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Abstract

Glulam is almost exclusively the chosen material of timber frame structures. Of
those, three-hinged (three-pin) portal frames are incomparably the most com-
mon type. Being both statically determinate and stable against horizontal forces
in its own plane offer both practical (basic constructive details) and economical
benefits.
The design of the haunch allows for various solutions: it can be curved with
continuous laminates, finger jointed, jointed with steel dowels and slotted-in
plates, or built-up with a strut.
The form of the frame derives from the main load’s force line. The most ap-
propriate forms for large spans are curved or built-up haunches, as they fulfil
both functional and aesthetic aspects. Three-pin portal frames are suitable for
spans up to 30-40 meters, being the limiting factor the transport feasability of
the frame’s halves.

In recent years a handful of three-hinged structures with built-up haunches
have collapsed, leaving behind a need to analyse and study the stresses and
resistance of this structures. For obvious reasons it is specially interesting to
research and clarify the fracture risk on the built-up haunches as well as to map
the stresses created by the inner frame leg through compression to the lower
edge of the frame rafter.
Today there is only one general method used to design built-up haunches,
present in both the Glulam Handbook and the German Institute for Standard-
ization, DIN, which is based on established practice. Both standards share sim-
ilar simplifications and assumtions, giving surprisingly little importance to the
shear stress that occurs in the contact area of the built-up haunch.

The aim of this master’s thesis was to put together a tool, in form of a
diagram, to help design the built-up haunch, with particular emphasis on the
contact area between the inner frame leg and the frame rafter, and the subse-
quent shear stresses this contact creates on the rafter. To achieve this result a
sample frame rafter was calculated using 2D frame software and generic loads
and materials. The section forces obtained were then used to create a FEM
model of the built-up haunch.
This FEM model provided a clearer understanding of the behaviour of the frame
leg-frame rafter’s contact area as well as yielding a map of the shear stresses
present in the joint. Finally with the use of Linear Elastic Fracture Mechanics
and the mean stress criterion a diagram-tool was created.

This report yielded two results that may be deemed of special interest:

• both the Glulam Handbook and the german DIN standard relegate the
shear stress in the notch as merely a design checkout, never a design factor.

• Both the Glulam Handbook and the DIN completely disregard the size
effects in the capacity of birdmouth joints. The fracture mechanics cal-
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culations presented in this report provide prove of strong size effects, so
that current design standards significantly overestimate the capacity of
great-sized built-up haunches.

This conclusion could be important in practical terms, and should be
further investigated. Experimental tests should also be inlcuded in future
research.

Keywords: glulam, built-up haunches, framed joint, three-pin portal frames,
shear stress, failure modes, LEFM, ABAQUS, size effects.

6



Sammanfattning

Limträ är nästan uteslutande det valda trämaterialet i större ramkonstruktio-
ner. Av dessa är treledsramar ojämförligt den vanligaste typen. Att vara b̊ade
statiskt bestämd och stabil mot horisontella krafter i sitt eget plan ger b̊ade
praktiska (enklare konstruktiva detaljer) och ekonomiska fördelar. Ramhörnen
kan utformas p̊a olika sätt: det kan vara krökta, fingerskarvade, skruvade el-
ler sammansatta med en trycksträva eller ett inre ramben. Ramens form bör
om möjligt följa huvudlastens trycklinje. De mest lämpliga former för stora
spännvidder är böjda eller sammansatta, d̊a de uppfyller b̊ade funktionella och
estetiska krav. Treledsrammar är lämpliga för spännvidder upp till 30-40 meter,
den begränsande faktorn är transport av ramens halvor.

Ett antal konstruktioner av denna typ har emellertid kollapsat under senare
år. Det finns därför ett behov av att analysera spänningar och bärförmåga. I
detta arbete ägnas särskilt intresse åt spänningar och risk för brott i anslutning
mellan trycksträva och balk i ett ramörn.

För närvarande finns det bara en allmän metod som används för att dimen-
sionera sammansatta ramhörn. Den bygger p̊a gammal praxis och utgör grunden
b̊ade för dimensioneringsmetod angiven i Limträhandboken och för en likartad
metod angiven i tyska DIN. B̊ada anvisningarna har liknande förenklingar och
antaganden, vilket ger förv̊anansvärt liten inverkan p̊a beräknad skjuvspänning
i det kritiska omr̊adet.

Syftet med detta examensarbete var att sätta ihop ett verktyg, i form av ett
diagram, för att hjälpa dimensionera sammansatta hörn med särskild tonvikt p̊a
skjuvspänningar som uppst̊ar i rambalken invid anliggningsytan mellan en tryck-
sträva och rambalken. Detta resultat n̊addes genom ramberäkning med hjälp av
ett 2D ramanalys datorprogram för bestämning av normalkrafter, tvärkrafter
och moment. Snittkrafterna som erhölls fr̊an denna beräkningen användes se-
dan för att göra finita elementberäkningar för analys av spänningar och brott i
ramhörnet.

