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ABSTRACT 
 
Packaging serves a lot of purposes, and would be hard to do without. Packaging 
protects the goods during transport, saves costs, informs about the product, and 
extends its durability. A transport package is required to be strong and lightweight in 
order to be cost effective. Furthermore, it should be recycled because of 
environmental and economical concerns. Corrugated board has all of these features.  
 
This thesis is compiled of seven papers that theoretically and experimentally treat the 
structural properties and behaviour of corrugated board and containers during 
buckling and collapse. The aim was to create a practical tool for strength analysis of 
boxes that can be used by corrugated board box designers. This tool is based on finite 
element analysis. 
 
The first studies concerned testing and analysis of corrugated board in three-point-
bending and evaluation of the bending stiffness and the transverse shear stiffness. The 
transverse shear stiffness was also measured using a block shear test. It was shown 
that evaluated bending stiffness agrees with theoretically predicted values. However, 
evaluation of transverse shear stiffness showed significantly lower values than the 
predicted values. The predicted values were based on material testing of constituent 
liners and fluting prior to corrugation. Earlier studies have shown that the fluting 
sustains considerable damage at its troughs and crests in the corrugation process and 
this is probably a major contributing factor to the discrepancy. Furthermore, the block 
shear method seems to constrain the deformation of the board and consistently 
produces higher values of the transverse shear stiffness than the three-point-bending 
test. It is recommended to use the latter method. 
 
Further experimental studies involved the construction of rigs for testing corrugated 
board panels under compression and cylinders under combined stresses. The panel 
test rig, furnishing simply supported boundary conditions on all edges, was used to 
study the buckling behaviour of corrugated board. Post-buckling analysis of an 
orthotropic plate with initial imperfection predicted failure loads that exceed the 
experimental values by only 6-7 % using the Tsai-Wu failure criterion. It was 
confirmed, by testing the cylinders that failure of biaxially loaded corrugated board is 
not significantly affected by local buckling and that the Tsai-Wu failure criterion is 
appropriate to use. 
 
A method for prediction of the top-to-bottom compression strength of corrugated 
board containers using finite element analysis was developed and verified by a large 
number of box compression tests. Up to triple-wall corrugated board is 
accommodated in the finite element model. The described FE-method for predicting 
the top-to-bottom compressive strength of corrugated containers has been used as the 
basic component in the subsequent development of a user-friendly computer-based 
tool for strength design of containers. 
 
Keywords: analysis, bending, box, buckling, collapse, compression, corrugation, 
corrugated board, crease, design, experiment, failure criterion, fluting, finite element 
method, liner, local buckling, packaging, panel, paper, stiffness, strength, test method, 
transverse shear  
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INTRODUCTION AND SUMMARY 

General remarks 
 

In 2001 the European transport packaging market had an estimated value of 
approximately $20 billion. Corrugated board represented 62 per cent of this market value 
[1]. A transport package is required to be strong and lightweight in order to be cost 
effective. Furthermore, it should be recycled because of environmental and economical 
concerns. Corrugated board has all of these features. In its most common form, viz. 
single-wall board, two face sheets, called liners, are bonded to a wave shaped web called 
fluting or medium, see Figure 1. The resulting pipes make the board extremely stiff in 
bending and stable against buckling in relation to its weight [1]. Consequently, the 
strength of the wood fibres in the board is also utilised in an efficient way. The fluting 
pipes are oriented in the cross-direction (y, CD) of board production, see Figure 1. The 
orientation of the board in-line with production is called machine-direction (x, MD). 
Orientation through the thickness of the board is denoted Z-direction (z, ZD). This 
definition of principal directions is also used for the constituent paper sheets.   
 

                                      
 
Figure 1.  Single-wall corrugated board. 
 
In area, about 80 per cent of corrugated board production is single-wall board. The rest 
is produced for more demanding packaging solutions that require double or triple-wall 
board, illustrated in Figure 2.  
 

                                         
 
Figure 2.  Double and triple-wall corrugated board. 
 
The profile of a corrugated web in Figure 3 is characterised by a letter, A, B, C, E or F, 
specified in Table 1 [1]. Also listed in Table 1 are the take-up factors which quantify the 
length of the fluting per unit length of the board. For example, one metre of corrugated 
board with B-flute requires a 1.32 m long piece of paper prior to corrugation. 
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Figure 3.  The geometry of a corrugated web. 
 
As seen in Table 1 the tallest core profile is A-flute, which is used in board for heavy 
duty boxes. B and C-flute are used for the most common board grades. The E and F-
flutes are small and consequently used in board for smaller boxes, e.g. perfume 
packages, where appearance and printability are important [1]. 
 
Table 1.  Flute profiles. 
 
Profile A B C E F 
Wavelength, λ  (mm) 8.3-10 6.1-6.9 7.1-8.3 3.2-3.6 2.3-2.5 
Flute height, hc (mm) 4.67 2.46 3.61 1.15 0.76 
Take-up factor, α 1.54 1.32 1.43 1.27 1.25 

  
A corrugator is a set of machines in line, designed to bring together liner and medium to 
form single, double or triple-wall board. This operation is achieved in a continuous 
process, see Figure 4.  
 
The reels of liner and medium are fed into the corrugator. The medium is conditioned 
with heat and steam and fed between large corrugating rolls forming fluting. In the 
Single Facer, starch adhesive is applied to the tips of the flutes on one side and the inner 
liner is glued to the fluting. The fluting with one liner attached to it is called single-face 
web and travels along the machine towards the Double Backer where the single-face 
web is bonded to the outer liner and forms corrugated board. The corrugated board is 
then cut and stacked. 

 
Figure 4.  Manufacture of corrugated board. 
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The first corrugators were built in the US at the start of the last century. However, up 
until 1920, the majority of products shipped via railroads, for example, were packed in 
wooden crates. The corrugated box was relatively new and few had any experience in 
transporting them. In order to avoid liability for damage while shipping items in 
corrugated boxes, railroads in the US established a standard known as Rule 41. Rule 41 
was an important step in opening up the market for corrugated board packaging. Later 
on, during World War II, corrugated board packaging was called upon to deliver rations 
and other war material to all corners of the earth. This contributed to the establishment 
of corrugated board globally. After the war the market grew rapidly, and the range of 
sizes and capabilities of corrugated boxes grew to fit the myriad of new products 
developed. Recently, the combination of a plastic bag inside a corrugated board box 
(bag-in-box) has resulted in many new opportunities, including the latest trend 
packaging of wine. 
 
Corrugated board is permeable to moisture and absorbs water. This will reduce its 
strength and stiffness. However, it can be made both water and grease proof.  
 
Many package styles and design options are possible, but often an international standard 
of box styles [2], the FEFCO-code, is used in specifying a design. One of the most 
common box styles is the regular slotted container (RSC) denoted FEFCO 0201, see 
Figure 5. The box size is specified by LxWxH, i.e. length of the longest side panel, 
width of the shortest side and height. The flap size is half of the width. In the logistics 
chain in Sweden a transport package is usually adjusted to the EUR-pallet. Thus the 
length and width of an RSC are usually uniform divisions of the pallet size (1200x800 
mm), e.g.  300x200 mm or 600x400 mm. 

 
Figure 5.  A regular slotted container, code FEFCO 0201. 
 
RSC:s are produced with an in-line Slotter-Folder-Gluer, which in one operation 
creases, cuts, folds and glues the blank into its final shape. The RSC is then palletised 
and ready to be shipped flat to the customer. 
 

Background and earlier work 
 
Several experimental studies have been conducted on the compression strength of 
corrugated board containers [3,4]. The most common failure mode for a corrugated box 
loaded in top-to-bottom compression is post-buckling deflection of its side panels, 
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followed by biaxial compressive failure of the board in the highly stressed corner regions 
of the box. Local instabilities of the liners and fluting may also interact with the failure 
progression [5-8]. A detailed finite element analysis of a corrugated board panel has 
shown that local buckling of one of the liners may occur before actual material failure [9]. 
This can also be observed visually just prior to compression failure of panels and boxes 
[10]. However, for shallow boxes and boxes with high board bending stiffness in 
comparison to the box perimeter, failure is often caused by crushing of the creased board 
at the loaded edges instead of collapse during buckling  [11].  
 
When considering the compression of panels in a box it is recognised that the flaps, 
attached to the panels through the creases at top and bottom edges, introduce an 
eccentricity in the loading [12, 13]. Furthermore, the top and bottom edges normally have 
a much lower stiffness than the interior of the panel due to the creases. It has been 
concluded that the low stiffness prevents a redistribution of the stresses to the corners of 
the box and consequently reduces the box compression strength. 
 
Several previous investigations have involved finite element analysis of corrugated board. 
Peterson [14] developed a finite element model to study the stress fields developed in a 
corrugated board beam under three point loading. Pommier and Poustius studied bending 
stiffnesses of corrugated board using a linear elastic finite element code [15]. Pommier 
and Poustius also developed a linear elastic finite element model for prediction of 
compression strength of boxes [16]. Likewise a linear elastic finite element model of a 
corrugated board panel for prediction of compression strength was developed by Rahman 
[17].  
 
Patel developed a linear elastic finite element model in a study of biaxial failure of 
corrugated board [18]. The model was used to predict buckling patterns of a circular tube 
subjected to different loading conditions. In an investigation by Nyman, local buckling of 
corrugated board facings was studied numerically through finite element calculations 
[19].  
 
Little published work is available on the use of non-linear constitutive models for 
prediction of strength of corrugated board structures. However, a non-linear model of 
corrugated board was developed by Gilchrist, Suhling and Urbanik [20]. In their model, 
both material and geometrical non-linearities were included, in-plane and transverse 
loadings of corrugated board were examined. Bronkhorst and Riedemann [21] and 
Nordstrand and Hagglund [22] have developed non-linear finite element models for 
corrugated board configurations. These investigations generated predictions for 
compressive creep of a box and time-dependent sagging of a corrugated board tray. 
 

Aim of present work 
 
This project was initiated with the objective of developing a design method based on 
fundamental engineering mechanics to predict the strength of corrugated containers in 
top-to–bottom compression.  
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General assumptions and limitations in present work 
 
The major assumptions and limitations adopted in this work are as follows: 
 
• Paper is regarded as a homogenous continuum with liner elastic orthotropic 

properties. 
• Influence of load duration, e.g. creep, moisture and inertia forces are not analysed. 
• Deterministic characterisation of material properties, geometry and loading. 
• Box strength analysed only for loading in top-to-bottom compression. 
 

Summary of contents and major conclusions 
 

In Paper 1, expressions for the transverse shear stiffnesses of corrugated board are 
derived by considering a shear loaded element of the corrugated board and using the 
theory of curved beams.  It is shown how the transverse shear stiffness in the machine 
direction is significantly changed by the transition from one core shape to another. An 
experimental study of the transverse shear stiffness is given in Paper 2, where the 
transverse shear stiffness is measured both by a block shear test and evaluated from a 
three-point flexure test. The three-point flexure test is also simulated using finite element 
analysis. Values of transverse shear stiffnesses obtained from the block shear test are 
much larger than values evaluated from the three-point flexure test. The difference is 
attributed to the highly constrained deformation of the facings in the block shear test.  It 
is also shown that experimental values are significantly lower than calculated values 
obtained in Paper 1 and obtained from the finite element analysis. This is probably 
caused by delamination damage to the corrugated medium inflicted during the 
corrugation process.  
 
