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Abstract

In Sweden there has recently been a change in the code from the former BFS2010:2
BKR 13 to Eurocode 5. This shift has led to changes when calculating the design
capacity for all materials including wood. One of the parameters that were changed
was the strength of wood perpendicular to the grain. The characteristic value
required was decreased from 8 MPa to 2.7 MPa which have a relativity large impact
on the size of the contact area, for instance between a beam and a support. A
consequence of this is that the support has to be larger and in many situations
more expensive. Discussions with SWECO Structures, the Division of Structural
Engineering and the Division of Structural Mechanics led to to believe that the
decrease in characteristic capacity is not fully motivated for all loading situations.
Besides the evaluation of the decrease, an investigation of how reinforcement in
form of wooden dowels and threaded steel screws a�ect the compression capacity
perpendicular to the grain.

The analysis of the compression capacity perpendicular to the grain, with and
without reinforcement, is based on analytical models and by means of numerical
calculations by a Finite element program called ABAQUS. To capture the plastic
non linear behavior perpendicular to the grain two material models were combined,
one which handles the stress in longitudinal direction and one handling the stresses
in radial and tangential directions. Parallel to this thesis another Master's thesis is
produced with the same objective but by a di�erent method, laboratory testings.
This is advantageous since it makes it possible to judge the creditability of the
FE-models.

A total number of 16 FE-models were produced with di�erent loading situations
and setups to investigate how the support length and reinforcement e�ect the stress
capacity perpendicular to the grain. When it was evident that the unreinforced
models captured the real behavior 4 new models were produced with support length
100-400 mm to see how the sti�ness, maximal capacity and deformations depends
on the support length.

The results of the unreinforced FE-models show that the decrease from 8 MPa to
2.7 MPa is motivated in some cases where small deformations only are acceptable
and with a support length ≥ 400 mm. However, if a deformation of 20 mm is
acceptable and the support length is 100 mm, the compression capacity is above 8
MPa according to the FE-results.
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CHAPTER 0. ABSTRACT

The FE-models handling wooden dowels captured the behavior very well in the
elastic area when comparing the models with laboratory tests. When the specimen
began to crack the dowels buckled. This phenomenon has not been taken into
account in this thesis since it is complicated and time consuming modeling crack
propagation. The models with threaded steel rods were di�cult to model even in
the elastic area due to the fact that the reinforcing rods were irregularly pushed
in from the bottom side of the beam. The result shows that there is an advantage
in sti�ness if the rods are in �ush with the bottom side of the beam because they
could take load simultaneously. The mean capacity for the supports with wooden
dowels was calculated to 11 MPa and for the threaded steel rods 15 MPa compared
to 5 MPa unreinforced.
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Sammanfattning

I Sverige har nyligen byggkonstruktionsnormen förändrats från den föregående nor-
men BFS 2010:2 BKR 13 till Eurocode 5. Reformen har lett till förändringar vid
beräkningar av dimensionerande lastkapacitet för alla material inkluderat trä. En
av parametrarna som förändrats för trä är hållfastheten vid tryck vinkelrätt �br-
erna. Det karakteristiska värdet 8 MPa sänktes till 2.7 MPa vilket har en relativt
stor inverkan på erforderlig storlek av kontaktytan mellan till exempel en balk och
ett upplag. En konsekvens av detta är att kontaktytan måste förstoras och i många
situationer leder till en dyrare konstruktion. Diskussioner med SWECO Structures,
avdelningen för Konstruktionsteknik och avdelningen för Byggnadsmekanik ledde
till att det �nns anledning att tro att sänkningen av det karakteristiska värdet inte
är motiverat för alla lastsituationer. Förutom utredning av sänkning av karakteri-
siskt värde görs en undersökning huruvida förstärkning i form av trädymlingar och
gängade stålstavar påverkar tryckkapaciteten vinkelrätt �berriktningen.

Analysen är baserad på analytiska modeller för att beräkna tryck vinkelrätt �ber-
riktningen med och utan förstärkning samt på numeriska modeller i ett Finita
elementprogram, ABAQUS. För att fånga det plastiska olinjära beteendet vinkel-
rätt �berriktningen har två stycken materialmodeller kombinerats, en som fångar
spänningarna i longitudinell riktning och en som fångar spänningarna i radiell och
tangentiell riktning. Parallellt med denna studie har ett examensarbete gjorts med
samma mål men med hjälp av laborationer. Detta är fördelaktigt för då �nns
möjligheten att avgöra hur verklighetsnära FE-modellerna är.

Totalt skapades 16 FE-modeller med olika belastningssituationer och förutsät-
tningar för att undersöka hur upplagslängder och förstärkningar påverkar tryck-
kapaciteten vinkelrätt �berriktningen. När det visade sig att de oförstärkta mod-
ellerna fångande beteendet i verkligheten skapades följaktligen 4 nya modeller med
upplagslängder 100-400 mm för att se hur styvhet, maximal kapacitet och defor-
mationer beror på upplagslängd.

Resultatet av de oförstärkta FE-modellerna visar att sänkningen från 8 MPa till
2.7 MPa är motiverat i fall då endast små deformationer är tillåtna och vid up-
plagslängd ≥ 400 mm. Men om en deformationsmagnitud på 20 mm är tillåten
och upplagslängden är 100 mm så är tryckkapaciteten vinkelrätt �berriktningen 8
MPa enligt FE-resultaten.

De förstärkta FE-modellerna som modelerade trädymlingarna fångade det verk-
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CHAPTER 0. SAMMANFATTNING

liga beteendet mycket bra under elastiska förhållanden. När provbalkarna började
spricka knäcktes dymlingarna. Detta fenomen har inte medtagits i denna studie
då sprickbildning är komplext och tar lång tid att modellera. Modellerna med gän-
gade stålstavar var svåra att modellera även under elastiska förhållanden. Detta
beror på att stålstavarnas placering från underkant balk var mycket oregelbun-
den. Dessa modeller visar dock att det �nns en fördel i form av ökad styvhet om
stavarna placeras i jämnhöjd med balkens undersida då alla stavar kan ta last sam-
tidigt. Medelvärdeskapaciteten för trädymlingarna beräknades till 11 MPa och för
stålstavarna 15 MPa att jämföra med 5 MPa utan förstärkning.
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Notations

General notations

(
) time di�erentiation of ( )

∇̃ matrix di�erential operator

[ ]T transpose of a matrix

[ ]−1 inverse of a matrix∫
S

( ) dS integration over surface∫
V

( ) dV integration over volume∑
( ) sum of ( )

Roman upper case letters

A contact area
Aef e�ective contact area
D constitutive matrix in the global coordinate system
E Youngs modulus
EL Youngs modulus, longitudinal
ER Youngs modulus, radial
ET Youngs modulus, tangential
F Load
GLR shear module, longitudinal-radial
GLR shear module, longitudinal-tangential
GLR shear module, radial-tangential
K sti�ness matrix
N shape function matrix
u displacement vector
D constitutive matrix in the global coordinate system
V volume
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CHAPTER 0. NOTATIONS

Roman lower case letters

a column matrix of nodal displacements
a distance to the beam edge
b beam width
h beam height
hreinf reinforcement length
l length
leff e�ective length
lsupport support length
t traction vector
u displacement vector
v vector of weight functions

Greek letters

α angle in radians
ε strain vector
ε strain
δ displacement
ν Poissons ratio
νLR Poissons ratio, longitudinal-radial
νLT Poissons ratio, longitudinal-tangential
νRT Poissons ratio, radial-tangential
σ stress vector
σx σy σz normal stresses in x, y and z-direction
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Chapter 1

Introduction

1.1 Background

Wood is a material with great potential since the raw material from which it is ob-
tained is cheap, environmentally friendly and represents renewable material. His-
torically, wood as a material has been used for multiple uses. From making spears
40,000 years ago, as a construction material to build boats and bridges with the
Middle Ages until today when wood is used to make large glulaminated beams
serving as frame systems in ice rinks and multi-story buildings. In order for the
buildings not to collapse, the design of a structural system is controlled by codes
which di�er in each country.

In Sweden there has recently been a change in the code from BKR to Eurocode 5.
This shift has led to changes when calculating the design capacity for all materials
including wood. One of the parameters that were changed was the characteristic
strength perpendicular to the grain, which has been decreased from 8 MPa to 2.7
MPa for glulaminated timber (corresponding class L40). This parameter has a
large impact on the contact area at a support. The decrease from 8 MPa to 2.7
MPa implicates that the contact area must be larger, according to the code, to
distribute the load and reduce the stress level. This leads to design problems,
e.g. the cost of a larger support area, for instance a larger column cross section.
Another problem if a joinst hanger is being used is an increase of eccentricity and
therefore a torsional moment at the axis of a supportive beam.

The strength perpendicular to the grain occurs at contact surfaces between two or
more elements. The capacity is determined by two parts: crushing of the �bers
and unloaded length. Unloaded length implies that the stress is transported to
the neighboring unloaded parts (of a beam for instance) and is treated di�erent
depending on which code is being used. In the Eurocode there is an increase
factor, kc, which takes load distribution into account. If the support length is
lower than a speci�c value (400 mm) and the load is located at a certain distance
from the support (2 x hbeam) the perpendicular capacity can be increased with

1
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a factor 1.75. Discussions with SWECO Structures, the Division of Structural
Engineering and the Division of Structural Mechanics (both divisions at Lund
Institute of Technology) led to there is reason to believe that the coe�cient varies
with di�erent support lengths below 400 mm.

Another aspect of strength perpendicular to the grain is when wood reaches high
stresses perpendicular to the grain the material goes from elastic behavior into
ductile plastic. To increase the elastic behavior and the maximum stress capac-
ity perpendicular to the grain there will be an investigation how wood and steel
reinforcement can a�ect the capacity. There are several bene�ts with wood rein-
forcement for instance economical ones.

1.2 Aim

In this thesis, the following aims apply:

• Gain knowledge about wood as an orthotropic construction material.

• Identify models of how to calculate the stress perpendicular to the grain (with
and without reinforcement).

• Identify di�erences between the former Swedish building code BKR 13 and
the newly adopted Eurocode 5 for calculating the compressive strength per-
pendicular to the grain (with and without reinforcement).

• Produce a working Finite element method (FEM) model which captures both
the elastic and the plastic behavior of wood when stressed perpendicular to
the grain.

• Identify how the compressive stress capacity in wood is a�ected by support
length at supports lengths less than 400 mm.

• Produce a simple calculation method for the increase factor kc for support
lengths below 400 mm.

• Identify the e�ect of wood and steel as reinforcement in stress perpendicular
to grain for three di�erent setups with di�erent geometry and number of
screws.

1.3 Method

A theory study is made to gain knowledge about wood as a construction material
and its orthotropic behavior. Analyzes of the sti�ness properties relationship is
made to illuminate the di�erent capacity in di�erent directions.

Identi�cation of models and the di�erence in building codes is done by reviewing
articles, reports and the building codes, Eurocode 5 and BFS 2010:2 BKR 13.
For illustrating the di�erences an example is calculated and plotted with di�erent
support lengths.

2
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1.4. LIMITATIONS

ABAQUS is a Finite element program with several of di�erent material models
for capturing very many materials behavior. In this thesis a foam hardening will
be used to capture the plastic behavior of wood perpendicular to the grain. To
prove the FEM-models creditability the models are compared to lab tests which
have been made parallel to this Master's thesis. The comparisons are made in
stress-deformation plots.

Analyze of how the stress perpendicular to the grain behaves below 400 mm is done
by observing the plots from the FEM-models. From four di�erent support length
plots it is possible to produce a simple method for calculating the increase factor
kc by de�ning a speci�c deformation requirement.

The reinforced beams are modeled in ABAQUS and the results are plotted in a
stress-deformation plot to compare the reinforced beam results with the unrein-
forced beams.

1.4 Limitations

In the work process, following limitations apply:

• The deformation perpendicular to the grain is studied, not the possible risk
for splitting due to compressive stresses.

• Climate class 1.

• The woods moisture content is constant across the cross section and about
12 %.

• The material is modeled as a homogeneous material which means, for in-
stance, knots and di�erence between spring wood and autumn wood will not
be taken into account.

• Crack propagation will not be studied.

• The annual rings will not be modeled nor the di�erence in lamellas in each
beam.

• The Finite element models in ABAQUS are modeled in 3D with the assump-
tion transversely isotropic material property.

• The report will focus on what is happening around the support locally.

• The analysis and calculations will be focused on compression perpendicular
to the grain and the reinforcement.

• Non linear geometry/large deformation-theory will be used in numerical cal-
culations.

• All models have been created in SI-units.

3
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1.5 Outlines

This thesis is mainly divided into three parts:

The �rst part contains chapter 2-4 to get a deeper knowledge of wood as a con-
struction material and its mechanical attributes. Chapter 2 contains a description
of wood as a construction material, its orthotropic behavior and sti�ness proper-
ties. Glue laminated beams are presented and explained. Chapter 3 introduces the
compression perpendicular to the grain and some explanations of previous work in
this area. Later in chapter 3 a comparison is made between some of the di�erent
codes in Europe. To get a better understanding how reinforcement perpendicular
to the grain in beams work, a shorter theory study and a comparison with di�erent
theories is made in chapter 4.

