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Abstract 
In a European collaborative research project a timber-glass shear wall element has been 
developed. This consists of a 10×1200×2400 mm thick glass pane of standard float glass with 
an LVL-frame adhesively bonded to the glass along its perimeter .In previous research several 
laboratory tests of these types of shear walls were performed. The tests, performed for various 
modes of loading, indicated that the shear walls collapsed due to buckling 

The aim of this master thesis has been to further analyse the stability of the timber-glass shear 
wall element. The results from laboratory tests were evaluated and the shear wall element was 
analysed with the finite element method using a modelling and analysis computer software. 
The finite element model was calibrated to match the results from the experiments in terms of 
failure loads, assuming failure was due to instability in the shear wall element. Further 
analyses were made on the influence of various parameters (e.g. material and geometry) on 
the structural behaviour. Of special interest has also been to investigate the load bearing 
capacity when combining vertical and horizontal loads.  

The results show that the buckling load was decreased when using a less stiff adhesive. The 
elastic stiffness of the timber studs had a larger relative impact on the stability of the shear 
wall element, than the elastic modulus of glass. The buckling shape also turned out to be 
dependent on the ratio between the stiffness of glass and the stiffness of the vertical timber 
studs. In a combined load case two interaction formulas were fitted to the results of the 
analysis. 

The buckling analyses was in the end, after a lot of work, a good tool to use when estimating 
the critical load limit of the timber glass shear wall. However, the boundary conditions have 
showed to be of great importance in order to get an accurate result.  
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Sammanfattning 
I ett europeiskt samarbetsprojekt har ett skjuv-väggelement av glas och trä utvecklats. Detta 
element består av en 10×1200×2400 stor glasskiva av standard glas, med en träram av 
45×45mm LVL limmad längs kanterna. I tidigare studier har flera laboratorietester utförts på 
dessa typer av skjuv-väggelement. Provningarna, som har utförts med olika typer av 
belastningsfall, indikerar att skjuv-väggen kollapsade på grund av instabilitet, buckling. 

Syftet med detta examensarbete har varit att ytterligare analysera stabiliteten i detta vägg-
element av glas och trä i samverkan. Resultatet från laboratorietester har utvärderats och 
väggelementet har också analyserats med finita elementmetoden med en modellerings- och 
analysprogramvara. Inverkan av materialegenskaper har också analyserats ytterligare. Av 
särskilt intresse har också varit att undersöka lastkapaciteten vid en kombination av vertikal 
och horisontal lastpåverkan. 

Resultaten visar att knäcklasten minskar markant vid användning av ett mindre styvt lim. Den 
elastiska styvheten hos träet visar sig ha en större relativ inverkan på lastförmågan jämfört 
med den elastiska styvheten hos glaset. Bucklingsformen visade sig vara beroende av 
förhållandet mellan styvheterna hos glaset och träet. Vid det kombinerade lastfallet kunde två 
olika interaktions samband utformas. 

Bucklingsanalysen visar sig, efter mycket nedlagt arbete, vara en bra metod för att utvärdera 
lastförmågan hos väggelementet. En mycket betydelsefull faktor för att erhålla korrekta 
resultat var modellens upplagsvillkor. 
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1 Introduction 
Timber and glass are materials with a wide range of uses. Both timber and glass have been 
used a long time back, and due to the technical development the usage area has expanded and 
today the materials are found in a variety of good products. In architecture glass has long been 
an appreciated material, especially for its transparent properties. With glass one can enlighten 
the indoor environment, which is an important factor for our indoor wellbeing. Thanks to 
technical development it has become possible to build large glass façades to a reasonable cost, 
and today it is rather a demand than a request that the building has a large light inlet and a 
transparent appearance.  

Timber has been used in construction since mankind built the first hut and timber is an 
excellent building material, not only because of its good strength qualities but also for its 
aesthetically expression and that it is considered as an environmental friendly building 
material. A natural step in the development would be to combine timber and glass and 
allowing them to complete each other’s properties.  

Laminated glass façade have been used a long time, but until now only serving as an outer 
shell on a supporting structure. In modern architecture it is not uncommon that entire walls 
are replaced by large glass panes. But a house wall element must carry the vertical loads from 
roofs and other overlaying loads and stabilize the house sideway against wind loads. When 
this wall is replaced by a glass façade an additional load carrying system is required. The 
vertical loads are then often carried by columns and beams, and the stabilizing structure are 
made up by wind diagonals or carried by interior walls. A good idea to save on materials and 
costs would be to use the glass as a structural element. 

1.1 Topic introduction 
In a European research project dealing with load bearing timber-glass building components, a 
shear wall element able to carry load both vertically and horizontally has been studied. The 
research project was carried out in cooperation between Glafo AB and Linnæus University, 
with the official name ‘Glass and timber – Innovative building components with added value’. 
In previous research several tests of these types of shear walls were performed. The execution 
of these tests is presented in [1] but the results have not been further analysed.   

The shear wall elements tested consisted of an LVL-frame adhesively bonded to the glass 
along its perimeter using two different adhesives, one silicone and one acrylate adhesive. The 
glass pane used was 10x1200x2400 mm. The glass material was a standard float glass. Three 
types of load cases were used, vertical, horizontal and combined vertical-horizontal loading. 
Displacements were measured with potentiometers and with a non-contact 3D-deformation 
measuring system, PontosTM.  

In the experimental test there were no visual cracks in the glass before the maximum load was 
reached. The elements failed suddenly by cracking of the entire glass sheet. The glass fell out 
in large pieces and the timber-frame could not hold the remaining glass or carry the load level 
reached.  
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1.2 Aim and limitations 
The aim of this master thesis is to further analyse the stability of the timber-glass shear wall 
element. The results from tests performed at Linnæus University will be used to evaluate the 
out-of-plane displacements for different load cases. The shear wall elements under loading 
will also be analysed with the finite element method using a modelling and analysing 
computer FE-program. The FE-model will be calibrated to match the results from experiments 
in terms of failure loads assuming failure is due to instability in the shear wall element.  

Once a reasonably good fit to experimental data is obtained further analyses will be made on 
the influence of various material parameters on the structural behaviour of the timber-glass 
shear wall.  

Of special interest is also to investigate the load bearing capacity when combining vertical 
and horizontal loads. Results from this analysis could serve as a background for development 
of design formulae for timber-glass composite shear walls. 

To be able to perform accurate calculations and have a functional FE-model it is important to 
get a good knowledge of the materials glass, wood and the adhesive that holds these together. 
A theoretical background of failure due to instability of structures is also important to obtain.  
This is achieved by an introductory literature review. 

1.3 Outline of the thesis 
The first part aims at giving the reader a background of materials, the concept of a timber-
glass shear wall and an introduction to the theory used dealing with buckling phenomena 
(instability) and the finite element method. Materials that are used to build up the shear wall 
element: timber, glass and adhesive are presented in chapter 2, were also earlier research of 
timber-glass composite products are mentioned. In chapter 3 the timber-glass shear wall 
element analysed in this thesis is presented more thoroughly. In chapter 4 the theory of 
instability of a plate, the finite element method and the FE software Abaqus is described. 

The second part, chapter 5, aims at describing how the FE-model was developed and presents 
the method used to gain the results of this thesis. 

In the third part (chapter 6-8) the results from calculations are presented and discussed. 
Finally suggestions for further work are made. 

References used are presented in the final chapter. The appendix section shows graphs and 
tables from experiments and FE-calculations, the former being used as input for the model 
development, the latter being the results from the various analyses performed. 
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2 Materials in the shear wall element 

2.1 Timber 
Timber is one of the oldest building materials used by mankind. Timber in its natural form has 
a lot of embedded properties that makes it an excellent building material. It is capable of 
transferring both tension and compression and has a high strength to weight ratio. Timber is 
also easy to process into different shapes and to connect with other timber elements.  

The natural growth of timber creates a variety of structures and characteristic defects. This is 
often aesthetically appealing but it also creates problems in timber construction. Timber is 
thus not a homogeneous material and defects like knots must be considered as these reduce 
the strength of timber. When, for example timber is exposed to tension, a knot can be 
regarded as a hole, resulting in eccentric loading as the fibers circle the knot. Defects vary in 
shapes, sizes and number and a board with many knots is weaker than a board with fewer 
knots. Other examples of defects are fissures. [2] 

The strength of the timber is besides the number of defects dependent of several other 
parameters like species, density and the slope of the grain. To be able to take advantage of the 
potential capacity of timber it is normally graded into different strength grades. The properties 
are determined in a nondestructive manner either by visual inspection or by mechanical 
grading. Visual strength grading was developed in the US during the 1920s and is a manual 
process performed by a qualified grader. The timber is graded into different classes based on 
type, size and frequency of defects. Today there are also scanning techniques developed to 
simplify and improve the process. Machine strength grading is a technique that evaluates the 
timber properties on the principle that strength is related to stiffness. Each timber piece is 
tested to provide parameters, so called indicating properties, that are compared with statistical 
data, the most common parameters are modulus of elasticity and density. [3] 

Timber always contains a certain amount of water. The moisture content (MC) indicates the 
mass of water in percent of the mass of the completely dry timber. The timber moisture 
content strives to be in balance with the surrounding environment and changes with the 
relative humidity of the surrounding air. This also leads to a change in dimension and 
strength. Timber shrinks as the moisture content decreases and swells as it increases, the 
strength increases when moisture content decreases and vice versa. Flawless timber with a 
moisture content of 6-23% changes as an example its compressive strength parallel to the 
fiber direction by 5% at 1% change in moisture content. Experiments have also shown that the 
load duration has an effect on strength. [2] In the design of timber structures a conversion 
factor, kmod, is used to take climate and load duration into account when establishing the 
strength property. [4]  

Timber is an anisotropic material, i.e. the properties vary depending on the direction of the 
material compared to an isotropic material like steel in which the properties are the same in 
any direction. The tree trunk structure gives rise to a material which can be regarded as 
cylindrically orthotropic. The properties vary along three different directions, the main 
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directions are the longitudinal (fiber direction), radial and tangential direction [2], see Figure 
2.1 below. 

 

Figure 2.1 Idealized material orientations of timber. The radial and tangential directions are 
denoted r and t, respectively, on the end-grain surface. (Image originates from [1] ) 

The highest strength is achieved in the longitudinal direction. Flawless softwood timber, e.g. 
Norway spruce (Picea abies) has a tensile strength in the range of 100 MPa, however the 
defects have a large impact and structural timber has a characteristic tensile strength of 10-35 
MPa. The load-deformation curve is almost linear up to failure [2] and for structural timber 
the modulus of elasticity varies between 7-14 GPa depending on its grade. [4] 

Tensile strength across the fibers is very low compared to the longitudinal direction, with 
characteristic values being as low as 0.4 MPa for structural timber [4]. Loading in tension 
perpendicular to grain should therefore in general be avoided, and stress transfer in this 
direction should only be used as a secondary effect. For example tensile stresses occur across 
the fiber direction when a curved glulam beam is loaded in bending [2]. The elastic modulus 
perpendicular to grain varies between 230-470 MPa for structural timber [4]. 

The compressive strength parallel to the fiber direction is 40-50 MPa for defect free timber [2] 
and ranges from 16 to 26 MPa for structural timber [4]. To determine the compressive 
strength, test specimens are used where there is no risk of buckling. Failure occurs when the 
fibers collapse and buckles forming kinks. During this kinking the load bearing capacity 
typically decreases with 20% [2]. The modulus of elasticity is the same as in tension. 
Perpendicular to the fibers the deformation is often more interesting than the compressive 
strength, as no real failure occurs.  

Most commonly the shear action in timber is related to the three othotropic planes, 
longitudinal-radial, longitudinal-tangential and radial-tangential (also known as rolling shear). 
Loading in longitudinal shear (longitudinal-radial or longitudinal-tangential) is the most 
common in timber structures. From a practical point of view it is not possible for an engineer 
to distinguish between the two when designing structures, therefore the lowest value of shear 
strength is used in codes. In structural design codes the shear strength can vary depending on 
if the load applied is a torque or shear force, and the geometry of the cross section may also 
have an influence [2]. The characteristic value of shear strength in structural timber is in 
Eurocode 5 3-4 MPa [4], this is half of what Carling [2] specifies for flawless timber. Shear 
strength of timber is strongly dependent on the presence of cracks, knots on the other hand 
have a reinforcing effect [2]. The shear modulus for structural timber varies between 440-
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880MPa [4] (longitudinal shear). The shear modulus in rolling shear is typically of one order 
of magnitude less, 40-60 MPa. 

2.1.1 Timber products 
Timber is available in several different types of building materials in different forms. For 
obvious reasons, sawn timber is available in limited dimensions, but this problem was solved 
in the late 1800s by gluing several boards to each other. The product is called Glued 
Laminated Timber (GLT). The mean strength of GLT is not much higher than that of solid 
timber but the defects of the timber are more uniformly distributed in GLT which reduces the 
variance of the structural properties, resulting in higher characteristic values and design 
values. Since the development of GLT several other useful products have been developed, 
such as plywood, high density fiber boards, oriented strand board etc. In many of the 
developed products some kind of adhesive is used for binding timber together in different 
forms, the timber may consist of solid boards or sawdust.  