In Paper 3, an expression is derived for the buckling load of a simply supported 
orthotropic plate including first order transverse shear deformation. The influence of the 
transverse shear on critical buckling is studied and compared with ordinary sandwich 
theory. Its primary use, however, is to verify the buckling load obtained in a finite 
element analysis of a simply supported single-wall corrugated board panel in Paper 4. 
The influence on the panel strength of different parameters such as asymmetry, 
slenderness of the corrugated board and eccentric loading is studied in Paper 4. It was 
concluded that panel strength is very sensitive to boundary conditions and change in 
core thickness of the board, i.e. the change in bending stiffness of the board.  
 
In Paper 5, a panel compression test rig, furnishing simply supported boundary 
conditions on all edges, was designed and used to study the buckling behaviour of 
corrugated board panels. An analysis of an orthotropic plate with initial imperfection is 
presented in Paper 5 to predict the collapse load using the Tsai-Wu failure criterion. A 
significant difference was observed between analytically predicted and experimentally 
measured displacements at large out-of-plane deformation. This is probably caused by 
non-linear material behaviour of paper and local buckling of the panel facings, i.e. the 
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liners. However, the analytically predicted failure load exceeds experimental values by 
only 6-7 %. This suggests that collapse of the corrugated board panel is triggered by 
material failure of the inner facing.  It is also concluded in Paper 6, where an 
experimental study of biaxially loaded corrugated board is presented, that failure is not 
significantly affected by local buckling of the corrugated board and that the Tsai-Wu 
criterion is appropriate to use. 
 
Finally, in Paper 7, a finite element method developed for stress and strength analysis of 
corrugated containers using the failure criterion above is presented. The corrugated 
board is represented by multi-ply eight node isoparametric shell elements, and the soft 
creases at the loaded top and bottom edges are accommodated in the finite element 
model by spring elements. Effective material properties of the homogenised corrugated 
cores have been used, and each layer of the corrugated board is assumed to be 
orthotropic linear elastic. It is shown that convergence is obtained with relatively few 
elements, e.g. 144 elements are quite sufficient for a regular size box, i.e. 300x300x300 
mm. Sensitivity of the collapse load to the imposed compliance at the loaded boundaries 
is also studied. Different buckling modes of a box are simulated giving an in-depth 
understanding of the relation between the strength of a box and constraints imposed on 
the panels by the corners of the box. Extensive testing of boxes made from B- and C-
board shows that predicted failure loads using the proposed finite element model have an 
average error margin of 5% compared to measured box strengths.  
 

Concluding remarks and future research 
 

Box performance requirements range from its appearance, to its mechanical strength and 
ability to protect its contents. Mechanical properties can be divided into two categories, 
those that pertain to rough handling and stacking. Both of these types are difficult to 
duplicate accurately in the laboratory. As a consequence, the box compression test or 
BCT of an empty container has been widely used as a means of evaluating container 
performance. However, in order to distinguish between factors that govern box 
performance it is necessary to test the quality of the corrugated board and its components, 
maintain good control of conversion operations and environmental influences such as 
humidity and load duration. In addition to standard testing methods, a future challenge for 
research is to develop more sophisticated testing methods that are based on finite element 
models. Once the roles of liner and medium behaviour in box performance are properly 
understood, material properties can be evaluated by mill and plant personnel so that 
attention is given to the properties that govern end-use performance. For example, 
corrugated containers that are stacked on top of each other will slowly deform with time 
until one of the boxes collapses or the stack falls over. Consequently, the relevance of 
studying creep behaviour of paper and board is that it can reduce stacking factors in 
design of corrugated board packages. This is a future goal in the development of a user-
friendly computer-based tool for strength design of containers. Finally, this work shows 
how far it is possible to predict box performance using an orthotropic linear elastic 
material model, multi-ply eight node iso-parametric finite element and the Tsai-Wu 
failure criterion. 
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 On Buckling Loads for Edge-Loaded Orthotropic Plates 
including Transverse Shear 

 
 

Tomas Nordstrand 

SCA Research, Box 716, 851 21 Sundsvall, Sweden 

 

 

ABSTRACT 
 
Corrugated board usually exhibits low transverse shear stiffness, especially across the 
corrugations. In the present study the transverse shear is included in an analysis to 
predict the critical buckling load of an edge-loaded orthotropic linear elastic sandwich 
plate with all edges simply supported. In the analysis, effective (homogenised) 
properties of the corrugated core are used. Classical elastic buckling theory of 
orthotropic sandwich plates predicts that such plates have a finite buckling coefficient 
when the aspect ratio, i.e. the ratio between the height and width of the plate, becomes 
small. However, inclusion in the governing equilibrium equations of the additional 
moments, produced by the membrane stresses in the plate at large transverse shear 
deformations, gives a buckling coefficient which approaches infinity when the aspect 
ratio goes to zero. This improvement was first included in the buckling theory of 
helical springs by Harinx (1942) and later applied to orthotropic plates by Burt and 
Chang (1972). Some inconsistencies in the latter analysis have been considered. The 
critical buckling load calculated with corrected analysis is compared with a predicted 
load obtained using finite element analysis of a corrugated board panel, and also with 
the critical buckling load obtained from panel compression tests. 
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INTRODUCTION  
 
Corrugated board usually exhibits low transverse shear stiffness, especially across 
corrugations[1, 2].  This will reduce the critical buckling load according to classical 
theory of orthotropic sandwich panels [3, 4]. In this small-deflection theory it is 
customary to assume that the membrane forces are unchanged during plate deflection 
and equal to their initial values. However, due to the large transverse shear strains, the 
change in direction of the membrane forces over a small plate element can not be 
disregarded. This gives additional moments that are introduced in the governing 
moment equilibrium equations of the panel. Such additional moments were first 
included in the buckling theory of helical springs by Harinx [5]. Later this was applied 
to shear deformable plates by Bert and Chang [6] although their work contains some 
inconsistencies that are corrected herein. Furthermore, in the corrected analysis the 
expression for the buckling coefficient is shown to reduce to the classical formulation 
of an orthotropic plate without shear deformation when the transverse shear stiffnesses 
become large. It is also shown that the buckling coefficient goes to infinity when the 
height-width ratio of the plate is decreased towards zero. In the following analysis the 
corrugated board panel is regarded as a laminated shear deformable orthotropic linear 
elastic plate[7]. Thus, effective (homogenised) properties of the corrugated core are 
used [8, 9]. The papers in the facings are also regarded as orthotropic linear elastic 
materials [10,11]. The analysis was used to confirm predicted critical buckling load 
from a finite element analysis of a corrugated board panel modelled with eight-node 
multi-layered isoparametric shell elements [12-14]. Predicted critical buckling load is 
also compared to buckling loads obtained from compression tests of corrugated board 
panels [15]. 
 
 
ANALYSIS 
 
Figure 1 shows an element of a corrugated board panel of thickness h. Core height is 
hc and wavelength of corrugations is λM. Facing thickness is tf and thickness of core 
sheet is tc. The principal axes of elastic symmetry of the face sheets and the core are 
aligned with the Cartesian coordinate system xyz. The 2-axes of the corrugated 
medium is parallel with the y-axes.  

 
Figure 1. Schematic diagram of corrugated board.  
 
It is assumed that the facings and core sheet are thin compared to the total thickness of 
the panel and that the transverse shear strains are uniform in the core layer. 
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 3 

Furthermore, the deflections and slopes are assumed to be small compared to the 
thickness of the plate. Transverse shear deformation of the plate is accommodated by 
assuming that cross-sections remains straight but not necessarily normal to the mid-
plane of the plate during bending [6]. 
 
The membrane forces xyyx NNN ,, , transverse shear forces yzxz QQ , , bending and 

twisting moments xyyx MMM ,, are acting on respective four sides of a plate element, 

see Figure 2.  
 
The transverse shear strains, see Fig. 3, are determined by [4] 
 
           (1) 
 
 
where A44 and A55 are the transverse shear stiffnesses [1, 2]. 

Figure 2. Forces and moments acting on a plate element hdydx. 
 
The plate displacement w is then related to the applied moments as follows [4] 
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where         
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and D11, D22, D12 and D66 are the bending and twisting stiffnesses defined according to 
ref. [7-11].  
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Figure 3 shows a cross-sectional view of the deformed plate element in the x-z-plane. 
Considering that the plate is loaded in compression, the normal forces Nx, Ny and the 
shear force Nxy are much larger than the transverse shear forces Qyz and Qxz  and have 
to be accounted for in the lateral equilibrium of the differential plate element. 
Subsequently, after algebraic manipulation the equation of equilibrium in the z-
direction is obtained as, 
 
              (4) 
 
 

 
Figure 3. Cross-section of a differential plate element. 
 
The transverse shear strains at the left and right cross-sections in Figure 3 reduce the 
slope slightly more of the right cross-section than the left cross-sections. This will 
rotate the normal forces so that their action will not be through the centre of the 
differential plate element. Consequently, the normal forces will generate additional 
moments. These moments are taken into account in the present theory. This is the 
basic difference between the present theory and the classical sandwich theory [4]. The 
derivation of moment equilibrium around an axis through the centre of the differential 
element and parallel with the y-axes in Fig. 3 is then as follows. 
 
 

 
  (5) 

 
 
If both sides in eq. (5) are divided by dxdy and letting dx 0 and dy 0→ → , eq. (5) 
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Similarly, moment equilibrium around an axis through the centre of the differential 
element parallel with the x-axis yields 
 
∂
∂

∂
∂

γ
M

y
-

M

x
- Q + N = 0y yx

yz y yz           (6b) 

 
Substitution of eqs. (1)-(3) in equilibrium eqs. (4) and (6) forms a system of three 
simultaneous differential equations in terms of the out-of-plane displacement w and 
the transverse shear strains γxz and γyz . 
 
It is assumed that the plate is simply supported along its edges, i.e. the edges of the 
panel are prevented from moving out-of-plane and are not rotationally restrained. The 
edges are also free to move in-plane and transverse shear strains are prevented by edge 
stiffeners. The edges of the panel, parallel to the x-axis, are compressed uniformly by 
a load of intensity, py, per unit length, see Fig. 4. 

 
Figure 4. Schematic diagram of a simply supported panel in edgewise compression. 
 
Thus, boundary conditions at y=0 and y=b are 

w = 0     My = 0  Mxy = 0 γ
xz = 0  

and boundary conditions at x = 0 and x = a are 

 w = 0     Mx = 0  Mxy = 0 γ
yz = 0  

According to Navier´s procedure [7], a solution of the three simultaneous differential 
equations that satisfy the boundary conditions above can be obtained by assuming that 
the out-of-plane displacement, w, and transverse shear strains γxz, γyz can be 
represented by double trigonometric series. However, in the present analysis only one-

term solutions are used for w, γxz and γyz , respectively. 
 

)Bysin()Axsin(Ww =         (7a) 
 

)sin()cos( ByAxxzxz Γ=γ            (7b) 

x 

y 

z 
a 

b p y 



 6 

 
)cos()sin( ByAxyzyz Γ=γ         (7c) 

 
where W , xzΓ  and yzΓ  are corresponding amplitudes. A and B are  
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π
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b
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=B

π
            (8) 

 
Integers m and n are number of buckles, i.e. m and n half sine waves, in the x and y 
directions. In the subsequent analysis it is convenient to define a number of parameters 
of the homogenised sandwich plate [4]: 
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py,crit ,  is the critical load intensity (load/unit length) to cause panel buckling. The total 
critical buckling load is Pcrit,theor. 
 
