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Abstract

The population is growing, and an increasing proportion of the population live in urban areas.
As a consequence, human exposure to noise and vibrations is increasing. Larger and denser cit­
ies lead to a higher amount of traffic close to where people work and live. Land close to railways
and heavily trafficked roads, previously left unexploited, are now being used for dwellings and
offices. Vibrations are often accompanied by noise, to which long­term exposure is known
to have serious health effects. Furthermore, some buildings such as hospitals and research
facilities contain instruments that are highly sensitive to vibrations, and require proper vibra­
tion isolation to ensure safe operation. To address the problems of noise and vibrations, their
generation and propagation need to be understood.

In this thesis, numerical modeling strategies for predicting ground­borne vibrations from a
surface railway track have been studied. Focus have been on the vibration transmission from
the track to the free­field, and to a smaller extent on the actual load generation due to a train
running on an uneven rail.

The wave propagation in the ground resulting from the dynamic loads on the track can be cal­
culated using numerous numerical techniques. The finite element method offers a large flexib­
ility regardingmodeling capabilities in terms of geometrical conditions andmaterial properties.
However, the need for discretizing a large soil volume, under and between the track and the
receiver, can generate very large systems of equations that are time­consuming or practically
impossible to solve. Computational savings can be made by introducing a coordinate trans­
formation into the governing equations, so that the computational model is formulated in a
moving frame of reference following the vehicle. Furthermore, if a horizontally layered visco­
elastic half­space is assumed, a so called Green’s function (a fundamental solution) for the
ground dynamic response can be found very efficiently by employing a semi­analytical solu­
tion procedure in frequency–wavenumber domain. Here, the Green’s function in a moving
reference frame was used for establishing a dynamic stiffness matrix for a set of points in the
track–soil interface, to which a finite element representation of the track was coupled. After
solving the coupled track–soil problem, the Green’s function was used again to obtain the
free­field ground vibrations resulting from the forces in the track–soil interface. The influence
of different modeling strategies regarding the railway track was investigated, and further the
change in response due to a mitigation measure under the track was studied using this model.

Additional efficiencymay be obtained by applying a so called 2.5D procedure, in which a Four­
ier transform with regards to the track direction coordinate is performed. Instead of solving
one large 3D problem, a sequence of 2D problems is solved for a set of discrete wavenumbers,
after which the 3D response is recovered by an inverse Fourier transform. In the thesis, a very
time efficient model is formulated that employs a 2.5D finite element representation of the



railway track, coupled to a dynamic stiffness matrix of the layered ground obtained using the
aforementioned semi­analytical approach.

Finally, a 2.5D model employing finite elements for both the track and the surrounding soil
was implemented and compared to the two previously mentioned coupled models, showing
very good agreement.
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Part I

Introduction and Overview





1 Introduction

1.1 BACKGROUND

The population is growing. Currently (year 2020), 88% of the Swedish population live in
urban areas. For the population worldwide, the figure is 56%. These numbers are increasing.
[1]

As a consequence of the urban densification, human exposure to noise and vibrations is in­
creasing. Larger and denser cities lead to a higher amount of traffic close to where people work
and live. In most cities, construction sites emitting noise and vibrations are constantly present.
Land close to railways and heavily trafficked roads, previously left unexploited, are now being
used for dwellings and offices. Vibrations are often accompanied by noise, which is known to
cause serious health effects. Furthermore, some buildings such as hospitals and research facil­
ities contain instruments that are highly sensitive to vibrations, and require proper vibration
isolation to ensure safe operation.

To address the problems of noise and vibrations, their generation and propagation need to be
known. When the physics behind the observed phenomena is understood, appropriate mit­
igation measures may be undertaken. To describe the physics in detail, mathematical models
are required. These models are generally so complex that they need to be solved using com­
puters. Such models can then be used to evaluate the efficacy of different design alternatives,
by numerically predicting the outcome of different scenarios. They can therefore be helpful in
making better decisions during the early stages of design of, for example, a new building close
to a railway track.

1.2 AIMS AND OBJECTIVES

The long­term aim of the work presented in this thesis is to reduce noise and vibrations for
residents close to railways and heavily trafficked roads, and to enable safe operation of sensitive
equipment and instruments in such areas. To accomplish the long­term goal, tools are needed
to understand and predict the generation and propagation of such vibrations.



2 1 Introduction

Theobjective in this work is to investigate and develop efficient numerical techniques andmod­
els that can be used in engineering practice for predicting ground­borne vibrations emanating
from man­made sources (so called environmental vibrations), such as construction activities,
road and railway traffic. Apart from being able to properly represent the transmission of the
vibrations through the ground, and eventually into a building structure, such models need to
include the source of the vibrations.

In this thesis, two numerical techniques are combined to predict the free­field ground vi­
brations caused by a train running on a railway track. The influence of different modeling
strategies regarding the railway track is investigated, and further the change in response due to
a mitigation measure under the track is studied.

1.3 LIMITATIONS

Vibrations from a train running at constant speed along a straight railway track with constant
geometry is considered. Vibrations due to rail curvature, rail joints/switches, transition zones,
varying subgrade stiffness, etc. are not accounted for. However, vertical rail unevenness of
the rail is considered. The vehicle speed is assumed to be lower than the phase velocity of the
elastic waves in the ground. Furthermore, only the free­field vibrations on the soil surface are
considered, i.e. the transmission of vibrations into buildings have not yet been studied.

1.4 OUTLINE

This thesis is divided into two parts:

Part I contains an introduction to the research area of environmental vibrations, with particular
emphasis on the physics and the numerical modeling of ground­borne vibrations. In Chapter
2, some general concepts regarding the generation and propagation of ground vibrations are
introduced, together with a brief summary of vibration mitigation measures. Further, the
excitation mechanisms behind ground vibrations generated by railway traffic are introduced,
with a short review of different computational modeling strategies aiming to simulate some of
these mechanisms and the resulting wavefield in the ground. Chapter 3 provides the basics of
the physics that govern the dynamics of structural systems, and different wave types in struc­
tural elements and an elastic continuum are derived. Two numerical methods used extensively
in the present work are described in Chapter 4, namely the Finite Element Method and the
Layer Transfer Matrix method. How these methods can be used for efficiently evaluating the
response of moving loads is given special attention. Three different computational models that
have been implemented are described in Chapter 5 along with a small example case. A sum­
mary of the appended papers are given in Chapter 6, and finally some concluding remarks are
given in Chapter 7. Part II contains the appended papers.



2 Environmental Vibrations

2.1 GENERAL REMARKS

In the urban environment, there is a vast number of sources producing vibrations. Heavily
trafficked roads, railways, and construction work (e.g. pile driving), are a few examples of
external sources that can generate vibrations perceptible inside a building. Rotating machinery,
ventilation systems, walking people, closing doors, are examples of internal vibration sources.

The current work is focused on models for predicting vibrations generated by external sources,
where the vibrations are generated in one location and transmitted to a second location through
the ground. The process of vibration transmission is often described in terms of a source, a
medium and a receiver. The receiver can be a building, a part of a building structure, equipment
or a person inside the building. The medium, or transmission path, where the vibrations are
transferred as elastic waves, includes the ground but could also, depending on the receiver,
include the building; see Figure 2.1.

PP

Figure 2.1: Vibration transmission from the source, via the transmission path, to the receiver.
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2.2 EFFECTS OF GROUND-BORNE VIBRATIONS

Ground­borne vibrations may cause annoyance to humans, through perceptible motion of
building floors and radiated noise. Ground­borne vibrations from pile driving and blasting
during construction may also lead to structural damage of buildings, however such effects
from road and railway traffic are very rare [2]. Furthermore, the operation of sensitive equip­
ment in for example hospitals or research facilities may be adversely affected by ground­borne
vibrations.

Vibration is an oscillatory motion around a static equilibrium, and such a motion may be
described or quantified in many different ways using different descriptors. The amplitude of
the vibration may be described in terms of the maximum displacement, velocity or accelera­
tion during the event, or in terms of an “effective value” calculated as the root­mean­square
(RMS). Further, a vibrationmay consist of a single harmonic motion or have a broad frequency
content.

In the frequency range 20−250Hz, vibrations inside buildings may lead to acoustic radiation
heard as a rumbling noise. Furthermore, the vibrations may excite resonance frequencies of
structural members and furniture inside the building, producing a rattling noise [3]. At low
frequencies (< 80Hz), humans are sensitive to whole­body vibrations, but how the vibrations
are perceived also depends on the amplitude and the duration of the vibration [2]. There
are studies suggesting that environmental noise contributes to cardiovascular risk of coronary
artery disease, hypertension, stroke and heart failure [4].

The international standard ISO 2631 [5] specifies vibration criteria guidelines for different ap­
plications in terms of allowable RMS values of vibration velocity in 1/3 octave bands. These
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Figure 2.2: Vibration requirements. ISO guidelines and VC curves.



2.3 Ground vibrations 5

are shown in Figure 2.2, together with so called Vibration Criterion (VC) curves, that are fre­
quently used by manufacturers of sensitive equipment to specify maximum allowable vibration
levels.

2.3 GROUND VIBRATIONS

2.3.1 Wave propagation

Ground vibrations propagate as elastic waves. In an infinite, homogeneous, elastic medium (a
so called full­space), only two different types of waves exist; the P­wave and the S­wave, which
propagate independently of each other. The P­waves are also called pressure, dilational, longit­
udinal, irrotational or primary waves. P­waves are the fastest moving waves, and the particle
movement is parallel with the wave propagation direction. The S­waves are also called shear,
rotational, equivoluminal or secondary waves, and are characterized by a particle movement
that is perpendicular to the wave propagation direction. However, in a homogeneous, elastic
semi­infinite medium involving a free surface (a so called half­space), the P­ and S­waves in­
teract at the surface, resulting in a surface wave called the Rayleigh wave, propagating with a
slightly lower velocity than the S­wave. The particle motion is elliptical, and the amplitude
decreases with depth. At the surface, the particle motion is retrograde. At depths larger than
about 1.5 wavelengths, the particle displacement amplitude is only a few percents of the max­
imum value, see further Section 3.3.2. The P­, S­ and Rayleigh waves are shown schematically
in Figure 2.3.

For a harmonic excitation, the wavelength λ of the resulting waves are λ = c/f , where c is
the wave propagation speed (the so called phase velocity) of the respective wave type and f is
the frequency, in Hz, of the harmonic load. The wavenumber is defined as k = 2π/λ and is

Figure 2.3: P­, S­ and Rayleigh waves.
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the space domain equivalent of the angular frequency ω in time domain (ω = 2πf = 2π/T ).

Disregarding any energy dissipation due to material damping, the total energy within a trav­
eling wave remains constant. However, since the wavefront increases in size with increasing
distance from the source, the energy density decreases, causing an attenuation of the particle
displacement amplitude. Contrary to the P­ and S­waves, that propagate away from a point
source with spherical wavefronts, the Rayleigh wave propagates only along the surface with a
circular wavefront. Therefore, the attenuation is weaker for the Rayleigh wave than for the P­
and S­waves. The Rayleigh wave carries about 2/3 of the energy transmitted into the ground
from a vertical oscillatory load on the surface of an elastic half­space [6]. Furthermore, due
to the lower attenuation of the Rayleigh wave, the particle displacement on the soil surface is
often primarily due to the Rayleigh wave, especially at longer distances.

The earth is not a homogeneous half­space. All soils are layered to some extent, with different
material properties within and between the different layers. Hence, waves propagate with
different velocities in the different layers. When a wave arrives at an interface between two
layers with different elastic properties, the wave is partially reflected and partially refracted.
Similarly to the case of P­ and S­waves interacting at the free surface of a homogeneous half­
space, interaction between the two waves takes place along an interface between two different
materials. The layering also introduces surface waves other than the fundamental Rayleigh
wave. These are often called P­SV waves, indicating that they stem from interacting P­ and
vertically polarized S­waves. In fact, the depth and material properties of the different soil
layers have a huge impact on the vibration response. Some typical wave speeds of P­ and
S­waves in different soil materials are shown in Figure 2.4.

As will be shown in Section 3.3.2, the speeds with which the P­, S­ and Rayleigh waves propag­
ate (cp, cs and cR) within a homogeneous material are independent of frequency. Such waves
are called non­dispersive. In a layered soil, with homogeneous layers, the surface waves become
dispersive due to the fact that the wavefronts potentially span several soil layers with different
mechanical properties. For very low frequencies, i.e. long wavelengths, the velocity of the sur­
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Figure 2.4: Phase velocities of P­ and S­waves in some typical ground materials [7].



2.3 Ground vibrations 7

face wave is generally governed by the phase velocity in the lower soil layers. On the contrary,
for higher frequencies, i.e. short wavelengths, when most of the surface wave is contained in
the upper layer(s), the phase velocity of the Rayleigh wave in the upper layer(s) governs the
velocity of the surface wave. This is illustrated in Figure 2.5, showing the so called dispersion
diagrams of the P­, S­ and Rayleigh waves for the two materials of a layered ground consist­
ing of a 4 m deep clay shale layer, overlaying a half­space. The dispersion curves of the stiffer
half­space material are shown in blue, whereas the corresponding curves for the soil layer are
shown in red. The curves are shown in a wavenumber–frequency diagram, so that the phase
velocity of each wavetype is given by the inverse of the slope in the diagram (c = ω/k). The
lines have a constant slope, i.e. the same phase velocity regardless of frequency. The curves
are displayed over a contour plot showing the amplitude of vertical response due to a vertical
harmonic excitation of the soil surface, where black indicates high response and white indicates
low response. For excitation frequencies over about 15Hz, the response for a given frequency
is dominated by wavenumbers around the Rayleigh wave of the top soil material, meaning that
the fundamental surface wave is practically unaffected by the higher phase velocities in the un­
derlying half­space. An increasing number of higher order waves, faster than the fundamental
surface wave, emerge for increasing frequencies. For frequencies below 5 Hz, the response on
the soil surface is dominated by lower wavenumbers pertaining to the phase velocity in the
underlying half­space, and in the range ∼ 5–15 Hz the velocity of the wave dominating the
response is affected by both the top soil layer and the half­space.

Figure 2.5: Dispersion curves for a layered half­space. Straight lines represent P­waves (dot­
ted), S­waves (solid) and Rayleigh­waves (dashed) of the top soil (red) and the
half­space material (blue).
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In reality soil is not a homogeneous, linearly elastic medium. Soil is a granular material that
typically displays a highly non­linear behavior. However, for the frequencies of interest in en­
vironmental vibrations, the wavelengths are much longer than the typical particle size, which
makes a continuum model reasonable. For most problems relating to environmental vibra­
tions, the strain levels remain relatively low, especially at some distance from the source, jus­
tifying a linear elastic approach. In all forthcoming sections and chapters, a linear elastic con­
tinuum approach is assumed for the soil in the numerical predictions of ground vibrations.
Further, it is assumed that the soil is horizontally stratified, i.e. that it consists of horizontal
layers.

2.3.2 Ground response to stationary and moving loads

The response of the ground to a dynamic load depends, apart from the site conditions (i.e. soil
stratification and elastic properties), on the load distribution in space and time. The distribu­
tion in time, i.e. the load time­history signal, can be decomposed into its spectral components
through a Fourier transform. The analysis of single harmonic excitation components, in con­
trast to a transient time­history analysis, is sometimes preferred both due to computational
efficiency and physical insight.

When a harmonic load with frequency f is stationary, i.e. remains in the same position on the
soil surface, the response in a stationary receiver anywhere on the soil surface is also harmonic
with the same frequency. If the load is moving with a constant velocity on the soil surface, the
response in a receiver moving with the same velocity is also harmonic with the frequency of
the load. However, if the receiver position remains fixed and the load is moving (or vice versa),
the response in the receiver becomes transient. The response amplitude increases as the load
approaches the receiver, and decreases as the load recedes away from the receiver. Furthermore,
the response in the stationary receiver contains more frequencies than the excitation frequency
f of the moving load. When the load is approaching the receiver, the wavelengths of the waves
reaching the receiver are compressed, and instead elongated as the load moves away from the
receiver. This is known as the Doppler effect. This phenomenon is illustrated in Figure 2.6,
for a unit harmonic load at f = 40 Hz distributed over a circular area (r = 0.5 m) on the
soil surface. Figure 2.6 (a) shows the wavefield on the soil surface when the load is stationary,
whereas in (b) the load is moving with a velocity of v = 0.38cR = 100m/s along the positive
x­axis. The time­history response of a stationary point, located at (x, y) = (0, 15), is shown
in Figure 2.7, for the case of a stationary load (a), and for the case of the moving load (b).
In figure (b), for the moving load, the time t = 0 corresponds to when the load is located at
(x, y) = (0, 0). The difference in time periods for one cycle of vibration in the beginning and
the end of the event is clearly seen.

A moving load generates vibrations in a stationary receiver even when the load is constant.
This is because the constant load causes a deflection of the soil surface that follows the moving
load, and as the deflected soil surface passes the receiver a transient movement is registered.
The response of the soil surface when the constant load moves at a velocity of v = 0.38cR,
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Figure 2.6: Wavefield generated by a harmonic unit load at f = 40 Hz that is stationary (a),
and moving along the x­axis at the speed v = 0.38cR = 100 m/s (b) .

well below the Rayleigh wave speed in the soil material, is shown in Figure 2.8 (a). When the
load velocity approaches the Rayleigh wave speed, the soil displacement increases as shown in
Figure 2.8 (b). When the load velocity exceeds the Rayleigh wave speed, a number of waves
are generated behind the load, as shown in Figure 2.8 (c). High­speed trains on poor soil
conditions, moving at critical speed, close to or faster than the wave speed of the soil material,
generating high vibration amplitudes in the track and the surrounding soil, is a well­known
phenomenon and has been studied by several researchers. A famous example from Sweden is
that of Ledsgård, where the passenger train X­2000 generated very high ground vibrations due
to poor soil conditions [8].
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Figure 2.7: Time­history of the displacements in a stationary point 15 m from a harmonic unit
load at f = 40Hz that is stationary (a), and moving along the x­axis at the speed
v = 0.38cR = 100 m/s (b) .
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Figure 2.8: Constant unit load moving along the x­axis at the speeds v = 0.38cR (a), v =
1.0cR (b) and v = 1.15cR (c).

2.4 VIBRATION REDUCTION METHODS

With reference to Figure 2.1, measures to reduce the ground­borne vibrations experienced by
a receiver may be directed to the source, the transmission path or the receiver.

When vibration mitigation measures are directed to the source, the general idea is to reduce
the forces transmitted from the source to the ground. This may be achieved by introducing
a resilient element under the source that modifies the transmissibility, i.e. the ratio of the
transmitted force to the applied force. This concept is illustrated in Figure 2.9, showing the
transmissibility of a single­degree­of­freedom (SDoF) system subjected to a harmonic load.
Depending on the relation between the frequency of the applied load, ω, and the resonance
frequency of the SDoF system, ωn, different amounts of the applied load P0 are transferred
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Figure 2.9: Transmissibility for harmonic excitation, for different factors of critical damping
ξ. After [9].

to the support. Hence, when a resilient element is introduced under the source, the resonance
frequency of the system decreases, increasing the ratio ω/ωn. For loading frequencies higher
than the new resonance frequency of the system, the transmissibility decreases, thereby dy­
namically isolating the mass. This comes at the cost, however, of an increased transmissibility
around the new resonance frequency. Apart from the elastic properties of the resilient element,
the transmissibility is governed also by the damping properties, as indicated by the difference
between the curves in the diagram.

For railway tracks an example of a resilient element is an elastic mat placed under the ballast, a
so called under­ballast mat, in the case of a conventional ballasted track, or underneath the slab
in the case of a slab track resulting in a so called floating slab. Resilient elements may also be
introduced higher up in the track structure, e.g. in the rail fasteners. However, to dynamically
isolate the track for frequencies relevant to ground vibration (< 80 Hz), a large portion of
the track mass should be located over the resilient element [10]. The resilient element should,
with reference to Figure 2.9, provide a resonance frequency as low as possible for the track
structure. A lower limit exists due to limitations in the maximum allowable static deflection.
Another way of addressing train­induced ground vibrations at the source, is to improve the
soil conditions under the track.

Ground­borne vibrationsmay also be reduced bymodifications in the transmission path between
the source and the receiver. Typical examples include trenches and solid barriers, where the
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Figure 2.10: A trench between the source and receiver may be an effective means of reducing
vibrations.

idea is to shield an area containing the receiver(s) from incoming waves; see Figure 2.10.

Similarly to the case of introducing a resilient layer underneath the source, the receiver may
be dynamically isolated through the use of a resilient support. It can be shown that the curves
presented in Figure 2.9 for the force transmissibility are identical to those for acceleration trans­
missibility. In the latter case, the input to the SDOF system is a harmonic acceleration at the
support, and the measured response is the acceleration of the mass. In regions prone to earth­
quakes, seismic base isolation of entire buildings is often based on this principle. However, in
the case of environmental vibrations, a more common use of the principle is to dynamically
isolate sensitive equipment. Great reductions in the response of the receiver can be achieved
by introducing a resilient element at its support. Again, the drawback is the increased trans­
missibility for excitation frequencies close to the resonance frequency of the isolated receiver.

When evaluating mitigation efforts, the concept of insertion loss (IL) is often used for quan­
tifying the vibration reduction. The insertion loss is expressed in decibels and signifies the
difference in power of two signals. The kinetic energy, and hence power p, of a vibrating
mechanical system, is proportional to the squared displacement u, i.e.

IL = 10log
(pref
piso

)
= 10log

(u2ref
u2iso

)
= 20log

(uref
uiso

)
, (2.1)

where uref denotes the displacement obtained for the reference case, without any installed
mitigation measure, and uiso denotes the displacement obtained after the installation of a
mitigation measure.

2.5 PREDICTING VIBRATIONS FROM RAILWAY TRAFFIC

A prediction model should, based on given input conditions, provide as output an estimation
of some sought quantity. Such a model can be empirical; e.g. by using some statistical method
of analyzing data, the model predicts the response quantity for given input conditions based
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on a large set of previously collected data (conditions and response quantities). Generally, such
empirical models do not explain the underlying physics of the predicted response, but rely on
that the previously collected data covers all the conditions for the situation to be predicted.
Nonetheless, such models can be useful and provide satisfactory results in several situations.

Here, however, focus will be on computational methods with the aim of simulating the gen­
eration and propagation of ground­borne vibrations, specifically those generated by railway
traffic. For a computational model to provide accurate predictions, it needs detailed descrip­
tions of the source (i.e. the train and the excitation mechanisms), the transmission path, and
the receiver. However, a common approach is to use a multi­step procedure for the analysis of
the different sub­systems, instead of having one large model simulating the source, the wave
propagation in the ground and the receiver response at once. The discussion here is limited to
that of the train–track interaction and the resulting wavefield in the ground.

2.5.1 Excitation mechanisms

The vibrations generated by a train moving along a railway track can be divided into a quasi­
static contribution and a dynamic contribution. The quasi­static contribution refers to the
effect of the moving constant dead load of the train that causes a deflection of the soil sur­
face. As previously described, this moving static deflection of the soil surface is experienced
as a transient vibration by a stationary observer next to the track. The dynamic contribution,
however, is much more complex and originates from several different mechanisms.

Since the rail is not perfectly smooth, dynamic contact forces arise in the wheel–rail interfaces as
the vehicle moves over the rough rail surface. The frequency content of these dynamic contact
forces depends on the vehicle speed. A specific rail unevenness component of wavelength λ,
generates a dynamic load at frequency f = v/λ where v is the vehicle speed. For example, for
a vehicle moving at v = 30 m/s, dynamic excitation in the frequency range 1− 80 Hz result
from unevenness wavelengths in the range 0.375− 30 m.

Similarly, the wheels are not perfectly round. Out­of­roundness and uneven tear causes peri­
odic dynamic wheel–rail contact forces. These can be severe in the presence of so called wheel­
flats. A wheel­flat occurs when the wheel locks during breaking or due to to slippery conditions,
causing a flat spot on the wheel that generates large impact forces for each revolution.

Further, dynamic wheel–rail forces are generated by changes in the conditions under the rail
along the track, e.g. varying soil­ or ballast stiffness. In addition, in most track systems the rail
is discretely supported by sleepers, causing a variation of the rail stiffness over the span of one
sleeper bay which in turn generates a dynamic excitation at the sleeper­passing frequency f =
v/d, where d is the sleeper spacing. Other excitation mechanisms include impact excitation
due to switches, crossings, joints, etc.
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Figure 2.11: Planar vehicle model consisting of lumped masses, springs and dashpots.

2.5.2 Numerical modeling

The calculation of the train–track interaction forces are often carried out using simple 2D
multi­body vehicle models where the features most important for the dynamic behavior, such
as unsprung/sprung masses and primary/secondary suspensions, are included, see Figure 2.11.
The vehicle model is connected to a model of the railway track that should provide an accurate
stiffness of the rail, since this stiffness strongly influences the wheel–rail contact forces. Con­
ventional ballasted tracks usually consist of rails supported by rail pads, sleepers and ballast.
In slab tracks, the rail can either be continuously or discretely supported. Track models are of­
ten 2D finite element models, comprising Bernoulli–Euler or Timoshenko beams representing
the rail. In the case of conventional ballasted tracks, the rail is connected to a series of discrete
springs, dashpots and masses, representing rail pads, sleepers, ballast and subsoil [11–14]. In
models of slab tracks, the rail is usually connected to beam representations of the slab and
support layer, with spring and dashpot connections between the layers [15–17].

Analyses of such track models are typically performed in time domain, in a fixed Cartesian
coordinate system. Time­domain analyses allow for inclusion of non­linear behavior, for ex­
ample in the contact condition between the vehicle and the rail. Such models have been used
by many different authors to study different mechanisms such as rail unevenness, wheel flats,
transition zones, etc. These analyses may be used for studying effects on the track or riding
comfort in the vehicle, but the forces obtained in any of the interfaces (e.g. wheel–rail or
track–subsoil) may also be used in a subsequent model to study the ground­vibrations gen­
erated by these forces, see e.g. [14, 18, 19]. Some authors [15, 20–22] have used similar track
models formulated in a moving frame of reference following the vehicle at a fixed speed, by
applying a Galilean coordinate transformation to the governing equations. A benefit of such
an approach is that the vehicle never leaves the computational domain, enabling the use of
a smaller model. Also, the wheel–rail contact formulation becomes less complicated because
the wheels interact with the same rail elements throughout the analysis. The coordinate trans­
formation implies that the track is invariant in the track direction, so for example discrete rail
supports are modeled as being continuously distributed and track stiffness variation cannot be
treated in a straight­forward manner. However, it has been shown [23] that the contribution
to the interaction forces, and the resulting free­field vibrations, by the track stiffness variation is
much smaller than the contribution from track unevenness. From the excitation mechanisms
described in Section 2.5.1, track unevenness is the one most often accounted for in predictions
of ground­borne vibrations.
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The wave propagation in the ground resulting from the dynamic loads on the track can be cal­
culated using numerous numerical techniques. FEM offers a large flexibility regarding model­
ing capabilities in terms of geometrical conditions and material properties. However, the need
for discretizing a large soil volume, under and between the source and the receiver, can generate
very large systems of equations that are time­consuming or practically impossible to solve. The
maximum element size is governed by the wavelengths of the propagating waves, and for mov­
ing loads these wavelengths decrease in front of the load, requiring a finer mesh. Furthermore,
special techniques need to be employed at the fictitious boundaries of the truncated soil volume
to avoid spurious reflections of waves. So called impedance boundary conditions [24], which
are basically tuned dashpot dampers, can be used to cancel out P­ and S­waves impinging or­
thogonally to the boundary – however, surface waves and P­ and S­waves impinging with an
angle are partially reflected, compromising the solution, especially close to the truncated ends
of the domain. A more recent technique to avoid reflecting waves is the use of a so called per­
fectly matched layer (PML), which uses a complex coordinate stretching to artificially dampen
the incoming waves over a few elements [25].

