
Master’s Dissertation
Structural

Mechanics

ANDREAS OTTOSSON

IMPLEMENTATION OF
CALFEM FOR PYTHON

Detta är en tom sida!

Copyright © 2010 by Structural Mechanics, LTH, Sweden.
Printed by Wallin & Dalholm Digital AB, Lund, Sweden, August, 2010 (Pl).

For information, address:

Division of Structural Mechanics, LTH, Lund University, Box 118, SE-221 00 Lund, Sweden.
Homepage: http://www.byggmek.lth.se

Structural Mechanics
Department of Construction Sciences

Master’s Dissertation by

ANDREAS OTTOSSON

Supervisors:

Jonas Lindemann, PhD,
Div. of Structural Mechanics

ISRN LUTVDG/TVSM--10/5167--SE (1-47)
ISSN 0281-6679

Examiner:

Ola Dahlblom, Professor,
Div. of Structural Mechanics

IMPLEMENTATION OF

CALFEM FOR PYTHON

Detta är en tom sida!

Preface

The work presented in this masters’s thesis was carried out during the period June
2009 to August 2010 at the Division of Structural Mechanics at the Faculty of
Engineering, Lund University, Sweden.

I would like to thank the staff of the Department of Structural Mechanics, es-
pecially my supervisor Jonas Lindemann, for help during this work. I would also
like to thank my Jennie, and both our families, for their support throughout my
education.

Lund, August 2010

Andreas Ottosson

i

Contents

1 Introduction 1

1.1 Background . 1

1.2 Why CALFEM for Python? . 1

1.3 Objective . 1

2 MATLAB 3

2.1 Background . 3

2.2 Objects . 3

3 Python and NumPy 5

3.1 Python . 5

3.1.1 Background . 5

3.1.2 Influences . 5

3.1.3 Objects . 6

3.2 NumPy . 6

3.2.1 Objects . 7

3.2.2 Common matrixoperations 8

4 Integrated Development Environments 11

4.1 MATLAB . 11

4.2 Python IDLE . 12

4.3 IPython . 12

4.4 EPD . 13

4.5 Spyder . 14

4.6 ActiveState Komodo IDE . 14

iii

CONTENTS

5 Python version of CALFEM 17

5.1 Common structure of code . 17

5.2 Code build-up . 17

5.3 CALFEM code comparison . 18

5.3.1 Static analysis of a linear spring system, exs1 19

5.3.2 Static analysis of a plane frame stabilized with bars, exs7 20

6 Conclusions 25

7 Future work 27

A Example exs1 29

B Example exs2 33

C Example exs3 37

D Example exs4 41

E Example exs5 47

F Status of existing CALFEM functions 51

Bibliography 55

iv

Chapter 1

Introduction

1.1 Background

The computer program CALFEM [1] is written for the software MATLAB and is an
interactive tool for learning the finite element method. CALFEM is an abbreviation
of ”Computer Aided Learning of the Finite Element Method” and been developed
by the Division of Structural Mechanics at Lund University since the late 70’s.

1.2 Why CALFEM for Python?

Unlike MATLAB, which have expensive licenses, Python is free to use and dis-
tribute both for personal and commercial use. An implementation to Python will
make the functionality of CALFEM available to a larger group of users.

1.3 Objective

The objective of this dissertation is to implement a large part of CALFEM functions
to Python and to explore libraries and software in addition to NumPy needed
to achieve a comparable environment for CALFEM. No actions will be taken to
improve or change existing programming. Comparison of code and description
of the main differences when writing in Python is done to simplify the transition
for existing users of CALFEM. The author assumes that readers have a basic
knowledge of writing code with CALFEM in MATLAB.

1

Detta är en tom sida!

Chapter 2

MATLAB

MATLAB is an numerical computing environment from the company The Math-
Works. It is a high-level language and interactive environment that according
to [18] enables users to perform computationally intensive tasks faster than with
programming languages such as C, C++ and Fortran.

2.1 Background

MATLAB is short for Matrix Laboratory and was created in the late 1970s by Cleve
Moler [8]. Cleve Moler wrote MATLAB in the program language Fortran and it was
used as a tool for his students at University of New Mexico. It became popular and
spread to other universities and later on John N Little and Steve Bangert joined
Cleve Moler. Together they rewrote MATLAB in the program language C. They
also founded The MathWorks in 1984 to continue the development of MATLAB
[7]. Today The MathWorks have more than 2 000 employees in offices around the
world and over 1 000 000 users in more than 100 countries [8].

2.2 Objects

Object types in MATLAB are scalars, vectors, matrices and multi-dimensional
arrays. To create the last three, brackets are used. Multi-dimensional arrays are
created by first defining a matrix and then adding the next dimension. Vectors
and regular matrices are more often used and they can be created according to:

myrowvector = [1 2 3]
mycolumnvector = [1 2 3]’
mycolumnvector = [1; 2; 3]
mymatrix = [1 2 3; 4 5 6]

3

CHAPTER 2. MATLAB

For indexing, MATLAB uses parentheses and is one-based, i.e., mymatrix(1,2)
returns the value from the first row and the second column, myrowvector(2) and
mycolumnvector(2) returns the second value. In MATLAB vectors are actually two
dimensional so myrowvector(1,2) will return the same value as myrowvector(2).
MATLAB use pass-by-value semantics so indexing a variable creates a partial copy
of it, more about this in the next chapter.

4

Chapter 3

Python and NumPy

3.1 Python

Python is a dynamic object-oriented scripting language with the aim to combine
remarkable power with very clear syntax. Its design philosophy emphasizes code
readability [9] which make it easy to learn.

3.1.1 Background

Around 1990 Guido van Rossum created the programming language Python [2].
At the time he worked at Centrum Wiskunde & Informatica (CWI) in Amsterdam
and the new programming language was supposed to be an advanced scripting
language for the Amoeba operating system which he was currently involved with.
The name Python comes from the British comedy series Monty Python’s Flying
Circus. According to [2] Guido van Rossum was watching reruns of the series when
he needed a name for his new language. Different references to Monty Python can
often be found in examples and discussions concerning Python programming [2].

3.1.2 Influences

During his time at CWI Guido van Rossum worked with the programming language
ABC and therefore it had a major influence on Python. Similarities between the
languages are the use of indentation to delimit blocks, the high-level types and parts
of the object implementation. C was the second most important influence with
identical keywords, such as break and continue. Other languages also influenced
Guido such as Modula-2+ (exception handling, modules, ’self’), Algol-68 and Icon
(string slicing) [3].

5

CHAPTER 3. PYTHON AND NUMPY

3.1.3 Objects

As mentioned above Python is an object-oriented programming language. While
an object is anything that a variable can refer to (number, list, function, module
etc), the term object-oriented is used for programming with class hierarchies, in-
heritance, polymorphism, and dynamic binding. For more information about these
see [4]. The most common object types are int, float and str. Integers (object type
int) are whole numbers, floats (object type float) are decimal numbers and strings
(object type str) are pieces of text. These can be created according to:

myinteger = 5
myinteger = int(5.0)

myfloat = 5.
myfloat = 5.0
myfloat = float(5)

mystring = ’This is a piece of text’
mystring = ”This is a piece of text”
mystring = ”””This is a piece of text”””

Three quotations are used when text is spread over several lines. Objects can be
gathered within one variable using lists (object type list) or tuples (object type
tuple). These are created using brackets for lists and parentheses or no parentheses
for tuples. Both types can contain a sequence of arbitrary objects.

mylist = [1, 2.0, ’text’]

mytuple = (1, 2.0, ’text’)
mytuple = 1, 2.0, ’text’

According to [4] Python has great functionality for examining and manipulating
the values within lists. Tuples on the other hand can be viewed as a constant
list, i.e., changes of the content in a tuple are not allowed. Indexing is zero-based
which means that mylist[0] and mytuple[0] returns the first value in mylist and
mytuple. This differs from MATLAB indexing that is one-based. A nested list (list
within a list) mynestedlist[0][1] returns the second value in the first list within the
mynestedlist.