Substitution of the trigonometric expressions eq. (7) in the differential equations (4), 
(6a) and (6b) leads to the following system of equations shown in matrix form  
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Correct expressions of the elements in the stiffness matrix of eq. (10) are given instead 
of those in the stiffness formulation [6]. Solution of eqs. (10) different than the trivial 
one, 0===W yzxz ΓΓ  are possible when the determinant of the matrix vanishes.  This 

criterion leads to a second order equation of k 
 

0=R+Qk+Pk 2
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where 
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The non-trivial solution of eq. (8) can thus be found when 
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where only positive values of k are valid since the buckling load must be compressive. 
The critical buckling load, Pcrit,theor, is given by eq.(9), where n=1 and k is the smallest 
positive value given by eq. (11). Using eq. (12), the two ratios  in eq. (13) are: 
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Attention is now turned to analysis of the limit case of infinite large transverse shear 
stiffnesses in order to show that the buckling coefficient k, determined by eq. (13), for 
that limit is reduced to the buckling coefficient for orthotropic plates without shear 
deformation [7].  
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If the transverse shear stiffnesses 44A  and A55, corresponding to yzs  and xzs , 

approach infinity then it is evident from eqs. (14) that 
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Substitution of eqs. (15) into eq. (13) gives  
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The square root in eq. (16) can be expanded according to the binomial series  
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If eq. (17) and eq. (18) is substituted into eq. (16), the expression on the right hand 
side is reduced to the buckling coefficient for an orthotropic plate [4] 
 

k = + 2 +
1λζ η
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when yzs  goes to infinity.  
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Figure 5. Buckling coefficient k, according to present theory, eq.(13)-(14), the 

theory for orthotropic plate without shear [4] and the classical sandwich 
theory [4]. 

 
In Figure 5 the buckling coefficient for a plate with and without transverse shear is 
plotted versus the plate width/height ratio. The material data used is typical for a 
common corrugated board grade and defined in Table 2. Notice that the buckling 
coefficient of the plate including transverse shear has no limit when the plate 
height/width becomes small as classical sandwich buckling theory predicts [3,4].  
 
 
COMPARISON WITH FINITE ELEMENT ANALYSIS OF A CORRUGATED 
BOARD PANEL 
 
In a finite element analysis of a simply supported corrugated board panel, with side 
lengths a = b = 400 mm, following eigenvalue analysis was made to obtain the critical 
buckling load [12]. A multi-ply eight node isoparametric shell element where first 
order transverse shear deformation is accounted for is used in the analysis. A quarter 
of the panel was modelled, due to symmetry, in a 6x6 element mesh. The side length 
ratio between the corner element and mid element was 1:5.  The finite element 
eigenvalue analysis is 
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where  [K]  is the global stiffness matrix of the finite element model, S ref  is the 

"stress stiffness matrix", χ is the factor used to multiply the loads which generate the 
stresses and { }ψ  is the generalised displacement vector of  the nodes [13]. The load 
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{ }P  is also scaled by χ and it alters the intensity of the membrane stresses but not the 
distribution of the stresses such that 

 

{ } { } [ ] [ ]ref ref S   S P   P χχ =⇔=         (21) 

 
As χ is increased, the overall stiffness of the plate, ([Κ] + [S]), is reduced until a critical 

load { }crP  corresponding to the eigenvalue χcr is reached and the plate becomes 
unstable, i.e. det([Κ] + [S]) goes to zero.  
 
The corrugated board analysed has 0.23 mm thick liners and a corrugated medium with 
wall thickness 0.25 mm and wavelength 7.26 mm. The height of the core layer is hc = 
3.65 mm, see Fig. 1. Using the material data in Table 1, the buckling load of the 
corrugated board panel was calculated to Pcr,fem = 849 N. This value is in excellent 
agreement with the value obtained by the closed form solution Pcr,theor = 846 N, see eq. 
(9) and eq. (13). Sandwich theory gives a critical buckling Pcr,sand = 815 N and an 
orthotropic plate without shear Pcr,ortho = 898 N. 
 
Table 1. Effective material properties of the layers in the panel. 
 

 
+ The Poisson's ratios are assumed small because of the plane stress condition in the board. 

 
 
COMPARISON WITH EXPERIMENTS 
 
Panels size 400x400 mm were cut from corrugated board and tested under 
compression in a rig that furnishes simply supported boundary conditions [15]. Panels 
were oriented with the cross direction (CD) in the direction of loading, see Figure 6. 

Layer  Ex  (GPa) Ey  (GPa) Ez (GPa) 
1 8.25 2.9 2.9 
2 0.005 0.231 3.0 
3 8.18 3.12 3.12 

Layer  Gxy (GPa) Gxz (GPa) Gyz (GPa) 
1 1.89 0.007 0.070 
2 0.005 0.0035 0.035 
3 1.95 0.007 0.070 

Layer  νxy νxz + νyz + 
1 0.43 0.01 0.01 
2 0.05 0.01 0.01 
3 0.43 0.01 0.01 
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Figure 6.  Rig and corrugated board panel tested under compression. 
 
Material data for the board is given in Table 2. The critical buckling load as estimated 
from the test results by means of a non-linear regression analysis method [15] was 814 
N. This value is consistent with the analytically predicted critical buckling load of 870 
N using the present buckling analysis, i.e. an analysis of a plate including transverse 
shear deformation.  
 
Table 2. Corrugated board data. Transverse shear stiffness is measured. 
 

Basis weight, g/m2                       556 
Thickness, mm                  h 4.02 
Corrugation wavelength, mm  λM 7.26 
Bending stiffness, Nm             D11 14.6 
 D22 5.43 
 D12 2.71 
 D66 3.34 
Transverse shear stiffness, kN/m   A44 39.2 
 A55 5.6 

 
In comparison, a plate without shear deformation is predicted to have a critical 
buckling load of 924 N, which is exactly the same result as obtained from the classical 
theory of orthotropic plates [7]. 
 
 
CONCLUSIONS 
 
An explicit equation for the buckling load of a simply supported orthotropic linear 
elastic plate in edgewise compression has been derived taking into account first order 
transverse shear deformation. There is major difference between present theory and 
classical sandwich theory in the additional moments that are introduced in the 
governing moment equilibrium equations of the panel, due to change in directions of 
the membrane forces over a small plate element that has large transverse shear strains. 



 12 

When the transverse shear stiffness goes to infinity the critical buckling load, 
predicted by the present theory, is shown to be reduced to the critical buckling load of 
an orthotropic plate without transverse shear deformation. Furthermore, the buckling 
coefficient does not have a limit in the present theory when the plate height/width 
becomes small, as classical sandwich buckling theory predicts. The present theory is 
approximate due to one-term approximations of the deflection w(x,y) and the 
transverse shear strains γ

xz
(x,y) and γ

yz
(x,y). Verification by finite element analysis 

suggests that the present explicit equation for the buckling load is accurate, the 
deviation is typically less than 0.5%. However, the discrepancy is larger between 
present theoretical buckling load and the experimental buckling load of corrugated 
board panels. This may partly be due to the difficulties involved in evaluation of the 
buckling load from the experimental results [15] partly due to the non-linear material 
behaviour of paper.    
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ABSTRACT 
 
Testing of the load bearing capacity of corrugated board boxes is often associated 
with uncertainties, e.g. the creases along the edges of the side panels introduce 
eccentricities. An alternative to the testing of boxes is therefore attractive. One 
suggestion is testing of panels. However, panels are sensitive to the boundary 
conditions. A panel compression test (PCT-) rig, similar to a test frame for metal 
plates designed by A. C. Walker, was therefore built to achieve accurately defined 
load and boundary conditions. The PCT-rig furnishes simply supported boundary 
conditions, i.e. the edges of the panel are prevented from moving out-of-plane 
without any rotational restraint. The edges are also free to move in-plane. In order to 
describe the buckling behaviour, a non-linear buckling analysis of orthotropic plates, 
derived by Banks and Harvey, was modified to include initial imperfections. The 
critical buckling load of the panels was evaluated by fitting the analytical expression 
by non-linear regression to experimentally measured load-displacement curves. The 
results show a difference in the order of 15-20 % between experimentally estimated 
critical buckling load and the analytically predicted critical buckling load for 
orthotropic plates. This is mainly attributed to transverse shear deformations. A 
corresponding difference was observed between analytically predicted and 
experimentally measured load-displacement curves at large out-of-plane deformation, 
i.e. twice or three times the board thickness. This is probably caused by the non-linear 
response of paper at high stresses and local buckling of the panel facings, i.e. the 
liners. A predicted failure load of the corrugated board panel was determined when 
stresses in the facings reached the Tsai-Wu failure criterion. The predicted failure 
load and measured average experimental failure load were close, indicating that 
collapse of the panel is triggered by material failure of one of the liners.  



 

 

NOTATIONS 
 

a, b   Plate size in x and y directions 

A, A0
  Amplitudes of the total and initial plate deflection functions 

Ai
  Relative amplitude of the shape function 

Dij
  Bending stiffness of the plate 

Eij Modulus of elasticity of liner 

Eij,c 
Modulus of elasticity of medium 

Gij   Shear modulus of liner  
 F Airy’s stress function 

h  Plate thickness 

hc Core thickness 

tf Liner thickness 

tc Medium thickness 
α Take-up factor 

M M Mx y xy, ,   Bending and twisting moments per unit distance in middle 

surface of the plate 

N N Nx y xy, ,   Membrane forces per unit distance in middle surface of the 

plate 

P Load 

Pcrit  Critical buckling load 

u, v, w Displacements in x, y and z directions 

V Strain energy 

x, y, z Cartesian co-ordinates 

γ  Unit shear strain 

yx εε  ,  Unit normal strains in x and y directions of the facings 

ν ij Poisson’s ratio 

yx σσ  ,  Unit normal stresses in x and y directions 

xyτ  Unit shear stress on plane perpendicular to the x-axis and 

parallel to the  

 y-axis 
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INTRODUCTION 
 
Corrugated board is one of our most common transport packaging materials. Large 
retailers and distributors are under increasing pressure to cut the cost of corrugated 
packaging. With the increasing scale of business it has become unacceptable to over 
design boxes. Consequently, it is necessary to predict box strength in order to obtain 
boxes at the lowest possible cost.  
 
However, analysis of top-to-bottom compression loading of boxes is often associated 
with uncertainties, e.g. the creases between flaps and side panels introduce 
eccentricities along the loaded edges [1]. Since the buckling behaviour is of primary 
interest, it was decided to test corrugated board panels with clean cut edges in a 
specially designed panel compression rig, similar to a test frame for metal plates [2]. 
The panel compression rig furnishes simply supported boundary conditions, i.e. the 
edges of the panel are prevented from moving out-of-plane without any rotational 
restraint. The edges are also free to move in-plane. It was decided to measure the out-
of-plane displacement at the centre of the panel versus the compressive load. Out-of-
plane measurement of the panel deformation is easier than in-plane measurement. It 
also simplifies (de-)mounting of the panel in the rig.  
 
One objective of the tests is to obtain the critical buckling load. Since post-buckling of 
a panel is stable, an analytical expression was needed that relates the compressive load 
to the deformation of the panel. Banks and Harvey [3] originally derived a post-
buckling analysis, which has been modified in the presented model to include initial 
imperfections. Panels are assumed to have orthotropic elastic constants as described by 
Jones [4]. The critical buckling load of the panels was evaluated by fitting an 
analytical expression for the load-deformation curve to the experimentally measured 
curves. The fitting was made by non-linear regression analysis and comprised the 
determination of three parameters in the analytical expression, one being the buckling 
load, another the post-buckling coefficient and the third the amplitude of the initial 
imperfection of the panel. 
 