Second part includes a short presentation of the laboratory tests which have been
made parallel to this thesis in chapter 5. Chapter 6 is dedicated to explain how
the Finite element method (FEM), a numerical calculation method, works in short.
The FE-models of the unreinforced beams are handled in chapter 7. Assumptions
and model properties are presented as well as the results. Finally an analysis of
the increase factor kc,90 is made. Chapter 8 is structured in the same way, just this
chapter handles the reinforced beams.

The third and �nal part, chapter 10, contains overall conclusions to this thesis. In
this part there are also suggestions for future work regarding this subject which
have to be investigated further.

4
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Chapter 2

Introduction to wood as a

construction material

In this chapter an introduction to wood as a construction material is made. First
the orthotropic behavior is described and later the elastic sti�ness properties.
Thereafter a short introduction to non linear behavior in di�erent directions and
�nally a short presentation of glulaminated beams.

2.1 An orthtropic material

Wood is an anisotropic material with some structural symmetry, both in micro-
scopic and macroscopic view. The heterogeneous structure of annual rings leads
however to asymmetry because of altering spring- and autumn wood (which varies
in growth in di�erent years). Another important aspect which leads to inexact
heterogeneous structure is a various forms of defects of development, for example
twigs and distorted �bers [10].

Since a tree grows in a cylindrical manner, the di�erent properties of wood can be
related to the tree principal directions of growth. Many of the woods properties i.e.
strength and elasticity depends on this cylindrical symmetry. A very small cube
cut out a piece from the core has three orthogonal symmetry planes: L, R and T,
as shown in �gure 2.1. L answers for the direction parallel to the �bers, R is the
direction perpendicular to �bers and radius to the annual rings and �nally T is the
direction perpendicular to the �bers tangential to the annual rings [7].

A material is said to be orthotropic if there are three symmetry planes mutually
perpendicular to each other in every point in the material. Symmetry exists if
two coordinate systems, which are mirror images of each other with respect to
this plane, leave the material matrices unchanged [13]. The three planes in wood
which normally ful�lls this symmetry requirement are the planes that have normal
vectors in the longitudinal, radial and tangential directions. Therefore wood will

5
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Figure 2.1: Principal axes of wood with respect to grain direction and growth
rings.[10]

be handled as an orthotropic material in this thesis. Yet, this assumption is only
valid when looking into wood in a non macroscopic view and the tensions must be
small so elastic conditions apply [10].

2.2 Sti�ness properties

The mechanical properties of wood depends on several di�erent factors, like tem-
perature, density, moisture content, angle of micro�ber contra their cell wall, angle
of loading contra direction of �ber, time under loading (creep, relaxation, fatigue)
etc. When a piece of wood is exposed to stress, which is lower than its yield
strength, the body behaves as an elastic orthotropic material. When the stress
magnitude exceeds the yield point, the material enters a plastic behavior. Plastic
behavior is characterized by the stress no longer is proportional to the strain which
will be discussed later on in this chapter.

2.2.1 Linear elasticity

Below the limit of proportionality wood can be described with Hooke's generalized
law. For linear elasticity in one dimension

σ = Eε (2.1)

where E is a module of elasticity (material dependent) and epsilon represents strain.
In reality there are other variables such as moisture-induced shrinkage, mechano-
sorptive deformation and creep deformation [15]. This will not be handled in the
present study. Partly due to it is time consuming but also because the e�ect of
mentioned variables have little e�ect in short-time loading.

Because of the constitutive behavior in the elastic region equation 2.2 can be gen-
eralized in three dimensions:

σ = Dε (2.2)

6
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where

σ =



σ11

σ22

σ33

σ12

σ13
σ23


D =


D11 D12 . . . D16

D21 D22 . . . D26

...
...

. . .
...

D61 D62 . . . D66

 ε =



ε11

ε22

ε33

ε12

ε13

ε23


(2.3)

I.e. the D-matrix is the sti�ness matrix. Handling linear elastic materials the
sti�ness matrix has to be constant for a given position. Additionally, the matrix
has to be positive de�nite and invertible.

ε = Cσ (2.4)

where C = D−1 . The elasticity de�ned by ε = Cσ, which possess properties if
linearity and one to one relation between stresses and strains, is also termed Cauchy
elasticity. If, in addition to these properties, the strain energy for a given strain
state only depends on the strain rate itself and not the manner in which this strain
state was obtain the material is hyperelastic. By hyperelasticity follows that the
D-matrix is symmetric which leads to the numbers in the sti�ness matrix can be
reduced from 36 coe�cients to 21. Assuming elastic orthogonality reduces further
from 21 to 9 di�erent coe�cients. Using Hook's generalized law an orthotropic
material can be written by use of matrix notation as:



εLL

εRR

εTT

γLR

γLT

γRT


=



1
EL

−νRL

ER

−νTL

ET
0 0 0

−νLR

EL

1
ER

−νTR

ET
0 0 0

−νLT

EL

−νRT

ER

1
ET

0 0 0

0 0 0 1
GLR

0 0

0 0 0 0 1
GLT

0

0 0 0 0 0 1
GRT





σLL

σRR

σTT

τLR

τLT

τRT


(2.5)

In the matrix C above there are nine independent parameters which describe the
sti�ness of the orthotropic material: three moduli of elasticity, three moduli of
shear (also called rigidity) and three moduli of Poissons ratio. The moduli of
elasticity (EL, ER and ET ) are the elastic modulus along the longitudinal, radial
and tangential axes and are often obtained from compression tests. The shear
moduli (GLR, GLT and GRT ) indicate the resistance to de�ection of a member
caused by shear stress. Poissons ratio is the ratio of the transverse to axial strain
and is denoted by (VRL, VTL and VTR). The �rst letter of the subscript refers
to the direction of the applied stress and the second letter to direction of lateral
deformation [7].

7
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2.2.2 Non linear elasticity

When wood is loaded to higher stress levels, plastic deformation or failure occurs.
Plastic deformation is a non linear-behavior and occurs when a material is utilized
for stress above its yield point, see �gure 2.2. In this stage plastic deformation
occurs which are not reversible and therefore permanent even when the material is
unloaded [14].

Figure 2.2: Typical stress-strain curves for wood loaded in compression in the
longitudinal, radial and tangential directions and for tension in the longitudinal
direction [16].

2.3 Glulaminated timber (Glulam)

The development of Glulam technology was initiated in Germany during the late
19th century. The technology became known in Norway, who introduced it to
Scandinavia in the beginning of the 20th century. The �rst laminated structure
in Sweden was manufactured in Töreboda 1918. Most of the produced laminated
wood is used for industrial buildings, residential buildings and others but also for
bridges and parking garages. Glulam beams can be produced with very long span
and practically speaking, it is usually the transport options that limit the range.
The consummation in Sweden is an average of 30,000 cubic meters a year [2].
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2.3. GLULAMINATED TIMBER (GLULAM)

A glulam cross-section is built up with parts of similar strength, homogeneous
wood. To optimize the timber's strength timber of higher quality can be used in
the cross-sections outer parts, see �gure 2.3. This is because it is often where the
stresses are greatest. Glulam elements, like common wood characteristics in terms
of the strength, vary in di�erent directions (L,R,T), humidity and load duration
reduces strength and is also an highly inhomogeneous material. However, compared
with an ordinary beam a glulam beam has higher strength properties due to the
so-called lamellae's e�ect. This e�ect can be brie�y explained that the lamellae
with di�erent characteristics are mixed and therefore the risk of serious errors (for
instance knots) to occur in the same cross section is small [2].

Figure 2.3: Construction of a glulaminated heterogeneous cross-section [2].

9
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Chapter 3

Compression perpendicular to

the grain

This chapter starts with a general introduction looking where compression per-
pendicular to the grain occurs and what failure modes accompanying these setups.
It is followed by a review of an article dealing with the e�ect of unloaded length
generally and an article handling unloaded length with high cross sections. Further
the former Swedish code BFS 2010:2 BKR13 is presented as well as Eurocode 5.
The chapter ends with a calculation to compare the di�erences in the codes.

3.1 General introduction

Contact joints where loads are introduced by compression perpendicular to the
grain are easy to produce and assemble and therefore widely used in timber struc-
tures. Some examples of usual connections where wood is subjected to stress per-
pendicular to the grain can be seen in �gure 3.1.

Contrary to most types of timber connection, the load deformation behavior of
contact joints is generally very ductile and does not develop a brittle failure mech-
anism, considering ultimate limit state. But it leads to high levels of unfavorable
deformations which could lead to the structural system out of serviceability limit
state. When wood fail as a material, one mode of failure is when a line of cell walls
collapse. The wall collapse where the weakest cells are placed and buckling failure
of cells are achieved due to radial compression stress, see �gure 3.2. Another mode
of failure is where a local compressive force acts on a small area of the wood. A
third mode of failure is when the wood is exposed to shearing by the annual rings,
see �gure 3.2. This phenomenon might occur in trusses where the beams are joined
by nail plates [11].

The capacity in compression perpendicular to the grain is at highest when wood
is subjected to load in radial compression to the annual rings and weakest at com-

11



�exjobbet� � 2012/6/6 � 22:13 � page 12 � #26

CHAPTER 3. COMPRESSION PERPENDICULAR TO THE GRAIN

Figure 3.1: Some examples where stress perpendicular to the grain occur [11].

pression at an angle of 45 degrees between the annual rings and the force direction.
This is illustrated in �gure 3.3 where compression tangential to the annual rings
also is observed.

However, due to woods orthotropic structure, it is di�cult to make a general mode
of failure for each plane (radial and tangential). This is because in practical use, a
force is seldom applied in the tangential or the radial direction. To get a value for
the elastic module in compression perpendicular to the grain, E90, a representative
mean value has been chosen. It is of interest to notice that (in opposition to tension)
imperfections in the timber do not reduce the strength perpendicular to the grain.
In fact, sometimes a knot could limit the deformations.

Figure 3.2: Cell buckling to the left and shearing by a annual ring to the right [11].

12
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Figure 3.3: Wood in compression perpendicular to the grain. The sti�ness can be
read from di�erent loading directions [3].

3.2 De�nition of the load carrying capacity

The de�nition of load carrying strength is primary divided into two di�erent de�-
nitions: de�nition by American Society for Testing and Materials (ASTM) and by
European Committee for Standardization (CEN). The de�nition according to both
ASTM and CEN is shown in �gure 3.4. For CEN method the following iterative
procedure is considered:

To determine the value of maximum load, Fc,90, an estimation of maximum load,
Fc,90,est, is done as a �rst step. Then by calculating 0.1Fc,90,est and 0.4Fc,90,est a
linear line can be drawn through the intersection points of these values, see line 1
in �gure 3.4. Parallel to line 1 another line, line 2, is drawn shifted 0, 01h (where h
is the specimen height ) to the right on the horizontal axis. In the graph where line
2 intersects the load-deformation curve of tested specimens a value Fc,90 can be
obtained. If the value is within range of 5 % of the estimated value, Fc,90,est, the
procedure ends. Otherwise, the procedure is repeated until the value of Fc,90,est is
within the tolerance limit [21].

Figure 3.4: Compression strength de�nition according to ASTM (left) and CEN
(right). The horizontal axis represents the specimen deformation [11].
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3.3 The e�ect of unloaded length

A compilation of Suensons tests 1938 made by Edlund in step 1 [3] shows the
di�erence in compression perpendicular to the grain with di�erent test setups.
Five di�erent setups are shown in �gure 3.5, each with a di�erent length. The
upper loaded surface is 15x15 cm2 in all setups.

Figure 3.5: Applied stress perpendicular to the grain with di�erent lengths made
by Suenson 1938 [3].

Case a) In this case, the whole element is loaded. The �bers are crushed
when the stress reaches the element yield stress. When the yield
stress is reached is a signi�cant increase of the deformation can be
observed but only small changes in load.

Case b) When only part of the element is subjected to load, the sti�ness
will be higher. This is due to the concentrated load will be
transferred through the �bers to the neighboring unloaded parts.

Casel c,d,e) In these cases, the unloaded length is increased further. What can
be seen at an increase is a higher stress level is achieved compared
to deformations. The reason for the increase in capacity is because
the neighboring parts can distribute the load through the �bers to
the unloaded parts

As can be seen in �gure 3.5 and in Suensons test is that not only the �bers directly
under the loaded length carry the load but also by neighboring lengths. In an
article made by Leijten, Larsen and Van der Put [25] three di�erent approaches to
handle the neighboring length (also called e�ective length) are presented.

14
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The �rst approach is presented by Madsen et al [11] in year 2000. They proposed
that the design code clauses should be based on an e�ective length, lef , loaded in
uniform compression, corresponding to the ultimate compression strength. Madsen
formulated an empirical model which was later modi�ed by Blass and Görlacher
[23] according to equation 3.1:

Fc
b lef

= kcfc,90 (3.1)

Blass and Görlacher suggested for fully supported load cases: kc = 1.25 for solid
wood and kc = 1.5 for glulaminated wood. With fully supported load case means
that the support stretches over the total length of a element. lef is de�ned in �gure
3.6. For other discontinuous supports kc = 1.0.