3.2 NumPy

NumPy (numeric python) is an extension module for Python and is written mostly
in the programming language C. The NumPy module defines the numerical object
types array and matrix and basic operations on them [5]. NumPy also include

6

3.2. NUMPY

mathematical operations and functions similar to the module package math. The
NumPy module must be imported in order to get access to all the new functions.
There are different ways of importing a module but the example below is considered
the most convenient.

from numpy import *

All functions within the numpy module will now be available for the user.

3.2.1 Objects

NumPy introduces two new object types, multidimensional arrays (object type
array) and 2-dimensional matrices (object type matrix). An array can be viewed
as a type of list according to [4]. The difference is that while a list may contain
arbitrary objects an array only consist of one object type. An array can be created
using an existing list or assigning it manually.

mylist = [1, 2.0, ’3’]

myarray = array([1, 2, 3])
myarray = asarray(mylist)

The variable mylist contains an integer, a float and a string. The first myarray
only holds one type, integer. The asarray function controls the input and change
non-array input into an array. If the input is an array a copy is not created. In this
case where the input consists of different object types they will be changed into
one type. If a string is present all the other object will be changed into strings. If
there is only integer and float objects they would be changed to float objects. The
object type for the values in an array can also be set manually.

myarray = asarray(mylist, int)
myarray = asarray(mylist, float)
myarray = asarray(mylist, str)

List are more flexible but the benefits of using array are faster computations, less
memory demands, and extensive support for mathematical operations on the data
[4]. Arrays is intended to be a general-purpose n-dimensional array and can be used
for many kind of numerical computing including linear algebra [6]. The matrix
type is an subclass of the array class and is intended to facilitate linear algebra
computations specifically. How linear algebra operations are used with the two
types is shown in the end of this chapter. A matrix can be constructed in a couple
of ways. Both matrix() and the shorter mat() can be used.

7

CHAPTER 3. PYTHON AND NUMPY

mylist = [[1,2,3],[4,5,6]]

mymatrix = matrix([[1, 2, 3], [4, 5, 6]])
mymatrix = mat([[1, 2, 3], [4, 5, 6]])
mymatrix = mat(”1 2 3; 4 5 6”)
mymatrix = asmat(mylist)

There is another major difference between MATLAB and Python in how matrix
operations are handled. MATLAB uses a pass-by-value semantic while NumPy uses
a pass-by-reference semantic [6]. This means that most operations in MATLAB
make copies of values while Python extensively uses referencing instead. Slice
operations in Python are therefor views into an array instead of partial copies of
it. This is also true for function arguments. Using NumPy, functions recieve a
reference to the argument rather than a copy of its value [11]. A modification of
the value within the function will then also be seen outside the function. This is
shown using the function assem where K is changed within the function.

MATLAB Python

K = assem (edof ,K, Ke) assem (edof ,K, Ke)

Making copies can be quite slow and inefficient if the variable contains many values.
This is why pass-by-reference is considered more efficient in terms of time and space
[11]. Even though still zero-based, indexing an 2-dimensional array and a matrix
is more simular to MATLAB than a nested list. mymatrix[0,1] and my2Darray[0,1]
returns the value from the first row and the second column in both variables.

3.2.2 Common matrixoperations

Linear algebra operations are not always the same for arrays and matrices. Here
follows examples of the most common operations and how they differ. A is a 2-
dimensional array and M is a matrix.

Matrix multiply:

Array Matrix

dot (A,A) M∗M

Element-wise multiply:

Array Matrix

A∗A mu l t i p l y (M,M)

Inverse of square matrix:

Array Matrix

l i n a l g . i n v (A)
l i n a l g . i n v (M)
M. I

8

3.2. NUMPY

Transpose:

Array Matrix

A. t r a n s p o s e ()
t r a n s p o s e (A)
A .T

M. t r a n s p o s e ()
t r a n s p o s e (M)
M.T

Determinant:

Array Matrix

l i n a l g . de t (A) l i n a l g . de t (M)

9

Detta är en tom sida!

Chapter 4

Integrated Development
Environments

Integrated development environments (IDE) are software applications designed to
simplify programming and provide facilities to program more efficient. According
to [10] an IDE normally consists of an editor, a complier and/or an interpreter
(shell), build automation tools and a debugger. The editor is used to write the
program code and the shell is used to execute program code. An editor called IDLE
is included when installing Python but there are many different editors to choose
from [4]. While the shell is used to display the output from programs written in the
editor it can also be used as an environment where the user can work interactively
with the programming [4]. When Python been installed on a computer the simplest
Python shell will open when typing ”python” in the command line in a terminal
window [4]. In addition to an editor and a shell, an IDE offers helpful tools and they
can vary from IDE to IDE. An example is syntax highlighting which is a standard
feature on most. Syntax highlighting adds color and different fonts to the code
in the editor to improve the readability and visualize the context. This chapter
intends to give a brief overview of a couple different IDE, including MATLAB.

4.1 MATLAB

MATLAB has a built in interactive prompt and an editor in a separate window.
The editor can hold different files at the same time and it is possible to rearrange
them for a good overview and easy comparison, e.g., side-by-side. The way MAT-
LAB is typed according to [7] is the reason why it lacks helpful tools such as code
completion, references searches and refactoring. The names for variables and func-
tions have a tendency to be shorter and sometimes cryptic compared to when code
completion is available. MATLAB offers users the ability to buy different kinds of
toolboxes for all kind of scientific applications. The most common toolbox is the
Simulink which is an interactive graphical environment. MATLAB can be installed

11

CHAPTER 4. INTEGRATED DEVELOPMENT ENVIRONMENTS

and used on Windows, Mac and Linux and there are four licenses categories; aca-
demic, student, commercial and government [7]. Nor academic or student licenses
are allowed for commercial use and are only offered to accredited institutions and
students enrolled in classes. These licenses also cost less than those for commercial
and government users. Figure 4.1 shows an image of the main window in MATLAB
and its editor.

Figure 4.1: MATLAB

4.2 Python IDLE

As mentioned above, Python software comes with an editor called IDLE. It is how-
ever not just an editor, but it also contains a shell and basic tools such as syntax
highlighting, automatic code completion and smart indent. There are some debug-
ging functions built-in but these are only available in the Python shell window.
IDLE is coded in 100% pure Python code, is free to use and works on both Win-
dows and Unix [12]. It is a multi-windowed IDE, i.e., the shell and every program
file is viewed in different windows. The learning curve is gentle according to [4] and
IDLE can therefore be a suitable IDE for users to start with. IDLE is restricted to
only write Python programs. Figure 4.2 shows an image of the IDLE shell and its
editor.

4.3 IPython

IPython is an interactive shell superior to the basic Python shell. It adds features
like object introspection and system shell access and can be embedded into other

12

4.4. EPD

Figure 4.2: IDLE shell and editor

programs as a ready to use interpreter [15]. IPythons goal is according to [14]
to create a comprehensive environment for interactive and exploratory computing.
This is done with an enhanced interactive Python shell and an architecture for
interactive parallel computing. IPython is open source and is therefore free to use.
Figure 4.3 shows an image of IPython shell.

Figure 4.3: IPython shell

4.4 EPD

EPD is an abbreviation of Enthought Python Distribution and is developed by the
company Enthought. Enthought support and participate in the maintenance of
NumPy as well as hosting IPython almost since its inception. EPD includes a wide
range of open source packages and tools for both data analysis and visualization.
Their objective is to give users a solid and comprehensive Python environment for
scientific computing. EPD can be installed on Windows, Mac, Linux and Unix
[13]. Academic use of EPD is free and for individual and commercial use there is,
in addition to a 30-day free trial, an annual cost. The cost is divided into different
categories, whose difference is the degree of support desired [13]. Bundled packages
and features are therefore the same for both highest and lowest annual cost. Figure
4.4 shows an image of the EPD software.

13

CHAPTER 4. INTEGRATED DEVELOPMENT ENVIRONMENTS

Figure 4.4: EPD

4.5 Spyder

Spyder is a free IDE that visually resembles MATLAB. Its editor and Python shell
is built in. In addition to syntax highlighting the editor offers code completion, code
analysis, function/class browser and horizontal/vertical splitting features [16]. It
also has a MATLAB-like workspace for browsing global variables and a document
viewer that automatically show documentation for any function call made in a
Python shell [16]. Spyder developers recommended it for scientific computing and
it works on Windows and Linux. Figure 4.5 shows an image of the Spyder software.

