre. The vector ed contains the
nodal displacements a® of the element and is obtained by the function extract as

ed = (ae)T = [u1 Ug ... Ulg]

The output variables
es = {MTVT} - [M;m: Myy Mxy ‘/zz ‘/yz]
et = k' = [ Kuu Kyy Kay |

contain the section forces and curvatures in global directions.
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Theory:

The curvatures and the section forces are computed according to

_ . » -1 _e
K= | Ky | =BC " a

V:EZ

v 1

]:@M

where the matrices f), B, C and a® are described in platre, and where
0 0
N O [
T ox dy
e 29
Oy Ox

6 System functions

6.1 Introduction

The group of system functions comprises functions for the setting up, solving, and elimi-
nation of systems of equations. The functions are separated in two groups:

‘ Static system functions ‘

‘ Dynamic system functions ‘

Static system functions concern the linear system of equations
Ka=f

where K is the global stiffness matrix and f is the global load vector. Often used static
system functions are assem and solveq. The function assem assembles the global stiffness
matrix and solveq computes the global displacement vector a considering the boundary
conditions. It should be noted that K, f, and a also represent analogous quantities in
systems others than structural mechanical systems. For example, in a heat flow problem
K represents the conductivity matrix, f the heat flow, and a the temperature.

Dynamic system functions are related to different aspects of linear dynamic systems of
coupled ordinary differential equations according to

Cd+Kd=f
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for first-order systems and . )
Md+Cd+Kd=f

for second-order systems. First-order systems occur typically in transient heat conduction
and second-order systems occur in structural dynamics.
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6.2 Static system functions

The group of static system functions comprises functions for setting up and solving the
global system of equations. It also contains a function for eigenvalue analysis, a function
for static condensation, a function for extraction of element displacements from the global
displacement vector and a function for extraction of element coordinates.

The following functions are available for static analysis:

Static system functions
assem Assemble element matrices
coordxtr Extract element coordinates from a global coordinate matrix.
eigen Solve a generalized eigenvalue problem
extract  Extract values from a global vector
insert Assemble element internal force vector
red Reduce the size of a square matrix
solveq Solve a system of equations
statcon  Perform static condensation




assem Static system functions

Purpose:

Assemble element matrices.

: J
kip ki
1 k2 . .
{ k;; k; } i e k,+k; ky + k; ...... i
ki ks lio ] e [ A TR SRR j
Ke . .
i = dof; .
j = dof] I nn ]
K

Syntax:
K=assem(edof,K,Ke)
[K,f]=assem(edof,K,Ke,f,fe)
Description:

assem adds the element stiffness matrix K¢, stored in Ke, to the structure stiffness
matrix K, stored in K, according to the topology matrix edof.

The element topology matrix edof is defined as

edof = [el dof; dofy ... dofned
global dof.

where the first column contains the element number, and the columns 2 to (ned 4 1)
contain the corresponding global degrees of freedom (ned = number of element de-
grees of freedom).

In the case where the matrix K¢ is identical for several elements, assembling of these
can be carried out simultaneously. Each row in Edof then represents one element,
i.e. nel is the total number of considered elements.

ely dofy dofs . . . dofneq
el do do ... dofne
Edof = ,2 ,fl ,f2 f ! one row for each element
elnel d0f1 d0f2 I dofned

If fe and f are given in the function, the element load vector £¢ is also added to the
global load vector f.
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Static system functions coordxtr

Purpose:

Extract element coordinates from a global coordinate matrix.
/

s

(X,.Y,)
nel
Ex=[x, x, x; x;]
5 Ey= 7)’1 V2 Y7 J’6‘
I, ;
k - -
(X6, V) L
[ ! I 3 4 ls
k; k; ks
1, y1) (X2 ¥2) (x5, ys)

nen =4
Syntax:
[Ex,Ey,Ez]=coordxtr(Edof,Coord,Dof,nen)

Description:

coordxtr extracts element nodal coordinates from the global coordinate matrix Coord
for elements with equal numbers of element nodes and dof’s.

Input variables are the element topology matrix Edof, defined in assem, the global
coordinate matrix Coord, the global topology matrix Dof, and the number of element
nodes nen in each element.

r Y1 [#] ki 11 ... my
Ty Yo [22] ko lo ... mo
Coord = | =3 Y3 [23] Dof = | ks I3 ... mg nen = [ nen |
L Tn Yn [Zn] ] L kn ln oo My, |

The nodal coordinates defined in row ¢ of Coord correspond to the degrees of freedom
of row i in Dof. The components k;, [; and m; define the degrees of freedom of node
i, and n is the number of global nodes for the considered part of the FE-model.
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coordxtr Static system functions

The output variables Ex, Ey, and Ez are matrices defined according to

1 1 1 1
T i) T3 Tnen
2 2 2 2
T i) XT3 Tnen
Ex =
xlnel xznel xgnel . xnennel

where row i gives the x-coordinates of the element defined in row i of Edof, and
where nel is the number of considered elements.

The element coordinate data extracted by the function coordxtr can be used for
plotting purposes and to create input data for the element stiffness functions.
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Static system functions eigen

Purpose:

Solve the generalized eigenvalue problem.

Syntax:
L=eigen(K,M)
L=eigen(K,M,b)
[L,X]=eigen(K,M)
[L,X]=eigen(K,M,b)
Description:
eigen solves the eigenvalue problem
|K—AM|=0
where K and M are square matrices. The eigenvalues A are stored in the vector L

and the corresponding eigenvectors in the matrix X.

If certain rows and columns in matrices K and M are to be eliminated in computing
the eigenvalues, b must be given in the function. The rows (and columns) that are
to be eliminated are described in the vector b defined as

dofr
b— d?f 2
dofnb

The computed eigenvalues are given in order ranging from the smallest to the largest.
The eigenvectors are normalized in order that

XTMX =1

where I is the identity matrix.
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extract Static system functions

Purpose:

Extract element nodal quantities from a global solution vector.

a; U
a: = . .
/ a; u, edof=[eln i j m n]
a, U3 ed=[u; u, u; u,]
" a, u,

Syntax:

ed=extract(edof,a)

Description:

extract extracts element displacements or corresponding quantities a® from the global
solution vector a, stored in a.

Input variables are the element topology matrix edof, defined in assem, and the global
solution vector a.

The output variable
ed = (a%)"

contains the element displacement vector.

If Edof contains more than one element, Ed will be a matrix

nel

where row ¢ gives the element displacements for the element defined in row ¢ of Edof,
and nel is the total number of considered elements.
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Static system functions extract

Example:
For the two dimensional beam element, the extract function will extract six nodal

displacements for each element given in Edof, and create a matrix Ed of size (nel x 6).

Uy Uz U3 Ug Us Ug
Uy U2 U3 Ug Us Ug

Ed

Uy Uz U3 Ug Us Ug
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insert Static system functions

Purpose:

Assemble internal element forces in a global force vector.

/

f
A A
£ g

£¢ .

i = dof; 7
J = dof e

Syntax:
f=insert(edof,f,ef)

Description:
insert adds the internal element load vector ff, stored in ef, to the global internal
force vector f, stored in f, according to the topology matrix edof. The function is for
use in nonlinear analysis.
The element topology matrix edof is defined in assem. The vector f is the global
internal force vector, and the vector ef is the internal element force vector computed
from the element stresses, see for example plani4f.
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red

Purpose:

Reduce the size of a square matrix by omitting rows and columns.

Syntax:
B=red(A,b)

Description:

B=red(A,b) reduces the square matrix A to a smaller matrix B by omitting rows and
columns of A. The indices for rows and columns to be omitted are specified by the
column vector b.

Examples:

Assume that the matrix A is defined as

1 2 3 4
5 6 7 8
A= 9 10 11 12
13 14 15 16
and b as

(2

The statement B=red(A,b) results in the matrix

1 3
B_[Q 11]
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solveq Static system functions

Purpose:

Solve equation system.

Syntax:
a=solveq(K,f)
a=solveq(K,f,bc)
[a,r]=solveq(K,f,bc)
Description:

solveq solves the equation system
Ka=f

where K is a matrix and a and f are vectors.

The matrix K and the vector f must be predefined. The solution of the system of
equations is stored in a vector a which is created by the function.

If some values of a are to be prescribed, the row number and the corresponding values
are given in the boundary condition matrix

do fy Uy
be — dO.f 2 U.Q
dofnbc Unbe

where the first column contains the row numbers and the second column the corre-
sponding prescribed values.

If r is given in the function, support forces are computed according to

r=Ka—f
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Purpose:

Reduce system of equations by static condensation.

Syntax:
[K1,fl]=statcon(K,f,b)

Description:
statcon reduces a system of equations
Ka =f

by static condensation.

The degrees of freedom to be eliminated are supplied to the function by the vector

dofr

b— d?fz

dOf nb
where each row in b contains one degree of freedom to be eliminated.

The elimination gives the reduced system of equations
Kl a; = fl

where K; and f; are stored in K1 and f1 respectively.

6.3 Dynamic system functions

The group of system functions comprises functions for solving linear dynamic systems by
time stepping or modal analysis, functions for frequency domain analysis, etc.

Dynamic system functions
dyna?2 Solve a set of uncoupled second-order differential equations
dyna2f Solve a set of uncoupled second-order differential equations in the
frequency domain

fft Fast Fourier transform

freqresp  Compute frequency response

gfunc Linear interpolation between equally spaced points

ifft Inverse Fast Fourier transform

ritz Compute approximative eigenvalues and eigenvectors by the

Lanczos method
spectra Compute seismic response spectra

stepl Carry out step-by-step integration in first-order systems
step2 Carry out step-by-step integration in second-order systems
sweep Compute frequency response function

Note: FEigenvalue analysis is performed by using the function eigen; see static system
functions.
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dyna2 Dynamic system functions

Purpose:
Compute the dynamic solution to a set of uncoupled second-order differential equa-
tions.

Syntax:
X=dyna2(w2,xi,f,g,dt)

Description:

dyna2 computes the solution to the set
i+ 2 wid; + wiz; = fig(2), t=1..,m

of differential equations, where g() is a piecewise linear time function.

The set of vectors w2, xi and f contains the squared circular frequencies w?, the
damping ratios & and the applied forces f;, respectively. The vector g defines the
load function in terms of straight line segments between equally spaced points in
time. This function may have been formed by the command gfunc.

The dynamic solution is computed at equal time increments defined by dt. Including
the initial zero vector as the first column vector, the result is stored in the m-by-n
matrix X, n — 1 being the number of time steps.

Note:
The accuracy of the solution is not a function of the output time increment dt, since
the command produces the exact solution for straight line segments in the loading
time function.

See also:

gfunc
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Dynamic system functions dyna2f

Purpose:

Compute the dynamic solution to a set of uncoupled second-order differential equa-
tions.

Syntax:
Y=dyna2f(w2,xi,f,p,dt)

Description:

dyna2f computes the solution to the set

of differential equations in the frequency domain.

The vectors w2, xi and f are the squared circular frequencies w?, the damping ratios
& and the applied forces f;, respectively. The force vector p contains the Fourier
coefficients p(k) formed by the command fft.

The solution in the frequency domain is computed at equal time increments defined
by dt. The result is stored in the m-by-n matrix Y, where m is the number of
equations and n is the number of frequencies resulting from the fft command. The
dynamic solution in the time domain is achieved by the use of the command ifft.

Example:

The dynamic solution to a set of uncoupled second-order differential equations can
be computed by the following sequence of commands:

>> g=gfunc(G,dt);

>> p=fft(g);

>> Y=dyna2f (w2,xi,f,p,dt);
>> X=(real (ifft(Y.?)))’;

where it is assumed that the input variables G, dt, w2, xi and f are properly defined.
Note that the ifft command operates on column vectors if Y is a matrix; therefore
use the transpose of Y. The output from the ifft command is complex. Therefore
use Y." to transpose rows and columns in Y in order to avoid the complex conjugate
transpose of Y. The time response is represented by the real part of the output from
the ifft command. If the transpose is used and the result is stored in a matrix X,
each row will represent the time response for each equation as the output from the
command dyna2.