The boundary element method (BEM) overcomes some of the shortcomings of FEM. For
instance, non­reflecting boundaries are inherent to the governing boundary integrals. Fur­
thermore, the soil interior domain does not need to be modeled explicitly, if only the response
of the soil surface is required. BEM uses a Green’s function (fundamental solution) as a weight
function. In the simplest case, the Green’s function of a homogeneous full­space is used, re­
quiring discretization of (introduction of elements to) every soil layer interface. Assembling
the system matrices is a much more complex and time­consuming procedure than in FEM.
For every node of the model, the Green’s function for displacement and traction are integ­
rated over the entire boundary. Due to singularities of the Green’s functions, this matter is
not straight­forward. Furthermore, the system matrices become fully populated. 3D models
employing FE or/and BE have been used by a number of researchers to study train­induced
vibrations [26–29], and can be used for both time domain and frequency domain analysis.

By assuming constant geometry in the load travel direction, computational savings can bemade
by applying a so called 2.5D technique, where only a cross section of the soil and railway track
is discretized. By means of a Fourier transform with respect to time and the track direction
coordinate, a sequence of 2D problems are solved for a number of discrete wavenumbers,
and the 3D response is recovered by an inverse Fourier transform of the wavenumber domain
response. Such a methodology has been applied to both FE and BE formulations, and mixed
BE–FE models, by several authors, see e.g. [30–34].

If the soil is assumed to consist of horizontally oriented visco­elastic layers, a (semi­)analytical
approach can be used to obtain the response for a given load in frequency–wavenumber do­
main, by applying a Fourier transform on the governing equations with respect to the hori­
zontal coordinates and time. The response is then obtained in spatial coordinates by an inverse
Fourier transform of the wavenumber domain solution. The accuracy of the solution, and
the size of the covered soil surface area, is governed by the size and number of wavenumber
increments. Generally, the solution can be obtained at rather large distances from the load, at
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a much lower computational effort than with FEM or BEM. Figures 2.5–2.8 were produced
using this technique, further described in Section 4.2. A track model can be incorporated into
such a semi­analytical model [35–38], and the effect of a vehicle running over an uneven rail
can be analyzed in frequency domain by describing the uneveness in terms of its wavenumber
content and summing the responses from the excitation from a number of discrete wavenum­
bers, in the moving frame of reference.

Regardless of the choice of numerical method, large uncertainties are generally associated with
predicted ground­borne vibration levels, due to the limited knowledge of the values of the
governing parameters. In addition, simplifications are necessary to produce practically feas­
ible models. However, if the most important characteristics of the vibration excitation and
transmission path can be identified and modeled, numerical predictions can nevertheless be
meaningful for evaluating different designs and mitigation measures.



3 StructuralDynamics and ElasticWaves

3.1 EQUATIONS OF MOTION

By studying the forces acting on an infinitesimal cube within a continuum and applying New­
ton’s second law, it can be shown that independently of the stress–strain behavior of the con­
tinuum, equilibrium requires that

∂σij
∂xj

+ bi = ρ
∂2ui
∂t2

, (3.1)

which is the Cauchy equation of motion. Here σij = σij(x1, x2, x3, t) is the Cauchy stress
tensor, ui = ui(x1, x2, x3, t) is the displacement in direction i, bi = bi(x1, x2, x3, t) is
the body forces per unit volume in direction i. Further, ρ = ρ(x1, x2, x3) is the material
density, t denotes time and xj is the coordinate in direction j of the Cartesian space. Note
that Eq. (3.1) actually contains three equations, one for each coordinate­direction i = 1, 2, 3.
As will be shown in Section 4.1, these equations are the starting point when formulating the
FE equations for a solid continuum.

Assuming small strains and a linear elastic material behavior, the stress­strain relationship fol­
lows Hooke’s law,

σij(x1, x2, x3, t) = Eijklϵkl, (3.2)

where Eijkl is the elasticity tensor and the small­strain tensor is

ϵij = ϵij(x1, x2, x3, t) =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
. (3.3)

For a homogeneous material with linear elastic properties, the stress tensor can be written as

σij(x1, x2, x3, t) = λ∆δij + 2µϵij , (3.4)

where λ and µ are the Lame’ parameters defined as functions of Young’s modulus E and
Poisson’s ratio v, as

λ = νE
(1+ν)(1−2ν) , µ = E

2(1+ν) . (3.5)
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Further, δij is the Kronecker delta function, and ∆ is the dilation defined as

∆ = ∆(x1, x2, x3, t) = ϵ11 + ϵ22 + ϵ33 =
∂uk
∂xk

. (3.6)

It can be shown that these definitions together with Eq. (3.1) lead to the Navier equations

(λ+ µ)
∂2uj
∂xi∂xj

+ µ
∂2ui
∂xj∂xj

+ bi = ρ
∂2ui
∂t2

, (3.7)

which can also be written as

(λ+ µ)
∂∆

∂xi
+ µ∇2ui + bi = ρ

∂2ui
∂t2

, (3.8)

with the Laplacian operator∇2 defined as

∇2 =
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
=

∂2

∂xj∂xj
. (3.9)

3.2 STRUCTURAL DYNAMICS

A linearly elastic mechanical system can be described by its mass, elastic and damping proper­
ties. The simplest possible system having all these three properties is the so called single­degree­
of­freedom (SDoF) system shown in Figure 3.1, consisting of a mass, a (weightless) spring and
a (weightless) viscous damper (dashpot). The degree­of­freedom (DoF) refers to the possible
movement of the mass, which in this example is constrained to the horizontal axis. The elastic
force in the spring is proportional to the displacement u of the mass and the spring stiffness
k, i.e. fe = ku, whereas the force in the dashpot is proportional to the velocity u̇ of the mass
and the damping coefficient c, i.e. fd = cu̇. Using d’Alemberts principle, the inertia force
of the mass m is proportional to the acceleration ü, i.e. fi = mü and acting in the opposite
direction of the acceleration. When a time dependent external load p(t) is applied to the mass,

Figure 3.1: Single­degree­of­freedom system subjected to a time­dependent force p(t). After
[39].
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the equation of motion for the mass is obtained by expressing the equilibrium of the forces
acting on it, as

fi(t) + fd(t) + fe(t) = p(t), (3.10)

which, by using the previous expressions for the individual components, can be written as

mü(t) + cu̇(t) + ku(t) = p(t). (3.11)

For a multi­degree­of­freedom (MDoF) system involving several components, the equation of
motion for that system can be written as

Mü(t) +Cu̇(t) +Ku(t) = p(t), (3.12)

whereM,C andK are the systemsmass, damping and stiffness matrices, respectively. Further,
ü(t), u̇(t), u(t), and p(t) denote vectors containing the acceleration, velocity, displacement
and external loading, respectively, for each DoF. In fact, this is also the system of equations
that is solved when applying the FE method as described in Section 4.1.

3.2.1 Free vibration

When no external loading acts on the SDoF system, the solution u(t) to the homogeneous
equation

mü(t) + cu̇(t) + ku(t) = 0, (3.13)

is found on the form
u(t) = Gest, (3.14)

where G is an arbitrary complex constant. By noting that u̇(t) = sGest and ü(t) = s2Gest,
insertion into Eq. (3.13) yields

(ms2 + cs+ k)Gest = 0. (3.15)

Non­trivial solutions require thatms2 + cs+ k = 0, which can be written as

s2 +
c

m
s+ ω2

n = 0, (3.16)

where the variable

ωn =

√
k

m
, (3.17)

has been introduced. The solutions s to Eq. (3.16) are found as

s1,2 = − c

2m
±
√( c

2m

)2
− ω2

n. (3.18)

If no damping is present, i.e. c = 0, then

s1,2 = ±
√
−ω2

n = ±iωn, (3.19)
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where i is the imaginary unit, i =
√
−1, and it can be shown [39] that the resulting motion

u(t) may be written as
u(t) = Acos(ωnt+ ϕ), (3.20)

where the real constant A and the phase angle ϕ depend on the initial conditions. Further, it
is seen that ωn is the frequency of vibration, i.e. the natural frequency of the undamped SDoF
system.

When damping is present, the nature of the solution depends on the relation of the damping
coefficient c to the massm and stiffness k. When the expression under the square root sign in
Eq. (3.18) becomes zero, i.e.

c = cc = 2mωn, (3.21)

the system is said to be critically damped, and the resulting free vibration does not contain any
oscillations, but returns asymptotically to rest as

u(t) = (A+Bt)e−ωnt, (3.22)

where A and B are real constants determined from the initial conditions [39].

The damping ratio ξ is defined as
ξ =

c

cc
. (3.23)

When ξ < 1, the system is said to be underdamped and the free vibration is obtained as

u(t) = Acos(ωDt+ ϕ)e−ξωnt, (3.24)

where ωD = ωn

√
1− ξ2 is the damped frequency of vibration, and the real constant A and

phase angle ϕ are determined from the initial conditions.

For the undamped case of the MDoF system, the homogeneous differential equation

Mü(t) +Ku(t) = 0, (3.25)

is solved by assuming a harmonic solution of the form u(t) = ΦÛeiωt, whereΦ is a constant
vector, Û is a complex amplitude and ω is the angular frequency of vibration. Inserting the
assumed solution into Eq. (3.25) yields

(−ω2M+K)ΦÛeiωt = 0, (3.26)

and non­trivial solutions require that

det(−ω2M+K) = 0. (3.27)

If the system has N DoFs, then N solutions to Eq. (3.27) exist, with the eigenvalues (natural
frequencies) ωi = ω1, .., ωN and corresponding eigenvectors (natural modes, eigenmodes)
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Φi = Φ1, ..,ΦN . The modes can be used as base vectors for describing any displacement of
the system as

u(t) =
i=N∑
i=1

qi(t)Φi, (3.28)

where qi(t) is the modal coordinate. Further, the modes are mass and stiffness orthogonal,
and can be used for diagonalizing the mass and stiffness matrices, providing a set of N un­
coupled equations. Hence, the response of each mode can solved separately, analogously to a
SDoF system and the total system response is obtained by Eq. (3.28). This is also true for a
damped MDoF system, if so called classical damping is utilized, meaning that the modes also
diagonalize the damping matrix.

3.2.2 Steady-state response to harmonic loading

When a SDoF system is subjected to a harmonic load, i.e. p(t) = p̂eiωt, the steady­state solu­
tion to Eq. (3.11) is found by assuming that the response is also harmonic with the excitation
frequency, i.e. u(t) = ûeiωt. Insertion into Eq. (3.11) yields

(−ω2m+ iωc+ k)û = p̂, (3.29)

or equivalently

û =
p̂

(−ω2m+ iωc+ k)
. (3.30)

Using Eq. (3.21) and Eq. (3.23), this can be written as

û =
p̂

k(1− ω2

ω2
n
+ 2i ω

ωn
ξ)
. (3.31)

The steady­state forces in the spring and dashpot are fe = ku = kûeiωt and fd = cu̇ =
iωcûeiωt, respectively, and hence the total reaction force becomes

fr = fe + fd =
(k + iωc)p̂

k(1− ω2

ω2
n
+ 2i ω

ωn
ξ)

=
(1 + 2iξ ω

ωn
)p̂

(1− ω2

ω2
n
+ 2i ω

ωn
ξ)
. (3.32)

When divided by p̂, this provides the transmissibility of the SDoF system, i.e. the ratio of the
reaction force to the applied force. In Figure 2.9 this expression is plotted for different values
of ω/ωn and ξ .

The transfer function H(ω), or frequency response function (FRF), of the SDoF system is
obtained by dividing Eq. (3.31) by p̂,

H(ω) =
û

p̂
=

1

k(1− ω2

ω2
n
+ 2i ω

ωn
ξ)
, (3.33)
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giving the complex displacement response of the SDoF system due to a unit load of frequency
ω. Clearly, for zero damping, ξ = 0, the response goes to infinity for ω = ωn.

For the MDoF system, governed by Eq. (3.12), subjected to harmonic loading, p(t) = p̂eiωt,
harmonic response is assumed as u(t) = ûeiωt. Here, each element of the vectors p̂ and û
are complex numbers. Similarly to the SDoF system, the following equation is obtained by
insertion of the assumed solution into Eq. (3.12),

(−ω2M+ iωC+K)û = D(ω)û = p̂, (3.34)

where the dynamic stiffness matrix,D(ω) = (−ω2M+ iωC+K) has been introduced. The
solution û is obtained as

û = D−1(ω)p̂. (3.35)

The inverse of the dynamic stiffness matrix,D−1(ω), contains transfer functions between the
different DoFs; i.e. element (i, j) of D−1(ω) contains the response in DoF i, due to a unit
harmonic load applied at DoF j.

3.2.3 Frequency-independent damping

Damping generally refers to a mechanism in which mechanical energy is being dissipated,
causing a reduction of the vibration response. Material damping, more specifically, refers to
the dissipation of mechanical energy within the material due to internal mechanisms. To
model such energy dissipation mathematically, the stress in the material is assumed to consist
of an elastic part depending on the strain level, and a viscous part depending on the strain­rate.
Using the analogy of a SDoF system, the elastic part refers to the force in the spring and the
viscous part refers to force in the dashpot. With harmonic displacement loading, i.e.

u = u0e
iωt, (3.36)

the sum of the elastic and viscous force can be written as

fr =
(
ku0 + iωcu0

)
eiωt. (3.37)

One cycle of vibration generates an ellipse in the force–displacement diagram, the hysteresis
loop, as indicated in Figure 3.2. The area within the hysteresis loop signifies the energy dissip­
ated over the cycle. The dissipated energy over one cycle of vibration is calculated as

∆W =

∫ 2π
ω

0
fr
∂u

∂t
dt = πcωu20. (3.38)

The maximum strain energy stored during one cycle isWs =
1
2ku

2
0, and it can be shown [40]

that the dissipated energy∆W is related to the damping factor ξ through the maximum strain
energyWs as

ξ =
1

4π

∆W

Ws
=
cω

2k
. (3.39)
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Figure 3.2: Hysteresis loop showing the dissipated energy ∆W during one cycle of vibration
and the maximum strain energyWs.

Here it is seen that the damping factor is proportional to the frequency of the loading ω. To
obtain a frequency­independent damping, the damping coefficient c is expressed using Eq.
(3.39), as

c =
2kξ

ω
. (3.40)

Insertion of this expression for c into Eq. (3.37) yields

fr =
(
ku0 + iωcu0

)
eiωt = k

(
1 + 2iξ

)
u0e

iωt = k∗u0e
iωt. (3.41)

Here, k∗ = k
(
1 + 2iξ

)
= k

(
1 + iη

)
is the complex stiffness, and η = 2ξ is known as the

loss factor. Now, Eq.(3.40) can be written as

c =
kη

ω
. (3.42)

Generalizing Eq. (3.42) to a MDoF system gives

C = K
η

ω
, (3.43)

which inserted into Eq. (3.34) provides(
− ω2M+ iωC+K

)
û =

(
− ω2M+K(1 + iη)

)
û = D(ω)û = p̂, (3.44)

with the dynamic stiffness defined asD(ω) = −ω2M+K(1 + iη). This type of frequency­
independent damping is often referred to as structural damping.
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3.3 ELASTIC WAVES

3.3.1 Wave propagation in structural elements

A disturbance of the static equilibrium of a structural element causes a stress field to propagate
through the member as elastic waves. Different wave types propagate with different phase
velocities that may or may not depend on the frequency. When the phase velocity depends
on the frequency, the waves are called dispersive. When waves are dispersive, a pulse of waves
with different frequencies will spread, or disperse, due to the different propagation velocities.

Longitudinal waves in an infinite rod

First, a simple case of an infinite rod with constant Young’s modulus E, section area A and
density ρ is considered. The equation for the rod can be written as

EA
∂2u(x, t)

∂x2
+ p(x, t) = ρA

∂2u(x, t)

∂t2
, (3.45)

where u = u(x, t) is the displacement of the rod at position x and time t, and p(x, t) denotes
an external force. The homogeneous equation, i.e. without external force, can then be written
as

EA
∂2u(x, t)

∂x2
− ρA

∂2u(x, t)

∂t2
= 0, (3.46)

or equivalently
∂2u(x, t)

∂x2
− 1

c2
∂2u(x, t)

∂t2
= 0. (3.47)

Here, the variable c =
√

E
ρ has been introduced. This is the one­dimensional wave equation.

It is easily checked that both the functions ϕ(x− ct) and ψ(x+ ct) satisfy the equation. The
shape of the functions ϕ(x− ct) and ψ(x+ ct) do not change. They represent a displacement
field that propagates as a wave along the x­axis in the positive and negative direction, respect­
ively, with the speed c [41]. Hence, for the rod, waves propagate with the so called phase
velocity c =

√
E
ρ . Now, it is assumed that the solution is harmonic in time, i.e. a complex

solution is prescribed as u(x, t) = ũ(x)eiωt. Here, ω is the circular frequency of vibration.
Insertion into Eq. (3.46) and rearranging yields

∂2ũ(x)

∂x2
+
ρ

E
ω2ũ(x) = 0. (3.48)

This is a second­order differential equation, and solutions are of the form ũ(x) = Ceikx.
Using this expression in Eq. (3.48) yields the dispersion relation,

k2 − ρ

E
ω2 = 0, (3.49)
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which has two roots. Both roots are real, k1,2 = ±ω
√

ρ
E = ±kL. The general solution to

Eq. (3.46) is therefore

u(x, t) = C1e
(iωt+ikLx) + C2e

(iωt−ikLx), (3.50)

where the two terms represent harmonic waves propagating in the negative and positive dir­
ections, respectively, of the x−axis. This becomes clear if the phase of the first exponential is
studied. For a certain time t0 and position along the rod x0, the phase is

ξ = ωt0 + kLx0. (3.51)

At a later instant in time, t1 = t0 +∆t, this phase is found at x1 = x0 +∆x, i.e

ξ = ω(t0 +∆t) + kL(x0 +∆x). (3.52)

Subtracting Eq. (3.51) from Eq. (3.52) yields

∆x = − ω

kL
∆t. (3.53)

Since kL is positive and real, ∆x is negative, i.e. the wave has propagated in the negative
x−direction, and it has done so with the phase velocity cL = ω/kL =

√
E/ρ. The term kL

is called the longitudinal wavenumber and it is related to the wavelength λL as kL = 2π/λL.

The fact that the phase velocity does not depend on the frequency ω, means that the longit­
udinal waves are non­dispersive. As shown in the next section, the situation is different for
flexural waves.

Transversal waves in an infinite Bernoulli beam

For a uniform Bernoulli–Euler beam, the homogeneous equation can be written as

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
= 0, (3.54)

whereEI is the bending stiffness, ρ is the mass density,A is the cross­section area andw is the
vertical displacement. As for the rod in the previous section, a harmonic solution is assumed
as w(x, t) = w̃(x)eiωt. Insertion into Eq. (3.54) yields

∂4w̃(x)

∂x4
+
ρA

EI
ω2w̃(x) = 0, (3.55)

to which solutions are of the form w̃(x) = Ceikx. Using this expression in Eq. (3.55) yields
the dispersion relation,

k4 − ρA

EI
ω2 = 0. (3.56)
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This equation has two real and two imaginary roots; k1,2 = ±kB and k3,4 = ±ikB where

kB =
√
ω
(
ρA
EI

)1/4
is the flexural wavenumber. The general solution to Eq. (3.54) is therefore

w(x, t) = C1e
(iωt+ikBx) + C2e

(iωt−ikBx) + C3e
(iωt−kBx) + C4e

(iωt+kBx). (3.57)

Here, the terms involving C1 and C2 represent propagating waves, whereas the two remaining

terms represent evanescent waves. The phase velocity is cB = ω
kB

=
√
ω
(
EI
ρA

)1/4
. The phase

velocity is frequency­dependent, i.e. the flexural waves are dispersive.

3.3.2 Wave propagation in an elastic continuum

In Section 3.1 the Navier equations, expressing the equation of motion for a homogeneous,
linearly elastic continuum, was presented. Disregarding body forces, the Navier equations
become

(λ+ µ)
∂2uj
∂xi∂xj

+ µ
∂2ui
∂xj∂xj

= ρ
∂2ui
∂t2

. (3.58)

For a homogeneous infinite domain, i.e. a so called full­space, there are two different solutions
to this equation: the dilational P­wave and the equivoluminal S­wave. These are called body
waves. However, for a homogeneous domain with a free surface, i.e. a so called half­space, a
coupling occurs between the P­wave and the S­wave. This coupling results in a surface wave,
the Rayleigh wave, propagating in a direction parallel with the surface.

The P-wave

It can be shown [6] that by taking the divergence of Eq. (3.58), a scalar wave equation is
obtained in terms of the previously defined dilation∆(x1, x2, x3, t), as

∂2∆

∂xk∂xk
=

1

c2p

∂2∆

∂t2
, (3.59)

with

cp =

√
λ+ 2µ

ρ
. (3.60)

This means that the solution to Eq. (3.59) represents a wave where the dilation ∆ propagates
with the velocity cp. This wave is frequently called the P­wave, pressure wave, or primary wave,
where primary refers to the fact that it is the fastest traveling wave and hence the first wave to
arrive at a receiver.
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The S-wave

Taking the rotation of Eq. (3.58), leads to the following three­dimensional wave equation [6]

∂2wi

∂xj∂xj
=

1

c2s

∂2wi

∂t2
, (3.61)

where wi = wi(x1, x2, x3, t) denotes the rotation of the displacement field, defined as

w1 =
1
2(

∂u3
∂x2

− ∂u2
∂x3

), w2 =
1
2(

∂u1
∂x3

− ∂u3
∂x1

), w3 =
1
2(

∂u2
∂x1

− ∂u1
∂x2

), (3.62)

and
cs =

√
µ

ρ
. (3.63)

The solution to Eq. (3.61) describes the propagation of a pure rotational wave, with the phase
speed cs. This wave is usually called the S­wave, shear wave or secondary wave. The particle
motion is perpendicular to the propagation direction. Often the S­wave is divided into two
components of horizontal and vertical motion, referred to as SH­ and SV­waves.

The Rayleigh wave

Here, a plane surface wave propagating in the positive x1­direction of a homogeneous half­
space is considered. The depth coordinate, x3, is pointing into the interior of the half­space.
The particle displacement is independent of the x2­coordinate. The displacements in the x1­
and x3­directions are now expressed in terms of two potential functions Φ and Ψ:

u1 =
∂Φ

∂x1
+
∂Ψ

∂x3
, u3 =

∂Φ

∂x3
− ∂Ψ

∂x1
, (3.64)

which inserted into Eq. (3.58) yields the two equations [6]

∇2Φ =
1

c2p

∂2Φ

∂t2
, ∇2Ψ =

1

c2s

∂2Ψ

∂t2
. (3.65)

The wavefield is allowed to propagate along the x1­axis only. Harmonic solutions to Eqs.
(3.65) are therefore sought in the form

Φ = F (x3)e
i(ωt−kRx1), Ψ = G(x3)e

i(ωt−kRx1), (3.66)

where F (x3) and G(x3) are amplitude functions, and kR is the wavenumber of the Rayleigh
wave, kR = 2π/λR. Insertion of these expressions into Eq. (3.65) leads to the following
ordinary differential equations for F and G,

d2F (x3)
dx23

− γ2pF (x3) = 0,
d2G(x3)
dx23

− γ2sG(x3) = 0, (3.67)
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where γ2p = k2R − k2p and γ2s = k2R − k2s . The solution to Eqs. (3.67) are sought on the form

F (x3) = A1e
(−γpx3) +B1e

(γpx3), G(x3) = A2e
(−γsx3) +B2e

(γsx3). (3.68)

The constantsB1 = B2 = 0, since an amplitude increasing to infinity with the depth coordin­
ate x3 is physically invalid. Hence, from Eqs. (3.66) and (3.68), the following expressions are
obtained for the potential functions

Φ = A1e
(−γpx3)ei(ωt−kRx1), Ψ = A2e

(−γsx3)ei(ωt−kRx1). (3.69)

The free surface is traction free, i.e. σ33 = σ13 = 0. Using these boundary conditions, with
the expression for the stress tensor in Eq. (3.4), the displacements in Eq. (3.64), and the
potentials in Eq. (3.69), the following relations are obtained

A1

A2

(λ+ 2µ)γ2p − λk2R
2iµkRγS

− 1 = 0,

A1

A2

2γpikR
γ2s + k2R

+ 1 = 0.

(3.70)

It can be shown [6] that from these relations, the following expression may be obtained relating
the Rayleigh wave velocity cR and the S­wave velocity cs,

K6 − 8K4 + (24− 16α2)K2 + 16(α2 − 1) = 0, (3.71)

whereK = cR
cs

and α = cs
cp
. The relation between the Poisson’s ratio, and the phase velocities

of the P­, S­ and Rayleigh waves are shown in Figure 3.3 (left). The phase velocity of the
Rayleigh wave is frequency independent, i.e. the Rayleigh wave is non­dispersive.

Inserting the potential functions in Eq. (3.69) into Eq. (3.64) yields the following expressions
for the displacements,

u1 = −A1ikRe(−γpx3)ei(ωt−kRx1) −A2γse
(−γsx3)ei(ωt−kRx1),

u3 = −A1γpe
(−γpx3)ei(ωt−kRx1) +A2ikRe(−γsx3)ei(ωt−kRx1).

(3.72)

Using the relation between A1 and A2 established in Eq. (3.70), these displacements may be
written as

u1 = A1ikR
(
− e(−γpx3) +

2γsγp
γ2s + k2R

e(−γsx3)
)
ei(ωt−kRx1),

u3 = A1kR

(
− γp
kR
e(−γpx3) +

2γpkR
γ2s + k2R

e(−γsx3)
)
ei(ωt−kRx1).

(3.73)

The terms inside the main brackets signify the difference in amplitudes for the horizontal and
vertical particle motion. The presence of i in u1 means that the horizontal particle motion is
out­of­phase with the vertical motion by 90◦, indicating that the particle movement follows an
elliptical path. The relative amplitudes of the horizontal and vertical particle motion is shown
in Figure 3.3 (right), for various values of Poisson’s ratio.
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Figure 3.3: Left: Relation between Poisson’s ratio and phase velocities of the P­, S­ and
Rayleigh wave. Right: Relative amplitudes of vertical (solid) and horizontal
(dashed) particle motion in Rayleigh wave for various Poisson’s ratio.

Damping

For soils, material damping effects occur due to friction between particles and structural re­
arrangement of the particles. Experimental studies suggests that the damping ratio is rather
insensitive to the frequency of vibration. Hence, in computational models, soil material damp­
ing is most often introduced as a loss factor by using complex stiffness values as described in
Section 3.2.3.

Another form of “damping” relevant for ground vibrations, is the attenuation of the vibration
response at an increasing distance from the source, which is due to the spreading of the energy
over a successively larger domain. This is usually called geometrical damping or geometrical
attenuation. P­ and S­waves originating from a point source on the soil surface spread radially
with hemi­spherical wavefronts. At the time t the distance to the wave front, i.e. the radius of
the half­sphere, is r = c × t and the surface area of the half­sphere is 2πr2. The amount of
energy contained in the wavefront does not change, meaning that the energy density is inversely
proportional to the wavefront surface area. Hence, the energy of body waves spreads as 1/r2.
Since the mechanical energy (strain energy + kinetic energy) is proportional to the squared
displacements, the displacement amplitude of body waves decreases as 1/r. However, when
the source is a line load, the body waves spread radially with cylindrical wavefronts, and by the
same reasoning the energy and displacement amplitude can be shown to decrease as 1/r and
1/
√
r, respectively. Surface waves that originate from a point source on the soil surface, spread

radially along the surface with circular wavefronts, with the energy density being proportional
to the wavefront circumference. Hence, the energy of Rayleigh waves decreases as 1/r, and the
displacement amplitude decreases as 1/

√
r. In the case of a line load, there is no geometrical

attenuation at all of the surface waves [42].





4 Numerical Solution Methods

In the current work, several numerical solution methods have been used for calculating the
ground vibrations from loads on a railway track. Various formulations of the finite element
method, described in Section 4.1, has been used for modeling the railway track. To model the
wave propagation in the ground, a time efficient semi­analytical method described in Section
4.2 has been used as well as finite element modeling of the soil domain. The coupling of the
methods used for the track and soil is described in Chapter 5.