Laminated veneer lumber – LVL, is produced using similar principle as for GLT. Thin 
veneers (2-4mm) are peeled off the log, which first has been steamed in hot water. After 
drying the veneers these are glued together and formed to structural panels with a thickness of 
20-90 mm and a size of maximum 3000 x 24000 mm. When the adhesive has cured the panels 
are sawn to desired board dimensions. For standard LVL the layers are oriented with the 
fibers in the same direction. Similar to GLT, the LVL shows a less variability in structural 
properties and is a strong material with relatively high modulus of elasticity and high bending, 
compression, tension, and shear strength. [3] 

2.1.2 Stiffness properties of timber 
Timber is assumed to be an elastic and orthotropic material in the FE-model to be developed. 
As described above this means that it has different properties in three directions that 
correspond to longitudinal, radial and tangential directions. The timber frame of the shear wall 
used is made of laminated veneer lumber, LVL. The material parameters for the LVL used in 
the experiment must be estimated to create a proper model. 

In [5] Ormarsson uses the following parameters for stiffness properties of timber. The given 
values are assumed to be equivalent with Norway spruce. 

Table 2.1 Elastic stiffness parameters for timber, according to Ormarsson [5] 

Elastic Stiffness El = 9700 MPa Et = 220 MPa Er = 400 MPa 

parameters Glt = 250 MPa Glr = 400 MPa Grt = 25 MPa 

 νlt = 0.6 νlr = 0.35 νrt = 0.55 
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The refined timber product LVL has higher modulus of elasicity. In [6] Blyberg uses the 
following values for the LVL when I-beams with a web of glass and flanges of LVL are 
modeled in a four-point bending test.  

Table 2.2 Elastic stiffness parameters for LVL timber, according to [6] 

Elastic Stiffness El = 16 060 MPa Et = 440 MPa Er = 440 MPa 

Parameters Glt = 440 MPa Glr = 440 MPa Grt = 44.4 MPa 

 νlt = 1.1 νlr = 1.1 νrt = 0.39 
 

In discussion with supervisor Professor Erik Serrano the values for LVL presented in Table 
2.3 were estimated. The values are a combination of the values according to the 
manufacturer’s material specification and values for normal structural timber (spurce or pine).   

Table 2.3 Estimated elastic stiffness parameters of LVL timber used in experiments on the 
timber-glass shear walls (E. Serrano) 

Elastic Stiffness El = 13 800 MPa Et = 430 MPa Er = 130 MPa 

Parameters Glt = 440 MPa Glr = 440 MPa Grt = 44.4 MPa 

 νlt = 0.5 νlr = 0.5 νrt = 0.5 

 

2.2 Glass 
Glass is a highly valuable material with aesthetically appealing properties. The foremost 
advantage of glass is its transparency, this was the first material that let the light shine through 
walls in to a building without letting in wind or water. This property is probably the most 
appreciated and used in almost all buildings. As a result of the technical development, there 
are many new application areas for glass today, among these it is a highly interesting material 
for structural, i.e. load bearing, applications within building construction. 

The special characteristics of glass depend on the way it is formed and the structure of the 
atoms in the material. All materials appear in solid, liquid or gas state. In a solid state the 
atoms are bound to each other in a determined manner, in liquid or gas state the atoms are 
more free to move. Many materials in nature like sand or metals are crystalline solid materials 
with an ordered atomic structure. When these materials are heated they melt to a liquid, and 
when the melt cools down the atoms return again to the same ordered structure. The glass 
melt has a very high viscosity and when it cools the atoms remain in an unordered fashion 
which gives the characteristic transparency. Crystalline materials shrink fast when they 
crystallize to a solid material, this occurs at the melt temperature. Glass melt does not have a 
distinct melting point and the transition to a solid state is gradual. The high viscosity and 
gradual transition to the solid state gives the opportunity to form glass in a unique way. [7] 
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Glass is mainly made of oxides and in regular glass the most common base is silica sand 
which is mixed with soda and limestone, called soda-lime silica glass. By combining different 
oxides to this mass different properties can be added. [7] 

Techniques of making glass 
Since the first making of glass, different techniques have been developed to process the 
material. The first glass panels were created with the technique of a blowpipe that creates a 
glass bubble. By then making a small hole and spinning the blowpipe a circular glass panel is 
formed which can be cut to different shapes. The method of making glass panels has 
developed over time and in the mid 1950’s the technique of “float glass” was developed in 
Enlgand [8], a technique which is still used today. When the technique of making glass was 
refined and production costs dropped glass became more available to everyone. Architects of 
today use glass to create astonishing building facades or other creations, which was 
impossible before the development of float glass. 

The name “float glass” indicates the process used to produce the glass panels. The materials 
are mixed and heated to a melted mass which is then poured on to a bed of molten tin on 
which it floats. This creates two plane surfaces. The molten glass is slowly cooled down and 
cut to desired dimensions [8]. Annealed glass is regular float glass that is produced with a 
cooling process that is slow enough to avoid eigenstresses in the glass. 

2.2.1 Mechanical properties 
Glass is an isotropic material and when loaded as well as unloaded it responds with perfectly 
linear behavior. Glass is indeed also a strong material, but it is at the same time very brittle 
and breaks easily if any cracks or scratches are present. The material breaks suddenly when 
the load limit is reached without any plastic deformations. In comparison to steel there is no 
yielding i.e. any larger deformations before a structural collapse. This is not a desired property 
in a building structure, where the structure should give some sorts of warning that its loading 
capacity is being reached. Steel material show yielding so that larger deformations occur and 
wood squeaks and cracks, but glass can break suddenly without any warning, like concrete 
without reinforcement [8]. A safe structure should be capable of carrying the load even after a 
major part of the system has collapsed, a property called a redundancy. The absence of 
redundancy must be considered when using glass as a structural material.   

Glass has a high theoretical strength of up to 100 GPa, but the actual strength is difficult to 
define and the design strength value for short term loading is 22.5 MPa [9]. The molecular 
structure of glass doesn’t have the capability to stop an arising crack and a crack that appears 
due to tensile stress grows until it meets a free edge [8]. Specially made glass without any 
surface imperfections can have a tensile strength up to 7000 MPa, but soda-lime silica glass of 
similar composition made by industrial methods only has a tensile strength of 25 to 70 MPa 
[10]. Another factor that affects the strength is the roughness of the edges on the glass, a flat 
surface is much stronger. Veer [9] shows that the edge finish is a dominating factor in 
determining the glass strength.  
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The rate of deformation and time of stress impact has also a high importance on the strength 
of glass. Glass has a tendency to fail under static fatigue, and unexpected failure can occur at 
lower loads than what’s expected. It is stronger when loaded rapidly rather than slow, but 
does not stand thermal or mechanical shocks. [10]  

Material Data 
Table 2.4 below shows a summary of the properties of annealed glass according to Glafo [7]. 

Table 2.4 Properties of glass according to Glafo [7] 

Density (ρ) 2500  kg/m3 
Young’s modulus (E) 70-75 GPa 
Shear modulus 20-30 GPa 
Poissons ratio  0.23 - 
Thermal expansion coeff. (α) 9∙10-6 /K 
Compressive strength 880-930 MPa 
Tensile strength 30-90 MPa 
Bending strength 30-100 MPa 

 

In a British pocket book for structural engineers [11] ,Cobb gives values according to Table 
2.5  

Table 2.5 Properties of glass according to Cobb [11] 

Density (ρ) 25-26  kN/m3 
Young’s modulus (E) 70-74 GPa 
Poissons ratio  0.22-25 - 
Thermal expansion coeff. (α) 8∙10-6 /K 
Compressive strength 1000 MPa 
Tensile strength 45 MPa 

 

Reinforced and strengthened glass 
To further increase the strength of glass generally two methods are used, toughening and 
laminating. Toughening of glass is a physical process, but the material itself is unchanged. 
The glass panel is first heated to about 600 degrees, and then the panel’s surfaces are 
ventilated with air with temperature of about 20 degrees. When the panel is cooled down it 
shrinks and becomes hard on the outside, but the inside is still warm and cools off slower. As 
the inside cools and thereby shrinks compressive stress is created on the outside layer of the 
panel, and tensile stress is created in the inner parts. The compressive stress closes scratches 
and cracks in the outer layer and these can´t grow and cause a collapse. Normal (annealed) 
float glass breaks into large pieces with sharp edges but the thermally strengthened glass 
breaks into many small pieces.  
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Laminating is another technique to make glass safer. The method is to glue two or more glass 
panels together. To make the joint invisible the mostly used methods is to laminate with a 
transparent foil of PVB (polyvinyl butyrate). [8] The laminated glass has the advantage that it 
holds the glass together even if a crack appears which can generate a remaining structure with 
some post breakage load bearing capacity after fracture has occurred. Kott describes the 
failure of a laminated glass pane with two glass panes and one layer of PVB in three stages. In 
stage 1 both panes carry the load, until a fracture appears in one of the panes which is the 
beginning of stage 2. In stage 2 all the load is carried by the intact pane. The final stage begins 
when all panes are cracked but the structure has not collapsed. The cracked glass cannot carry 
tensile stresses so the PVB now acts as tension reinforcement and the glass transmits 
compression stresses. [12]        

2.3 Adhesives 
The adhesive bond is developed by a process of adhesion and cohesion. The adhesive has to 
stick to (adhesion) the two different materials (adherends) and in the final state become 
sufficiently solid so that it remains intact when subjected to stresses (cohesion).  

The adhesion, i.e. ability to stick to the surfaces, can be generated by chemical bonds, 
mechanical interlocking or a combination of these. The chemical bounding is generated when 
the adhesive reacts chemically with the adherend, and creates a surface property named 
tackiness. The mechanical interlocking produces the joint by a cementing process where the 
adhesive penetrates into pores, holes, scratches etc. of the surface connecting the materials. 

The ability to remain intact when subjected to stresses, i.e. cohesion, is developed in the 
adhesive during the curing, i.e. the hardening process. The cohesive forces are a function of 
cross linking within the adhesive and the number of side chains on the long chain molecules 
of the adhesive.  

The curing process of adhesives occurs in different ways. It can be e.g. by the evaporation of 
a solvent, the formation of crystal or by crosslinking between molecules. In curing by 
evaporating the adhesive is a high viscosity polymer carried by an organic solvent or water. 
When the solvent evaporates the tacky adhesive remains to carry the stresses, often the 
evaporation is helped by exposing it to open air and when ready, the pieces are pressed 
together, these adhesives are commonly called contact adhesives.  

There are a large number of different materials glued together in the industry. Since there 
must be compatibility between the adherends and the adhesive, this also requires a large 
number of various adhesive products that can attach to the materials and tie them together.  If 
the two adherend materials are chemically totally different a conversion process is often 
required to change the surface chemistry and enable the adhesive to stick to both surfaces, an 
example of such a process is the use of primers. 

When hardened the chemical constituents of the adhesive govern its mechanical properties. If 
it has a high glass transition temperature it can be brittle, if the molecular chains are capable 
of bending and rotating it is more rubbery. Many adhesives are sensitive to environmental 
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changes, such as moisture, temperature and light (especially UV-light) etc. The strength of the 
adhesive bond is therefore dependent on the service environment. It is also dependent on the 
type of solvent and the bond thickness. [10]  

To withhold well working joints using adhesives there are some design approaches to keep in 
mind. The obvious one is of course that the bonding surface area should be as large as 
possible. The joint should be designed to counteract forces in the plane of the adhesive, i.e. 
work in shear. It is important to avoid peeling stresses were the adhesive can be very week, in 
some overlap joint shear stresses produce tensile stress at the edges which initiates peeling. 
[10] 

2.3.1 Adhesives for timber glass applications 

Since glass is a brittle material it is important to connect glass and timber in a way that avoids 
stress concentrations in the glass. Adhesives have the ability to transmit loads from timber to 
glass in a uniform manner if a flexible adhesive is used instead of more commonly used rigid 
adhesive.  

The most common adhesives used today are silicone, silanes, polyurethanes or acrylates. The 
silicone adhesives have in general a relatively low characteristic strength but they have a very 
good resistance against environmental factors. Acrylates in general have a higher strength but 
lose their strength at temperatures over 50°C or at high humidity. [13].  

In [14] a study of three different adhesives is presented, the main aim of this study was to 
analyze some adhesives that could be used for connecting glass and timber in load bearing 
structures. The adhesives included were: a highly deformable silicon adhesive with a thick 
bond line, a stiff polyurethane adhesive with a thin bond line and an acrylate adhesive with 
mechanical property between the two others. The adhesives were tested in shear and tensile 
stress with the mean values of strength (stress at failure) according to Table 2.6 

Table 2.6 Mean values of strength for adhesives tested in [14] 

Adhesive  Tensile strength Shear strength 
  (MPa) (MPa) 

Silicone  (Sikasil SG-20) 0.77 0.93 

Acrylate  (SikaFast 5215) 3.04 4.48 

Polyurethane  (Prefere 6000) 1.56 3.82 

The strength of the polyurethane had a large variance indicating that this type of bond was 
more sensitive to disturbances than the other two. In the concluding remark it is stated that the 
silicone adhesive is well suited to distribute loads, but its low strength means that a large 
contact area is required. Therefore the acrylate adhesive would be the most appropriate 
adhesive to investigate further. A negative property of this adhesive though is its thermal 
stability. With a glass transition temperature of 52°C the stiffness of the acrylate adhesive 
could be reduced in a building due to solar energy. [14]  
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In [13] Winter states that the most suitable adhesives to be used in a façade construction 
would be the silicone adhesive. Although their strength is lower they have a much more 
consistent behavior under effect of moisture and temperature, and the creep behavior is lower. 
Long term effects of silicones are also well known since they have been used in structural 
glazing during decades. 

The Young’s modulus of different adhesives varies. Of the adhesives further mentioned in 
this thesis Silicone adhesive, e.g. Sikasil SG-20 has a Young’s modulus of approximately 1 
MPa according to the product data sheet. For the acrylate adhesive, SikaFast 5215, Young’s 
modulus is about 80 MPa. There are however also adhesives with higher E-modulus of up to 
20 GPa, e.g. epoxy [10]. 