See also:

gfunc, fft, ifft
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fit

Dynamic system functions

Purpose:

Transform functions in time domain to frequency domain.

Syntax:

p=Ffft(g)
p=fft(g.N)

Description:

fft transforms a time dependent function to the frequency domain.

The function to be transformed is stored in the vector g. Each row in g contains
the value of the function at equal time intervals. The function represents a span
—o0 <t < +00 ; however, only the values within a typical period are specified by g.

The fft command can be used with one or two input arguments. If N is not specified,
the numbers of frequencies used in the transformation is equal to the the numbers
of points in the time domain, i.e. the length of the variable g, and the output will
be a vector of the same size containing complex values representing the frequency
content of the input signal.

The scalar variable N can be used to specify the numbers of frequencies used in the
Fourier transform. The size of the output vector in this case will be equal to N.
It should be remembered that the highest harmonic component in the time signal
that can be identified by the Fourier transform corresponds to half the sampling
frequency. The sampling frequency is equal to 1/dt, where dt is the time increment
of the time signal.

The complex Fourier coefficients p(k) are stored in the vector p, and are computed
according to

N
N G=1)(k—1
p(k) =Y z(j)w§ VY,
j=1
where
Wy = 6727ri/N.

Note:

This is a MATLAB built-in function.
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Dynamic system functions freqresp

Purpose:

Compute frequency response of a known discrete time response.

Syntax:
[Freq,Resp] = freqresp(D,dt)

Description:
freqresp computes the frequency response of a discrete dynamic system.

D is the time history function and dt is the sampling time increment, i.e. the time
increment used in the time integration procedure.

Resp contains the computed response as a function of frequency. Freq contains the
corresponding frequencies.

Example:

The result can be visualized by

>> plot(Freq,Resp)
>> xlabel (’frequency (Hz)’)

or

>> semilogy(Freq,Resp)
>> xlabel (’frequency (Hz)’)

The dimension of Resp is the same as that of the original time history function.

Note:

The time history function of a discrete system computed by direct integration behaves
often in an unstructured manner. The reason for this is that the time history is a
mixture of several participating eigenmodes at different eigenfrequencies. By using a
Fourier transform, however, the response as a function of frequency can be computed
efficiently. In particular it is possible to identify the participating frequencies.
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gfunc Dynamic system functions

Purpose:

Form vector with function values at equally spaced points by linear interpolation.

g
(t9(t))

IS
V \

(t20(t3) . (tna(ty)

(t,.9(t)

(t59(ts))

Syntax:
[t,g]=gfunc(G,dt)

Description:

gfunc uses linear interpolation to compute values at equally spaced points for a
discrete function g given by

t1 g(t1)
c_ t.2 g(t2) |
t;v g(tn)

as shown in the figure above.

Function values are computed in the range t; <t < ty, at equal increments, dt being
defined by the variable dt. The number of linear segments (steps) is (ty — t1)/dt.
The corresponding vector t is also computed. The result can be plotted by using the
command plot(t,g).
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Dynamic system functions ifft

Purpose:

Transform function in frequency domain to time domain.

Syntax:
x=ifft(y)
x=ifft(y,N)
Description:
ifft transforms a function in the frequency domain to a function in the time domain.

The function to be transformed is given in the vector y. Each row in y contains
Fourier terms in the interval —oco < w < 4o00.

The fft command can be used with one or two input arguments. The scalar variable
N can be used to specify the numbers of frequencies used in the Fourier transform.
The size of the output vector in this case will be equal to N. See also the description
of the command fft.

The inverse Fourier coefficients x(j), stored in the variable x, are computed according
to

N
z(j) = (1/N) Y y( ] D=1,
k=1

where

Wy = e—27rz/N'

Note:
This is a MATLAB built-in function.

See also:
fft
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ritz Dynamic system functions

Purpose:

Compute approximative eigenvalues and eigenvectors by the Lanczos method.

Syntax:
L=ritz(K,M,f,m)
L=ritz(K,M,f,m,b)
[LX]=ritz(K,M,f,m)
[L X]=ritz(K,M,f,m,b)

Description:

ritz computes, by the use of the Lanczos algorithm, m approximative eigenvalues and
m corresponding eigenvectors for a given pair of n-by-n matrices K and M and a
given non-zero starting vector f.

If certain rows and columns in matrices K and M are to be eliminated in computing
the eigenvalues, b must be given in the command. The rows (and columns) to be
eliminated are described in the vector b defined as

dofr
b— dOf 2
dofnb
Note:

If the number of vectors, m, is chosen less than the total number of degrees-of-
freedom, n, only about the first m/2 Ritz vectors are good approximations of the
true eigenvectors. Recall that the Ritz vectors satisfy the M-orthonormality condition

XIMX =1,

where I is the identity matrix.
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Dynamic system functions spectra

Purpose:

Compute seismic response spectra for elastic design.

Syntax:
s=spectra(a,xi,dt,f)

Description:

spectra computes the seismic response spectrum for a known acceleration history
function.

The computation is based on the vector a, that contains an acceleration time history
function defined at equal time steps. The time step is specified by the variable dt.
The value of the damping ratio is given by the variable xi.

Output from the computation, stored in the vector s, is achieved at frequencies
specified by the column vector f.

Example:

The following procedure can be used to produce a seismic response spectrum for a
damping ratio & = 0.05, defined at 34 logarithmicly spaced frequency points. The
acceleration time history a has been sampled at a frequency of 50 Hz, corresponding
to a time increment dt = 0.02 between collected points:

>> freq=logspace(0,1log10(2"(33/6)),34);
>> xi=0.05;

>> dt=0.02;

>> g=spectra(a,xi,dt,freq’);

The resulting spectrum can be plotted by the command

>> loglog(freq,s,’*’)
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stepl

Dynamic system functions

Purpose:

Compute the dynamic solution to a set of first order differential equations.

Syntax:

[D,V]=step1(K,C,d0,ip,snap,f,bc)

Description:

stepl computes at equal time steps the solution to a set of first order differential
equations of the form

Cd + Kd = f(,1),

The command solves transient field problems. In the case of heat conduction, K
and C represent the n X n conductivity and capacity matrices, respectively. d is the
temperature and v=d is the time derivative of the temperature.

The initial conditions are given by the vector d0 containing initial values of d. The
time integration procedure is governed by the parameters given in the vector ip

defined as

ip=1[dt T af

where dt specifies the length of the time increment in the time stepping scheme, 7'
total time and « the time integration constant; see [1]. The parameter snap denotes
at which times snapshots of the solution will be stored in D and V. The following
table lists frequently used values of a:

a =0 Forward difference; forward Euler,

Trapezoidal rule; Crank-Nicholson,

_1
=3

a =1 Backward difference; backward Euler.

The matrix f contains the time-dependent load vectors. If no external loads are active,
the matrix corresponding to f should be replaced by []. The matrix bc contains the
time-dependent prescribed values of the field variable d. If no field variables are
prescribed the matrix corresponding to bc should be replaced by [|. Matrix f is
organized in the following manner:

time history of the load at dof;
time history of the load at dofs,

time history of the load at dof,

The dimension of f is

(number of degrees-of-freedom) x (number of timesteps + 1).
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Dynamic system functions stepl

The matrix bc is organized in the following manner:

dof,  time history of the field variable
5 dofy  time history of the field variable
c=1. .

dof.,, time history of the field variable

The dimension of bc is

(number of dofs with prescribed field values) x (number of timesteps + 2).

The time history functions can be generated using the command gfunc. If all the
values of the time histories of f or bc are kept constant, these values need to be stated
only once. In this case the number of columns in f is one and in bc two.

It is highly recommended to define f as sparse (a MATLAB built-in function). In
most cases only a few degrees-of-freedom are affected by the exterior load, and hence
the matrix contains only few non-zero entries.

The computed snapshots of d and d are stored in D and V, respectively, one column
for each requested time according to snap. The dimension of D and V is ndofs x
(number of snapshots + 1).
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step2 Dynamic system functions

Purpose:

Compute the dynamic solution to a set of second order differential equations.

Syntax:

Dsnap=step2(K,C,M,d0,v0,ip,f,pdisp)
[Dsnap,D,V,A]=step2(K,C,M,d0,v0,ip,f,pdisp)

Description:

step2 computes at equal time steps the solution to a second order differential equa-
tions of the form

Md + Cd + Kd = f(z,1),
d(O) - do,
d(0) = vo.
In structural mechanics problems, K , C and M represent the n x n stiffness, damping
and mass matrices, respectively.

The initial conditions are given by the vectors d0 and vO, containing initial dis-
placements and initial velocities. The time integration procedure is governed by the
parameters given in the vector ip defined as

ip=[dt T «d [nsnap nhist time; ... dof; ... ]|,

list of list of
nsnap nhist
moments dofs

where dt specifies the time increment in the time stepping scheme, T' the total time
and a and ¢ time integration constants for the Newmark family of methods; see
[1]. The parameter nsnap denotes the number of snapshots stored in Dsnap. The
selected elapsed times are specified in (time; ... ), whereas nhist is the number of
time histories stored in D, V and A. The selected degrees-of-freedom are specified in
(dof; ... ). The following table lists frequently used values of o and §:

a=1 §=1 Average acceleration (trapezoidal) rule,
o= % 0= % Linear acceleration,
a=0 0= % Central difference.

The matrix f contains the time-dependent load vectors. If no external loads are active,
the matrix corresponding to f should be replaced by []. The matrix pdisp contains
the time-dependent prescribed displacement. If no displacements are prescribed the
matrix corresponding to pdisp should be replaced by [].

The matrix f is organized in the following manner:
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Dynamic system functions step2

time history of the load at dof;
time history of the load at dofs

time history of the load at dof,
The dimension of f is
(number of degrees-of-freedom) x (number of timesteps + 1).

The matrix pdisp is organized in the following manner

dof;  time history of the displacement

_ dofy  time history of the displacement
pdisp = .

dof,,, time history of the displacement

The dimension of pdisp is
(number of dofs with prescribed displacement) x (number of timesteps + 2).

The time history functions can be generated using the command gfunc. If all the
values of the time histories of f or pdisp are kept constant, these values need to be
stated only once. In this case the number of columns in f is one and in pdisp two.

It is highly recommended to define f as sparse (a MATLAB built-in function). In
most cases only a few degrees-of-freedom are affected by the exterior load, and hence
the matrix contains only few non-zero entries.

The computed displacement snapshots are stored in Dsnap, one column for each
requested snapshot according to ip, i.e. the dimension of Dsnap is (number of dofs) x
nsnap. The computed time histories of d, d and d are stored in D, V and A,
respectively, one line for each requested degree-of-freedom according to ip. The
dimension of D is nhist x (number of timesteps + 1).
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Purpose:

Compute complex frequency response functions.

Syntax:
Y=sweep(K,C,M,p,w)

Description:

sweep computes the complex frequency response function for a system of the form

[K + iwC — w*M]y(w) = p.

Here K, C and M represent the m-by-m stiffness, damping and mass matrices, re-
spectively. The vector p defines the amplitude of the force. The frequency response
function is computed for the values of w given by the vector w.

The complex frequency response function is stored in the matrix Y with dimension
m-by-n, where n is equal to the number of circular frequencies defined in w.

Example:

The steady-state response can be computed by
>> X=real (Yxexp (i*wxt));
and the amplitude by

>> Z=abs(Y);
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7 Statements and macros

Statements describe algorithmic actions that can be executed. There are two different
types of control statements, conditional and repetitive. The first group defines conditional
jumps whereas the latter one defines repetition until a conditional statement is fulfilled.