Slutligen, och med hjälp av linjärelastisk brottmekanik och ett medelspännings-
kriterium skapades ett diagramverktyg.

Examensarbetet gav även tv̊a slutsatser som kan bedömas vara av särskilt
intresse:

• B̊ade Limträhandboken och tyska DIN hanterar skjuvspänningen i anslut-
ningen mellan trycksträvan och balk enbart som en dimensioneringskon-
troll, aldrig som en dimensionerande faktor.

• B̊ade Limträhandboken och DIN bortser helt fr̊an storlekseffekter i bärförmå
gan hos ett sammansatt ramhörn. Brottmekanikberäkningarna redovisade
i denna rapport tyder emellertid p̊a en kraftig storlekseffekt, s̊adan att nu-
varande normer kraftigt överskattar bärfärmågan hos ramhörn med stora
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dimensioner om normerna ger en rättvisande dimensionering av små eller
medelstora ramhörn.
Denna beräkningsslutsats kan vara praktiskt viktig och det kan föresl̊as
att den i framtida forskning bör undersökas experimentellt.
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Chapter 1

Introduction

1.1 Background

Glulam has become a well embraced material being used in many types of con-
struction such as halls, churches, playgrounds, bridges, aviation hangars, elec-
tricity masts. . . . Timber portal frames, almost exclusively executed in glulam,
have gained popularity as an economical alternative to steel framed construction
used in comercial and industrial buildings [1]. It has become so due to the many
advantages glulam offers, namely the possibility of obtaining larger dimensions
than structural timber and the fact that the weight/strength ratio is only two
thirds of steel and only one sixth of the weight/strength of concrete [5].

The deformation and strength of glulam is affected by the moisture content,
its gradients and the duration of the loads. Its extreme anisotropy makes it
specially important for the designer to pay attention to connections between
components where the train of forces in the framework shift orientation [19].
This is particularly important in supports and haunches.

The need to cover large spans (in some cases of up to 50m) and the need
to preserve the design both functional and esthetical have entailed the use of
curved and built-up haunches as the most convenient form of structural frame.

Both designs improve the function of the building at the cost of somewhat
lower utilization of the material [1]. The fact that these type of structures are
hinged at the foundations makes them specially suitable for meager, low quality
soils.

One of the main resources engineers and designers possess when facing the

Figure 1.1: Model of a three-pin hinged frame.
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Figure 1.2: Detail of the force distribution of a frame joint.

task of calculating a glulam structure is the Glulam Handbook, distributed by
the Swedish Timber industry, commonly used as a guide for both pre and final
design.

It is in portal frames, specially in its three-pin version, where the importance
of well thought–off haunches and supports emerge as crucial elements in the
design of a successful construction.

It is specifically here, in the 9th chapter, when covering the design of haunches
for built–up portal frames, where the aforementioned handbook acknowledges
a shortcoming in its guidance by stating:

The distribution of forces in this well-tried form of connection is
unclear but according to established practice. . .

12



1.2 Objectives

The purpose of this thesis is, essentially, to:

- Lay out the distribution of shear stresses in the frame joint between the
frame rafter and the frame legs through contact pressure.

- Create a graphic tool that provides the engineers and designers with a
substantially less empirical instrument of designing frame joints in built–
up haunches.

The present study relates to the strength of the type of joint shown in figure
1.2

1.3 Limitations

Beyond the inevitable limitation of time, this report is confined in the context
of short-term loads at constant environmental conditions. Therefore, the all-
important time-dependent effects of transient moisture conditions, creep frac-
ture (strength reduction of long duration loads), and eigenstresses have been
consciously overlooked. As is usual in timber engineering strength design, tim-
ber will be regarded as a statistically homogeneous material.
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Chapter 2

Shear stress distribution.
An example of a frame joint

2.1 Frame Analysis

A calculation of a three-hinge frame was carried out with Strusoft’s WIN-Statiks
Ramanalys ver. 5.3.002. This software is ideal for analyzing plane structures
with arbitrary geometry and according to the 1st and 2nd order theory.

2.1.1 Geometry

The chosen frame for calculation is shown in figure 2.1 with the dimensions
defined in table 2.1. The frame has a total span of 50m and a maximum height
of 10.7m. The roof pitch is 15 degrees. The building is 84m long (15 frames at
c/c between frames being the usual 6m).