Figure 3.6: The de�nition of lef according to Blass and Görlacher [23].

Second model is designed by Riberholt [27] and is based on tests made by Petersen
[26] according to equation 3.2:

fs = kcfc,90 (3.2)

where

kc = (2.38− l

250
)

√
lef
l
≤ 4 for n ≤ 2.5b

The main di�erence from Madsens equation is that the e�ective length depends
upon the beam height with a stress slope dispersion of 1:3. This is illustrated in
�gure 3.7.
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Figure 3.7: Stress dispersion by Riberholt [27].

The third model to handle the e�ective length is a model formulated by Van der
Put. This model is a physical model based on equilibrium method assuming linear-
plastic material behavior. The stress �eld assumed satis�es all boundary conditions
with none of the stresses exceeding the plastic failure criterion and is therefore an
exact model. For small strains an approximation of 1:1 slope is made and for larger
strains 1:1.5, see �gure 3.8. At large strains the strain hardening is fully developed.
Van der Put formulates the bearing capacity as in equation 3.3.

Figure 3.8: Stress dispersion by van der Put [29].

Fc
bl

= kc,90fc,90,d (3.3)

where

kc,90 =

√
lef
l

=

√
l + 3h

l

Later in the article the three di�erent methods are compared to test data. A total
of 685 test results were evaluated, 576 at 3 % deformation and 109 at 10 % defor-
mation. The models were presented in a normal probability plot and two normal
distribution graphs. The later can be seen �gure 3.9 and �gure 3.10. The conclusion
is that Van der Puts physical model is the most accurate and reliable in predicting
the e�ective unloaded length and therefore the bearing strength perpendicular to
the grain.
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Figure 3.9: Model uncertainty plot at 3 % deformation [25].

Figure 3.10: Model uncertainty plot at 10 % deformation [25].

In an article made at VTT Technical Research Centre of Finland [12] tests have
been made to evaluate the factor kc,90 for glulaminated specimen with dimensions
115x1305. Since the support area is a critical design case of large glulam beams,
the tests of 600 mm long support lengths were performed. The results points that
the average kc,90-factor for these tests should be 1.5. An overview over the test
results can be seen in table 3.1. The conclusion of the performed tests is that kc,90
can be taken generally as 1.5 for glulam both in sills and supports without any
limitations to the contact length (except length below 400 mm). However, if small
deformations adventures the structural system kc,90 should be set to 1.25 according
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to the tests performed. F10 is the reaction force when the displacement is 10 mm.

Test F10 σ10 Fmax δmax σmax kc90
specimen kN N/mm2 kN mm N/mm2 = σmax/fc,90

1P 235 3.29 318 37 4.47 1.79
1K 266 3.75 318 25 4.49 1.53
2P 251 3.54 324 35 4.58 1.57
2K 265 3.73 324 48 4.57 1.59
3P 282 3.95 311 21 4.36 1.47
3K 267 3.73 311 28 4.35 1.32
4P 265 3.70 300 20 4.20 1.39
4K 257 3.57 300 21 4.18 1.40
mean 261 3.66 314 29 4.40 1.51
var 5.3 % 5.3 % 3.1 % 33.5 % 3.5 % 9.8 %

Table 3.1: Results of the beam tests [12].

3.4 Recommendations in the codes

In modern structural design, there are two criteria to be ful�lled: ultimate and
serviceability limit state. Ultimate limit states correspond to failure of the whole
structure or part of it and the requirements are quite precise. Serviceability limit
states correspond to unacceptable behavior at normal use. One of an unacceptable
behavior is for instance large de�ections that are visually non-aesthetic. A visual
requirement leaves an interval for the designer and the client to decide what is
acceptable and not according to any design codes.

Mentioned in previous chapters, there is no brittle failure when the stress exceeds
the de�ned strength value in perpendicular to the grain, Fc,90, but only large
deformations. In an article by Thealandersson and Mårtensson [28] it is proposed
that in some loading situations, calculations should be done in serviceability instead
of ultimate limit state which is interesting. Taking advantage of a lower partial
safety factors wood would be more favorable in meaning of lower stress levels.
Ultimately, it would be needed smaller volume of material to withstand the same
forces and less expensive designs.

The design capacity perpendicular to the grain is calculated in di�erent ways de-
pending on which code is being used. To illustrate the di�erences in strength
perpendicular to the grain a presentation of the former Swedish code BKR and the
new Eurocode 5 is made in ultimate state limit. The explanations are followed by
an example for comparing the codes.
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3.4.1 Former Swedish code BFS 2010:2 BKR 13

Swedish code treated design of compression perpendicular to the grain according
to equation 3.4 [1]:

Rc,90,d = kc,90fc,90A (3.4)

where

Rc,90,d is design value for compression perpendicular to the grain

fc,90,d is design capacity for compression perpendicular to the grain

A is stress loaded area

kc,90 is an increase factor which accounts for the unloaded length

The value of kc,90 should be put to 1.0 unless the assumptions in following parts
applies. If the assumptions applies kc,90 could be put at a higher value but maximal
1.75.

For plain timber where L1 > 2h (L1 is the contact length and h is the height of
the specimen, see �gure 3.11a) kc,90 should be set to:

kc,90 = 1.25 for massive timber

kc,90 = 1.5 glulaminated timber

For construction parts on a support, where L1 > 2h, see �gure 3.11b, kc,90 should
be set to:

kc,90 = 1.5 for massive timber

kc,90 = 1.75 glulaminated timber given that L < 400 mm.

Figure 3.11: Figures in both BKR and Eurocode [4].
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3.4.2 Eurocode 5

The following conditions must be ful�lled [4]:

σc,90,d < kcfc,90,d (3.5)

with

σc,90,d =
Fc,90,d
Aef

where

σc,90,d is design compressive stress in the e�ective contact area perpendicular
to the grain

Fc,90,d is design compressive force perpendicular to the grain

fc,90,d is design capacity stress perpendicular to the grain

Aef is the e�ective contact area

kc,90 is factor which handles how the load is applied, the risk for splitting
and degree of compression

The e�ective contact surface at compression perpendicular to the grain, Aef , should
be determined regarding the e�ective contact length parallel to the grain, where
the real contact length, L, on each side is increased by 30 mm but not more than
a, L or L1/2, see �gure 3.11.

The value of kc,90 should be put to 1.0 unless the assumptions in following parts
applies. If the assumptions applies kc,90 could be put at a higher value but maximal
1.75.

For plain timber where L1 > 2h (L is the contact length and h is the height of the
specimen, see �gure 3.11a kc,90 should be set to:

kc,90 = 1.25 for massive timber

kc,90 = 1.5 glulaminated timber

For construction parts on a support, where L > 2h, see �gure 3.11b, kc,90 should
be set to:

kc,90 = 1.5 for massive timber

kc,90 = 1.75 glulaminated timber given that L < 400 mm.
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3.4.3 Comparison by an example

Conditions

The geometric conditions that apply are found in �gure 3.12 and table 3.2. The
glulaminated beam are of class GL32c which equals the former Swedish class L40
(both have the characteristic bending strength fmk 32 MPa). The main di�erence
between the classes is that the strength capacity perpendicular to the grain, fc90k,
is 2.7 MPa in Eurocode 5 and 8.0 MPa in BKR.

Figure 3.12: Geometry of the setup.

l1 720 mm
h 630 mm
lsupport 90 mm

Table 3.2: Dimensions for the beam.

Method

The calculations are carried out with equations handled in the previous sub-chapters
about the Eurocode and BKR.

Results

Fc90k = 47 kN, Eurocode 5

Fc90k = 83 kN, BFS 2010:2 BKR 13

Although an e�ective area is accounted for in Eurocode 5 the drop in characteristic
capacity perpendicular to the grain from 8.0 MPa in BKR to 2.7 in Eurocode
weights a lot. The characteristic capacity is reduced about to 50 %.
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Chapter 4

Reinforced glulaminated beams

This chapter starts with a presentation of reinforced cross sections. The intro is
followed by a presentation of Collings model and a method developed in Karlsruhe.
Just like in the previous chapter this chapter ends with a calculation example to
illustrate the di�erences between the models. The di�erences between the former
Swedish code BFS 2010:2 BKR 13 and Eurocode 5 are taken into account.

4.1 General introduction

Figure 4.1: Some examples where stress perpendicular to the grain occur [22].

It is of interest to minimize the compressive stresses perpendicular to the grain
because, as previously mentioned, the strength perpendicular to the grain is lower
than the strength parallel to the grain. An increase of the capacity (in load mag-
nitude) of beam supports could be done by increasing the loaded area or by rein-
forcing the support area. The reinforcement may be done with self tapping screws
or threaded rods made of steel or wood. Francois Collings [24] developed a design
method in 2000 which were later evolved in 2006 by Bejtka and Blass. In an article,
'Self-tapping screws as reinforcement in beam supports' [22], three di�erent modes
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Figure 4.2: To the left, buckling of the screws and to the right, failure in plane
formed by the screw tips [22].

of failure are discussed; screws pushing into the timber, buckling of screws and by
reaching the compressive strength perpendicular to the grain in the plane formed
by the screw tips, see �gure 4.2.

4.2 Collings method

In 1999-2000 tests were made with reinforcement perpendicular to the grain (with
wood reinforcement) by Francois Colling [24]. The tests were performed with dif-
ferent variables such as screw dimensions and closeness, di�erent types of support
and timber density. With the results from the tests Colling could derive the fol-
lowing design equation (equation 4.1) which simpli�ed says 'Total capacity = load
capacity of timber + load capacity of e�ective scews'.

Fc,90 = fc,90A+ kAnefFD,S (4.1)

where

Fc,90 is the total capacity of the timber section

FD,S is the load bearing capacity of one screw
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kA is a coe�cient depending on the material used for loading
kA = 1 for hard materials such as steel and concrete
kA = 0.75 for softer materials like timber

A is the stress area

nef min{6;
b lA

450 ds
}

blA is the stress area
ds is the screw diamater

4.3 Method developed in Karlsruhe

As said in general description, this model is evolved from Collings method and by
means of new and more tests this model can more accurately consider the e�ect
of screws as reinforcement according to Formolo and Granström [6]. This model
is developed considering three di�erent types of failure modes which each will be
shortly explained below. The article [22] also contains how calculate the e�ective
sti�ness perpendicular to the grain at a reinforced beam support but only for direct
loading situations and will not be handled in this thesis.

4.3.1 Pushing in capacity

The �rst mode of failure is when a screw is pushed into the timber. According to
the tests the pushing-in capacity is equal to the withdrawal capacity, Fax,Rk, see
equation 4.2 for BFS 2010:2 BKR 13 and equation 4.3 for Eurocode 5 respectivly.

Fax,k,Rk = 11(2.5 + d)(lg − d) (4.2)

where

d the screws diameter (mm)
lg the threaded anchoring length (mm)

Fax,k,Rk =
nef fax,k d lef kd
1.2 cos2α+ sin2α

(4.3)

where

fax,k = 0.52 d−0.5 l−0.1
ef ρ0.8k

kd = min

{
d
8
1

}
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Fax,Rk is is the characteristic withdrawal strength perpendicular to the grain

nef is the e�ective number of screws

lef is penetration deep

ρk is the characteristic density in kg/m3

α is the angle between the screw axis and the grain direction

4.3.2 Buckling of screws

The second mode of failure is buckling of a screw. The reinforcing screws are
axially loaded in compression. The buckling load for axially loaded screws, which
are embedded in timber, is determined by a numerical model, see �gure 4.3.

Figure 4.3: The numerical model used to calculate the buckling load [22].

The best correlation between the test results and the calculated values can be
achieved with elastic foundation-sti�ness ch, see equation 4.4 and cv, see equation
4.5.

ch =
(0.22 + 0.014d)ρ

1.17 sin2(α) + cos2(α)
(4.4)

cv = 2.34
(ρ d)0.2

(ls)0.6
(4.5)

Whether a �xed support or a hinged support should be assumed, a hinged support
must be assumed. A �xed support, i.e. a clamped screw head, may only be
assumed by clamping the screw heads in the steel plate. For this, it is necessary
to countersink the steel plate in the form of the screw heads in such a way as the
surface of the screw heads is �ush with the lower steel plate surface. The buckling
load was calculated in a �nite element program for several di�erent test setups.
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For long and slender beams the buckling load can be calculated with Nkik, see
equation 4.6 for beam without supports and equation 4.7 for beam with two sup-
ports. Worth noticing is that the equations for buckling load are independent of
the screw length.

Nkik =
√
ch Es Is (4.6)

Nkik = 2
√
ch Es Is (4.7)

where Es = 210 GPa and Is = π
64 (0.7 d)4.

4.3.3 Load distribution in beam supports

The third and last mode of failure is characterized by reaching the compressive
strength perpendicular to the grain in a plane formed by the screw tips. The
length of the plane is calculated di�erently depending on loading situation. In the
article two di�erent beam supports were studied with directly loaded sleepers and
indirectly loaded beam supports. The di�erent test setups can be seen in �gure 4.4
and �gure 4.5.

Figure 4.4: Load distribution in directly loaded supports [22].