Macros are used to define new functions to the MATLAB or CALFEM structure, or to
store a sequence of statements in an .m-file.

Control statements
if Conditional jump
for Initiate a loop
while Define a conditional loop
Macros
function Define a new function
script Store a sequence of statements

GRAPHICS



8 Graphics functions

The group of graphics functions comprises functions for element based graphics. Mesh
plots, displacements, section forces, flows, iso lines and principal stresses can be displayed.
The functions are divided into two dimensional, and general graphics functions.

Two dimensional graphics functions
dispbeam2 Draw displacements for beam element
eldraw2  Draw undeformed finite element mesh
eldisp2 Draw deformed finite element mesh
elflux2 Plot flux vectors
eliso2 Draw isolines for nodal quantities
elprinc2  Plot principal stresses
scalfact2 Determine scale factor
scalgraph2 Draw graphic scale
secforce2 Draw section force diagram for bar or beam element

General graphics functions in MATLAB

plot Plot lines and points in 2D space
fill Draw filled 2D polygons

axis Axis scaling and appearance

clf Clear current figure

figure Create figures

grid Grid lines

hold Hold current graph

print Print graph or save graph to file
text Add text to current plot

title Titles for 2D and 3D plots
xlabel, Axis labels for 2D and 3D plots
ylabel,

zlabel
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dispbeam?2

Purpose:

Draw the displacements for a two dimensional beam element.

Syntax:
[sfac]=dispbeam?2(ex,ey,edi)
[sfac]=dispbeam2(ex,ey,edi,plotpar)
dispbeam?2(ex,ey,edi,plotpar,sfac)

Description:

Input variables are the coordinate matrices ex and ey, see e.g. beam2e, and the
element displacements edi obtained by e.g. beam2s.

The variable plotpar sets plot parameters for linetype, linecolour and node marker.

plotpar=[ linetype linecolour nodemark ]

linetype = 1 solid line linecolour = 1 black
2 dashed line 2 blue
3 dotted line 3 magenta
4 red

nodemark = 1 circle
2 star
0 no mark

Default is dashed black lines with circles at nodes.
The scale factor sfac is a scalar that the element displacements are multiplied with

to get a suitable geometrical representation. If sfac is omitted in the input list the
scale factor is set automatically.
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eldraw?2

Purpose:

Draw the undeformed mesh for a two dimensional structure.

Syntax:
eldraw2(Ex,Ey)
eldraw2(Ex,Ey,plotpar)
eldraw2(Ex,Ey,plotpar,elnum)
Description:
eldraw2 displays the undeformed mesh for a two dimensional structure.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr.

The variable plotpar sets plot parameters for linetype, linecolor and node marker.

plotpar = [ linetype linecolor nodemark |
linetype = 1 solid line linecolor =1 black
2 dashed line 2 blue
3 dotted line 3 magenta
4 red

nodemark = 1 circle
2 star
0 no mark

Default is solid black lines with circles at nodes.

Element numbers can be displayed at the center of the element if a column vector
elnum with the element numbers is supplied. This column vector can be derived from
the element topology matrix Edof,

elnum=Edof(:,1)
i.e. the first column of the topology matrix.

Limitations:

Supported elements are bar, beam, triangular three node, and quadrilateral four
node elements.
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eldisp2

Purpose:

Draw the deformed mesh for a two dimensional structure.

Syntax:
[sfac]=eldisp2(Ex,Ey,Ed)
[sfac]=eldisp2(Ex,Ey,Ed,plotpar)
eldisp2(Ex,Ey,Ed,plotpar,sfac)
Description:
eldisp2 displays the deformed mesh for a two dimensional structure.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr, and the element displacements Ed formed by the function extract.

The variable plotpar sets plot parameters for linetype, linecolor and node marker.

plotpar=[ linetype linecolor nodemark |

linetype = 1 solid line linecolor =1 black
2 dashed line 2 blue
3 dotted line 3 magenta
4 red

nodemark = 1 circle
2 star
0 no mark

Default is dashed black lines with circles at nodes.

The scale factor sfac is a scalar that the element displacements are multiplied with
to get a suitable geometrical representation. The scale factor is set automatically if
it is omitted in the input list.

Limitations:

Supported elements are bar, beam, triangular three node, and quadrilateral four
node elements.
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elflux2

Purpose:

Draw element flow arrows for two dimensional elements.

Syntax:

[sfac]=elflux2(Ex,Ey,Es)
[sfac]=elflux2(Ex,Ey,Es,plotpar)
elflux2(Ex,Ey,Es,plotpar,sfac)

Description:

elflux2 displays element heat flux vectors (or corresponding quantities) for a number
of elements of the same type. The flux vectors are displayed as arrows at the element
centroids. Note that only the flux vectors are displayed. To display the element mesh,
use eldraw?2.

Input variables are the coordinate matrices Ex and Ey, and the element flux matrix
Es defined in flw2ts or flw2gs.

The variable plotpar sets plot parameters for the flux arrows.

plotpar=[ arrowtype arrowcolor |

arrowtype = 1 solid arrowcolor =1 black
2 dashed 2 blue
3 dotted 3 magenta
4 red

Default, if plotpar is omitted, is solid black arrows.

The scale factor sfac is a scalar that the values are multipied with to get a suitable
arrow size in relation to the element size. The scale factor is set automatically if it
is omitted in the input list.

Limitations:

Supported elements are triangular 3 node and quadrilateral 4 node elements.
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eliso2

Purpose:

Display element iso lines for two dimensional elements.

Syntax:

eliso2(Ex,Ey,Ed,isov)
eliso2(Ex,Ey,Ed,isov,plotpar)

Description:

eliso2 displays element iso lines for a number of elements of the same type. Note that
only the iso lines are displayed. To display the element mesh, use eldraw?2.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr, and the element nodal quantities (e.g displacement or energy potential) matrix
Ed defined in extract.

If isov is a scalar it determines the number of iso lines to be displayed. If isov is a
vector it determines the values of the iso lines to be displayed (number of iso lines
equal to length of vector isov).

isov = [isolines]
isov = [isovalue(1) ... isovalue(n) |

The variable plotpar sets plot parameters for the iso lines.

plotpar=[ linetype linecolor textfcn ]

arrowtype = 1 solid arrowcolor =1 black
2 dashed 2 blue
3 dotted 3  magenta
4 red

textfen = 0 the iso values of the lines will not be printed
1 the iso values of the lines will be printed at the iso lines
2 the iso values of the lines will be printed where the cursor indicates

Default is solid, black lines and no iso values printed.

Limitations:

Supported elements are triangular 3 node and quadrilateral 4 node elements.
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elprinc2

Purpose:

Draw element principal stresses as arrows for two dimensional elements.

Syntax:

[sfac]=elprinc2(Ex,Ey,Es)
[sfac]=elprinc2(Ex,Ey,Es,plotpar)
elprinc2(Ex,Ey,Es,plotpar,sfac)

Description:

elprinc2 displays element principal stresses for a number of elements of the same type.
The principal stresses are displayed as arrows at the element centroids. Note that
only the principal stresses are displayed. To display the element mesh, use eldraw2.

Input variables are the coordinate matrices Ex and Ey, and the element stresses
matrix Es defined in plants or plangs

The variable plotpar sets plot parameters for the principal stress arrows.

plotpar=[ arrowtype arrowcolor |

arrowtype = 1 solid arrowcolor =1 black
2 dashed 2 blue
3 dotted 3 magenta
4 red

Default, if plotpar is omitted, is solid black arrows.

The scale factor sfac is a scalar that values are multiplied with to get a suitable
arrow size in relation to the element size. The scale factor is set automatically if it
is omitted in the input list.

Limitations:

Supported elements are triangular 3 node and quadrilateral 4 node elements.
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scalfact2

Purpose:

Determine scale factor for drawing computational results.

Syntax:

[sfac]=scalfact2(ex,ey,ed)
[sfac]=scalfact2(ex,ey,ed,rat)

Description:

scalfact2 determines a scale factor sfac for drawing computational results, such as
displacements, section forces or flux.

Input variables are the coordinate matrices ex and ey and the matrix ed containing
the quantity to be displayed. The scalar rat defines the ratio between the geometric
representation of the largest quantity to be displayed and the element size. If rat is
not specified, 0.2 is used.
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scalgraph?2

Purpose:

Draw a Graphic scale.

Syntax:

scalgraph2(sfac,magnitude)
scalgraph2(sfac,magnitude,plotpar)

Description:

scalgraph2 draws a graphic scale to visualise the magnitude of displayed computa-
tional results. The input variable sfac is a scale factor determined by the function
scalfact2 and the variable

magnitude = [ S z y |

specifies the value corresponding the length of the graphic scale S, and (x,y) are the
coordinates of the starting point. If no coordinates are given the starting point will
be (0,-0.5).

The variable plotpar sets the the graphic scale colour.
plotpar=[colour |

colour =1 black
blue
magenta

red

=W N
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secforce2

Purpose:

Draw the section force diagrams of a two dimensional bar or beam element in its
global position.

Syntax:

secforce2(ex,ey,es,plotpar,sfac)
[sfac]=secforce2(ex,ey,es)
[sfac]=secforce2(ex,ey,es,plotpar)

Description:

The input variables ex and ey are defined in bar2e or beam2e and the input variable
S
S

es = i

Sn

consists of a column matrix that contains section forces. The values in es are com-

puted in e.g. bar2s or beam2s.

The variable plotpar sets plot parameters for the diagram.

plotpar=[ linecolour elementcolour |

linecolour = 1 black elementcolour = 1 black
2 blue 2  Dblue
3 magenta 3 magenta
4 red 4 red

The scale factor sfac is a scalar that the section forces are multiplied with to get a
suitable graphical representation. If sfac is omitted in the input list the scale factor
is set automatically.

The input variable
T
: Ty
eci =

Tn

specifies the local Z-coordinates of the quantities in es.
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9 User’s Manual, examples

9.1 Introduction

This set of examples is defined with the ambition to serve as a User’s Manual. The
examples, except the introductory ones, are written as .m-files (script files) and supplied
together with the CALFEM functions.

The User’s Manual examples are separated into three groups:

Static analysis

Dynamic analysis

Nonlinear analysis

The static linear examples illustrate finite element analysis of different structures loaded by
stationary loads. The dynamic linear examples illustrate some basic features in dynamics,
such as modal analysis and time stepping procedures. The examples of nonlinear analysis
cover subjects such as second order theory and buckling.
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9.2 Static analysis

This section illustrates some linear static finite element calculations. The examples deal

with structural problems as well as field problems such as heat conduction.

Static analysis

exsl
exs?2
exs3
exsd
exsh
exsb
exs’
exs8

Linear spring system
One-dimensional heat flow
Plane truss

Plane truss analysed using loops
Simply supported beam

Plane frame

Plane frame stabilized with bars
Two dimensional diffusion

The introductory example exsl illustrates the basic steps in the finite element method for
a simple structure of one-dimensional linear springs. The linear spring or analogy element
is also used in example exs2 to solve a problem of heat conduction in a wall. A plane
truss consisting of three bars is analysed in exs3. In example exs4 a plane truss consisting
of ten bars is analysed using loops. First the analysis is performed by defining coordinate
data for each element directly, and then it is shown how this data can be obtained from
global coordinate data. A simply supported beam is analysed in example exsb. Element
forces and the support forces are calculated. A two dimensional plane frame is analysed
in example exs6. A structure built up from both beams and bars is analysed in example

exs7. Graphics facilities are also explained in examples exs6, exs7, and exs8.

Note: The examples listed above are supplied as .m-files under the directory examples.
The example files are named according to the table.
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exsl Static analysis

Purpose:

Show the basic steps in a finite element calculation.