4.1 THE FINITE ELEMENT METHOD

4.1.1 General remarks

In physics and engineering, many phenomena are mathematically described by partial differ­
ential equations (PDEs). Analytical solutions to such PDEs can usually only be found for
very simple geometries, domain properties, boundary conditions and loads. For more com­
plex cases, numerical methods are employed to find approximations to the true solution. One
commonly used method is the finite element method (FEM), in which the computational
domain is divided into smaller elements forming an element mesh. Each element is geomet­
rically defined by its nodes, and in the general case also by some function defining the element
boundary between the nodes. The physical field is discretized onto the nodes, and inside each
element the field is assumed to vary according to some predefined function which is usually a
simple polynomial function. The method is very versatile and can be formulated to account
for very complex behavior such as geometric and material non­linearities etc.

The FE formulation leads to a system of equations where the values of the physical field in
the nodes are the unknowns. Smaller elements in general lead to a more accurate solution,
since the error due to the assumed variation within each element decreases. At the same time
the computational cost increases, because the size of the system of equations increases with
increasing number of nodes. For problems where the physical field is a scalar function, e.g.
temperature, each node has only one degree­of­freedom (DoF). However, for problems where
the physical field is a vector function, such as structural mechanics problems, each node is gen­
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erally associated with a number of DoFs, e.g. the displacements in the (x1, x2, x3)­directions.
As mentioned in Section 3.2, the system of equations obtained when applying the FE method
can be written as

Mü(t) +Cu̇(t) +Ku(t) = f(t). (4.1)

Here,M,C andK are the mass, damping and stiffness matrices, respectively. These matrices
are (N × N), where N is the number of DoFs. Further, ü(t), u̇(t), u(t), and f(t) are
(N ×1) column vectors containing the acceleration, velocity, displacement and external load­
ing, respectively, for each DoF. Often, the steady­state response due to harmonic excitation,
f(t) = f̂eiωt, is of interest. As mentioned in Section 3.2, this steady­state response is solved
by assuming a harmonic response with the same frequency, u(t) = ûeiωt, resulting in

(−ω2M+ iωC+K)û = D(ω)û = f̂ . (4.2)

In Section 4.1.2 below, the standard FE equations for a 3D linear elastic continuum are presen­
ted. These equations are also used in Sections 4.1.3–4.1.4 where FE formulations are presented
for a moving frame of reference, and for so called 2.5D FEM, respectively. Although presented
here only for solid continuum elements, the concepts presented in Sections 4.1.3–4.1.4 apply
analogously also to structural elements such as beam and shell elements, whose derivations
in the fixed frame of reference can be found in standard textbooks on FEM, e.g. [43]. Sec­
tion 4.1.5 contains a brief description of perfectly matched layers (PMLs), that are used for
artificially attenuating waves at the truncated ends of a FE model.

4.1.2 Finite element equations for 3D elasticity

The Cauchy equation of motion, governing the dynamic equilibrium of a continuum, was
presented in Section 3.1 and is repeated here for clarity,

∂σij
∂xj

+ bi = ρ
∂2ui
∂t2

. (4.3)

Defining the matrix differential operator ∇̃, the stress vector σ, the body force vector b and
the displacement vector u as

∇̃T
=

 ∂
∂x1

0 0 ∂
∂x2

∂
∂x3

0

0 ∂
∂x2

0 ∂
∂x1

0 ∂
∂x3

0 0 ∂
∂x3

0 ∂
∂x1

∂
∂x2

 , (4.4)

σT =
[
σ11 σ22 σ33 σ12 σ13 σ23

]
, (4.5)

bT =
[
b1 b2 b3

]
, (4.6)

uT =
[
u1 u2 u3

]
, (4.7)
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Eq. (4.3) is written as

∇̃T
σ + b = ρ

∂2u

∂t2
. (4.8)

The weak form is obtained by multiplying Eq. (4.8) by an arbitrary weight function vector
g = g(x1, x2, x3) and integrating it over the region [43]. The resulting weak form, after
partial integration of the first term, becomes∫

V
(∇̃g)Tσ dV + ρ

∫
V
gT∂

2u

∂t2
dV =

∫
S
gTt dS +

∫
V
gTb dV, (4.9)

where t is the traction vector.

To obtain the FE formulation, the displacements u(x1, x2, x3, t) are approximated using the
nodal values a(t) and the shape functions N(x1, x2, x3) as u = Na. The shape function
matrixN is written as

N(x1, x2, x3) =

N1 0 0 N2 0 0 ... Nn 0 0
0 N1 0 0 N2 0 ... 0 Nn 0
0 0 N1 0 0 N2 ... 0 0 Nn

 , (4.10)

where n is the number of nodes and Ni = Ni(x1, x2, x3). Further, the stress vector is
expressed as σ = Dϵ = D∇̃u = D∇̃Na. Here, D is the constitutive matrix for isotropic
elasticity,

D =
E

(1 + v)(1− 2v)



1− v v v 0 0 0
v 1− v v 0 0 0
v v 1− v 0 0 0
0 0 0 1

2(1− 2v) 0 0
0 0 0 0 1

2(1− 2v) 0
0 0 0 0 0 1

2(1− 2v)

 .
(4.11)

Adopting the Galerkin method, the weight function g(x1, x2, x3) is approximated using the
same shape functions as for the displacement field, i.e. g = Nc. Here, c is an arbitrary vector.
Inserting these approximations for u and g into Eq. (4.9) and noting that c is arbitrary, the
mass and stiffness matrices and the load vector, are identified as

K =

∫
V
(∇̃N)TD(∇̃N) dV,

M = ρ

∫
V
NTN dV,

fl =

∫
S
NTt dS +

∫
V
NTb dV.

(4.12)

Although the expressions of thematrices in Eqs. (4.12) are for the entire computational domain
V with the boundary surfaceS, they are equally valid, and generally evaluated, for each element
separately. This is done by exchanging the integration limits from those of the entire domain (V
and S) to those of the individual element (V e and Se) and further by changingN, describing
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the shape functions of all the elements, to Ne, describing the shape functions solely for the
individual element. The so obtained element matrices (Ke, Me, f el ) are then assembled into
their position of the respective global matrices (K,M, fl), determined by the global numbering
of the element DoFs.

4.1.3 Formulation in a moving frame of reference

When analyzing moving loads, such as a train moving along a railway track, a traditional
3D FE approach can lead to a very large system of equations. Because the load is moving,
it will eventually leave the computational domain. Hence, it may be necessary to use a very
large model. If the geometry and the material properties are invariant in the direction of the
moving load, a computationally more efficient model may be obtained, by formulating the
governing equations in a reference frame that follows the moving load at a fixed velocity. In
such a formulation, the moving load remains fixed in the same position of the model, enabling
the use of a smaller computational domain. Furthermore, the problem can be analyzed using
frequency­domain methods instead of time­stepping procedures, which may be beneficial both
in terms of computational cost and understanding of physical phenomena.

Here, the load is assumed to move at a fixed speed v along the positive x1­axis. A coordinate
transformation is introduced as

(x̃1, x̃2, x̃3) = (x1 − vt, x2, x3), (4.13)

where x̃1, x̃2, x̃3 denotes the coordinates in the moving frame of reference. Partial derivatives
in the two reference frames are related as [42]

∂

∂x1
=

∂

∂x̃1
,

∂

∂t

∣∣∣
x1

=
∂

∂t

∣∣∣
x̃1

− v
∂

∂x̃1
. (4.14)

Applying this coordinate transformation to the Cauchy equation of motion, Eq. (4.3), yields

∂σ̃ij
∂x̃j

+ b̃i = ρ
(∂2ũi
∂t2

− 2v
∂2ũi
∂t∂x̃1

+ v2
∂2ũi
∂2x̃1

)
, (4.15)

where˜denotes that a variable is expressed in the moving frame of reference. With a notation
analogous to Eq. (4.8), this equation can be written as

∇̃T
σ̃ + b̃ = ρ

(∂2ũ
∂t2

− 2v
∂2ũ

∂t∂x̃1
+ v2

∂2ũ

∂2x̃1

)
. (4.16)

Now the ordinary procedure is followed to reach the FE formulation. The weak form is ob­
tained by multiplying with an arbitrary weight function g = g(x̃1, x̃2, x̃3) and integrating
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over the region, resulting in∫
V
(∇̃g)Tσ̃ dV + ρ

∫
V
gT∂

2ũ

∂t2
dV − 2ρ v

∫
V
gT ∂2ũ

∂t∂x̃1
dV +

ρ v2
∫
S
gT ∂ũ

∂x̃1
nx dS − ρ v2

∫
V

∂g̃

∂x̃1

T ∂ũ

∂x̃1
dV =∫

S
gTt̃ dS +

∫
V
gTb̃ dV,

(4.17)

after partial integration of the first term. The displacements ũ(x̃1, x̃2, x̃3, t) are approximated
using the nodal values ã(t) and the shape functionsN(x̃1, x̃2, x̃3) as ũ = Nã. It is emphas­
ized that the nodal values now represent displacements in the moving frame of reference. The
weight function g(x̃1, x̃2, x̃3) is approximated using the same shape functions, i.e. g = Nc̃,
where c̃ is an arbitrary vector. Inserting these approximations into Eq. (4.17) yields the mass,
damping and stiffness matrices, as well as the load vector, as

K =

∫
V
(∇̃N)TD(∇̃N) dV − ρv2

∫
V

∂N

∂x̃1

T ∂N

∂x̃1
dV + ρv2

∫
S
NT ∂N

∂x̃1
nx dS,

C = −2ρv

∫
V
NT ∂N

∂x̃1
dV,

M = ρ

∫
V
NTN dV,

fl =

∫
S
NTt̃ dS +

∫
V
NTb̃ dV.

(4.18)

Comparing Eqs. (4.18) with Eqs. (4.12) it is seen that due to the coordinate transformation,
some velocity dependent terms have arised in the stiffness matrix and the damping matrix.
These terms are called convective terms. It is also emphasized that if the load speed is set to
v = 0, the expressions in Eqs. (4.18) are identical to Eqs. (4.12). As pointed out in [42],
convection may lead to unstable numerical solutions in time domain analyses if the standard
Galerkin approach is used, and there are different ways to stabilize the solution. However,
in the present work the formulation above is used merely for frequency domain analyses, see
Chapter 5 and the appended papers.

4.1.4 FE formulation in 2.5D

When the problem geometry is invariant in one direction, an efficient solution method can
be established by Fourier transforming the governing equations with respect to the invariant
coordinate axis [30, 31, 44]. This is often called 2.5D FEM or wavenumber FEM.

Theweak form for 3D elasticity was established in Eq. 4.9 and is repeated here for convenience.∫
V
(∇̃g)Tσ dV + ρ

∫
V
gT∂

2u

∂t2
dV =

∫
S
gTt dS +

∫
V
gTb dV. (4.19)
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The volume V is now assumed to be limited in the (x2, x3) directions by the area A, and to
have infinite length in the x1­direction. This means that the equation can be written as∫ ∞

∞

∫
A
(∇̃g)Tσ dA dx1 +

∫ ∞

∞

∫
A
gT∂

2u

∂t2
dA dx1−∫ ∞

∞

∫
A
gTb dA dx1 −

∫ ∞

∞

∮
ΓA

gTt dΓA dx1 = 0,

(4.20)

where ΓA denotes the circumference of the areaA. Now, the FEmesh is defined on the surface
A in the (x2, x3)­plane. The shape function matrix is written as

N(x2, x3) =

N1 0 0 N2 0 0 ... Nn 0 0
0 N1 0 0 N2 0 ... 0 Nn 0
0 0 N1 0 0 N2 ... 0 0 Nn

 , (4.21)

where n is the number of nodes and Ni = Ni(x2, x3). Further, the displacement vector u,

u(x1, x2, x3) =
[
u1(x1, x2, x3) u2(x1, x2, x3) u3(x1, x2, x3)

]T
, (4.22)

is now approximated using the shape functions and the nodal displacement vector as
u(x1, x2, x3) = N(x2, x3)a(x1), where

a(x1) =
[
a1x1 (x1) a1x2 (x1) a1x3 (x1) a2x1 (x1) ... anx3

(x1)
]T
. (4.23)

With theGalerkin approach, the weight function vector g is also approximated using the shape
functionmatrix and an arbitrary nodal displacement vector asg(x1, x2, x3) = N(x2, x3)c(x1).
As usual, the stress vector is expressed as σ = Dϵ = D∇̃u = D∇̃Na where D is the
constitutive matrix for isotropic elasticity defined in Eq. (4.11). With the matrix differential

x
3

x
2x

1

Figure 4.1: A longitudinally invariant structure with a 2D mesh defined in the (x2, x3)­plane.
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operator ∇̃ defined by Eq. (4.4),

∇̃u = ∇̃(Na) = L1N(x2, x3)a(x1) + L2N(x2, x3)
∂a(x1)

∂x1
= B1a(x1) +B2

∂a(x1)

∂x1
,

∇̃g = ∇̃(Nc) = L1N(x2, x3)a(x1) + L2N(x2, x3)
∂c(x1)

∂x1
= B1a(x1) +B2

∂c(x1)

∂x1
,

(4.24)
where

LT
1 =

0 0 0 ∂
∂x2

∂
∂x3

0

0 ∂
∂x2

0 0 0 ∂
∂x3

0 0 ∂
∂x3

0 0 ∂
∂x2

 , (4.25)

and

LT
2 =

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (4.26)

Equation 4.20 can now be written as∫ ∞

∞

∫
A

(
B1c+B2

∂c

∂x1

)T
D
(
B1a+B2

∂a

∂x1

)
dA dx1+∫ ∞

∞

∫
A

(
Nc

)T
ρ
(
N
∂2a

∂t2

)
dA dx1 −

∫ ∞

∞

∫
A

(
Nc

)T
b dA dx1−∫ ∞

∞

∮
ΓA

(
Nc

)T
t dΓA dx1 = 0,

(4.27)

which, by noting that a(x1) and c(x1) are independent of (x2, x3) and can therefore be
placed outside the inner integral, can be written as∫ ∞

∞
cT

∫
A
BT

1DB1 dAa dx1 +
∫ ∞

∞
cT

∫
A
BT

1DB2 dA
∂a

∂x1
dx1+∫ ∞

∞

∂c

∂x1

T ∫
A
BT

2DB1 dAa dx1 +
∫ ∞

∞

∂c

∂x1

T ∫
A
BT

2DB2 dA
∂a

∂x1
dx1+∫ ∞

∞
cT

∫
A
NTρN dA

∂2a

∂t2
dx1 −

∫ ∞

∞
cT

∫
A
NTb dA dx1−∫ ∞

∞
cT

∮
ΓA

NTt dΓA dx1 = 0.

(4.28)

Now, a Fourier transform from the x1­coordinate to the wavenumber k1 is performed, and
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the following notation is used

â(k1) =

∫ ∞

∞
a(x1)e

−ik1x1 dx1,

ĉ(k1) =

∫ ∞

∞
c(x1)e

−ik1x1 dx1,

b̂(k1, x2, x3) =

∫ ∞

∞
b(x1, x2, x3)e

−ik1x1 dx1,

t̂(k1, x2, x3) =

∫ ∞

∞
t(x1, x2, x3)e

−ik1x1 dx1.

(4.29)

The derivatives of a and c with respect to x1, become

F
(∂a(x1)

∂x1

)
= ik1â(k1),

F
(∂c(x1)

∂x1

)
= ik1ĉ(k1).

(4.30)

To transform Eq. (4.27), from spatial x1­ to wavenumber k1­domain, Parseval’s formula is
used: ∫ ∞

∞
g(x1)m(x1) dx1 =

∫ ∞

∞
ĝ(k1)m̂(k1) d

k1
2π
. (4.31)

Equation (4.31) is now applied on Eq. (4.27), yielding∫ ∞

∞
ĉT

∫
A
BT

1DB1 dA â d
k1
2π

+

∫ ∞

∞
ik1ĉT

∫
A
BT

1DB2 dA â d
k1
2π

+∫ ∞

∞
−ik1ĉT

∫
A
BT

2DB1 dA â d
k1
2π

+

∫ ∞

∞
k21 ĉ

T
∫
A
BT

2DB2 dA â d
k1
2π

+∫ ∞

∞
ĉT

∫
A
NTρN dA

∂2â

∂t2
d
k1
2π

−
∫ ∞

∞
ĉT

∫
A
NTb̂ dA d

k1
2π

−∫ ∞

∞
ĉT

∮
ΓA

NTt̂ dΓA d
k1
2π

= 0.

(4.32)

Since ĉ(k1) is arbitrary, it can be concluded that the following equation must apply for each
wavenumber k1,

M¨̂a(k1) +
(
K0 + ik1K1 + k21K2

)
â(k1) = f̂l(k1), (4.33)
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where ¨̂a(k1) =
∂2â(k1)

∂t2
and

M =

∫
A
NTρN dA,

K0 =

∫
A
BT

1DB1 dA,

K1 =

∫
A
BT

1DB2 dA −
∫
A
BT

2DB1 dA,

K2 =

∫
A
BT

2DB2 dA,

f̂l =

∫
A
NTb̂ dA+

∮
ΓA

NTt̂ dΓA .

(4.34)

The terms M, K0, K1 and K2 are independent of the wavenumber k1 and only need to be
evaluated once. The load vector f̂l is in general, however, wavenumber dependent.

For a harmonic load f̂l(k1, t) = f̌l(k1)e
iωt, the response is also harmonic, â(k1, t) = ǎ(k1)e

iωt

leading to, (
− ω2M+K0 + ik1K1 + k21K2

)
ǎ(k1) = f̌l(k1). (4.35)

The system of equations given by Eq. (4.35) is solved for a set of discrete values of the wavenum­
ber k1, and the nodal displacements in spatial domain a(x1) are then obtained by a discrete
inverse Fourier transform of ǎ(k1). When solved for N uniformly spaced wavenumbers ran­
ging from k1 = −(N2 − 1)∆k1 to k1 = (N2 )∆k1, the displacements a(x1) are obtained for
N uniformly spaced points on the x1­axis, spanning the length 2π/∆k1.

Formulation in a moving frame of reference

Contrary to the full 3D case discussed in Section 4.1.3, no additional integrals are introduced
in the FE matrices in the case of 2.5D FE, when the fixed frame of reference is replaced by
one moving at velocity v along the x1­axis. In wavenumber domain, this change of reference
frames becomes particularly simple. Actually, the response is obtained in the moving frame of
reference following the load at velocity v, by replacing ω in Eq. (4.35) by ω̃ = ω − k1v. This
is shown in Section 4.2.3 for the semi­analytical ground model and, by analogy, applies also
to the case of FE in the wavenumber domain.

4.1.5 Perfectly matched layers

Special attention needs to be given to the fictitious boundaries of a truncated FE model in
order to avoid spurious reflections of elastic waves. One efficient technique is to truncate the
FE model by the use of Perfectly Matched Layers (PMLs) that absorb propagating waves with
any angle of incidence. The idea behind PMLs is the introduction of a so called stretched
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coordinate. Consider an elastic domain extending from s = 0 to s = s0, and a PML region
extending from s = s0 to s = st, see Figure 4.2.

The stretched coordinate is defined as [25, 44]

s̃ =

∫ s

0
λs(s)ds = s0 +

∫ st

s0

λs(s)ds, (4.36)

where λs(s) is a complex valued stretch function. Partial derivatives with respect to s̃ are
written as

∂

∂s̃
=

1

λs(s)

∂

∂s
. (4.37)

Here, a formulation for PMLs in a 2.5D context [44] is considered. Stretching is applied to
the x2­ and x3­coordinates by introducing the partial derivatives of the stretched coordinates
x̃2 and x̃3 into the equilibrium equation; see Eq. (4.8). Disregarding body forces and as­
suming steady­state response with angular frequency ω, this leads to the modified equilibrium
equations

ˆ̃∇
T
σ + ω2ρu = 0, (4.38)

where

ˆ̃∇
T
=

 ∂
∂x1

0 0 1
λ2

∂
∂x2

1
λ3

∂
∂x3

0

0 1
λ2

∂
∂x2

0 ∂
∂x1

0 1
λ3

∂
∂x3

0 0 1
λ3

∂
∂x3

0 ∂
∂x1

1
λ2

∂
∂x2

 . (4.39)

It is shown in [44] that by applying a Galerkin procedure and FE discretization, Eq. (4.35)

Figure 4.2: An incident wave being attenuated inside the PML.
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applies with the following FE matrices for the PML region:

M =

∫
A
λ2λ3N

TρN dA,

K0 =

∫
A
λ2λ3B

T
1DB1 dA,

K1 =

∫
A
λ2λ3

(
BT

1DB2 −BT
2DB1

)
dA,

K2 =

∫
A
λ2λ3B

T
2DB2 dA,

f̂l =

∮
ΓA

λ2λ3N
Tt̂ dΓA .

(4.40)

where B1 = L1N and B2 = L2N with

LT
1 =

0 0 0 1
λ2

∂
∂x2

1
λ3

∂
∂x3

0

0 1
λ2

∂
∂x2

0 0 0 1
λ3

∂
∂x3

0 0 1
λ3

∂
∂x3

0 0 1
λ2

∂
∂x2

 , (4.41)

and

LT
2 =

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (4.42)

The stretching functions may be selected according to [25, 44] as

λj(xj) = 1 + f e
j (xj)− i

f p
j (xj)

a0
, (4.43)

where a0 = ωLPML/cs is a dimensionless frequency, with LPML being a characteristic
length chosen as the thickness of the PML and cs is the shear wave velocity in the medium.
The functions f e

j (xj) and f
p
j (xj) are attenuation functions, attenuating evanescent (e) and

propagating (p) waves, respectively. For λ2 = λ3 = 1, it is seen that the matrices in Eq.
(4.40) for the PML region equal those in Eq. (4.34) for the regular domain. This should hold
at the interface between the regular domain and the PML to avoid an impedance mismatch,
i.e. the attenuation functions f e

j (xj) and f
p
j (xj) should equal zero at the interface. It is

shown in [44] that using a non­zero attenuation function for the evanescent waves shortens
the wavelength of propagating waves inside the PML, necessitating a denser FE mesh.
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4.2 THE LAYER TRANSFER MATRIX METHOD

4.2.1 General remarks

Using FEM to analyze wave propagation problems in (semi­)infinite media such as a layered
half­space poses a number of potential problems. One issue is that, depending on the problem
at hand, often a large computational domain is required. The required number of elements
in the computational domain depends on the wavelengths. Typically 6–10 nodes are needed
per wavelength to properly resolve a propagating wave. With increasing loading frequency the
wavelengths decrease, and hence the number of required elements increases.

However, if visco­elastic properties and a horizontal stratification is assumed, see Figure 4.3,
a so called Green’s function (a fundamental solution) can be found analytically in frequency–
wavenumber domain by the layer transfer matrix (LTM) method. When the solution has been
established for a set of wavenumbers, it is brought back to frequency–space domain through a
2D discrete inverse Fourier transform.

The method briefly outlined below, was derived in [35, 36] and is further detailed in [45]
and [42].

x1

x2

x3

l1 m1 r1 h1

l2 m2 r2 h2

l3 m3 r3 h3

Figure 4.3: Horizontally layered half­space with visco­elastic properties.
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4.2.2 Flexibility matrix of a horizontally layered half-space

First, a single soil layer with the Lame’s parameters λ and µ and density ρ, is considered.
Neglecting body forces, the equilibrium of the soil layer is governed by Navier equations

(λ+ µ)
∂2uj
∂xi∂xj

+ µ
∂2ui
∂xj∂xj

= ρ
∂2ui
∂t2

, (4.44)

and some boundary conditions on the top and bottom of the layer. Here, ui = ui(x1, x2, x3, t)
is the displacement in direction i.

Fourier transforming the Navier equations with respect to the horizontal coordinates and time,
(x1, x2, t), i.e.

Ui(k1, k2, x3, ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
uie

−i(k1x1+k2x2+ωt)dx1dx2dt, (4.45)

yields the Navier equations in frequency–wavenumber domain as

(λ+ µ)∆̌ik1 + µ(
d2

dx23
− k21 − k22)U1 = −ρω2U1, (4.46a)

(λ+ µ)∆̌ik2 + µ(
d2

dx23
− k21 − k22)U2 = −ρω2U2, (4.46b)

(λ+ µ)
d∆̌
dx3

+ µ(
d2

dx23
− k21 − k22)U3 = −ρω2U3, (4.46c)

where k1 and k2 are the wavenumbers in the direction of x1 and x2, respectively, and ω is the
frequency of vibration. Further, ∆̌ = ∆̌(k1, k2, x3, ω) is the Fourier transform, with respect
to the horizontal coordinates and time, of the dilation ∆(x1, x2, x3, t) defined in Eq. (3.6),
i.e.

∆̌(k1, k2, x3, ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
∆e−i(k1x1+k2x2+ωt)dx1dx2dt = ik1U1+ik2U2+

dU3

dx3
.

(4.47)

Equation (4.46a) and Eq. (4.46b) are nowmultiplied by ik1 and ik2 respectively, and Eq (4.46c)
is differentiated with respect to x3. The sum of the three equations lead to the ordinary ho­
mogeneous differential equation for the dilation

(
d2

dx23
− k21 − k22 +

ω2

c2p
)∆̌ = (

d2

dx23
− k21 − k22 + k2p)∆̌ = (

d2

dx23
− α2

p)∆̌ = 0, (4.48)

where cp and kp is the phase speed and wavenumber, respectively, of the P­wave and the
following definitions have been made

α2
p = k21 + k22 − k2p, (4.49a)

α2
s = k21 + k22 − k2s . (4.49b)
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Equation (4.48) has the solution

∆̌(k1, k2, x3, ω) = a1e
αpx3 + a2e

−αpx3 , (4.50)

where a1 and a2 are integration constants. The solution for the dilation is inserted into
Eqs. (4.46a­c), leading to three equations for the displacement amplitudes,

d2U1

dx23
− α2

sU1 = −(
λ

µ
+ 1)ik1(a1eαpx3 + a2e

−αpx3), (4.51a)

d2U2

dx23
− α2

sU2 = −(
λ

µ
+ 1)ik2(a1eαpx3 + a2e

−αpx3), (4.51b)

d2U3

dx23
− α2

sU3 = −(
λ

µ
+ 1)αp(a1e

αpx3 − a2e
−αpx3). (4.51c)

The solutions to Eqs.( 4.51) can be written as

U1 = b1e
αsx3 + b2e

−αsx3 + b3e
αpx3 + b4e

−αpx3 , (4.52a)
U2 = c1e

αsx3 + c2e
−αsx3 + c3e

αpx3 + c4e
−αpx3 , (4.52b)

U3 = d1e
αsx3 + d2e

−αsx3 + d3e
αpx3 + d4e

−αpx3 . (4.52c)

It can be shown that only six of the integration constants (a1, a2, b1, b2, c1, c2) are independent
[42], and that the remaining constants are

b3 = − ik1
k2p
a1, b4 = − ik1

k2p
a2, c3 = − ik2

k2p
a1, c4 = − ik2

k2p
a2,

d1 = −
(
ik1
αs
b1 +

ik2
αs
c1

)
, d2 =

ik1
αs
b2 +

ik2
αs
c2, d3 = −αp

k2p
a1, d4 =

αp

k2p
a2.