2.4 Timber/glass composites 
The hotel Palafitte in Switzerland was built with timber-glass I-beams to support the roof. The 
I-beams were made with timber flanges and a glass web which gives a light impression and 
lets the light shine through to create a bright atmosphere in the building. There are studies that 
investigate the behavior of these elements when exposed to higher loads. One important 
property that was observed was that a redundancy can be obtained in these types of composite 
elements. In a study at Linnæus University in Sweden [1] 14 I-beams specimens were tested 
for stiffness during lower loads and the ultimate load until failure. The tests evaluated three 
modifying parameters; adhesive type, flange groove width and the roughness of the corners in 
the glass section. The I-beams were tested in four-point bending with lateral support along the 
beam to prevent lateral torsional buckling. In all of the beams the first crack appeared in the 
glass at a load much lower than the maximum load level. The increase of load from first crack 
until maximum load was above 100% for all beams. At failure, several cracks had appeared 
and the wood flanges had also failed.   

In [15] Niedermaier presents a study of glass panels that can be used as stiffening elements in 
light-weight timber structures for example to with-stand the wind loads. The glass panel was 
glued to a timber frame and stabilized the frame through its shear stiffness. The construction 
also enabled the possibilities of integrating other important technical features such as thermal 
insulation. The fundamental influence on the deformation behavior of the panels was shown 
to be due to the type of adhesive and due to the geometry of the glued joints. Since the 
elements of facades are exposed to different climates the adhesives were tested in different 
temperatures, also the effect of fatigue strength must be considered.    

A research project of “Holzforschung Austria” (HFA) has resulted in a patented structural 
timber-glass-composite element system, and two building have been raised for further studies 
on long-term behavior and durability. One of these buildings is a two storey house, were the 
assembly and production process had a very positive outcome. With good results after the 
long-term tests mass production of these kinds of buildings could be possible. [13]  
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3 Shear wall element 
In this chapter the background and concept of a shear wall element will be described. Earlier 
tests of a shear wall element conducted at Linnæus University will then be described and 
summarized. The results from these tests will later on be used to evaluate the models analyzed 
in a computer FE-program. 

3.1 The conceptual design of the shear wall element 
The shear wall element was designed within the research project described in the introduction. 
The shear wall is intended to carry loads vertically and horizontally and be able to function as 
a load carrying façade element. 

The built up of the entire wall element consist of three parts. In the mid plane there is a load 
carrying core of glass, on both sides there is a timber frame attached to the core, and thus the 
load bearing core is embedded in the timber along its perimeter. On the outside, attached with 
steel profiles, there is a 4 + 4 mm thick laminated glass. The steel profiles create enough 
space so that solar control equipment can be installed. On the inside an insulated glass unit is 
inserted into a wooden frame that is screwed to the load carrying mid part timber frame. The 
design is developed with considerations both for energy efficiency and the risk of sabotage. 

 

Figure 3.1 Conceptual section of shear-wall element 
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3.2 Methods and materials in previous experiments on shear wall 
elements 

The load carrying structure is only the mid glass core and the timber frames, the other parts 
are not intended to add any strength to the load carrying system. Therefore when these shear 
wall elements were tested only the mid pane and the timber frame were built and tested.  

In the laboratory at Linnæus University 10 shear wall elements were tested with the 
dimensions according to Figure 3.2.  

 

Figure 3.2 Geometry of the shear wall element [1] 

Three of the specimens were glued with a silicone adhesive (Sikasil SG-500), the others were 
glued with an acrylate adhesive (Sikafast). The elements were tested in three load cases to 
study the behavior in vertical, horizontal and combined vertical and horizontal loading. Figure 
3.3 below shows the load cases. The gray objects are the load application and support devices. 
P1 to P6 shows the location of the potentiometers used in the test to measure the 
displacements.  

 

Figure 3.3 Load cases and displacement measurement points for horizontal load (left), 
vertical load (mid) and combined vertical-horizontal load(right)  [1] 

y 

x 
z 
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The upper and the lower support were both free to rotate about the horizontal (x) axis. Both 
the upper and lower supports were locked in the out of plane (z) direction. In the vertical load 
case the horizontal translation (y-direction) in the upper load applying device was locked. In 
the horizontal load case the upper loading device functioned as a hold-down support. Figure 
3.4 below shows a more detailed image of the supports holding the shear wall element in 
place. 

 

Figure 3.4 Supports of the shear wall elements at experiments at Lineaus University. 

The displacements during test were also measured by a non-contact 3D-deformation 
measuring system (PontosTM). The system consists of two digital cameras, arranged in 
different angels towards the test object, and from a series of images during the test the system 
can determine displacements at discrete points marked on the element with stick-on labels. 
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3.3 Results from previous experiments on shear wall elements 

Observations from the test performed shows that there was no post cracking capacity in any of 
the specimens, as was the case for the I-beams discussed in 2.4. When the glass pane cracked 
a large proportion of the glass fell out and the entire shear wall element failed. 

 Table 3.1 below shows the maximum loads obtained for all of the tested shear wall elements. 

Table 3.1 Maximum loads in kN for tested specimens 

Load case Acrylate specimens Silicone specimens 
Horizontal Vertical Horizontal Vertical 

Horizontal 67.8 - 41.4 - 71.3 - 

Vertical 
- 211   
- 168 - 130 
- 170   

Horizontal and vertical 36.4 105 36.2 70.6 57.7 132 

 

In Figure 3.5 below the results are plotted in a graph. These results have then been the basis in 
forming a superellipse curve to describe the relation between vertical and horizontal force at 
the point of failure. The superellipse curve is described in equation (3.1)  

 �
𝑉
𝑉𝑐𝑐
�
𝑚

+ �
𝐻
𝐻𝑐𝑐

�
𝑚

= 1 (3.1) 

 

Figure 3.5 Maximum load diagram. The dashed lines are the superellipse curves fitted to the 
results according to eq (3.1). For acrylate m=1.7, and for silicon m=2.2. [1] 
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The measurements (load cells, potentiometers and the Pontos system) were studied to evaluate 
the load-displacement relations and the shape of the buckling modes. This would later serve to 
correlate the FE model. Graphs from this analysis, not presented here, can be found in 
Appendix A.  

The buckling shapes were estimated through analysing Pontos data and experimental results 
and are illustrated in Figure 3.6. 

 

Figure 3.6 Estimation of buckling modes (out of plane displacement) at vertical (left), 
horizontal (middle) and combined (right) load case. 

 

Studying the graphs from the experiments the applied vertical to horizontal load ratios can be 
estimated. In the combined load case, the loads were applied in a vertical to horizontal ratio of 
about 1 to 0.4. In the horizontal load case, the vertical force, serving as hold down support, 
was applied with the vertical to horizontal ratio of about 0.15 to 1.  
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4 Theory  

4.1 Theory of buckling 
When an ideal structure is exposed to compression forces there is a limit of how large the 
stresses can be for the structure to maintain its initial shape. In an elastic stable structure the 
infinitesimally increase of load gives an infinitesimal increase of the deformations. In an 
unstable state the infinitesimal increase of load instead means that the structure deforms in a 
progressive manner, this often means a collapse of the structure. Structures that are sensitive 
for instability problems are slim structures exposed to large compressive forces, such as 
columns, walls and steel profiles with slender webs etc.  

For example a perfectly straight column that is loaded with a normal stress at its ends deforms 
linear until a certain load level, Pcr, where the structure cannot hold its initial straight line 
resulting in a transverse deflection. This form of instability phenomenon is called buckling. 
The point where the straight line no longer can be kept is called the bifurcation point, this is 
illustrated in Figure 4.1. 

 

Figure 4.1Illustration of bifurcation point 

The critical load Pcr for an initially perfectly straight and homogeneous column exposed only 
to compression forces can be determined according expression (4.1), formed by Leonard 
Euler (1707-1783). Euler derived the critical load of a column for four different basic 
boundary conditions, these are called the “Euler buckling modes” (the derivation will not be 
shown here, the interested reader is referred to example [16] or [17]). These basic modes can 
be applied to calculate the buckling load of more advanced structures by identifying parts of 
the structure that belong to the basic modes. [17] 
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Figure 4.2 Euler buckling modes 

A plate is described as a two dimensional element, with the thickness 𝑡 much smaller than the 
width b and length a. The mid-plane of the plate passes through the middle of the plate. A 
plate, simply supported on two opposite sides as shown in Figure 4.3, can be regarded as a 
column with a very large width. According to Euler buckling theory the critical buckling load 
of a plate, with boundary conditions according to Figure 4.3, can be calculated with (4.2).   

 

Figure 4.3 Plate, simply supported on two opposite sides, loaded in its plane 

 𝑃𝑐𝑐 =
𝜋2 ∙ 𝐸𝐼
𝑎2

∙
1

(1 − 𝑣2)
 (4.2) 

The multiplication with variable 1/(1 − 𝑣2) in (4.2) takes the larger width of the plate into 
consideration. [18] 

For a plate supported along three or four sides, the buckling occurs when the compression 
forces result in out of plane displacements of a point on the plate. Unlike a column that 
becomes unstable such plates can, in theory, carry more load after the critical point. This fact 

 𝑃𝑐𝑐 =
𝜋2 ∙ 𝐸𝐼
(𝑘𝐿)2  (4.1) 
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is some time used in design of slim steel structures, but will not be treated in this thesis work 
because of the brittle behavior of glass and lack of redundancy described in 2.2 above. 

The theory that describes the behavior of a plate is often divided into two different parts. The 
first part determines the load level of the bifurcation point and the second part calculates the 
behavior after the bifurcation point and the ultimate load level. [18]  

The first part uses linear-elastic analysis to calculate the critical level. This calculation can be 
solved either by solving the differential equation for a plate or through the strain energy 
method. The following derivation for the buckling of a plate is made according to 
Timoshenko & Geer [16]. For a more detailed derivation the interested reader is referred to 
this book.  

Assume that a plate deforms slightly in the transverse direction during application of forces in 
its middle plane, i.e. there is no lateral load. It is then possible to calculate the magnitudes of 
the forces that are required to keep the plate in this deflected state. The equilibrium equation 
for a plate loaded only in its plane with small transverse displacements is then described by 
the differential equation: 
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𝜕𝑦𝑥
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𝜕2𝑤
𝜕𝑥𝜕𝑦

� (4.3) 

where 𝑤 is the lateral displacement and 𝐷 describes the plates flexural rigidity given in (4.4), 
 𝑁𝑥  ,𝑁𝑥  ,𝑁𝑥𝑥 [N/m]  are the normal forces and the shear force in the respective directions. 

 𝐷 =
𝐸 ∙ 𝑡3

12 ∙ (1 − 𝑣2) (4.4) 

where; t= thickness,  𝑣 = poisons ration. 
The strain energy method can be used to study the plate energy at the bifurcation point, i.e. 
compere the internal energy U from bending with the external work T done by the acting 
forces in the middle plane. The internal strain energy that is stored in a deformed plate is 
given by the differential equation: 
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The work conducted by external forces is given by the differential equation: 

 𝑇 = −
1
2
��𝑁𝑥

𝜕2𝑤
𝜕𝑥2

+ 𝑁𝑥
𝜕2𝑤
𝜕𝑦𝑥

+ 2 ∙ 𝑁𝑥𝑥
𝜕2𝑤
𝜕𝑥𝜕𝑦

 � 𝑑𝑥 𝑑𝑦 (4.6) 

When U > T the plate remains stable in its flat form, at U < T the plate has past the critical 
loading point and is in an unstable state, i.e. buckling has occurred. The bifurcation point can 
be obtained by setting the internal energy equal to the work done by external forces: 

 𝑈 = 𝑇 (4.7) 
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4.1.1 Buckling of simply supported plate under uniform compression. 
Consider the plate in Figure 4.4 compressed in its middle plane by a uniformly distributed 
force Nx [N/m]. 

 

Figure 4.4 Simply supported plate under uniform compression 

In this case there is no loading in the y- or xy-direction i.e: 

 𝑁𝑥 = 𝑁𝑥𝑥 = 0 (4.8) 

If Nx is gradually increased the equilibrium condition of the plate becomes unstable and 
buckling occurs. The critical value of Nx, i.e. Ncr, can be found using the strain energy 
method.  