Results show a discrepancy of 15-20 % between experimentally estimated critical 
buckling load and the theoretically predicted buckling load for orthotropic plates. This 
difference is mainly attributed to transverse shear. A corresponding load difference 
was observed between analytically predicted and experimentally measured post-
buckling curves at large deflections, i.e. twice or three times the board thickness. This 
is probably caused by the non-linear material response of paper at high stresses and by 
local buckling of the panel facings, i.e. the liners. A failure load of the corrugated 
board panel was predicted by determining when stresses in the facings reached the 
Tsai-Wu failure criterion [5]. The predicted failure load and measured average 
experimental failure load were close, indicating that collapse of the panel is triggered 
by material failure of one of the liners. Thus, the strength of the material is efficiently 
utilised. 
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THEORETICAL MODEL 
 
Basic assumptions and mechanics principles of a corrugated board panel 
 
A simply supported corrugated board panel, loaded in compression, buckles in a 
stable manner and carries load beyond the critical buckling load until compressive 
failure occurs. Since the paper sheets used in the panel are thin compared to the 
overall thickness of the panel, the variations of stresses in the thickness direction of 
each sheet are ignored. 
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Figure 1.  Geometry and orientation of a symmetrical corrugated board panel. 

 
The paper is assumed to have orthotropic elastic properties with the elastic planes of 
symmetry of the facings coinciding with the Cartesian coordinate system xyz of the 
panel, see Figure 1. Total thickness of the panel is h, core height is c and facings and 
core sheet are assumed to have thickness tf and tc, respectively.  
 
The membrane forces Nx, Ny and Nxy are shown in Figure 2. These forces are oriented 
according to the orientation of the panel in the loaded state. The displacements are 
assumed to be small in the sense that ( ) ii x/wx/wsin ∂∂=∂∂ , i = 1, 2 and the projected 
membrane forces in the x-y plane are in equilibrium. 
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Figure 2.  Membrane forces in the corrugated board panel.  
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It is assumed that the membrane strains are constant through the thickness of the panel 
and that membrane forces carried by the corrugated core in x-direction can be 
disregarded. The strains in panel facings due to membrane forces are 
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shear modulus of the facings, respectively. cE ,22  is the elastic modulus of the core 

sheet in the cross direction CD and α is the take-up factor, i.e. the ratio between the 

length of the corrugated core sheet and the length of the board. 
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Figure 3. Bending of the corrugated board panel.  

The bending and twisting curvatures and strains in the facings 
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are connected to the bending and twisting moments acting on the panel in Figure 3 by 
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where ijD are elements of the bending stiffness matrix [4,5].  
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Buckling of a corrugated board panel  

 
When a panel with a small initial curvature is subjected to a compressive load it 
bends, and the deflection may become large in comparison with the thickness of the 
board, see Figure 4. Hence the geometrical non-linearity due to membrane stretching 
has to be included in the analysis [6]. It is assumed that the membrane strains are 
constant through the thickness of the panel, and can be expressed in terms of the 
displacements at z=0 as follows  
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By adding the second derivative of xε  with respect of y and second derivative of yε   

with respect of x and subtracting the second derivative of xyγ  with respect of x and y, 

a compatibility relation is obtained between the membrane strains and the out-of-
plane displacement [6]. 
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 If the expression in the stiffness matrix is substituted with the effective elastic 
stiffnesses of the panel as follows 
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and the strains are subsequently substituted in eq. (2) we obtain 
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The solution of eq. (7) can be greatly simplified by introducing Airy's stress function, 
F [6]. With this stress function the membrane  forces in eq. (7) can be expressed as 
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where F=F(x,y). With these expressions for the forces, eq. (7) becomes 
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If w=w(x,y) is the total out-of-plane displacement and 0w = 0w (x,y) is an initial 

imperfection of the plate, eq. (9) can be written as 
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provided that the total displacements  and  the initial imperfections have the same 
shape, differing only in magnitude. This equation links the membrane stresses with 
out-of-plane displacements of orthotropic plates.  
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Figure 4. Simply supported corrugated board panel with compression of top and 

bottom edges. 
 
Boundary conditions 
 
It is assumed that the panel is simply supported, see Figure 4. This means that edges 
are rotationally unrestrained and no out-of-plane displacement is present. Neither are 
in-plane shear stresses allowed. Thus at the unloaded edges  x=0, a : 
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The compressive displacements are constant along the loaded edges. Thus, at 
2

b
y ±= , 

the conditions are 
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Solution strategy 
 
In order to obtain a relationship between the compression v and out-of-plane 
displacement w the principle of minimum potential energy is used [3].  The total 
potential strain energy V  in the buckled plate consists of two parts - the potential 
energy of bending and twisting, BV , and the membrane strain energy, MV . 
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Before minimising the total energy V , the out-of-plane displacement w and the initial 
imperfection w0 are prescribed as follows [3] 
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where A and A0 are the amplitude of the out-of-plane displacement and initial im-
perfection, respectively. The panel is accordingly assumed to have a sinusoidal shape 
in y-direction and )(xX  is a polynomial 
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that describes the deflected shape of the panel in x-direction, see Figure 5. 
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Figure 5. Shape function used to model the buckled plate. 

 
Integration of the membrane deformation y/v ∂∂  in eq.(4) is equal to the uniform 
compression of the panel given by eq.(12)   
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Combining eq.(1), (6) and (8) gives 
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Assuming a solution to eq.(10) [3] for a panel with uniform compression of its edges 
as shown in Figure 4  
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Substitution of eq. (14), (15), (18) and (19) into eq.(17) and integrating gives 
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Substitution of eq.(14), (15), (19) and (20) into eqs. (13) and minimising with respect 
to A yields the relationship between A and v  
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where constants C1 , C2 and C3 are presented in the Appendix with a detailed solution.  
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Substitution of eq.(21) into (20) the relationship between the applied load P and out-
of-plane displacement A is given by integrating the stress σy over the loaded edge 
y=b/2 
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Further integration of eq.(22) gives 
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where the critical buckling load  
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 and the post-buckling parameter is 
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Failure criterion 
 
From the solution above, the total stresses in the inner facing 2/)( fthz −−= of the 

panel in Figure 4  
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can be obtained for a specified value of the out-of-plane deformation A. 
Subsequently, the stresses in eq. (26) are inserted in the Tsai-Wu failure criterion 
assuming plane stress [5]  
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where  
cx,tx,
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The subscript j=t or j=c of strength σi,j ,i=x,y, denote the strength in tension and 
compression, respectively. The expressions for Γ12 and Γ66 are approximations for 
paper materials [7]. A geometrical interpretation of the failure criterion, eq. (27), is 
depicted in Figure 6. Failure occurs when the total stress vector [σx, σy, τxy] of a facing 
reaches the surface of the ellipsoid in Figure 6. 
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Figure 6. Geometrical interpretation of the Tsai-Wu failure criterion. 

  

 

PANEL COMPRESSION TESTS 
 
A panel compression rig was built similar to a test frame for metal plates designed by 
A. C. Walker [2], see Figure 7. The rig is composed of a frame that supports the 
bottom and side edges of the panel, and a crosshead that slides in the frame, supports 
the top edge and loads the panel. In this way the crosshead is guided to prevent out-of-
plane movements. Furthermore, top and bottom supports consist of sectioned slotted 
rollers supported by needle bearings and mounted in grooves in the base plate and the 
crosshead. The panel is subsequently inserted into the slots.  
 
The side edges are prevented from moving out-of-plane by knife-edge supports. 
Furthermore, the out-of-plane displacement at the panel centre is measured by a 
digital displacement gauge, see Figure 7 and Figure 8. Panels size 400x400 mm were 
cut from corrugated board and tested under compression with the cross-direction (CD) 
oriented in the direction of loading. Only flat panels with an imperfection less than 
half the thickness were selected for testing. Specimens were preconditioned for 24 
hours at 30% RH, 23 oC, and subsequently conditioned for 24 hours at 50% RH, 23 
oC, before testing. A total of 12 panels were tested and material and panel data is 
presented in Tables 1 and 2, respectively. 
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Figure 7. Panel compression rig and a corrugated board panel loaded to failure. 

 

 
 
Figure 8. Measuring the deflection of a corrugated panel.  

 
Table 1.  Material data for liner and fluting of the corrugated board. 

 

Unit Direction 
Inner Facing 
Kraft Liner 
Single Facer 

Core Semi-
Chemical 
Medium 

Outer. 
Facing 

Kraft Liner 
Double 
Backer 

Basis weight g/m2  184.3 140.2 187.4 

Thickness, t mm  0.268 0.217 0.244 

Elastic modulus, E11 N/mm2 MD 7980 4750 8090 

Elastic modulus, E22 N/mm2 CD 3190 1560 2490 

Tensile strength, σx,t N/mm2 MD 81.4 46.9 82.1 

Tensile strength, σy,t   N/mm2 CD 28.4 18.8 31.5 

Compr. Strength, σx,c N/mm2 MD 30.8 23.1 29.9 

Compr. Strength, σy,c N/mm2 CD 16.6 13.4 16.2 
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Table 2. Corrugated board data calculated using material data in Table 1. Transverse 
shear stiffness values are measured values using three-point bending [8]. 

 

Basis weight      g/m2 556 

Thickness, h mm 4.02 

Corrugutation wavelength, λ mm 7.26 

Bending stiffness, D11 Nm 14.6 

Bending stiffness, D22 Nm 5.43 

Bending stiffness, D12 Nm 2.71 

Bending stiffness, D66 Nm 3.34 

Transverse shear stiffness, A44 N/mm 39.2 

Transverse shear stiffness, A55 N/mm 5.6 

 
 

RESULTS AND DISCUSSION 

 
The load-displacement curves of the tested corrugated board panels show consistent 
buckling behaviour, see Figure 9. The dashed line is the analytical solution according 
to eq. (23) using the material and panel data in Tables 1 and 2, giving the critical 
buckling load Pcrit = 958 N, which is in accordance with classical buckling theory for 
orthotropic plates [4,11], and the post-buckling parameter Ψ= 8.6 N/mm2, see Table 3. 
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Figure 9. Load-displacement curves of 12 corrugated board panels. The dashed 

curve is the theoretical model with the analytical buckling load and post-
buckling parameter. Failure predicted using the Tsai-Wu failure criterion. 
The dot-dashed curve is the theoretical model fitted to experimental 
curves. 
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Table 3. Analytically and experimentally determined parameters. 

 

 Pcrit,exp Pcrit A0 Ψexp Ψ Pfail, exp Pfail 

Unit N N mm N/mm2 N/mm2 N N 

Average 814 958 0.8 3.55 8.6 1195 1265 

Std 16  0.3 0.59  60  

Max 844  1.3 4.68  1288  

Min 786  0.5 2.88  1138  
 
When the analytical out-of-plane deflection A has reached levels about half the plate 
thickness, the difference in analytical and experimental loads is about 20%. The 
brown dot-dashed line was determined by fitting the analytical expression in eq. (23), 
i.e. parameters Pcrit,exp , Ψexp and A0, to the experimental curves using non-linear 
regression. 
 
The regression was made using commercially available software called SAS [9]. The 
experimental critical buckling load  Pcrit,exp = 814 N and the post-buckling coefficient 
Ψexp = 3.55 N/mm2 for the tested panels, see Table 3. The analytically and 
experimentally determined critical buckling loads differ by 18 %. 
 
The discrepancy between analytical and experimental post-buckling parameters in 
Table 3 is probably due to the non-linear response of the paper material at high 
stresses and local buckling of the facings, see Figure 10 [10]. However, the 
analytically calculated failure load Pfail =1265 N differs only 6 % from the 
experimental failure load of  Pfail,exp = 1195 N. The analytical failure load was 
obtained by checking when the stresses [σx, σy, τxy] in the inner facing satisfied the 
Tsai-Wu failure criterion in eq. (16). In Figure 11, failure of the inner facing is 
depicted by a range of colour fields indicating how close the material is to failure. 
This is expressed by the ratio between the length of the vector [σx, σy, τxy] and an 
aligned vector that reaches the surface of the ellipsoid in Figure 6. 
 