Table 2.1: Frame geometry
Hall length L 84 m
Hall span (width) W 50 m
Ridge height H 10.7 m
Column height h 4.0 m
Roof pitch (alpha) α 15◦

Distance between frames c/c 6.0 m
Angle between frame rafter and strut (beta) β 39◦

Inclination of the strut (delta) δ 54◦

Sections used

The sections chosen for this calculation are 1620x215 mm2 for the frame rafters,
405x215 mm2 for the struts and 270x215 mm2 for the columns.

15



Figure 2.1: Frame parameters

2.1.2 Loads

There are usually 3 types of loads that can act on a portal frame:

1. Deadweight roof, see figure 2.2

Gk,roof = 0.45 kN/m
2

expressed as a line load (kN/m):

gk,roof = 0.45× (c/c) = 0.45× 6 m = 2.7 kN/m

This load includes the usual roofing materials set above the frame such as
purlins and load-bearing roof sheets.

Figure 2.2: Distribution of the roof’s deadweight

16



The deadweight of the structural elements in the frame is automatically
linked to the loadcase Deadweight roof in Ramanalys.

2. Snow load, see figure 2.3

The snow load base value is a geography-dependent value. In this case a
moderate to high value was chosen:

so = 2.5 kN/m
2

The load reduction factor ψ � 1 depends on the type of load and its vari-
ation in time as well as the load’s statistical variability.
A time-variable load, for which high values occur rarely and with a short
duration, is therefore defined by a low value of ψ.
The usual load value, ψQk, is used when variable loads are combined.
Normally there is only one load with characteristic value in a loadcombi-
nation, the principal value, while the remaining loads have usual values.

In this case, the load reduction factor for the snow load is presented in
table 2.2.

Table 2.2: Load reduction factor for snow load.(BKR, [3])
Snowload base value, so Load reduction factor ψ

2.5 0.7

The Snow and wind load handbook [2] presents a figure to obtain idealized
form factors for snow loads depending on the type of roof and its pitch,
α.

In this case, gable roof with α = 15◦, the following factors were obtained:

μ1 = μ2 = 0.8

The characteristic value for the snow load will then be:

sk1,2 =μso = 0.8× 2.5 = 2.0 kN/m
2

expressed as a line load (kN/m):

sk1,2 = 2.0× (c/c) = 2.0× 6 m = 12.0 kN/m

17



Figure 2.3: Distribution of snow load over the frame

3. Wind load, see figure 2.4

A vref = 25 m/s and h = 10.7 m yield the following windload pressure:

qk = 0.65 kN/m
2

Using the diagram for form factors of walls and roofs found on [2] the fol-
lowing values were obtained:

- Wind on walls: using h
w = 10,7

84 = 0, 13

– windward: μpressure = 0, 85

qk,pressure = 0.65× 0.85 = 0.55 kN/m
2

expressed as a line load:

qk,pressure = 0.55× 6 m = 3.32 kN/m

– leeward: μdraw = 0, 27

qk,draw = 0.65× 0.27 = 0.17 kN/m
2

expressed as a line load:

qk,draw = 0.17× 6 m = 1.05 kN/m

- Wind on roof:

– windward, zone C (1): μdraw = 0, 2

qk,draw = 0.65× 0.2 = 0.13 kN/m
2

expressed as a line load:

qk,draw = 0.13× 6 m = 0.8 kN/m

1The effect of zones A and B is neglected for simplicity.
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– leeward, zone E (2): μdraw = 0, 40

qk,draw = 0.65× 0.40 = 0.26 kN/m
2

expressed as a line load:

qk,draw = 0.26× 6 m = 1.6 kN/m

The load reduction factor for windload, according to [3], is ψ=0.25.

WIND

Figure 2.4: Distribution of wind load on the frame

2.1.3 Load combinations

In this case, and according to the swedish general advice and regulations, [3],
the most unfavourable combinations for the ultimate limit state (ULS) are:

Table 2.3: Load combinations, ULS.
LC Permanent load Main variable load Secondary variable load
1 1.0Gk 1.3Wk 1.0ψSk

2 1.0Gk 1.3Sk 1.0ψWk

2The effect of zone D is neglected for simplicity.
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Figure 2.5: Distribution of loads on the frame

2.1.4 Frame analysis method

The frame was analysed as a plane frame (2D) using 1st order theory.
The modulus of elasitcity was set to 10400 MPa. This value is however of

minor importance since it does not affect the stress distribution.
Frame geometry and loads are indicated in sections 2.1.1 and 2.1.2 respec-

tively.
Ramanalys works by dividing the frame into members and joints. The joints

are those points where the members are connected. As an example, element 2
in figure 2.6 is defined by nodes b and c, where node c is common to elements
2, 3 and 7.
The frame object of the present study is hinged at the notch and at both con-
nections to the ground (strut-column connection), nodes a, c, d, e and g in figure
2.6.

Figure 2.6: Support and joint conditions.