Description:
The general procedure in linear finite element calculations is carried out for a simple
structure. The steps are
e define the model
e generate element matrices
e assemble element matrices into the global system of equations
e solve the global system of equations
e cvaluate element forces

Consider the system of three linear elastic springs, and the corresponding finite
element model. The system of springs is fixed in its ends and loaded by a single load

F.
2k
4) F
2k
2
1
. 2. N
1
3

The computation is initialized by defining the topology matrix Edof, containing ele-
ment numbers and global element degrees of freedom,

I

>> Edof=[1 1 2
2 2 3;
3 2 3];

the global stiffness matrix K (3x3) of zeros,

>> K=zeros(3,3)

K =
0 0 0
0 0 0
0 0 0

EXAMPLES 9.2 -2



Static analysis exsl

and the load vector f (3x1) with the load F' = 100 in position 2.

>> f=zeros(3,1); £(2)=100

Element stiffness matrices are generated by the function springle. The element prop-
erty ep for the springs contains the spring stiffnesses k and 2k respectively, where
k = 1500.

>> k=1500; epl=k; ep2=2xk;
>> Kel=springle(epl)

Kel =

1500 -1500
-1500 1500

>> Ke2=springle(ep2)
Ke2 =
3000 -3000
-3000 3000

The element stiffness matrices are assembled into the global stiffness matrix K ac-
cording to the topology.

>> K=assem(Edof (1, :),K,Ke2)

K =
3000 -3000 0

-3000 3000 0

0 0 0

>> K=assem(Edof (2, :),K,Kel)

K =
3000 -3000 0

-3000 4500 -1500

0 -1500 1500
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>> K=assem(Edof (3, :),K,Ke2)

K =
3000 -3000 0
-3000 7500 -4500
0 -4500 4500

The global system of equations is solved considering the boundary conditions given
in bc.

>> be= [1 0; 3 0];
>> [a,r]=solveq(X,f,bc)

a:

0.0133

-40.0000
0
-60.0000

Element forces are evaluated from the element displacements. These are obtained
from the global displacements a using the function extract.

>> edl=extract(Edof(1,:),a)

edl =
0 0.0133

>> ed2=extract(Edof(2,:),a)

ed2 =
0.0133 0

>> ed3=extract (Edof(3,:),a)

ed3 =
0.0133 0
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The spring forces are evaluated using the function springls.
>> esl=springls(ep2,edl)

esl =
40

>> es2=springls(epl,ed2)

es2 =
-20

>> es3=springls(ep2,ed3)

es3 =
-40
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Purpose:

Analysis of one-dimensional heat flow.

Description:

Consider a wall built up of concrete and thermal insulation. The outdoor temperature
is —17°C and the temperature inside is 20°C. At the inside of the theral insulation

there is a heat source yielding 10 W/m?.

e 23 AT AN AN B2 T,=20°C
: ?, heat source 10W/m?>
g: g +— surface thermal resistance, R = 0.13 m2 K/W
in B {— concrete, A=1.7W/mK
Lo OO 4 thermal insulation, % = 0.04 W/mK
7o LU VLR AY gCIQ concrete, A = 1.7 W/mK
_ e h': 0 TE_T_Q&LS.W_UW ~1— surface thermal resistance, R = 0.04 m2 K/W
| | | |
0.070 m 0.100 m 0.100 m
I T T3 T, Ts T
*—@ L 4 @ *—0
1 2 3 4 5

The wall is subdivided into five elements and the one-dimensional spring (analogy)
element springle is used. Equivalent spring stiffnesses are k; = AA/L for thermal
conductivity and k; = A/R for thermal surface resistance. Corresponding spring
stiffnesses per m? of the wall are:

ky= 1/0.04 = 250 W/K
ky= 1.7/0.070 = 243 W/K
ks = 0.040/0.100 = 04 W/K
ki= 17/0100 = 170 W/K
ks = 1/0.13 = 77 W/K

A global system matrix K and a heat flow vector f are defined. The heat source inside
the wall is considered by setting f, = 10. The element matrices Ke are computed
using springle, and the function assem assembles the global stiffness matrix.

The system of equations is solved using solveq with considerations to the boundary
conditions in bc. The prescribed temperatures are 73 = —17°C and Ty = 20°C.

>> Edof=[1 1 2
2 2 3;
3 3 4;
4 4 5;
5 5 6];
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>> K=zeros(6);

>> f=zeros(6,1); f(4)=10

>>
>>
>>

>>

>>

>>

>>

>>

>>

>>

>>

o O O

1

o O O

ep1=[25];
ep3=[0.4];
epb=[7.7];

ep2=[24.3];
ep4=[171;

Kel=springle(epl);
Ke3=springle(ep3);
Keb=springle(ep5);

K=assem(Edof (1, :) ,K,Kel);
K=assem(Edof (3, :) ,K,Ke3);
K=assem(Edof (5,:),K,Keb);

be=[1 -17; 6 20];

[a,r]=solveq(K,f,bc)

-17.
-16.
-15.
19.
19.
20.

0000
4384
8607
2378
4754
0000

.0394
.0000
.0000

.0000
.0394

Ke2=springle(ep2);
Ked=springle(ep4);

K=assem(Edof (2, :),K,Ke2);
K=assem(Edof (4, :),K,Ked);
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The temperature values 7; in the node points are given in the vector a and the
boundary flows in the vector r.

After solving the system of equations, the heat flow through the wall is computed
using extract and springls.

>> edl=extract(Edof(1,:),a);
>> ed2=extract(Edof(2,:),a);
>> ed3=extract (Edof(3,:),a);
>> ed4=extract(Edof(4,:),a);
>> edb=extract (Edof(5,:),a);

>> ql=springls(epl,edl)

14.0394

>> g2=springls(ep2,ed2)

14.0394

>> g3=springls(ep3,ed3)

14.0394

>> g4=springls(ep4,ed4)

4.0394

>> g5=springls(ep5,edb)

4.0394

The heat flow through the wall is ¢ = 14.0 W/m? in the part of the wall to the left
of the heat source, and ¢ = 4.0 W/m? in the part to the right of the heat source.

EXAMPLES 9.2 -8



Static analysis exs3

Purpose:

Analysis of a plane truss.

Description:

Consider a plane truss consisting of tree bars with the properties £ = 200 GPa,
A =6.0-107*m? A, = 3.0-10* m? and A3 = 10.0 - 10~* m?, and loaded by a
single force P = 80 kN. The corresponding finite element model consists of three
elements and eight degrees of freedom.

sy

1.2m

The topology is defined by the matrix

>> Edof=[1 1 2 5 6;
2 5 6 7 8;
3 3 4 5 6];

The stiffness matrix K and the load vector f, are defined by

>> K=zeros(8);
f=zeros(8,1); f£(6)=-80e3;

The element property vectors epl, ep2 and ep3 are defined by

>> E=2.0ell;
>> A1=6.0e-4; A2=3.0e-4; A3=10.0e-4;
>> epl=[E Al]; ep2=[E A2]; ep3=[E A3];

and the element coordinate vectors exl, ex2, ex3, eyl, ey2 and ey3 by

>> ex1=[0 1.6]; ex2=[1.6 1.6]; ex3=[0 1.6];
>> ey1=[0 0]; ey2=[0 1.2]; ey3=[1.2 0];
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The element stiffness matrices Kel, Ke2 and Ke3 are computed using bar2e.

>> Kel=bar2e(exl,eyl,epl)

Kel =
1.0e+007 =*
7.5000 0 -7.5000 0
0 0 0 0
-7.5000 0 7.5000 0
0 0 0 0
>> Ke2=bar2e(ex2,ey2,ep2)
Ke2 =
1.0e+007 =*
0 0 0 0
0 5.0000 0 -5.0000
0 0 0 0
0 -5.0000 0 5.0000

>> Ke3=bar2e(ex3,ey3,ep3)
Ke3 =
1.0e+007 =*

6.4000 -4.8000 -6.4000 4.8000
-4.8000 3.6000 4.8000 -3.6000
-6.4000 4.8000 6.4000 -4.8000

4.8000 -3.6000 -4.8000 3.6000

Based on the topology information, the global stiffness matrix can be generated by
assembling the element stiffness matrices

>> K=assem(Edof (1,:),K,Kel);
>> K=assem(Edof (2, :),K,Ke2);
>> K=assem(Edof (3, :),K,Ke3)
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K =
1.0e+008 =*
Columns 1 through 7
0.7500 0 0 0 -0.7500 0 0
0 0 0 0 0 0 0
0 0 0.6400 -0.4800 -0.6400 0.4800 0
0 0 -0.4800 0.3600 0.4800 -0.3600 0
-0.7500 0 -0.6400 0.4800 1.3900 -0.4800 0
0 0 0.4800 -0.3600 -0.4800 0.8600 0
0 0 0 0 0 0 0
0 0 0 0 0 -0.5000 0
Column 8
0
0
0
0
0
-0.5000
0
0.5000

Considering the prescribed displacements in bc, the system of equations is solved
using the function solveq, yielding displacements a and support forces r.

>> be= [1 0;2 0;3 0;4 0;7 0;8 0];
>> [a,r]=solveq(X,f,bc)

a:

1.0e-002 *

O O O O

-0.0398
-0.1152
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1.0e+004 *
2.9845
0
-2.9845
2.2383
0.0000
0.0000

0
5.7617

The vertical displacement at the point of loading is 1.15 mm. The section forces esl,
es2 and es3 are calculated using bar2s from element displacements edl, ed2 and ed3
obtained using extract.

>> edl=extract(Edof(1,:),a);
>> Ni1=bar2s(exl,eyl,epl,edl)

N1 =
-2.9845e+004

>> ed2=extract (Edof(2,:),a);
>> N2=bar2s(ex2,ey2,ep2,ed2)

N2 =
5.7617e+004

>> ed3=extract (Edof(3,:),a);
>> N3=bar2s(ex3,ey3,ep3,ed3)

N3 =
3.7306e+004

i.e., the normal forces are N; = —29.84 kN, Ny = 57.62 kN and N3 = 37.31 kN.
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Purpose:

Analysis of a plane truss.

Description:

Consider a plane truss, loaded by a single force P = 0.5 MN.

)

2m

\ | B\P: 0.5 MN
| 2m | 2m 30°

The corresponding finite element model consists of ten elements and twelve degrees

A=25.0-10"" m?
E =2.10-10° MPa

of freedom.
y
2 6 10
Ll 1 5 3 L9
A >
5 6
\2)

4 Q2 |s 12
3 [ o x

The topology is defined by the matrix

>> Edof=[1 1 2 5 6;
2 3 4 7 8;
3 5 6 9 10;
4 7 8 11 12;
5 7 8 b5 6;
6 11 12 9 10;
7T 3 4 5 6;
8 7 8 9 10;
9 1 2 7 8;
10 5 6 11 12];
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A global stiffness matrix K and a load vector f are defined. The load P is divided
into x and y components and inserted in the load vector f.

>> K=zeros(12);
>> f=zeros(12,1); £(11)=0.5e6*sin(pi/6); £(12)=-0.5e6%*cos(pi/6);

The element matrices Ke are computed by the function bar2e. These matrices are
then assembled in the global stiffness matrix using the function assem.

>> A=25.0e-4; E=2.1el1; ep=[E A];

>> Ex=[0

e we v

e

e v

PV

N ONOPDNNDDNDO
N NN PN

N
—_ .
..

\
\4
(53]
T

e

e we v

O NDNNDNDONON

—
NN OOOOONON
(@]
[

A1l the element matrices are computed and assembled in the loop

>> for i=1:10
Ke=bar2e(Ex(i,:),Ey(i,:),ep);
K=assem(Edof (i,:),K,Ke);
end;

The displacements in a and the support forces in r are computed by solving the
system of equations considering the boundary conditions in bc.