4.6 ActiveState Komodo IDE

The Komodo IDE from ActiveState is a professional IDE for dynamic languages
and open technologies. Multiple programming languages like Perl, Python, Tcl,
PHP, Ruby, JavaScript are supported in this IDE [17]. It includes a comprehensive
graphical debugger and a whole range of helpful tools, e.g., code completion, code
folding, bracket matching, source control integration and much more. It is however
a commercial product and a license must be bought. Komodo works on Windows,
Mac and Linux. Figure 4.6 shows an image of the Komodo IDE software.

14

4.6. ACTIVESTATE KOMODO IDE

Figure 4.5: Spyder

Figure 4.6: Komodo IDE

15

Detta är en tom sida!

Chapter 5

Python version of CALFEM

Since CALFEM is written in MATLAB the objective is to recreate CALFEM’s
functions and calculations with programming language Python. All functions are
then tested with different values and the results are compared with the output from
MATLAB.

5.1 Common structure of code

Each function in the Python version of CALFEM is written with recurrent similar-
ities. The general structure of an arbitrary function begins with information about
the parameters that goes in and comes out of the function. A control of the inputs
object type is then done and is changed if necessary. This is followed by the actual
calculation code where both arrays and matrices are often used with the benefits of
faster calculations. A final check is done to determine the number of outputs and
these are based on the number of inputs in accordance to the CALFEM manual.
Functions end with returning the outputs to the caller.

5.2 Code build-up

The main structure of the code is generally the same as in MATLAB with only
minor differences. MATLAB has some built-in functionality which Python need
to manually compensate for. This is done with different controls for determining
object types and number of returned values. The information about every function
is written as a string using three quotation signs in the beginning and end. The
three quotations make it possible to write over several horizontal lines as mentioned
in previous chapter. The information consists of a short description of what the
function does, syntax, input parameters and returns. This information is a shorter
version of what the CALFEM manual contains.

17

CHAPTER 5. PYTHON VERSION OF CALFEM

”””
Information about this function.

Parameters:
ex = [1, 2, 3] X coordinates
ey =
. . .
”””

This string is displayed when typing help(’def’), where ’def’ is the function name, in
the interactive prompt. With the intension to be user-friendly the Python version
of CALFEM supports different types of input such as lists, arrays and matrices.
Functions are written for specific object types so the input data need to be, if
necessary, changed to the correct type. Many functions also have one or more
optional variables as inputs and when left unassigned they will be set to None.
Since they are still a part of the following equations they need to be assigned a
default value, e.g., if eq is unassigned by the caller it will first be set to eq =
None and then get assigned its default value eq = 0. Python is more sensitive
than MATLAB when it comes to defining the same number of output variables as
the function will return with given input data. This means that the user need to
assign the same number of returned values as the function actually returns. The
number of returned values depends on the number of inputs given by the caller so
it is necessary for functions to control this before returning values. For example,
many functions have the element stiffness matrix Ke and element load vector fe
as common returns. For these functions the input variable eq is optional and if
not assign by the caller, the function only return Ke. If two outputs are called for
according to

Ke,fe = ...

the user will receive an error message due to the function only returns one when
eq=None. If only one variable is given and the functions returns more than one
value, it will be assign a tuple containing all returned values. As showed, two or
more variables will result in an error message if they do not match the number of
returned values. The output object type depends on what information it holds.
Variables that is defined by all of its values will be returned as a matrix, e.g., Ke
and fe. Edof is an example of a variables that instead contain a collection of values
and such variables will be returned as a array.

5.3 CALFEM code comparison

To demonstrate the difference between code written in MATLAB and Python we
use two examples from the CALFEM manual, exs1 and exs7. See [1] for more
information regarding the examples.

18

5.3. CALFEM CODE COMPARISON

5.3.1 Static analysis of a linear spring system, exs1

The example starts with defining the topology matrix Edof. In Python Edof is de-
fined as a 2-dimensional array. A list could also been used but as mentioned earlier
array have the benefits of faster computations and extensive support for mathe-
matical operations [4]. The first column in Edof indicating element numbering is
not used in Python. This information is instead based on the row number, i.e., the
first row contain element one.

MATLAB Python

Edof=[1 1 2 ;
2 2 3 ;
3 3 4] ;

Edof=a r r a y ([[1 , 2] ,
[2 , 3] ,
[3 , 4]])

Defining the stiffness matrix K and the load vector f are similar using the zero
function with the exception of defining the variable type matrix in Python. The
input data for zeros is the same but in Python should information about the number
of rows and column be collected in a tuple or a list. The extra parentheses turn
the two inputs into one, a tuple. When defining a value in f it is important to
remember that Python starts counting with 0 as the first number, i.e., the second
row is f[1].

MATLAB Python

K=ze r o s (3 , 3)
f=z e r o s (3 , 1)
f (2)=100

K=mat r i x (z e r o s ((3 , 3)))
f=mat r i x (z e r o s ((3 , 1)))
f [1]=100

Element stiffness matrix. The dot used when defining the variable k sets the vari-
able type to float. This is important because multiplication and division using only
int variables results in an int answer. The problem becomes clear when dividing
3 with 2 (both int) and getting the answer 1 (int). However, if either 3 or 2 (or
both!) is a float the answer also will be an float.

MATLAB Python

k=1500;
ep1=k ;
ep2=2∗k ;

Ke1=sp r i n g 1 e (ep1) ;
Ke2=sp r i n g 1 e (ep2) ;

k=1500.
ep1=k
ep2=2∗k

Ke1=sp r i n g 1 e (ep1)
Ke2=sp r i n g 1 e (ep2)

Assemble Ke into K. Here we can see that K is not defined as the output to assem.
Since K is both an input and the output to assem there is no need to redefine the
variable in Python. The function updates the value of K insted of making a copy
of it.

19

CHAPTER 5. PYTHON VERSION OF CALFEM

MATLAB Python

K=assem (Edof (1 , :) ,K, Ke2)
K=assem (Edof (2 , :) ,K, Ke1)
K=assem (Edof (3 , :) ,K, Ke2)

assem (Edof [0 , :] , K, Ke2)
assem (Edof [1 , :] , K, Ke1)
assem (Edof [2 , :] , K, Ke2)

Solve the system of equations. The boundary condition variable in Python is
divided into two variables, bc and bcVal. These contain the prescribed nodes and
their given values separately. For each node in bc there must be a corresponding
value in bcVal. If bcVal is not defined by the user, solveq prescribes bcVal to contain
zero-values. Again, array are used for faster calculations. The use of brackets is
not necessary in Python when functions return more than one value. The number
of variables (a, r) must be consistent with the number of return values. If only one
variable is given it will be a tuple containing both values from solveq.

MATLAB Python

bc=[1 0 ; 3 0] ;
[a , r]= s o l v e q (K, f , bc)

bc=a r r a y ([1 , 3])
a , r=s o l v e q (K, f , bc)

Element forces. For situations where you want to retrieve all the column in a
specific row it is sufficient to only specify the desired row, as seen in Edof. Both
the syntax and the input are the same for retrieving spring forces.

MATLAB Python

ed1=e x t r a c t (Edof (1 , :) , a)
ed2=e x t r a c t (Edof (2 , :) , a)
ed3=e x t r a c t (Edof (3 , :) , a)

es1=s p r i n g 1 s (ep2 , ed1)
es2=s p r i n g 1 s (ep1 , ed2)
es3=s p r i n g 1 s (ep2 , ed3)

ed1=e x t r a c t (Edof [0] , a)
ed2=e x t r a c t (Edof [1] , a)
ed3=e x t r a c t (Edof [2] , a)

es1=s p r i n g 1 s (ep2 , ed1)
es2=s p r i n g 1 s (ep1 , ed2)
es3=s p r i n g 1 s (ep2 , ed3)

5.3.2 Static analysis of a plane frame stabilized with bars,
exs7

System matrices. Defining the variable type for K in the same manner as in exs1
but in an alternative way. Both mat() and matrix() creates the same variable type.
Comments regarding creating and defining a value in f cited to previous example.
Coord and Dof are created as array.