2.1.5 Frame analys section force results

Once all the input data was defined in Ramanalys, the computer calculation
took only seconds to complete. Out of the results obtained are in particular
the cross-sectional forces and moments acting in the vicinity of the strut-beam
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joints of particular interest as a starting point for the subsequent detailed analys
of the stresses in the joint. The sectional forces are shown in figure 2.7 and their
values presented in table 2.4.

Figure 2.7: Cross-sectional forces and moments.

Table 2.4: Cross-sectional froces and moments.
Element M (kNm) V (kN) N (kN)
4 541.294 239.713 672.527
5 473.489 294.865 76.706
8 0.787 0.481 995.691

2.2 Joint stress analys

The notch was modelled with continuum three-dimensional 8-node brick ele-
ments (C3D8R) in ABAQUS. The material was made orthotropic, and its values
are resumed in table 2.5.

The loads applied to the model are the ones described in table 2.4.
The strut, element 8 in figure 2.7, was replaced wtih two compression loads

on the lower edge of the frame rafter.

The subscripts in table 2.5 refer to the main directions in a tree stem, as
seen in figure 2.8. The first letter corresponds to the shear component and the
second one to the perpendicular direction to the load in the observed plane.

21



Table 2.5: Material stiffness parameters
Parameter Value

Stiffness EL 12000 MPa
ER 400 MPa
ET 400 MPa
GRL 750 MPa
GTL 750 MPa
GTR 75 MPa

Poisson νRL 0, 02
νTL 0, 02
νTR 0, 03

Figure 2.8: Main directions in tree stem.

In order to prevent rigid body displacements 6 degrees of freedom were
assigned zero displacement, see figure 2.9. Node number 1 was constrained
for displacement in x,y and z directions, number 2 was constrained in y and z
directions while node number 3 was constrained in the z direction only.

x

y

z

1 2

3

x
1 2 

3 

1 2

3 

z 

y 

x 

Figure 2.9: Boundary conditions.

The model was meshed as seen in figure 2.10 by partitioning the beam in
three general areas to achieve a favourable mesh with fine elements around the
notch and coarser elements in the rest of the geometry. The two surfaces that
compose the notch had its vertices divided (seeded in ABAQUS terms) by about
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100 elements each, resulting in an element length of about 6 mm for vertex 1
and 2 mm for vertex 2. In this part a free meshing technique with advancing
front was used. On the rest of the vertices a structured meshing was applied
and each side was divided by about 70 elements.
In depth (z value in figure 2.9 ) the vertices were set to an element length of
about 40 mm.

21

Figure 2.10: Symbolic mesh partitioning.

After modelling (creating the geometry, defining the materials, defining
boundary conditions, incorporating the cross-sectional loads) and meshing the
notch had the following appearance:

23



Figure 2.11: Meshed notch in Abaqus.
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Figure 2.12: Meshed notch. Alternative view.
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The next move in the process was to create a calculation and visualize the
results.

The distribution of the longitudinal shear stress τxy distribution beginning
at the notch and along the frame rafter can be clearly seen in figure 2.13.

Figure 2.13: Shear stress (τxy) layout on the notch.

The interesting part of the result resides in the imaginary line, parallel to
the edge of the frame raft, located near the edge of the notch.
With the help of MATLAB a series of coordinates were created to extract stress
values along that imaginary line. The shear stress is constant along the z-
direction (see figure 2.9).
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Figure 2.14: Shear stress path.
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Those resulting values can be easily assessed in a simple graph3 as follows:

Figure 2.15: Shear stress path from notch.

3The graph shows only the part of the path exposed to shear.
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Chapter 3

Fracture mechanics
predictions of joint strength

3.1 Model for strength prediction: mean stress
analysis

3.1.1 Fracture mechanics

The shear force capacity of the frame rafter can be calculated with different
methods based on fracture mechanics.

One of the more general methods based on Linear Elastic Fracture mechanics
(LEFM) is the mean stress criterion. This method allows the possibility of
studying the influence that the material’s strength, stiffness and fracture energy
have on the shear capacity of the beam[6].

Instead of focusing on the stress in a point the mean stress failure criterion
considers the mean stress acting across an area of a certain length. The size
of the area is governed by the properties of the material[4]. In this study the
fracture is assumed to develop along the grain and as a result of shear along the
grain.
The failure mode is thus of type II; a sliding (in-plane shear) mode where the
crack surfaces slide over one another in a direction perpendicular to the leading
edge of the crack, see figure 3.1. The normal stress across the crack is com-
pressive and assumed not to affect the load capacity. This is a, more or less,
conservative assumption.