Figure 4.5: Load distribution in indirectly loaded supports [22].

The length of the planes in the directly loaded case is linear can be calculated with
interpolation but in the indirectly case equation 4.8 (single load distribution) and
equation 4.9 (double-sided load distribution).

lef,2 = l + 0.25 ls e
3.3 ls

h (4.8)

lef,2 = l + 0.58 ls e
3.6 ls

h (4.9)
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4.3.4 Design model

The three di�erent failure modes above end up in the following design method. A
reinforced beam support may be calculated with equation 4.10:

R90,d = min

{
nRd + kc,90lefb fc,90,d
blef,2fc,90,d

}
(4.10)

where

Rd = min

{
Rax
Rc,d

}
Rc,d = κc Npl

κc = 1 for λ̄ ≤ 0.2

κc =
1

k +
√
k2 − λ̄2

for λ̄ > 0.2

k = 0.5[1 + 0.49(λ̄− 0.2) + λ̄2]

λ̄ =

√
Npl,d
Nki,d

and

Fax,d is design value of the withdrawal capacity, see 'Pushing in capacity'
above

n is is the number of screws

b is the width of the beam

lef lef = l +min [l; 30 mm] for single-sided load distribution
lef = l + 2min [l; 30 mm] for double-sided load distribution

lef,2 see �gure 4.4 and �gure 4.5

kc,90 coe�cient kc,90 ∈ [1; 1.75] for the load distribution, see chapter 3

fc,90,d design value of the compressive strength perpendicular to the grain
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Npl,d design value of the plastic load-carrying capacity calculated with the
cross section of the core diameter of the screw

Nki,d design value of the buckling load for a screw taking into account the
elastic foundation, for details see sub-chapter 'Buckling of screws'

4.4 Adhesive joints

The art of bonding is very old, about 4000 years before Christ, and the bonding
between the wood components began in the Egyptian Faron materials manufac-
turing. But it was not until the 1900s, with the help of scienti�c studies, the
chemical and physical properties were explored. Without going to deep into chem-
istry, the mechanical bonds with glue between di�erent materials are depending on
the molecules electrical attraction to each other. When the glue is in �uid form
the movable molecules in the glue can orient themselves and bond with each wood
part. This leads to a mechanical bonding between the parts with glue between the
parts [17].

There are di�erent glues for di�erent materials, purposes and environments. For
instance epoxy glue hardens quickly and with minimal shrinkage and is therefore
favorable when completely sealing is required. Other bene�ts of epoxy, it is widely
available to tailor the properties to the conditions that apply. There are slow and
�uid. There are adhesives with short and long hardening times. The disadvantage
of this glue is that it is expensive compared to other adhesives. Examples of
applications include bonding of metal, plastic and rubber to wood [17]. In this
thesis, the glue is used for bonding between the reinforcement and the beam.

4.5 Comparing Colling and Karlsruhe model with
BFS 2010:2 BKR 13 and Eurocode 5

The calculation in this comparison will be done with �ve di�erent support lengths
to see if there is any connection in the stress capacity depending on the support
length. The results will later be compared with the FE-models.
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4.5.1 Conditions

In the following calculation the beam capacity compression perpendicular to the
grain with reinforcement will be calculated. There are two setups, one with wooden
dowels fyk 60 MPa and one with countersunk screws of model M12 with fyk 400
MPa will be used. All values are characteristic values. The interaction between
the wood in the beam and the screws are modeled by glue. However, the sti�ness
properties of glue are neglected because its complexity and due to the layer is very
thin and consequently having little e�ect on the results. The geometrical conditions
that apply for the beams and screws can be found in �gure 4.6 and in table 4.1.
The material properties are found in table 4.2, table 4.3 and table 4.4.

Figure 4.6: Geometry of the beam. This �gure shows a conceptual view when the
support length is 120 mm. The dimensions for each length can be found in table
4.1.

lsupport 60 90 120 150 180 mm
lA 690 720 750 780 810 mm
lB 560 530 500 470 440 mm
hbeam 630 630 630 630 630 mm
bbeam 115 115 115 115 115 mm
a 30 30 30 30 30 mm

Table 4.1: Table over geometry for each support length.

ρ 450 kg/m3

kc,90 1
fc,90,k [BKR 13] 8 MPa
fc,90,k [EC5] 2.7 MPa
ch 149 N/mm2

Table 4.2: Material properties of wood.
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Lscrew 400 mm
dscrew 19 mm
dscrew,nom 17 mm
fyk 60 MPa

Table 4.3: Geometry and materials properties of wooden dowels.

Lscrew 400 mm
dscrew 12 mm
dscrew,nom 10.3 mm
fyk 400 MPa

Table 4.4: Geometry and materials properties of threaded steel screws.

4.5.2 Method

The beam is only interesting at the support therefore only half of the beam is
drawn. All calculations have been carried out with equations from the building
codes stated in previous sub chapter. For details, see Appendix 12.1 and Appendix
12.2.

4.5.3 Results

The results are plotted with di�erent support lengths and the total capacity for
the cross section, see figure 4.7 - 4.10. Collings design method is clearly more
conservative compared to to the method developed in Karlsruhe. It is also clear that
the higher characteristic value in BKR have a big in�uence for the total capacity
for a reinforced cross-section perpendicular to the grain.
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Figure 4.7: Capacity (force magnitude) of reinforced beam (dowels) with di�erent
support lengths.
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Figure 4.8: Capacity (stress level) of reinforced beam (dowels) with di�erent sup-
port lengths.
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Figure 4.9: Capacity (force magnitude) of reinforced beam (threaded rods) with
di�erent support lengths.
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Figure 4.10: Capacity (stress level) of reinforced beam (threaded rods) with di�er-
ent support lengths.
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Chapter 5

Laboratory tests

Parallel to this thesis study another Master's thesis study handling strength perpen-
dicular to the grain have been worked out by Daniel Edh and Fredrik Hasselqvist
at the Division of Structural Engineering. The objective of their thesis is similar
but by means of laboratory testings. This is advantageous due to it is possible
to compare the �nite element models and judge the creditability of the models.
This chapter gives an overview of the tests and results which are interesting for
comparison with the FE-models. For details the reader is referred to their thesis
[5]. In the end of this chapter a calculation of the foundation sti�ness are done to
compare with the results from chapter 4.

5.1 Conditions

A total of 40 beams were tested with di�erent setups. The setups were 90x270,
90x360, 90x630 with nail plates, 115x630 unreinforced and 115x630 with reinforce-
ment in form of wooden dowels or threaded steel screws. The length varied between
the setups (1.6 m and 2.5 m) but the support lengths were the same for all setups;
60, 90 and 120 mm. The average density of the beams were 460 kg/m3. The
wooden dowels were in �ush with the beams bottom but the threaded steel screws
were not. They were irregular pushed in 2-8 mm which is shown in �gure 5.1.

5.2 Procedure

The beams were exposed to load until the maximal capacity was reached. This
could be done by observing graphs seeing when there is not any increase in load
but only in deformation. With the reinforcing beams the maximal load was given
when a dowel or screw buckles. The devices for measuring the deformation at the
supports is shown in �gure 5.2. There were two measure devices at each support
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Figure 5.1: The threaded steel screws were irregularity pushed in [5].

and a mean value was used. The load magnitude was measured form a sensor in
the loading machine.

5.3 Results

The results of importance to compare with the �nite element models are the unre-
inforced beams and the beams reinforced with wooden dowels and threaded steel
screws. The laboratory results of these setups are shown as images followed by
stress-deformation plots with di�erent support lengths.

Figure 5.2: To the left, the setup and to the right, a unreinforced beam cracks at
the bottom right side of the beam [5].
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Figure 5.3: To the left, a reinforced beam with dowels cracks both at the right and
left side of the beam. To the right, a view from the bottom side of the beam [5].

Figure 5.4: To the left, a reinforced beam with threaded steel rods cracks. To the
right, a view from the bottom side of the beam [5].
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Figure 5.5: Stress-deformation plot over mean values, support length 60 mm (2
dowels/rods).
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Figure 5.6: Stress-deformation plot over mean values, support length 90 mm (4
dowels/rods).
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Figure 5.7: Stress-deformation plot over mean values, support length 120 mm (6
dowels/rods).
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5.4 Calculating the elastic foundation sti�ness

It is of interest to �nd the sti�ness foundation in the laboratory test and compare
the results with the values from chapter 4 calculated by equations in the article by
Betjka and Blass [22].

5.4.1 Method
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135e3

81e3

Figure 5.8: Mean values from the laboratory tests with support length 60 mm. The
arrowheads points out where the elastic behavior goes into plastic for the wooden
dowels and the threaded steel screws.

The sti�ness can be found by manipulating equation 5.1 to equation 5.2. Pcr is
read from �gure 5.8, E = 210 GPa and I = π

64 (dnom)4. Worth noticing is that
the value shown in the �gure is for one pair of reinforcement so the value must be
divided by two.

Pcr =
√
k Es Is (5.1)

⇐⇒

k =
(Pcr)

2

Es Is
(5.2)
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5.4.2 Results

With previous stated equation the horizontal sti�ness foundation, k, is 39 N/mm2

for the wooden dowels and 30 N/mm2 for the threaded rods made by steel. The
values are alike which is reasonable due to the beam is working as the horizontal
sti�ness layer. According to the equations in chapter 4 the diameter should have an
e�ect which is also shown by a di�erence of 30 %. When comparing the horizontal
sti�ness values with the values theoretical calculated in chapter 4, the sti�ness
foundation for corresponding setup is 176 N/mm2 for the wooden dowels, which
is about �ve times larger. Corresponding sti�ness foundation for threaded rods
is 140 N/mm2 which is also about �ve times larger. The conclusion is that the
model developed in Karlsruhe cannot capture the horizontal sti�ness foundation
when calculating with pre-drilled threaded reinforcement.
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Chapter 6

The Finite element method

and ABAQUS

The Finite element method have been used for all strain and stress calculations
in this thesis. This chapter starts with a short introduction to the Finite element
method and basic di�erential equation the method is build up on. The chapter
ends with a presentation of the commercial program ABAQUS.

6.1 The Finite element method

All the physical phenomena encountered in engineering mechanics are modeled by
di�erential equations, and usually the problem addressed is too complicated to be
solved by classical analytical methods [13]. The Finite element method was found
in the 1960s and is a numerical approach by which general di�erential equations
can be solved in an approximate manner. The di�erential equations describes a
certain region which can be one-, two or three dimensional. What characterizes
FEM is that a body which should be analyzed is divided into smaller parts, so
called �nite elements. Over these part-areas relatively simple approximations can
be made which corresponds with reality even if the full-size body behaves very non
linear. The corners in each element are called nodal point (or nodes) and the nodes
together form a �nite element mesh. The choice of element mesh is important to
get a result that matches the actual behavior in reality.

Since it is often tens of thousands of unknown degrees of freedom, the system
of equations cannot be solved without computer calculations. A �ner mesh, and
therefore an increased amount of (Degree of freedoms) DOFs, will normally generate
a more accurate solution. It is often favorable to intensify the mesh where high
gradients occurs. This leads however to increased time of calculation.
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Figure 6.1: Steps in engineering mechanics analysis [13].

6.1.1 Weak form of equilibrium equations (three dimensional
case)

For three dimensional problems the di�erential equations of equilibrium are given
by:

∇̃Tσ + b = 0 (6.1)

where

∇̃T =


∂
∂x 0 0 ∂

∂y
∂
∂z 0

0 ∂
∂y 0 ∂

∂x 0 ∂
∂z

0 0 ∂
∂z 0 ∂

∂x
∂
∂y

 σ =


σxx
σyy
σzz
σxy
σyz

 b =


bx

by

bz

 (6.2)

By carrying out the matrix multiplication of equation 5.1 gives:

∂σxx

∂x +
∂σxy

∂y + ∂σxz

∂z + bx = 0

∂σyx

∂x +
∂σyy

∂y +
∂σyz

∂z + by = 0

∂σzx

∂x +
∂σzy

∂y + ∂σzz

∂z + bz = 0

(6.3)

where the traction vector t must ful�ll the boundary conditions:

t =

txty
tz

 tx =
ty =
tz =

σxxnx + σxyny + σxznz
σyxnx + σyyny + σyznz
σzxnx + σzyny + σzznz

(6.4)

The objective is to determine the weak form of the di�erential equations of equilib-
rium. By using the Green-Gaus theorem it is possible to integrate the equilibrium
equation and derive the weak form:∫

V

(∇̃v)TσdV =

∫
S

vT tdS +

∫
V

vTbdV (6.5)

where v is an arbitrary vector which weighs the numerical errors.

v =

vxvy
vz

 (6.6)
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6.1.2 FE formulation of three-dimensional elasticity

With the weak form (equation 6.5) of the equilibrium equations it is straightforward
to derive the FE equations for three-dimensional elasticity. By approximating the
vector u with

u = Na (6.7)

where N is the global matrix of shape functions and a contains the local dis-
placements. The Galerkin method means that the weight vector v is chosen in
accordance with

v=Nc (6.8)

As v and c-matrix are arbitrary it follows that equation 6.4 can be rewritten as:

∇̃v=Bc where B = ∇̃N (6.9)

Putting together equation 6.8 and equation 6.9 into the weak formulation, equation
6.5, it leads to: ∫

V

BTσdV =

∫
S

NT tdS +

∫
V

NTbdV (6.10)

When the global matrix of shape functions N has the dimension 3× 3n where n is
the number of nodal points in the entire body, and as b has the dimension 3 × 1,
NTb has the dimension 3n×1. The right hand side of equation 6.10 can be viewed
as forces acting at the nodal points.