20

5.3. CALFEM CODE COMPARISON

MATLAB Python

K=ze r o s (18 ,18) ;
f=z e r o s (18 ,1) ;
f (13) =1;

Coord=[0 0 ;
1 0 ;
0 1 ;
1 1 ;
0 2 ;
1 2] ;

Dof=[1 2 3 ;
4 5 6 ;
7 8 9 ;

10 11 12 ;
13 14 15 ;
16 17 1 8] ;

K=mat (z e r o s ((18 , 18)))
f=mat (z e r o s ((18 , 1)))
f [12]=1

Coord=a r r a y ([[0 , 0] ,
[1 , 0] ,
[0 , 1] ,
[1 , 1] ,
[0 , 2] ,
[1 , 2]])

Dof=a r r a y ([[1 , 2 , 3] ,
[4 , 5 , 6] ,
[7 , 8 , 9] ,
[1 0 , 1 1 , 1 2] ,
[1 3 , 1 4 , 1 5] ,
[1 6 , 1 7 , 1 8]])

Element properties and topology. ep is defined as a list and it holds element prop-
erties. These are going to be used separately in the calculations and not together
as a vector, so it makes no difference in calculation time if they are collected in
an array or a list. As mentioned in previous example Edof do not contain the ele-
ment number in the first column, instead row number is used to determine element
number.

MATLAB

ep1=[1 1 1] ;
Edof1=[1 1 2 3 7 8 9 ;

2 7 8 9 13 14 15 ;
3 4 5 6 10 11 12 ;
4 10 11 12 16 17 18 ;
5 7 8 9 10 11 12 ;
6 13 14 15 16 17 1 8] ;

ep2=[1 1] ;
Edof2=[7 1 2 10 11 ;

8 7 8 16 17 ;
9 7 8 4 5 ;

10 13 14 10 1 1] ;

21

CHAPTER 5. PYTHON VERSION OF CALFEM

Python

ep1 =[1 ,1 ,1]
Edof1=a r r a y ([[1 , 2 , 3 , 7 , 8 , 9] ,

[7 , 8 , 9 , 13 , 14 , 15] ,
[1 0 , 11 , 12 , 16 , 17 , 18] ,
[7 , 8 , 9 , 10 , 11 , 12] ,
[1 3 , 1 4 , 1 5 , 1 6 , 1 7 , 1 8]])

ep2 =[1 ,1]
Edof2=a r r a y ([[1 , 2 , 10 , 11] ,

[7 , 8 , 16 , 17] ,
[1 3 , 1 4 , 1 0 , 1 1]])

Element coordinates. ix is an build-in function in NumPy that lets user create new
matrices based on specific rows and column in a existing matrix or array. The user
can also rearrange the order of rows and column using ix . Dof2 is created by all
the rows and the first two columns in Dof. The reason for this step is that for now
coordxtr only returns coordinates for element with the same number of DOF as Dof
contain per node (row). Edof2 is the topology matrix for the bar element so the
DOF input for coordxtr must be modified by removing the last column containing
rotation DOF.

MATLAB

[Ex1 , Ey1]= coo r d x t r (Edof1 , Coord , Dof , 2) ;

[Ex2 , Ey2]= coo r d x t r (Edof2 , Coord , Dof , 2) ;

Python

Ex1 , Ey1=coo r d x t r (Edof1 , Coord , Dof)

Dof2=Dof [i x (range (6) , [0 , 1])]
Ex2 , Ey2=coo r d x t r (Edof2 , Coord , Dof2)

Draw the FE-mesh for a visual control of the model. Same syntax with one differ-
ence; eldraw2 does not support the variable plotpar where the user can choose e.g.
linecolor. This feature might be added in future versions.

MATLAB Python

e ld raw2 (Ex1 , Ey1 , [1 3 1]) ;
e ld raw2 (Ex2 , Ey2 , [1 2 1]) ;

e l d raw2 (Ex1 , Ey1)
e ld raw2 (Ex2 , Ey2)

Create and assemble element matrices. With zip it is possible to loop over several
variables simultaneously instead of using a loop counter (i). The three variables
(elx, ely, eltopo) will reprecent each row in the three variables within zip during
the loop. The number of loops are determined by the variable within zip with the
least amount of values i.e. the loop only goes on as long as every variable within
zip has a new value per loop. As mentioned in previous example the variable K is
updated in assem instead of redefined.

22

5.3. CALFEM CODE COMPARISON

MATLAB

f o r i =1:6
Ke=beam2e (Ex1 (i , :) , Ey1 (i , :) , ep1) ;
K=assem (Edof1 (i , :) ,K, Ke) ;

end

f o r i =1:4
Ke=bar2e (Ex2 (i , :) , Ey2 (i , :) , ep2) ;
K=assem (Edof2 (i , :) ,K, Ke) ;

end

Python

f o r e l x , e l y , e l t o p o i n z i p (Ex1 , Ey1 , Edof1) :
Ke=beam2e (e l x , e l y , ep1)
assem (e l t opo ,K, Ke) ;

f o r e l x , e l y , e l t o p o i n z i p (Ex2 , Ey2 , Edof2) :
Ke=bar2e (e l x , e l y , ep2)
assem (e l t opo ,K, Ke)

Solve equation system. The function arange creates a 1-dimensional array with the
first value 1 and the last 6 with steps of one between. Besides the lack of brackets
there are no difference in solveq.

MATLAB Python

bc=[1 0 ;
2 0 ;
3 0 ;
4 0 ;
5 0 ;
6 0] ;

[a , r]= s o l v e q (K, f , bc) ;

bc=arange (1 , 7)
a , r=s o l v e q (K, f , bc)

Extract element displacements and display the deformed mesh. No need to com-
ment Ed variables. The same goes for eldisp2 as for eldraw2 where the variable
plotpar is not yet supported.

MATLAB Python

Ed1=e x t r a c t (Edof1 , a) ;
Ed2=e x t r a c t (Edof2 , a) ;

Ed1=e x t r a c t (Edof1 , a)
Ed2=e x t r a c t (Edof2 , a)

MATLAB

[s f a c]= s c a l f a c t 2 (Ex1 , Ey1 , Ed1 , 0 . 1) ;
e l d i s p 2 (Ex1 , Ey1 , Ed1 , [2 1 1] , s f a c) ;
e l d i s p 2 (Ex2 , Ey2 , Ed2 , [2 1 1] , s f a c) ;

23

CHAPTER 5. PYTHON VERSION OF CALFEM

Python

s f a c=s c a l f a c t 2 (Ex1 , Ey1 , Ed1 , 0 . 1)
e l d i s p 2 (Ex1 , Ey1 , Ed1 , s f a c)
e l d i s p 2 (Ex2 , Ey2 , Ed2 , s f a c)

24

Chapter 6

Conclusions

Python is an easy programming language to learn due to its clear syntax. MATLAB
syntax is also very clear so differences in code are small. This makes the transition
to Python easy for existing MATLAB users. Linear algebra operations on vectors
and matrices are both easy to use and fast to calculate with the library NumPy.
Due to NumPy’s pass-by-reference semantics fewer copies are created when running
programs which reduce both computing time and memory usage. Large parts of
CALFEM have been implemented and are now available to Python users. In short,
this means that CALFEM can now be used without expensive licenses and in a pro-
gramming environment of choice. The programming environment for Python varies
widely, both visually and functionally. From a simple terminal window, like the
basic Python shell or the more advanced IPython, to MATLAB-like environments
such as Spyder. Since Python is open source, and therefore also most IDE, user
can experiment with different IDE until they find the development environment
that suits them. In conclusion, Python is considered to be an adequate alternative
to MATLAB, due to only small differences in functionality, optional programming
environment and great differences in costs.

25

Detta är en tom sida!

Chapter 7

Future work

Even though most functions have been implemented there are still some functions
left as can be seen in appendix. Several of these will probably be removed in the
next official version of CALFEM so an implementation of these might be unneces-
sary. To aid users to find error in their code existing functions could be extended
with specified error messages. These could for example inform the user if their
input has the wrong shape. The functions could also be examined with regards
to optimize them by applying pass-by-reference so that unnecessary copies are not
created. Calculation time could also be shortened through integrations with high
performance libraries and solvers, e.g., Intel’s MKL (Math Kernel Library). Mesh-
ing functionality should be added from the new CALFEM mesh module. Even
though close to identical, the Python syntax should also be added and presented
next to the MATLAB syntax for each function in the CALFEM manual.