The boundary condition gives: 

• At 𝑥 = 0 and 𝑥 = 𝑎, 

𝑤 =
𝜕2𝑤
𝜕𝑥2

= 0  

• At 𝑦 = 𝑏 and 𝑦 = 0 

𝑤 =
𝜕2𝑤
𝜕𝑦2

= 0 

These boundary conditions imply that the deflection of the rectangular plate can be described 
by a double trigonometric series on the form: 

 𝑤 = � �𝑎𝑚𝑛 sin
𝑚𝜋𝑥
𝑎

sin
𝑛𝜋𝑦
𝑏

∞

𝑛=1

∞

𝑚=1

     𝑚,𝑛 = 1,2,3, … (4.9) 

Substituting the expression of w according to (4.9) into equation (4.5) for U and (4.6) for T, 
setting 𝑈 − 𝑇 = 0, and applying the prescribed boundary conditions the following expression 
is obtained: 
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This expression must be valid for all values of x and y on the plate, therefore the first part of 
the equation must also equal zero. After rearranging, an expression for the critical force is 
formed:  

 𝑁𝑥 =
𝐷 ��𝑚𝜋𝑎 �

2
+ �𝑛𝜋𝑏 �

2
�
2

�𝑚𝜋𝑎 �
2  (4.11) 

The combination of m and n now must be combined so that Nx reaches a minimum value. In 
[16] it is shown that the lowest critical level is reach when the shape of the buckled plate has 
the form of one half sinus wave over the width, i.e. at 𝑛 = 1. Setting 𝑛 = 1 and rearranging 
gives: 
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The first part of this expression is a dimensionless parameter called the buckling load 
coefficient, 𝑘𝑐𝑐. 
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                  𝑚 = 1,2,3 … .. (4.13) 

With the expression (4.4) for the plates flexural rigidity D inserted in (4.12) and by knowing 
that: 

 𝜎𝑥 =
𝑁𝑥
𝑡

 (4.14) 

the more well-known expression for the critical stress of plate buckling can be formed: 

 𝜎𝑐𝑐 = 𝑘𝑐𝑐 ∙
𝜋2 ∙ 𝐸

12 ∙ (1 − 𝜈2) ∙ �𝑏𝑡�
2 (4.15) 

The buckling load coefficient. 𝑘𝑐𝑐 given by (4.13) is a function of the panel’s aspect ratio and 
the number of half sinus waves in the loading direction. The minimum value is 𝑘𝑐𝑐 = 4.0  for 
a given mode. This means that for a plate with the plate aspect ratio 𝑎/𝑏 = 4 the mode with 
lowest critical stress has m=4 half sinus waves in the loading direction. [18] 

The stability of the plate is dependent on the width to thickness ratio, as shown in (4.15). This 
can be explained by thinking of the strip A-B in Figure 4.4as a column which is supported by 
the strip C-D. The stiffer the strip C-D is (i.e. the smaller width to thickness ratio) the more 
stress can be applied before the A-D column becomes unstable and buckles.  
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4.1.2 Plates with other support and load conditions 
The longitudinal edges are often connected to another element so that they in some extent are 
prevented to rotate freely. This means that the bending resistance in the transvers strip, for 
example C-D in Figure 4.4, is much stiffer than in the simply supported case and the critical 
stress level at the bifurcation point will be able to increase. Expression (4.15) can still be used 
to calculate the critical stress by adjusting the buckling coefficient kcr and thus taking this 
extra stiffness into account. The same approach can be used in other load conditions, for 
example at shear stress. Hence the buckling load coefficient 𝑘𝑐𝑐 is a function of the support 
and load conditions. [18] 

Plate under shear loading  
The plate in Figure 4.5 is loaded in shear stress. Consider the square element in the left figure, 
oriented 45° to the edges. The compressive stresses cause local buckling in this element and 
global buckling in the plate.  

 

Figure 4.5 Plate in shear stress 

 (4.15) can be used for shear stress τcr , which gives 

 𝜏𝑐𝑐 = 𝑘𝜏 ∙
𝜋2 ∙ 𝐸

12 ∙ (1 − 𝜈2) ∙ �𝑏𝑡�
2 (4.16) 

In [18] Åkesson describes that the buckling coefficient at the critical shear stress level varies 
with the plate aspect ratio according to (4.17) and (4.18). 

 𝑘𝜏 = 5.34 +
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𝑎
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≥ 1  (4.17) 

 𝑘𝜏 = 4 +
5.34

�𝑎𝑏�
2    for   

𝑎
𝑏
≤ 1  (4.18) 

Plate under edge bending. 
For a plate simply supported around all edges subjected to edge bending stress, illustrated in 
Figure 4.6, the critical value of the edge bending stress σb is given by 
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 𝜎𝑏.𝑐𝑐 = 𝑘𝑏 ∙
𝜋2 ∙ 𝐸

12 ∙ (1 − 𝜈2) ∙ �𝑏𝑡�
2 (4.19) 

with ratio a/b → ∞, the buckling coefficient can be set to 𝑘𝑏 = 23.9 

 

Figure 4.6 Plate subjected to edge bending stress 

Combination of stresses 
Figure 4.7 illustrates a plate, simply supported around all edges, subjected to the combination 
of  axial compressive stress (𝜎), edge bending compressive stress (𝜎𝑏) and shear stress (𝜏).  

 

Figure 4.7 Simply supported plate subjected to combined loads. 

In [17] the bifurcation point in a combined load case as illustrated in Figure 4.7 is determined 
by: 

 �
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𝜎𝑐𝑐 is the critical axial compressive stress level, described in 4.1.1 
𝜎𝑏,𝑐𝑐 is the critical bending compressive stress level.  
𝜏𝑐𝑐 is the critical shear stress level. 

It should be emphasized that the interaction equation (4.20) applies only for the support and 
loading conditions given in Figure 4.7. With other types of support, loading condition or panel 
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aspect ratio the interaction equation may change. The complexity of this phenomenon is well 
documented in [19] where the interaction between 𝜎 𝜎𝑐𝑐⁄  and 𝜏 𝜏𝑐𝑐⁄  for various combinations 
of different supports, loads and panel aspect ratios are given. Figure 4.8 illustrates an example 
of this, showing interaction curves between 𝜎 𝜎𝑐𝑐⁄  and 𝜏 𝜏𝑐𝑐⁄  for a plate with restrained edges 
and panel aspect ratio ∅ = 𝑎 𝑏⁄ < 1. 

 

Figure 4.8 Ineraction curves between shear and compression, 
 under restrained edges and ∅ < 1  

In interaction equation (4.20) the exponent of 𝜎 𝜎𝑐𝑐⁄  is set to 1, and the exponents of 𝜏 𝜏𝑐𝑐⁄  
and 𝜎𝑏 𝜎𝑏,𝑐𝑐⁄  are in this case 2. A different approach is e.g. the superellipse equation used for 
the empirical fit shown in equation (3.1) where all exponents are set to the same value. When 
determining the interaction between different stresses from experimental results different 
approaches are thus available. 

Initial plate imperfections 
The theoretical value for the critical stress assumes that the plate initially is a perfectly plane 
structure, with a homogeneous material without flaws and behaving isotropically. In reality 
however this is obvious rarely the case. Both geometrical imperfections and residual stresses 
affect the amount of extra load that the plate element can carry. The initial imperfections can 
be compared to an existing load which is added to the external load. 
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4.2 Finite element method 
Within the fields of engineering basically all models formulated to explain a physical 
phenomenon take the form of differential equations. Usually these problems are complex and 
the differential equation is too complicated to be able to solve with a classical analytical 
method. The finite element (FE) method is a numerical approach to solve a general differential 
equation in an approximate manner. In the early 1960s the FE-method took its form and 
began to spread widely within the field of engineering.   

In modeling physical phenomena, these are often formulated to hold on a specific region, for 
example a beam or plate. The region can be described as one-, two- or three-dimensional. The 
FE method divides the region into smaller parts, and the set of all small elements are called 
finite element mesh. Instead of directly making an approximation over the entire region, the 
FE-method makes the approximation for the smaller elements. With the behavior of the single 
elements determined, the elements of the entire region are put together under determined 
conditions for an approximation over the entire region. Although the approximated solution 
may vary in a non-linear fashion over the entire region, the approximation within the small 
elements can be linear or quadratic and are still able to catch the variation over the region with 
a high accuracy. The smaller the elements, i.e. the finer the mesh, a more accurate 
approximation will be obtained, at the expense of more calculations and, therefore, more 
computer resources.   

The approximation of how the variable varies over the element is an interpolation over the 
element, where the variable is assumed to be known at certain points, so called nodal points. 
The nodal points are often placed at the boundaries of the element. The FE method can be 
applied both to boundary value problems, e.g. the deflection of a beam, and to initial value 
problems e.g. transient heat conduction.   

4.2.1 FE formulation of three-dimensional elasticity 
The derivation of the FE formulation for three dimensional elasticity is presented here 
following Ottosen & Petersson [20]. The unknown functions within the problems of solid 
mechanics are in general the displacements in the x-, y- and z-direction. With these solved for 
the nodal points of a FE mesh the strains and stresses can be determined within the structure 
of interest. Before we can set up the FE formulation the basic properties and notations for 
stresses and strains are stated. 

Stresses  
On a continuous body two kinds of forces are assumed to be present; body forces (force per 
unit volume) and surface forces (force per unit surface).  

Consider an infinitesimal, internal or external, surface dA on the body, with a unit normal 
vector n acting out of the body and the force dP acting on dA out of the body. The surface 
force (per unit surface) on dA is termed the traction vector t, and has components in x-, y- and 
z-directions. t is given by; 
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 𝐭 =
d𝐏
d𝐴

      d𝐴 → 0;       𝐭 = �
 𝑡𝑥
𝑡𝑥
𝑡𝑧
�    [N m2⁄ ]  (4.21) 

The traction vector t is related to the unit normal vector n, and thus a different surface cut thru 
the same point will have a different traction vector. If the normal vector n is in the direction of 
the x-,y- and z-axis respectively the corresponding traction vector, denoted sx, sy and sz 

respectively, is given in components along the coordinate axis. Combined together these 
special traction vectors form the so called stress tensor S. 

 𝐬𝐱 = �
 𝜎𝑥𝑥
𝜎𝑥𝑥
𝜎𝑥𝑧

� , 𝐬𝐲 = �
 𝜎𝑥𝑥
𝜎𝑥𝑥
𝜎𝑥𝑧

� , 𝐬𝐳 = �
 𝜎𝑧𝑥
𝜎𝑧𝑥
𝜎𝑧𝑧

� , 𝐒 = �
 𝐬𝑥T

 𝐬𝑥T

 𝐬𝑧T
� = �

 𝜎𝑥𝑥 𝜎𝑥𝑥 𝜎𝑥𝑧
 𝜎𝑥𝑥 𝜎𝑥𝑥 𝜎𝑥𝑧
 𝜎𝑧𝑥 𝜎𝑧𝑥 𝜎𝑧𝑧

�      (4.22) 

The components are termed stress components, σxx, σyy and σzz are called normal stresses and 
σxy, σxz, σyx, σyz, σzx and σzy are called shear stresses. It can be shown that σxy = σyx , σxz = σzx and 
σyz = σzy , therefore S is symmetric. With the stress tensor S known the traction vector can be 
described for an arbitrary unit normal vector. 

 𝐭 = 𝐒𝐧    ,where  𝐧 = �
𝑛𝑥
𝑛𝑥
𝑛𝑧
� (4.23) 

The equilibrium of an arbitrary part of the body includes the body force, denoted b, that acts 
in the region V and the traction vector t that acts on the boundary surface S. Equilibrium 
requires that;  

 � 𝐭 d𝑆
𝑆

+ � 𝐛 d𝑉
𝑉

= 𝟎 (4.24) 

which can be written in three separate equations 

 

� 𝑡𝑥 d𝑆
𝑆

+ � 𝑏𝑥 d𝑉
𝑉

= 0 

� 𝑡𝑥 d𝑆
𝑆

+ � 𝑏𝑥 d𝑉
𝑉

= 0 

� 𝑡𝑧 d𝑆
𝑆

+ � 𝑏𝑧 d𝑉
𝑉

= 0 

(4.25) 

With (4.22)and(4.23)  𝑡𝑥 = 𝐬𝑥T𝐧 ,which gives for the first equation of (4.25): 

 � 𝐬𝑥T𝐧 d𝑆
𝑆

+ � 𝑏𝑥 d𝑉
𝑉

= 0 (4.26) 



29 
 

Using the Gauss divergence theorem (4.26) can be reformulated to: 

 � (div 𝐬𝑥 +  𝑏𝑥) d𝑉
𝑉

= 0 (4.27) 

And as (4.27) holds for an arbitrary region V this gives 

 div 𝐬𝑥 +  𝑏𝑥 = 0 (4.28) 

Equation two and three of (4.25) is reformulated in the same manner. By using the definition 
of the divergence of the vector and inserting 𝐬𝑥, 𝐬𝑥, 𝐬𝑧 according to (4.22) the following 
expression is obtained, which describes the equilibrium condition for the body: 

 

𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜎𝑥𝑥
𝜕𝑦

+
𝜕𝜎𝑥𝑧
𝜕𝑧

+ 𝑏𝑥 = 0 

𝜕𝜎𝑥𝑥
𝜕𝑥

+
𝜕𝜎𝑥𝑥
𝜕𝑦

+
𝜕𝜎𝑥𝑧
𝜕𝑧

+ 𝑏𝑥 = 0 

𝜕𝜎𝑧𝑥
𝜕𝑥

+
𝜕𝜎𝑧𝑥
𝜕𝑦

+
𝜕𝜎𝑧𝑧
𝜕𝑧

+ 𝑏𝑧 = 0 

(4.29) 

The stress components are organized in the matrix σ, and the matrix differential operator ∇� is 
used to form the simpler notation in compact matrix form: 

 𝛁�𝐓𝛔 + 𝐛 = 0 (4.30) 

where: 

 𝛁�𝐓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕
𝜕𝑥

0 0
𝜕
𝜕𝑦

𝜕
𝜕𝑧

0

0
𝜕
𝜕𝑦

0
𝜕
𝜕𝑥

0
𝜕
𝜕𝑧

0 0
𝜕
𝜕𝑧

0
𝜕
𝜕𝑥

𝜕
𝜕𝑦⎦
⎥
⎥
⎥
⎥
⎥
⎤

 ,𝜎 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜎𝑥𝑥
𝜎𝑥𝑥
𝜎𝑧𝑧
𝜎𝑥𝑥
𝜎𝑥𝑧
𝜎𝑥𝑧⎦

⎥
⎥
⎥
⎥
⎤

 (4.31) 