Introducing the constitutive model and assuming the material responds elastic σ
can be written as

σ = Dε−Dε0 (6.11)

By putting together equation 6.7, equation 6.9 in equation 6.11 it can be written
as

σ = DBa−Dε0 (6.12)

With equation 6.12 equation 6.10 takes the form(∫
V

BTDBdV

)
a =

∫
S

NThdS +

∫
V

NT tdV +

∫
V

BTDε0dV (6.13)

Introduce boundary conditions which are expressed either in terms of a prescribed
traction vector t, the natural boundary condition, or a prescribed displacement
vector u, the essential boundary condition. By rewriting the boundary conditions
they become h and g, see equation 6.14 and equation 6.15 respectively.

t = Sn = h (6.14)

u = g (6.15)
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The traction vector t is known along the boundary Sh and the displacement vector
u is known along the border Sg. The sought FE-formulation can �nally be written
as.(∫

V

BTDBdV

)
a =

∫
Sh

NThdS +

∫
Sg

NT tdS +

∫
V

NTbdV +

∫
V

BTDε0dV

(6.16)

In order to write the formulation in compact fashion, the following matrices are
de�ned:

K =

∫
V

BTDBdV (6.17)

fb =

∫
Sh

NThdS +

∫
Sg

NT tdS (6.18)

fl =

∫
V

NTbdV (6.19)

f0 =

∫
V

BTDε0dV (6.20)

Where K is the sti�ness matrix, fb the boundary vector, fl the load vector and f0
is the initial strain vector. Equation 6.16 can be written as:

Ka = fb + fl + f0 (6.21)

and by de�ning the load vector as the sum of all force vectors on the right side
equation 6.21 can be written in standard FE formulation:

Ka=f (6.22)

6.1.3 Isoparametric �nite elements

Normally, the sides of a quadrilateral and brick elements must be parallel to the
coordinate axes in order to behave in a compatible manner. This restriction is very
di�cult to ful�ll when modeling bodies with arbitrary geometries. However, it can
be done by using isoparametric elements [13].

When modeling bodies with arbitrary geometries the �nite elements must be al-
lowed to have curved boundaries, i.e. general shapes. Consider a cubic region in a
local ξηζ-coordinate system that is bound by ξ±1, η±1 and ζ±1. The local region
is called the parent domain. This simple geometric shape in the local coordinate
system is mapped, transformed, into more a more complex geometry in the global
Cartesian-xyz-coordinate system. The global region is called global domain, see
�gure 6.2.

46



�exjobbet� � 2012/6/6 � 22:13 � page 47 � #61

6.1. THE FINITE ELEMENT METHOD

Figure 6.2: Eight-node three-dimensional isoparametric element [13].

For every point in the ξηζ-coordinate system there is a corresponding point in the
xyz-coordinate system. The mapping is therefore done described by

x = x(ξ, η, ζ) y = y(ξ, η, ζ) z = z(ξ, η, ζ) (6.23)

Di�erentiating equation 6.23 and using the chain rule of partial di�erentiation, it
leads to an expression which allows the transformation between the two domains,
see equation 6.24. dxdy

dz

 =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ


dξdη
dζ

 (6.24)

The Jacobian matrix J related to the mapping in equation 6.24, is de�ned by

J =


∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂z
∂ξ

∂z
∂η

∂z
∂ζ

 (6.25)

If the values in the parental domain are the ones to be determined given dx and
dy, it follows that dxdy

dz

 = J−1

dξdη
dζ

 (6.26)

To ful�ll the convergence requirement the compatibility and the completeness re-
quirement must be satis�ed. If an element behaves in a conforming way, i.e. com-
patible manner in the parent domain, its isoparametric version also behaves con-
forming and the adjacent elements will match appropriately. The completeness
requirement is satis�ed if the sum of all values of the element shape function in
every node in the element is equal to 1, see equation 6.27.

n∑
i=1

Ne
i = 1 (6.27)
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6.2 ABAQUS

FEM is a general method for calculations but the solutions are often complex and
therefore it is favorable using �nite element program for modeling. In this thesis
ABAQUS/CAE 6.10-2 is used for modeling. ABAQUS is a general program in
which both static and dynamic calculations can be done. Analysis can be done
in both two- and three dimensions from airplanes and skyscrapers to screws and
cell buckling at microscopic perspective [19]. To transact a calculation there are
di�erent modules which helps the user for instance to create the geometry and
boundary conditions. The modules are described below:

• Part module: In the part module the geometry for each part is created. A
model consists often of more than one part. It is possible to model in 3D, 2D
Planar and axisymmetric. In the part module the type of element is chosen,
solid, shell or membrane for which is being used in calculations.

• Property module: Material- and section properties are assigned. ABAQUS
handles many di�erent material models for mechanical calculations, both
elastic and plastic. Properties used in this thesis is for instance isotropic
elastic behavior, Youngs modulus and Poissons ratio.

• Assembly : In this module all parts are assembled and placed geometrically
where they belong.

• Step: In the step-module it is possible to de�ne which calculation to be carried
out. In this module it is de�ned wether the calculations should be done in a
static or dynamic way.

• Interactions: If and how a part interacts with another part it is de�ned in
this module. A common interaction is friction which can be described in
many ways, for instance in tangential and normal direction.

• Load : Loads and boundary conditions are set. Example of loads are concen-
trated forces and distributed loads. A boundary condition can be rigid or a
speci�ed displacement.

• Mesh: This is where the �nite element mesh is created. In ABAQUS there are
several di�erent element shapes to choose from, like cubes or tetrahedrons.
Meshing technique and what kind type of element is also decided in this
module.

• Job: The job is created, written in an input �le and sent to the solver.

• Visualization: In the �nal module it is possible to analyze the calculation
with the chosen outputs.
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Chapter 7

The models for unreinforced

wood

In this chapter the unreinforced beams are modeled. The assumptions and limita-
tions of the Finite element models are presented and followed by the geometries for
each model. Material, mesh, boundary conditions and interactions are presented.
The results are compared with the lab tests to verify the models creditability and
the e�ect of di�erent support lengths can be observed. The unreinforced beams are
compared with the reinforced beams in chapter 8. Chapter 7 ends with a proposal
of the increase factor, kc,90, depending on variables such as allowable deformation
and support length.

7.1 Assumptions and limitations of the FE-model

All materials have a variability or variation in properties. This is especially true for
wood, as this material grows in the nature and is not manufactured in a factory. In
reality wood is a highly inhomogeneous and every beam di�ers from each other in
material properties due to reasons mentioned in chapter 2. Even if glue-laminated
timber is considered, with the e�ect of lamellas, there are still variables in the
model that have to be neglected in order to make the model simple and e�cient.

The glue-laminated beams are modeled as one part which neglects the di�erent
layers of lamellas. The assumption is based on every lamella is assumed to share
the same material properties.

The load in the model was applied as a prescribed displacement instead of an ap-
plied force. The displacement (which simulates the load) is set in vertical negative
y-direction. This method is called displacement control and has several bene�ts
compared to load control. One of the bene�ts is that the displacement control sim-
ulates the behavior in the laboratory tests. Another bene�t concerns the increase
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of probability of getting convergence during numerical analysis [20], see �gure 7.1.

Figure 7.1: Displacement controlled loading [6].

In real time it is a dynamic situation but the leadtime is very slow and therefore
the time-dependent matrices ü and u̇ in the dynamic equation, equation 7.1, are
almost zero. Therefore the calculations will be done as a static step, see equation
7.2.

Mü+ Cu̇+Ku = f (7.1)

Ku = f (7.2)

7.2 Geometry

Due to symmetry only half of the beams will be modeled, see �gure 7.2. This
assumption leads to the number of elements can be reduced by 50 % and therefore
reduces the time for every new calculation. The unreinforced beams consits of two
di�erent cross-sections, 90x270 and 115x630. The length of the beams is 2.5 m.
The distance from the beam end to the loading plate, lA, depends on the support
length and the height of the beam according to equation 7.3. An overview over the
di�erent dimensions lA and lB can be seen in table 7.1.

Figure 7.2: Geometry of the unreinforced beams. The thickness of the loading
plate and the support is the same as the beam thickness (90 and 115 mm).
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lA = hbeam + lsupport (7.3)

lsupport[mm] lA[mm] lB[mm]
60 690 560
90 720 530
120 750 500

Table 7.1: Dimensions depending on di�erent support lengths.

7.3 Materials

The support and the simulated loading plate are made of steel with properties as
in table 7.2 below.

Parameter Value

E, GPa 210 GPa
ν 0.3

Table 7.2: Properties of steel.

In ABAQUS there is no standard model for handling woods behavior when the
material is utilized for booth elastic and plastic deformations perpendicular to
the grain. The most commen model for modeling orthotropic materials in plastic
condition is based on the Hill yield criterion. This model is developed for metals
and do not account for plastic volume changes. Because of the plastic volume
change is a key feature of wood a foam model will be used in this thesis which
takes this into account. It has the disadvantage, on the other hand, of being based
on isotropic behavior of the material [8]. Therefore two material models will be used
in this thesis, one which captures the ortotropic elastic behavior in the longitudinal
direction and another one which captures the elastic and plastic behavior in radial
and tangential direction.

The linear elastic model is created with engineering constants as an orthotropic
material (compare matrix C at page 7) but will not take any loads in radial and
tangential direction, see table 7.4. The loads in these directions will be handled
by the elastic-plastic non linear material model. The intial values are taken from
Persson's doctoral thesis [16] and can be seen in table 7.3.

The non linear model has been created as an isotropic elastic material (see table
7.5) with a material addition to handle the plastic behavior, called crushable foam
hardening. The crushable foam hardening is based on the assumption that the
resulting deformation is not recoverable instantaneously and can be idealized as
plastic for short duration events [16]. The hardening curve is described by the
uniaxial compression yield stress as a function of the corresponding plastic strain,
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see table 7.6 and table 7.7. The values in the table have been found using initial
values from Rosengren's Master's thesis [18] and Holmberg's doctoral thesis [8].
The values have been re�ned in this thesis to better correspond with the laboratory
results.

Parameter Value

EL, MPa 13500 - 16700
ER, MPa 700 - 900
ET , MPa 400 - 650
GLR, MPa 620 - 720
GLT , MPa 500 - 850
GRT , MPa 29 - 39
υRL 0.018 - 0.030
υTL 0.013 - 0.021
υRT 0.24 - 0.33

Table 7.3: Sti�ness properties of wood (spruce) at moisture content 12 % [16].

Parameter Value

EL, MPa 13500
ER, MPa 0.05
ET , MPa 0.05
GLR, MPa 600
GLT , MPa 600
GRT , MPa 0.04
υRL 0.02
υTL 0.02
υRT 0.3

Table 7.4: Sti�ness properties of the linear elastic material model.

Parameter Value

E, MPa 250
ν 0.2

Table 7.5: Elastic properties of the non linear material model.

Compression yield Hydrostatic yield

stress ratio stress ratio

1.5 1.0

Table 7.6: Plastic material properties of crushable foam.
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Yield stress σ, MPa Uniaxial plastic strain ε, MPa

4 0.0
8 1.0
8.2 1.8
9.5 2.0
16.5 2.1

Table 7.7: Plastic material properties of crushable foam hardening.

7.4 Element mesh

The mesh is the decisive factor that in�uences the accuracy of the results obtained
by the FE-model. For the unreinforced models three-dimensional solid hexagon
elements were used for the beam, the support and the loading plate. A conceptual
�gure of the mesh can be seen in �gure 7.3. The general element size is chosen to
be 0.02 m but in the geometry close to the support where high gradients might
occur, the mesh size is intensi�ed and set to 0.01 m in y-direction. The number of
elements for each calculation can be seen in table 7.8 and table 7.9.

Figure 7.3: A �gure showing the element mesh of a beam with dimensions 90x270.

Unreinforced beams 90x270
Support Linear Non-linear Loading

Support Total
length [m] model model plate

0.06 3120 3120 575 540 7355
0.09 3250 3250 550 810 7860
0.12 3315 3315 500 1080 8210

Table 7.8: Number of elements in each part of the 90x270 beams.
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Unreinforced beams 115x630
Support Linear Non-linear Loading

Support Total
length [m] model model plate

0.06 13632 13632 840 720 28824
0.09 14016 14016 810 1080 29922
0.12 14208 14208 750 1440 30606

Table 7.9: Number of elements in each part of the 115x630 beams.