27

Detta är en tom sida!

Appendix A

Example exs1

This example is from the CALFEM manual [1].
Purpose:
Show the basic steps in a finite element calculation.

Description:
The general procedure in linear finite element calculations is carried out for a simple
structure. The steps are

• define the model

• generate element matrices

• assemble element matrices into the global system of equations

• solve the global system of equations

• evalueate element forces

Consider the system of three linear elastic springs, and the corresponding finite
element model. The system of springs is fixed in its ends and loaded by a single
load F .

29

APPENDIX A. EXAMPLE EXS1

Necessary modules are first imported.

>>> from numpy import *

>>> from pycalfem import *

The computation is initialized by defining the topology matrix Edof, containing
element numbers and global element degrees of freedom,

>>> Edof = array([

... [1, 2],

... [2, 3],

... [2, 3]

...])

the global stiffness matrix K (3x3) of zeros,

>>> K = matrix(zeros((3, 3)))

>>> print K

[[0. 0. 0.]

[0. 0. 0.]

[0. 0. 0.]]

and the load vector f (3x1) with the load F = 100 in position 2.

>>> f = matrix(zeros((3, 1))); f[1] = 100

>>> print f

[[0.]

[100.]

[0.]]

Element stiffness matrices are generated by the function spring1e. The element
property ep for the springs contains the spring stiffnesses k and 2k respectively,
where k = 1500.

>>> k = 1500; ep1 = k; ep2 = 2*k

>>> Ke1 = spring1e(ep1)

>>> print Ke1

[[1500. -1500.]

[-1500. 1500.]]

>>> Ke2 = spring1e(ep2)

>>> print Ke2

[[3000. -3000.]

[-3000. 3000.]]

The element stiffness matrices are assembled into the global stiffness matrix K
according to the topology.

30

>>> assem(Edof[0, :], K, Ke2)

matrix([[3000., -3000., 0.],

[-3000., 3000., 0.],

[0., 0., 0.]])

>>> assem(Edof[1, :], K, Ke1)

matrix([[3000., -3000., 0.],

[-3000., 4500., -1500.],

[0., -1500., 1500.]])

>>> assem(Edof[2, :], K, Ke2)

matrix([[3000., -3000., 0.],

[-3000., 7500., -4500.],

[0., -4500., 4500.]])

The global system of equations is solved considering the boundary conditions given
in bc.

>>> bc = array([1, 3])

>>> a, r = solveq(K, f, bc)

>>> print a

[[0.]

[0.01333333]

[0.]]

>>> print r

[[-40.]

[0.]

[-60.]]

Element forces are evaluated from the element displacements. These are obtained
from the global displacements a using the function extract.

>>> ed1 = extract(Edof[1, :], a)

>>> print ed1

[0.01333333 0.]

>>>

>>> ed1 = extract(Edof[0, :], a)

>>> print ed1

[0. 0.01333333]

>>> ed2 = extract(Edof[1, :], a)

>>> print ed2

[0.01333333 0.]

>>> ed3 = extract(Edof[2, :], a)

>>> print ed3

[0.01333333 0.]

The spring forces are evaluated using the function spring1s.

>>> es1 = spring1s(ep2, ed1)

31

APPENDIX A. EXAMPLE EXS1

>>> print es1

40.0

>>> es2 = spring1s(ep1, ed2)

>>> print es2

-20.0

>>> es3 = spring1s(ep2, ed3)

>>> print es3

-40.0

32

Appendix B

Example exs2

This example is from the CALFEM manual [1].
Purpose:
Analysis of one-dimensional heat flow.

Description:
Consider a wall built up of concrete and thermal insulation. The outdoor temper-
ature is −17 ◦C and the temperature inside is 20 ◦C. At the inside of the thermal
insulation there is a heat source yielding 10 W/m2.

The wall is subdivided into five elements and the one-dimensional spring (analogy)
element spring1e is used. Equivalent spring stiffnesses are ki = λA/L for thermal
conductivity and ki = A/R for thermal surface resistance. Corresponding spring
stiffnesses per m2 of the wall are:

k1 = 1/0.04 = 25.0 W/K
k2 = 1.7/0.070 = 24.3 W/K
k3 = 0.040/0.100 = 0.4 W/K
k4 = 1.7/0.100 = 17.0 W/K
k5 = 1/0.13 = 7.7 W/K

33

APPENDIX B. EXAMPLE EXS2

A global system matrix K and a heat flow vector f are defined. The heat source
inside the wall is considered by setting f4 = 10. The element matrices Ke are
computed using spring1e, and the function assem assembles the global stiffness
matrix.

The system of equations is solved using solveq with considerations to the boundary
conditions in bc and bcVal. The prescribed temperatures are T1 = −17 ◦C and
T2 = 20 ◦C.

Necessary modules are first imported.

>>> from numpy import *

>>> from pycalfem import *

>>>

>>> Edof = array([

... [1, 2],

... [2, 3],

... [3, 4],

... [4, 5],

... [5, 6]

...])

>>>

>>> K = mat(zeros((6, 6)))

>>> f = mat(zeros((6, 1))); f[3] = 10

>>> print f

[[0.]

[0.]

[0.]

[10.]

[0.]

[0.]]

>>>

>>> ep1 = 25.0; ep2 = 24.3

>>> ep3 = 0.4; ep4 = 17.0

>>> ep5 = 7.7

>>>

>>> Ke1 = spring1e(ep1); Ke2 = spring1e(ep2)

>>> Ke3 = spring1e(ep3); Ke4 = spring1e(ep4)

>>> Ke5 = spring1e(ep5)

>>>

>>> assem(Edof[0, :], K, Ke1);

matrix([[25., -25., 0., 0., 0., 0.],

[-25., 25., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0.]])

>>> assem(Edof[1], K, Ke2)

34

matrix([[25. , -25. , 0. , 0. , 0. , 0.],

[-25. , 49.3, -24.3, 0. , 0. , 0.],

[0. , -24.3, 24.3, 0. , 0. , 0.],

[0. , 0. , 0. , 0. , 0. , 0.],

[0. , 0. , 0. , 0. , 0. , 0.],

[0. , 0. , 0. , 0. , 0. , 0.]])

>>> assem(Edof[2, :], K, Ke3);

matrix([[25. , -25. , 0. , 0. , 0. , 0.],

[-25. , 49.3, -24.3, 0. , 0. , 0.],

[0. , -24.3, 24.7, -0.4, 0. , 0.],

[0. , 0. , -0.4, 0.4, 0. , 0.],

[0. , 0. , 0. , 0. , 0. , 0.],

[0. , 0. , 0. , 0. , 0. , 0.]])

>>> assem(Edof[3], K, Ke4)

matrix([[25. , -25. , 0. , 0. , 0. , 0.],

[-25. , 49.3, -24.3, 0. , 0. , 0.],

[0. , -24.3, 24.7, -0.4, 0. , 0.],

[0. , 0. , -0.4, 17.4, -17. , 0.],

[0. , 0. , 0. , -17. , 17. , 0.],

[0. , 0. , 0. , 0. , 0. , 0.]])

>>> assem(Edof[4, :], K, Ke5)

matrix([[25. , -25. , 0. , 0. , 0. , 0.],

[-25. , 49.3, -24.3, 0. , 0. , 0.],

[0. , -24.3, 24.7, -0.4, 0. , 0.],

[0. , 0. , -0.4, 17.4, -17. , 0.],

[0. , 0. , 0. , -17. , 24.7, -7.7],

[0. , 0. , 0. , 0. , -7.7, 7.7]])

>>>

>>> bc = array([1, 6]); bcVal = array([-17.0, 20.0])

>>>

>>> a, r = solveq(K, f, bc, bcVal)

>>> print a

[[-17.]

[-16.43842455]

[-15.86067203]

[19.23779344]

[19.47540439]

[20.]]