>> bc=[1 0;2 0;3 0;4 0];
>> [a,r]=solveq(X,f,bc)
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O O O O

0.0024
-0.0045
-0.0016
-0.0042

0.0030
-0.0107
-0.0017
-0.0113

1.0e+005 *

-8.6603
2.4009
6.1603
1.9293
0.0000

-0.0000

-0.0000

-0.0000

0.0000

0.0000

0.0000

0.0000

The displacement at the point of loading is —1.7 - 1073 m in the x-direction and
—11.3 - 1072 m in the y-direction. At the upper support the horizontal force is
—0.866 MN and the vertical 0.240 MN. At the lower support the forces are 0.616
MN and 0.193 MN, respectively.

Normal forces are evaluated from element displacements. These are obtained from
the global displacements a using the function extract. The normal forces are evaluated
using the function bar2s.

ed=extract (Edof,a);
>> for i=1:10

N(i,:)=bar2s(Ex(i,:),Ey(i,:),ep,ed(i,:));
end
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The obtained normal forces are
>> N
N =

1.0e+005 *

6.2594
-4.2310
1.7064
-0.1237
-0.6945
1.7064
-2.7284
-2.4132
3.39563
3.7105

The largest normal force N = 0.626 MN is obtained in element 1 and is equivalent
to a normal stress o = 250 MPa.

To reduce the quantity of input data, the element coordinate matrices Ex and Ey can
alternatively be created from a global coordinate matrix Coord and a global topology
matrix Coord using the function coordxtr, i.e.

>> Coord=[0 2;
0 0;

2 2;

2 0;

4 2;

4 0];

>> Dof=[ 1 2;
3 4,

5 6;

7 8;

9 10;

11 12];

>> [ex,eyl=coordxtr(Edof,Coord,Dof,2);
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Purpose:

Analysis of a simply supported beam.

Description:

Consider the simply supported beam loaded by a single load f = 10000 N, applied
at a point 1 meter from the left support. The corresponding finite element mesh is

also shown. The following data apply to the beam

Young’s modulus FE = 2.10-10 Pa

Cross section area A = 45.3-107% m?

Moment of inertia I = 2510-10"% m?
f=10kN

|
O

9m
2 5 8 1
¥ }1 4 ¥ }7 10
3 6 9 12
© O O O

1 2 3

The element topology is defined by the topology matrix

>> Edof=[1 1 2 3 4 5 6
2 4 5 6 7 8 9
3 7 8 910 11 12];

The system matrices, i.e. the stiffness matrix K and the load vector f, are defined by

>> K=zeros(12); f=zeros(12,1); £ (5)=-10000;

The element property vector ep, the element coordinate vectors ex and ey, and the
element stiffness matrix Ke, are generated. Note that the same coordinate vectors

are applicable for all elements because they are identical.

9.2 - 17
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>> E=2.1el1; A=45.3e-4; I=2510e-8; ep=[E A I];
>> ex=[0 3]; ey=[0 0];
>> Ke=beam2e (ex,ey,ep)
Ke =
1.0e+008 x*
3.1710 0 0 -3.1710 0 0
0 0.0234 0.0351 0 -0.0234 0.0351
0 0.0351 0.0703 0 -0.0351 0.0351
-3.1710 0 0 3.1710 0 0
0 -0.0234 -0.0351 0 0.0234 -0.0351
0 0.0351 0.0351 0 -0.0351 0.0703

Based on the topology information, the global stiffness matrix can be generated by

assembling the element stiffness matrices

>> K=assem(Edof,K,Ke);

Finally, the solution can be calculated by defining the boundary conditions in bc and
solving the system of equations. Displacements a and support forces r are computed

by the function solveq.

>> be=[1 0; 2 0; 11 0];
[a,r]=solveq(X,f,bc);

The section forces es are calculated from element displacements Ed

>> Ed=extract(Edof,a);
>> esl=beam2s(ex,ey,ep,Ed(1,:));
>> es2=beam2s(ex,ey,ep,Ed(2,:));

>> es3=beam2s(ex,ey,ep,Ed(3,:));
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Results
a = r =
0 1.0e+003 *
0
-0.0095 0
0 6.6667
-0.0228 -0.0000
-0.0038 0
0 0.0000
-0.0199 -0.0000
0.0047 0
0 0.0000
0 0.0000
0.0076 0
3.3333
-0.0000
esl =
1.0e+004 x*
0 -0.6667 0.0000
0 -0.6667 2.0000
es2 =
1.0e+004 x*
0 0.3333 2.0000
0 0.3333 1.0000
es3 =
1.0e+004 *

0 0.3333 1.0000
0 0.3333 -0.0000
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Purpose:

Analysis of a plane frame.

Description:

A frame consists of one horizontal and two vertical beams according to the figure.

pad ALl e

AEIZ,E E = 200 GPa
| I e o AL = 200107 w2
v v I = 16-107°m?
Ay = 6.0-107% m?
I, = 54-107° m?
om 77 P = 20kN
| | @0 = 10.0kN/m

The corresponding finite element model consists of three beam elements and twelve
degrees of freedom.

/& /&
4 7
6 3 9

W

A

A topology matrix Edof, a global stiffness matrix K and load vector f are defined. The
element matrices Ke and fe are computed by the function beam2e. These matrices
are then assembled in the global matrices using the function assem.

>> Edof=[1 4 5 6 1 2 3;
2 7 8 9 10 11 12;
3 4 5 6 7 8 9];

>> K=zeros(12); f=zeros(12,1); f(4)=2e+3;

>> E=200e9;

>> Al1=2e-3; A2=6e-3;

>> T1=1.6e-5; 1I2=5.4e-5;

>> epl=[E Al I1]; ep3=[E A2 I2];
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>> ex1=[0 0]; ex2=[6 6]; ex3=[0 6];
>> eyl=[0 4]; ey2=[0 4]; ey3=[4 4];

>> eql=[0 0]; eq2=[0 0]; eq3=[0 -10e+3];

>> Kel=beam2e(ex1,eyl,epl);
>> Ke2=beam2e(ex2,ey2,epl);
>> [Ke3,fe3]=beam2e(ex3,ey3,ep3,eq3);

>> K=assem(Edof(1,:),K,Kel);
>> K=assem(Edof (2, :),K,Ke2);
>> [K,f]=assem(Edof(3,:),K,Ke3,f,fel);

The system of equations are solved considering the boundary conditions in bc.

>> be=[1 0; 2 0; 3 0; 10 0; 11 0];
>> [a,r]=solveq(X,f,bc)

a = r =
0 1.0e+004 *
0
0 0.1927
0.0075 2.8741
-0.0003 0.0445
-0.0054 0
0.0075 0.0000
-0.0003 -0.0000
0.0047 -0.0000
0 0
0 0.0000
-0.0052 -0.3927
3.1259
0

The element displacements are obtained from the function extract, and the function

beam2s computes the section forces.

>> Ed=extract (Edof,a);
>> esl=beam2s(exl,eyl,epl,Ed(1,:),eql,21)
esl =

1.0e+004 *

-2.8741 0.1927 0.8152
-2.8741 0.1927 0.7767

-2.8741 0.1927 0.0445
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>> es2=beam2s(ex2,ey2,epl,Ed(2,:),eq2,21)
es2 =
1.0e+004 x*

-3.1269 -0.3927 -1.5707
-3.1269 -0.3927  -1.4922

—3.i259 -0.5927 —O.éOOO
>> es3=beam2s(ex3,ey3,ep3,Ed(3,:),eq3,21)
es3 =

1.0e+004 *

-0.3927 -2.8741 -0.8152
-0.3927 -2.5741 0.0020

-0.3927 3.1269  -1.5707

A displacement diagram is displayed using the function eldisp2 and section force
diagrams using the function eldia2.

>> figure(1)

>> plotpar=[2 1 0];

>> eldraw2(exl,eyl,plotpar);

>> eldraw2(ex2,ey2,plotpar) ;

>> eldraw2(ex3,ey3,plotpar) ;

>> sfac=scalfact2(ex3,ey3,Ed(3,:),0.1);
>> plotpar=[1 2 1];

>> eldisp2(exl,eyl,Ed(1,:),plotpar,sfac);
>> eldisp2(ex2,ey2,Ed(2,:),plotpar,sfac);
>> eldisp2(ex3,ey3,Ed(3,:),plotpar,sfac);
>> axis([-1.5 7.5 -0.5 5.5]);

>> pltscalb2(sfac, [le-2 0.5 0]);

>> axis([-1.5 7.5 -0.5 5.5]);

>> title(’displacements’)
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>> figure(2)

>> plotpar=[2 1];

>> sfac=scalfact2(exl,eyl,esl1(:,1),0.2);
>> eldia2(exl,eyl,es1(:,1),plotpar,sfac);
>> eldia2(ex2,ey2,es2(:,1),plotpar,sfac);
>> eldia2(ex3,ey3,es3(:,1),plotpar,sfac);
>> axis([-1.5 7.5 -0.5 5.5]);

>> pltscalb2(sfac,[3e4 1.5 0]);

>> title(’normal force’)

>> figure(3)

>> sfac=scalfact2(ex3,ey3,es3(:,2),0.2);
>> eldia2(exl,eyl,es1(:,2),plotpar,sfac);
>> eldia2(ex2,ey2,es2(:,2),plotpar,sfac);
>> eldia2(ex3,ey3,es3(:,2),plotpar,sfac);
>> axis([-1.5 7.5 -0.5 5.5]);

>> pltscalb2(sfac,[3e4 0.5 0]);

>> title(’shear force’)

>> figure(4)

>> sfac=scalfact2(ex3,ey3,es3(:,3),0.2);
>> eldia2(exl,eyl,es1(:,3),plotpar,sfac);
>> eldia2(ex2,ey2,es2(:,3),plotpar,sfac);
>> eldia2(ex3,ey3,es3(:,3),plotpar,sfac);
>> axis([-1.5 7.5 -0.5 5.5]);

>> pltscalb2(sfac,[3e4 0.5 0]);

>> title(’moment’)

displacements
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normal force

shear force
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Purpose:
Set up a frame, consisting of both beams and bars, and illustrate the calculations by
use of graphics functions.

Description:

A frame consists of horizontal and vertical beams, and is stabilized with diagonal

bars.
y
2, P _
l,,
0/ 4 q
0 }1 X

The frame with its coordinates and loading is shown in the left figure, and the finite
element model in the right. In the following, the statements for analysing the frame
are given as an .m-file.

The matrices of the global system i.e. the stiffness matrix K, the load vector f, the
coordinate matrix Coord, and the corresponding degrees of freedom matrix Dof are

defined by

K=zeros(18,18); f=zeros(18,1); £f(13)=1;

Coord=[0

O - O K
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Dof=[1 2 3;
4 5 6;
7 8 9;
10 11 12;
13 14 15;
16 17 18];

The material properties, the topology, and the element coordinates for the beams
and bars respectively, are defined by

h ————- Element properties, topology and coordinates ---—-
epl=[1 1 1];
Edof1=[t 1 2 3 7 8 9;

2 7 8 9 13 14 15;

3 4 5 6 10 11 12;

4 10 11 12 16 17 18;

5 7 8 9 10 11 12;

6 13 14 15 16 17 18];
[Ex1,Eyl]=coordxtr (Edof1l,Coord,Dof,2);

ep2=[1 1];
Edof2=[7 1 2 10 11;

8 7 8 16 17,

9 7 8 4 5;

10 13 14 10 11];
[Ex2,Ey2]=coordxtr (Edof2,Coord,Dof,2) ;

To check the model, the finite element mesh can be drawn.

eldraw2(Ex1,Ey1, [1 3 11);
eldraw2(Ex2,Ey2, [1 2 11);

The element stiffness matrices are generated and assembled in two loops, one for the
beams and one for the bars. The element stiffness functions beam2e and bar2e use
the element coordinate matrices ex and ey. These matrices are extracted from the
global coordinates Coord by the function coordxtr above.
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for i=1:6

Ke=beam2e (Ex1(i,:) ,Ey1(i,:),epl);
K=assem(Edof1(i,:),K,Ke);

end

for i=1:4

Ke=bar2e (Ex2(i,:),Ey2(i,:),ep2);
K=assem(Edof2(i, :),K,Ke);

end

The global system of equations is solved considering the boundary conditions in bc,

bc= [1 0; 2 0; 30; 40; 50; 6 0];

[a,r]=solveq(K,f,bc);

and the deformed frame is displayed by the function eldisp2, where the displacements

are scaled by the variable sfac.