7.5 Boundary conditions and loads

The displacement of the loading plate is set to 10 % of beam height, i.e. the
steel plate will move 27 mm in negative y-direction for a beam with height 270
mm. All other boundaries are set free on the loading plate including rotational
degrees of freedom. In the symmetry plane the displacements in the beams axis
(x) and vertical (z) direction are set to zero. The displacements in y-direction and
all rotations are set to move freely. The supports bottom side is set to 'Encastre',
which means that all translational degrees of freedom are set to zero on this surface.

(a) Load (b) Symmetry (c) Support

Figure 7.4: Applied boundary conditions.

7.6 Interactions

The contact surface between the loading plate and the beam is modeled by tangen-
tial friction (friction in the contact surface plane between the beam and supoort)
and is set to 0.19. The reason for putting the tangential friction to 0.19 is that the
calculations goes a lot faster using symmetry in the sti�ness matrices [20]. In the
normal direction of the contact surface plane a 'Hard contact'-relationship is used
to transmit the contact pressure between the surfaces. The same interaction is set
on the surface between the beam and the support.

To combine the two material models (linear and non-linear for the beams) a con-
straint called 'Embedded region' was used. This constraint makes, simpli�ed, the
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two material models work as one. The linear model works as a host for the em-
bedded non-linear material. ABAQUS searches for geometrical relationships and
to avoid topology issues each element mesh for the two material models is meshed
identical. The embedding eliminates the translational degrees of freedom of the
nodes in the non linear model and they become embedded with the host [20].

To register the reaction force in the support a constraint called coupling was used
which means that all nodes on a speci�c surface is locked to a single node. In this
unique node is it possible to read the summarized reactions for all nodes as one
reaction force.

7.7 Results and conclusions

This chapter is allocated to the unreinforced model and comparison with the lab-
oratory tests made by Edh and Hasselqvist [5]. Further the models are compared
and summarized to analyze the a�ect of three di�erent support lengths. The un-
reinforced models are shown below with di�erent beam dimensions and di�erent
support lengths.

7.7.1 Beam 90x270

There were two di�erent dimensions tried out, 90x270 and 115x630 mm2 to see if,
and in that case how, the height and/or width a�ects the sti�ness perpendicular
to the grain. Stress perpendicular to the grain (y-axis) is calculated by dividing
reaction force with support area. The deformation is calculated by measuring the
node displacements in the beam at the support.
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ABAQUS, beam 90x270, s=60 mm
Lab results, beam 10 90x270, s=60 mm
Lab results, beam 11 90x270, s=60 mm
Lab results, beam 12 90x270, s=60 mm

Figure 7.5: Comparison between ABAQUS model and labratory tests, beam 90x270
support length 60 mm.
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ABAQUS, beam 90x270, s=90 mm
Lab results, beam 7 90x270, s=90 mm
Lab results, beam 8 90x270, s=90 mm
Lab results, beam 9 90x270, s=90 mm

Figure 7.6: Comparison between ABAQUS model and labratory tests, beam 90x270
support length 90 mm.
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ABAQUS, beam 90x270, s=120 mm
Lab results, beam 4 90x270, s=120 mm
Lab results, beam 5 90x270, s=120 mm
Lab results, beam 6 90x270, s=120 mm

Figure 7.7: Comparison between ABAQUS model and labratory tests, beam 90x270
support length 120 mm.
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ABAQUS, beam 90x270, s=60 mm
ABAQUS, beam 90x270, s=90 mm
ABAQUS, beam 90x270, s=120 mm

Figure 7.8: Comparison between di�erent support lengths, ABAQUS beam 90x270.
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The FEM-models agree with the lab results. The plastic behavior is captured.
It can be seen in �gure 7.8 that there clearly is a connection between sti�ness
and support length. As the support length decrease the elastic sti�ness increase.
The beam with support length 60 mm reaches 5.8 MPa before the elastic sti�ness
decreases and plasticity occurs. It can also be shown that the elastic part of
deformation is sti�er when using 60 mm support compared to 120 mm.

7.7.2 Beam 115x630

Just as the three previously models these models with dimension 115x630 mm2

will be modeled with di�erent support lengths to identify the e�ect.
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ABAQUS, beam 115x630, s=60 mm
Lab results, beam 26a 115x630, s=60 mm
Lab results, beam 26b 115x630, s=60 mm
Lab results, beam 26c 115x630, s=60 mm

Figure 7.9: Comparison between ABAQUS model and labratory tests, beam
115x630 support length 60 mm.
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ABAQUS, beam 115x630, s=90 mm
Lab results, beam 27a 115x630, s=90 mm
Lab results, beam 27b 115x630, s=90 mm
Lab results, beam 27c 115x630, s=90 mm

Figure 7.10: Comparison between ABAQUS model and labratory tests, beam
115x630 support length 90 mm.
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ABAQUS, beam 115x630, s=120 mm
Lab results, beam 28a 115x630, s=120 mm
Lab results, beam 28b 115x630, s=120 mm
Lab results, beam 28c 115x630, s=120 mm

Figure 7.11: Comparison between ABAQUS model and labratory tests, beam
115x630 support length 120 mm.
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ABAQUS, beam 115x630, s=60 mm
ABAQUS, beam 115x630, s=90 mm
ABAQUS, beam 115x630, s=120 mm

Figure 7.12: Comparison between di�erent support lengths, ABAQUS beam
115x630.

The unreinforced 115x630 FE-model corresponds well with the lab results when
the support length is 60 mm. When the FE-model is compared to lab results in
support length 90 mm and 120 mm the FE-model behaves a bit sti�er than the test
beams. A possible cause is that the densities of these beams are below average.

A comparison between the 90x270-beams and the 115x630-beams shows that the
heights of the beams have little impact on the results, see �gure 7.13.

To compare the FE-results with the example made in chapter 3 the FE-results must
be translated according to the method described in chapter 3.2 'De�nition of the
load carrying capacity'. This shows that the capacity perpendicular to the grain
according to the FE-models is 72 kN which is larger than Eurocode 5 (47 kN) but
lower than BKR 13 (83 kN). The reduction of fc90k from 8 MPa to 2.7 MPa seems
a bit too conservative according to the results in this thesis.

7.8 Calculating a new increase factor, kc,90

7.8.1 Method

By viewing the results from the FE-models it is obvious that kc,90 varies by di�erent
support lengths under 400 mm. In �gure 7.12 it seems that a decreasing support
length increases the sti�ness. With FE-models which captures the behavior it is
possible to model beams with other support lengths than 60, 90 and 120 mm. To

60



�exjobbet� � 2012/6/6 � 22:13 � page 61 � #75

7.8. CALCULATING A NEW INCREASE FACTOR, KC,90

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

10

Deformation at support, mm

S
tr

es
s,

 M
P

a

 

 

ABAQUS, beam 115x630, s=60 mm
ABAQUS, beam 115x630, s=90 mm
ABAQUS, beam 115x630, s=120 mm
ABAQUS, beam 90x270, s=60 mm
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Figure 7.13: Comparison between the 115x630 beams (solid line) and the 90x270
beams (dashdotted line) with support lengths 60, 90 and 120 mm.

see how the stress and deformations behaves four new setups will be modeled with
geometry according to �gure 7.2 and table 7.10. The length of the beams is 4
m. lA and lB still depends on equation 7.3 and the number of elements in every
calculation is found in table 7.11.

lsupport[mm] lA[mm] lB[mm]
100 730 1270
200 830 1170
300 930 1070
400 1030 970

Table 7.10: Dimensions depending on di�erent support lengths.

Unreinforced beams 115x630
Support Linear Non-linear Loading

Support Total
length [m] model model plate

0.1 21312 21312 1920 1200 45744
0.2 22080 22080 1740 2400 48300
0.3 23232 23232 1620 3600 51684
0.4 24192 24192 1470 4800 56654

Table 7.11: Number of elements in each part of the 115x630 setups.
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The stress-deformation behavior for all tried out support lengths is plotted in a
common plot. A designer would be interested by the stress levels and total accept-
able deformation depending on the support length. To make a plot of these two
variables four vertical lines are drawn in a stress-deformation plot. Where the ver-
tical lines intersect the stress-deformation functions the stress value is read. With
the stress values, support length and the deformation a new plot can be created
with stress on the y-axis and support length on the x-axis. It is then possible for
a designer to see allowed stress levels depending on deformation requirement and
length of the support.

For calculation of the increase factor kc90 the stress values in the previous plot are
found by using the Eurocode 5 equation:

σc90 < kc fc,90 (7.4)

⇐⇒
σc90
fc,90

= kc (7.5)

The kc-values are then plotted with support lengths 100-400 mm. From there it is
possible to approximate a linear function by using the highest and lowest kc-values
with corresponding support lengths.

7.8.2 Results
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ABAQUS, beam 115x630, s=100 mm
ABAQUS, beam 115x630, s=200 mm
ABAQUS, beam 115x630, s=300 mm
ABAQUS, beam 115x630, s=400 mm

Figure 7.14: Stress-deformation plot for support lengths 100-400 mm.
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Figure 7.15: Four vertical lines de�ning deformation requirements 5-20 mm in
vertical y-direction.
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Figure 7.16: To the left: di�erent deformations as a function of stress levels and
support length and to the right: di�erent deformations as a function of the increase
factor kc90 and support length.

What can be seen from �gure 7.16 is that it is hard to decide one general factor kc
without de�ning a certain allowed deformation magnitude. Because of the level of
acceptable deformation is a matter between the designer and a client (as mentioned
in chapter 3), a general kc would not help that case. It is more giving for a designer
using �gure 7.16 where the stress levels are plotted with deformation and support
lengths.
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Figure 7.17: Di�erent deformations as a function of stress levels and support length.

So if you are a designer and having a displacement requirement of 10 mm and a
column cross section of 115x115 the maximum stress level accepted is 6.6 MPa.
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Chapter 8

The models for reinforced

wood

In this chapter the unreinforced FE-models are presented and compared with lab
results just like in previous chapter. There are two types of reinforcement, wooden
dowels and threaded rods made by steel. Later in the chapter the reinforced FE-
models are compared to the unreinforced to illustrate if there are any di�erences.

8.1 Assumptions and limitations of the FE-model

The same assumptions and limitations as in previous chapter, the unreinforced
models, applies in this section. The screws are modeled as cylinders due to modeling
the threads for the screws would have taken to long time. This assumption neglects
any extra friction between the screw and the glue. The glue is modeled as a
homogeneous membrane around each screw.

8.2 Geometry

Just like the beams in previous chapter, due to symmetry, only half of the beams
will be modeled and tested with di�erent support lengths. The reinforced beams
have the dimensions 115x630mm2 and consist of two di�erent types of reinforce-
ment, wood and steel. For support 60 mm there are 2 reinforcing bars, 90 mm 4
bars and �nally 120 mm 6 bars. The height hreinf is 400 mm for all models. The
geometry reminds of the unreinforced, see �gure 8.1, �gure 8.2, table 8.1 and table
8.2.
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Figure 8.1: Geometry of the unreinforced beams.

Figure 8.2: Geometry of the unreinforced beams.

lsupport [mm] lA [mm] lB [mm] a [mm] No. of dowels [ ]
60 690 560 30 2
90 720 530 30 4
120 750 500 30 6

Table 8.1: Dimensions depending on di�erent support lengths.

lsupport [mm] lA [mm] lB [mm] a [mm] No. of threaded rods [ ]
60 690 560 30 2
90 720 530 30 4
120 750 500 30 6

Table 8.2: Dimensions depending on di�erent support lengths.
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8.3 Materials

The materials of loading plate, beam and support are the same as in the unrein-
forced models. The reinforcement dowlings are made of birch and the threaded
dowels, type M12 4.6, are made of steel. Worth noticing is that birch have almost
same Youngs modulus in longitudinal direction as spruce [9]. The bonding between
the beam and the reinforcement is modeled with glue. The material properties for
birch, steel and glue can be seen in table 8.3, table 8.4 and table 8.5 respectively.

Parameter Value

EL, MPa 14000
ER, MPa 1100
ET , MPa 630
GLR, MPa 740
GLT , MPa 950
GRT , MPa 140
υRL 0.02
υTL 0.02
υRT 0.3

Table 8.3: Material properties of birch at 12 % moisture content [9].

Parameter Value

E, GPa 210
ν 0.3
fyk, MPa 240

Table 8.4: Material properties of threaded rod M12 4.6.

Parameter Value

E, MPa 1000
ν 0.3

Table 8.5: Material properties of glue (dry) [17].

8.4 Element mesh

The meshing procedure reminds of the unreinforced and the di�erences relates to
the reinforcement. In �gure 8.3 and �gure 8.4 a conceptual view over the mesh
is shown. To model the glue between the bars and the cylindrical walls in the
beam cohesive element were used. Cohesive elements are used to model, for ex-
ample, adhesive joints between two components, fracture at bonded interfaces or
gaskets [20]. Meshing the cohesive elements in radial direction de�nes the material
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orientation and also the thickness layer. The thickness layer is set to 1 mm for
both dowels and threaded rods. When modeling the reinforcements made of wood
there had to be two di�erent local coordinate systems, one coordinate system for
the cohesive elements and another coordinate system do de�ne woods orthotropic
behavior. The number of elements for each calculation can be seen in table 8.6 and
table 8.7. A quick comparison between the dowel and rod models shows that there
are low di�erences in numbers of element.