 

 
 

Figure 10. Local buckling of the facing on the concave side is visible just prior and 
after failure. 
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Figure 11. Colour fields indicate how close to material failure different areas of the 

inner facing are according to the Tsai-Wu criterion. Due to symmetry only 
the top-left quarter of the panel is shown. 

 
 
CONCLUSIONS 
 
A rig that furnishes simply supported boundary conditions has been designed to test 
corrugated board panels. Experimental results are consistent. An expression linking 
applied load with the out-of-plane deformation is derived. The first part of the 
expression is similar to ordinary Euler buckling of a column, where the maximum 
compressive load is limited by the critical buckling load. In the second part of the 
expression the membrane forces produce a parabolic relationship between the 
compressive load and out-of-plane displacement. The expression was fitted to 
experimental measured curves using non-linear regression to evaluate the critical 
buckling load and post-buckling coefficient for corrugated board panels. The results 
show an 18 % difference between experimentally estimated critical buckling load and 
the analytically predicted critical buckling load for orthotropic plates. This is partly 
attributed to excluded transverse shear deformation in the analytical solution. 
Compare the experimental value of 814 N with 870 N obtained from an analysis of a 
panel including transverse shear deformation [11,12]. A significant difference was 
also observed between analytically predicted and experimentally measured load-
displacement curves at large out-of-plane deformation. This is probably caused by the 
non-linear material behaviour of paper and local buckling of the panel facings, i.e. the 
liners. However, the 6 % difference between the analytically calculated failure load 
and the experimental failure load is quite small. This suggests that collapse of the 
corrugated board panel is triggered by material failure of the inner facing. The 
strength of the material is therefore efficiently utilised. 
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APPENDIX  
 
Marquerre's differential equation linking in-plane stresses with out-of-plane 
displacements for orthotropic plates is as follows 
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If the deflections w and w0  are of the same form and their magnitudes are related by the 
expression 
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and the initial imperfections as 
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then a solution of eq. (1) for a plate with uniform compressive displacements of its 
ends, as shown in Fig. 4, is 
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Substituting eqs. (2-4) into (1) gives 
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Thus 1F  is independent of y and hence constant along the length of the plate. While 1F  
can not give a stress in the x-direction, it does give a stress in the y-direction which is 
found by integrating equation (5) twice. 
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where B and C are constants and found from the membrane boundary conditions on the 
loaded ends. 
 
To obtain an expression for 2F  we assume that the deflections across the plate are in the 
form of a polynomial series 
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where 1≤nA  is the relative amplitude of the normalised shape function nX  which in 

turn is assumed to take the general algebraic form 
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Substituting eq. (8) into eq. (6) gives 
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Inserting the expression for nX , eq. (9), into eq. (10) and manipulating gives 
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under the condition that ( ) ( )C Cs q n s q r n+ − < + − >= =2 1 2 0. A solution for 2F  can be found by 

putting 2F  in the same form as the right hand side of eq. (11), 
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Substituting eq. (13) into eq. (11) gives 
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If φmn part,  in turn is assumed to take the same form as the right-hand side of  

Eq. (14), 
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we obtain, by substituting eq. (15) into eq. (14) and equating coefficients from each 
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Eqs. (16) - (18) thus give the particular integral solution for eq. (14) when evaluated in 
the right order. To obtain a complete solution for φ , the complementary function 
solution must be added to eq. (15). There are three possible solutions to the 
homogeneous equation, 
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Only the first of these conditions is dealt with since this is consistent with the class of 
materials considered. Thus the solution to equation (19) is 
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The complete solution for mnφ  is  
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The values of the constants imnC  are obtained by considering the boundary conditions at 

x=0 and x=a. It can be shown that if the unloaded edges are free to move in the plane of 
the plate, the shear stress xyτ  and the stress normal to the edge xσ  must be 0. 
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The stress function F is completely determined in terms of the deflection given by eqs. 
(2) and (3). The constants in eq. (7) are found by compressing the plate uniformly along 
the loaded edges an amount v=-∆, see Fig. 4. During  compression of the plate, it is 
assumed that no shear stresses are introduced along the loaded edges.  
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From Hooke's law we obtain 
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a combination of equations (25) - (27) gives 
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Substituting for 0 and   , wwF  and integrating eq. (28), IIF1  is found to be 
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Substituting eq. (7) into eq. (29) gives 
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To obtain uniform end displacement across the plate, B must be zero and the remaining 
coefficient will be 
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which is the stress induced in an unbuckled plate by the compression v. 
 
The strain energy in the buckled plate consists of two parts: the potential energy of 
bending and twisting, BV , and the membrane stretch energy, MV : 
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Substituting the derivatives of wF  and  using eqs. (2) - (4), (8), (13) and (29) in eqs. 
(32) - (33) and integrating with respect to y gives 
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The total strain energy is obtained by adding MB VV  and , 

 

 MB VVV +=              (36) 

 
In order to minimise this expression with respect to A  we have to know the values of 

iA , i=1..N, i.e. the relative amplitudes of the shape functions. Assuming that the 

imperfect plate will have the same deflected shape as a perfect plate, with 00 =A , we 

can obtain an accurate description of iA  by the first buckling mode. Initially, limited 

bending can be produced with negligible membrane stretching of the middle plane, and 
we need to consider only the bending energy and the corresponding work done by the 
external forces acting in the middle plane of the plate, i.e. all terms that include v in eq. 
(35). Subsequently, all terms in eq. (36) that contain the fourth power of iA  can be 

omitted. Thus equation (36) can be written as 
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The minimum of V is found by differentiating V with respect to iA  and using 
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which in turn gives N linear simultaneous equations, from which the value of critv ∆−=  

to cause buckling can be found. The relative values of iA  can also be obtained. Thus 
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and the non-trivial solution of eq. (42) demands that 
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Solving eq. (41) for crit∆  and inserting the value of crit∆  in eq. (40) enable us to obtain 

the normalised eigenvector A . Thus all iA :s are determined. 

 
Inserting the values of iA  in equation (36) and minimising V with respect to A yields the 

relationship between A and v as follows: 
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A Strength Prediction Method for Corrugated Board 
Containers 

 
 

Tomas Nordstrand, Mikael Blackenfeldt and Magnus Renman 

SCA Research, Box 716, 851 21 Sundsvall, Sweden 

 

 

ABSTRACT 
 
A method for prediction of the top-to-bottom compression strength of corrugated 
board containers using finite element analysis was developed. Up to triple-wall 
corrugated board is accommodated in the finite element model. In order to keep 
computational time down, the corrugated core layer(s) is considered to be 
homogeneous with effective material properties, and the complete corrugated board is 
represented by a multi-ply eight node isoparametric shell element. The shell elements 
represent the side panels of the box. Coupling elements are used to represent creases 
at the top and bottom edges.  
 
Buckling and large displacements are considered in the analysis, and container 
collapse loads are predicted using the Tsai-Wu failure criterion. It is assumed that 
failure is triggered by material failure in one of the facings of the corrugated board. 
Local buckling of the corrugated board constituents is not considered in this study, 
and orthotropic linear elastic material properties are assumed for each layer. 
 
The boxes analysed fail in a post-buckled state. A non-linear finite element method 
involving Newton-Raphson iterations is discussed in conjunction with the buckling 
analysis. Convergence of the predicted collapse load with the number of elements 
used in the model is studied, as well as the sensitivity of the collapse load to the 
imposed stiffness at the loaded boundaries. Different buckling modes of a box are 
simulated, giving an in-depth understanding of the relation between the strength of a 
box and constraints imposed on the panels by the corners of the box. Finally, the 
results of an extensive testing program comprising about 1,300 box strength tests are 
summarised and used to verify the container strength prediction method developed.  
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INTRODUCTION  
 
Although corrugated board has been used for over a century, the packaging design 
process is still mostly empirical or semi-empirical. Research on corrugated board has 
been lagging behind its industrial application [1]. There are many reasons for this. 
One is that the mechanics of corrugated board and packaging are quite complex due to 
the structure of the board, difficulties in loading and control of boundary conditions.
  
Consideration of the corrugated board market in recent years, with fewer companies 
increasing their market shares, has been a driving force for improvement of design 
procedures. Production volumes have increased considerably. Even small savings in 
raw material achieved through improved design procedures imply significant cost 
savings [2]. 
 
In addition, with the development of powerful computing tools and structural analysis 
codes such as finite element software, it is now possible to obtain numerical solutions 
for the stresses and deformations in corrugated board structures when loaded [3]. The 
benefits of such an analysis are apparent since the analysis is based on the geometry 
of the corrugated board and the physical properties of the constituent liners and 
corrugated medium. In contrast, the empirical approach to design requires 
manufacture of the board and tedious making and testing of boxes and specimens, cut 
from board [4]. 
 
This work was initiated with the objective of developing a design method based on 
finite element analysis to predict top-to-bottom compression strength of corrugated 
containers.  The finite element model includes multi-ply eight node isoparametric 
shell elements for the side panels and coupling elements representing creases at top 
and bottom edges [5, 6]. Creases are scored folding lines between flaps and sides. 
McKee and Gander [4] found that 90% of the compression deformation of a box 
occurs in the creases. The residual compressive and rotational stiffness of the creases, 
being most important [7], are accommodated using coupling elements [5]. 
Extensional, shear and bending stiffnesses of the corrugated board are calculated from 
the geometry and material properties of the constituent liners and medium [8-11]. The 
material properties are assumed to be orthotropic linear elastic. 
 
In a previous study of collapse of corrugated board panels it was shown that the Tsai-
Wu failure criterion [12-13] could be used to predict material failure in one of the 
facings of the corrugated board panels. The same failure criterion is used in the 
present analysis of boxes, and local buckling of the outer facings is disregarded [14]. 
The buckling of side panels requires a non-linear finite element analysis that is solved 
using the Newton-Raphson method [15, 16]. The solution is terminated when the 
failure criterion is satisfied.  
 
Convergence of the predicted collapse load with the number of elements used in the 
model is studied, as well as the sensitivity of the collapse load to the imposed stiffness 
at the loaded boundaries. Different buckling modes of a box are simulated, giving an 
in-depth understanding of the relation between the strength of a box and constraints 
imposed on the panels by the corners of the box.  
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Finally, extensive testing of boxes made from two different corrugated board grades is 
used for comparison with finite element predictions.  
 
A commercially available finite element code called ANSYS [5] was chosen to solve 
these tasks for two main reasons. The software is adapted to operate in Microsoft’s 
Windows NT environment, and the ANSYS Parametric Design Language (APDL) [5] 
makes it easy to implement algorithms for processing the finite element models.  
 
 

NUMERICAL MODEL 
 
Material stiffness properties 
 
Up to triple-wall corrugated board is accommodated in the finite element model. To 
keep computational time down the corrugated core(s) is homogenised [8-11] and the 
complete corrugated board is represented by a multi-ply eight node isoparametric shell 
element, SHELL99 [5]. Each layer, from three to seven, of the homogenised 
corrugated board is described by its thickness and orthotropic elastic properties, i.e. the 
elastic moduli (EX, EY, EZ), Poisson’s ratio (NUXY, NUYZ, NUXZ) and the shear 
moduli (GXY, GYZ, GXZ). The elastic planes of symmetry are aligned with the 
machine direction(MD) and cross direction (CD) of the board, see Figure 1. 
  

 
 
Figure 1. Homogenisation of the corrugated core of single-wall corrugated board. 
 