Strains  
When the body deforms the coordinates of a point changes from (x, y, z) to (x+ux, y+uy, 
z+uz). The displacement components ux, uy and uz are collected in the displacement vector u. 
Displacements of (x+dx, y+dy, z+dz) then becomes u + du, and using the chain rule du is:  

 𝐮 + d𝐮 = �
𝑢𝑥
𝑢𝑥
𝑢𝑧
� + �

d𝑢𝑥
d𝑢𝑥
d𝑢𝑧

� = �
𝑢𝑥
𝑢𝑥
𝑢𝑧
� +

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑢𝑥
𝜕𝑥

d𝑥 +
𝜕𝑢𝑥
𝜕𝑦

d𝑦 +
𝜕𝑢𝑥
𝜕𝑧

d𝑧

𝜕𝑢𝑥
𝜕𝑥

d𝑥 +
𝜕𝑢𝑥
𝜕𝑦

d𝑦 +
𝜕𝑢𝑥
𝜕𝑧

d𝑧

𝜕𝑢𝑧
𝜕𝑥

d𝑥 +
𝜕𝑢𝑧
𝜕𝑦

d𝑦 +
𝜕𝑢𝑧
𝜕𝑧

d𝑧
⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (4.32) 
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The partial derivatives, e.g. 𝜕𝑢𝑥/𝜕𝑥, are called displacement gradients and in general these 
gradients are small in compered to unity. This simplifies the expression of the normal strains 
so that they may be written as: 

 𝜀𝑥𝑥 =
𝜕𝑢𝑥
𝜕𝑥 

 ; 𝜀𝑥𝑥 =
𝜕𝑢𝑥
𝜕𝑦

 ; 𝜀𝑧𝑧 =
𝜕𝑢𝑧
𝜕𝑧

 (4.33) 

Also when evaluating the shear strain small deformations are assumed (sin 𝜃 ≅ 𝜃) and these 
can be written as: 

 𝛾𝑥𝑥 =
𝜕𝑢𝑥
𝜕𝑦

+
𝜕𝑢𝑥
𝜕𝑥

 ;  𝛾𝑥𝑧 =
𝜕𝑢𝑥
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑥

 ;  𝛾𝑥𝑧 =
𝜕𝑢𝑥
𝜕𝑧

+
𝜕𝑢𝑧
𝜕𝑦

    (4.34) 

These expressions for the strains in (4.33) and (4.34) are collected in a more compact matrix 
notation.  

 𝛆 = 𝛁�𝐮 (4.35) 

Where: 

 𝛆 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜀𝑥𝑥
𝜀𝑥𝑥
𝜀𝑧𝑧
𝛾𝑥𝑥
𝛾𝑥𝑧
𝛾𝑥𝑧⎦

⎥
⎥
⎥
⎥
⎤

;   𝛁� =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝜕
𝜕𝑥

0 0

0
𝜕
𝜕𝑦

0

0 0
𝜕
𝜕𝑧

𝜕
𝜕𝑦

𝜕
𝜕𝑥

0

𝜕
𝜕𝑧

0
𝜕
𝜕𝑥

0
𝜕
𝜕𝑧

𝜕
𝜕𝑦⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (4.36) 

Expression (4.35) is referred to as the kinematic relation. 

Linear elasticity 
Linear elasticity in one dimension is expressed by Hooke’s law from 1676 

 𝜎 = 𝐸 ∙ 𝜀 (4.37) 

This relation also holds for linear elasticity with several stress and strain components. With 
the stress matrix σ and strain matrix ε as given in (4.31) and (4.36) respectively, (4.37) can be 
reformulated into 

 𝛔 = 𝐃𝛆 (4.38) 

D is the constitutive matrix and consists of a symmetric 6 × 6 matrix, i.e. 21 independent 
elasticity coefficients. The expression (4.38) can be inverted to 
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 𝛆 = 𝐂𝛔 ; 𝐂 = 𝐃−1 (4.39) 

If another direction of the coordinate system is chosen, the D-matrix changes. However there 
are materials with symmetry planes, i.e. materials for which the D-matrix is the same for two 
coordinate systems which are mirror to each other with respect to the symmetry plane. In the 
orthotropic material (timber) there are three such symmetry planes, and it can be shown that 
the D-matrix then can be reduced to consists of 9 independent coefficients. If the coordinate 
axes are parallel to these planes the D-matrix can be written as: 

 𝐃 =

⎣
⎢
⎢
⎢
⎢
⎡
𝐷11 𝐷12 𝐷13 0 0 0
𝐷21 𝐷22 𝐷23 0 0 0
𝐷31 𝐷32 𝐷33 0 0 0

0 0 0 𝐷44 0 0
0 0 0 0 𝐷55 0
0 0 0 0 0 𝐷66⎦

⎥
⎥
⎥
⎥
⎤

 (4.40) 

For the isotropic material (e.g. glass) the D-matrix is unchanged regardless of coordinate 
system. D-matrix can then be written with two independent variables; Young’s modulus E 
and Poisson’s ratio ν, as 

 𝐃 =
𝐸

(1 + 𝜈)(1 − 2𝜈)

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0

0 0 0
1
2

(1 − 2𝜈) 0 0

0 0 0 0
1
2

(1 − 2𝜈) 0

0 0 0 0 0
1
2

(1 − 2𝜈)⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 

(4.41) 

The initial strains, due to e.g. temperature, that may exist in materials are dealt with in (4.38) 
by adding the initial strain vector ε0 

 𝛔 = 𝐃(𝛆 + 𝛆𝟎) (4.42) 

To solve the equations (4.30), (4.35) and (4.42) boundary conditions expressed in terms of the 
traction vector t and/or the displacement vector u are needed. For a three dimensional 
problem over the boundary S, the boundary conditions are described as 

 

𝐭 = 𝐡 on 𝑆ℎ 

𝐮 = 𝐠 on 𝑆𝑔 

 𝑆ℎ +  𝑆𝑔 =  𝑆 

(4.43) 
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Weak form of the FE-formulation 
To derive the weak form of the equilibrium equation (4.30), the arbitrary vector v is 
introduced given as 

 𝐯 = �
𝑣𝑥
𝑣𝑥
𝑣𝑧
� (4.44) 

After multiplying the first equation of (4.29) with vx the second and third equations with vy 
and vz respectively, and integrating over the volume V, integration by parts is performed using 
the Green-Gauss theorem. The three expressions are then reduced by using the components of 
tx, ty and tz. Finally they are added together to form the weak form of the problem 

 � �𝛁�𝐯�
T
𝛔 d𝑉

𝑉
=  � 𝐯T𝐭 d𝑆

𝑆
+ � 𝐯T𝐛 d𝑉

𝑉
 (4.45) 

FE-formulation of three dimensional elasticity. 
To obtain the FE formulation the displacement vector u is approximated by 

 𝐮 = 𝐍𝐚 (4.46) 

where N contains of the global shape functions and a the displacements. With Galerkin’s 
method the weight vector v is chosen according to = 𝐍𝐜 , and as v is arbitrary the matrix 𝐜 is 
also arbitrary, therefore 

 𝛁�𝐯 = 𝛁�𝐍𝐜 = 𝐁𝐜 , where 𝐁 = 𝛁�𝐍 (4.47) 

Now (4.47) is inserted to (4.45) and as c is independent of coordinates and arbitrary it can be 
removed to form the balance principle of the body, given by 

 � 𝐁T𝛔 d𝑉
𝑉

= � 𝐍T𝐭 d𝑆
𝑆

+ � 𝐍T𝐛 d𝑉
𝑉

 (4.48) 

By inserting (4.46) and (4.47) into the expression (4.35) for strains the expression for stresses 
can be rewritten as: 

 𝛔 = 𝐃𝐁𝐚 − 𝐃𝛆𝟎 (4.49) 

The final FE formulation is then obtained by inserting (4.49) to (4.48) and applying the 
boundary conditions stated in (4.43)  

 �� 𝐁T𝐃𝐁 d𝑉
𝑉

�𝑎 = � 𝐍T𝐡 d𝑆
𝑆ℎ

+ � 𝐍T𝐭 d𝑆
𝑆𝑔

+ � 𝐍T𝐛 d𝑉
𝑉

+ � 𝐁T𝐃𝛆𝟎 d𝑉
𝑉

 (4.50) 
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To write the FE formulation in a more compact manner the following matrices are defined 

 

K = � 𝐁T𝐃𝐁 d𝑉
𝑉

 

fb = � 𝐍T𝐡 d𝑆
𝑆ℎ

+ � 𝐍T𝐭 d𝑆
𝑆𝑔

 

fl = � 𝐍T𝐛 d𝑉
𝑉

 

f0 = � 𝐁T𝐃𝛆𝟎 d𝑉
𝑉

 

(4.51) 

resulting in the familiar standard FE formulation 

 𝐊𝐚 = 𝐟         where 𝐟 = 𝐟𝐛 + 𝐟𝐥 + 𝐟𝟎  (4.52) 

K is called the stiffness matrix, a the displacement vector and f  the load vector. 

4.2.2 Linear buckling analyses with the finite element method 
In order to explain the approach of the linear buckling analysis, the term stress stiffening 
should first be treated. Stress stiffening refers to the coupling between the out of plane 
stiffness of a structure and the state of in-plane stress (also called membrane stress). The 
bending stiffness of a plate, beam etc. is increased by a tensile in-plane stress, and decreased 
by a compressive in-plane stress. As descried in 4.1, a large compressive in-plane stress 
reduces the bending stiffness to zero which results in buckling. According to [21] stress 
stiffening is usually negligible for relatively massive bodies but could be of importance for 
thin-walled structures. Taking the stress stiffness in consideration, equation (4.52) can be 
written 

 [𝐊 + 𝐊𝛔]𝐚 = 𝐟     (4.53) 

where 𝐊𝛔 is the stress stiffness matrix, also called e.g. the differential stiffness matrix. If the 
stress stiffness matrix is calculated from an arbitrarily level of in-plane stress the matrix 
equation for a linear buckling analysis is 

 [𝐊 + 𝜆𝐊𝛔]{𝑑𝐚} = 𝟎 (4.54) 

where 𝜆 is the factor by which 𝐊𝛔 must be multiplied with to reach the buckling load. At the 
bifurcation point there are at least two infinitesimally closely located equilibrium states that 
are possible, the unbuckled and at least one buckled state. {da} are the displacement 
increments that exist just before buckling, and since the transition between the close points 
doesn’t require any changes in applied loads the right side of the equation is the null vector 0. 
[21] This equation can be solved as a generalized eigenvalue problem, i.e.  

 (𝐀 − 𝜆𝐁)𝐚 = 0 (4.55) 
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for a non-trivial solution of (4.55) to exist, the following must apply 

 det(𝐀 − λ𝐁) = 0 (4.56) 

The solution of the eigenvalue problem means that the values of λ that fulfill (4.56) are 
calculated. There can of course be several valid values of λ, these sets are called eigenvalues. 
For every eigenvalue λi there is a corresponding eigenvector ai that fulfills (4.55). The 
eigenvectors represent the various buckling modes of a structure. 

At large deformations the stiffness matrices of (4.53) are the result of a linear perturbation of 
the loaded structure.  

4.3 FE software Abaqus  
Abaqus is a general finite element method analysis software. It can be used to calculate both 
dynamic and static problems in two or three dimensions. Abaqus can be used in a wide variety 
of engineering problems.  

The Abaqus software consist of four main parts; Abaqus/CAE, Abaqus/Standard, 
Abaqus/Explicit and Abaqus/CFD. Abaqus/CAE is a user interface that can be used to 
visually and interactively create a model and view the results after the finite element analysis. 
In Abaqus/CAE the user can design the geometry, create and assign material properties, 
boundary and load conditions etc. Abaqus/CAE creates an input file containing the model 
data which can be read by the analysis software, e.g. Abaqus/Standard and Abaqus/Explicit. 
The analysis program creates a file containing the results which in turn can be read by the 
Abaqus/CAE. 

Abaqus/Standard is ideal to use for static and low-speed dynamic calculations, where high 
accurate stress solutions are requested. Abaqus/Explicit effectively handles severe nonlinear 
behaviour, such as contact conditions, and it is in particular suited to simulate short transient 
events as e.g. a car crash. Abaqus/CFD is an application for advanced calculations within 
fluid dynamics such as laminar and turbulent flows, it also supports pre and post processing 
with Abaqus/CAE. 

In this thesis Abaqus/CAE 6.12 is used for modelling, and Abaqus/standard is used for 
analysis calculations. When creating a model with Abacus/CAE the user follows a set of 
modules to create the necessary data for the input file. The modules are described below 
together with certain input possibilities that are of importance in this thesis. 

Part module - the geometric entity is created. The part can be deformable, discrete rigid, 
analytical rigid, eulerian or electromagnetic. The deformable part can be any arbitrary shaped 
axisymmetric, two- or three –dimensional part that deforms under load. The discrete rigid part 
can be of arbitrary shape just like a deformable part but is used to model bodies that cannot 
deform i.e. are completely rigid, such parts are often used in contact analysis. An analytical 
discrete part has the same properties as a discrete rigid part but the shape cannot be chosen 
arbitrary.  
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Property module – sections and material properties are created and assigned to the parts, e.g. 
the orientation of the orthotropic material properties. 

Assembly module – parts are inserted and arranged into a global domain. The parts are 
positioned by e.g. applying position constraints that align selected edges. 

Step module – in this module the user creates the analysis steps and specifies output requests. 
In this thesis two different analysis steps are used, the static general procedure for regular 
stress analysis and the linear perturbation buckling procedure described in 4.3.1. 