(4.53)

Fourier transforming the stress tensor, σjk(x1, x2, x3, t) defined in Eq. (3.4), with respect to
the horizontal coordinates and time yields

σ̌jk(k1, k2, x3, ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
σjke

−i(k1x1+k2x2+ωt)dx1dx2dt. (4.54)

For a known displacement field (U1, U2, U3), the corresponding traction stresses (σ̌13, σ̌23, σ̌33)
are calculated as

σ̌13 = µ(
dU1

dx3
+ ik1U3), (4.55a)

σ̌23 = µ(
dU2

dx3
+ ik2U3), (4.55b)

σ̌33 = λ(ik1U1 + ik2U2 +
dU3

dx3
) + 2µ

dU3

dx3
. (4.55c)

The displacements and the traction stresses are collected in a vector S

S(k1, k2, x3, ω) =
[
U P

]T
=

[
U1 U2 U3 σ̌13 σ̌23 σ̌33

]T
. (4.56)
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For any layer j, the vector Sj can be written as

Sj(k1, k2, x3, ω) = Aj(k1, k2, ω)E
j(k1, k2, x3, ω)b

j . (4.57)

The vector bj contains the integration constants governed by the boundary conditions at the
top and the bottom of the layer,

bj =
[
a1 b1 c1 a2 b2 c2

]T
. (4.58)

The matrix Ej is defined as

Ej(k1, k2, x3, ω) =



eαpx3 0 0 0 0 0
0 eαsx3 0 0 0 0
0 0 eαsx3 0 0 0
0 0 0 e−αpx3 0 0
0 0 0 0 e−αsx3 0
0 0 0 0 0 e−αsx3

 . (4.59)

Aj(k1, k2, ω) is a (6×6)matrix, where the entries follow fromEqs. (4.52–4.53) and Eq. (4.55).
At the top of the j:th layer Ej is the identity matrix. Now, using the superscript 0 and 1 to
refer to the top (x3 = 0) or bottom (x3 = h) of the layer, the vector Sj is, respectively

Sj0 = Aj Ej0 bj = Aj bj , (4.60a)
Sj1 = Aj Ej1 bj . (4.60b)

The vector bj of integration constants can be eliminated by expressing the vector Sj on either
side of the layer in terms of the vector Sj on the other side, e.g.

Sj1 = Aj Ej1 bj = Aj Ej1 (Aj)−1 Sj0. (4.61)

Due to continuity of displacements and tractions over interfaces between layers, several layers
can be assembled in the same manner, forming a relationship between the displacement and
stresses at the top of the stratum and at the bottom of the stratum. This is the layer transfer
matrix approach byThomson and Haskell [46,47]. For certain frequencies and stratifications,
this method suffers from loss­of­precision. To circumvent these problems, in the current work,
the different soil layers are assembled in an orthonormalization procedure [48]. The details are
left out, and the interested reader is instead referred to [48]. With known boundary conditions
at the lowest interface, a relationship between the traction and the displacement at the surface
can be obtained,

U0(k1, k2, ω) = G(k1, k2, ω)P
0(k1, k2, ω), (4.62)

where

G = G(k1, k2, ω) =

G11 G12 G13

G21 G22 G23

G31 G32 G33

 , (4.63)

is the Green’s function for the layered half­space. The Green’s function G(k1, k2, ω), when
multiplied by a traction vector for the surface P0(k1, k2, ω), gives the displacement vector
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U0(k1, k2, ω) on the surface. The displacement vector is obtained in Cartesian space through
a double inverse Fourier transform

ui(x1, x2, x3 = 0, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Uie

i(k1x1+k2x2)dk1dk2. (4.64)

In practice, Eq. (4.62) is evaluated for a set of discrete values of k1 and k2, and Eq. (4.64) is
evaluated using an inverse Fast Fourier Transform (iFFT) algorithm. The Green’s function is
calculated for N × N uniformly spaced wavenumbers (k1, k2) ranging from ki = −(N2 −
1)∆k to ki = (N2 )∆k, The displacements are then obtained in N × N uniformly spaced
points in Cartesian space (x1, x2), spanning the area 2π

∆k × 2π
∆k . Hence, the spacing between

the points where the results are obtained is governed by the wavenumber increment and the
number of points used to calculate the Green’s function. To obtain accurate results, max(k)
must be high enough to ensure that either G ≈ 0 or P ≈ 0 for k > max(k), whereas ∆k
must be small enough to ensure that high gradients in eitherG or P are resolved.

4.2.3 Formulation in a moving frame of reference

In the same manner as for the FE formulation in a moving frame of reference, the coordinate
transformation

(x̃1, x̃2, x̃3) = (x1 − vt, x2, x3), (4.65)

is introduced, where v is the vehicle speed. Applying the transformation to the Navier equa­
tions Eq. (4.44) yields

(λ+ µ)
∂2ũj
∂x̃i∂x̃j

+ µ
∂2ũi
∂x̃j∂x̃j

= ρ(
∂2ũi
∂t2

− 2v
∂2ũi
∂t∂x̃1

+ v2
∂2ũi
∂2x̃1

), (4.66)

where ũi = ũi(x̃1, x̃2, x̃3, t) is the displacement in the moving frame of reference. Fourier
transforming these equations with respect to the horizontal coordinates and time, (x̃1, x̃2, t),
yields the Navier equations in frequency–wavenumber domain as [42]

(λ+ µ)∆̃ik̃1 + µ(
∂2

∂x̃23
− k̃21 − k̃22)Ũ1 = ρ(−ω2 + 2vωk̃1 − v2k̃21)Ũ1, (4.67a)

(λ+ µ)∆̃ik̃2 + µ(
∂2

∂x̃23
− k̃21 − k̃22)Ũ2 = ρ(−ω2 + 2vωk̃1 − v2k̃21)Ũ2, (4.67b)

(λ+ µ)
∂∆̃

∂x̃3
+ µ(

∂2

∂x̃23
− k̃21 − k̃22)Ũ3 = ρ(−ω2 + 2vωk̃1 − v2k̃21)Ũ3. (4.67c)

Here, a tilde is used to emphasize that a variable is expressed in terms of themoving (x̃1, x̃2, x̃3)
coordinate system, i.e.

Ũi(k̃1, k̃2, x̃3, ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ũie

−i(k̃1x̃1+k̃2x̃2+ωt)dx̃1dx̃2dt, (4.68)
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where k̃1 and k̃2 are the wavenumbers in the direction of x̃1 and x̃1, respectively. Now, with

ω̃ = ω − k̃1v, (4.69)

Eq. (4.67) is written as

(λ+ µ)∆̃ik̃1 + µ(
d2

dx̃23
− k̃21 − k̃22)Ũ1 = −ρω̃2Ũ1, (4.70a)

(λ+ µ)∆̃ik̃2 + µ(
d2

dx̃23
− k̃21 − k̃22)Ũ2 = −ρω̃2Ũ2, (4.70b)

(λ+ µ)
d∆̃
dx̃3

+ µ(
d2

dx̃23
− k̃21 − k̃22)Ũ3 = −ρω̃2Ũ3. (4.70c)

These are the same equations as in Eq. (4.46). Hence, the solution procedure outlined in the
previous subsection is applicable also in the moving frame of reference, with the difference
being that the frequency is wavenumber dependent as given by Eq. (4.69). The frequency ω̃
is the frequency of vibration of a material point.
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5.1 GENERAL REMARKS

As discussed in Section 2.5.2, several numerical techniques can be employed to predict the
ground vibrations next to a railway track. In the appended papers a 3D model that com­
bines the FE method and the LTM method, in a moving frame of reference following the
vehicle, is utilized. Further, a model employing 2.5D FE for the railway track and the LTM
method for the soil has recently been developed in the current research project and is presen­
ted here. The computational code for these models were implemented in FORTRAN by the
author, utilizing Intel Math Kernel Library [49] for some of the mathematical operations. The
response obtained for a particular case is compared to that obtained with a 2.5D FE–PML
model employing FE also for the soil domain. The code for the latter model was implemented
in MATLAB by the author.

A slab track consisting of a concrete slab, rails and rail pads, is considered. The slab width and
thickness is w = 3.0 m and t = 0.2 m, respectively. The track is assumed to rest on a 14 m
deep stiff clay till layer overlaying a half­space. The soil conditions corresponds to a site near
the research facilityMAX IV Laboratory in Lund, Sweden. The track, however, is hypothetical.
All models are established in the moving reference frame following the load, implying that the
track and soil are assumed invariant in the running direction. Hence, the discrete rail supports
are considered as distributed. The track and soil properties are given in Tables 5.1 and 5.2,
respectively.

Here, the rail displacements and the ground surface response 10 m from the track center line
is studied, as a harmonic point load runs on the track with a velocity of v = 30 m/s (= 108
km/h). Two frequencies of excitation are considered, f = 40 Hz and f = 80 Hz.

The 3Dmodel used in the appended papers is briefly recapitulated in Section 5.2. The coupled
2.5Dmodel is described in Section 5.3. The 2.5D FE–PMLmodel is described in Section 5.4.
Finally, the response obtained with the three different models for the particular case studied
here is presented and discussed in Section 5.5.
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Table 5.1: Track properties.

Parameter Value
Rail Mass (kg/m) 60

Young’s modulus (GPa) 210
Second moment of inertia (m4) 3.217×10−5

Loss factor (­) 0.01
Track gauge (m) 1.435

Rail Stiffness (MN/m2) 250
pads Damping (kNs/m2) 22.5
Slab Density (kg/m3) 2500

Young’s modulus (GPa) 30
Poisson’s ratio 0.2
Width (m) 3.0
Thickness (m) 0.2
Loss factor (­) 0.04

Table 5.2: Ground properties.

Layer Parameter Value
Soil Depth (m) 14

Young’s modulus (MPa) 475
Poisson’s ratio 0.48
Density (kg/m3) 2125
Loss factor (­) 0.14

Bedrock Depth (m) ∞
(half­space) Young’s modulus (MPa) 8800

Poisson’s ratio 0.40
Density (kg/m3) 2600
Loss factor (­) 0.04
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5.2 A COUPLED 3D TRACK–SOIL MODEL

In this specific example, the track slab is modeled using 3D solid elements, following the
formulation in themoving frame of reference as described in Section 4.1.3. The soil is described
by a dynamic stiffness matrix for a set of nodes where the slab interacts with the ground. These
nodes are referred to as soil­structure interaction (SSI) nodes.

The soil dynamic stiffness matrix is derived from the Green’s function of the layered soil in
the moving reference frame, as described in Section 4.2.3, and can be interpreted as a super­
element to which the track structure is coupled. The total system of equations is then solved
and the forces in the slab–soil interface, i.e. the SSI nodes, are obtained. Finally, the Green’s
function is used for establishing the total displacement response in the free­field as a summation
of contributions from each individual SSI node.

5.2.1 FE model of track

The track slab is modeled using 3D solid continuum elements, for which the formulation in
a moving frame of reference was given in Section 4.1.3. Fully integrated linear brick elements
with 8 nodes and 3 translational DoFs per node are used. Six elements are used in the thickness
direction of the slab, and an element length of 0.15 × 0.15 m in the (x1, x2)­plane is used.
The rails are represented by Bernoulli–Euler beam elements with two nodes, each node hav­
ing a rotational DoF and a vertical translational DoF. The beam elements are coupled to the
solid elements through visco­elastic interface elements, composed of continuously distributed
springs and dashpots, representing the rail pads. The formulation of these elements are presen­
ted in both Paper A and Paper C. Damping is introduced into the slab and the rails by the use
of complex Young’s moduli,E∗ = E(1+ iη), where η is the loss factor, leading to a frequency
independent damping as described in Section 3.2.3. Assuming a harmonic excitation with the

x2

x3

x1

Figure 5.1: Illustration of 3D FE mesh of a railway track coupled to a horizontally layered
half­space.
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angular frequency ω = 2πf , the governing equations for the track can be written as

(−ω2Mt + iωCt +Kt)ût = Dt(ω)ût = f̂t, (5.1)

where Mt, Ct and Kt is the mass, damping and (complex) stiffness matrix, respectively, for
the total track system (excluding the underlying soil). Further, Dt(ω) is the corresponding
dynamic stiffness matrix. The vector ût contains the displacements in the track DoFs, and the
vector f̂t contains the externally applied loads.

5.2.2 Soil dynamic stiffness matrix

Assuming that the track structure contains m nodes on the soil interface, each with three
translational DoFs, a (3m× 3m) dynamic stiffness matrix Ds(f) for the soil super­element,
i.e. them SSI nodes, is to be determined. Here, advantage is taken of the assumed invariability
of the soil in the horizontal directions.

The first step involves calculating the soil response due to a unit harmonic load, with frequency
f , moving along the x1­axis on the soil surface with velocity v. The unit load is evenly dis­
tributed over a rectangular area, the size of which is chosen as equal to the element size of the
connecting track. Hence, with reference to Sections 4.1.3 and 4.2.3, the traction is distributed
over a rectangular area centered in the origin of the moving coordinate system (x̃1, x̃2, x̃3), as

pj(x̃1, x̃2, ω) =

{
1/(4ab), −a < x̃1 < a, −b < x̃2 < b

0, otherwise ,
(5.2)

where 2a and 2b is the width in the x̃1 and x̃2 directions, respectively. In the current example,
2a = 2b = 0.15. In wavenumber domain the traction becomes

p̂j(k̃1, k̃2, ω) =
sin(k̃1a)

k̃1a

sin(k̃2b)

k̃2b
. (5.3)

The soil surface displacement response is calculated in frequency–wavenumber domain
(k̃1, k̃2, ω), for N × N wavenumbers, using the LTM method in accordance with Section
4.2. After a discrete inverse Fourier transform the soil surface response, in terms of complex
displacements (ũ1, ũ2, ũ3), is obtained in N × N points in the moving coordinate system
(x̃1, x̃2, x̃3). In the moving frame of reference, the response in each point of the soil surface
is harmonic with the frequency of the excitation. The area spanned by the response surface
depend on the wavenumber increment, and the spacing between the response points depend
on the number of points N , as described in Section 4.2.2. In the current example N = 4096
and max(k̃1) = max(k̃2) = 2π/0.15 rad/m, which has been found to be sufficient in the
case studied here. Figure 5.2 shows a response surface of the vertical displacement due to a
vertical unit harmonic load.

The soil surface displacements are calculated separately for a unit load in each of the three
(x̃1, x̃2, x̃3) directions, i.e. nine response surfaces are obtained, here denoted U(i, j, x̃1, x̃2)
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Figure 5.2: Response surface showing the real part of the vertical displacement due to a rect­
angular vertical unit load with f = 40 Hz and v = 30 m/s.

where i(= 1, 2, 3) is the load direction and j(= 1, 2, 3) is the displacement direction. A
(3m×3m) flexibility matrix for them SSI nodes,Hs(ω), is established by interpolating from
the nine response surfaces.

Let DoF qj denote the displacement in direction j of node q. Similarly, let DoF ri denote the
displacement in direction i of node r. Element (qj , ri) of the flexibility matrix contains the
complex displacements in DoF qj due to a unit load in DoF ri. Letting∆x̃1 and∆x̃2 denote
the distance between nodes q and r in the x̃1­ and x̃2­directions, then the flexibility matrix
element (qj , ri) is obtained as

Hqjri = U(i, j,∆x̃1,∆x̃2). (5.4)

Finally, the dynamic stiffness matrix of the soil is obtained as the inverse of the flexibility
matrix, i.e. Ds(ω) = H−1

s (ω), and the following equation applies for the soil super­element,

Ds(ω)ûs = f̂s, (5.5)

where the vector ûs contains the displacements in the SSI DoFs, and the vector f̂s contains the
externally applied loads.

5.2.3 Solution of global equations

When the dynamic stiffness matrices of the track and the soil,Dt andDs, have been determ­
ined, they are assembled in a standard FE manner forming a total dynamic stiffness for the
track and soil system,Dg.
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The following equation applies to the coupled track and soil system,

Dg(ω)ût = f̂t. (5.6)

The load vector f̂t is zero except for the rows corresponding to the rail loading points DoFs.
The SSI DoFs ûs are a subset of the track DoFs ût. Hence, when Eq. (5.6) has been solved,
the corresponding forces in the SSI DoFs are obtained as

f̂s = Ds(ω)ûs. (5.7)

Now, a second flexibility matrix Hs,f(ω) is defined, again by using the response surfaces
U(i, j, x̃1, x̃2) in a procedure similar to the one described above, to express the displacements
in a number of points in the free­field due to loading of the SSI DoFs. The free­field displace­
ments are then obtained as uf = Hs,f(ω)fs.

5.3 A COUPLED 2.5D TRACK–SOIL MODEL

By combining the 2.5D FE method with the semi­analytical soil representation a very time
efficient model is obtained. Here, the track cross­section in the (x2, x3)­plane is represented by
a 2D mesh comprising 2.5D elements. For each discrete wavenumber k1 in the x1­direction,
a dynamic stiffness matrix for the track is calculated, which is coupled to a dynamic stiffness
matrix representing the soil, calculated from the Green’s function of the layered half­space
using the LTM method.

5.3.1 FE model of track

The track slab cross­section is modeled using 2.5D solid elements in the (x2, x3)­plane. The
governing FE equations for such elements were presented in Section 4.1.4. Here, fully integ­
rated 4­node isoparametric quadrilateral elements with linear shape functions are used. Six
elements are used in the thickness direction of the slab, and an element length of 0.15 m is

x2

x3

Figure 5.3: Illustration of a 2D FE mesh coupled to a horizontally layered half­space.
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used in the x2­direction. As described in Section 4.1.4, the calculations are performed in the
moving frame of reference following the load at velocity v, by evaluating the stiffness matrices
for the frequency ω̃ = ω − k1v, where ω is the actual frequency of excitation by the mov­
ing harmonic load. A dynamic stiffness matrix for the track slab, Dp(k̃1, ω̃), is established in
accordance with Eq. (4.35). The rail and rail pads, for which the dynamic stiffness is derived
below, is coupled to the slab.

Each rail is represented by a Bernoulli–Euler beam of infinite length, with bending stiffness
(EI)r and massmr, continuously supported by distributed springs and dashpots representing
the rail pads, with stiffness kP and damping cP . The rail is subjected to a harmonic load
P0 with circular frequency ω, moving in the positive x1­direction with the velocity v. The
governing equation for the rail can be written as

(EI)r
∂4ur
∂x4

+mr
∂2ur
∂t2

+ kP

(
ur − us

)
+ cP

(∂ur
∂t

− ∂us
∂t

)
= δ(x− vt)P0eiωt. (5.8)

Here, ur = ur(x1, t) is the vertical displacement of the rail and us = us(x1, t) is the vertical
displacement of the slab directly under the rail. The equation is obtained in the frame of
reference following the load by applying the coordinate transformation in Eq. (4.13),

(EI)r
∂4ũr
∂x̃4

+mr

(∂2ũr
∂t2

− 2v
∂2ũr
∂x̃∂t

+ v2
∂2ũr
∂x̃2

)
+ kP

(
ũr − ũs

)
+

cP

(
(
∂ũr
∂t

− v
∂ũr
∂x̃

)− (
∂ũs
∂t

− v
∂ũs
∂x̃

)
)
= δ(x̃)P0eiωt,

(5.9)

where, again, ˜ denotes that a variable is expressed in the moving frame of reference. Fourier
transforming Eq. (5.9) with respect to x̃ yields

(EI)rk̃
4
1ūr +mr

(∂2ūr
∂t2

− 2ivk̃1
∂ūr
∂t

− v2k̃21ūr

)
+ kP

(
ūr − ūs

)
+

cP

(
(
∂ūr
∂t

− ivūr)− (
∂ūs
∂t

− ivūs)
)
= P0eiωt,

(5.10)

with ū = ū(k̃1, t) =
∫∞
−∞ ũ(x̃, t)e−ik̃1x̃dx̃, and k̃1 denotes the wavenumber in the direction

of x̃.

Further, assuming steady­state vibration with circular frequency ω, i.e. ū(k̃1, t) = ǔ(k̃1)eiωt

and setting ω̃ = ω − k̃1v yields

(EI)rk̃
4
1ǔr − ω̃2mrǔr + kP

(
ǔr − ǔs

)
+ iωcP

(
ǔr − ǔs

)
= P0. (5.11)

Based on the above equation, a one­dimensional element similar to a simple Kelvin­Voight
element can be formulated for the rail and rail pad in k̃1­domain, governed by[

(EI)rk̃
4
1 − ω̃2mr + kP + iω̃cP −(kP + iω̃cP )
−(kP + iω̃cP ) kP + iω̃cP

] [
ǔr
ǔs

]
=

[
P0

fs

]
, (5.12)
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u1 u2us

un

Figure 5.4: Coupling of rail and rail pad element to underlying slab element.

which can be written asDrǔr = f̌r.

In the general case, the rail element is not located directly over a node of the track slab mesh.
Hence, the vertical displacement at the contact point between the rail and the slab, ǔs, is
expressed in terms of the shape functions and vertical displacements of the two nodes spanning
the edge of the connecting slab element, as

ǔs = N1ǔ1 +N2ǔ2, (5.13)

where the shape functions N1 and N2 are evaluated at the coordinate of the slab–rail contact
point. It can be shown that this leads to the following dynamic stiffness matrix for the rail
element,

Dr =

(EI)rk̃41 − ω̃2mr + kP + iω̃cP −N1(kP + iω̃cP ) −N2(kP + iω̃cP )
−N1(kP + iω̃cP ) N2

1 (kP + iω̃cP ) N1N2(kP + iω̃cP )
−N2(kP + iω̃cP ) N1N2(kP + iω̃cP ) N2

2 (kP + iω̃cP )

 ,
(5.14)

with the corresponding DoFs (ǔr, ǔ1, ǔ2). The dynamic stiffness matrices for slab and the
two rails can now be assembled into one for the whole track structure, Dt, pertaining to the
displacements of all the track DoFs ǔt. Damping is introduced into the slab and the rails by
the use of complex Young’s moduli, E∗ = E(1 + i sgn(ω̃)η), where sgn is the sign function
and η is the loss factor, leading to a frequency independent damping as described in Section
3.2.3.

5.3.2 Soil dynamic stiffness matrix

To derive the dynamic stiffness matrix of the soil, the slab–soil interface is discretized into n
strips with a uniform width, where n is the number of elements in the slab. Hence, the width
of a single strip is ∆ = w/n, where w is the slab width.

First, a single strip centered around the x̃2­axis, with a unit harmonic force in direction j is
considered. In this section, the argument ω̃ has been dropped for brevity; it is understood that
a harmonic response with the angular frequency ω̃ = ω − k̃1v is considered. The strip stress
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is

pj(x̃1, x̃2) =

{
1
∆ , −∆/2 < x̃2 < ∆/2

0, otherwise .
(5.15)

In wavenumber domain the interface stress becomes

p̂j(k̃1, k̃2) =
sin(k̃2∆/2)

k̃2∆/2
. (5.16)

The soil surface displacement in direction i due to the soil surface stress in direction j is denoted
ûij . From Eq. (4.62) this displacement is obtained as ûij(k̃1, k̃2) = Gij(k̃1, k̃2)p̂j(k̃1, k̃2)
(no summation on repeated indices).

By performing an inverse Fourier transform with respect to wavenumber k̃2, the soil displace­
ment at an arbitrary x̃2­coordinate is obtained as

ˇ̃uij(k̃1, x̃2) =
1

2π

∫ ∞

−∞
ûij(k̃1, k̃2)eik̃2x̃2dk̃2 =

1

2π

∫ ∞

−∞
Gij(k̃1, k̃2)p̂j(k̃1, k̃2)eik̃2x̃2dk̃2

=
1

2π

∫ ∞

−∞
Gij(k̃1, k̃2)

sin(k̃2∆/2)

k̃2∆/2
eik̃2x̃2dk̃2 = Ȟij(k̃1, x̃2).

(5.17)
Ȟij(k̃1, x̃2) is a transfer function, expressing the displacements at x̃2 due to a unit load at the
strip centered around x̃2 = 0. Due to the translational invariability of the soil, Ȟij(k̃1, x̃2)
can be used for calculating the soil displacement at any distance along the x̃2­axis from any
loaded strip, by replacing the coordinate x̃2 with the distance between the mid­points of the
“source strip” and the “receiver strip”. Hence, for each wavenumber k̃1, a flexibility matrix,
linking the displacements and forces in all the n strips, is established as



Ȟ11(0) Ȟ12(0) ... Ȟ13(−(n− 1)∆)

Ȟ21(0) Ȟ22(0) ... Ȟ23(−(n− 1)∆)

Ȟ31(0) Ȟ32(0) ... Ȟ33(−(n− 1)∆)

Ȟ11(∆) Ȟ12(∆) ... Ȟ13(−(n− 2)∆)
: : ... :

Ȟ31((n− 1)∆) Ȟ32((n− 1)∆) ... Ȟ33(0)



f̌1x
f̌1y
:

f̌nz

 =


ǔ1x
ǔ1y
:
ǔnz

 , (5.18)

where the argument k̃1 has been dropped for brevity. Equation (5.18) can be written as Ȟsf̌s =
ǔs, where ǔs and f̌s are vectors containing displacements and forces respectively. Hence, the
dynamic stiffness matrix is obtained as Ds = Ȟ−1

s . For the discretized soil interface, the
following equation relates the total forces on each strip to the displacements in the mid­point
of each strip,

Dsǔs = f̌s. (5.19)

It is emphasized that Eq. (5.19) applies for a given wavenumber k̃1 and frequency ω̃, i.e.
Ds = Ds(k̃1, ω̃), ǔs = ǔs(k̃1, ω̃), and f̌s = f̌s(k̃1, ω̃). For each k̃1, however, a loop over a set
of wavenumbers k̃2 in the x̃2­direction is necessary for the evaluation of the Green’s function
and Eq. (5.17).
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Figure 5.5: Strips of uniform traction on the soil. The nodes and edges of the connecting track
elements are also shown.

5.3.3 Coupling of track and soil

The “interaction points” of the discretized soil interface are located at the mid­point of each
strip, whereas the nodes of the track elements at the interface are located in the strip end­points.
The two domains are initially uncoupled. To couple the two domains, a transformation matrix
is used to enforce displacement compatibility between the mid­point of each soil strip and the
corresponding point of the FE mesh. A similar procedure was followed in [32] to couple
2.5D boundary elements to a FE mesh. The displacements in the soil strip mid­points, ǔs, are
expressed in terms of the displacements of the track nodes at the interface, ǔst as

ǔs = Tǔst, (5.20)

where the transformation matrix T depends on the element shape functions in the track ele­
ments. Because linear elements are used for the track, and the soil strip mid­points are located
in the center of each corresponding track element, Eq. (5.20) states that the displacements of
each soil strip mid­point equal the average displacements in the two nodes spanning the edge
of the connecting element. The same transformation matrix is used to relate the forces from
the soil strips to the actual track nodes,

f̌st = TTf̌s, (5.21)

Hence, in terms of the track DoFs of the track–soil interface, the dynamic equilibrium for the
soil can be written as

Dstǔst = f̌st, (5.22)

withDst = TTDsT.

5.3.4 Solution of global equations

The dynamic stiffness matrices for the soil, Dst, and the track, Dt can now be assembled in
a standard manner leading to a global dynamic stiffness matrix for the coupled soil and track
system,Dg = Dg(k̃1). The displacements of the track DoFs, ǔt = ǔt(k̃1) are solved from

Dgǔt = f̌t, (5.23)
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Figure 5.6: Contour plot showing the vertical displacement of the soil surface as obtained with
the coupled 2.5D model for the excitation frequency f = 80 Hz.

where f̌t = f̌t(k̃1) is a force vector containing the external loads. The only external loads
are the harmonic point loads P0 on each rail, moving with velocity v in the positive x1­
direction, i.e. f(x1, t) = P0δ(x1 − vt)eiωt. In the moving coordinate system this becomes
f̃(x̃1, t) = P0δ(x̃1)e

iωt, and after a Fourier transform with respect to x̃1 and t the load is
described by f̌(k̃1, ω) = P0. This means that the same load, P0, is applied to the rail DoF
for each wavenumber k1. The displacements ǔs(k̃1) in the mid­points of the element edges,
corresponding to the mid­points of the soil strips, are then obtained from Eq. (5.20), from
which the soil strip forces, f̌s(k̃1), can be obtained from Eq. (5.19). When the magnitude of
the strip forces are known the total traction on the soil surface for the current wavenumber, k̃1,
is obtained by superposition of the contributions from each individual strip. The traction in
(k̃1, k̃2)­domain due to a single strip centered around the x̃2­axis was given in Eq. (5.16). The
traction due to a strip centered around the coordinate x̃2 = d is then given by the translation
operation, i.e.

p̂j(k̃1, k̃2) =
sin(k̃2∆/2)

k̃2∆/2
eidk̃2 . (5.24)

Each such (unit force) strip traction is scaled by the corresponding strip force in the vector
f̌s(k̃1).