 
Model and boundary conditions used for a regular slotted container 
 
In a finite element analysis of a corrugated board container, a quarter of the box is 
represented by ixk+jxk 8-node elements, i=j and k=2i, where i represents the number 
of elements parallell with the x-axis, j the number of elements parallell with the y-axis 
and k the number of elements parallell with the z-axis, see Figure 3. Then the number 
of nodes is (16+5(i+j-2)+10(k-1)+3(i+j-2)(k-1)). Each node has six degrees of 
freedom, viz. translation and rotation along axis parallell to the nodal coordinate 
system. When considering a box loaded under compression, it is recognised that the 
creases at the top and bottom affect the loading of the box [4]. In order to predict top-
to-bottom compression of boxes the properties of the creases were measured in earlier 
work [7]. The soft creases are accommodated in the FEM-model by edge springs 
attached at the loaded top and bottom edges. The springs are modelled using element 
COMBIN14 [5] and the stiffness of the springs is adjusted in order to introduce 
consistent nodal forces on the shell elements if uniformly compressed [16]. The creases 
also introduce an eccentricity of the applied loads [7], which is simulated by 

MD

CD

ZD

X

y

Z

hc 

λ 
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introducing a moment that is constant at the top and bottom edges using element 
COMBIN37 [5], see Figure 2. The vertical edges at the four corners of the box are 
connected in translation only with no rotational constraint. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Elements used to simulate the response of the creases. 
 
A quarter of the box is analysed due to symmetry. Boundary conditions are imposed on 
the nodes along the edges and nodes at the planes of symmetry according to Figure 3. 
Only the two symmetry planes indicated in the figure are utilized since the boxes 
analysed in general have more complex geometry than the box shown in figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Quarter of a box model with boundary conditions: 
 
  

L9:     DX=0, DZ=displacement step, (nodes are free to move in y-direction except where L9  intersects L7) 
L12:   DY=0, DZ=displacement step 
L2:     DX=0, DZ=0 
L3:     DY=0, DZ=0 
L10:   Translation coupling of the nodes at the corner  . 
L7:     DY=0, RotX=0, RotZ=0 (symmetry) 
L13:   DX=0, RotY=0, RotZ=0 (symmetry) 
L9, L12, L2, L3: Connected to elements shown in Figure 2. 

 
 

i=8 
j=8 

k=16 
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Analysis 
 

The stress-strain relationship of each layer, j, can be expressed by [8] 
 
 { } [ ] { }jjj Q εσ =         (1) 
 

where {σ}j and {ε}j are the vector stress and strain, respectively, in a plate. Plane 
stress is assumed and the elastic stiffness matrix [Q]j is defined as 
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where νxy, j and νyx, j are the Poisson's ratios, jx,E  and jy,E  are the elastic moduli and 

jxy,G , jyz,G  and jxz,G  are the in-plane and transverse shear moduli, respectively.  In a 

finite element analysis where the transverse shear strain is assumed to be constant 
through the thickness of each layer, it is common to reduce the transverse shear moduli 
by a "shear correction factor" of 1.2 to compensate for the excessive amount of shear 
strain energy produced [5]. In the current finite element formulation the transverse 
shear moduli of each layer are reduced by a factor f given by 

1.2f =  or  
225h

A
0.21.0f +=  whichever is greater, where A is the area of the element 

and h the thickness of the panel. The latter expression is included in order to prevent 
shear locking [5]. The homogeneous properties of the corrugated core layers are 
obtained according to ref. [8]. 
 
The stiffness matrix can be integrated through the thickness h of the panel to obtain the 
extensional, coupling and bending stiffness matrices as follows 
 

  [ ] [ ] ( )∑
=

−=
N

1j
1-jjj zzQA   (3a) 

 [ ] [ ] ( )2
1-j

2
j

N

1j
j zzQ

2

1
C −= ∑

=

  (3b) 

 [ ] [ ] ( )3
1-j

3
j

N

1j
j zzQ

3

1
D −= ∑

=

  (3c) 

 

where zj are the ply coordinates [8] and N= 3, 5, 7. These stiffness matrices in turn can 

be combined with the strain-displacement matrix [B], which connects the 

displacements to the strains and curvatures of the element, to form the element 

stiffness matrix [k] as follows 
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 [ ] [ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ]( )dABDBBCBBCB+BABk
A

1
T

10
T

11
T

00
T

0∫ ++=   (4) 

 
where [B0]+z[B1] = [B], see e.g. [16]. The element stiffness matrices are subsequently 
assembled to a global stiffness matrix [K], which is used in an eigenvalue analysis of 
the finite element model to determine a suitable load step for the non-linear analysis. 
The following equation is solved in the eigenvalue analysis 
 

 [ ] [ ]( ){ } { }0SK ref =+ ψχ        (5) 
 

where S ref  is obtained by applying consistent nodal forces { }refP on the top and bottom 

edges corresponding to a uniform unit pressure, and performing a static linear analysis 

to obtain the membrane stresses that generate the "stress stiffness matrix" S ref  [16]. χ 

is the factor used to multiply the loads that generate the stresses, and { }ψ  is the 

generalised displacement vector for the nodes [16]. The load { }P  is scaled by the factor 
χ which also alters the intensity of the membrane stresses but not the distribution of the 
stresses such that 
 

 { } { } [ ] [ ]ref ref S  S P  P χ=⇔= χ        (6) 

 

As χ is increased, the overall stiffness of the box, ([Κ] + [S]), is reduced until a critical 

load { }crP  corresponding to the eigenvalue χ
cr is reached and the box becomes 

unstable, i.e. det([Κ] + [S]) goes to zero.   
 
The panels collapse at a load much higher than the critical buckling load Pcr. In this so-
called postbuckled state, the deflection of a panel is large enough to introduce 
geometric non-linearities between the load and displacement of the panel. This means 
that the stiffness matrix [Κ] of the box becomes a function of the unknown 
displacements, i.e. 
 

 ( )[ ]{ } { }P=K ψψ         (7) 

 

where { }ψ  is a set of known and unknown nodal displacements and { }P  represents a 
set of external loads that act on the nodes. In order for the finite element model of the 
box to exhibit out-of-plane deformation, it must contain an imperfection, which in our 
case is introduced as an eccentricity of the applied loads [7] simulated by introducing a 
moment that is proportional to the load at the top and bottom edges using element 
COMBIN37. The nonlinear problem is solved step-wise using the Newton-Raphson 
method [15, 16]. The general algorithm proceeds as follows [5]. 
 

1. Prescribe known displacements { }i
kψ  of the nodes on the edges parallel to the y-

axis, in this case a uniform displacement. The superscript k denotes known dis-
placements and the subscript i is the load step. 

2. Compute the unknown forces { }iP  and displacements { }i
uψ  using the stiffness 

matrix from the earlier step K i-1 (For the first step, i = 1, the global stiffness 

matrix of the un-deformed panel is used K 0 ). 



 7 

 [ ] { } { }( ) { }ii
u

i
k

1-i P     K =+ ψψ  
3. Compute the updated stiffness matrix K i  corresponding to the configuration  

{ } { }i
u

i
k   ψψ + . 

4. Calculate restoring force { }i
rP  and the change in displacements { }iψ∆  as follows 

 [ ] { } { } { }( ) { } { }i
r

iii
u

i
k

i P+P=++K ψψψ ∆ . 

5. Convergence is checked by { } c  Max i ≤∆ψ  where c is an arbitrary small number 
for which equilibrium is approximately obtained. 

6. If the solution is not converged, add { }iψ∆  to { }i
uψ  , add { }i

rP  to { }iP  and repeat 
steps 3 - 5. 

7. If the solution is converged continue with the next load step 
 { } { } { } { } { } 1+i

k
ii

u
i

k
1+i

k +++ ψψψψψ ∆∆= . 
 
The loading is terminated when the stress-state at any point in the facings of the panels 
exceeds a predefined failure criterion. 
 
Failure criterion 
 
In this study the Tsai-Wu tensor failure theory [13] is used to obtain the ultimate load-
carrying capacity of a box. According to this theory, in the plane stress condition, 
material failure develops when f=1, where 
 

(8) 

 

where  
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The subscript j=t or j=c of strength σi,j ,i=x,y, denotes the strength in tension and 
compression, respectively. The expressions for Γ12 and Γ66 are approximations for 
paper materials [13]. It is assumed that the box fails as soon as this failure criterion is 
fulfilled in any point of the outer facings of the corrugated board.  
 
 
EVALUATION OF MODEL  
 
Boxes of different sizes and board grades, B-140T/112R/140T, C-140T/112R/140T, C-
140K/112R/140K and C-180L/112R/180L were studied. The corrugated board is 
coded, the first letter indicates the geometry of the core, see Table 2. The three 
following sets of a number and a letter indicate the liner and fluting composition of the 
board, see Table 1. Material data for the liners and fluting, measured according to the 
Scandinavian pulp, paper and board standard SCAN-P 67:93 and SCAN-P 46:83, is 
shown in Table 1 and geometry of the corrugated cores in Table 2. Observe that the 
compression strength is assumed to be 0.78*SCT (Short-span Compression Test) due 
to the small specimen size used in the SCT [17]. The finite element models do not 

yxxyyxyxf σστσσσσ 12
2

66
2

22
2

1121 2Γ+Γ+Γ+Γ+Γ+Γ=
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include any imperfections. Instead, eccentricity moments are introduced at the top and 
bottom edges.  
 
Evaluation of the element density requirements 
 
When performing a finite element analysis the chosen number of elements is a balance 
between accuracy and calculation time. A larger number of elements could give a more 
precise solution, but the calculation time increases dramatically with the number of 
elements. In order to check the influence of element size on the calculated failure load, 
finite element solutions were generated for boxes with a size of 300x300x300 mm 
(LengthxWidthxHeight). Eccentricity moments bending the panels outward, obtained 
in Ref. [7] as the residual after folding the flaps, are introduced at the top and bottom 
edges with 0.6 Nmm/mm for B-140T/112R/140T  and C-180L/112R/180L. Stiffness of 
the creases is 20.0 (N/mm)/mm for both boards. As can be seen in Table 3, the number 
of elements has little influence on the box strength estimates. The largest difference is 
for the 16 element B-140T/112R/140T box, suggesting that the element size is more 
important for light and thin board grades than for heavy and thick board grades. Figure 
4 shows the effect of element size on the Tsai-Wu failure criterion f , eq.(16), where 16 
elements give too low precision. So generally, 16 elements seem to be too few but 64 
elements and upwards give good accuracy for both B- and C-flute.  
 
Table 1. Material data for liners and flutings (Compression strength is 0.78*SCT and 

stiffness in compression is set equal to stiffness in tension) 

 
 
 
 
 
 

140 T Testliner 3 Avg Sd n
Grammage (g/m2) 136 0.9 30
Thickness (µm) 225 8.1 30
Tensile stiff MD (kN/m) 830 18 10
Tensile stiff CD (kN/m) 460 10 10
Tensile str MD (kN/m) 6.4 0.71 10
Tensile str CD (kN/m) 3.8 0.43 10
SCT MD (kN/m) 3.3 0.22 10
SCT CD (kN/m) 2.4 0.18 10

140 K Kraftliner Avg Sd n
Grammage (g/m2) 139 1.2 30
Thickness (µm) 195 5.8 30
Tensile stiff MD (kN/m) 1390 23 10
Tensile stiff CD (kN/m) 490 21 10
Tensile str MD (kN/m) 14.0 0.31 10
Tensile str CD (kN/m) 5.3 0.24 10
SCT MD (kN/m) 5.1 0.12 10
SCT CD (kN/m) 2.7 0.08 10

180 L Testliner 2 Avg Sd n
Grammage (g/m2) 178 1.3 30
Thickness (µm) 283 9.5 30
Tensile stiff MD (kN/m) 1190 18 10
Tensile stiff CD (kN/m) 550 15 10
Tensile str MD (kN/m) 9.97 0.98 10
Tensile str CD (kN/m) 4.63 0.54 10
SCT MD (kN/m) 4.98 0.21 10
SCT CD (kN/m) 3.29 0.16 10

112 R Recycled fluting Avg Sd n
Grammage (g/m2) 114 0.87 30
Thickness (µm) 199 8.2 30
Tensile stiff MD (kN/m) 911 19 10
Tensile stiff CD (kN/m) 354 13 10
Tensile str MD (kN/m) 7.32 0.26 10
Tensile str CD (kN/m) 2.9 0.16 10
SCT MD (kN/m) 3.8 0.16 10
SCT CD (kN/m) 2.12 0.12 10
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Table 2. Flute profiles. α is the ratio of flute to liner length. 
 