3.1.2 The mean stress approach

With the mean stress approach the mean stress over a certain length is used
to calculate the failure load, Pf . According to this method, crack growth will
occur when the mean stress, τmean, equals the shear strength of the material,
fv.[4]
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Figure 3.1: Types of failure mode

Due to the fact that the mean stress over a distance is less than the maximum
stress over the same distance, the mean stress approach predicts a failure load
equal to or larger than the failure load predicted by other conventional stress
criteria based on maximum stress in a point. The mean stress method is more
general and can be used for structures both with and without a notch or a
crack. This method has the advantage that, compared to conventional LEFM
approaches, no crack needs to be modeled.

The failure mode II stress intensity factor is defined by:

KII = lim
r→0

τxy(r)
√
2πr for θ = 0 (3.1)

where r is the distance from the crack tip and θ is the angle with respect to the
plane of the crack, as seen in figure 3.2.

The strain energy release rate, G, for a crack under mode II loading is related
to the stress intensity factor by:

G =
K2

II

EII
(3.2)

where EII is a measure of the isotropic or orthotropic stiffness of the mate-
rial under consideration. Equation 3.2 is valid for an orthotropic, homogeneous
and linear elastic material.

The conventional stress criteria can not be used if there is a crack or notch
since the stress theoretically is infinite at the tip of a crack or notch.

The applicability of conventional LEFM is also limited since it can only be
used if there is a crack with theoretically infinite stress.

Linear elastic theory predicts that the stress distribution near the crack tip,
has the form:
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Figure 3.2: Polar coordinates at the crack tip

τxy(x) =
KII√
2πx

+ ... (3.3)

where the first term in the series is dominating for small values of x.
Assuming only small values of x and using the notation xo for the length of
which the mean stress is calculated, the following expression for mean stress
can be obtained:

τmean =

∫ xo

0
τ(x)dx

xo
=

√
2K2

II

πxo
(3.4)

By equaling this mean stress to the material’s shear strength and incorpo-
rating equation 3.2 to equation 3.4, the length over which the mean stress will
be calculated is:

xo =
2

π

EIIGIIc

f2
v

(3.5)

where EII is the effective stiffness for an orthotropic material when loaded
in mode 2, and can be calculated according to:

EII =

√
2Ex√√

Ex

Ey
− vxy +

Ex

2Gxy

(3.6)

The mean stress is calculated for some magnitude P of the load. The failure
magnitude of the load is then calculated as follows:

Pf =
fvP

τmean
(3.7)
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3.1.3 Materials

The material property parameter values for glulam used throughout this chap-
ter are taken from [4].

The shear strength is fv= 3ft,⊥ where ft,⊥= 3.0 MPa.
The Young’s modulus or material stiffness in the direction along the fibres is

E‖= 12000 MPa, and E⊥=
E‖
30 = 400 MPa perpendicular to the fibres.

The shear modulus G‖=
E‖
16 = 750 MPa

The fracture energy for failure mode II is GIIC= 3.5GIC , where GIC is the
fracture energy for failure mode I: GIC= 300 J/m

2
(0.3 Nmm/mm

2
).

The material properties used in the calculations in this study are summarized
in table 3.1.

Table 3.1: Material property parameters
Parameter Value

Shear strength fv 9.0 MPa
Stiffness E‖ 12000 MPa

E⊥ 400 MPa
G‖ 750 MPa

Fracture energy GIC 300 J/m
2

GIIC 1050 J/m
2

3.1.4 Methodology

Using the equation 3.5 with the parameters defined in table 3.1 the length xo

over which to calculate the mean stress can be computed:

xo =
2

π

EIIGIIc

f2
v

=
2

π

12000 · 1050 · 10−3

92
= 99 mm (3.8)

The mean stress value along xo was determined by first integrating the values
of τ , obtained in chapter 2 section 2.2, over the distance xo from the edge of the
notch and then dividing the result with the same value, as described in equation
3.9.

τmean =

∫ xo

0
τ(x)dx

xo
(3.9)

The mean stress is employed to compute the failure load Pf , as described in
equation 3.7.

Finally a curve for the studied geometry can be plotted with the values
along the X-axis being defined by H/xo and those in the Y-axis being defined
by Pf/bafv, where H and b are the height and width of the frame rafter and a
the depth of the notch as defined in figure 2.7. The value of P is the value of
N8 as described in figure 2.7 and found in table 2.4.
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3.2 Calculation results

Six different geometries were studied. The original geometry, used in chapter 2,
is the source for the rest of geometries, which where obtained through different
ratios of parameters a and H, both described in figure 2.7.
For each geometry the failure load Pf was calculated for various values of xo.
The geometries analysed can be seen in table 3.2, the failure loads obtained for
different values of xo ( 99 mm, 940 mm and 1931 mm) are shown in table 3.3.
The results are shown graphically in a non-dimensional manner in figure 3.3 as
Pf/bafv versus H/xo.