Edl=extract (Edof1l,a);
Ed2=extract (Edof2,a);

[sfac]=scalfact2(Ex1,Eyl1,Ed1,0.1);
eldisp2(Ex1,Ey1,Ed1,[2 1 1],sfac);
eldisp2(Ex2,Ey2,Ed2,[2 1 1],sfac);
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exs8 Static analysis

Purpose:

Analysis of two dimensional diffusion.

Description:
y A 3 3
c= 10" kg/m
01lm 13 14 15
7 8
10 11 12
5 6
c=0 c=0 ! 8 ?
3 4
4 5 6
1 2
- 1 2 3
c=0 01m X
Description:

Consider a filter paper of square shape. Three sides are in contact with pure water
and the fourth side is in contact with a solution of concentration ¢ = 1.0-1073 kg/m?.
The length of each side is 0.100 m. Using symmetry, only half of the paper has to
be analyzed. The paper and the corresponding finite element mesh are shown. The
following boundary conditions are applied

c(0,y) = c(z,0) = ¢(0.1,y) =0

c(z,0.1) =103

The element topology is defined by the topology matrix

>> Edof=[1

0 N O

2
3
4
5
6
7
8
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The system matrices, i.e. the stiffness matrix K and the load vector f, are defined by
>> K=zeros(15); f=zeros(15,1);

Because of the same geometry, orientation, and constitutive matrix for all elements,
only one element stiffness matrix Ke has to be computed. This is done by the function

flw2qe.
>> ep=1; D=[1 0; 0 1];
>> ex=[0 0.025 0.025 0]; ey=[0 0 0.025 0.025];

>> Ke=flw2qe(ex,ey,ep,D)

>> Ke =
0.7500 -0.2500 -0.2500 -0.2500
-0.2500 0.7500 -0.2500 -0.2500

-0.2500 -0.2500 0.7500 -0.2500
-0.2500 -0.2500 -0.2500 0.7500

Based on the topology information, the global stiffness matrix is generated by as-
sembling this element stiffness matrix Ke in the global stiffness matrix K

>> K=assem(Edof,K,Ke) ;

Finally, the solution is calculated by defining the boundary conditions bc and solving
the system of equations. The boundary condition at dof 13 is set to 0.5-107% as an
average of the concentrations at the neighbouring boundaries. Concentrations a and
unknown boundary flows r are computed by the function solveq.

>> be=[1 0;2 0;3 0;4 0;7 0;10 0;13 0.5e-3;14 1e-3;15 1e-3];

>> [a,r]=solveq(X,f,bc);

The element flows q are calculated from element concentration Ed

>> Ed=extract (Edof,a);

>> for 1=1:8

Es=flw2qs(ex,ey,ep,D,Ed(i,:));
end
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Results
a= r=
1.0e-003 x* 1.0e-003 x*
0 -0.0165
0 -0.0565
0 -0.0399
0 -0.0777
0.0662 0.0000
0.0935 0
0 -0.2143
0.1786 0.0000
0.2500 0.0000
0 -0.6366
0.4338 0.0000
0.5494 -0.0000
0.5000 0.0165
1.0000 0.7707
1.0000 0.2542
Es =

-0.0013 -0.0013
-0.0005 -0.0032
-0.0049 -0.0022
-0.0020 -0.0054
-0.0122 -0.0051
-0.0037 -0.0111
-0.0187 -0.0213
-0.0023 -0.0203
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The following .m-file shows an alternative set of commands to perform the diffusion
analysis of exs8. By use of global coordinates, an FE-mesh is generated. Also plots
with flux-vectors and contour lines are created.

K=zeros(15); f=zeros(15,1);

Coord=[0 0 ; 0.025 0 ; 0.05 0
0 0.025; 0.025 0.025; 0.05 0.025
0 0.05 ; 0.025 0.05 ; 0.05 0.05
0 0.075; 0.025 0.075; 0.05 0.075
0 0.1 ; 0.025 0.1 ; 0.05 0.1 1;
Dof=[1; 2; 3
4; 5; 6
7; 8; 9
10;11;12
13;14;15];
b ————= Element properties, topology and coordinates ---—-
ep=1; D=[1 0;0 1];
Edof=[1 1 2 5 4
2 2 3 6 5
3 4 5 8 7
4 5 6 9 8
5 7 8 11 10
6 8 9 12 11
7 10 11 14 13
8 11 12 15 14];
[Ex,Ey]l=coordxtr (Edof,Coord,Dof,4);
h ————- Generate FE-mesh -----
eldraw2(Ex,Ey, [1 3 0] ,Edof(:,1));
pause; clf;
h ————- Create and assemble element matrices —--——-

for i=1:8
Ke=flw2qe (Ex(i,:),Ey(i,:),ep,D);
K=assem(Edof(i,:) ,K,Ke);

end;

be=[1 0;2 0;3 0;4 0;7 0;10 0;13 0.5e-3;14 1e-3;15 1e-3];

9.2 -31 EXAMPLES



exs8 Static analysis

[a,r]=solveq(K,f,bc)

Ed=extract (Edof,a);

for i=1:8
Es(i,:)=flw2qs(Ex(i,:),Ey(i,:),ep,D,Ed(i,:))

end

b === Draw flux vectors and contour lines —-----
sfac=scalfact2(Ex,Ey,Es,0.5);

eldraw2(Ex,Ey, [1,3,0]);

elflux2(Ex,Ey,Es, [1,4],sfac);
pltscalb2(sfac, [2e-2 0.06 0.01],4);

pause; clf;

eldraw2(Ex,Ey, [1,3,0]);

eliso2(Ex,Ey,Ed,5, [1,4]);

0.1p

1 /]

0.08 -

0.05

0.03-

0.02 -

0.01 —0.02

L I I L L
-0.02 0 0.02 0.04 0.06 0.08

Fluz vectors
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0.09

0.08 -

0.07

0.06 \

0.05

0.04 -

0.03

0.02 -

0.01

0 ! 1 1 ! !
-0.02 0 0.02 0.04 0.06 0.08

Contour lines

Two comments concerning the contour lines:

In the upper left corner, the contour lines should physically have met at the corner
point. However, the drawing of the contour lines for the plange element follows the
numerical approximation along the element boundaries, i.e. a linear variation. A
finer element mesh will bring the contour lines closer to the corner point.

Along the symmetry line, the contour lines should physically be perpendicular to the
boundary. This will also be improved with a finer element mesh.

With the MATLAB functions colormap and fill a color plot of the concentrations can
be obtained.

colormap(’jet’)
fill(Ex’ ,Ey’,Ed’)
axis equal
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9.3 Dynamic analysis

This section concerns linear dynamic finite element calculations. The examples illustrate
some basic features in dynamics such as modal analysis and time stepping procedures.

Dynamic analysis
exdl Modal analysis of frame
exd2 Transient analysis
exd3 Reduced system transient analysis
exd4 Time varying boundary condition

Note: The examples listed above are supplied as .m-files under the directory examples.
The example files are named according to the table.
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exdl

Dynamic analysis

Purpose:

Set up the finite element model and perform eigenvalue analysis for a simple frame

structure.

Description:

Consider the two dimensional frame shown below. A vertical beam is fixed at its
lower end, and connected to a horizontal beam at its upper end. The horizontal
beam is simply supported at the right end. The length of the vertical beam is 3 m
and of the horizontal beam 2 m. The following data apply to the beams

vertical beam | horizontal beam
Young’s modulus (N/m?) 3-101° 3-101°
Cross section area (m?) 0.1030 - 1072 0.0764 - 102
Moment of inertia (m?) 0.171-107° 0.0801-107°
Density (kg/m?) 2500 2500
8 11
2
" 9 \ . 12 19 15
] | ' O
O 3 4
2
Y
s A
1
2
— X ) !
a) b)

The structure is divided into 4 elements. The numbering of elements and degrees-of-
freedom are apparent from the figure. The following .m-file defines the finite element

model.

% —--—- material data
E=3e10;
Av=0.1030e-2;
Ah=0.0764e-2;
epv=[E Av Iv rhox*Av];

rho=2500;
Iv=0.0171e-4; % IPE100
ITh=0.00801e-4; % IPE8O

eph=[E Ah Th rho*Ah];
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h === topology ————m—mmm oo
Edof=[1 1 2 3 4 5 6

2 4 5 6 7 8 9

3 7 8 910 11 12

4 10 11 12 13 14 15];

% ——- list of coordinates -—-—-—-——————-—-—-—-————————————————
Coord=[0 0; 0 1.5; 0 3; 1 3; 2 3];

% ——- list of degrees-of-freedom ----------—-——————————————-
Dof=[1 2 3; 456; 789; 10 11 12; 13 14 15];

% ——— generate element matrices, assemble in global matrices -

K=zeros(15); M=zeros(15);
[Ex,Ey]=coordxtr (Edof,Coord,Dof,2);

for i=1:2
[k,m,c]=beam2d (Ex(i,:),Ey(i,:),epv);
K=assem(Edof(i,:) ,K,k); M=assem(Edof(i,:),M,m);
end
for i=3:4
[k,m,c]=beam2d (Ex(i,:),Ey(i,:),eph);
K=assem(Edof (i,:),K,k); M=assem(Edof (i,:),M,m);
end

The finite element mesh is plotted, using the following commands

clf;

eldraw2(Ex,Ey, [1 2 2],Edof);

grid; title(’2D Frame Structure’);
pause;

2-D Frame Structure
a 4

3r 3 * 4 *

2.5F

>1.5r *

0.5F

-0.5 0 0.5 1 15 2 25

x

Finite element mesh
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A standard procedure in dynamic analysis is eigenvalue analysis. This is accom-
plished by the following set of commands.

b=[1 2 3 14]’;
[La,Egv]l=eigen(K,M,b);
Freq=sqrt(La)/(2*pi);

Note that the boundary condition matrix, b, only lists the degrees-of-freedom that
are zero. The results of these commands are the eigenvalues, stored in La, and the
eigenvectors, stored in Egv. The corresponding frequencies in Hz are calculated and
stored in the column matrix Freq.

Freq = [6.9826 43.0756 66.5772 162.7453 230.2709 295.6136
426.2271 697.7628 877.2765 955.9809 1751.3]7

The eigenvectors can be plotted by entering the commands below.

figure(1), clf, grid, title(’The first eigenmode’),
eldraw2(Ex,Ey,[2 3 1]);

Edb=extract (Edof ,Egv(:,1)); eldisp2(Ex,Ey,Edb, [1 2 2]);
FreqText=num2str (Freq(1)); text(.5,1.75,FreqText) ;
pause;

The first eigenmode

251

>1.5F

0.51

i
25

The first eigenmode, 6.98 Hz
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An attractive way of displaying the eigenmodes is shown in the figure below. The
result is accomplished by translating the different eigenmodes in the z-direction, see
the Ext-matrix defined below, and in the y-direction, see the Eyt-matrix.

clf, axis(’equal’), hold on, axis off

sfac=0.5;
title(’The first eight eigenmodes (Hz)’ )
for i=1:4;
Ext=Ex+(i-1)%3; eldraw2(Ext,Ey, [2 3 1]);

Edb=extract (Edof ,Egv(:,1));
eldisp2(Ext,Ey,Edb,[1 2 2],sfac);
FreqText=num2str(Freq(i)); text(3*(i-1)+.5,1.5,FreqText);
end;
Eyt=Ey-4;
for i=5:8;
Ext=Ex+(i-5)*3; eldraw2(Ext,Eyt, [2 3 1]);
Edb=extract (Edof ,Egv(:,1));
eldisp2(Ext,Eyt,Edb, [1 2 2],sfac);
FreqText=num2str(Freq(i)); text(3*(i-5)+.5,-2.5,FreqText);
end

The first eight eigenmodes (Hz)

6.983

The first eight eigenmodes. Frequencies are given in Hz.
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Purpose:

The frame structure defined in exdl is exposed in this example to a transient load.
The structural response is determined by a time stepping procedure.