Profile B C 
Wavelength, λ  (mm) 6.3 7.8 
Flute height, hc (mm) 2.46 3.61 
Take-up factor, α 1.32 1.43 

 
 
Table 3. Failure load (N) of the whole box versus number of elements. 
 

300x300x300 mm, C-180L/112R/180L  
No. of elements  FEM (N) Index 

16 4768 1.04 
36 4631 1.01 
64 4630 1.01 

144 4605 1.00 
256 4590 1.00 

   
300x300x300 mm, B-140T/112R/140T 
No. of elements  FEM (N) Index 

16 2516 1.15 
36 2275 1.04 
64 2188 1.00 

144 2181 1.00 
256 2165 0.99 

 
             
  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Tsai-Wu value f of the inner facings, eq.(16), for the 300x300x300 mm box, 

B-140T/112R/140T with 16 and 144 elements respectively. 
  
 
Evaluation of Tsai-Wu failure criterion vs. compression load 
 
The collapse load of boxes size 300x300x100 mm and 300x300x300 mm is predicted 
using the Tsai-Wu failure criterion, eq. (8). Eccentricity moments bending the panels 
outward are introduced at the top and bottom edges with 0.6 Nmm/mm for C-
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140T/112R/140T. Crease stiffness is 20 (N/mm)/mm. In order to make the analyses 
converge within reasonable time, a Tsai-Wu value between f = 0.95 and f = 1.05 is 
used. Typically, the maximum difference in strength predictions between f = 0.95 and f 
= 1.05 is within 4%.  However, when small differences between subsequent predictions 
need to be studied a more accurate prediction is necessary. Figures 5 and 6 show 
typical load vs. Tsai-Wu curves and the load vs. out-of-plane displacements. Since 
there is almost a linear relationship between the Tsai-Wu value and the load in Figures 
5 and 6, the result from the FEM-calculation, Pi , can be adjusted using the present and 
previous Tsai-Wu value, fi and fi-1 and load step ∆P to obtain the failure load. 
 

( ) ii
ii

f Pf
ff

P
P +−

−
∆=

−

1
1

           (9) 

 
The box strength estimated using eq. (9) is Pf = 3052 N for C-140T/112R/140T, 
300x300x300mm and Pf = 4873 N for C-140T/112R/140T, 300x300x100mm. For the 
boxes in chapter 4 ( Appendix Table A1 and A2) the maximum correction with eq. (9) 
is 2.9% and the average correction is 1.2%.  
 

Figure 5. Load vs. Tsai-Wu value f and out-of-plane displacement for C-
140T/112R/140T, 300x300x300mm. Pf = 3052 N. Since eccentricity 
moments bending the panels outward are introduced at the top and bottom 
edges, the Tsai-Wu value and out-of-plane displacement are not zero at zero 
load. 
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Figure 6. Load vs. Tsai-Wu value f and out-of-plane displacement for C-

140T/112R/140T, 300x300x100mm. Pf = 4930 N. 
 
 
Additional failure criterion  
 
If boxes do not buckle, failure load is limited by the crushing strength of the corrugated 
board, see Figure 7. The crushing strength of the creased corrugated board is about 
50% of the edge crush test strength (ECT) [7], and the ECT can be predicted from the 
short-span compression test (SCT) of the board constituents [17]. Thus the crushing 
strength per unit length of the creased corrugated board, CBS, in the CD, see Figure 7, 
is 
 

( )







+α+= ∑

=
+

M

1k
1k2k2k21 SCTSCT78.0SCT78.0

2

85.0
CBS      (10) 

 
where α2k is the take-up factor of the corrugated core layer 2k and when M = 1, 2, 3 it 
corresponds to single, double or triple-wall board, see Figure 1. For board C-
140T/112R/140T  CBS = 2.59 N/mm. In chapter 3.2 the crushing strength of box no.1 
C-140T/112R/140T, 300x300x100mm, see Appendix Table A2, is Pcrush = 3108 N and 
corresponding experimental value is Pf,exp = 2932 N. Pcrush = 3823 N and Pf,exp = 3290 
N for box no.13 C-180L/112R/180L, 300x300x100mm, see Appendix Table A2. 
 

 
Figure 7. A crushed shallow box. 

Tsai-Wu, f

Lo
a

d
, P

 (
N

)

0

500

100

150

200

250

300

350

400

450

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

A out-of-plane displacement panel center (mm)

Tsai-Wu

out-of-plane



 12 

 
Influence of the edge stiffness 
 
The edge/crease stiffness is an important property for box compression strength 
because it affects the load distribution on the top and bottom edges when the side 
panels buckle. Thus, a soft edge prevents a redistribution of the load towards the 
corners of a box during buckling. This increases the bending of the panels and reduces 
box strength. Edge/crease stiffness can be measured by using a special rig [7]. Figures 
8a and 8b show the predicted failure load as a function of the edge stiffness for a box 
with B- and C-board, respectively. The predicted failure load increases rapidly with 
stiffness until stiffness gets close to the stiffness of a cut-edge. For the B-flute box the 
strength increases by about 16% between stiffness 2 and 100, whereas for C-flute the 
increase is about 8%. 
 

 
Figure 8a. Predicted failure load for B-140T/112R/140T, 300x300x300 mm. An index 

is included for stiffness 2.0, 20.0 and 100 (N/mm)/mm. 
 

 

Figure 8b. Predicted failure load for C-140T/112R/140T, 300x300x300 mm. An 
failure index is included for stiffness 2, 20 and 100 (N/mm)/mm. 
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Influence of eccentricity moments orientation on buckling modes 
 
Applying different eccentricity moments at the loaded edges triggers different buckling 
modes. Two alternative moment directions are used corresponding to a panel buckling 
direction inwards or outwards, see Figure 9. Results in Table 4 show that outward 
moment for all panels clearly gives the strongest box and inward moment gives the 
weakest box. Since the panels are completely identical and the value of the moment is 
0.6 Nmm/mm in all cases, the difference in strength is only caused by geometrical 
differences in the buckling patterns. Displacements of the box corners in particular will 
be different, see Figure 10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Applied eccentricity moments. 
 
Table 4. Boxes size 300x300x300 mm and symmetrical board C-140K/112R/140K 
 

Driving moment Failure load, N Index Buckling 
all out 3942.9 100 all out 
all in 3565.8 90 all in 

2 out/2 in 3673.5 93 2 out/2 in 
3 out/1 in 3671.8 93 3 out/1 in 
3 in/1 out 3566.3 90 3 in/1 out 

 

in out 
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Figure 10. Schematics of deformed corner cross-sections at the centre of the box. The 

dot-dashed lines indicate original position of the corners. The schematics 
are not drawn to scale. The three first buckling modes in Table 4 are shown 
at index load 90.  

 
If the ratio between height and width of the panels is different panels can buckle in 
completely different ways, see Figure 11. 
 

 
Figure 11. Tsai-Wu value f of the inner facings, eq.(16). Different buckling modes of 

boxes with the same perimeter. 
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EXPERIMENTS AND VERIFICATION OF FINITE ELEMENT MODEL 
 
Boxes made from board with either a B-flute or a C-flute profile, see Table 2, have 
been tested to verify the finite element model. About fifty different box geometries for 
each flute profile and a total of 1,316 boxes were tested. All boxes were unprinted and 
manually creased, slotted, glued and erected. All boxes were conditioned at 23°C and 
at 50% RH for at least 24 hours. Some of the tests were performed at SCA Packaging 
Munksund with a rigid platen box compression tester, and some at SCA Packaging 
Research, Aylesford, with a floating platen (rotational unrestrained)  box compression 
tester. Compression speed was 10 mm per minute and time to failure was about one 
minute.  
 
Specifications, box compression test (BCT) results and FEM estimates of the tested 
boxes are listed in Table A1 and Table A2 in the Appendix together with material data 
for the liners and mediums in Table A3. All predicted strengths are based on an edge 
stiffness of 2 N/mm2 and an element density of 144 elements. Moment applied at the 
loaded edges is 0.6 Nmm/mm [7] in the conservative configuration in/out, see Table 4. 
 
Figures 12 and 13 show comparisons between box strength estimated with FEM and 
the strength of tested handmade boxes according to Table A1 and A2, respectively. On 
average, the finite element simulation predicted strength 3 % above the tested average 
of boxes in Figure 12 and 5 % below average of boxes in Figure 13. However, two of 
the tested boxes in Figure 13 (box no.1 and 13) have a strength that is significantly less 
than predicted. These boxes are shallow, which makes them less inclined to buckle and 
they fail due to crushing instead, see chapter 3.3. No explanation has yet been found 
for the over-conservative predictions for box geometries Nos. 29, 30 and 49. 
 

Figure 12. FEM-estimate box strength compared to test results for a range of 
handmade boxes according to Table A1. Flute profile B, see Table 2. 
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Figure 13. FEM-estimate box strength compared to test results for a range of 
handmade boxes according to Table A2. Flute profile C, see Table 2. 

 
 

CONCLUSIONS AND REMARKS 
 
A finite element model of corrugated board containers is shown to predict the failure 
load of boxes, made from B- and C-board, within an average error margin of 5%. 
Effective material properties of the homogenised corrugated cores have been used, and 
each layer of the corrugated board is assumed to be orthotropic linear elastic. It is 
shown that convergence is obtained with relatively few elements, e.g. 64 elements are 
quite sufficient for a regular size box, i.e. 300x300x300 mm. The edge stiffness has a 
significant influence on the predicted failure loads because it affects the load 
distribution on the top and bottom edges when the side panels buckle. There is also a 
variation of about 10% in the failure load due to different buckling modes, see Table 3. 
This is attributed to different constraints imposed on the side panels by the corners of a 
box. Boxes of different sizes and board grades were tested and compared to predicted 
strengths. On average, the difference between experimental and predicted values was 
small. However, for some boxes the difference was significant because the boxes did 
not buckle but were crushed instead. 
 
The described FE-method for predicting the top-to-bottom compressive strength of 
corrugated containers has been used as the basic component in the subsequent develop- 
ment of a user-friendly computer-based tool for strength design of containers. The 
graphical interface of this design tool is shown in Figure 14. The example shows 
menus that relate to input data definition.  
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Figure 14.  The graphical interface of a design tool for corrugated boxes. 
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Table A1. Specifications, test results and FEM-estimates for handmade B-flute boxes, 

COV was about 5 % for all tested boxes.  
 