Table 3.2: Geometries and corresponding Pf values for xo=99mm.

Name H (mm) a (mm) a/H Pf (kN)

0,5H 810 202,5 0,25 1880
0,75H 1215 202,5 0,17 1505
H 1620 202,5 0,13 1380

1,5H 2430 202,5 0,08 1109
2H 3240 202,5 0,06 1034
3H 4860 202,5 0,04 996

Figure 3.3: Resulting comparative curves for different notch geometries
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Table 3.3: Points in the graph for various xo values.
Name xo1(99 mm) xo2(940 mm) xo3(1931 mm)

Pf/abfv H/xo Pf/abfv H/xo Pf/abfv H/xo

0,5H 4,8 8,2 20,2 0,9 28,0 0,4
0,75H 3,8 12,3 21,4 1,3 29,4 0,6
H 3,5 16,4 19,4 1,7 26,5 0,8

1,5H 2,8 24,5 15,9 2,6 21,7 1,3
2H 2,64 32,7 14,9 3,4 20,2 1,7
3H 2,5 49,1 14,4 5,2 19,6 2,5
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Chapter 4

Comparison of various
strength analysis methods

4.1 Joint geometries studied

The original geometry used in this report is the source of the rest of geometries
used throughout the present chapter.
The first row in table 4.1 shows the values of the original geometry, each pa-
rameter represented in figure 4.1.
The remaining rows are variations of the parameter a in order to produce new
geometries through new ratios of a/H.
The angle between the strut and the beam, β, remains unchanged.

Table 4.1: Studied geometries
a (mm) H (mm) β (◦)
405 1620 39
270 1620 39
202.5 1620 39
135 1620 39
101.2 1620 39
67.5 1620 39

4.1.1 Joint strength according to Glulam Handbook

According to the The Glulam Handbook [1] the strut is designed as a column,
and as such, subject to compression, and normally also to bending 1. The
connection between the frame rafter and the strut is intended to transfer the

1The strut is hinged at both ends, but a moment can appear as a result of eccentric loading.
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Figure 4.1: Forces in a framed joint.[1]

compression forces principally at the lower edge of the frame rafter through
contact pressure.

The strut’s compression force, N, is divided in two components, N1 and N2,
both perpendicular to their respective areas of contact, as shown in figure 4.1.
N1 is assumed to be uniformly distributed across the area BC [1]. The depth of
the notch is defined by the parameter a as seen in figure 4.1 and is determined
by the following equation:

σc,α,1 =
N1

ba
cos(β/2) � fc,α,1 (4.1)

The value of the strength fc,α,1 is defined by:

fc,α =
fc,0

fc,0
fc,90

sin2 α+ cos2 α
(4.2)

where α is the angle between the direction of the force and the direction of
the grain.

The second component of the strut’s force, N2, is assumed to be evenly
distributed across an area AB. The required size of this area, bd, is determined
by the following condition:

σc,α,2 =
N2

bd
= fc,α,2 (4.3)

The shear stress at the notch, acting along the line BD, is checked by:
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τ =
N1 cos(β/2)

bs
≤ fv (4.4)

The length s over which the shear stress is distributed along the frame rafter
is confined between the following two values:

200mm � s < 8a

A design with a distance BD, as in figure 4.1, less than 200 mm is not allowed.
Furthermore, there is a limitation to the depth of the notch, a:

a � H

6
for angles of β � 60

Finally, the cross-sectional size of the strut is checked with:

h ≥ [a · tan(β/2) + d · cos(β/2)] · sinβ (4.5)

which is a geometrical control, in that what is checked is that the triangle
AB-BC-AC is feasible. The summation of the projected lengths of BC (a) and
AB (d) must be less or equal than the length of AC (h), see figure 4.1.

Method

In this case, and in order to find a failure value Pf for the various geometries
defined in section 4.1 , the calculation was initiated with the values for geometry
of the notch, namely H, h, β and a.

The strength values used for this calculation are taken from the Swedish
construction recommendation, BKR (BFS 1993:58), chapter 5:2 table 5:23b.
The compression strength parallel and perpendicular to grain are fc,0k= 36
MPa and fc,90k= 8 MPa respectively. The shear strength parallel to the grain
is fvk= 4 MPa.
Applying these values to equation 4.2, yields fc,α,1=25, 9 MPa (α = β/2) and
fc,α,2=8, 8 MPa (α = 90− β/2) respectively.

Results

The results of applying the described methodology are presented in table 4.2:

Table 4.2: Failure loads according to Glulam Handbook
Geometry (a/H) Pf,c (kN) Pf,v (kN)

0,25 2538 3136
0.16 1692 2091
0.12 1269 1568
0.08 846 1045
0.06 634 784
0.04 423 523
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Where Pf,c represents the compression failure value from using equation 4.1.
And Pf,v is the value for shear failure obtained from equation 4.4.