The calculations described here are carried out for N discrete wavenumbers k̃1 corresponding
to the x̃1­direction. That is, for each wavenumber k̃1, the dynamic stiffness matrix of the 2D
FE mesh is established, and coupled to a dynamic stiffness matrix for the soil. The establish­
ment of the Green’s function and the soil dynamic stiffness matrix, for each wavenumber k̃1,
requires a loop over M discrete wavenumbers k̃2 corresponding to the x̃2­direction. In the
current example, N = M = 4096 was chosen, with max(k̃1) = max(k̃2) = 2π/0.15
rad/m, i.e. the same wavenumber discretization that was used in the 3D model.

The global displacements of the soil surface are calculated in (k̃1, k̃2)­domain using Eq. (4.62).
These displacements are obtained in (x̃1, x̃2)­space by a double inverse Fourier transform. The
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complex nodal displacements of the track structure, ût(x̃1), are obtained in N points along
the (x̃1)­axis after an inverse Fourier transform of ǔt(k̃1), see Figure 5.6.

5.4 A 2.5D FE–PML MODEL

In this model, both the track slab and the soil is represented by 2.5D solid elements in the
(x2, x3)­plane. The governing FE equations for such elements were presented in Section 4.1.4.
Here, fully integrated isoparametric 8­node elements with quadratic shape functions are used.
The modeling of the rails and rail pads is identical to the description in Section 5.3, i.e. by a
one­dimensional element the rail and rail pad in k1­domain governed by Eq. (5.12). The only
difference is that the coupling of the rail to the slab now accounts for the fact that the slab is
described by quadratic elements.

5.4.1 FE model of track and soil

Six elements are used in the thickness direction of the slab, and an element length of 0.3
m is used in the x2­direction. For the soil, the element length is approximately 0.3 m in
both directions. Only half of the track and the surrounding soil is modeled, with symmetry
conditions applied to the boundary in x2 = 0. PMLs, as described in Section 4.1.5, are used to
artificially attenuate the waves at the truncated sides of the model. The attenuation function
for evanescent waves, f e

j (xj) is set to zero. A linear attenuation function for propagating
waves is used, as f p

j (xj) = 20(xj − xj0)/LPML [44] where xj0 is the xj­coordinate at the

Figure 5.7: Mesh used in 2.5D FE–PML model. Blue colored elements are PML elements.
Brown colored elements belong to the half­space material. A magnification of the
slab (green colored elements) is shown inside the red box.



5.5 Discussion 61

Figure 5.8: Contour plot showing the vertical displacement of the soil for the excitation fre­
quency f = 80 Hz. The waves are effectively attenuated inside the PML.

interface between the regular and the PML domain. Material damping is introduced into the
whole model by the use of complex Young’s moduli, E∗ = E(1 + i sgn(ω̃)η), where η is the
loss factor and sgn is the sign function. The FE mesh is shown in Figure 5.7.

5.4.2 Solution of global equations

As described in Section 4.1.4, the calculations are performed in the moving frame of reference
following the load at velocity v, by evaluating the stiffness matrices for the frequency ω̃ =
ω− k̃1v, where ω is the actual frequency of excitation by the moving harmonic load. A global
dynamic stiffness matrix for the entire computational domain,Dg(k̃1), is established for each
of the N discrete wavenumbers k̃1 in the x̃1­direction. The nodal displacement vector ǔ(k̃1)
is solved from Dgǔ = f̌ . The only external load is the point load (P0) on the rail, which are
constant for all wavenumbers as discussed in Section 5.3.4. In the current exampleN = 4096
withmax(k̃1) = 5 rad/m. The complex nodal displacements û(x̃1) are obtained inN points
along the (x̃1)­axis after an inverse Fourier transform of ǔ(k̃1), see Figure 5.8.

5.5 DISCUSSION

All three models described above are formulated in a moving frame of reference, following the
load at the velocity v = 30 m/s. The results are therefore obtained in this moving reference
frame. Since the loading is harmonic with frequency ω, the response is also harmonic with
the same frequency. To compare the response from the three models, the absolute value of
the vertical displacement is extracted along a line located 10 m from the track center line, see
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Figure 5.9, as well as along the rail, see Figure 5.10. The displacements are plotted against
the track direction coordinate x̃1, where x̃1 = 0 corresponds to a point perpendicular to the
moving load, and positive values of x̃1 correspond to points in front of the load.

All three models yield very similar response, both regarding the rail displacements and the
free­field displacements. The maximum difference of the peak values is obtained for the higher
frequency, where it is still less than 3%. The small differences that do exist are believed to be
caused mainly by the different track–soil interface stress conditions. The traction on the soil
surface from the two models employing a soil dynamic stiffness based on the semi­analytic
approach, is composed of patches or strips of uniform stress. In the 3D model, these patches
are applied centered around each SSI node, whereas in the 2.5D case the strips of uniform
stress are applied centered around the element edge mid­point. In the 3D model, the contact
pressure therefore extends slightly (by half an element width) outside the slab width. However,
as seen from the response, these effects are negligible for the free­field response in the case
studied here.

In terms of computational cost, it is difficult to make a completely fair comparison. For the
two models using the LTM method to establish the soil impedance and response, the Green’s
function evaluation requires a loop over N ×M wavenumbers in (k1, k2)­domain. In the
3D model, a large system of equations is established that is solved once for each excitation
frequency. The dynamic stiffness matrix of the soil becomes fully populated. In the coupled
2.5D model a very small system of equations (corresponding to the DoFs of the 2D mesh)
is solved, but on the other hand it is solved N times (once for every wavenumber k1 in the
x1­direction). In the 2.5D FE–PML model, the system of equations is also solved N times,
once for every wavenumber k1. Here, the system of equations is considerably larger due to
the discretization of the soil, and the computational time depends heavily on the size of the
computational domain. To evaluate the response at large distances becomes costly because of
the large soil domain requiring discretization. In all models, large savings in computational
time can be gained by utilizing that the calculations are independent for each wavenumber k1,
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Figure 5.9: Maximum vertical displacement along a line 10 m from the track for the excitation
frequencies f = 40 Hz (left) and f = 80 Hz (right).
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Figure 5.10: Maximum vertical displacement along the rail for a unit harmonic load with the
excitation frequencies f = 40 Hz (left) and f = 80 Hz (right).

i.e. parallelization can be employed.

It can be argued that the 3D model does not have any advantages over the other two models in
the case studied here, i.e. when considering a moving load. However, the model can of course
also be used in a fixed frame of reference by setting the velocity v = 0. Then it is possible
to introduce additional structures (e.g. a building with a surface footing) next to the track,
e.g. to numerically predict transfer functions from the track to the building. This would not
be possible in the two other models utilizing the 2.5D approach, where only long­stretched
invariant structures could be included. In a 2.5D FE–PML model, as opposed to the other
two models, it is straightforward to model e.g a long­stretched trench parallel with the track,
or other discontinuities of the soil.

In the present example, the analysis of a unit harmonic load on the track was described. How­
ever, the results from such analyses can be utilized for studying the effect of a vehicle running
over an uneven rail. For a given unevenness wavelength λ, the frequency of excitation by a
wheel running at v is f = v/λ. The rail receptance (displacement per unit force) for a given
frequency f and velocity v, can be used for establishing a sub­model where the vehicle response
and the wheel–rail contact forces are calculated. The free­field response due to these contact
forces are then obtained by scaling, phase­shifting and translating the free­field response cal­
culated for the unit harmonic load. This is further detailed in Paper C. The total response
from the dynamic excitation by a vehicle running over an uneven rail is obtained as the sum of
contributions from discrete unevenness wavelengths. If measurements of the rail unevenness
for a certain stretch are not available, rail unevenness defined in a statistical sense by a power
spectral density (PSD) function can be used. Such a PSD function was used in Paper B for
calculating the free­field response due to a 10 DoF train cart (see Figure 2.11) running on an
uneven rail.





6 Summary of appended papers

6.1 PAPER A

Modeling train­induced ground­borne vibrations using FEM in a moving frame of reference.

J. Malmborg, K. Persson, P. Persson.

In proceedings of COMPDYN 2019, 7th International Conference on Computational Meth­
ods in Structural Dynamics and Earthquake Engineering, Crete, Greece, June 2019.

Summary

A numerical model for calculating the free­field ground vibrations from surface trains is presen­
ted in the paper. A finite element formulation in a frame of reference following the moving
load at a fixed velocity, was used for modeling a railway slab track. The underlying soil was
represented through a dynamic stiffness matrix, obtained from the Green’s function for a ho­
rizontally layered visco­elastic half­space, in a moving frame of reference. Three different track
models were established and compared. In two of the track models, the slab was represented by
beam elements with different assumptions regarding the pressure distribution of the slab–soil
interface. The third track model utilized plate elements for representing the slab, accounting
for the cross­section flexibility and hence a more general slab–soil pressure distribution. The
three track models were used for evaluating the free­field response due to a harmonic load in
the frequency range 0–80 Hz moving along the track. One of the beam models, assuming
a constant vertical displacement of the soil under the slab cross­section, showed good agree­
ment with the plate model. The response obtained with the simplest beam model, assuming a
constant contact pressure under the slab cross­section, was significantly underestimated.
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6.2 PAPER B

Evaluating the effect of vibration isolation mats on train­induced ground vibrations.

J. Malmborg, K. Persson, P. Persson.

In proceedings of SEMC2019, 7th International Conference on Structural Engineering,Mech­
anics and Computation, Cape Town, South Africa, September 2019.

Summary

The numerical modeling technique established in Paper B was applied to evaluate the effect of
a vibration isolation mat, placed under a railway slab track, on the free­field ground vibrations.
The slab and the underlying supporting plate were modeled using Kirchhoff plate elements,
and the vibration isolation mat was modeled as a continuous visco­elastic layer between the
two plates. First, the free­field response and the insertion loss obtained with the vibration
isolation mat was calculated for a harmonic point load moving along the track. Secondly,
band­averaged vibration levels and the insertion loss for a fixed point next to the track were
calculated for a train cart, represented by a 10­DoF multi­body system, running at different
speeds on an uneven track. The rail unevenness was described by a PSD function. It was
found that the isolation mat changes the vibration response significantly in two ways. The
introduction of a resilient element changes the transmissibility of the system, hence changing
the vibration response due to a specific load acting on the track. Further, the resilient element
modifies the track receptance, implying different dynamic wheel–rail interaction forces as the
vehicle runs over the uneven rail. Negative insertion loss, i.e. a higher vibration response, were
obtained for frequencies near the resonance frequency of the isolated slab, whereas a significant
reduction of the response was obtained for higher frequencies.
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6.3 PAPER C

Effects of modeling strategies for a slab track on predicted ground vibrations.

J. Malmborg, P. Persson, K. Persson.

Submitted for publication in international journal.

Summary

In the paper, the effect of modeling strategies regarding the dynamic behavior of a railway
slab track on a layered half­space is studied. If the track is modeled as a layered beam, the
free­field vibration response due to a moving harmonic load on the track can be evaluated effi­
ciently using a semi­analytical procedure in frequency–wavenumber domain. However, such
a beam representation of the track does not account for the cross­section flexibility, and some
assumptions regarding the displacements or the stress­distribution in the track–soil interface
have to be made. In the paper, a constant displacement and a constant stress­distribution, re­
spectively, were tested. The free­field response obtained with the beam models were compared
to that obtained using a solid finite element and a shell finite element representation of the
slab, using the technique established in Paper A. First, only the vertical displacements of the
slab–soil interface were coupled. Secondly, the effect of coupling the in­plane displacements
on the free­field vibrations were studied. Furthermore, a sub­structuring technique was em­
ployed to calculate and compare the wheel–rail interaction forces with the different models,
for a single­axle vehicle. It was found that for a thin slab, the vertical pressure distribution
under the slab is highly influenced by the cross­section flexibility, which in turn significantly
affects the predicted free­field vibrations. The two beam models yielded an underestimated
response for the studied cases. For a thick slab, however, the beam model with a constant
displacement under the slab yielded accurate free­field response, compared to the solid and
shell models. It was also found that when the in­plane shear forces of the slab–soil interface
was accounted for, increased vibration response levels in the free­field were generally obtained.
A beam model, enforcing zero in­plane displacements in the lateral direction of the slab–soil
interface, provided good accuracy for a thick slab. All models provided similar rail receptances
and subsequently wheel–rail interaction forces.





7 Concluding remarks

7.1 CONCLUSIONS

In this thesis, numerical modeling strategies for predicting ground­borne vibrations from a
surface railway track have been studied. Focus have been on the vibration transmission from
the track to the free­field, and to a smaller extent on the actual load generation. An efficient
semi­analytical approach for modeling the soil behavior, based on the Green’s function for a
horizontally layered half­space, has been combined with finite element modeling of the railway
track, both in 3D and so called 2.5D. All computational code was written in FORTRAN by
the author. The main contributions of the work presented in the thesis and the appended
papers include

• A novel combination of the Green’s function for a layered visco­elastic half­space with a
3D FE representation of a railway track, in the moving frame of reference (Paper A–C).

• A study of insertion loss by the introduction of a resilient mat under the track slab,
obtained in a fixed point next to the track due to a passing train on an uneven track
(Paper B).

• A study of the importance of the track modeling strategy, regarding the cross­section
flexibility and the track–soil in­plane shear forces, on the free­field vibrations (Paper C).

• An efficient combination of a 2.5D FE representation of a railway track combined with a
semi­analytical soil impedance for predicting the free­field ground vibrations, described
in Chapter 5.

Furthermore, the response obtained with the combined FE and semi­analytical models have for
a specific case been compared to a model where also the soil is modeled using finite elements.
The models showed very good agreement.
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7.2 FUTURE WORK

In the present work, focus has been on computational models for calculating the free­field re­
sponse next to a surface railway track. A natural continuation is to study and develop strategies
and models enabling the numerical prediction of vibrations inside buildings. Such strategies
are highly relevant in a practical civil engineering context to enable accurate predictions and
informed design decisions. Mapping the incident wave field, generated by a moving train, on
to a building to predict the response inside the building is not a straightforward task.

Apart from developing numerical models for tracing the vibrations from the source to the final
receiver in a deterministic manner, an important subject of research is the quantification of
the uncertainties that are afflicting such predictions due to limited knowledge or modeling
capacity regarding the governing parameters. This becomes increasingly important when pre­
dicting the response inside a building, because the number of uncertain parameters increases
drastically. It would therefore be very useful if the uncertainties regarding some parameters
could be maintained and propagated through the prediction model, to establish predictions in
a statistical sense, e.g. by means of confidence intervals.
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Abstract. To predict ground-borne vibration levels caused by railway traffic, models for
estimating the load from the vibration source, as well as the vibration transmission through the
ground, are needed. In the present paper, a finite element formulation in a frame of reference
following the moving load, is used for modeling a railway slab track. The response of the
underlying soil is represented through a dynamic stiffness matrix, obtained via the Green’s
function for a horizontally layered visco-elastic half-space in a moving frame of reference in the
frequency–wavenumber domain. The track can be modeled as continuously connected beams,
but the use of plate elements allows for more general stress and displacement distributions in the
transverse direction of the slab to be resolved. Here, the free-field response due to a harmonic
load moving along a slab track, is evaluated and compared using different modeling strategies
for the slab.



J. Malmborg, K. Persson and P. Persson

1 INTRODUCTION

To predict the level of ground-borne vibration caused by railway traffic, models are needed
to estimate the load from the vibration source as well as the vibration transmission through the
ground. A number of techniques have been developed in the past decades to study ground vi-
brations caused by a passing train, ranging from empirical methods to analytical and numerical
schemes.

Numerical schemes are often based on either the finite element (FE) or the boundary ele-
ment (BE) method or a combination thereof. The strength of these methods lies in their ability
to model arbitrary geometries and discontinuities. The downside is the high computational cost.
The computational cost can be reduced if the soil and track system is assumed to be invariant
in the track direction, leading to so called 2.5D models [1, 2, 3, 4]. Further, if the soil stratifi-
cation is assumed to consist of horizontally layered visco-elastic layers, a fundamental solution
(Green’s function) for the soil response can be found efficiently in frequency–wavenumber do-
main. Sheng et al [5, 6] proposed a semi-analytical model, with the track represented by an
infinite layered beam resting on a layered ground, where both the ground and the beam is de-
scribed in the frequency–wavenumber domain. Kaynia et al [7] coupled a series of FE beams,
representing the railway track, to a dynamic stiffness matrix of the ground calculated from the
Green’s function of a layered half-space.

Modeling the track as a beam on a layered half-space is a common approach in the field
of ground-borne vibrations due to railway traffic. This approach, however, constricts the track–
soil interface stress distribution. Steenbergen et al [8] studied the influence of different interface
conditions between a beam on a half-space, subjected to a dynamic moving load, on the free-
field response, using a semi-analytical model in the frequency–wavenumber domain. Galvin et
al [4] compared the free-field response of a high-speed train passage on a ballasted track on an
embankment, calculated using a 2.5D continuum model, to a model with a beam representation
of the track, finding large differences attributed to the rigid cross-section of the embankment in
the beam model.

In the present paper, a FE model is used for representing a railway slab track. The response of
the underlying soil is represented by a dynamic stiffness matrix obtained via the Green’s func-
tion for a horizontally layered visco-elastic half-space. The model is formulated in a frame of
reference following the moving load. The slab and rails can either be modeled as continuously
connected beams or by using Kirchhoff plate elements for representing the track slab. Plate
elements allow for more general stress and displacement distributions in the track transveral
direction to be resolved. Here, the free-field response due to a harmonic load moving along the
track at constant velocity, is calculated and compared using different modeling strategies for the
track.

In Section 2 an overview of the model is given and the studied case is presented in Section
3. Finally, conclusions are given in Section 4.

2 CALCULATION MODEL

2.1 Overview

The slab track is shown principally in Figure 1. It consists of a supporting layer, a concrete
slab, rails and rail pads. Full interaction is assumed between the slab and the supporting layer,
so that a homogeneous section with equivalent mass and bending stiffness may be utilized in
the calculations. This homogeneous section is simply referred to as the slab in the following.

Three models, model a)–c), with different assumptions regarding the slab and the slab–soil
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interface conditions, are established:

a) The slab is modeled with Bernoulli-Euler beam elements. Displacement continuity of
the beam and the soil is enforced only along the beam center line. A uniform stress
distribution between the beam and the soil is assumed in the transverse direction of the
slab.

b) The slab is modeled with Bernoulli-Euler beam elements. The slab–soil interface is as-
sumed rigid in the transverse direction. This is enforced by coupling the beam kinemati-
cally to a number of soil DoFs in the transverse direction over the width of the slab.

c) The slab is modeled with Kirchhoff plate elements, allowing for a more general slab–soil
interface stress and displacement distribution in the transverse direction of the slab than
by the two other models.

In all three models, the rails are modeled as Bernoulli-Euler beams, connected to the slab
via a continuous visco-elastic interface layer representing the rail pads. The loading is assumed
identical on both rails, hence in model a) and b) the two rails are modeled as one. In model
c) symmetry around the track center line is utilized so that only half the track is modeled. The
track is coupled to a ground model, represented by a dynamic stiffness matrix. The dynamic
stiffness matrix of the ground is derived from the Green’s function for a horizontally layered
visco-elastic half-space. Both the ground model and the FE model are expressed in a moving
frame of reference, following the vehicle at a given speed v. The models a)–c) are shown
schematically in Figure 2.

Figure 1: Section of slab track.

Figure 2: Finite element models of the slab track. From the left: Models a), b) and c). Blue points represent soil
nodes at the slab–soil interface.

The soil model is described in Section 2.2. In Section 2.3 the governing equations for the
beam, plate and interface finite elements are derived. The coupling between the finite elements
and the soil is described in Section 2.4.
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2.2 Soil model

The ground is assumed to be composed of horizontal visco-elastic layers. Neglecting body
forces, the Navier equations for a single soil layer can be written as

(λ+ µ)
∂2uj
∂xi∂xj

+ µ
∂2ui
∂xj∂xj

= ρ
∂2ui
∂t2

(1)

where ui = ui(x1, x2, x3, t) is the displacement in direction i. λ and µ are the Lame’ parameters.
Introducing a coordinate transformation as

(x̃1, x̃2, x̃3) = (x1 − vt, x2, x3), (2)

where x̃1, x̃2, x̃3 denotes the coordinates in the moving frame of reference, and v is the vehicle
speed, transforms the Navier equations to

(λ+ µ)
∂2ũj
∂x̃i∂x̃j

+ µ
∂2ũi
∂x̃j∂x̃j

= ρ
(∂2ũi
∂t2
− 2v

∂2ũi
∂t∂x̃1

+ v2
∂2ũi
∂2x̃1

)
, (3)

where ũi = ũi(x̃, ỹ, z̃, t) is the displacement in the moving frame of reference [9].
Fourier transforming the Navier equations with respect to the horizontal coordinates and

time, (x̃1, x̃2, t), yields the Navier equations in frequency–wavenumber domain as

(λ+ µ)∆̃ik̃1 + µ(
d2

dx̃23
− k̃21 − k̃22)Ũ1 = −ρω̃2Ũ1 (4a)

(λ+ µ)∆̃ik̃2 + µ(
d2

dx̃23
− k̃21 − k̃22)Ũ2 = −ρω̃2Ũ2 (4b)

(λ+ µ)
d∆̃

dx̃3
+ µ(

d2

dx̃23
− k̃21 − k̃22)Ũ3 = −ρω̃2Ũ3 (4c)

where ∆̃ = ∆̃(k̃1, k̃2, x̃3, ω) is the Fourier transform, with respect to the horizontal coordinates
and time, of the dilation ∆(x̃1, x̃2, x̃3, t). The vibration frequency of a material point is
ω̃ = ω − k̃1v and ω is the frequency of the moving load. The horizontal wavenumbers in the
direction of x̃1 and x̃2 are k̃1 and k̃2, respecitvely.

As showed by Sheng [5, 6], the solution to Eq. 4 for an individual layer can be found
analytically, and due to continuity of displacements and tractions over interfaces between layers,
several layers can be assembled using the Thomson [10] and Haskell [11] layer transfer matrix
approach, forming a relationship between the displacement and stresses at the top of the stratum
and at the bottom of the stratum. With known boundary conditions at the lowest interface, a
relationship between the traction and the displacement at the surface can be obtained as

û = Ĝ p̂, (5)

where û = û(k̃1, k̃2, ω) and p̂ = p̂(k̃1, k̃2, ω) are vectors containing the displacements and
tractions respectively on the soil surface, Ĝ = Ĝ(k̃1, k̃2, ω) is the Green’s function tensor, k̃1
and k̃2 are the horizontal wavenumbers. For certain frequencies and stratifications, the original
Thomson and Haskell method suffers from loss-of-precision. To avoid these problems in the
present work, the different soil layers are assembled in an orthonormalization procedure as
proposed by Wang [12].
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Equation 5 is evaluated for a set of discrete values of k̃1 and k̃2, and the displacement vec-
tor ũ(x̃1, x̃2, ω) is obtained in Cartesian space through a double inverse Fourier transform of
û(k̃1, k̃2, ω).

The procedure described above is used for calculating the response on the soil surface, due to
a unit load with a rectangular spatial distribution, the size of which is determined by the element
size in the connecting superstructure. From this single load case, a dynamic flexibility matrix
Fg(ω, v) is established for a set of DoFs where the superstructure interacts with the soil surface.
These DoFs will be referred to as soil–structure interaction (SSI) DoFs. Fg is formed, column
by column, by interpolating from ũ. The flexibility matrix is then inverted to form the dynamic
stiffness matrix of the soil, Dg(ω, v) = F−1

g (ω, v), which gives a relation between the steady-
state displacements ũg and forces f̃g for the SSI DoFs, at a certain load circular frequency ω and
velocity v, as

Dg ũg = f̃g. (6)

2.3 Finite element model of railway structure

The coordinate transformation used for expressing the governing FE equations in a moving
frame of reference introduces convective terms in the damping and stiffness matrices. In Sec-
tions 2.3.1–2.3.3 below, the FE equations are derived for the beams, plates and visco-elastic
interface elements, respectively.

2.3.1 Beam elements

The equilibrium equation for a Bernoulli-Euler beam reads

∂2M

∂x2
+ q −mb

∂2w

∂t2
= 0, (7)

where M = M(x, t) is the bending moment. q(x, t) is a loading force per unit length. mb

is the mass per unit length of the beam. w = w(x, t) is the deflection. With the coordinate
transformation described by Eq. 2, Eq. 7 can be written as

∂2M̃

∂x̃2
+ q̃ −mb(

∂2w̃

∂t2
− 2v

∂2w̃

∂x̃∂t
+ v2

∂2w̃

∂x̃2
) = 0, (8)

where ·̃ denotes that a variable is expressed in the moving frame of reference. The weak form
is obtained by multiplying Eq. 8 by an arbitrary weight function g = g(x̃) and integrating it
over the region. It can be shown that the resulting weak form for the Bernoulli-Euler beam in a
moving frame of reference is∫ b

a
∂2g
∂x̃2M̃ dx− [ ∂g

∂x̃
M̃ ]ba + [gṼ ]ba +

∫ b

a
gq̃ dx−mb

∫ b

a
g(∂

2w̃
∂t2
− 2v ∂2w̃

∂x̃∂t
+ v2 ∂

2w̃
∂x̃2 ) dx = 0. (9)

With the kinematic and constitutive assumptions for a Bernoulli-Euler beam, M̃ can be written
as

M̃ = −EI ∂
2w̃

∂x̃2
, (10)

where EI is the bending stiffness. To obtain the FE formulation, the deflection w̃(x̃, t) is
approximated using the element nodal values a(t) and the shape functions N(x̃), as w̃ = Na.
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Adopting the Galerking method, the mass, damping and stiffness matrices, as well as the load
and boundary vectors, are identified as

K = EI

∫ b

a

(d2N(x̃)

dx̃2

)T d2N(x̃)

dx̃2
dx+mb v

2

∫ b

a

NT d
2N

dx̃2
dx, (11)

C = −2mbv

∫ b

a

NT dN

dx̃
dx, (12)

M = mb

∫ b

a

NTN dx, (13)

fl =

∫ b

a

NT q̃ dx, (14)

fb = [NT Ṽ ]ba − [
∂NT

∂x̃
M̃ ]ba. (15)

A 2-node beam element with two DoFs per node (vertical displacement and one rotation), based
on the above formulation, is implemented and used in the present work. Similar derivations for
the convective Bernoulli-Euler beams can be found in e.g. [13, 14].

2.3.2 Plate elements

The equilibrium equation for a Kirchhoff plate reads, see e.g. [15],

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
+ q − ρh∂

2w

∂t2
= 0, (16)

where Mxx = Mxx(x, y, t), Myy = Myy(x, y, t) and Mxy = Mxy(x, y, t) are the bending
moments in the x- and y-directions. q(x, y, t) is a loading force per unit area. h and ρ is the
plate thickness and the mass density respectively. w = w(x, y, t) is the deflection of the mid-
section. With the coordinate transformation described by Eq. 2, Eq. 16 can be written as

∂2M̃xx

∂x̃2
+ 2

∂2M̃xy

∂x̃∂ỹ
+
∂2M̃yy

∂ỹ2
+ q̃ − ρh(

∂2w̃

∂t2
− 2v

∂2w̃

∂x̃∂t
+ v2

∂2w̃

∂x̃2
) = 0. (17)

The weak form is obtained by multiplying Eq. 17 by an arbitrary weight function g = g(x̃, ỹ)
and integrating it over the region. It can be shown that the resulting weak form for the Kirchhoff
plate in a moving frame of reference is∫

A
(∇̃g)TM̃ dA−

∮
L

dg
dn
M̃nn dL +

∮
L
g(Ṽnz + dM̃nm

dm
) dL +

∫
A
gq̃ dA

−ρh
∫
A

(g ∂2w̃
∂t2
− 2vg ∂2w̃

∂x̃∂t
+ v2g ∂2w̃

∂x̃2 ) dA = 0,
(18)

where the matrix differential operator ∇̃ is defined as

∇̃ =
[

∂2

dx̃2
∂2

dỹ2
2 ∂2

dx̃dỹ

]T
, (19)

and the moment vector M̃ as

M̃ = M̃(x̃, ỹ, t) =
[
M̃xx(x, y, t) M̃yy(x, y, t) M̃xy(x, y, t)

]T
. (20)
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The constitutive equation for the cross-section of a Kirchhoff plate can be written as
M̃ = − (h3/12)D∇̃w̃ where D is the plane stress constitutive matrix for isotropic elasticity.
To obtain the FE formulation, the deflection w̃(x̃, ỹ, t) is approximated using the element nodal
values a(t) and the shape functions N(x̃, ỹ), as w̃ = Na.