Interaction module – here the user defines e.g. the mechanical interactions between regions 
of a model or between the model and its surroundings. Springs can be created between two 
points or between a point on the model and a point of the ground. 

Load module – definition of loads and boundary conditions. 

Mesh module – definition of the element mesh. There are a variety of elements available in 
Abaqus, a small evaluation of two of these elements and their behaviour were made in this 
thesis, these elements are described in 4.3.2 and the evaluation in 5.1. 

Job module – the setup for analysis. The input file is created then sent to, and analysed by 
e.g. Abaqus/Standard, as in this thesis. 

Visualization module – The output file from Abaqus/Standard can be viewed and post 
processed.   

 

4.3.1  Eigenvalue buckling analysis in Abaqus 
Abacus provides the possibility to estimate the elastic buckling of a structure by making an 
eigenvalue extraction. In a stiff structure where the response prior to the buckling is linear, 
this estimation is a very useful tool.  

Prior to the eigenvalue extraction, the structure is defined as being in its base state. This state 
is obtained by any response history, including nonlinear effects. In the base state the stresses 
σB are in equilibrium with the surface traction tB and body forces bB. From this state a linear 
perturbation (incremental loading) i.e. is applied with additional surface traction ∆t, body 
forces ∆b and boundary displacements ∆u. For the estimation of the buckling load to be 
reasonable the response to the perturbation loads must be linear until the estimated buckling 
load value. The linearity of the problem means that if the response to ∆t, ∆b and ∆u is ∆σ, 
then the response of λ∆t, λ∆b and λ∆u will be λ∆ σ. For each distinct value of λ there is a 
corresponding linear perturbation. In the linear perturbation analysis ABAQUS seeks for the 
values of λ that allows for nontrivial incremental displacement fields with arbitrary 
magnitudes as valid solutions to the problem, these are referred to as the buckling modes.  
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In accordance with the standard FE method approach it is the stiffness matrix K that is 
evaluated to find the eigenvalues. In [22] the governing equation for buckling then takes the 
form 

(𝐾0𝑁𝑀 + 𝜆𝐾∆𝑁𝑀)𝑣𝑀 = 0 

where  𝐾0𝑁𝑀 is the base state stiffness, which is the sum of the hypo elastic tangent stiffness, 
the initial stiffness and load stiffness. 𝐾∆𝑁𝑀 is the differential stiffness, which is the sum of the 
initial stiffness due to the perturbation stresses and the load stiffness due to the perturbation 
loads, i.e.  𝐾∆𝑁𝑀 is a function of the initial load vector associated with the predeformed base 
state. 

If the resulting nodal loads from applied forces ( tB, bB )and prescribed displacements (uB) are 
denoted 𝑃𝑁, and the nodal loads due to the additional loads (∆t, ∆b, ∆u) are denoted QN, then 
the eigenvalues λi are the multipliers that provide the estimated buckling load 𝑃𝑁 + 𝜆𝑖𝑄𝑁. 
The corresponding buckling mode is given by the corresponding eigenvector 𝑣𝑖𝑁. Note 
especially that with this general definition of buckling prediction, any state can be used as 
base state and that in general, the load patterns can be different, i.e. 𝑃𝑁 ≠ 𝑘 ∙ 𝑄𝑁. 

4.3.2 Element types in Abaqus 
The evaluated elements for this thesis were continuum (solid) and shell elements. 

 

Figure 4.9 Illustration of continuum and shell elements 

Continuum (solid) elements are general purpose elements that can be used to model a large 
variety of problem types. The continuum elements represent three dimensional blocks of 
material which can be connected to other elements on all its faces, making it possible to create 
almost any structure. Each node of the element has three translational degrees of freedom. In 
the present study hexahedral elements (bricks) are used. Both linear (eight node) and 
quadratic (20 node) elements were used. Reduced and fully integrated elements have also 
been compared. These different element types differ in the number of Gauss points that is 
used in the integration. 

Continuum elements  Shell elements 
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Figure 4.10 Continuum elements with illustrated integration points 

Linear elements with full integration use two integration points in each direction, quadratic 
elements use three. This gives a total of 23=8 and 33=27 integration points for the linear and 
quadratic elements respectively. A problem with the fully integrated linear elements is shear 
locking, which causes the elements to behave much too stiff in bending. This is because the 
edges of a linear element can’t curve when exposed to a bending moment, see Figure 4.11. In 
the deformed state the angles between the dotted lines have changed which misleadingly 
indicates that the shear strain (stress) is nonzero. Shear locking is only a problem in bending, 
otherwise the linear, fully integrated, elements work well in shear or direct loads. The 
hexahedral element of second order does not have this problem since the displacement 
approximation allows for a curvature within the element.    

 

Figure 4.11 Shear locking of fully integrated linear continuum element 

In reduced integration the element uses one less integration point in each direction, and thus 
only a single integration point is used for the linear element. In such cases linear elements can 
instead be too flexible because of another problem called hour-glassing. When the element in 
Figure 4.12 is subjected to the bending moment M, none of the dotted lines change length, the 
strain (and stress) monitored at the only integration point is therefore zero. Consequently, the 
deformation pattern shown in Figure 4.12 is possible without any strain energy being 
monitored – in other words the element possesses no stiffness to this hourglass-shaped 
deformation mode. Abaqus deals with this problem by adding a small amount of hourglass 
stiffness which limits the propagation of hourglass patterns in the mesh. This generates 
acceptable results but also requires a reasonably fine mesh to work well. The quadratic 
element in combination with reduced-integration can also create hourglass modes, but it is 
very unusual that this can propagate in a mesh and rarely becomes a problem. 
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Figure 4.12 Hour glassing effect in reduced integrated linear elements 

There is also another way to overcome the problems of shear locking in linear elements with 
full integration. In Abaqus so-called “Incompatible mode elements” are provided. In these 
elements additional degrees of freedom are introduced that enhance the element’s deformation 
gradient, to account for bending modes. 

Shell elements are preferably used to model structures were one dimension is significantly 
smaller than the others and stresses in the thickness direction are negligible. A guideline value 
is that the thickness, t, should be less than 1/10 of other global structural dimensions, for 
example the distance between supports. The conventional shell element discretizes a reference 
surface by defining its planar dimensions, its surface normal and initial curvature. The 
thickness of the element is defined by the section properties. By numerical integration the 
stresses and strains are calculated independently at each section point trough the thickness, 
which means that nonlinear material behavior can be allowed. The number of section points is 
by default set to five which is enough to cover most problems. By default the mid surface and 
the reference surface are equivalent. 

 

Figure 4.13 Shell element with reduced integration and 5 section points 
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5 Development of a representative FE-model 
In this master thesis work a substantial time and effort has been spent in developing a 
representative model of the shear wall element in the FEM-program Abaqus. In this chapter 
the procedure of the development is presented to give a motivation for choices that have been 
made in the development of the model. This also gives a more detailed explanation of how 
Abaqus deals with buckling problems and what possibilities the user has in terms of various 
modeling approaches. 

The first step in the development was to evaluate which types of elements to use, section 5.1. 
Abaqus gives some guidelines on what elements to use for different analyses but to gain more 
knowledge of how the elements behave for the present application, a parametric study of 
different element types was made comparing the estimated buckling load of a simply 
supported plate in Abaqus to an analytical solution.  

The next step was to model the entire shear wall element and design the application of loads 
and boundary conditions to resemble the conducted experiments, described in 3.2, with the 
aim of achieving correlating results. The built up of the shear wall part and material properties 
are presented in 5.2, there after the development of boundary conditions, load applicators etc 
are presented in a chronological order. Initially the load and boundary conditions were applied 
with a constraint coupling interaction, section 5.3, thereafter rigid bodies were used to 
introduce the loads and boundary conditions, see section 5.4. With rigid bodies applying loads 
the boundary conditions were further analyzed, using springs to adjust the vertical and 
rotational stiffness, see section 5.5. The final adjustments of the model and analysis procedure 
to form the models which are the basis in producing the presented results is finally described 
in 5.5.3, this section also briefly describes the procedure of the analyses for achieving the 
aims and questions of this thesis.  
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5.1 Evaluation of different element types – Plate buckling  
To evaluate the various elements available in Abaqus, a simply supported plate was modeled 
in Abaqus. Buckling analyses were performed and the results were compared to an analytical 
solution. The geometry and material properties of the plate used in the evaluation were set 
according to Table 5.1. Boundary conditions and application of load is illustrated in Figure 
5.1 below. 

 

Figure 5.1 Boundary condition and application of load in the element study, left figure under 
compressive stress, right figure under shear force.  

Table 5.1 Geometry and material properties for element study 

Hight a = 2.4 (m) Young’s modulus E = 77∙109 

Width b = 1.2 (m) Poissons ratio 𝜈 = 0.23 
Thickness t = 0.01 (m)   

5.1.1 Analytical calculation: 

Compressive stress 
The compressive buckling stress, σcr, was calculated according to expression (4.15), with 
geometry and material properties according to Table 5.1. Buckling coefficient given by (4.13) 
with m=1,2,3,4,5, gives  

Table 5.2 Buckling loads (MPa) for a simply supported plate according to Table 5.1  

Results of σcr (MPa): 

n=1, m=1 n=1, m=2 n=1, m=3 n=1, m=4 n=1, m=5 

29.0222 18.5742 21.7989 29.0222 39.0523 

Result in order of stress level 

18.5742 21.7989 29.0222 29.0222 39.0523 
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Shear stress 
The shear buckling stress, τcr, was calculated according to expression (4.16), with geometry 
and material properties according to Table 5.1. Buckling coefficient given by (4.17), gives 

𝜏𝑐𝑐 = 29.4402 MPa  

5.1.2 Parameter study 
For the model with continuum elements the plate was created as a 3D deformable solid 
extrusion part with geometry and material properties according to Table 5.1. The part was 
then partitioned with a cutting plane through the mid plane of the plate. To mimic the 
conditions of the analytical calculation loads were applied to the plate as uniform pressure on 
the edges for compression and as surface tractions for shear, boundary conditions where 
applied along the mid plane around the plate’s perimeter. 

For the model with shell elements a planar shell part was created. Loads were applied to the 
plate as shell edge load, and boundary conditions were applied along the edges and corners. 

The calculation of the buckling load was performed by a linear perturbation (“Buckle”) 
analysis, described in 4.3.1. The various element types tested in the parameter study were  

Table 5.3 Element types used in parameter study. 

Element code 
Continuum, linear, reduced integration C3D8R 
Continuum, linear, full integration C3D8 
Continuum, quadratic, reduced integration C3D20R 
Continuum, quadratic, full integration C3D20 
Continuum, linear, incompatible modes C3D8I 
Continuum shell SC8R 
Shell, linear, reduced integration S4R 
Shell, linear, full integration S4 
Shell, quadratic, reduced integration S8R 
 

In the table for calculated σcr below the ratio of σcr.Abacus / σcr.Analytic is given for the 
second buckling mode (with a one-period sinusoidal curve in the height direction). 
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Table 5.4 Results from parameter study. Buckling load ratios for compressive stress. 

 
Number of elements  t-dir × b-dir × a-dir 

total number of elements 
 2×24×48 2×60×120 2×120×240 4×24×48 4×60×120 
Element 2304 14400 57600 4608 28800 
C3D8R 7.559 0.923 0.760 28.131 1.630 
C3D8 5.701 1.646 1.067 5.792 1.737 
C3D20R 0.994 0.994 0.994 0.994 0.994 
C3D20 0.998 0.995 0.994 0.997 0.995 
C3D8I 1.006 0.998 0.996 1.006 0.997 
SC8R 1.005 0.996 0.995 1.005 0.996 
      
 1×6×12 1×12×24 1×24×48   
 72 288 1152   
S4R 1.048 1.010 1.000   
S4 1.039 1.008 1.000   
S8R 0.991 0.994 0.994   
 

Table 5.5 Results from parameter study. Buckling load ratios for shear stress. 

 
Number of elements t-dir × b-dir × a-dir 

total number of elements 
 2×24×48 2×60×120 2×120×240 4×24×48 4×60×120 
Element 2304 14400 57600 4608 28800 
C3D8R 5.298 0.898 0.783 18.634 1.448 
C3D8 6.665 1.834 1.142 1.276 1.929 
C3D20R 1.030 1.030 1.029 1.030 1.029 
C3D20 1.033 1.030 1.030 1.033 1.030 
C3D8I 1.047 1.032 1.031 1.047 1.032 
SC8R 1.029 1.008 1.000 1.017 1.000 
      
 1×6×12 1×12×24 1×24×48   
 72 288 1152   
S4R 1.227 1.076 1.048   
S4 1.256 1.081 1.043   
S8R 1.038 1.029 1.029   
 

5.1.3 Conclusions after parametric study 
As expected, the linear continuum elements do not behave well, and do not show a clear 
convergence towards the analytical solution. Furthermore, the linear elements with full 
integration elements are too stiff. The quadratic continuum elements work well both with 
reduced and full integration. The continuum shell elements and elements with incompatible 
modes also work well. But there is a big difference in time of calculation. As an example the 
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time of calculation for the plate with 57600 elements took approximately one minute using 
the continuum shell elements but nearly fifteen minutes using the quadratic, fully integrated, 
continuum elements.  

Shell elements behave in general well, showing conforming results with fewer elements 
compared with the case of using continuum elements. The calculation time is also a plus for 
these elements. The disadvantage of these elements is that the shell elements are planar in 
their geometry, i.e. without any thickness in the geometrical model, which complicates the 
build-up of a full 3D-model which includes adhesives layers and timber studs connected to 
the glass pane. 