4.1.2 Joint strength according to Eurocode 5 (EC5)

The technical rules developed by the European Committee for Standardisation
that cover the design of timber buildings and civil engineering works, (EC5),
do not present a solution for approaching the design of strut-beam connections
in hinged frames. On the other hand, the German Institute for Standardization
(DIN), from which the EC is widely based, presents an approach in the DIN
1052:2004-08.

Figure 4.2: Detail and parameters of the notch according to DIN 1052:2004-08

According to the DIN 1052, the depth of the notch, tv, is chosen depending
on the angle of the notch, γ:

tv �
{

H/4 for γ � 50
H/6 for γ > 60

(4.6)

The design of the joint is acceptable when the compressive stress in the joint
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fullfills:
σc,α,d

fc,α,d
� 1 (4.7)

where

σc,α,d =
F1

A
(4.8)

and

fc,α,d =
fc,0,d√(

fc,0,d
2fc,90,d

sin2(α/2)

)2

+

(
fc,0,d
2fv,d

sin(α/2) cos(α/2)

)2

+ cos4(α/2)

(4.9)
A being the projected area defined by:

A = b
tv

cos(α/2)
(4.10)

and F1 being the component of the compressive force in the strut defined
by:

F1 = Fcos(α/2) (4.11)

The parameter b in equation 4.10 is the width of the beam and α represents
the angle between the strut and the beam.

Combining equations 4.7 and 4.8 with 4.10 and 4.11 yields the following
expression:

σc,α,d =
Fcos2(α/2)

btv
� fc,α,d (4.12)

Analogous to the Glulam Handbook, [1], the DIN 1052 suggests checking
the shear stress in the joint as:

τv,d
fv,d

� 1 (4.13)

where

τv,d =
FH

lvb
(4.14)

The length over which the shear tension is distributed in the notch, lv, is
limited to:

200mm � lv < 8tv

and FH is the horisontal component of the compressive force in the strut,
(see figure 4.2):

FH = Fcos(α) (4.15)
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Combining equations 4.13 with 4.14 and 4.15 results in the following equa-
tion:

τv,d =
Fcos(α)

lvb
� fv,d (4.16)

Method

Similar to section 4.1.1, the calculation was initiated with the values for geom-
etry of the notch, namely H, h, α and tv.

The strength values used for this calculation are, as before, taken from the
Swedish construction recommendation, BKR (BFS 1993:58), chapter 5:2 ta-
ble 5:23b. The compression strength parallel and perpendicular to grain are
fc,0k= 36 MPa and fc,90k= 8 MPa respectively. The shear strength parallel to
the grain is fvk= 4 MPa.

Applying these values to equation 4.9, yields fc,α,1=21, 3MPa.

Results

Applying the above values to the equations described at the beginning of this
section yield the following results:

Table 4.3: Failure loads according to DIN 1052:2004-08
Geometry (a/H) Pf,c (kN) Pf,v (kN)

0,25 2087 3585
0.16 1391 2390
0.12 1043 1793
0.08 696 1195
0.06 522 896
0.04 348 598

4.1.3 Joint strength according to fracture mechanics

The joint strength according to LEFM, as calculated in chapter 3, can be seen
in table 4.4.

4.2 Comparison and evaluation

In order to compare the results from Linear Elastic Fracture Mechanics (LEFM)
to those from the Glulam Handbook (GmHk) and the German Institute for Stan-
dardization (DIN) the failure loads had to be calculated for the same material
and geometry parameters.
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Table 4.4: Failure load according to LEFM
Geometry (a/H) Pf (kN)

0.25 1880
0.16 1505
0.12 1380
0.08 1109
0.06 1034
0.04 996

The values of Pf,LEFM were obtained from diagram 3.3: for a known ratio
of H/xo the diagram yields the corresponding value of Pf/abfv.
On the other hand, a and b are known geometry values and fv is, in this case,
given a value of 4 MPa

The results from applying the Glulam Handbook and the DIN standard are
represented with two curves in the same figure respectively.

• A curve relating Pf to the compressive capacity of the notch is obtained
from applying equation 4.1 (eq. 4.12 in the DIN) for various values of a (
tv in the DIN).

• A second curve was obtained by relating Pf to the shear capacity of the
notch through equation 4.4.(eq. 4.16 in the DIN)

(Both s in the Glulam Handbook and lv in the DIN were obtained by
using the upper limit of the shear stress distribution area, s=8a and lv=8tv
respectively.)

The results are shown graphically in figure 4.3.
Some of the curves’ coordinates are displayed in table 4.5.