>>> print r

[[-1.40393862e+01]

[-5.68434189e-14]

[-1.15463195e-14]

[0.00000000e+00]

[5.68434189e-14]

[4.03938619e+00]]

35

APPENDIX B. EXAMPLE EXS2

The temperature values Ti in the node points are given in the vector a and the
boundary flows in the vector r.

After solving the system of equations, the heat flow through the wall is computed
using extrac and spring1s.

>>> ed1 = extract(Edof[0, :], a)

>>> ed2 = extract(Edof[1, :], a)

>>> ed3 = extract(Edof[2, :], a)

>>> ed4 = extract(Edof[3, :], a)

>>> ed5 = extract(Edof[4, :], a)

>>>

>>> q1 = spring1s(ep1, ed1)

>>> print q1

14.0393861892

>>> q2 = spring1s(ep2, ed2)

>>> print q2

14.0393861892

>>> q3 = spring1s(ep3, ed3)

>>> print q3

14.0393861892

>>> q4 = spring1s(ep4, ed4)

>>> print q4

4.03938618922

>>> q5 = spring1s(ep5, ed5)

>>> print q5

4.03938618922

The heat flow through the wall is q = 14.0 W/m2 in the part of the wall to the left
of the heat source, and q = 4.0 W/m2 in the part to the right of the heat source.

36

Appendix C

Example exs3

This example is from the CALFEM manual [1].
Purpose:
Analysis of a plane truss.

Description:
Consider a plane truss consisting of three bars with the properties E = 200 GPa,
A1 = 6.0 · 10−4 m2, A2 = 3.0 · 10−4 m2, A3 = 10.0 · 10−4 m2, and loaded by a
single force P = 80 kN. The corresponding finite element model consists of three
elements and eight degrees of freedom.

Necessary modules are first imported.

>>> from numpy import *

>>> from pycalfem import *

The topology is defined by the matrix

>>> Edof = array([

... [1, 2, 5, 6],

... [5, 6, 7, 8],

... [3, 4, 5, 6]

37

APPENDIX C. EXAMPLE EXS3

...])

The stiffness matrix K and the load vector f, are defined by

>>> K = matrix(zeros((8, 8)))

>>> f = matrix(zeros((8, 1))); f[5] = -80e3

The element property vectors ep1, ep2 and ep3 are defined by

>>> E = 2.0e11

>>> A1 = 6.0e-4; A2 = 3.0e-4; A3 = 10.0e-4

>>> ep1 = [E, A1]; ep2 = [E, A2]; ep3 = [E, A3]

and the element coordinates vectors ex1, ex2, ex3, ey1, ey2 and ey3 by

>>> ex1 = [0., 1.6]; ex2 = [1.6, 1.6]; ex3 = [0., 1.6]

>>> ey1 = [0., 0.]; ey2 = [0., 1.2]; ey3 = [1.2, 0.]

The element stiffness matrices Ke1, Ke2 and Ke3 are computed using bar2e.

>>> Ke1 = bar2e(ex1, ey1, ep1)

>>> print Ke1

[[74999999.99999999 0. -74999999.99999999 0.]

[0. 0. 0. 0.]

[-74999999.99999999 0. 74999999.99999999 0.]

[0. 0. 0. 0.]]

>>> Ke2 = bar2e(ex2, ey2, ep2)

>>> print Ke2

[[0. 0. 0. 0.]

[0. 49999999.99999999 0. -49999999.99999999]

[0. 0. 0. 0.]

[0. -49999999.99999999 0. 49999999.99999999]]

>>> Ke3 = bar2e(ex3, ey3, ep3)

>>> print Ke3

[[64000000. -48000000. -64000000. 48000000.]

[-48000000. 36000000. 48000000. -36000000.]

[-64000000. 48000000. 64000000. -48000000.]

[48000000. -36000000. -48000000. 36000000.]]

Based on the topology information, the global stiffness matrix can be generated by
assembling the element stiffness matrices

>>> K = assem(Edof[0, :], K, Ke1)

>>> K = assem(Edof[1, :], K, Ke2)

>>> K = assem(Edof[2, :], K, Ke3)

>>> print K =

[[7.50000000e+07, 0.00000000e+00, 0.00000000e+00,

38

0.00000000e+00, -7.50000000e+07, 0.00000000e+00,

0.00000000e+00, 0.00000000e+00],

[0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

0.00000000e+00, 0.00000000e+00],

[0.00000000e+00, 0.00000000e+00, 6.40000000e+07,

-4.80000000e+07, -6.40000000e+07, 4.80000000e+07,

0.00000000e+00, 0.00000000e+00],

[0.00000000e+00, 0.00000000e+00, -4.80000000e+07,

3.60000000e+07, 4.80000000e+07, -3.60000000e+07,

0.00000000e+00, 0.00000000e+00],

[-7.50000000e+07, 0.00000000e+00, -6.40000000e+07,

4.80000000e+07, 1.39000000e+08, -4.80000000e+07,

0.00000000e+00, 0.00000000e+00],

[0.00000000e+00, 0.00000000e+00, 4.80000000e+07,

-3.60000000e+07, -4.80000000e+07, 8.60000000e+07,

0.00000000e+00, -5.00000000e+07],

[0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

0.00000000e+00, 0.00000000e+00],

[0.00000000e+00, 0.00000000e+00, 0.00000000e+00,

0.00000000e+00, 0.00000000e+00, -5.00000000e+07,

0.00000000e+00, 5.00000000e+07]])

Considering the prescribed displacements in bc, the system of equations is solved
using the functions solveq, yielding displacements a and support force r.

>>> bc = array([1, 2, 3, 4, 7, 8])

>>> a, r = solveq(K, f, bc)

>>> print a

[[0.]

[0.]

[0.]

[0.]

[-0.00039793]

[-0.00115233]

[0.]

[0.]]

>>> print r

[[29844.55958549]

[0.]

[-29844.55958549]

[22383.41968912]

[0.]

[0.]

[0.]

[57616.58031088]]

39

APPENDIX C. EXAMPLE EXS3

The vertical displacement at the point of loading is 1.15 mm. The section forces
es1, es2 and es3 are calculated using bar2s from element displacements ed1, ed2
and ed3 obtained using extract.

>>> ed1 = extract(Edof[0, :], a)

>>> N1 = bar2s(ex1, ey1, ep1, ed1)

>>> print N1

-29844.5595855

>>>

>>> ed2 = extract(Edof[1, :], a)

>>> N2 = bar2s(ex2, ey2, ep2, ed2)

>>> print N2

57616.5803109

>>>

>>> ed3 = extract(Edof[2, :], a)

>>> N3 = bar2s(ex3, ey3, ep3, ed3)

>>> print N3

37305.6994819

i.e., the normal forces are N1 = −29.84 kN, N2 = 57.62 kN and N3 = 37.31 kN.

40

Appendix D

Example exs4

This example is from the CALFEM manual [1].
Purpose:
Analysis of a plane truss.

Description:
Consider a plane truss, loaded by a single force P = 0.5 MN.
A = 25.0 · 10−4 m2

E = 2.10 · 105 MPa

The corresponding finite element model consists of ten elements and twelve degrees
of freedom.

41

APPENDIX D. EXAMPLE EXS4

Necessary modules are first imported.

>>> from numpy import *

>>> from pycalfem import *

The topology is defined by the matrix

>>> Edof = array([

... [1, 2, 4, 5],

... [3, 4, 7, 8],

... [5, 6, 9, 10],

... [7, 8, 11, 12],

... [11, 12, 9, 10],

... [3, 4, 5, 6],

... [7, 8, 9, 10],

... [1, 2, 7, 8],

... [5, 6, 11, 12]

...])

A global stiffness matrix K and a load vector f are defined. The load P is divided
into x and y components and inserted in the load vector f

>>> K = zeros([12, 12])

>>> f = zeros([12, 1]);

>>> f[10] = 0.5e6*sin(pi/6); f[11] = -0.5e6*cos(pi/6)

The element matrices Ke are computed by the function bar2e. These matrices are
then assembled in the global matrix using the functions assem.

>>> A = 25.0e-4; E = 2.1e11; ep = [E, A]

>>>

>>> Ex = array([

... [0., 2.],

... [0., 2.],

... [2., 4.],

... [2., 4.],

... [2., 2.],

... [4., 4.],

... [0., 2.],

... [2., 4.],

... [0., 2.],

... [2., 4.]