Box no. Length Width Height Flute Board grade no. of 

samples 
Mean BCT FEM BCT/FEM 

 (mm) (mm) (mm)    (N) (N)  

1 200 150 300 B 125MK/150RF/125T 6 1801 1794 1.004 
2 300 225 300 B 125MK/150RF/125T 6 1939 1908 1.015 
3 350 350 300 B 125MK/150RF/125T 6 2072 1942 1.066 
4 400 300 300 B 125MK/150RF/125T 6 2020 1881 1.074 
5 400 300 200 B 125MK/150RF/125T 6 1924 1824 1.054 
6 400 300 400 B 125MK/150RF/125T 6 1820 1892 0.962 
7 400 300 600 B 125MK/150RF/125T 6 1839 1915 0.960 
8 400 300 800 B 125MK/150RF/125T 6 2042 1950. 1.047 
9 450 250 300 B 125MK/150RF/125T 6 1842 1850. 0.996 

10 500 200 300 B 125MK/150RF/125T 6 1646 1723 0.955 
11 535 400 300 B 125MK/150RF/125T 6 1931 1964 0.983 
12 550 150 300 B 125MK/150RF/125T 6 1631 1554 1.049 
13 300 300 100 B 140T/112RF/140T 10 2216 2543 0.871 
14 300 300 200 B 140T/112RF/140T 10 1794 1866 0.962 
15 300 300 300 B 140T/112RF/140T 10 1981 1954 1.013 
16 300 300 450 B 140T/112RF/140T 10 1657 1959 0.846 
17 300 300 600 B 140T/112RF/140T 10 1657 1975 0.839 
18 400 400 400 B 140T/112RF/140T 10 2148 1953 1.099 
19 500 300 400 B 140T/112RF/140T 10 2040 1903 1.072 
20 600 200 400 B 140T/112RF/140T 10 1893 1771 1.069 
21 600 200 300 B 140T/112RF/140T 10 1863 1815 1.026 
22 300 300 100 B 180L/112RF/180L 20 2703 3229 0.837 
23 300 300 200 B 180L/112RF/180L 20 2702 2493 1.084 
24 300 300 300 B 180L/112RF/180L 20 2567 2629 0.976 
25 300 300 450 B 180L/112RF/180L 20 2301 2608 0.882 
26 300 300 600 B 180L/112RF/180L 19 2370 2656 0.892 
27 400 400 400 B 180L/112RF/180L 20 2597 2606 0.997 
28 400 400 600 B 180L/112RF/180L 17 2377 2642 0.899 
29 400 400 133 B 180L/112RF/180L 20 2754 2675 1.029 
30 375 250 400 B 186K/112RF/200T 10 3020 2670 1.131 
31 420 280 400 B 186K/112RF/200T 10 2471 2595 0.952 
32 450 300 400 B 186K/112RF/200T 10 2618 2608 1.003 
33 480 320 400 B 186K/112RF/200T 10 2785 2635 1.057 
34 510 340 400 B 186K/112RF/200T 10 3118 2710 1.151 
35 540 360 200 B 186K/112RF/200T 9 2726 2697 1.011 
36 540 360 400 B 186K/112RF/200T 10 2540 2743 0.926 
37 540 360 600 B 186K/112RF/200T 10 2824 2782 1.015 
38 570 380 400 B 186K/112RF/200T 10 3158 2740 1.152 
39 590 390 400 B 186K/112RF/200T 10 2805 2740 1.024 
40 300 300 100 B 186K/150RF/180T 10 2716 2839 0.956 
41 300 300 200 B 186K/150RF/180T 10 2657 2425 1.096 
42 300 300 300 B 186K/150RF/180T 10 2795 2694 1.037 
43 300 300 450 B 186K/150RF/180T 10 2569 2625 0.979 
44 300 300 600 B 186K/150RF/180T 10 2481 2722 0.911 
45 400 400 400 B 186K/150RF/180T 10 3109 2887 1.077 
46 500 300 400 B 186K/150RF/180T 10 3442 2479 1.388 
47 600 200 400 B 186K/150RF/180T 10 2932 2251 1.302 
48 600 200 300 B 186K/150RF/180T 10 2893 2234 1.295 
49 400 400 400 B 280K/150RF/280K 19 4762 4240 1.123 
50 500 300 400 B 280K/150RF/280K 20 4866 3814 1.276 
51 600 200 400 B 280K/150RF/280K 20 3987 3378 1.180 

     Total 566  Mean 1.0314 
        CV % 11.4 
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Table A2. Specifications, test results and FEM-estimates for handmade C-flute boxes, 
COV was about 5 % for all tested boxes.  

 
Box no. Length Width Height Flute Board grade no. of  

samples 
Mean BCT FEM BCT/FEM 

 (mm) (mm) (mm)    (N) (N)  

1 300 300 100 C 140T/112RF/140T 10 2932 4931 0.595 
2 300 300 200 C 140T/112RF/140T 10 2177 2597 0.838 
3 300 300 300 C 140T/112RF/140T 10 2187 2873 0.761 
4 300 300 450 C 140T/112RF/140T 10 2138 2857 0.748 
5 300 300 600 C 140T/112RF/140T 10 2118 2947 0.719 
6 300 300 150 C 140T/112RF/140T 30 2546 2932 0.868 
7 300 300 300 C 140T/112RF/140T 30 2411 2873 0.839 
8 300 300 450 C 140T/112RF/140T 30 2246 2857 0.786 
9 400 400 400 C 140T/112RF/140T 10 2540 2812 0.903 

10 500 300 400 C 140T/112RF/140T 10 2442 2685 0.909 
11 600 200 400 C 140T/112RF/140T 10 2324 2368 0.981 
12 600 200 300 C 140T/112RF/140T 10 2226 2385 0.933 
13 300 300 100 C 180L/112RF/180L 20 3290 6113 0.538 
14 300 300 200 C 180L/112RF/180L 19 2996 3481 0.861 
15 300 300 300 C 180L/112RF/180L 20 3168 3844 0.824 
16 300 300 450 C 180L/112RF/180L 20 2806 3807 0.737 
17 300 300 600 C 180L/112RF/180L 20 2889 3928 0.735 
18 400 400 400 C 180L/112RF/180L 20 3417 3738 0.914 
19 400 400 600 C 180L/112RF/180L 19 3178 3720 0.854 
20 400 400 133 C 180L/112RF/180L 20 4134 4762 0.868 
21 400 400 400 C 186K/112RF/180T 19 3488 3701 0.942 
22 500 300 400 C 186K/112RF/180T 20 3289 3369 0.976 
23 600 200 400 C 186K/112RF/180T 19 2929 2906 1.008 
24 375 250 400 C 186K/112RF/200T 10 3275 3775 0.867 
25 395 260 400 C 186K/112RF/200T 10 3265 3750 0.871 
26 420 280 400 C 186K/112RF/200T 10 3403 3746 0.908 
27 450 300 400 C 186K/112RF/200T 9 3805 3720 1.023 
28 480 320 400 C 186K/112RF/200T 10 3913 3735 1.048 
29 510 340 400 C 186K/112RF/200T 10 3971 2764 1.437 
30 540 360 200 C 186K/112RF/200T 10 4638 3197 1.451 
31 540 360 600 C 186K/112RF/200T 10 3775 3904 0.967 
32 540 360 400 C 186K/112RF/200T 20 4011 3807 1.053 
33 570 380 400 C 186K/112RF/200T 10 4226 3835 1.102 
34 590 390 400 C 186K/112RF/200T 10 4324 3841 1.126 
35 300 300 300 C 186K/150RF/180T 29 3606 4170 0.865 
36 300 300 100 C 186K/150RF/180T 10 4423 4959 0.892 
37 300 300 200 C 186K/150RF/180T 10 3707 3542 1.046 
38 300 300 300 C 186K/150RF/180T 10 3373 4170 0.809 
39 300 300 450 C 186K/150RF/180T 10 3285 3818 0.860 
40 300 300 600 C 186K/150RF/180T 10 3167 3904 0.811 
41 360 240 300 C 186K/150RF/180T 30 3730 3393 1.099 
42 400 200 300 C 186K/150RF/180T 29 3545 3026 1.172 
43 400 400 400 C 186K/150RF/180T 10 3864 3846 1.005 
44 500 300 400 C 186K/150RF/180T 10 4030 3491 1.155 
45 600 200 400 C 186K/150RF/180T 10 3462 3002 1.153 
46 600 200 300 C 186K/150RF/180T 10 3275 2945 1.112 
47 400 400 400 C 280K/150RF/280K 19 6596 6097 1.082 
48 500 300 400 C 280K/150RF/280K 20 6315 5306 1.190 
49 600 200 400 C 280K/150RF/280K 18 5811 4465 1.301 

     Total 750  Mean 0.950 
        CV % 19.6 
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Table A3. Material data for liners and flutings. 

 
 

125 Testliner
Grammage (g/m2) 121
Thickness (µm) 200
Tensile stiffness MD (MN/m) 0.968
Tensile stiffness CD (MN/m) 0.363
Tensile strength MD (kN/m) 7.744
Tensile strength CD (kN/m) 2.783
SCT MD (kN/m) 3.509
SCT CD (kN/m) 1.815

125 Kraftliner
Grammage (g/m2) 125
Thickness (µm) 164
Tensile stiffness MD (MN/m) 1.374
Tensile stiffness CD (MN/m) 0.503
Tensile strength MD (kN/m) 12.8
Tensile strength CD (kN/m) 4.15
SCT MD (kN/m) 4.74
SCT CD (kN/m) 2.53

140 Testliner
Grammage (g/m2) 136
Thickness (µm) 225
Tensile stiffness MD (MN/m) 0.83
Tensile stiffness CD (MN/m) 0.46
Tensile strength MD (kN/m) 6.4
Tensile strength CD (kN/m) 3.8
SCT MD (kN/m) 3.33
SCT CD (kN/m) 2.38

140 Kraftliner
Grammage (g/m2) 139
Thickness (µm) 195
Tensile stiffness MD (MN/m) 1.39
Tensile stiffness CD (MN/m) 0.49
Tensile strength MD (kN/m) 14.0
Tensile strength CD (kN/m) 5.3
SCT MD (kN/m) 5.1
SCT CD (kN/m) 2.7

180 Testliner (L)
Grammage (g/m2) 178
Thickness (µm) 283
Tensile stiffness MD (MN/m) 1.19
Tensile stiffness CD (MN/m) 0.55
Tensile strength MD (kN/m) 9.97
Tensile strength CD (kN/m) 4.63
SCT MD (kN/m) 4.98
SCT CD (kN/m) 3.29

186 Kraftliner
Grammage (g/m2) 182
Thickness (µm) 223
Tensile stiffness MD (MN/m) 1.681
Tensile stiffness CD (MN/m) 0.614
Tensile strength MD (kN/m) 16.59
Tensile strength CD (kN/m) 7.05
SCT MD (kN/m) 6.07
SCT CD (kN/m) 3.51

200 Testliner
Grammage (g/m2) 200
Thickness (µm) 315
Tensile stiffness MD (MN/m) 1.537
Tensile stiffness CD (MN/m) 0.501
Tensile strength MD (kN/m) 12.34
Tensile strength CD (kN/m) 4.24
SCT MD (kN/m) 5.68
SCT CD (kN/m) 3.16

280 Kraftliner
Grammage (g/m2) 280
Thickness (µm) 338
Tensile stiffness MD (MN/m) 2.376
Tensile stiffness CD (MN/m) 0.875
Tensile strength MD (kN/m) 23.8
Tensile strength CD (kN/m) 9.76
SCT MD (kN/m) 8.65
SCT CD (kN/m) 5.06

112 Recycled fibre fluting
Grammage (g/m2) 114
Thickness (µm) 199
Tensile stiffness MD (MN/m) 0.911
Tensile stiffness CD (MN/m) 0.354
Tensile strength MD (kN/m) 7.32
Tensile strength CD (kN/m) 2.9
SCT MD (kN/m) 3.8
SCT CD (kN/m) 2.12

150 Recycled fibre fluting
Grammage (g/m2) 151
Thickness (µm) 231
Tensile stiffness MD (MN/m) 1.142
Tensile stiffness CD (MN/m) 0.449
Tensile strength MD (kN/m) 8.95
Tensile strength CD (kN/m) 3.45
SCT MD (kN/m) 4.82
SCT CD (kN/m) 2.76



Detta är en tom sida!