Table 4.5: Comparison of failure loads
a, (tv) Pf,LEFM Pf,c,GH Pf,v,GH Pf,c,DIN Pf,v,DIN

(mm) (kN) (kN) (kN) (kN) (kN)
405 1263 2538 3136 2087 3585
260 792 1692 2091 1391 2390
194 621 1269 1568 1043 1793
130 479 846 1045 696 1195
97 455 634 784 522 896
65 407 423 523 348 598
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Figure 4.3: Comparison of failure loads for H=1620 mm

A second figure (fig. 4.4) is presented for a beam height of:
H = 1620/4 = 405 mm.

In this case the curves representing the results from the Glulam Handbook
and DIN are proportionally modified only, as both calculating methods are
independent of H.

The LEFM curve is obviously influenced by this new value of H: the H/xo

ratio is the first step to obtain a value of Pf and in this case a lower value of
H implies a lower value of the ratio and thus a lower value of Pf for the same
geometry and material values.
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Figure 4.4: Comparison of failure loads for H=405 mm
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Chapter 5

Conclusions

From examining the results presented in the previous chapter there are a few
points that can be commented:

• The failure load determined by the shear capacity, Pf,v, according to the
DIN and the Glulam Handbook calculations, is greater than the failure load
determined by the compressive capacity, Pf,c.

This is due to the fact that the values of s ( lv, DIN) used for the calcu-
lation were those of the upper limit of what the design method allowed
(s = 8a, lv=8tv).

This result implies surprising consequences because, as long as the designer
chooses a long enough value of the shear stress distribution length, the
shear capacity will never be the designing parameter of the notch.

Both the Glulam Handbook and the DIN standard use the shear capacity
only as a mechanism to ensure that a minimum shear stress distribution
length is chosen.

• The failure load, determined by the shear capacity according to the DIN
standard, Pf,v,DIN , is always greater than according to the Glulam Hand-
book, Pf,v,GH .

The DIN standard uses the horisontal component of the compressive force
in the strut FH (see equation 4.11) while the Glulam Handbook uses the
component that is perpendicular to the contact area, F1 in figure 4.2.
This can be understood as a more conservative approach by the Glulam
Handbook compared to the DIN.

• The failure load determined by the compressive capacity according to the
Glulam Handbook , Pf,c,GH , is higher than according to the DIN standard,
Pf,c,DIN .

This variation is due to the existing difference in the formula for calculating
the off-axis uniaxial compressive strength of wood, fc,α (equation 4.2 and
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equation 4.9). Figure 5.1 shows the difference between the formulas to
calculate material strengths at an angle to the grain provided by the DIN
1052 standard and the Glulam Handbook.
The DIN equation provides a more developed expression, including the
shear strength parallel to the grain. This results in more conservative
(safer) strength values than those obtained from the Glulam Handbook.

Figure 5.1: Comparison of strength variation with angle

• The results obtained through Linear Elastic Fracture Mechanics ,LEFM,
are lower than both design methods for a beam of great size. The opposite
is true for a much lower beam.
This is a significant result as it clearly defines an important well-known
phenomena with a very old history, namely the size effect.
General size effects describe the dependency of strength on dimension
whereby a loss of strength is assumed with increasing size.[17]
Mechanical characteristics of structures, particular strength properties,
are in general in connection with a reference dimension, which defines a
material inherent dimension.

Despite extensive empirical evidence, this phenomenon is still not taken
into account in most specifications of the design codes for concrete struc-
tures, as well as the design practices for polymer composites, rock masses
and timber.[14]
However, some standards concerning construction timber incorporate size
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effect considerations (eg. DIN 1052, EN 1995) in the form of size factors.[17].
These serve as strength increasing factors for structures and components
with dimensions smaller than the reference case.

The present report highlights the fact that neither the DIN nor the Glulam
Handbook consider any size effects for the design of haunches (birdmouth
joints) and therefore exactly the same result is obtained for 2 greatly
different geometries, see figures 4.3 and 4.4.

According to [15] it seems reasonable to expect even a greater difference
between the results determined by the standard codes (DIN, GH) and
those determined by the LEFM had the size effect law been taken into
account when modelling the later.

5.1 Future Work

The results of this report point to several interesting directions for future work:

• When working with LEFM the size effects should be taken into account by
using, for example, the size effect law defined in [16]. The latest results of
investigations from [14] et. al should be taken into consideration in order
to form a better understanding of the Size effect phenomena on timber,
its consequences and its implications.

• A detailed comparison study of the formulae to determine the off-axis
uniaxial strengths of timber. (Hankinson’s as in [1] and the DIN standard
1052.)

• The calculation methods in this report need to be verified further by com-
parison to empirical results. Extensive lab tests would have provided a
broader understanding of the behaviour of the haunch. The use of the
mean stress method could then also be further verified against experimen-
tal data.
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