...])

>>> Ey = array([

... [2., 2.],

... [0., 0.],

... [2., 2.],

42

... [0., 0.],

... [0., 2.],

... [0., 2.],

... [0., 2.],

... [0., 2.],

... [2., 0.],

... [2., 0.]

...])

All the element matrices are computed and assembled in the loop

>>> for elx, ely, eltopo in zip(Ex, Ey, Edof):

... Ke = bar2e(elx, ely, ep)

... K = assem(eltopo, K, Ke)

The displacements in a and the support forces in r are computed by solving the
system of equations considering the boundary conditions in bc.

>>> bc = array([1, 2, 3, 4])

>>> a, r = solveq(K, f, bc)

>>> print a

[[0.00000000e+00]

[0.00000000e+00]

[0.00000000e+00]

[0.00000000e+00]

[-1.81618691e+12]

[-3.46420333e-04]

[7.87183401e-05]

[-4.77904381e-04]

[-1.81618691e+12]

[1.81618691e+12]

[1.61962931e-04]

[1.81618691e+12]]

>>> print r

[[74095.12857481]

[74095.12857481]

[-41327.12857481]

[181870.67495855]

[0.]

[-65536.]

[-19494.53897242]

[-65536.]

[65536.]

[0.]

[-53392.]

[-91275.29810778]]

43

APPENDIX D. EXAMPLE EXS4

The displacement at the point of loading is −1.7 · 10−3 m in the x-direction and
−11.3 · 10−3 m in the y-direction. At the upper support the horizontal force is
−0.866 MN and the vertical 0.240 MN. At the lower support the force are 0.616
MN and 0.193 MN, respectively.

Normal forces are evaluated from element displacements. These are obtained from
the global displacements a using the function extract. The normal forces are eval-
uated using the function bar2s.

>>> ed = extract(Edof, a)

>>>

>>> N = zeros([Edof.shape[0]])

>>> i = 0

>>> for elx, ely, eld, in zip(Ex, Ey, ed):

... N[i] = bar2s(elx, ely, ep, eld)

... print("N%d = %g" % (i + 1, N[i]))

... i += 1

...

N1 = 0

N2 = 20663.6

N3 = 0

N4 = 21851.7

N5 = 65536

N6 = -90935.3

N7 = -32768

N8 = -52393.2

N9 = 119562

The largest normal force N = 0.626 MN is obtained in element 1 and is equivalent
to a normal stress σ = 250 MPa.

To reduce the quantity of input data, the element coordinates matrices Ex and
Ey can alternatively be created from a global coordinate matrix Coord and a global
topology matrix Dof using the function coordxtr, i.e.

>>> Coord = array([

... [0, 2],

... [0, 0],

... [2, 2],

... [2, 0],

... [4, 2],

... [4, 0]

...])

>>> Dof = array([

... [1, 2],

... [3, 4],

... [5, 6],

... [7, 8],

... [9, 10],

44

... [11, 12]

...])

>>> ex, ey = coordxtr(Edof, Coord, Dof, 2)

45

Detta är en tom sida!

Appendix E

Example exs5

This example is from the CALFEM manual.
Purpose:
Analysis of a simply supported beam.

Description:
Consider the simply supported beam loaded by a single load f = 10000 N, applied
at a point 1 meter from the left support. The corresponding finite element mesh is
also shown. The following data apply to the beam

Young’s modulus E = 2.10 · 101 Pa
Cross section area A = 45.3 · 10−4 m2

Moment of inertia I = 2510 · 10−8 m4

Necessary modules are first imported.

>>> from numpy import *

>>> from pycalfem import *

47

APPENDIX E. EXAMPLE EXS5

The element topology is defined by the topology matrix

>>> Edof = array([

... [1, 2, 3, 4, 5, 6],

... [4, 5, 6, 7, 8, 9],

... [7, 8, 9, 10, 11, 12]

...])

The system matrices, i.e. the stiffness matrix K and the load vector f, are defined
by

>>> K = mat(zeros((12,12)))

>>> f = mat(zeros((12,1))); f[4] = -10000

The element property vector ep, the element coordinate vectors ex and ey, and the
element stiffness matrix Ke, are generated. Note that the same coordinate vectors
are applicable for all elements because they are identical.

>>> E = 2.1e11; A = 45.3e-4; I = 2510e-8; ep = array([E, A, I])

>>> ex = array([0, 3])

>>> ey = array([0, 0])

>>>

>>> Ke = beam2e(ex, ey, ep)

>>> print Ke

[[3.17100000e+08 0.00000000e+00 0.00000000e+00

-3.17100000e+08 0.00000000e+00 0.00000000e+00]

[0.00000000e+00 2.34266667e+06 3.51400000e+06

0.00000000e+00 -2.34266667e+06 3.51400000e+06]

[0.00000000e+00 3.51400000e+06 7.02800000e+06

0.00000000e+00 -3.51400000e+06 3.51400000e+06]

[-3.17100000e+08 0.00000000e+00 0.00000000e+00

3.17100000e+08 0.00000000e+00 0.00000000e+00]

[0.00000000e+00 -2.34266667e+06 -3.51400000e+06

0.00000000e+00 2.34266667e+06 -3.51400000e+06]

[0.00000000e+00 3.51400000e+06 3.51400000e+06

0.00000000e+00 -3.51400000e+06 7.02800000e+06]]

Based on the topology information, the global stiffness matrix can be generated by
assembling the element stiffness matrices

>>> K = assem(Edof, K, Ke)

Finally, the solution can be calculated by defining the boundary conditions in bc
and solving the system of equations. Displacements a and support forces r are
computed by the function solveq.

>>> bc = array([1, 2, 11])

>>> a,r = solveq(K,f,bc)

48

The section forces es are calculated from element displacements Ed

>>> Ed = extract(Edof, a)

>>> es1, ed1, ec1 = beam2s(ex, ey, ep, Ed[0,:])

>>> es2, ed2, ec2 = beam2s(ex, ey, ep, Ed[1,:])

>>> es3, ed3, ec3 = beam2s(ex, ey, ep, Ed[2,:])

Results

>>> print "a = ",a

a = [[0.]

[0.]

[-0.00948587]

[0.]

[-0.02276608]

[-0.00379435]

[0.]

[-0.01992032]

[0.00474293]

[0.]

[0.]

[0.00758869]]

>>> print "r = ", r

r = [[0.00000000e+00]

[6.66666667e+03]

[3.63797881e-12]

[0.00000000e+00]

[1.45519152e-11]

[3.63797881e-12]

[0.00000000e+00]

[-3.63797881e-12]

[0.00000000e+00]

[0.00000000e+00]

[3.33333333e+03]

[7.27595761e-12]]

>>>

>>> print "es1 = ",es1

es1 = [[0.00000000e+00 -6.66666667e+03 9.14372744e-12]

[0.00000000e+00 -6.66666667e+03 2.00000000e+04]]

>>> print "es2 = ",es2

es2 = [[0. 3333.33333333 20000.]

[0. 3333.33333333 10000.]]

>>> print "es3 = ",es3

es3 = [[0.00000000e+00 3.33333333e+03 1.00000000e+04]

[0.00000000e+00 3.33333333e+03 2.17163527e-11]]

49

Detta är en tom sida!

Appendix F

Status of existing CALFEM
functions

Summary status of existing element functions. Functions replaced by ”-” are not
yet implemented. Functions with an ”*” will most likely be removed from the next
release of CALFEM. An implementation has been started for functions with a ”†”
but they are not completed yet.