After these tests the continuum shell element was selected for the further development of an 
FE-model of the shear wall pane. These elements converge well towards the analytical 
solution and can save some calculation time. They will also be easy to model together with 
the 3D-geometry of the adhesive and the timber frame. 
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5.2 Model built-up 

5.2.1 Creating the shear wall element part 
The shear wall was modeled as a 3D deformable solid part of size 2404×1204×103 (mm3). 
Instead of using the Abaqus tie option to assemble the different parts together, the entire shear 
wall was made as a single 3D deformable solid part which was shaped with cut extrudes and 
partitioned using cutting planes. 

The geometry of the model is shown in Figure 5.2. In the FE model the glass pane was 
assumed to be of the same size as the frame, which differs slightly from the shear walls used 
in the experiments where the glass was 2400×1200×10 (mm3) and a 2 mm thick PTFE 
(TeflonTM) strip was used to fill the small gap. 

 

Figure 5.2Geometry of the shear wall element [1] 

In Figure 5.3 below a corner of the part is shown, illustrating the cutting planes that partition 
the part into different sections. With this approach all section were perfectly connected, and 
the different sections could be given different material properties. 

 

Figure 5.3Illustration of cutting planes 
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The sections of timber studs, adhesive and the glass between the adhesive frames were 
meshed with linear continuum elements with full integration, C3D8. The remaining glass 
pane section was a meshed with continuum shell elements, SC8R. The global element size 
was set to 0.02 m. With the partitioning of the corners all elements became rectangular in 
shape. With this element size the timber studs are made up of 2×2 elements over the cross-
section. 

During the development the timber studs were modeled both as being fully connected to each 
other at the corners and by assuming that there was no interaction at all between them. This 
latter modeling approach was achived by making a cut through the studs at the cornes. A very 
thin triangularly shaped cut was done through the vertical studs, so that the vertical studs were 
separated from the horizontal, see Figure 5.4. 

 

Figure 5.4 Illustration of cut to separate studs (width of cut is exaggerated for clarity). 

Assembly in global coordinates 
The shear wall was inserted in the global coordinate system so the glass pane lies parallel to 
the x-y plane and the normal of the glass plane is oriented in the z-direction. The short edge of 
the glass pane is parallel to the x-axis. Boundary conditions and loads are denoted as follows  

ux, uy, uz – displacement in x-, y- and z-direction 

urx, ury, urz – rotation around the x-,-y- and z-axis 

CFx, CFy, CFz - concentrated force in x-, y- and z-direction 
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5.2.2 Material properties 
Material properties were initially chosen in accordance with the materials used for the tested 
I-beams in [6] , assuming that approximately the same materials were used for the timber-
glass shear wall. The properties of LVL in [6] are presented in Table 2.2 , Poisson’s ratios for 
the LVL were questioned since νlt = νlr = 1.1 are much higher than what is given in other 
literature. These were therefor set initially to νlt = νlr = 0, the effect was assumed to be 
negligible. Properties of glass were Young´s modulus E = 77 GPa, and Poisson’s ratio 
ν = 0.23.  

The orthotropic properties of the LVL were matched to the orientations of the LVL on the 
constructed timber-glass shear wall. The orientations of the material properties were set to the 
vertical and horizontal studs respectively according to Figure 5.5. 

 

Figure 5.5 Illustration of material orientation of LVL studs (horizontal on the right, vertical 
on the left) 

The directions 1,2 and 3 correspond to the longitudinal direction along the fibers, to the 
normal of the LVL-veneers plane, and parallel to the planes of the veneers, respectively.  

In the development of a conforming model the FE-results were compared with the test results 
obtained with the shear walls with acrylate adhesive. The following material parameters were 
used initially 

Table 5.6 Material properties used in the model development. 

Glass E = 77 000 MPa ν = 0.23  

Timber (LVL) E1 = 16 060 MPa E2 = 440 MPa E3 = 440 MPa 

 G12 = 440 MPa G13 = 440 MPa G23 = 44.4 MPa 

 ν12 = 0 ν13 = 0 ν23 = 0.39 

Adhesive E = 80 MPa ν = 0.4  
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To obtain comparable results throughout the development these material values were not 
initially changed although the values for timber and glass seemed high. During the process of 
developing this model it turned out that the boundary conditions at the horizontal load case 
had a much greater impact than first thought. The load application device used in the test (a 
rigid beam) was first thought of as being locked in the vertical direction and in rotation 
around the out of plane axis, however this boundary condition did not give correlating results. 
As will be seen in section 5.5 the adjustment of these two boundary conditions can calibrate 
the model to match the experimental results, using various material properties.  

The analyses to study the interaction between the vertical and horizontal critical load in the 
combined load case were also made with the alternative timber properties according to Table 
2.3, material properties used in this test are shown in Table 5.7 

Table 5.7 Alternative material properties, used in the final model to study the interaction in 
the combined load case.  

Glass E = 77 000 MPa ν = 0.23  

Timber (LVL) E1 = 13 800 MPa E2 = 130 MPa E3 = 430 MPa 

 G12 = 600 MPa G13 = 600 MPa G23 = 60 MPa 

 ν12 = 0.5 ν13 = 0.5 ν23 = 0.5 

Adhesive E = 80 MPa ν = 0.4  
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5.3 Shear wall model 1: Coupling constraints 
In a surface-based coupling constraint, the displacements of selected nodes on a surface are 
governed by a reference node. The coupling constraint can be very useful in many situations, 
for example when a surface is constrained to a rigid body motion or to apply loads and 
boundary conditions. There is also the possibility to model end conditions, for example a rigid 
plate, or to constrain a planar section of a solid part to remain planar. 

The reference node has both rotational and translational degrees of freedom. In Abaqus the 
user can choose which of these degrees of freedoms that will be coupled to the nodes on a 
surface. If all are selected the displacement of the coupled nodes are then determined by the 
expression (5.1) below (for small displacement increments). 

 

𝑢𝑥 = 𝑢𝑃.𝑥 + 𝑢𝑃.𝑅𝑥 ∙ ∆𝑧 − 𝑢𝑃.𝑅𝑧 ∙ ∆𝑦 

𝑢𝑥 = 𝑢𝑃.𝑥 + 𝑢𝑃.𝑅𝑧 ∙ ∆𝑥 − 𝑢𝑃.𝑅𝑥 ∙ ∆𝑧 

𝑢𝑧 = 𝑢𝑃.𝑧 + 𝑢𝑃.𝑅𝑥 ∙ ∆𝑦 − 𝑢𝑃.𝑅𝑥 ∙ ∆𝑥 

(5.1) 

where ui is the displacement in direction i for a node on the coupled surface located at (∆x, ∆y, 
∆z) relative the reference node, and where up.i and up.Ri is the displacement in direction i and 
the rotation about axis i of the reference node, respectively. 

5.3.1 Model built-up of shear wall with coupling constraint 
For the coupling constraint the selected coupling nodes were the upper and the lower 
horizontal surfaces of the shear wall, respectively. The reference point was placed on the 
centroid of the respective surface. Boundary conditions were applied to the reference nodes 
only, and set to mimic the experimental setup. The analysis was conducted in two steps, an 
initial displacement with a static general procedure followed by a linear perturbation – 
buckling procedure. Analyses were conducted both with and without nonlinear geometry 
effects taken into account. 

Boundary conditions and loads (mm, N)  
Vertical load case Step 1- static general  Step 2 – linear perturbation 
Ref.point bottom ux = uy =  uz = 0, ury = urz = 0 ux = uy =  uz = 0, ury = urz = 0 

Ref.point top ux = uz = 0, ury = urz = 0 ux = uz = 0, ury = urz = 0 
 uy =  -0.01 [CFx, CFy, CFz] = [0,-1,0] 

Horizontal load case   

Ref.point bottom ux = uy =  uz = 0, ury = urz = 0 ux = uy =  uz = 0, ury = urz = 0 

Ref.point top ux = 0.1, uy =  -0.01 ux = uz = 0, ury = urz = 0 
 uz = 0, ury = urz = 0 [CFx, CFy, CFz] = [1,0,0] 
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5.3.2 Results and conclusions for further development. 
Table 5.8 Buckling loads obtained from models with coupling constraints. 

Vertical load Nlgeom Horizontal preload 
(kN) 

Critical load 
Vcr (kN) 

Model-1a OFF 0 176.83 
Model-1b ON 0 176.86 
Horizontal load Nlgeom Vertical preload 

(kN) 

Critical load 
Hcr (kN) 

Model-1c OFF 4.32 229.71 
Model-1d ON 4.32 233.85 
Model-1e OFF 8.64 221.19 
Model-1f ON 8.64 221.20 
 

Compared to the experimental results in Table 3.1 the vertical buckling load was about the 
same magnitude. The horizontal buckling load on the other hand was much higher than in the 
conducted experiments where the highest registered horizontal load was 71.3 kN. A probable 
explanation to the much overestimated buckling load in the FE-analyses is that the entire 
element interacted completely with the load and boundary conditions due to the constraint 
coupling. In the coupling constraint the horizontal surface was kept plane and horizontal and 
there was no transverse motion of the nodes at the surface. Another explanation can be that 
the timber studs were perfectly connected in the corners which also adds stiffness to the frame 
in the FE-model.  

To obtain a closer fit to the experimental results in terms of horizontal buckling load, a more 
refined model of the loading device was necessary. Instead of a coupling constrain the idea 
arose that a rigid part could be used to apply loads and boundary conditions. This could give a 
more realistic behavior of the shear wall.  
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5.4 Shear wall model 2 & 3: Introducing rigid parts 
Rigid parts can be used when parts in a model come in contact and some parts are much 
stiffer so that the deformation of these can be neglected. 

5.4.1 Model 2, built-up with rigid parts  
The shear wall was created in the same manner as in 5.2.1, with material properties according 
to Table 5.6. The rigid parts modeling the loading devices were created as 3D analytical rigid 
parts. The rigid parts were given a reference point which was placed so that it would lie at the 
center of the top and bottom surfaces, respectively. The heel which applies the horizontal load 
is 50 mm high, resembling the experimental set up.   

 

Figure 5.6 Rigid part - model 2 

To simulate the contact between the loading device and the shear wall, an interaction criterion 
was defined. This included a frictional interaction constraint between the surfaces allowing 
for some slip between the surfaces. In Abaqus a surface-to-surface contact interaction was 
created, with the rigid part as master surface and the corresponding shear wall surfaces as 
slave surfaces. The interaction property was set to hard contact (no penetration of the slave 
surface into the master surface) with the tangential behavior defined by a penalty formulation. 
This is a stiffness method that allows for elastic slip, i.e. allows some relative motions of the 
surface when they are in contact. The magnitude of the slip is controlled by the elastic slip. 
The friction coefficient was set to 0.3. 

Analyses were made both with and without nonlinear geometry behavior. Boundary 
conditions were applied to the reference nodes of the rigid parts, according to 5.3.1. In order 
to ensure converging results during the first calculation step (i.e. to establish contact without 
any rigid body motions), two additional nodes were pinned (locked in all directions) in the 
first step, these were two points on the timber frame. After the contact was established these 
pinned boundary conditions were released 

To evaluate the bifurcation load two different methods were used, a linear perturbation 
buckling analysis and a general, static large displacement analysis applying the full load and 
evaluating the associated load-displacement diagram. The buckle analysis used a 
displacement acting as reference “load”. The buckling load was then calculated by controlling 
the reaction forces in the reference node after step one and adding to these the eigenvalue 
multiplied with this preload and the ratio between the “buckling reference displacement” and 
the “pre-displacement”. This assumes a linear relation between load and displacement at the 
end of the preload step, and to control this assumption a few tests were made with a 
concentrated force instead. These showed only small differences that could be neglected. 
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When the model was subjected to the full load, a larger vertical displacement (with nonlinear 
geometry in the calculations), the aim was first that the calculations would fail at a level 
corresponding to the bifurcation point, but the results turned out to be perfectly linear. To 
trigger instability a small transverse uniform pressure was therefore added on the panel.  The 
vertical reaction force (RF2) was plotted against the displacement in the z-direction of a node 
at the center of the pane. 

A number of analyses were made to study the influence of the vertical preload on the 
horizontal critical load. In step 1 in these models the horizontal displacement was 0.1 mm and 
the vertical displacement was varied from 0.08 mm to 0.4 mm. In step 2 a reference 
displacement was given in the horizontal direction and a buckling analysis was made.  

5.4.2 Model 2-Results and conclusions for further development 
Table 5.9 Vertical critical load with buckling analysis 

  Step 1   Step 2  Bifurcation 
value 

Vertical Nlgeom U2 
(mm) 

RF 1 
(kN) 

RF2 
(kN) 

U2 
(mm) 

Eigen 
value Vcr (kN) 

Model-2a OFF -0.1 0.25 -42.42 -1 0.31357 175.42 
Model-2b ON -0.1 0.25 -42.42 -1 0.31358 175.44 

Table 5.10 Approximated vertical critical load from a load-displacement plot 

  Step 1  Step 2  Bifurcation 
value 

Vertical Nlgeom U2 (mm) Transversal 
pressure 

U2 
(mm) 

Transversal 
pressure 

Approximated 
Vcr (kN) 

Model-2c ON -0.1 ON -5 ON 208.6 
Model-2d ON -0.1 ON -10 ON 210.6 
Model-2e ON -0.1 ON -10 OFF 210.6 

The vertical critical load was about the same with this model as with the model with the 
coupling constraints, see 5.3.2. There were no larger differences between the models with or 
without nonlinear geometry behavior taken into account.  