Description:

The structure is exposed to a transient load, impacting on the center of the vertical
beam in horizontal direction, i.e. at the 4th degree-of-freedom. The time history of
the load is shown below. The result shall be displayed as time history plots of the
4th degree-of-freedom and the 11th degree-of-freedom. At time ¢ = 0 the frame is at
rest. The timestep is chosen as At = 0.001 seconds and the integration is performed
for T'= 1.0 second. At every 0.1 second the deformed shape of the whole structure
shall be displayed.

force (N)

0.15sec
1000 - 4

500 / 0.25 sec

02 04 06 08 10 time(se)

Time history of the impact load

The load is generated using the gfunc-function. The time integration is performed
by the step2-function. Because there is no damping present, the C-matrix is entered

as [ ].

dt=0.005; T=1;

% ——— the load ———————————————— e
G=[0 0; 0.15 1; 0.25 0; T 0];  [t,gl=gfunc(G,dt);

f=zeros(15, length(g)); f(4,:)=1000%g;

% ——- boundary condition, initial condition ----------------—-
bc=[1 0; 2 0; 3 0; 14 0];

dO=zeros(15,1); vO=zeros(15,1);

% ——— output parameters ———-———-———————————————————————
ntimes=[0.1:0.1:1]; nhist=[4 11];

% ——- time integration parameters ------———-—-—-—-—-—————————-
ip=[dt T 0.25 0.5 10 2 ntimes nhist];

% ——- time integration —-——-—-——————————————————————————
k=sparse(K) ; m=sparse (M) ;

[Dsnap,D,V,A]l=step2(k, [],m,d0,v0,ip,f,bc);

The requested time history plots are generated by the following commands
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figure(1), plot(t,D(1,:),’-?,t,D(2,:),’-=")
grid, xlabel(’time (sec)’), ylabel(’displacement (m)’)
title(’Displacement(time) for the 4th and 11th’...
> degree-of-freedom’)
text(0.3,0.009,’so0lid line = impact point, x-direction’)
text(0.3,0.007,’dashed line = center, horizontal beam,’...
> y-direction’)

Displacement(time) at the 4th and 11th degree-of-freedom
0.02 T T T T

solid line = impact point, x-direction
0.015r

dashed line = center, horizontal beam, y-direction

o

o

=
T

0.0051

displacement (m)

o

-0.0051

-0.01

time (sec) '

Time history at DOF 4 and DOF 11.

The deformed shapes at time increment 0.1 sec are stored in Dsnap. They are visu-
alized by the following commands:

figure(2),clf, axis(’equal’), hold on, axis off

sfac=25;
title(’Snapshots (sec), magnification = 257%);
for i=1:5;
Ext=Ex+(i-1)*3; eldraw2(Ext,Ey,[2 3 0]);

Edb=extract (Edof ,Dsnap(:,1));
eldisp2(Ext,Ey,Edb, [1 2 2],sfac);

Time=num2str(ntimes(i)); text(3*(i-1)+.5,1.5,Time);
end;
Eyt=Ey-4;
for i=6:10;

Ext=Ex+(i-6)*3; eldraw2(Ext,Eyt, [2 3 0]);

Edb=extract (Edof ,Dsnap(:,i));

eldisp2(Ext,Eyt,Edb, [1 2 2],sfac);

Time=num2str(ntimes(i)); text (3% (i-6)+.5,-2.5,Time) ;
end
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Snapshots (sec), magnification = 25

0.2 0.3 0.4 0.5

*

Snapshots of the deformed geometry for every 0.1 sec.
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Purpose:

This example concerns reduced system analysis for the frame structure defined in
exdl. Transient analysis on modal coordinates is performed for the reduced system.

Description:

In the previous example the transient analysis was based on the original finite element
model. Transient analysis can also be employed on some type of reduced system,
commonly a subset of the eigenvectors. The commands below pick out the first two
eigenvectors for a subsequent time integration, see constant nev. The result in the
figure below shall be compared to the result in exd?2.

Displacement(time) at the 4th and 11th degree-of-freedom
0.02 T T T T T T T

solid line = impact point, x—direction

0.015 b

dashed line = center, horizontal beam, y—direction

0.01

0.005

displacement (m)

—-0.005

_001 Il Il Il Il Il Il Il Il Il
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time (sec)

Time history at DOF 4 and DOF 11 using two eigenvectors.

dt=0.002; T=1; nev=2;

% ——= the load ———-——————————————————— o
G=[0 0; 0.15 1; 0.25 0; T 0]; [t,gl=gfunc(G,dt);
f=zeros(15, length(g)); f(4,:)=9000%*g;
fr=sparse([[1:1:nev]’ Egv(:,1l:nev)’*f]);

% ——— reduced system matrices ——-—-————————————————————————————

kr=sparse(diag(diag(Egv(:,1:nev)’*KxEgv(:,1:nev))));
mr=sparse(diag(diag(Egv(:,1:nev) ’*M*Egv(:,1:nev))));

% —-- initial condition ----------———----————————m oo
drO=zeros(nev,1); vrO=zeros(nev,1);

% ——— output parameters ———-———-————————————————————
ntimes=[0.1:0.1:1]; nhistr=[1:1:nev];

% ——- time integration parameters --------—-—-—-—-—-—————————-
ip=[dt T 0.25 0.5 10 nev ntimes nhistr];

% ——- time integration —-—-—-—-——————————————————————————
[Dsnapr,Dr,Vr,Ar]=step2(kr, [] ,mr,dr0,vr0,ip,fr,[1);

% —-- mapping back to original coordinate system --—---------—-
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DsnapR=Egv(:,1:nev)*Dsnapr; DR=Egv(nhist,1:nev)*Dr;
% ——— plot time history for two DOF:s --——--—-—————————o——-
figure(1), plot(t,DR(1,:),’-’,t,DR(2,:),’-=")

axis ([0 1.0000 -0.0100 0.0200])
grid, xlabel(’time (sec)’), ylabel(’displacement (m)’)
title(’Displacement(time) at the 4th and 11th’...

> degree-of-freedom’)
text(0.3,0.017,’solid line = impact point, x-direction’)
text(0.3,0.012,’dashed line = center, horizontal beam,’...

> y-direction’)

text(0.3,-0.007,’2 EIGENVECTORS ARE USED’)
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Purpose:
This example deals with a time varying boundary condition and time integration for
the frame structure defined in exdl.

Description:

Suppose that the support of the vertical beam is moving in the horizontal direction.
The commands below prepare the model for time integration. Note that the structure
of the boundary condition matrix bc differs from the structure of the load matrix f
defined in exd?2.

displacement (m)

1 0.1sec
002 -
0.01 + /0'35&
0.00 -
-0.01 ‘ ‘ ‘ ‘ .

02 04 06 08 10 time(se)

Time dependent boundary condition at the support, DOF 1.

dt=0.002; T=1;

% —-—— boundary condition, initial condition ---------—-----—--
G=[0 0; 0.1 0.02; 0.2 -0.01; 0.3 0.0; T 0]; [t,gl=gfunc(G,dt);
bc=zeros(4, 1 + length(g));

bc(1l,:)=[1 gl; bc(2,1)=2; bc(3,1)=3; bc(4,1)=14;

dO=zeros(15,1); vO0=zeros(15,1);

J ——— output parameters -—-—-————————-—-———————————— o
ntimes=[0.1:0.1:1]; nhist=[1 4 11];

% ——- time integration parameters ------—-—-—-—-—-—-—————————-
ip=[dt T 0.25 0.5 10 3 ntimes nhist];

% ——- time integration —-——-—-——————————————————————————
k=sparse (K) ; m=sparse (M) ;
[Dsnap,D,V,A]=step2(k, [],m,d0,v0,ip, [1,bc);

% ——- plot time history for two DOF:s ---—-—————-—-—-—————————-
figure(1), plot(t,D(1,:),’-?,t,D(2,:),’--",t,D(3,:),’-.7)

grid, xlabel(’time (sec)’), ylabel(’displacement (m)’)
title(’Displacement (time) at the 1st, 4th and 11th’...
’ degree-of-freedom’)
text(0.2,0.022,’s0lid line = bottom, vertical beam,’...
> x-direction’)
text(0.2,0.017,’dashed line = center, vertical beam,’...
> x-direction’)
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text(0.2,0.012, ’dashed-dotted line
> horizontal beam, y-direction’)
% ——— plot displacement for some time increments
figure(2),clf, axis(’equal’), hold on, axis off
sfac=20;
title(’Snapshots (sec), magnification = 20’); for i=1:5;
Ext=Ex+(i-1)*3; eldraw2(Ext,Ey,[2 3 0]);
Edb=extract (Edof ,Dsnap(:,1i));
eldisp2(Ext,Ey,Edb,[1 2 2],sfac);
Time=num2str(ntimes(i)); text (3%(i-1)+.5,1.5,Time) ;

center,’...

end;
Eyt=Ey-4;
for i=6:10;

Ext=Ex+(i-6)*3; eldraw2(Ext,Eyt,[2 3 0]);

Edb=extract (Edof ,Dsnap(:,i));

eldisp2(Ext,Eyt,Edb, [1 2 2],sfac);

Time=num2str(ntimes(i)); text (3*%(i-6)+.5,-2.5,Time) ;
end

Displacement(time) at the 1st, 4th and 11th degree-of-freedom

0.025
“ solid line = bottom, vertical beam, x-direction
/
0.02F :
\
\ dashed line = center, vertical beam, x-direction
0.015-

dashed-dotted line = center, horizontal beam, y-direction
0.01 : 4

0.005

-0.005
-0.01 o

-0.0151 v

-0.02

Time history at DOF 1, DOF 4 and DOF 11.
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Snapshots (sec), magnification = 20

*

Snapshots of the deformed geometry for every 0.1 sec.
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9.4 Nonlinear analysis

This section illustrates some nonlinear finite element calculations.

Nonlinear analysis

exN1 Second order theory analysis of a frame

exN2 Buckling analysis of a frame

Note: The examples listed above are supplied as .m-files under the directory examples.
The example files are named according to the table.
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Purpose:

Analysis of a plane frame using second order theory.

Description:

The frame of exs6 is analysed again, but it is now subjected to a load five times
larger than in exs6. Second order theory is used.

pad Ll e

AEIZ,E E = 200 GPa
o Al 4om A = 2.0-1073 m?
| At BT I, = 1.6-107° m?
Ay = 6.0-107% m?
I, = 54-107°m?

‘ om 777 P = 100kN
| " @0 = 50.0kN/m

The element model consisting of three beam elements and twelve degrees of freedom
is repeated here.

W
Pl—:

The following .m-file defines the finite element model.

% —-———- Topology -----

Edof=[1 4 5 6 1 2 3 ;
2 7 8 9 10 11 12;
3 4 5 6 7 8 9];
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h ————- Element properties and global coordinates —--——---
E=200e9;

Al1=2e-3; A2=6e-3;

I1=1.6e-5; I12=5.4e-5;

epl=[E Al I1]; ep3=[E A2 I2];

eq3=[-50e3] ;

Ex=[0 0;6 6;0 6]; Ey=[4 0;4 0;4 4];

The beam element function of the second order theory beam2g requires a normal
force as input variable. In the first iteration this normal force is chosen to zero.
This means that the first iteration is equivalent to a linear first order analysis using
beam2e. Since the normal forces are not known initially, an iterative procedure has
to be applied, where the normal forces N are updated according to the results of
the former iteration. The iterations continue until the difference in normal force of
the two last iteration steps is less than an accepted error eps, (N—NO)/NO < eps.
The small value given to the initial normal force N(1) is to avoid division by zero
in the second convergence check. If N does not converge in 20 steps the analysis is

interrupted.