Python MATLAB
spring1e(ep) spring1e(ep)
spring1s(ep, ed) spring1s(ep, ed)
bar1e(ep) bar1e(ep)
bar1s(ep, ed) bar1s(ep, ed)
bar2e(ex, ey, ep) bar2e(ex, ey, ep)
bar2g(ex, ey, ep, N) bar2g(ex, ey, ep, N)
bar2s(ex, ey, ep, ed) bar2s(ex, ey, ep, ed)
bar3e(ex, ey, ez, ep) bar3e(ex, ey, ez, ep)
bar3s(ex, ey, ez, ep, ed) bar3s(ex, ey, ez, ep, ed)
flw2te(ex, ey, ep, D, eq) flw2te(ex, ey, ep, D, eq)
flw2ts(ex, ey, D, ed) flw2ts(ex, ey, D, ed)
flw2qe(ex, ey, ep, D, eq) flw2qe(ex, ey, ep, D, eq)
flw2qs(ex, ey, ep, D, ed, eq) flw2qs(ex, ey, ep, D, ed, eq)
flw2i4e(ex, ey, ep, D, eq) flw2i4e(ex, ey, ep, D, eq)
flw2i4s(ex, ey, ep, D, ed) flw2i4s(ex, ey, ep, D, ed)
flw2i8e(ex, ey, ep, D, eq) flw2i8(ex, ey, ep, D, eq)
flw2i8s(ex, ey, ep, D, ed) flw2i8s(ex, ey, ep, D, ed)
flw3i8e(ex, ey, ez, ep, D, eq) flw3i8e(ex, ey, ez, ep, D, eq)
flw3i8s(ex, ey, ez, ep, D, ed) flw3i8s(ex, ey, ez, ep, D, ed)
plante(ex, ey, ep, D, eq) plante(ex, ey, ep, D, eq)
plants(ex, ey, ep, D, ed) plants(ex, ey, ep, D, ed)
plantf(ex, ey, ep, es) plantf(ex, ey, ep, es)
- planqe(ex, ey, ep, D, eq) *

51

APPENDIX F. STATUS OF EXISTING CALFEM FUNCTIONS

Python MATLAB
- planqs(ex, ey, ep, D, ed, eq) *
- planre(ex, ey, ep, D, eq)
- planrs(ex, ey, ep, D, ed)
- plantce(ex, ey, ep, eq) *
- plantcs(ex, ey, ep, ed) *
- plani4e(ex, ey, ep, D, eq)
- plani4s(ex, ey, ep, D, ed)
- plani4f(ex, ey, ep, es)
- plani8e(ex, ey, ep, D, eq) *
- plani8s(ex, ey, ep, D, ed) *
- plani8f(ex, ey, ep, es) *
- soli8e(ex, ey, ez, ep, D, eq) *
- soli8s(ex, ey, ez, ep, D, ed) *
- soli8f(ex, ey, ez, ep, es) *
beam2e(ex, ey, ep, eq) beam2e(ex, ey, ep, eq)
beam2s(ex, ey, ep ,ed, eq, np) beam2s(ex, ey, ep, ed, eq, n)
beam2t(ex, ey, ep, eq) beam2t(ex, ey, ep, eq)
beam2ts(ex, ey, ep, ed, eq, np) beam2ts(ex, ey, ep, ed, eq, n)
beam2w(ex, ey, ep, eq) beam2w(ex, ey, ep, eq)
beam2ws(ex, ey, ep, ed, eq) beam2ws(ex, ey, ep, ed, eq)
beam2g(ex, ey, ep, N, eq) beam2g(ex, ey, ep, N, eq)
beam2gs(ex, ey, ep, ed, N, eq) beam2gs(ex, ey, ep, ed, N, eq)
beam2d(ex, ey, ep) beam2d(ex, ey, ep)
- beam2ds(ex, ey, ep, ed, ev, ea)
beam3e(ex, ey, ez, eo, ep, eq) beam3e(ex, ey, ez, eo, ep, eq)
beam3s(ex, ey, ez, eo, ep, ed, eq, n) beam3s(ex, ey, ez, eo, ep, ed, eq, n)
platre(ex, ey, ep, D, eq) platre(ex, ey, ep, D, eq)
- platrs(ex, ey, ep, D, ed)
- red(A, b)
hooke(ptype, E, v) hooke(ptype, E, v)
- mises(ptype, mp, est, st)
- dmises(ptype, mp, es, st)
assem(edof, K, Ke, f, fe) assem(edof, K, Ke, f, fe)
coordxtr(edof, coords, dofs) cordxtr(Edof, Coord, Dof, nen)
- eigen(K, M, b)
extract(edof, a) extract(edof, a)
- insert(edof, f, ef)
solveq(K, f, bcPresc, bcVal) solveq(K, f, bc)
statcon(K, f, cd) statcon(K, f, b)
- dyna2(w2, xi, f, g, dt)
- dyna2f(w2, xi, f, p, dt)
- freqresp(D, dt)
- gfunc(G, dt)
- ritz(K, M, f, m, b)
- spectra(a, xi, dt, f)
- step1(K, C, d0, ip, f, pbound)
- step2(K, C, d0, v0, ip, f, pdisp)

52

Python MATLAB
- sweep(K, C, M, p, w)
- eldia2(ex, ey, es, plotpar, sfac, eci)
eldisp2(ex, ey, ed, magnfac, showmesh) † eldisp2(Ex, Ey, Ed, plotpar, sfac)
eldraw2(ex, ey) † eldraw2(Ex, Ey, plotpar, elnum)
- elflux2(Ex, Ey, Es, plotpar, sfac)
eliso2(ex, ey, ed, showmesh) † eliso2(Ex, Ey, Ed, isov, plotpar)
- elprinc2(Ex, Ey, Es, plotpar, sfac)
- pltscalb2(sfac, magnitude, plotpar)
scalfact2(ex, ey, ed, rat) † scalfact2(ex, ey, ed, rat)

53

Detta är en tom sida!

Bibliography

[1] P-E Austrell, O Dahlblom, J Lindemann, A Olsson, K-G Olsson, K Persson,
H Petersson, M Ristinmaa, G Sandberg, P-A Wernberg
CALFEM - A Finite Element Toolbox version 3.4, Lund University,
The Division of Structural Mechanics
2004

[2] Mark Lutz, Programming Python, Second Edition,
OReilly & Associates Inc,
2001

[3] Interview with Guido van Rossum,
http://www.amk.ca/python/writing/gvr-interview,
2010-05-03

[4] Hans Petter Langtangen, Introduction to Computer Programming,
University of Oslo,
2008

[5] Getting Started,
http://new.scipy.org/getting-started.html,
2010-05-17

[6] NumPy for MATLAB Users,
http://www.scipy.org/NumPy for Matlab Users,
2010-05-18

[7] MATLAB,
http://en.wikipedia.org/wiki/Matlab,
2010-05-24

[8] About The MathWorks AB,
http://www.mathworks.se/company/aboutus/,
2010-05-24

[9] Python (programming langugage),
http://en.wikipedia.org/wiki/Python (programming language),
2010-05-25

55

BIBLIOGRAPHY

[10] Integrated development environment,
http://en.wikipedia.org/wiki/Integrated development environment,
2010-05-27

[11] Evaluation strategy,
http://en.wikipedia.org/wiki/Evaluation strategy,
2010-05-28

[12] IDLE,
http://docs.python.org/library/idle.html,
2010-05-29

[13] Enthought Python Distribution,
http://www.enthought.com/products/epd.php,
2010-02-17

[14] IPython frontpage,
http://ipython.scipy.org/moin/,
2010-05-29

[15] IPython,
http://wiki.python.org/moin/IPython,
2010-05-30

[16] Spyder documentation,
http://packages.python.org/spyder/,
2010-05-30

[17] ActiveState Komodo IDE,
http://www.activestate.com/komodo-ide,
2010-05-30

[18] MATLAB - The Language Of Technical Computing,
http://www.mathworks.com/products/matlab/,
2010-05-31

56

	Introduction
	Background
	Why CALFEM for Python?
	Objective

	MATLAB
	Background
	Objects

	Python and NumPy
	Python
	Background
	Influences
	Objects

	NumPy
	Objects
	Common matrixoperations

	Integrated Development Environments
	MATLAB
	Python IDLE
	IPython
	EPD
	Spyder
	ActiveState Komodo IDE

	Python version of CALFEM
	Common structure of code
	Code build-up
	CALFEM code comparison
	Static analysis of a linear spring system, exs1
	Static analysis of a plane frame stabilized with bars, exs7

	Conclusions
	Future work
	Example exs1
	Example exs2
	Example exs3
	Example exs4
	Example exs5
	Status of existing CALFEM functions
	Bibliography