Figure 8.3: Mesh over the setup.

Figure 8.4: An overview over the reinforcement mesh.

Reinforced beams 115x630
Support Linear Non-linear Loading

Support
Reinforcement

Total
length [m] Model Model plate Hex Cohessive

0.06 14528 14528 840 1590 800 320 32606
0.09 17888 17888 810 2850 1600 640 41676
0.12 21728 21728 750 4230 2400 960 51796

Table 8.6: Beam model reinforcement dowels (115x630)
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Reinforced beams 115x630
Support Linear Non-linear Loading

Support
Reinforcement

Total
length [m] Model Model plate Hex Cohessive

0.06 14238 14238 840 1590 800 320 32026
0.09 17530 17530 810 2850 1600 640 40960
0.12 21294 21294 750 4230 2400 960 50928

Table 8.7: Beam model reinforcement threaded rods (115x630)

8.5 Boundary conditions and loads

The boundary conditions are exactly the same as in the unreinforced models, see
chapter 7.5. The displacement of the loading plate is set to 10 % of every beams
height which is equivalent to 63 mm in the reinforced models.

8.6 Interactions

The friction, embedding and coupling are exactly the same as in the unreinforced
models. The interaction between the glue and the beam is modeled with a 'Tie
constraint'. A tie constraint means that two regions/surfaces is fused together
i.e. the translational and rotational motion as well as all other active degrees
of freedom for a pair of surfaces is equal [20]. The glue is modeled with a �ner
element mesh and therefore set to slave. The choice of master and slave is based
on the cohesive zone being composed with a softer material and having a �ner
discretization. A second consideration also suggests that mismatched meshes will
be used and because of that, the pressure distribution on the cohesive elements
may be predicted inaccurately.

8.7 Results and conclusions

Just like with the unreinforced FE-models, the models are compared to lab results
to verify that they captures the real behavior.

8.7.1 Beams reinforced with dowels

The wood reinforced beams were some of irregular at the contact zone between
the beam and the support. It is visualized in �gure 8.6 as the sti�ness curve
behaves non linear at very small deformations. The linear behavior occurs after
a deformation of 0.5 mm. The model in ABAQUS however is pure planar at the
contact zone and to compare the model with the laboratory testing this curve was
adjusted 0.5 mm to the right to �t the linear elastic of the laboratory testing
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The FE-models with wood reinforcements seem to catch the actual behavior from
the tested reinforced beams. The sti�ness in the elastic area correlates very well.
There are however some di�erences when comparing the support length 90 and 120
mm. As can be seen in �gure 8.7 and �gure 8.8 the FE-models do not reach above
12 MPa like the tested specimens do. A possible cause can be that the reinforced
wood columns have a higher yield point before entering plastic behavior. In this
model the yield point for load parallel the grain is 60 MPa and in reality it could be
higher. The beams with support 90 and 120 mm with σyield = 80 MPa, is plotted
in �gure 8.9 and �gure 8.10.

Another remark of this comparisons is that when the specimens capacity is drained
and the curve slops the FE-models continue to carry load. This e�ect is due to
cracks appears in the specimens which reduces the horizontal sti�ness and therefore
the dowels buckles. Crack propagation is not taken into account in this thesis.
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ABAQUS, beam 115x630 dowel reinforcement, s=60 mm
Lab results, beam 29a 115x630 wood reinforcement, s=60 mm
Lab results, beam 29b 115x630 wood reinforcement, s=60 mm
Lab results, beam 30 115x630 wood reinforcement, s=60 mm

Figure 8.5: Comparison between ABAQUS model and laboratory tests, beam
115x630 with dowels support length 60 mm.
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ABAQUS, beam 115x630 wood reinforcement, s=90 mm
Lab results, beam 31a 115x630 wood reinforcement, s=90 mm
Lab results, beam 31b 115x630 wood reinforcement, s=90 mm
Lab results, beam 32 115x630 wood reinforcement, s=90 mm

Figure 8.6: Comparison between ABAQUS model and laboratory tests, beam
115x630 with dowels support length 90 mm.
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ABAQUS, beam 115x630 wood reinforcement, s=120 mm
Lab results, beam 33a 115x630 wood reinforcement, s=120 mm
Lab results, beam 33b 115x630 wood reinforcement, s=120 mm
Lab results, beam 34 115x630 wood reinforcement, s=120 mm

Figure 8.7: Comparison between ABAQUS model and laboratory tests, beam
115x630 with dowels support length 120 mm.
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ABAQUS, beam 115x630 dowels, s=60 mm
ABAQUS, beam 115x630 dowels, s=90 mm
ABAQUS, beam 115x630 dowels, s=120 mm

Figure 8.8: Comparison between reinforced beams with dowels in di�erent support
lengths.
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ABAQUS, beam 115x630 wood reinforcement, Y=60 MPa, s=90 mm
ABAQUS, beam 115x630 wood reinforcement, Y=80 MPa, s=90 mm
Lab results, beam 31a 115x630 wood reinforcement, s=90 mm
Lab results, beam 31b 115x630 wood reinforcement, s=90 mm
Lab results, beam 32 115x630 wood reinforcement, s=90 mm

Figure 8.9: Illustrating the new yield point 80 MPa in longitudinal direction for
the reinforcing dowels, support length 90 mm.
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ABAQUS, beam 115x630 wood reinforcement, Y=60 MPa, s=120 mm
ABAQUS, beam 115x630 wood reinforcement, Y=80 MPa, s=120 mm
Lab results, beam 33a 115x630 wood reinforcement, s=120 mm
Lab results, beam 33b 115x630 wood reinforcement, s=120 mm
Lab results, beam 34 115x630 wood reinforcement, s=120 mm

Figure 8.10: Illustrating the new yield point 80 MPa in longitudinal direction for
the reinforcing dowels, support length 120 mm.

8.7.2 Beams reinforced with threaded rods

The steel reinforced beams are also tried out with di�erent support lengths to see
if the length a�ects the stress capacity perpendicular to the grain. In chapter 5
(Laboratory testing), the pictures shows that there is at least 2 mm gap between
the end of a screw and the underside of the beams. Overall, the gap varied irregular
from 2 mm up to 8 mm. These values were not saved which have led to challenges
in modeling. It is too time-consuming to test all di�erent combinations with trial
and error so a simpli�ed approach have been applied. To capture the in�uence of
the gap each reinforced steel beam has been modeled in two sets; with no gap and
a gap of 2 mm.

In �gure 8.11 above there is only one FEM-model plotted due to it is clear that the
model do not capture the lab results. In the �gure it is observed that the screws
yield point is too low (240 MPa) and that the slope of the curve decreases. To
better capture the behavior a new yield point is set to 400 MPa as in the article
by Bejtka and Blass [22]. Evaluation of this yield point is shown in �gure 8.12.
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Abaqus, beam 115x630 threaded rods, s=60 mm, disp=0 mm Y=240
Lab results, beam 35 115x630 threaded rods, s=60 mm
Lab results, beam 36a 115x630 threaded rods, s=60 mm
Lab results, beam 36b 115x630 threaded rods, s=60 mm

Figure 8.11: Comparison between ABAQUS model and labratory tests, beam
115x630 with threaded rods support length 60 mm.

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

Deformation at support, mm

S
tr

es
s,

 M
P

a

 

 

Abaqus, beam 115x630 threaded rods, s=60 mm, disp=0 mm Y=400
Abaqus, beam 115x630 threaded rods, s=60 mm, disp=2 mm Y=400
Lab results, beam 35 115x630 threaded rods, s=60 mm
Lab results, beam 36a 115x630 threaded rods, s=60 mm
Lab results, beam 36b 115x630 threaded rods, s=60 mm

Figure 8.12: Comparison between ABAQUS model and labratory tests, beam
115x630 with threaded rods support length 60 mm with new yield point.
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It is clear that yield point 400 MPa captures the lab results a lot better than the
�rst assumption regarding the yield point. For further models, yield point 400 MPa
is used.
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Abaqus, beam 115x630 threaded rods, s=90 mm, disp=0 mm Y=400
Abaqus, beam 115x630 threaded rods, s=90 mm, disp=2 mm Y=400
Lab results, beam 37a 115x630 threaded rods, s=90 mm
Lab results, beam 37b 115x630 threaded rods, s=90 mm
Lab results, beam 38 115x630 threaded rods, s=90 mm

Figure 8.13: Comparison between ABAQUS model and labratory tests, beam
115x630 with threaded rods support length 90 mm.
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Abaqus, beam 115x630 threaded dowels, s=120 mm, disp=0 mm
Abaqus, beam 115x630 threaded dowels, s=120 mm, disp=2 mm
Lab results, beam 39a 115x630 threaded dowels, s=120 mm
Lab results, beam 39b 115x630 threaded dowels, s=120 mm
Lab results, beam 40 115x630 threaded dowels, s=120 mm

Figure 8.14: Comparison between ABAQUS model and labratory tests, beam
115x630 with threaded rods support length 120 mm.
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ABAQUS, beam 115x630 threaded rods, s=60 mm
ABAQUS, beam 115x630 threaded rods, s=90 mm
ABAQUS, beam 115x630 threaded rods, s=120 mm

Figure 8.15: Comparison between reinforced beams with threaded rods in di�erent
support lengths.

It is clear that the model with 2 mm displacement captures the stress-deformation
results from the lab tests better than the model without displacement. Especially
where the support length is 60 mm, see �gure 8.13. In the models with support
length 90 and 120 mm there are deviations but this probably depends on the gap
between the screws and the support varies in between 2-8 mm. As stated above,
this is too time-consuming to model. Another remark of this comparisons is that
when the specimens capacity is drained and the curve slops the FE-models continue
to carry load. This e�ect is due to cracks appears in the specimens which reduces
the horizontal sti�ness and therefore the screw buckles. Crack propagation are not
been taken into account in this thesis. The stress perpendicular to the grain and
the deformation is illustrataded in �gure 8.16 and �gure 8.17 respectively.

77



�exjobbet� � 2012/6/6 � 22:13 � page 78 � #92

CHAPTER 8. THE MODELS FOR REINFORCED WOOD

(Avg: 75%)
S, S22

−7.000e+06
−6.699e+06
−6.398e+06
−6.097e+06
−5.797e+06
−5.496e+06
−5.195e+06
−4.894e+06
−4.593e+06
−4.292e+06
−3.992e+06
−3.691e+06
−3.390e+06
−3.089e+06
−2.788e+06
−2.487e+06
−2.187e+06
−1.886e+06
−1.585e+06
−1.284e+06
−9.833e+05
−6.825e+05
−3.817e+05
−8.083e+04
+2.200e+05

−4.297e+08

+6.896e+06

Step: Step−1   Frame: 102
Total Time: 1.000000

Figure 8.16: Stress perpendicular to the grain in the reinforced beam.
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Figure 8.17: The displacements in vertical direction.

It is of interest to see how how the screws behaves in the FE-models. In �gure
8.18 a von Mises-plot over the screws in the FE-model just when the screws in
the specimen buckles. The FE-model, as stated above, does not take cracks into
account which makes the horizontal sti�ness foundation sti�er compared to in the
specimen.
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Figure 8.18: von Mises stresses (Pa) in the threaded rods. To the left a 3D-view
and to the right a 2-D view to illustrate the deformations.

Because of the FE-models do not capture the cracking behavior it is complicated
to specify a speci�c stress capacity for both the dowels and the threaded rods. The
FE-models of beams reinforced with dowels captuers the elastic behavior very well
however so the capacity for the dowels will be handled only in the elastic part.
The threaded rods behavior in the elastic area were hard to capture even with a
2 mm displacement due to the irregular gaps between the rods and the support.
However the models shows there is clearly a bene�t in deformations if the beams
would be produced with no gap at all. In all stress-deformation graphs for the rods
there is a obvious di�erence in deformations between the models having no gap and
models with a gap of 2 mm. If the rods would be placed at the exact same level
as the bottomside of the beam it would increase the sti�ness alot according to the
FE-models. Yet it would be of impartance to produce the beams with precision. If
the rods stick out just some mm's from the bottomside of the beam the rods will
carry all load by themselves.

The reinforced beams with dowels behaves elastic until stress rate is 10.2, 11.1
and 11.5 MPa (see �gure 8.8) is reached for support lengths 60, 90 and 120 mm
respectivly. Compared with the model developed by Blass and Betjka (see chapter
4) the values are higher than Eurocode 5 (7.7, 8.4 and 8.8 MPa) but lower than the
BKR 13 (15.6, 15.5 and 15.4 MPa). A possible cause is that the model is developed
for self-tapping screws and the foundation sti�ness is di�erent. Compared to the
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Eurocode 5-values there is an average increase of capacity of 32 %. To get a better
overview the results are presented in table 8.8.

The model developed in Karlsruhe do not take any gap into account so it is possible
to compare the these reults with the FE-results. This comparison will, just like
with the dowels, only handle the elastic part of the deformations. The reinforced
beams with threaded rods behaves elastic until stress rate 11.0, 15.1 and 17.8 MPa
(see �gure 8.15) is reached for support lengths 60, 90 and 120 mm respectivly. Just
like with the dowels the FE-values are compared to the calculations in chapter 4.5.
The calculated values are 12.1, 14.4 and 15.5 MPa (Eurocode 5) and 20.1, 21.4, 22.1
MPa (BKR 13). Compared to the Eurocode 5-values there is an average increase
capacity of 4 %. To get a better overview the results are presented in table 8.8.