Adopting the Galerking method, the mass, damping and stiffness matrices, as well as the
load and boundary vectors, are identified as

K =
h3

12

∫
A

(∇̃N)TD(∇̃N) dA + ρhv2
∫
A

NT ∂
2N

∂x̃2
dA , (21)

C = −2ρhv

∫
A

NT ∂N

∂x̃
dA, (22)

M = ρh

∫
A

NTN dA, (23)

fl =

∫
A

NT q̃ dA, (24)

fb =

∮
L

NT (Ṽnz +
dM̃nm

dm
) dL −

∮
L

(∇N)TnM̃nn dL . (25)

A 4-node rectangular element with three DoFs per node (vertical displacement and two rota-
tions), based on the above formulation, is implemented and used in the present work.

2.3.3 Visco-elastic interface elements

The rail pads are modeled by visco-elastic interface elements, representing continuous springs
and dashpots. In the following derivation of the equations for the interface elements, an inter-
face element is assumed to be located between two beam elements parallel with the x-axis. The
loads on the upper and lower beams due to the visco-elastic interface are written

qu(x, y, t) = −k(wu − wl)− c(
∂wu

∂t
− ∂wl

∂t
) = 0, (26)

ql(x, y, t) = −k(wl − wu)− c(∂wl

∂t
− ∂wu

∂t
) = 0, (27)

where wu = wu(x, t) and wl = wl(x, t) is the deflection in the upper and lower beam respec-
tively, k is the spring stiffness and c is the damping coefficient. With the coordinate transforma-
tion described by Eq. 2,

q̃u(x̃, t) = −k(w̃u − w̃l)− c
{

(
∂w̃u

∂t
− ∂w̃l

∂t
)− v(

∂w̃u

∂x̃
− ∂w̃l

∂x̃
)
}
, (28)

q̃l(x̃, t) = −k(w̃l − w̃u)− c
{

(
∂w̃l

∂t
− ∂w̃u

∂t
)− v(

∂w̃l

∂x̃
− ∂w̃u

∂x̃
)
}
. (29)

The displacements of the upper and lower beam, wu and wl, are approximated using the shape
functions Nu and Nl and element nodal displacements au(t) and al(t) for the upper and lower
beams, respectively. With Eq. 14 the load vectors for the respective beams can be written

flu =
∫ b

a
NT

u q̃u dx = −k
{∫ b

a
NT

uNu dx au −
∫ b

a
NT

uNl dx al

}
−

c
{∫ b

a
NT

uNu dx ȧu +
∫ b

a
NT

uNl dx ȧl

}
+ c v

{∫ b

a
NT

u
∂Nu

∂x̃
dx au −

∫ b

a
NT

u
∂Nl

∂x̃
dx al

}
,

(30)
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fll =
∫ b

a
NT

l q̃l dx = −k
{∫ b

a
NT

l Nl dx al −
∫ b

a
NT

l Nu dx au

}
−

c
{∫ b

a
NT

l Nl dx ȧl +
∫ b

a
NT

l Nu dx ȧu

}
+ c v

{∫ b

a
NT

l
∂Nl

∂x̃
dx al −

∫ b

a
NT

l
∂Nu

∂x̃
dx au

}
.

(31)

With the shape function vectors Ñu and Ñl and the displacement vector a defined as

Ñu(x̃, ỹ) =
[
Nu 0Nl

]
, Ñl(x̃, ỹ) =

[
0Nu Nl

]
f̃lu(t) =

[
flu 0fll

]
, f̃ll(t) =

[
0flu fll

]
, fL(t) =

[
flu fll

]T
ãu(t) =

[
au 0al

]
, ãl(t) =

[
0au al

]
, a(t) =

[
au al

]T (32)

it is possible to write the load vector as

fL(t) = f̃lu(t) + f̃ll(t) =

−k
{∫ b

a
ÑT

u Ñu dx +
∫ b

a
ÑT

l Ñl dx −
∫ b

a
ÑT

u Ñl dx −
∫ b

a
ÑT

l Ñu dx
}
a

−c
{∫ b

a
ÑT

u Ñu dx +
∫ b

a
ÑT

l Ñl dx +
∫ b

a
ÑT

u Ñl dx +
∫ b

a
ÑT

l Ñu dx
}
ȧ

+c v
{∫ b

a
ÑT

u
∂Ñu

∂x̃
dx +

∫ b

a
ÑT

l
∂Ñl

∂x̃
dx −

∫ b

a
ÑT

u
∂Ñl

∂x̃
dx −

∫ b

a
ÑT

l
∂Ñu

∂x̃
dx
}
a.

(33)

The vector fL(t) collects the forces on the upper and lower beam, caused by the interface ele-
ment. The forces on the interface element are therefore fi(t) = −fL(t), and the stiffness and
damping matrices of the interface element can be identified from Eq. 33 as

K = k
{∫ b

a
ÑT

u Ñu dx +
∫ b

a
ÑT

l Ñl dx −
∫ b

a
ÑT

u Ñl dx −
∫ b

a
ÑT

l Ñu dx
}

−cv
{∫ b

a
ÑT

u
∂Ñu

∂x̃
dx +

∫ b

a
ÑT

l
∂Ñl

∂x̃
dx −

∫ b

a
ÑT

u
∂Ñl

∂x̃
dx −

∫ b

a
ÑT

l
∂Ñu

∂x̃
dx
}
,

(34)

C = c
{∫ b

a

ÑT
u Ñu dx +

∫ b

a

ÑT
l Ñl dx −

∫ b

a

ÑT
u Ñl dx −

∫ b

a

ÑT
l Ñu dx

}
. (35)

The above expressions are also valid for an interface element between a beam element overlying
a plate element in the xy-plane, such as in model c), with the shape functions for the plate
evaluated at the y-coordinate of the beam.

2.4 Coupling to soil

Assuming steady-state conditions, the governing equation for the railway track structure can
be written as

(−ω2Mr + iωCr + Kr)ũr = f̃r, (36)

or
Drũr = f̃r, (37)

where Mr, Cr and Kr is the mass, damping and stiffness matrix respectively. Dr = (−ω2Mr+
iωCr + Kr) is the dynamic stiffness matrix, and ũr and f̃r is the displacement and force vector
for the track structure, respectively.

The track and soil is coupled in a standard FE manner. Only the vertical DoFs of the track
structure and the soil are coupled. A global system of equations for the soil and the railway
structure is formed by combining Eqs. 6 and 37, yielding

Dtũr = f̃r, (38)
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where Dt represents the total dynamic stiffness matrix for the track structure and soil.
Once the track displacements ũr, and thereby also the displacement in the soil DoFs ũg, have

been obtained by solving Eq. 38, the corresponding forces on the soil surface, f̃g are calculated
by Eq. 6. A second flexibility matrix Fgf (ω, v) is established, in the same manner as Fg(ω, v)
as described in Section 2.2, expressing the displacements in free-field due to forces on the soil–
structure interface. The free-field displacements, ũf , are then calculated as

ũf = Fgf f̃g. (39)

3 MODEL COMPARISON

To compare the effect of the three different modeling strategies for the track on the free-field
response, each model is used for evaluating the response to a moving unit harmonic point load
acting on the rail. The track properties are given in Table 1. The track rests on a 14 m deep
layer of clay overlaying a half-space, with properties according to Table 2. An element length
of 0.3 m is used, meaning that 12 elements are used in the transverse direction of the slab in
model c). For model b) the slab is rigidly connected to 13 soil DoFs in the transverse direction.
In all three models, the number of elements in the track direction is 500, yielding a total track
length of 150 meters, which has been found to be sufficient to avoid problems with reflecting
waves at the boundaries of the FE model in the studied case. The track gauge is 1.435 m.

Figure 3 shows the wavefield and the track deformation due to a harmonic point load with
frequency f = 50 Hz traveling at v = 60 m/s, as obtained with the three different models.
The difference in the slab deformation in the transverse direction due to the different modeling
approaches is clearly visible. The displacements shown in Figure 3 are in the moving frame of
reference, following the load at speed v = 60 m/s. In this frame of reference, the displacements
are in steady state with the loading frequency f = 50 Hz. For a fixed point in the free-field,
however, the response is transient and contains a broad band of frequencies due to the Doppler
effect. A higher load speed results in a broader frequency content of the response in a fixed
point. This can be seen in Figure 4 that shows the displacement spectrum for a fixed point 10 m
and 25 m from the track, due to a harmonic 50 Hz load travelling at v = 30 m/s and v = 60 m/s.
All three models yield similar results, however, the response obtained with model c) using plate
elements is slightly higher than obtained with the other two models, for this particular load
frequency.

To compare the three models for a range of excitation frequencies, a moving rms-value of
the vibration velocity in a fixed point is calculated for each excitation frequency f , as

vrms(t) =

√
1

T

∫ t+T

t

u̇(t)2dt, (40)

where u̇(t) is the velocity time history response for a fixed point. T is the window length and is
here set to T = 1 s. In Figure 5 the maximum of vrms(t) is shown for each excitation frequency
for the three models, for a fixed point located 10 and 25 m from the track respectively and the
load speeds v = 30 and v = 60 m/s. For both load speeds, and both distances, the free-field
response is very similar for all three models up to about f = 50 Hz. At higher frequencies, both
models a) and b) underestimate the response. However, the underestimation with model b) is
modest. For model a) the maximum underestimation is almost 10 dB at 70 Hz.
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Figure 3: Soil and slab displacements in models a)–c), from top to bottom, when subjected to a harmonic load with
frequency f = 50 Hz moving along the track at speed v = 60 m/s. The size of the displayed area is 60 m× 30 m.
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Figure 4: Response of a fixed point in the free-field due to a 50 Hz load traveling on the track. a) and b) show the
results for a fixed point 10 meters from the track, with a load speed of v = 30 and v = 60 m/s, respectively. c) and
d) are for a point 25 meters from the track.
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Figure 5: Velocity rms-value of a fixed point in the free-field due to a harmonic load traveling on the track. a)
and b) show the results for a fixed point 10 meters from the track, with a load speed of v = 30 and v = 60 m/s,
respectively. c) and d) are for a point 25 meters from the track.
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Parameter Value
Rail Mass (kg/m) 60

Young’s modulus (GPa) 210
Second moment of inertia (m4) 3.217×10−5

Loss factor (-) 0.01
Rail Stiffness (MN/m2) 92
pads Damping (kNs/m2) 73
Slab Density (kg/m3) 2310
+ Young’s modulus (GPa) 26.7
support Poisson’s ratio 0.2
layer Width (m) 3.6

Thickness (m) 0.55
Loss factor (-) 0.04

Table 1: Track properties.

4 CONCLUSIONS

In the paper a numerical prediction model for train-induced ground-vibration has been pre-
sented. The model is formulated in a frame of reference following the moving load, which offers
some advantages over conventional FE models using a fixed frame of reference. Using a fixed
frame of reference, the computational domain must be large for the moving load to stay within
the model during the time of analysis. In the moving frame of reference following the load, on
the other hand, the load stays at the same location in the model throughout the analysis, allow-
ing a smaller model. Furthermore, frequency domain methods can be used for analyzing the
moving load. A drawback of the model is that it is not suitable for analyzing load cases where
the resulting wavelengths are very short, such as moving loads approaching the soil shear wave
velocity. Short wavelengths, making the current approach inappropriate, may also result from
non-moving loads, depending on the soil and track stiffness and the frequency of the load.

Three different models of a railway slab track have been established and compared. In the
first two models, the railway track is modeled as a Bernoulli-Euler beam on a layered half-
space, with different assumptions regarding the displacement and stress distribution at the track–
soil interface. In the third model, the track slab is modeled using Kirchhoff plate elements,
enabling a more general displacement and stress distribution in the track transverse direction
to be resolved. It is shown that in the case studied here, the beam model where the track–
soil interface is considered rigid over the width of the slab, only slightly underestimates the
response, at higher frequencies. The beam model where a uniform traction is assumed at the
track–soil interface, on the other hand, underestimates the response significantly at frequencies
above 50 Hz.
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Layer Parameter Value
Soil Depth (m) 14.0

Young’s modulus (MPa) 475
Poisson’s ratio 0.48
Density (kg/m3) 2125
Loss factor (-) 0.14

Bedrock Depth (m) ∞
(half-space) Young’s modulus (MPa) 8800

Poisson’s ratio 0.40
Density (kg/m3) 2600
Loss factor (-) 0.04

Table 2: Soil properties.

REFERENCES

[1] Y. Yang, H. Hung, A 2.5D finite-infinite element approach for modelling visco-elastic
bodies subjected to moving loads. International Journal for Numerical Methods in Engi-
neering, 51. 1317–1336, 2008.

[2] X. Sheng, C.J.C. Jones, D.J. Thompson, Prediction of ground vibration from trains using
the wavenumber finite and boundary element methods. Journal of Sound and Vibration,
293. 575–586, 2006.

[3] G. Lombaert, G. Degrande, J. Kogut, S. Francois, The experimental validation of a nu-
merical model for the prediction of railway induced vibrations. Journal of Sound and
Vibration, 297. 512–535, 2006.

[4] P. Galvin, S. Francois, M. Schevenels, E. Bongini, G. Degrande, G. Lombaert, A 2.5D
coupled FE-BE model for the prediction of railway induced vibrations. Soil Dynamics
and Earthquake Engineering, 30. 1500–1512, 2010.

[5] X. Sheng, C.J.C. Jones, M. Petyt, Ground vibration generated by a harmonic load acting
on a railway track. Journal of Sound and Vibration 225(1).3–28, 1999.

[6] X. Sheng, C.J.C. Jones, M. Petyt, Ground vibration generated by a load moving along a
railway track. Journal of Sound and Vibration, 228(1). 129–156, 1999.

[7] A.M. Kaynia, C. Madshus, P. Zackrisson, Ground vibration from high-speed trains: pre-
diction and countermeasure. Journal of Geotechnical and Geoenvironmental Engineering,
126(6). 531–537, 2000.

[8] M.J.M.M. Steenbergen, A.V. Metrikine, The effect of the interface conditions on the dy-
namic response of a beam on a half-space to a moving load. European Journal of Mechan-
ics A/Solids, 26. 33–54, 2007.

[9] L.V. Andersen, Linear Elastodynamic Analysis, Department of Civil Engineering, Aalborg
University. DCE Lecture Notes, No. 3, 2006.

[10] W. Thomson, Transmission of elastic waves through a stratified solid medium. Journal of
Applied Physics, 21. 89–93, 1950.



J. Malmborg, K. Persson and P. Persson

[11] N. Haskell, The dispersion of surface waves on multilayered medium. Bulletin of the Seis-
mological Society of America, 73. 17–43, 1953.

[12] R. Wang, A simple orthonormalization method for stable and efficient computation of
Green’s functions. Bulletin of the Seismological Society of America, 89(3). 733–741, 1999.

[13] L. Andersen, S.R.K. Nielsen, P.H. Kirkegaard, Finite element modelling of infinite Euler
beams on Kelvin foundations exposed to moving loads in convected co-ordinates. Journal
of Sound and Vibration, 241(4). 587–604, 2001.

[14] X. Lei, J. Wang, Dynamic analysis of the train and slab track coupling system with finite
elements in a moving frame of reference. Journal of Vibration and Control, 20(9). 1301–
1317, 2014.

[15] N. Ottosen, H. Petersson, Introduction to the finite element method, Prentice Hall, 1992.



Paper B





Evaluating the effect of vibration isolation mats on train-induced ground
vibrations

J. Malmborg, K. Persson, P. Persson
Department of Construction Sciences, Lund University

P.O. Box 118, SE-22100 Lund, Sweden

Abstract

In the present paper, the effectiveness of a vibration isolation mat for a railway slab track system is studied using
a finite element model of the railway track. The finite elements are formulated in a moving frame of reference
following the moving load at a particular speed. The rails are modeled using Bernoulli beams, whereas the track
slab and an underlying supporting plate are modeled using Kirchhoff plate elements. The vibration isolation mat
is modeled as a continuous visco-elastic layer between the track slab and the supporting plate. The response
of the underlying soil is represented through a dynamic stiffness matrix, obtained via the Green’s function for a
horizontally layered visco-elastic strata in a moving frame of reference in the frequency–wavenumber domain.
The model accounts for the quasi-static excitation caused by the static axle loads of a vehicle, as well as the
dynamic excitation caused by the vehicle running over an uneven rail. The free-field response and the insertion
loss obtained with the vibration isolation mat is first evaluated for a harmonic load moving along the track. Band-
averaged vibration levels and the insertion loss for a fixed point next to the track are then calculated for a train cart,
represented by a 10 degree-of-freedom multi-body system, running at different speeds.

1. INTRODUCTION

Due to an increasing population, many cities experience urban densification where previously unexploited
land areas close to railways are now being used for new residential and office buildings. Furthermore, increasing
demands on infrastructure results in heavily trafficked roads and railways close to residential areas. Annoyance
from traffic-induced vibrations and noise is therefore a growing problem. To predict vibration levels arrising from
traffic, and to evaluate vibration mitigation measures, models are needed for estimating the load from the vibration
source as well as the vibration transmission through the ground.

One technique for reducing the vibrations from railways is to introduce an elastic mat underneath the ballast, or
underneath the slab in the case of ballastless slab tracks. The performance of such elastic mats have been studied
by other authors using various 2.5D and 3D models, e.g. [1–3] where boundary elements are used to account for
the soil response.

In the present paper, the effectiveness of a vibration isolation mat for a railway slab track system is studied.
A 3D finite element (FE) formulation in a moving frame of reference following the load is used for describing
the railway track. The underlying soil response is included through a dynamic stiffness matrix obtained via the
Green’s function for a horizontally layered visco-elastic strata in a moving frame of reference, in the frequency–
wavenumber domain. The free-field response and the insertion loss obtained with the vibration isolation mat is
first evaluated for a harmonic load moving along the track. Band-averaged vibration levels and insertion loss for a
fixed point next to the track are then calculated for a train cart, represented by a 10 degree-of-freedom multi-body
system, running on an uneven track.

In Section 2 an overview of the model is given and the studied case is presented in Section 3. Finally, conclu-
sions are given in Section 4.

2. MODEL OVERVIEW

In the present work the Green’s function of a horizontally layered stratum, in a moving frame of reference, is
calculated in the frequency–wavenumber domain and transformed to frequency–spatial domain through a double
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Figure 1: Section of slab track with resilient mat between the slab and the support layer.

inverse Fourier transform. It is then used to derive a dynamic stiffness matrix of the ground. The ground model
is coupled to an FE representation of the railway structure, including the supporting layer, slab and rails. The
supporting layer and the slab are modeled as two overlaying Kirchhoff plates. A continuous visco-elastic interface
layer is introduced between the supporting layer and the slab to represent mortar or, in the case of a floating slab
track, a vibration isolation mat. The rails are modeled as Bernoulli-Euler beams, connected to the slab via a
continuous visco-elastic interface layer representing the rail pads. Both the ground model and the FE model are
expressed in a moving frame of reference, following the vehicle at a given speed v, by introducing a coordinate
transformation as

(x̃, ỹ, z̃) = (x− vt, y, z), (1)

where x̃, ỹ, z̃ denotes the coordinates in the moving frame of reference.

2.1. Soil model

Introducing the coordinate transformation into the Navier’s equations yields

(λ+ µ)
∂2ũj
∂x̃i∂x̃j

+ µ
∂2ũi
∂x̃j∂x̃j

=

= ρ
(∂2ũi
∂t2

− 2v
∂2ũi
∂t∂x̃1

+ v2
∂2ũi
∂2x̃1

)
, (2)

where ũi = ũi(x̃, ỹ, z̃, t) is the displacement in the moving frame of reference. Fourier transforming Eq. 2 with
respect to the horizontal coordinates and time, (x̃, ỹ, t), yields the convective Navier equations in frequency–
wavenumber domain. As showed by Sheng [4], the solution for an individual layer can be found analytically, and
due to continuity of displacements and tractions over interfaces between layers, several layers can be assembled
using the Thomson [5] and Haskell [6] layer transfer matrix approach, forming a relationship between the dis-
placement and stresses at the top of the stratum and at the bottom of the stratum. With known boundary conditions
at the lowest interface, a relationship between the traction and the displacement at the surface can be obtained as

û = Ĝ p̂, (3)

where û = û(k̃x, k̃y, ω) and p̂ = p̂(k̃x, k̃y, ω) are vectors containing the displacements and tractions respectively
on the soil surface, Ĝ = Ĝ(k̃x, k̃y, ω) is the Green’s function tensor, k̃x and k̃y are the horizontal wavenumbers,
and ω is the circular frequency of the moving harmonic load. For certain frequencies and stratifications, the original
Thomson and Haskell method suffers from loss-of-precision. To avoid these problems in the present work, the
different soil layers are assembled in an orthonormalisation procedure as proposed by Wang [7].

Equation 3 is evaluated for a set of discrete values of k̃x and k̃y , and the displacement vector ũ(x̃, ỹ, ω) is
obtained in Cartesian space through a double inverse Fourier transform of û(k̃x, k̃y, ω).

The procedure described above is used for calculating the response on the soil surface, due to a unit load with
a rectangular spatial distribution. From this single load case, a dynamic flexibility matrix Fg(ω, v) is established
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for a set of DoFs where the superstructure interacts with the soil surface. These DoFs will be referred to as soil-
structure interaction (SSI) DoFs. Fg is formed, column by column, by interpolating from ũ. The flexibility matrix
is then inverted to form the dynamic stiffness matrix of the soil, Dg(ω, v) = F−1

g (ω, v), which gives a relation
between the steady-state displacements ũg and forces f̃g for the SSI DoFs, at a certain circular frequency ω and
velocity v, as

Dg ũg = f̃g. (4)

2.2. Railway structure
Assuming steady-state conditions, the governing equation for the railway structure can be written as

(−ω2Ms + iωCs +Ks)ũs = f̃s, (5)

or
Dsũs = f̃s, (6)

where Ms, Cs and Ks is the mass, damping and stiffness matrix respectively. Ds = (−ω2Ms + iωCs + Ks)
is the dynamic stiffness matrix, and ũs and f̃s is the displacement and force vector respectively. The coordinate
transformation used to express the governing FE equations in a moving frame of reference introduces convective
terms in the damping and stiffness matrices, see e.g. [8–10]. The track slab and the supporting layer are described
using four-node rectangular Kirchhoff plate elements with three DoFs per node (vertical displacement + two rota-
tions). The rail is decribed by two-node Bernoulli-Euler beam elements. The visco-elastic layer between the slab
and the supporting layer, as well as the rail pads, are described by continuously distributed springs and dashpots.
In both cases, the shear transfer between the two plates is disregarded.

2.3. Coupling between soil and FE
The track is coupled to the SSI DoFs in a standard FE manner. Here, only the vertical DoFs of the supporting

plate are coupled to the soil. For the finite elements, displacements and stress distributions are governed by the
element shape functions. However, for the soil, the displacements and interface tractions are governed by the load
distribution chosen for calculating the soil response fundamental solution. Thus, continuity of displacements and
stresses is not guaranteed along the superstructure–soil surfaces, but force and displacement continuity is enforced
at the exact location of the nodes.

A global system of equations for the ground and the railway structure is formed by combining Eqs. 4 and 5,
yielding

Dtũs = f̃s, (7)

where Dt represents the total dynamic stiffness matrix for the structure assembled onto the ground DoFs.

2.4. Free-field response
Once the displacements ũs, and thereby also the subset ũg , have been obtained by solving Eq. 7, the corre-

sponding forces on the soil surface, f̃g are calculated by Eq. 4. A second flexibility matrix Fgf (ω, v) is established,
in the same manner as Fg(ω, v), as described in Section 2.1. The free-field displacements, ũf , are then calculated
as

ũf = Fgf f̃g. (8)

These displacements are in the moving frame of reference, following the load at speed v. In this frame of reference,
the displacements are in steady state with the loading frequency f . For a fixed point in the free-field, however,
the response is transient. Due to the Doppler effect, the response will contain frequencies other than the excitation
frequency. The fixed point response time history, u(t), is obtained by moving with the train speed, along a line
parallell with the track, in the opposite travel direction of the train.

3. STUDIED CASE

The model described above is used for evaluating the effect of a resilient mat placed under the track slab. The
track rests on a 14 m deep layer of clay overlaying a half-space. The properties of the track and the soil layers are
shown in Table 1 and Table 2, respectively. Due to symmetry, only half the track is modeled. The element length
is 0.3 m in both the plates and the beams.
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Table 1: Track properties.

Parameter Value
Rail Mass (kg/m) 60

Youngs modulus (GPa) 210
Second moment of inertia (m4) 3.217×10−5

Loss factor (-) 0.01
Rail Stiffness (MN/m2) 92.3
pads Damping (kNs/m2) 73.4
Concrete Density (kg/m3) 2500
slab Youngs modulus (GPa) 34

Poisson’s ratio 0.2
Width (m) 3.0
Thickness (m) 0.3
Loss factor (-) 0.04

HSL Density (kg/m3) 2200
Youngs modulus (GPa) 25
Poisson’s ratio 0.2
Width (m) 3.0
Thickness (m) 0.4
Loss factor (-) 0.04

Slab Stiffness (MN/m3) 10
mat Damping (kNs/m3) 20
Mortar Stiffness (MN/m3) 1000

Damping (kNs/m3) 250

Table 2: Soil properties.

Layer Parameter Value
Soil Depth (m) 14.0

Youngs modulus (MPa) 475
Poisson’s ratio 0.48
Density (kg/m3) 2125
Loss factor (-) 0.14

Bedrock Depth (m) ∞
(half-space) Youngs modulus (MPa) 8800

Poisson’s ratio 0.40
Density (kg/m3) 2600
Loss factor (-) 0.04

First, the track receptance and the free-field response is calculated for a simple harmonic unit load moving
along the track at speeds v = 30 m/s and v = 60 m/s, for both the unisolated and the isolated track. Then, the
free-field response due to a train cart running over an uneven track at those same velocities is calculated for both
models.

3.1. Track receptance
The receptance, i.e. the displacement of the loading point, when subjecting the track to a moving harmonic

unit load, is calculated for the velocities v = 0 m/s, v = 30 m/s and v = 60 m/s. The load is applied symmetrically
on both rails, i.e. half a unit load is applied on each rail. For the floating slab, the receptance decreases noticeably
with increasing load velocity and the resonance peak is shifted to a lower frequency, as shown in Figure 2. Figure
3 shows the free-field displacements for v = 60 m/s and f = 40 Hz, for the floating slab.
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Figure 2: Track receptance.

Figure 3: Free-field displacements due a harmonic point load at f = 40 Hz moving at a speed v = 60 m/s on the floating slab. The Doppler
effect is clearly visible.

3.2. Insertion loss

The insertion loss quantifies the change in response due to a modification of the system. Here, it relates the
displacement in the free-field obtained with the resilient mat, to the displacement obtained without the resilient
mat. The insertion loss is defined as

IL = 20 log10
uo
ur
, (9)

where uo and ur is the displacement in the original (unisolated) configuration and the modified (isolated) configu-
ration, respectively.

As described in Section 2.4, the response in a fixed point in the free-field u(t), due to harmonic load moving
along the track, is transient. The root-mean-square (rms) value of u(t) is

urms =

√
1

T

∫ T

0

u(t)2 dt. (10)
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The rms-value of the displacement is used for calculating an insertion loss for a fixed point, due to the moving
load.

Figures 4a–b show the insertion loss for points in the free-field 5 m and 25 m from the track, respectively,
when the load velocity is v = 30 m/s. The insertion loss is shown for three points following the moving load.
These points are located perpendicular to (0 m), ahead of (+10/+25 m) and behind (–10/–25 m) the moving load.
Furthermore, the insertion loss calculated from the rms-value of the displacement in a fixed point is also shown.
Figures 4c–d show the corresponding results for the load velocity v = 60 m/s.