% ———— Initial values for the iteration —--———-

eps=0.0001; % Error norm

N=[0.01 0 0]; % Initial normal forces

NO=[1 1 1]; % Normal forces of the initial former iteration
n=0; % Iteration counter

h ————- Iteration procedure -----

while(abs((N(1)-NO(1))/NO(1)) > eps)
n=n+1;

K=zeros(12,12);
f=zeros(12,1);
f(4)=10e3;

Kel=beam2g(Ex(1,:) ,Ey(1,:),epl1,N(1));
Ke2=beam2g (Ex(2,:) ,Ey(2,:),epl1,N(2));
[Ke3,fe3]=beam2g(Ex(3,:) ,Ey(3,:),ep3,N(3),eq3);

K=assem(Edof (1,:),K,Kel);
K=assem(Edof (2,:),K,Ke2);
[K,f]=assem(Edof(3,:),K,Ke3,f,fe3);
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exnl Nonlinear analysis
be=[1 0;2 0;3 0;10 0;11 0];
[a,r]=solveq(K,f,bc)
Ed=extract (Edof,a);
esl=beam2gs(Ex(1,:),Ey(1,:),epl,Ed(1,:),N(1))
es2=beam2gs (Ex(2,:),Ey(2,:),epl,Ed(2,:),N(2))
es3=beam2gs (Ex(3,:),Ey(3,:),ep3,Ed(3,:),N(3),eq3)
NO=N,;
N=[es1(1,1) es2(1,1) es3(1,1)];
if (n>20)
disp(’The solution doesn’’t converge’)
return
end
end

Displacements and element forces from the linear elastic analysis and from the second

order theory analysis respectively:

0.0377
-0.0014
-0.0269

0.0376
-0.0016

0.0233

-0.0258

.0452
.0014
.0281
.0451
.0016
.0239

.0296
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esl = esl =

1.0e+005 * 1.0e+005 *

-1.4370 0.0963 0.4076 -1.4241 0.0817 0.3428

-1.4370 0.0963 0.0223 -1.4241 0.0817 0.0803
es2 = es2 =

1.0e+005 * 1.0e+005 *

-1.5630 -0.1963 -0.7854 -1.5759 -0.1817 -0.7980

-1.5630 -0.1963 0.0000 -1.56759 -0.1817  -0.0000
es3 = es3 =

1.0e+005 * 1.0e+005 *

-0.1963 -1.4370 -0.4076 -0.1817 -1.4241  -0.3428

-0.1963 1.5630 -0.7854 -0.1817 1.5759 -0.7980

Using the second order theory, the horizontal displacement of the upper left corner
of the frame increases from 37.7 to 45.2 mm. The moment in the lower left corner
increases from 2.2 kNm to 8.0 kNm.
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exn2 Nonlinear analysis

Purpose:

Buckling analysis of a plane frame.

Description:

The frame of exnl is in this example analysed with respect to security against buckling
for a case when all loads are increased proportionally. The initial load distribution
is increased by a loading factor alpha until buckling occurs, i.e. the determinant of
the stiffness matrix K passes zero, or the solution does not converge. For each value
of alpha a second order theory calculation of type exnl is performed. The horizontal
displacement a4 and the moment M, are plotted against alpha. The shape of the
buckling mode is also plotted using the last computed displacement vector before
buckling occurs.

P P
N > lW
o E E = 200 GPa
- | feom A= 20-107% m?
AL E Ayl E L, = 16-107° m?
Ay = 6.0-107% m?
N sl | I, = 54-107°m?
o 177077 H = 10kN
| ] P = 150.0 kN

The element model consists of three beam elements and twelve degrees of freedom.

W
Pl—:

The following .m-file defines the finite element model.

b ————= Topology --——--

Edof=[1 4 5 6 1 2 3 ;
2 7 8 910 11 12;
3 4 5 6 7 8 9];
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E=200e9;

Al1=2e-3; A2=6e-3;
I1=1.6e-5; 1I2=5.4e-5;

epl=[E A1l I1]; ep3=[E A2 I2];

Ex=[0 0;6 6;0 6]; Ey=[4 0;4 0;4 4];

fO0=zeros(12,1);
f0(4)=1e3; f0(5)=-150e3; f0(8)=-150e3;

j=0;

for alpha=1:0.2:10
J=i+1;
N=[0.01 0 0];
NO=[1 1 1];

eps=0.0001;

n=0;

while(abs ((N(1)-NO(1))/NO(1))>eps)
n=n+1;

K=zeros(12,12);

f=fO*alpha;
Kel=beam2g(Ex(1,:),Ey(1,:),epl,N(1));
Ke2=beam2g (Ex(2,:) ,Ey(2,:),epl,N(2));
Ke3=beam2g (Ex(3,:) ,Ey(3,:),ep3,N(3));

K=assem(Edof (1, :),K,Kel);
K=assem(Edof (2, :),K,Ke2);
K=assem(Edof (3, :) ,K,Ke3);

be=[1 0;2 0;3 0;10 0;11 0];
[a,r]=solveq(K,f,bc);

Ed=extract (Edof,a);
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esl=beam2gs(Ex(1,:),Ey(1,:),epl,Ed(1,:),N(1));
es2=beam2gs (Ex(2,:),Ey(2,:),epl,Ed(2,:),N(2));
es3=beam2gs (Ex(3,:),Ey(3,:),ep3,Ed(3,:),N(3));

NO=N,;
N=[es1(1,1),es2(1,1),es3(1,1)];

if (n>20)
disp([’Alpha= ’,num2str(alpha),
’: The solution doesn’’t converge.’])
break
end
end

Kred=red(K,bc(:,1));
if (det(Kred)<=0)
disp([’Alpha= ’,num2str(alpha),
’: Determinant <= 0, buckling load passed.’])
break
end
if (n>20)
break
end
disp([’Alpha= ’,num2str(alpha),’ is OK! ’, int2str(n),
> iterations are performed.’])
disp([’ 1)

deform(j)=a(4);
M(j)=r(3);
loadfact(j)=alpha;
bmode=a;

end
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The following text strings are produced by the .m-file.

Alpha= 1 is OK! 3 iterations are performed.

Alpha= 1.2 is OK! 3 iterations are performed.
Alpha= 1.4 is OK! 3 iterations are performed.
Alpha= 1.6 is OK! 3 iterations are performed.
Alpha= 6 is OK! 3 iterations are performed.

Alpha= 6.2 is OK! 4 iterations are performed.
Alpha= 6.4 is OK! 4 iterations are performed.
Alpha= 6.6 is OK! 5 iterations are performed.
Alpha= 6.8: The solution doesn’t converge.

Alpha= 6.8: Determinant <= 0, buckling load passed

The requested plots of the horizontal displacement, the moment M4, and the shape
of the buckling mode are generated by the following commands

figure(1), clf
plot(deform(:),loadfact(:),’+’,deform(:),loadfact(:),’--")
axis([0 0.4 0 7]), grid

xlabel (’Horizontal displacement (m)’), ylabel(’alpha’)
title(’Displacement (alpha) for the upper left corner’)

figure(2), clf

plot (M(:),loadfact(:),’+’ ,M(:),loadfact(:),’-=")
axis([0 0.4e6 0 7]), grid

xlabel (’Moment in A (Nm)’), ylabel(’alpha’)
title(’Supporting moment M-A(alpha)’)

figure(3), clf, axis off
eldraw2(Ex,Ey, [2,3,0]);
Edl=extract (Edof ,bmode) ;
sfac=eldisp2(Ex,Ey,Edl);
eldisp2(Ex,Ey,Ed1,[1,1,1],sfac);
title(’Shape of buckling mode’)
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abs ... 3-6 figure .......... 8§11
assem ......... 6.2 -2 fill ............. 812
axis ........... 8—2 flw2ide ........ 54 -8
bar2e .......... 5.3 -2 flw2ids ......... 5.4 - 10
bar2g .......... 5.3 -3 flw2i8e ........ 5.4 —11
bar2s .......... 53 -5 fAw2i8s ......... 5.4 —13
barde .......... 53 -6 flw2qe ......... 54 -6
bards .......... 53-T7 flw2qs ......... 54 -7
beam2d ....... 5.6 — 20 flw2te ......... 5.4 -3
beam2ds ....... 5.6 — 22 flw2ts ......... 5.4 -5
beam2e ........ 5.6 —2 flw3i8e ........ 54— 14
beam2g ........ 5.6 — 15 fAw3i8s ......... 5.4 - 16
beam2gs ....... 5.6 — 18 for ...l 7-3
beam2s ........ 5.6 -5 format ......... 2-6
beam2t ........ 5.6 -7 freqresp ....... 6.3 -5
beam2ts ....... 5.6 -9 full ...l 3-9
beam2w ....... 5.6 — 11 function ....... 7T-5
beam2ws ...... 5.6 - 13 gfunc .......... 6.3 -6
beam3e ........ 5.6 —24 grid ........... 8§13
beam3s ........ 5.6 — 27 help ........... 2-7
clear ........... 2-2 hold ........... 8§14
cf ... 8§83 hooke .......... 4 -2
coordxtr ....... 6.2 -3 if o 72
det ............ 3-7 111 6.3 -7
diag ........... 3-8 insert .......... 6.2 -8
diary .......... 2-3 nv ............ 3-10
disp ........... 2-4 length ......... 311
dmises ......... 4-4 load ........... 2-8
dyna2f ......... 6.3 -3 MAX «.vvennn 312
dyna2 ......... 6.3 — 2 min ........... 3-13
echo ........... 2-5 mises .......... 4-3
eijgen .......... 6.2 -5 ONes ........... 314
eldia2 ......... 8§ -4 planide ........ 5.5 — 20
eldisp2 ........ 8 -6 planidf ........ 5.5 — 25
eldraw2 ........ 817 planids ........ 5.5 — 23
elfflux2 ......... 8§ -8 plani8e ........ 5.5 — 26
eliso2 .......... 8-9 plani8f ........ 5.5 — 31
elprinc2 ....... 8~ 10 plani8s ........ 5.5 — 29
extract ........ 6.2 -6 plange ......... 5.5 -9

fit ... 6.3 -4 plangs ......... 5.0 — 11



planre ......... 5.0 — 12
planrs ......... 5.0 — 15
plantce ........ 5.5 —16
plantes ........ 5.5 — 19
plante ......... 5.5 —4
plantf ......... 5.5 -8
plants ......... 5.0 -7
platre ......... 5.7 — 2
platrs .......... 5.7-5
plot ........... 8§15
pltscalb2 ...... 8- 16
print .......... 8- 17
quit ........... 2-9
red ............ 3-15
ritz ..ol 6.3 -8
save ..., 2-10
scalfact2 ....... 8 — 18
script ... 76
size ..., 316
soli8e .......... 5.5 — 32
soli8f .......... 5.5 — 37
soli8s .......... 5.5 — 35
solveq ......... 6.2 -9
sparse ......... 3-17
spectra, ........ 6.3-9
springle ....... 5.2 -4
springls ....... 5.2-5
5] 0) /NN 318
0] o TR 3-19
statcon ........ 6.2 - 10
stepl .......... 6.3 — 10
step2 .......... 6.3 — 12
sum ... 320
SWeep ......... 6.3 - 14
text ... L. 8§ —19
title ........... 820
type ... 2-11
what .......... 2-12
while .......... 74

whos .......... 2-13
xlabel ......... 8 —21
ylabel ......... 8§21
ZEeroS .......... 321
zlabel .......... 8 —21