Stress capacity [MPa]
Reinforcement

Dowels Threaded rods
Support length [mm] 60 90 120 60 90 120
Eurocode 5 7.7 8.4 8.8 12.1 14.4 15.5
BKR 13 15.6 15.5 15.4 20.1 21.4 22.1
FE-models 10.2 11.1 11.5 11.0 15.1 17.8
FE-models / Eurocode 5 1.32 1.32 1.31 0.92 1.05 1.15
FE-models / BKR 13 0.65 0.72 0.75 0.55 0.71 0.81

Table 8.8: Comparison between the FE-models and calculations from chapter 4

The model developed in Karlsruhe have been designed for handling self-tapping
screws up to 12 mm of diameter which can explain that there are di�erences in the
results but overall BKR 13 have values which are a bit too high compared with the
FE-models.
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8.7.3 Comparison between the unreinforced and reinforced
models

Comparisons in stress-deformation between the reinforced and unreinforced models
are illustrated in �gure 8.19. It is clear that the reinforcement makes the beam
a lot sti�er in stress perpendicular to the grain. At a deformation of 2 mm the
unreinforced beams have an average stress capacity of 4 MPa. This value can be
compared with the reinforced beams where the stress magnitude is 8 MPa and 16
MPa. Reinforcing with dowels doubles the stress capacity perpendicular to the
grain and reinforcing with threaded rods makes the capacity four times larger than
unreinforced.
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Figure 8.19: Comparison between the reinforced beams and unreinforced
(115x630).
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Chapter 9

Final remarks

In this thesis it has been shown that decreasing support length under 400 mm
increases the sti�ness perpendicular to the grain. The value in Eurocode 5 is con-
servative as recommending a characteristic compression capacity of 2.7 MPa. The
FE-models show that the neighboring unloaded parts of the beam helps transfer-
ring the stresses. The capacity varies with di�erent support length and allowable
deformations. If a designer allows a deformation of 20 mm, independent of beam
height, and using a support length of 100 mm the characteristic capacity would be
8.7 MPa which is about three times larger than the values proposed in Eurocode
5. However, if a designer allow a deformation of 5 mm and using a support length
of 400 mm the capacity is only 2.1 MPa which is lower than the Eurocode 5 value.
Di�erent functions of acceptable deformation are plotted as functions of support
length and stress level which would come handy for a designer to use.

The analysis of reinforcing with wooden dowels or threaded steel screws points that
the reinforcement have a positive e�ect on the increase of compressive capacity
perpendicular to the grain. Due to steels sti�ness the threaded rods reach an
"elastic capacity" of an average of 16 MPa which can be compared to the wooden
dowels which reach an average of 8 MPa. Because of crack propagation has not
been taken into account in this thesis the non linear behavior of the reinforcing
models is hard to predict. It has also been shown that the model developed in
Karlsruhe for reinforced cross sections needs re�ning for capturing wooden dowels
and threaded rods behavior according to the FE-results.
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Chapter 10

Future research

During the work it has come up areas which is too time consuming and/or too
complicated to model within the limits of the present study and needs further
investigations:

• In this thesis neither the lamellas nor the annual rings have been modeled.
It is unknown if modelling the lamellas e�ect the capacity. The annual rings
have an e�ect on the capacity perpendicular which could be seen in chapter
2. But it is unknown how much so this should be analyzed further.

• When modeling the reinforced beams crack propagation is not considered.
This has an e�ect when a dowel or rod is about to buckle. If not cracks are
considered the beam continue to carry load but in real life the beam cracks
and the dowel or rod buckles.

• In the parallel thesis [5] there were also another type of reinforcement tried
out, nailed plates. The nailed plates increased maximal capacity signi�cant
due to the load was transferred by the nails and plate. The steel plate also
prevented the beam to deform in tangential direction. This is an common
connection between beams and columns so a model should be of interest for
timber structural designers.
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12.1. CALCULATIONS WITH WOODEN DOWELS

12.1 Calculations with wooden dowels

KARLSRUHE METHOD WITH WOODEN DOWELS
Eurocode 5

Support length L=60 L=90 L=120 L=150 L=180
N,ki,k [N] 98 741 98 741 98 741 98 741 98 741
c,h [N/mm2] 176,2 176,2 176,2 176,2 176,2
rho,w [kg/m3] 450 450 450 450 450
alpha 1,57 1,57 1,57 1,57 1,57
E,wood(L) [MPa] 13 500 13 500 13 500 13 500 13 500
I,screw [mm] 4100 4100 4100 4100 4100
k,c90 1 1 1 1 1
f,yk [MPa] 60 60 60 60 60
f,c90,k [MPa] 2,7 2,7 2,7 2,7 2,7
l,screw [mm] 400 400 400 400 400
A,screw [mm2] 227 227 227 227 227
b,beam [mm] 115 115 115 115 115
h,beam [mm] 630 630 630 630 630
l,support [mm] 60 90 120 150 180
l,ef,1 [mm] 90 120 150 180 210
l,ef,2 [mm] 873 903 933 963 993
n 2 4 6 8 10
d,screw [mm] 19 19 19 19 19
d,screw,n [mm] 17 17 17 17 17
lambda,k 0,371 0,371 0,371 0,371 0,371
N,pl,k [N] 13 619 13 619 13 619 13 619 13 619
k 0,611 0,611 0,611 0,611 0,611
kappa,c 0,912 0,912 0,912 0,912 0,912
R,c,k [N] 12 425 12 425 12 425 12 425 12 425
R,ax,k [N] 123 234 229 963 331 238 429 126 524 571
f,ax,k 8,69 8,69 8,69 8,69 8,69
k,d 1 1 1 1 1
n,ef 1,87 3,48 5,02 6,50 7,94
R,k [N] 12 425 12 425 12 425 12 425 12 425
l,ef x b x f,c,90,k 27 945 37 260 46 575 55 890 65 205
n x R,k + l,ef x b x f,c,90,k 52 795 86 961 121 126 155 291 189 457
b x l,ef,2 x f,c,90,k 270 985 280 300 289 615 298 930 308 245
R,90,k [N] 52 795 86 961 121 126 155 291 189 457
f,90,k [MPa] 7,7 8,4 8,8 9,0 9,2
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KARLSRUHE METHOD WITH DOWELS
BFS 2010:2 BKR 13

Support length L=60 L=90 L=120 L=150 L=180
N,ki,k [N] 98 741 98 741 98 741 98 741 98 741
c,h [N/mm2] 176,2 176,2 176,2 176,2 176,2
rho,w [kg/m3] 450 450 450 450 450
alpha 1,57 1,57 1,57 1,57 1,57
E,wood(L) [MPa] 13 500 13 500 13 500 13 500 13 500
I,screw [mm] 4100 4100 4100 4100 4100
k,c90 1 1 1 1 1
f,yk [MPa] 60 60 60 60 60
f,c90,k [MPa] 8 8 8 8 8
l,screw [mm] 400 400 400 400 400
A,screw [mm2] 227 227 227 227 227
b,beam [mm] 115 115 115 115 115
h,beam [mm] 630 630 630 630 630
l,support [mm] 60 90 120 150 180
l,ef,1 [mm] 90 120 150 180 210
l,ef,2 [mm] 873 903 933 963 993
n 2 4 6 8 10
d,screw [mm] 19 19 19 19 19
d,screw,n [mm] 17 17 17 17 17
lambda,k 0,371 0,371 0,371 0,371 0,371
N,pl,k [N] 13 619 13 619 13 619 13 619 13 619
k 0,611 0,611 0,611 0,611 0,611
kappa,c 0,912 0,912 0,912 0,912 0,912
R,c,k [N] 12 425 12 425 12 425 12 425 12 425
R,ax,k [N] 164 307 328 614 492 921 657 228 821 535
f,ax,k - - - - -
k,d - - - - -
n,ef - - - - -
R,k [N] 12 425 12 425 12 425 12 425 12 425
l,ef x b x f,c,90,k 82 800 110 400 138 000 165 600 193 200
n x R,k + l,ef x b x f,c,90,k 107 650 160 101 212 551 265 001 317 452
b x l,ef,2 x f,c,90,k 802 919 830 519 858 119 885 719 913 319
R,90,k [N] 107 650 160 101 212 551 265 001 317 452
f,90,k [MPa] 15,6 15,5 15,4 15,4 15,3

92



�exjobbet� � 2012/6/6 � 22:13 � page 93 � #107

12.2. CALCULATIONS WITH THREADED STEEL RODS

12.2 Calculations with threaded steel rods

KARLSRUHE METHOD WITH THREADED STEEL RODS
Eurocode 5

Support length L=60 L=90 L=120 L=150 L=180
N,ki,k [N] 127 483 127 483 127 483 127 483 127 483
c,h [N/mm2] 140,1 140,1 140,1 140,1 140,1
rho,w [kg/m3] 450 450 450 450 450
alpha 1,57 1,57 1,57 1,57 1,57
E,steel [MPa] 210 000 210 000 210 000 210 000 210 000
I,screw [mm4] 552 552 552 552 552
k,c90 1 1 1 1 1
f,yk [MPa] 400 400 400 400 400
f,c90,k [MPa] 2,7 2,7 2,7 2,7 2,7
l,screw [mm] 400 400 400 400 400
A,screw [mm2] 83 83 83 83 83
b,beam [mm] 115 115 115 115 115
h,beam [mm] 630 630 630 630 630
l,support [mm] 60 90 120 150 180
l,ef,1 [mm] 90 120 150 180 210
l,ef,2 [mm] 873 903 933 963 993
n 2 4 6 8 10
d,screw [mm] 12 12 12 12 12
d,screw,n [mm] 10,3 10,3 10,3 10,3 10,3
lambda,k 0,511 0,511 0,511 0,511 0,511
N,pl,k [N] 33 329 33 329 33 329 33 329 33 329
k 0,707 0,707 0,707 0,707 0,707
kappa,c 0,837 0,837 0,837 0,837 0,837
R,c,k [N] 27 885 27 885 27 885 27 885 27 885
R,ax,k [N] 97 937 182 756 263 241 341 035 416 887
f,ax,k 10,93 10,93 10,93 10,93 10,93
k,d 1 1 1 1 1
n,ef 1,87 3,48 5,02 6,50 7,94
R,k [N] 27 885 27 885 27 885 27 885 27 885
l,ef x b x f,c,90,k 27 945 37 260 46 575 55 890 65 205
n x R,k + l,ef x b x f,c,90,k 83 714 148 799 213 883 278 967 344 052
b x l,ef,2 x f,c,90,k 270 985 280 300 289 615 298 930 308 245
R,90,k [N] 83 714 148 799 213 883 278 967 308 245
f,90,k [MPa] 12,1 14,4 15,5 16,2 14,9
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KARLSRUHE METHOD WITH THREADED STEEL RODS
BFS 2010:2 BKR 13

Support length L=60 L=90 L=120 L=150 L=180
N,ki,k [N] 127 483 127 483 127 483 127 483 127 483
c,h [N/mm2] 140,1 140,1 140,1 140,1 140,1
rho,w [kg/m3] 450 450 450 450 450
alpha 1,57 1,57 1,57 1,57 1,57
E,steel [MPa] 210 000 210 000 210 000 210 000 210 000
I,screw [mm4] 552 552 552 552 552
k,c90 1 1 1 1 1
f,yk [MPa] 400 400 400 400 400
f,c90,k [MPa] 8 8 8 8 8
l,screw [mm] 400 400 400 400 400
A,screw [mm2] 83 83 83 83 83
b,beam [mm] 115 115 115 115 115
h,beam [mm] 630 630 630 630 630
l,support [mm] 60 90 120 150 180
l,ef,1 [mm] 90 120 150 180 210
l,ef,2 [mm] 873 903 933 963 993
n 2 4 6 8 10
d,screw [mm] 12 12 12 12 12
d,screw,n [mm] 10,3 10,3 10,3 10,3 10,3
lambda,k 0,511 0,511 0,511 0,511 0,511
N,pl,k [N] 33 329 33 329 33 329 33 329 33 329
k 0,707 0,707 0,707 0,707 0,707
kappa,c 0,837 0,837 0,837 0,837 0,837
R,c,k [N] 27 885 27 885 27 885 27 885 27 885
R,ax,k [N] 54 870 54 870 54 870 54 870 54 870
f,ax,k - - - - -
k,d - - - - -
n,ef - - - - -
R,k [N] 27 885 27 885 27 885 27 885 27 885
l,ef x b x f,c,90,k 82 800 110 400 138 000 165 600 193 200
n x R,k + l,ef x b x f,c,90,k 138 569 221 939 305 308 388 677 472 047
b x l,ef,2 x f,c,90,k 802 919 830 519 858 119 885 719 913 319
R,90,k [N] 138 569 221 939 305 308 388 677 472 047
f,90,k [MPa] 20,1 21,4 22,1 22,5 22,8
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