The insertion loss is considerably higher for the point perpendicular to the moving load, than for the other two
points following the load. Naturally, the insertion loss is therefore also lower for a fixed point as the load passes.
The insertion loss is slighly lower for the higher load velocity, and slightly higher further from the track. Negative
insertion loss is observed near the resonance frequency of the floating slab.

3.3. Train passage

Here, a 10 DoF vehicle, modeled as a multi-body system, is introduced into the model. The contact between
the vehicle wheels and the rail is accounted for by means of a linearized Hertzian contact spring, i.e. the wheel
is assumed to be in contact with the rail at all times. Since the track is described in a moving frame of reference
following the vehicle, each wheel is connected to the same rail element throughout the analysis.

The rail unevenness is often described by a power spectral density (PSD) function, allowing the rail irregulari-
ties to be decomposed into spectral components of different wavelengths. For a single harmonic component of the
track irregularity, with wavelength λ, the frequency of excitation is f = v/λ where v is the vehicle speed. Here,
the German track PSD is used to describe the rail irregularities,

Pz(β) =
Apβ

2
c

(β2 + β2
r )(β

2 + β2
c )

[ m2

rad/m

]
, (11)

where β = 2π/λ, the constants βr = 0.0206 rad/m and βc = 0.8246 rad/m. Ap is a parameter defining the track
quality, ranging from Ap = 4.032×10−7 m2/(rad/m) to Ap = 10.8×10−7 m2/(rad/m). Here, a poor track quality
is assumed and hence the higher value is used in this example.

An expression for the total response power spectrum in a fixed point, when the rail irregularities are described
by a PSD, was derived by Sheng [11]. The total response from the dynamic excitation of the rail irregularities, is
obtained by combining the contributions from a number of discrete irregularity wavelengths. The vertical velocity
levels, as well as the insertion loss based on these velocity levels, are calculated for points located 5 m and 25 m
from the track, for the train speeds v = 30 m/s and v = 60 m/s. The results are presented in 1/3 octave bands, see
Figure 5. As for the harmonic point load, the response in the free-field generally increases with increasing velocity.

The insertion loss is slightly higher for points further from the track, in the frequency bands above 20 Hz.
The response in low frequency bands are dominated by the quasi-static load, which is significant for the free-field
response close to the track. Again, negative insertion loss is obtained close to the resonance frequency of the
floating slab. Close to the track, positive insertion loss is observed for the low frequencies where the response is
dominated by the quasi-static response.

Table 3: Vehicle properties (from [10]).

Parameter Value
Primary suspension stiffness kp (MN/m) 1.18
Primary suspension damping cp (kNs/m) 39.2
Secondary suspension stiffness ks (MN/m) 0.53
Secondary suspension damping cs (kNs/m) 90.2
Wheel mass mw (kg) 1.78×103

Bogie mass mb (kg) 3.04×103

Bogie inertia Ib (kgm2) 3.93×103

Body mass mc (kg) 41.75×103

Body inertia Ic (kgm2) 2.08×106
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4. Conclusions

In this paper a numerical model of a railway track has been applied to study the effect of a vibration isolation
mat. The model is formulated in a frame of reference following the load moving along the track at a fixed velocity.
This formulation is efficient, allowing smaller models compared to traditional 3D FE formulations. Furthermore,
the moving load can be analyzed in frequency domain.

It is shown that, when a simple harmonic load moves along the track, the effect of the resilient mat on the
free-field response is reduced with increasing velocity of the load. For points that are following the moving load,
the insertion loss is considerably higher for a point perpendicular to the load than for other points equidistant from
the track. A fixed point experiences the wave field from the moving load from all different angles as the load
approaches and departs, and naturally the insertion loss is therefore lower than the maximum. Furthermore, the
insertion loss is slightly higher 25 m from the track than 5 m from the track.

Introducing a resilient mat under the track slab modifies the free-field response arising from a specific load
on the track, and furthermore, the modified track stiffness changes the dynamic wheel-rail interaction forces due
to track unevenness. Here, the vehicle is modeled as a multi-body system, and the track uneveness is treated as
a stationary stochastic process described by a PSD function. The response in the free-field generally increases
with increasing velocity of the train. The insertion loss is slightly higher in the frequency bands above 20 Hz, for
points further from the track. The response in low frequency bands are dominated by the quasi-static load, which is
significant for the free-field response close to the track. Here, a positive insertion loss is observed, whereas again,
as in the case with the moving point load, a negative insertion loss is obtained close to the resonance frequency of
the floating slab.
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Abstract

In the paper, the effect of modeling strategies regarding the dynamic behavior of a railway slab track on a layered

half-space is studied. The track is modeled with various degrees of accuracy through the use of either beam theory,

shell finite elements or solid finite elements. The underlying soil response is included through a dynamic stiffness,

obtained via the Green’s function for a horizontally layered visco-elastic half-space in the frequency–wavenumber

domain. The effect of different assumptions regarding the track cross-section behavior and the track–soil interface

conditions on the resulting free-field vibrations are studied for a harmonic load moving along the track. First,

only the out-of-plane displacements of the slab–soil interface are coupled, i.e. only the vertical contact pressure is

accounted for. Secondly, the effect of coupling the slab–soil in-plane displacements on the free-field vibrations is

studied. It was found that the in-plane slab–soil coupling significantly affects the vertical vibration in the free-field.

It was also found that a beam model of the track yields accurate response levels compared to a solid continuum

model in the case of a thick slab, whereas considerable differences were obtained for a thin slab.

Keywords: Train-induced ground vibration, moving frame of reference, slab track, finite element, Green’s
function.

1. Introduction

Due to an increasing population, many cities experience urban densification. Previously unexploited areas,

close to railways and heavily trafficked roads, are now being developed for residential and office buildings. An-

noyance from traffic-induced vibrations and noise is therefore a growing problem.

To estimate the load from the vibration source and to predict the vibration transmission through the ground,

models are needed. Ground vibrations caused by passing trains have been studied using a wide range of different

techniques in the past decades, ranging from empirical methods to analytical and numerical calculation models.

Numerical prediction models often employ either the finite element (FE) method or the boundary element (BE)

method, or a combination thereof. The FE method enables arbitrary geometries and discontinuities to be modeled,

but the need to discretize a large computational domain may lead to long computation times. Furthermore, when

modeling wave propagation, the truncation of the model geometry may lead to spurious reflections of elastic

waves unless the artificial boundaries are properly modeled. The BE method inherently includes non-reflecting
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boundaries, but depending on the model size, the computational cost may still be high. If the soil and track are

assumed to be invariant in the track direction, the computational cost may be reduced through the use of so called

2.5D models [1–6], where a Fourier transform with respect to the coordinates in the track direction is performed

and a 2D problem is solved for a sequence of wavenumbers, using either the FE method, the BE method, analytical

methods, or a combination of these.

Apart from the FE and BE methods, some models utilize that a fundamental solution (Green’s function) for the

soil response can be found analytically in frequency–wavenumber domain for a horizontally layered visco-elastic

half-space. Several authors have used such a soil model coupled to a railway track. Sheng et al [7, 8] derived a

semi-analytical model, with the track represented by an infinite layered beam resting on a layered ground, where

both the ground and the beam are described in the frequency–wavenumber domain, in the reference frame of the

moving load. Kaynia et al [9] coupled a series of FE beams, representing the railway track, to a dynamic stiffness

matrix of the ground calculated from the Green’s function of a layered half-space. Triepaischajonsak et al [10]

calculated the track/ground interaction forces in time domain using a beam on elastic foundation, and introduced

the calculated forces into a ground model in frequency–wavenumber domain to predict the free-field vibrations.

Koroma et al [11] used a time-domain FE model of the track, with the soil stiffness described by lumped parameter

models, to calculate the track–soil interaction forces that were subsequently used for calculating the free-field

vibrations in frequency–wavenumber domain using a layered half-space model.

Modeling the track as a beam is a common approach in both track/vehicle dynamics analyses and predictions

of ground-borne vibrations. However, when the track is modeled as a beam, some assumptions regarding the

displacements or the stress distribution in the track–soil interface have to be made, which may affect the resulting

ground vibrations. Steenbergen et al [12] studied the influence of different interface conditions between a beam

on a half-space, subjected to a dynamic moving load, on the free-field response, using a semi-analytical model

in the frequency–wavenumber domain. Galvı́n et al [4] compared the free-field response of a high-speed train

passage on a ballasted track on an embankment, calculated using a 2.5D continuum model, to a model with a beam

representation of the track, finding large differences attributed to the rigid cross-section of the embankment using

the beam model.

State-of-the-art models for train-induced ground vibrations, utilizing continuum representations of the railway

track, account for both the track cross-section flexibility and the in-plane shear forces of the track–soil interface.

To the authors knowledge, it has previously not been demonstrated what the implications are of using a simplified

approach concerning the track and track–soil coupling, when predicting the ground vibrations caused by a load

moving over a slab track. The subject was touched upon in a conference paper by the authors [13]. For use in

early design stages, prediction tools need to be fast to enable swift evaluation of different design alternatives or

response sensitivity to model parameters, while maintaining sufficient accuracy to provide meaningful results. In

the present paper, the free-field ground vibrations due to a harmonic load moving at constant velocity along a

railway slab track are calculated using different assumptions of the slab cross-section behavior and the track–soil

interface conditions.
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2. Study overview

The influence of various modeling strategies on the predicted ground vibrations was studied for a slab track

that is shown principally in Figure 1. It consists of a concrete slab, rails and rail pads. The study is performed for

two slab thicknesses, t = 0.2 m and t = 0.5 m. The slab width is 3.0 m for both thicknesses. The track properties

used are given in Table 1.

Figure 1: Schematic cross-section of slab track on a layered soil.

The track is assumed to rest on a 14 m deep layer of clay overlaying a half-space. The analyses are performed

for two different values of the clay layer’s Young’s modulus, presented in Table 2. The stiffer soil properties are

that of a stiff clay till, where the parameters were obtained through geotechnical and geophysical measurements at

a site in the city of Lund, Sweden, close to a research facility housing highly vibration-sensitive equipment. The

Rayleigh wave speed for this soil is cR = 261 m/s. The Young’s modulus for the softer soil is chosen to give a

Rayleigh wave speed approximately equal to half of that for the stiffer soil, cR = 131 m/s.

Four computational models, Models a) – d), with different assumptions regarding the slab and the slab–soil

interface conditions, are established as:

a) The slab is modeled as a Bernoulli–Euler beam. Vertical displacement continuity of the beam and the soil is

enforced along the beam center line. A uniform normal stress distribution between the beam and the soil is

assumed in the transverse direction of the slab. In-plane coupling of the slab–soil is disregarded.

b) The slab is modeled as a Bernoulli–Euler beam. The slab–soil interface is assumed rigid in the transverse

direction, enforcing vertical displacement continuity of the beam and the soil under the full width of the

slab. The axial rigidity of the slab is modeled using the bar equation. Laterally, the slab is assumed rigid,

enforcing zero displacements of the soil in the cross-direction under the slab.

c) The slab is modeled with Kirchhoff shell elements, allowing a more general slab–soil interface stress and

displacement distribution in the transverse direction of the slab than by the aforementioned models. Dis-

placement and force continuity is enforced in the nodes of the slab–soil interface.

d) The slab is modeled with 3D solid elements, allowing the most general stress and displacement field of the

four models. Displacement and force continuity is enforced in the nodes of the slab–soil interface.
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Models a) – b) are semi-analytical, not requiring the introduction of finite elements as for Models c) – d). The

rails are modeled as Bernoulli-Euler beams in all four models. The loading is assumed identical on both rails

and in Models a) and b) the two rails are accordingly modeled as one single rail. In Models c) and d), only half

of the track is modeled, due to assumed symmetry around the track center line. The models are formulated in a

moving frame of reference following the load at at specific speed, requiring that the track is assumed invariant

in the load travel direction. Hence, the discrete rail supports are modeled as a continuous visco-elastic interface

layer between the rail and the slab. The underlying soil response is included through a dynamic stiffness, obtained

via the Green’s function for a horizontally layered visco-elastic stratum in the frequency–wavenumber domain, as

further described in Section 3. The track models and their coupling to the soil is further detailed in Section 4 . The

Models a) – d) are shown schematically in Figure 2.

To compare the effect of the various modeling strategies for the track, each of Model a) – d) was used for

evaluating the vertical free-field response to a moving unit harmonic point load acting on the rail, with frequencies

in the range 5 to 80 Hz. The velocity of the moving load, set to v = 30 m/s, was chosen since it is a common train

velocity in urban areas. First, only vertical coupling of the slab to the soil was accounted for. Then, the in-plane

slab–soil displacements were also coupled.

Damping is introduced in the models through the use of complex Young’s moduli for the ground, the slab and

the rails. For the FE models, an element length of 0.15 m is used in both the longitudinal and lateral direction.

For the solid model, six elements are used in the thickness direction of the slab. For the semi-analytical model,

4096 × 4096 points are used in wavenumber domain, with a maximum wavenumber of 41 rad/m in both directions.

In Model b) the slab–soil interface is laterally discretized into 21 strips. The aforementioned discretizations were

found to be sufficient. In the FE models, the displacement boundary conditions are free at the truncated ends of

the track. The total track length is 90 m, which has been found to be sufficient to avoid problems with reflecting

waves at the free boundaries.

Table 1: Track properties.

Parameter Value
Rail Mass (kg/m) 60

Young’s modulus (GPa) 210
Second moment of inertia (m4) 3.217×10−5

Loss factor (-) 0.01
Track gauge (m) 1.435

Rail Stiffness (MN/m2) 250
pads Damping (kNs/m2) 22.5
Slab Density (kg/m3) 2500

Young’s modulus (GPa) 30
Poisson’s ratio 0.2
Width (m) 3.0
Thickness (m) 0.2 / 0.5
Loss factor (-) 0.04
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Figure 2: Schematic view of computational models. In Models a) and b) the slab is modeled as Bernoulli–Euler beams with different slab–soil
interface conditions. In Models c) and d) the slab is modeled by Kirchhoff shell and 3D solid continuum finite elements, respectively.

Table 2: Ground properties.

Layer Parameter Value
Soil Depth (m) 14

Young’s modulus (MPa) 475 / 120
Poisson’s ratio 0.48
Density (kg/m3) 2125
Loss factor (-) 0.14

Bedrock Depth (m) ∞
(half-space) Young’s modulus (MPa) 8800

Poisson’s ratio 0.40
Density (kg/m3) 2600
Loss factor (-) 0.04

3. Soil model

The ground is assumed to be composed of horizontal visco-elastic layers. Neglecting body forces, the Navier

equations for a single soil layer can be written as

(λ+ µ)
∂2uj
∂xi∂xj

+ µ
∂2ui
∂xj∂xj

= ρ
∂2ui
∂t2

, (1)

where ui = ui(x1, x2, x3, t) is the displacement in direction i. The Lamé parameters are λ and µ.

The equations are obtained in the frame of reference following the load moving at a fixed speed v along the

x1-axis by applying the coordinate transformation,

(x̃1, x̃2, x̃3) = (x1 − vt, x2, x3), (2)
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where x̃1, x̃2, x̃3 denotes the coordinates in the moving frame of reference. Partial derivatives in the two reference

frames are related as [14]

∂
∂x1

= ∂
∂x̃1

, ∂
∂t

∣∣∣
x1

= ∂
∂t

∣∣∣
x̃1

− v ∂
∂x̃1

, (3)

which applied to Eq. (1) yields

(λ+ µ)
∂2ũj
∂x̃i∂x̃j

+ µ
∂2ũi
∂x̃j∂x̃j

= ρ
(∂2ũi
∂t2

− 2v
∂2ũi
∂t∂x̃1

+ v2 ∂
2ũi
∂2x̃1

)
, (4)

where ũi = ũi(x̃, ỹ, z̃, t) is the displacement in the moving frame of reference.

Fourier transforming the Navier equations with respect to the horizontal coordinates and time, (x̃1, x̃2, t),

yields the Navier equations in frequency–wavenumber domain as

(λ+ µ)∆̃ik̃1 + µ
( d2

dx̃2
3

− k̃2
1 − k̃2

2

)
Ũ1 = −ρω̃2Ũ1, (5a)

(λ+ µ)∆̃ik̃2 + µ
( d2

dx̃2
3

− k̃2
1 − k̃2

2

)
Ũ2 = −ρω̃2Ũ2, (5b)

(λ+ µ)
d∆̃

dx̃3
+ µ

( d2

dx̃2
3

− k̃2
1 − k̃2

2

)
Ũ3 = −ρω̃2Ũ3, (5c)

where ∆̃ = ∆̃(k̃1, k̃2, x̃3, ω) and Ũi = Ũi(k̃1, k̃2, x̃3, ω) are the Fourier transforms, with respect to the horizontal

coordinates and time, of the dilation ∆(x̃1, x̃2, x̃3, t) and the displacement ũi(x̃, ỹ, z̃, t), respectively. The imagi-

nary unit is denoted i. The vibration frequency of a material point is ω̃ = ω − k̃1v and ω is the circular frequency

of the moving load. The horizontal wavenumbers in the direction of x̃1 and x̃2 are k̃1 and k̃2, respectively.

The solution to Eq. (5) for an individual layer can be found analytically, as showed by Sheng et al [7, 8]. Due to

continuity of displacements and tractions over interfaces between layers, the Thomson [15] and Haskell [16] layer

transfer matrix approach can be used to assemble several layers, forming a relationship between the displacement

and stresses at the top of the stratum and at the bottom of the stratum. A relationship between the traction and the

displacements at the soil surface can be obtained as

û = Ĝ p̂, (6)

where

û = û(k̃1, k̃2, ω) =


ûx

ûy

ûz

 , p̂ = p̂(k̃1, k̃2, ω) =


p̂x

p̂y

p̂z

 , (7)

are vectors containing the displacements and tractions, respectively, on the soil surface, and

Ĝ = Ĝ(k̃1, k̃2, ω) =


Ĝ11 Ĝ12 Ĝ13

Ĝ21 Ĝ22 Ĝ23

Ĝ31 Ĝ32 Ĝ33

 , (8)

is the Green’s function tensor for the layered half-space.
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For certain frequencies and stratifications, the original Thomson and Haskell method suffers from loss-of-

precision. To avoid these problems in the present work, the different soil layers are assembled in an orthonormal-

ization procedure as proposed by Wang [17].

Equation (6) is evaluated for a set of discrete values of k̃1 and k̃2, and the displacement vector ũ(x̃1, x̃2, ω) is

obtained in Cartesian space through a double inverse Fourier transform of û(k̃1, k̃2, ω).

4. Track models

4.1. Semi-analytical beam models: Models a) and b)

Here, due to the assumed symmetry, both rails are represented as one infinite beam with the total bending

stiffness (EI)r and mass mr. The rail is supported by continuously distributed springs and dashpots representing

the rail pads, with stiffness kp and damping cp. The rail pads are connected to the slab, represented by an infinite

beam with bending stiffness (EI)s and mass ms. To account for the shear force in the axial direction of the

soil–slab interface, an infinite bar with axial stiffness (EA)s represents the axial rigidity of the slab. The rail is

subjected to a harmonic load P0 with circular frequency Ω, moving in the positive x-direction with the velocity v.

The system is described by three equations:

(EI)r
∂4ur

∂x4
+mr

∂2ur

∂t2
+ kp

(
ur − us

)
+ cp

(∂ur

∂t
− ∂us

∂t

)
= δ(x− vt)P0eiΩt, (9)

(EI)s
∂4us

∂x4
+ms

∂2us

∂t2
+ kp

(
us − ur

)
+ cp

(∂us

∂t
− ∂ur

∂t

)
= −Fz,

(EA)s
∂2ws

∂x2
−ms

∂2ws

∂t2
= Fx,

where ur = ur(x, t) and us = us(x, t) is the vertical displacement of the rail and slab, respectively and ws =

ws(x, t) is the axial displacement of the slab. Further, Fz = Fz(x, t) is the vertical force in the slab–soil interface

and Fx = Fx(x, t) is the shear force in the axial direction of the slab–soil interface. The interface force terms

couple the third equation to the first two in Eq. (9). The equations are obtained in the frame of reference following

the load by applying the coordinate transformation in Eq. (2),

(EI)r
∂4ũr

∂x̃4
+mr

(∂2ũr

∂t2
− 2v

∂2ũr

∂x̃∂t
+ v2 ∂

2ũr

∂x̃2

)
+ kp

(
ũr − ũs

)
+ cp

(
(
∂ũr

∂t
− v ∂ũr

∂x̃
)− (

∂ũs

∂t
− v ∂ũs

∂x̃
)
)

= δ(x̃)P0eiΩt,

(EI)s
∂4ũs

∂x̃4
+ms

(∂2ũs

∂t2
− 2v

∂2ũs

∂x̃∂t
+ v2 ∂

2ũs

∂x̃2

)
+ kp

(
ũs − ũr

)
+ cp

(
(
∂ũs

∂t
− v ∂ũs

∂x̃
)− (

∂ũr

∂t
− v ∂ũr

∂x̃
)
)

= −F̃z,

(EA)s
∂2w̃s

∂x̃2
−ms

(∂2w̃s

∂t2
− 2v

∂2w̃s

∂x̃∂t
+ v2 ∂

2w̃s

∂x̃2

)
= F̃x,

(10)
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where, again, ˜ denotes that a variable is expressed in the moving frame of reference. Fourier transforming

Eq. (10) with respect to x̃ yields

(EI)rk̃
4
1ūr +mr

(∂2ūr

∂t2
− 2ivk̃1

∂ūr

∂t
− v2k̃2

1ūr

)
+ kp

(
ūr − ūs

)
+ cp

(
(
∂ūr

∂t
− ivūr)− (

∂ūs

∂t
− ivūs)

)
= P0eiΩt,

(EI)sk̃
4
1ūs +ms

(∂2ūs

∂t2
− 2ivk̃1

∂ūs

∂t
− v2k̃2

1ūs

)
+ kp

(
ūs − ūr

)
+ cp

(
(
∂ūs

∂t
− ivūs)− (

∂ūr

∂t
− ivūr)

)
= −F̄z,

(EA)sk̃
2
1w̄s +ms

(∂2w̄s

∂t2
− 2ivk̃1

∂w̄s

∂t
− v2k̃2

1w̄s

)
= −F̄x,

(11)

with ū = ū(k̃1, t) =
∫∞
−∞ ũ(x̃, t)e−ik̃1x̃dx̃, w̄ = w̄(k̃1, t) =

∫∞
−∞ w̃(x̃, t)e−ik̃1x̃dx̃, F̄i = F̄i(k̃1, t) =

=
∫∞
−∞ F̃i(x̃, t)e−ik̃1x̃dx̃, and k̃1 denotes the wavenumber in the direction of x̃.

Further, assuming steady-state vibration with circular frequency Ω, i.e. ū(k̃1, t) = û(k̃1)eiΩt and w̄(k̃1, t) =

ŵ(k̃1)eiΩt, and setting ω = Ω− k̃1v yields

(EI)rk̃
4
1ûr − ω2mrûr + kp

(
ûr − ûs

)
+ iωcp

(
ûr − ûs

)
= P0, (12)

(EI)sk̃
4
1ûs − ω2msûs + kp

(
ûs − ûr

)
+ iωcp

(
ûs − ûr

)
= −F̂z,

(EA)sk̃
2
1ŵs − ω2msŵs = −F̂x.

Sheng et al [7, 8] assumed a uniform contact pressure in the lateral direction of the track–soil interface and

disregarded any horizontal coupling. This is also the assumption made here for Model a). Steenbergen et al [12]

and Ntotsios et al [19] accounted for a varying contact pressure in the track–soil interface by discretizing the

interface laterally into a number of strips, assuming a constant pressure within each strip. The same principle

is adopted here for Model b), not only the vertical contact pressure, but also for the interface shear stress in the

longitudinal and lateral directions. The interface is discretized into N strips with a uniform width, i.e. the width of

a single strip is ∆ = b/N , where b is the slab width.

A strip centered around the ỹ-axis, with a unit force in direction j is considered. The strip stress is

pj(x̃, ỹ) =


1
∆ , −∆/2 < ỹ < ∆/2

0, otherwise .

(13)

In wavenumber domain the interface stress becomes

p̂j(k̃1, k̃2) =
sin(k̃2∆/2)

k̃2∆/2
. (14)

Denote the soil displacement in direction i due to the soil surface stress in direction j by ûij . From Eq. (6) this

displacement is obtained as ûij(k̃1, k̃2) = Ĝij(k̃1, k̃2)p̂j(k̃1, k̃2) (no summation on repeated indices).

8



The soil displacement at an arbitrary y-coordinate, due to the loaded strip becomes

ˆ̃uij(k̃1, y) =
1

2π

∫ ∞
∞

ûij(k̃1, k̃2)eik̃2ydk̃2 =
1

2π

∫ ∞
∞

Ĝij(k̃1, k̃2)p̂j(k̃1, k̃2)eik̃2ydk̃2 = (15)

1

2π

∫ ∞
∞

Ĝij(k̃1, k̃2)
sin(k̃2∆/2)

k̃2∆/2
eik̃2ydk̃2 = ˆ̃Hij(k̃1, y).

ˆ̃Hij(k̃1, y) is a transfer function, expressing the displacements at y due to a unit load at the strip centered around

y = 0. Due to the translational invariability of the soil, ˆ̃Hij(k̃1, y) can be used for calculating the soil displacement

at any distance along the y-axis from any loaded strip, by replacing the coordinate y with the distance. Hence, for

each wavenumber k̃1, a matrix expression can be established linking the displacements and forces in all the strips,

ˆ̃H11(0) ˆ̃H12(0) ... ˆ̃H13(−(N − 1)∆)
ˆ̃H21(0) ˆ̃H22(0) ... ˆ̃H23(−(N − 1)∆)
ˆ̃H31(0) ˆ̃H32(0) ... ˆ̃H33(−(N − 1)∆)
ˆ̃H11(∆) ˆ̃H12(∆) ... ˆ̃H13(−(N − 2)∆)

: : ... :
ˆ̃H31((N − 1)∆) ˆ̃H32((N − 1)∆) ... ˆ̃H33(0)




F̂1x

F̂1y

:

F̂Nz

 =


û1x

û1y

:
ûNz

 , (16)

where the argument k̃1 has been dropped for brevity. Equation (16) can be written as ˆ̃HF̂ = û. For known

displacements, the strip forces are F̂ = ˆ̃H
−1

û. Enforcing equal displacements in all strips, a (3 × 3) system is

obtained from ˆ̃H
−1

,


k11 k12 k13

k21 k22 k23

k31 k32 k33



ûx

ûy

ûz

 =


F̂x

F̂y

F̂z

 , (17)

where F̂i = F̂i(k̃1) is the total force in the i-direction from all strips, i.e. the same force acting on the slab

in Eq. (12). It is assumed that the slab is rigid in the lateral direction. Further, continuity of vertical and axial

displacements between the slab and the soil are assumed. Hence, ûy(k̃1) = 0, ûz(k̃1) = ûs(k̃1) and ûx(k̃1) =

ŵs(k̃1). These relationships are inserted into Eq. (12) that now constitutes a solvable system of equations. When

the track displacements have been calculated, the individual strip forces can be obtained from F̂ = ˆ̃H
−1

û and

used for calculating the free-field soil surface response.

4.2. Finite element models: Models c) and d)

To account for the deformation of the slab in the cross-direction, finite elements are used for modeling the track

in Models c) and d). The coordinate transformation in Eq. (2), when applied to the equations governing the FE

formulations, introduces convective terms in the damping and stiffness matrices. The finite elements used for the

track are described in Section 4.2.1. In Section 4.2.2, the coupling of the FE track to the soil is described.
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4.2.1. Element equations for railway track

With the coordinate transformation in Eq. (2) and the partial derivative relations in Eq. (3), the Cauchy equation

of motion can be written as

∇̃
T
σ̃ = ρ

(∂2ũ

∂t2
− 2v

∂2ũ

∂t∂x̃1
+ v2 ∂

2ũ

∂2x̃1

)
, (18)

where the matrix differential operator ∇̃, the stress vector σ̃ and the displacement vector ũ are defined as

∇̃
T

=


∂

∂x̃1
0 0 ∂

∂x̃2

∂
∂x̃3

0

0 ∂
∂x̃2

0 ∂
∂x̃1

0 ∂
∂x̃3

0 0 ∂
∂x̃3

0 ∂
∂x̃1

∂
∂x̃2

 , (19)

σ̃T =
[
σ̃11 σ̃22 σ̃33 σ̃12 σ̃13 σ̃23

]
, (20)

ũT =
[
ũ1 ũ2 ũ3

]
, (21)

The weak form is obtained by multiplying Eq. (18) by an arbitrary weight function vector g = g(x̃, ỹ, z̃) and

integrating it over the region. The resulting weak form, after partial integration, becomes∫
V

(∇̃g)T σ̃ dV+ρ

∫
V

gT ∂
2ũ

∂t2
dV − 2ρ v

∫
V

gT ∂2ũ

∂t∂x̃1
dV + ρ v2

∫
S

gT ∂ũ

∂x̃1
nx dS − ρ v2

∫
V

∂g̃

∂x̃1

T ∂ũ

∂x̃1
dV

=

∫
S

gT t dS,

(22)

where t is the traction vector.

To obtain the FE formulation, the displacements ũ(x̃, ỹ, z̃, t) are approximated using the element nodal values

a(t) and the shape functions N(x̃, ỹ, z̃) as ũ = Na. Adopting the Galerkin method, the mass, damping and

stiffness matrices, and the load vector, are identified as

K =

∫
V

(∇̃N)TD(∇̃N) dV − ρv2

∫
V

∂N

∂x̃1

T ∂N

∂x̃1
dV + ρv2

∫
S

NT ∂N

∂x̃1
nx dS, (23)

C = −2ρv

∫
V

NT ∂N

∂x̃1
dV, (24)

M = ρ

∫
V

NTN dV, (25)

fl =

∫
S

NT t̃ dS, (26)

where D is the constitutive matrix for isotropic elasticity. Similar derivations for the convective solid finite ele-

ments can be found in e.g. [14]. Analogously, convective terms in the stiffness and damping matrices are also

obtained for the other element types. When the velocity v is set to zero, the equations reduce to the standard FE

equations, whose derivations can be found in for example [18].

In Model c), the track slab is modeled using 4-node rectangular Kirchhoff shell elements with five degrees-

of-freedom (DoFs) per node (three displacements and two rotations). In Model d), standard 8-node isoparametric

brick elements with three displacement DoFs per node are used. In Models c) and d), 2-node Bernoulli-Euler beam
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elements with two DoFs per node (vertical displacement and one rotation), are used for modeling the rails. The rail

pads, i.e. the coupling between the rails and the slab, are modeled by visco-elastic interface elements representing

continuous springs and dashpots. Here, the equations are derived for an interface element when the rail is parallel

to the x-axis. Denoting the spring stiffness and dashpot coefficient by k and c, respectively, the loads on the rail

and slab from the visco-elastic interface are written

qr(x, t) = −k(wr − ws)− c
(∂wr

∂t
− ∂ws

∂t

)
= 0, (27)

qs(x, yr, t) = −k(ws − wr)− c
(∂ws

∂t
− ∂wr

∂t

)
= 0, (28)

where wr = wr(x, t) is the deflection in the rail, and ws = ws(x, yr, t) is the deflection of the slab at the y-

coordinate of the rail y = yr. With the coordinate transformation in Eq. (2) and the partial derivative relations in

Eq. (3), these loads are obtained in the moving frame of reference as

q̃r(x̃, t) = −k(w̃r − w̃s)− c
{(∂w̃r

∂t
− ∂w̃s

∂t

)
− v
(∂w̃r

∂x̃
− ∂w̃s

∂x̃

)}
, (29)

q̃s(x̃, t) = −k(w̃s − w̃r)− c
{(∂w̃s

∂t
− ∂w̃r

∂t

)
− v
(∂w̃s

∂x̃
− ∂w̃r

∂x̃

)}
. (30)

The displacements of the rail, wr(x̃) are approximated using the beam element shape functions Nr(x̃) and the

element nodal displacements ar(t). Likewise, the slab displacements ws(x̃, ỹr) are approximated using the shell or

solid ellement shape functions Ns(x̃, ỹ) evaluated at ỹ = ỹr, and the element nodal displacements as(t). By equat-

ing the forces acting on the rail and slab to the internal forces of the interface element, the following expressions

are obtained for the interface element stiffness and damping matrices:

K = k
{∫ L/2

−L/2
ÑT

u Ñu dx̃ +
∫ L/2

−L/2
ÑT

l Ñl dx̃ −
∫ L/2

−L/2
ÑT

u Ñl dx̃ −
∫ L/2

−L/2
ÑT

l Ñu dx̃
}

−cv
{∫ L/2

−L/2
ÑT

u
dÑu

dx̃ dx̃ +
∫ L/2

−L/2
ÑT

l
dÑl

dx̃ dx̃ −
∫ L/2

−L/2
ÑT

u
dÑl

dx̃ dx̃ −
∫ L/2

−L/2
ÑT

l
dÑu

dx̃ dx̃
}
,

(31)

C = c
{∫ L/2

−L/2

ÑT
u Ñu dx̃ +

∫ L/2

−L/2

ÑT
l Ñl dx̃ −

∫ L/2

−L/2

ÑT
u Ñl dx̃ −

∫ L/2

−L/2

ÑT
l Ñu dx̃

}
, (32)

where the vectors Ñu and Ñl collect the shape functions for both the rail and the slab as

Ñu(x̃) =
[
Nr(x̃) 0×Ns(x̃, ỹ = ỹr)

]
, Ñl(x̃) =

[
0×Nr(x̃) Ns(x̃, ỹ = ỹr)

]
(33)

Following standard FE assembly, the equations of motion for the track structure can be written as

Mt
¨̃ut + Ct

˙̃ut + Ktũt = f̃t, (34)

where Mt, Ct and Kt is the total mass, damping and stiffness matrix, respectively, of the complete track structure.

Further, ũt and f̃t is the displacement and force vector for the complete track structure, respectively, in the moving

frame of reference.
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4.2.2. Coupling of finite element track to soil

Assuming steady-state conditions, the governing equation for the railway track structure can be written as

(−ω2Mt + iωCt + Kt)ũt = Dtũt = f̃t, (35)

where ω is the circular frequency of vibration in the moving frame of reference and the dynamic stiffness matrix

of the track is Dt = (−ω2Mt + iωCt + Kt).

The track is coupled to a dynamic stiffness matrix representing the soil. This dynamic stiffness matrix is

derived from the previously described Green’s function for a horizontally layered visco-elastic half-space. The

soil response is calculated for a unit load on the soil surface. The unit load is applied with uniform traction over

a rectangular area, the size of which equals the element size in the connecting superstructure. Considering an

element size of 2a× 2b, in the x1- and x2-direction, respectively, the traction pj for a load in direction j is

pj(x̃, ỹ, ω) =

1/(4ab), −a < x̃ < a, −b < ỹ < b

0, otherwise .

(36)

In wavenumber domain the traction becomes

p̂j(k̃1, k̃2, ω) =
sin(k̃1a)

k̃1a

sin(k̃2b)

k̃2b
. (37)

The soil response is calculated for three load cases, with the unit load acting in the x̃-, ỹ- and z̃-directions,

respectively. From these three load cases, a dynamic flexibility matrix Cs(ω, v) is established for a set of DoFs

where the superstructure interacts with the soil surface. These DoFs will be referred to as soil–structure interaction

(SSI) DoFs. The flexibility matrix is then inverted to form the dynamic stiffness matrix of the soil, Ds(ω, v) =

C−1
s (ω, v), which gives a relation between the steady-state displacements ũs and forces f̃s for the SSI DoFs, at a

certain load circular frequency ω and velocity v, as

Ds ũs = f̃s. (38)

The track and soil are coupled in a standard FE manner, and a global system of equations for the soil and the

railway structure is formed by combining Eqs. (35) and (38), yielding

Dgũt = f̃t, (39)

where Dg represents the global dynamic stiffness matrix for the track structure and the soil.

The free-field response is calculated in a two-step procedure. The first step involves calculating the displace-

ments in the slab–soil interface due to the moving load on the track by solving Eq. (39). The corresponding forces

on the soil surface, f̃s, are calculated by Eq. (38). In the second step, the free-field response due to these forces is

calculated. A flexibility matrix Cs,f(ω, v) is established expressing the displacements in free-field due to forces on

the soil–structure interface, i.e. the SSI DoFs, again using the previously described unit loadcases. The free-field
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displacements, ũf , are then calculated as

ũf = Cs,f f̃s. (40)

These free-field displacements are obtained in the frame of reference of the moving load. The response is in

steady-state with the frequency of the harmonic load.

5. Results from numerical studies

In Section 5.1, the free-field vertical response obtained from the different models when disregarding any in-

plane interaction between the slab and the soil is presented. Section 5.2 contains the corresponding results when

in-plane slab–soil interaction is accounted for. Finally, in Section 5.3, a vehicle model is introduced to calculate

the wheel–rail contact forces as the vehicle runs over an uneven rail.

5.1. Free-field displacements assuming only vertical slab–soil interaction

To compare the free-field response obtained from the different models, the vertical displacement is extracted

for points along a line parallel with the track, as illustrated in Figure 3. The displacements are calculated in the

coordinate system following the moving load, meaning that x̃ = 0 corresponds to a point perpendicular to the

moving load. Positive x̃-values correspond to points ahead of the load.

 10 m

Figure 3: Illustration of the result line in relation to the moving load. The response is calculated in the moving frame of reference, along a line
located 10 m from the track centerline.

The response along a line located 10 m from the track center line, as obtained with the different models when

only accounting for the vertical interaction between the slab and the soil, for a unit load moving along the track

at v = 30 m/s are shown in Figures 4–6 for the excitation frequencies f = 40 Hz, f = 60 Hz and f = 80 Hz,

respectively. For these frequencies, the Rayleigh wavelength for the stiffer soil is λ = 6.5 m (∼ twice the slab

width), λ = 4.3 m and λ = 3.3 m (similar to the slab width), respectively. For the softer soil, these frequencies

correspond to Rayleigh wavelengths λ = 3.3 m (similar to the slab width), λ = 2.2 m and λ = 1.6 m (∼ half

the slab width), respectively. These frequencies are selected to demonstrate the features of the different modeling

strategies. Condensed results for the frequency range (5–80 Hz) are shown in the next subsection. Subfigures (a)
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and (b) show the response of the softer soil for the thin and thick slab, respectively, whereas (c) and (d) show the

corresponding results for the stiffer soil. The response along a line located at a greater distance (25 m) from the

track has also been studied, but these results are not presented here because they show the same general differences

as obtained for the shorter distance.

As expected, Models c) and d) yield almost indistinguishable results for both slab thicknesses and both soil

types in the entire frequency range. In the following discussion, these responses are considered accurate. For low

frequencies, the different slab–soil interface conditions implied by the different modeling strategies have virtually

no effect on the free-field response. This is because, for low frequencies, the wavelength of the fundamental

Rayleigh wave that dominates the response, is long compared to the width of the slab.

At 40 Hz (see Figure 4), the response obtained assuming a constant slab–soil pressure in the slab cross direction,

Model a), is significantly underestimated for both slabs on soft soil, as seen in subfigures (a) and (b). In the case of

a thick slab, the response obtained assuming a constant displacement under the slab in the cross-direction, Model

b), is almost indistinguishable from that obtained with Models c) and d), see subfigure (b). However, this is not

the case for the thinner slab, see subfigure (a), where also Model b) produces a slightly underestimated response.

The absolute value of the slab–soil pressure distributions directly under the load for f = 40 Hz are shown in

Figure 7 for the different models. For the thin slab, the presence of the rails is visible as local peaks in the contact

pressure obtained using Models c) and d). In addition, the high contact pressures around the slab edges, obtained by

enforcing rigidity in the cross-direction using Model b), are not present for the thin slab when the cross-direction

flexibility is accounted for, as in Models c) and d). For the thick slab, however, the true pressure distribution

approaches that of a rigid slab and hence the free-field response levels are also almost identical. For the stiffer

soil, the Rayleigh wavelength is approximately twice the slab width at 40 Hz. For such a wavelength to slab width

ratio, the uniform pressure produces higher vibrations than the pressure distribution obtained with a rigid surface,

c.f. Figure 4 (c) and (d). The soil is even slightly more responsive to the “true” pressure distribution obtained for

the thin slab, with lower edge pressures and instead having a higher overall pressure in the center of the slab, see

Figure 4 (c) and Figure 7 (c).

At higher frequencies, Model a) yield an underestimated response for both slab thicknesses and soil types, see

Figures 5–6. For the thin slab and soft soil, the response obtained from Model b) is overestimated for frequencies

with a fundamental Rayleigh wavelength shorter than the slab width. For the stiff soil, the wavelength of the

fundamental Rayleigh wave is longer than the slab width in the entire studied frequency range, and assuming a

rigid slab in the cross direction yields an underestimated response for the thin slab, but an accurate response for

the thick slab. The differences in the slab–soil contact pressures, obtained with the Models a) – d), are similar to

those discussed above for f = 40 Hz, and are therefore not shown here for the higher frequencies.
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Figure 4: Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at f = 40 Hz moving along the track
at v = 30 m/s, as obtained with Models a) – d), accounting only for vertical interaction between slab and soil. Figures (a) and (b) are for the
thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil.
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Figure 5: Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at f = 60 Hz moving along the track
at v = 30 m/s, as obtained with Models a) – d), accounting only for vertical interaction between slab and soil. Figures (a) and (b) are for the
thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil.
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Figure 6: Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at f = 80 Hz moving along the track
at v = 30 m/s, as obtained with Models a) – d), accounting only for vertical interaction between slab and soil. Figures (a) and (b) are for the
thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil.
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Figure 7: Vertical slab–soil contact pressure directly under the unit harmonic load at f = 40 Hz moving along the track at v = 30 m/s, as
obtained with Models a) – d). Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the
corresponding results for the stiffer soil.
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5.2. Free-field displacements including in-plane slab–soil interaction

When the in-plane slab–soil displacements are coupled, shear forces arise in the interface. These shear forces

also affect the vertical vibration levels in the free field. The maximum vertical displacement along a line located

10 m from the track center line, for a unit load moving along the track at v = 30 m/s, are shown in Figures 8–10

for the Models b) – d) when in-plane interaction between the slab and soil is enforced. The excitation frequencies

for which the response is shown are again f = 40 Hz, f = 60 Hz and f = 80 Hz, respectively.

The effects of in-plane slab–soil interaction on the vertical response levels are most noticeable around the

frequencies for which the wavelength of the Rayleigh wave in the soil is similar to the slab width, see Figure 8

(a)–(b) (c.f. Figure 4) and Figure 10 (c)–(d) (c.f. Figure 6). The influence of the in-plane slab–soil interaction is

complex, as it introduces shear forces on the soil surface that also change the vertical interaction forces, both of

which effects influence the free-field response.

As all models are established in the moving frame of reference, following the load at the given velocity

v = 30 m/s, the results are also obtained in this reference frame. Hence, to obtain the response of a fixed

point, the receiver is moved through the model in the opposite travel direction of the load, yielding a transient

time-history of the displacement response. The transient response contains a wide range of frequencies due to the

Doppler effect. The time derivative of the fixed point displacement time-history yields the fixed point particle ve-

locity. To efficiently compare the free-field responses for a range of excitation frequencies, two measures are used

here. The first measure is the fixed point maximum vertical particle velocity. The second measure is the energy of

the velocity time-history signal, calculated as

Eu̇f
=

∫ ∞
−∞
|u̇f (t)|2dt (41)

where u̇f (t) is the vertical velocity time-history response for a fixed point, due to the moving unit load with

frequency f .

The maximum vertical particle velocities and the signal energies Eu̇f
obtained from the different models are

shown in Figure 11 and Figure 13, respectively, for a fixed point 10 m from the track. The results in Figure 11

and Figure 13 are normalized to the response obtained with Model d), and shown in Figure 12 and Figure 14,

respectively. In these figures, the response from the different models when the in-plane slab–soil interaction was

disregarded, is also shown for reference.

It can be seen in Figure 12 and Figure 14 that for the cases studied here, the predicted vertical free-field response

is in general significantly higher when in-plane slab–soil interaction is accounted for and that its effects are equally

significant for both the thick and the thin slab on both soil types. Disregarding the in-plane slab–soil interaction

yields an underestimation of the peak particle vertical velocity and the vertical velocity signal energy, of as much

as 30% and 50% respectively, c.f. the gray/blue solid lines in Figure 12 and Figure 14. Model c) (shell elements)

yields similar vibration levels as Model d) (solid elements) for both slab thicknesses on both soils, both in terms

of maximum particle velocity and velocity signal energy. When in-plane slab–soil interaction was disregarded, the

two models provided almost indistinguishable results. When the in-plane interaction is included, the differences
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increase. In Model c) the mid-section is located in the plane of the soil surface, i.e. the membrane and bending

behaviors of the shell elements are decoupled. Furthermore, whereas the model with solid elements enables the

slab lower surface to deform differently than the upper surface, the shell elements necessarily engage the entire

thickness of the slab. Similarly, the axial and bending behaviors of the beam representing the slab in Model b) are

also decoupled. For the thick slab, the response levels obtained with Model b) are about as accurate as those from

Model c), and within about ±10% of those obtained with Model d).

The maximum vibration levels, both in terms of peak vertical particle velocity and velocity signal energy,

occur around 25–30 Hz for the softer soil and around 50–55 Hz for the stiffer soil. For these frequencies, the

Rayleigh wavelength is slightly shorter than twice the slab width. Further, it can be seen that the thicker slab yields

significantly lower vibration levels.
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Figure 8: Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at f = 40 Hz moving along the track
at v = 30 m/s, as obtained with Models b) – d), accounting for in-plane slab–soil interaction. Figures (a) and (b) are for the thin and thick slab,
respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil.
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Figure 9: Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at f = 60 Hz moving along the track
at v = 30 m/s, as obtained with Models b) – d), accounting for in-plane slab–soil interaction. Figures (a) and (b) are for the thin and thick slab,
respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil.
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Figure 10: Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at f = 80 Hz moving along the track
at v = 30 m/s, as obtained with Models b) – d), accounting for in-plane slab–soil interaction. Figures (a) and (b) are for the thin and thick slab,
respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil.
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Figure 11: Maximum particle vertical velocity in a fixed point 10 m from the track center line, due to a unit harmonic load moving along the
track at v = 30 m/s, as obtained with Models a) – d). Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures
(c) and (d) are the corresponding results for the stiffer soil. Curves in gray are without accounting for in-plane slab–soil interaction.
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Figure 12: Normalized maximum particle vertical velocity in a fixed point 10 m from the track center line, due to a unit harmonic load moving
along the track at v = 30 m/s, as obtained with Models a) – d). The curves are normalized against Model d). Figures (a) and (b) are for the thin
and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil. Curves in gray are without
accounting for in-plane slab–soil interaction.
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Figure 13: Vertical velocity signal energy in a fixed point 10 m from the track center line, due to a unit harmonic load moving along the track
at v = 30 m/s, as obtained with Models a) – d). Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c)
and (d) are the corresponding results for the stiffer soil. Curves in gray are without accounting for in-plane slab–soil interaction.
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Figure 14: Normalized vertical velocity energy in a fixed point 10 m from the track center line, due to a unit harmonic load moving along the
track at v = 30 m/s, as obtained with Models a) – d). The curves are normalized against Model d). Figures (a) and (b) are for the thin and thick
slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil. Curves in gray are without accounting
for in-plane slab–soil interaction.
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5.3. Rail receptance and wheel–rail interaction force

In the previous subsections the differences between the different modeling strategies, regarding the free-field

response due to a moving unit load, have been presented. However, when a vehicle runs over an uneven rail, the

dynamic forces between the wheels and the rail depend on the rail receptance (displacement per unit force). Hence,

models providing different rail receptances will also provide different wheel–rail interaction forces. The absolute

values of the loading point receptance, as obtained with the different models are shown in Figure 15, for a load

velocity of v = 30 m/s. The receptance is slightly higher for the cases with a thin slab than with a thick slab, c.f.

subfigures (a) and (b) for the soft soil and subfigures (c) and (d) for the stiff soil. Further, the softer soil provides a

higher rail point receptance than the stiffer soil. The in-plane slab–soil interaction has a negligible effect (< 2%)

on the rail receptance for the cases studied here. In Figure 15, the values shown for Models b) – d) were calculated

with in-plane slab–soil interaction taken into account.
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Figure 15: Rail loading point receptance, due to a unit harmonic load moving along the track at v = 30 m/s, as obtained with Models a) – d).
Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer
soil.

For each studied case, the different models yield similar values of the receptance, however some differences can

be discerned. Models c) and d) provide almost identical rail receptances, with a maximum difference of less than

2%. Models a) and b) do not account for the slab flexibility in the cross-direction and overestimate the stiffness

in that sense, since the entire track cross-section is forced to move uniformly. Model b) is seen to provide a slight

underestimation of the receptance in the entire frequency span, with a maximum underestimation of about 5%,

compared to Model d), in the cases involving the thin slab. The differences between Models a) and b) are only due

to the different slab–soil interface conditions, and the receptance obtained with Model a) deviates by approximately

±10% compared to Model d).
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The rail receptances for a given load speed are used for calculating the wheel–rail contact forces due to a vehicle

running over an uneven rail. For a real vehicle with multiple axles, the receptances ahead and behind the loading

points are required to set up a compliance matrix containing all the wheel–rail contact points. Here, however, a

single axle vehicle is considered and thus only the receptance in the loading point is needed. The vehicle model is

shown in Figure 16, and its properties, taken from [20], are shown in Table 3. The vehicle model consists of the

sprung/unsprung masses ms and mw, and a suspension defined by the spring stiffness ks and k′s and the damper

cs.

For a given circular frequency of excitation ω = 2πf the dynamic stiffness of the vehicle can be written as

Dv =


ω2mu + iωcs + ks −ks −iωcs

−ks ω2ms + ks + k′s −k′s
−iωcs −k′s iωcs + k′s

 , (42)

with the corresponding displacement vector

uv =


uw

us

ud

 . (43)

u
r

u
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u
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v

Figure 16: Single-axle vehicle moving with fixed speed v on rail with unevenness magnitude τ .

Table 3: Vehicle properties [20].

Parameter Value
ms (kg) 19 250
mu (kg) 1750
ks (N/m) 2.66× 106

cs (Ns/m) 3.5× 104

k′s (N/m) 3× 106

kc (N/m) 2.7× 109
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In the present study, a unit height of 0.1 mm is used for each studied unevenness wavelength. The excitation

frequency and the unevenness wavelength are related through the vehicle speed as f = v/λ. A linearized Hertzian

contact spring, with stiffness kc, accounts for the wheel–rail contact. The contact spring is assembled between the

wheel and a contact point on the rail. For a given frequency of excitation, the displacement of the contact point

can be written as uc = ur + τ , where ur is the rail displacement and τ describes the the unevenness magnitude.

The rail dynamic stiffness dr at DoF ur is the inverse of the complex valued point receptance. By eliminating the

DoF uc, the following system of equations is obtained,
ω2mu + iωcs + ks + kc −ks −iωcs −kc

−ks ω2ms + ks + k′s −k′s 0

−iωcs −k′s iωcs + k′s 0

−kc 0 0 dr + kc




uw

us

ud

ur

 =


kcτ

0

0

−kcτ

 . (44)

The force in the contact spring is then simply kc(uw−uc) = kc(uw−ur− τ). Figure 17 shows the absolute value

of the wheel–rail contact force, as a function of excitation frequency, for the different models. All models provide

similar contact forces, the differences being of the same order of magnitude as the differences in the loading point

receptance.

0 10 20 30 40 50 60 70 80

Excitation frequency (Hz)

0

0.5

1

1.5

2

2.5

W
h

ee
l-

ra
il

 c
o

n
ta

ct
 f

o
rc

e 
m

ag
n

it
u

d
e 

(N
) ×10

5
t=0.2 mm, c

r
=131 m/s

Model a)

Model b)

Model c)

Model d)

0 10 20 30 40 50 60 70 80

Excitation frequency (Hz)

0

0.5

1

1.5

2

2.5

3

3.5

4

W
h

ee
l-

ra
il

 c
o

n
ta

ct
 f

o
rc

e 
m

ag
n

it
u

d
e 

(N
) ×10

5
t=0.5 mm, c

r
=131 m/s

0 10 20 30 40 50 60 70 80

Excitation frequency (Hz)

0

0.5

1

1.5

2

2.5

W
h

ee
l-

ra
il

 c
o

n
ta

ct
 f

o
rc

e 
m

ag
n

it
u

d
e 

(N
) ×10

5
t=0.2 mm, c

r
=261 m/s

0 10 20 30 40 50 60 70 80

Excitation frequency (Hz)

0

0.5

1

1.5

2

2.5

3

3.5

4

W
h

ee
l-

ra
il

 c
o

n
ta

ct
 f

o
rc

e 
m

ag
n

it
u

d
e 

(N
) ×10

5
t=0.5 mm, c

r
=261 m/s

(a) (c)

(b) (d)

Figure 17: Absolute value of wheel–rail contact force at different excitation frequencies, f = v/λ due to the single-axle vehicle moving along
the track at v = 30 m/s over a harmonic unevenness of 0.1 mm. Figures (a) and (b) are for the thin and thick slab, respectively, on the softer
soil. Figures (c) and (d) are the corresponding results for the stiffer soil.
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6. Conclusions

In the paper, four different modeling strategies with respect to assumptions about the slab track cross-section

behavior and the track–soil interface conditions, have been compared by calculating the vertical free-field response

to a unit harmonic load moving along the track at a fixed speed. In the most general model used here, the slab is

represented by 3D solid elements, and the response from this model is used as a reference to which the other models

are compared. Two different slab thicknesses have been studied, on two stratifications with different stiffness of

the top soil layer. Although the free-field response has been presented here only for a point 10 m from the track,

the response further from the track has also been studied, and the same general conclusions apply also for those

cases.

It has been found that for a thin slab, the pressure distribution under the slab due to load on the rails is highly

influenced by the slab cross-direction flexibility, and this in turn has a large effect on the predicted free-field vibra-

tions. As expected, this pressure distribution and the resulting free-field vibrations, calculated with a solid contin-

uum model (Model d), are predicted equally well with a computationally cheaper shell element model (Model c).

However, the two beam models, assuming constant slab–soil contact pressure (Model a) or constant cross-direction

displacement (Model b), yield significantly different responses due to the inadequately assumed slab–soil pressure

distributions. For the thicker slab, the cross-direction slab flexibility is very low and the pressure distribution under

the slab due to a load on the rails, approaches that of a rigid slab. In that case, the beam model assuming constant

cross-direction displacement (Model b) yields accurate results.

Further, it has been found that if full shear transfer between the slab and the soil is assumed, increased vibration

levels in the free-field are generally obtained, especially around the frequencies where the wavelength of the

fundamental Rayleigh wave that dominates the response, is similar to the slab width. For the thick slab, both the

shell model (Model c) and the beam model with constant cross-direction displacement (Model b), yield response

levels that are within only a few percents of that obtained with the solid model (Model d). In the cases studied

here, the rail point receptances and the wheel–rail interaction forces, as obtained with the different models are very

similar, and are only marginally influenced by the in-plane slab–soil interaction.

Hence it can be concluded that for a thick slab, a beam model enforcing constant displacements under the slab

width, is sufficient both with regards to the accuracy of the predicted rail receptance and the wheel–rail interaction

forces, as well as the free-field vibrations, when compared to a solid continuum approach. However, for a thin

slab, the cross-direction flexibility of the slab has a significant impact on the free-field vibrations, which may be

accounted for by using a shell model. In any case, the in-plane shear forces in the slab–soil interface need to be

regarded since they significantly affect the predicted free-field vibration levels.
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