The model using a larger displacement can carry a vertical load larger than the estimated 
critical value, and thus it is difficult to estimate when the buckling load has been passed. It 
was also shown that a transverse load was needed to trigger the instability and that with the 
linear perturbation buckling analysis the results were closer to the values from the 
experiments. 
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Figure 5.7 Horizontal critical load, obtained with buckling analysis  
under varied vertical preload 

The horizontal critical load was now lower and closer to the experimental results with the 
linear perturbation analysis used, but there were some questions raised. After the first analysis 
step, the contact between the rigid body and the shear wall was not enough to keep it in place 
and the corners of the shear wall not in contact with the loading device (and thus no friction 
being built up), moved in the out of plane direction. The conducted test with a larger 
horizontal displacement in step 2 could not be used in a comparison because the corners not in 
contact with the rigid body moved out of plane which changed the geometry to much in 
comparison with the buckle analysis made. The rigid bodies could not capture the boundary 
conditions from the experiments. According to the Abaqus manual, the use of contact 
constraints is indeed allowed even for linear perturbation analyses such as the Buckle 
procedure. The contact constraints at the reference node state are, however, not updated 
during eigen value extraction (since contact constrains are nonlinear boundary conditions this 
would contradict the assumption of a linear behavior). 

Tests made to study the impact of the initial vertical load showed that the horizontal stiffness 
is enhanced initially but then decreases. This is explained by the fact that a larger part of the 
ends of the glass come in contact with the loading devices i.e. the rigid bodies, but if the 
preload is too large, the transverse stiffness is reduced already by the vertical preload. The 
bifurcation point when combining different stresses is according to theory, discussed in 4.1.2, 
depending on the interaction of 𝜎 𝜎𝑐𝑐⁄  and 𝜏 𝜏𝑐𝑐⁄ . With this in mind the horizontal load 
capacity should have decreased towards zero more clearly as 𝜎 𝜎𝑐𝑐⁄   approached 1.  

Compared to the experiments, the buckling load using a small vertical preload matched the 
results better. All this highlights the importance that to be able to compare the FE-results with 
experiments the same vertical preload must be used, and the horizontal to vertical force ratio 
in which the shear wall was actually loaded is of great importance.  
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5.4.3 Shear wall model 3: Clamped edges and cut stud connections 
To resolve the problem of the out of plane movement the rigid bodies were redesigned, and a 
30 mm edge around the rigid body was added. At this point two more influencing variables 
were added to the development of the model.  

The stud connections had so far been perfectly bonded which contributed to the horizontal 
stiffness. Images from experiments show that a small crack appeared in these connections. To 
evaluate the significance of this a very thin part was cut out from the vertical studs creating a 
gap between the vertical and horizontal studs, see Figure 5.4.  

Another influencing condition that had to be taken in consideration was the distance from the 
glass pane to the point of rotation. This variable was tested by moving the reference points 
positions according to the experimental set up described in Figure 3.4. 

 

Figure 5.8 Rigid part - model 3 

To establish a good initial contact, the width of the rigid body was set to 102.9 mm, i.e. 0.1 
mm smaller than the width of the shear wall, and in the first step of the analysis the  
interaction is established by gradually removing slave node overclosure. This meant that the 
timber studs shrank 0.05 mm on each side to fit inside the loading device. This compression 
remained during the second and third calculation step and counteracts the out of plane 
movements by ensuring contact between the sides of the loading device and the timber frame 
sides. In step one the top and bottom reference nodes were locked in all directions and 
rotations.  

Boundary conditions and loads (mm,N)  

Vertical load case Step 2- static general  Step 3 – linear perturbation 
Ref.point bottom ux = uy =  uz = 0, ury = urz = 0 ux = uy =  uz = 0, ury = urz = 0 

Ref.point top ux = uz = 0, ury = urz = 0 ux = uz = 0, ury = urz = 0 
 uy =  -0.01 [CFx, CFy, CFz] = [0,-1,0] 

Horizontal load case   

Ref.point bottom ux = uy =  uz = 0, ury = urz = 0 ux = uy =  uz = 0, ury = urz = 0 

Ref.point top ux = 0.1, uy =  -0.01 ux = uz = 0, ury = urz = 0 
 uz = 0, ury = urz = 0 [CFx, CFy, CFz] = [1,0,0] 

Combined load case   

Ref.point bottom ux = uy =  uz = 0, ury = urz = 0 ux = uy =  uz = 0, ury = urz = 0 

Ref.point top ux = 0.1, uy =  -0.01 ux = uz = 0, ury = urz = 0 
 uz = 0, ury = urz = 0 [CFx, CFy, CFz] = [Fx, Fy, 0] 
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5.4.4 Results and conclusions for further development 
Table 5.11 Vertical critical load with buckling analysis 

 Step 2    Step 3  Bifurcation 
value 

Vertical U1 
(mm) 

U2 
(mm) 

RF 1 
(kN) 

RF2 
(kN) 

U2 
(mm) 

Eigen 
value Vcr (kN) 

Model-3a 0 -0.1 0.21 -42.45 -1 0.31526 176.29 
With eccentric reference points     
Model-3b 0 -0.1 0.09 -42.43 -1 0.31529 176.22 
With eccentric reference points and stud connections cut   
Model-3c 0 -0.1 0.21 -42.08 -1 0.30278 169.47 

 

Table 5.12 Horizontal critical load with buckling analysis 

 Step 2    Step 3  Bifurcation 
value 

Horizontal U1 
(mm) 

U2 
(mm) 

RF 1 
(kN) 

RF2 
(kN) 

U1 
(mm) 

Eigen 
value 

Hcr  
(kN) 

Model-3d 0.1 -0.01 3.27 -8.29 1 2.8368 96.15 
Model-3e 0.1 -0.1 5.15 -42.67 1 3.3843 179.44 
Model-3f 0.1 -0.4 5.96 -169.29 1 2.2317 139.06 
With eccentric reference points     
Model-3g 0.1 -0.01 3.27 -8.29 1 2.8215 95.65 
With connection cut       
Model-3h 0.1 -0.01 3.20 -8.20 1 2.5959 86.32 
With eccentric reference points and connection cut    
Model-3i 0.1 -0.01 3.20 -8.20 1 2.5941 86.27 

 

Table 5.13 Buckling load at combined load, stud connection cut 

 Step 
2    Step 3  Bifurcation value 

Combined U1 
(mm) 

U2 
(mm) 

RF 1 
(kN) 

RF2 
(kN) Fx / Fy  

Eigen 
value 

Hcr  
(kN) 

Vcr  
(kN) 

Model-3j 0.1 -0.01 3.27 -8.29 0.4 / -1 65130 68.33 171.02 
Model-3k 0.1 -0.01 3.27 -8.29 0.6 / -1 63001 101.00 171.20 
Model-3l 0.1 -0.01 3.27 -8.29 0.8 / -1 139416 114.73 142.61 
Model-3m 0.1 -0.01 3.27 -8.29 1 / -1 121014 124.22 129.21 
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Table 5.14 Approximated horizontal critical load from a load-displacement plot 

Studs connected,  no eccentric reference points 

 Step 2    Step 
3 

   Bifurcation 
value 

 U1 
(mm) 

U2 
(mm) 

RF 1 
(kN) 

RF2 
(kN) 

U1 
(mm) 

U2 
(mm) 

RF 1 
(kN) 

RF2 
 (kN) 

Approximate
d 

Hcr (kN) 

Model-3n 0.1 -0.01 3.33 -8.40 10 -0.1 99.43 -203.72 65-70 

 

 

Figure 5.9 Plot of out of plane displacement of a node at the center of the pane versus 
reaction force in Y-dir, Model-3n 

The vertical critical load was not affected in any significant manner by the redesign or the 
eccentric reference points of the rigid bodies. But the critical value was lowered when the stud 
connections was cut.  

The horizontal critical load for Model-3d, 3e and 3f was increased in comparison with results 
of the model without clamped edges. This is explained by the fact that there was no transverse 
movement of the shear wall edges with the clamped edges. The vertical preload has the same 
effect on the horizontal critical load with or without the clamped edges. Comparing Model-3d 
with experiments (the vertical preload on Model 3d is closest to the preload level in 
experiments) shows that Model-3d has a higher horizontal critical load.  

The force-displacement plot from Model-n displayed in Figure 5.9 above shows that at the 
horizontal force of about 65-70 kN the out of plane displacement escalates in the center of the 
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glass pane. This is a reasonable bifurcation point when compared to the experiments. Since 
glass has a very brittle behavior, especially in tension, the escalating out of plane movement 
can probably not be hindered by the glass. 

Aslo noticed for this model is that when the stud connections were cut the critical buckling 
load was significantly reduced, and the load case of combined loads resulted in to high critical 
loads. 

In the Abaqus analysis of the horizontal buckling load, the shapes of the buckling modes, 
Figure 5.10, do not match the shapes that could be observed in the experiments, see Figure 
3.6. 

 

Figure 5.10 Eigenmode shapes from Model-3 

In the analyses either mode a or b according to Figure 5.10 was the mode shape corresponding 
to the lowest eigen value. In the horizontal load cases and the combined load case with the 
vertical to horizontal load ratio of 1:0.4, mode shape a was the first buckling mode. The other 
vertical to horizontal load ratios gave mode shape b at the lowest buckling load 

 

  

Mode-shape a Mode-shape b 
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5.5 Final corrections for a satisfying model 
In studying the results from analyses in Abaqus it was noticed that at a horizontal 
displacement the vertical reaction force and the reaction moment counteracting the rotation of 
the upper rigid part increased to a very high level. This did not correspond at all to the 
measurements during the experiments. In the experiments evaluating horizontal loads, the 
vertical load applier was intended to be kept horizontal and at a constant level, but this was 
not really obtained. In a first trial to correlate the model towards this movement two springs 
were introduced, allowing vertical displacement and rotational movement around the out of 
plane axis. The shape of the buckling mode had not yet been taken into any larger 
consideration, due to the introduction of the springs also the buckling shapes turned out more 
similar to experiments.  

After evaluating the results from analyses with models using springs the models that would be 
used to form the results of this thesis could be designed with a thorough knowledge of the 
impact of various variables. 

5.5.1 Shear wall model 4 – Springs tuning the boundary conditions 
Springs can be used in Abaqus to model a physical spring and to idealize axial or torsional 
movement, springs are also used in e.g. modal damping. There are two ways to insert a spring, 
either between two nodes or between one node and ground. There are three different elements 
available in Abaqus, “spring 1”, “spring 2” or “springA”. Spring1 is used to connect one node 
to ground, Spring 2 is used to connect two nodes, these are acting in a fixed direction i.e. the 
user specifies the line of direction. SpringA also acts between two nodes, however the spring 
stiffness acts always along the current line of action (i.e. the line connecting the two nodes) 
for this element. 

A reference point (denoted RP-spring) was inserted at the coordinates of the top rigid body’s 
reference point (denoted RP-top) between these reference points two spring2 elements were 
inserted, these were determined to act in uy and urz. 

The vertical stiffness of the structure, i.e vertical load (N) per vertical displacement (mm), 
was adjusted by inserting a spring stiffness kvert into degree of freedom 2, i.e. y-direction 
between RP-top and RP-spring. The vertical displacement boundaries were then set on node 
RP-spring, thus introducing at RP-top an elastic boundary condition. 

The vertical stiffness of the structure tested in the experiments was estimated by observing 
Pontos measurements on the load applying beam from the experiments, the stiffness of the 
Abaqus model was determined with a force displacement graph. The stiffness of the vertical 
spring could then be estimated to give the Abaqus model the same total stiffness as the 
structure tested in experiments. Observe that by structure is meant both the shear wall element 
and other devices such as holding supports. These calculations are presented in Appendix B. 
The rotational stiffness krot was difficult to estimate from the experimental set up or from the 
results, this therefore had to be estimated in an iterative manner with respect to obtained 
buckling load and buckling mode shape.  
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The Abaqus analyses were made in three steps, according to 5.4.3. In step 1 (removal of 
contact node over closure) reference points were locked in all degrees of freedom. 

Boundary conditions and loads (mm, N)  
Vertical load case Step 2- static general  Step 3 – linear perturbation 
RP-bottom ux = uy =  uz = 0, ury = urz = 0 ux = uy =  uz = 0, ury = urz = 0 

RP-top ux = uz = 0, ury = 0 ux = uz = 0 , ury = 0 

RP-spring uy =  -0.01 urz = 0 
 urz = 0 [CFx, CFy, CFz] = [0,-1,0] 
Horizontal load case   
RP-bottom ux = uy =  uz = 0, ury = urz = 0 ux = uy =  uz = 0, ury = urz = 0 

RP-top ux = 0.1  uz = 0, ury = 0 
 uz = 0, ury = 0 [CFx, CFy, CFz] = [1,0,0] 

RP-spring uy =  -0.01 , urz = 0 uy =  0, urz = 0 
Combined load case   
RP-bottom ux = uy =  uz = 0, ury = urz = 0 ux = uy =  uz = 0, ury = urz = 0 

RP-top ux = 0.1,  uz = 0 uz = 0, ury = 0 
 ury = 0 [CFx, CFy, CFz] = [1, 0, 0] 

RP-spring uy =  -0.01  urz = 0 
 urz = 0 [CFx, CFy, CFz] = [0, -2.5, 0] 

In order to estimate the impact of the spring’s stiffness several models with various vertical 
and rotational spring stiffness values were analyzed, using material properties according to 
Table 5.6. The results from these are presented in Figure 5.11 where in each series one of the 
two springs were kept constant and the other varied. 

 

Figure 5.11 Model 4, Results from varying spring stiffness of top boundary condition, in each 
series either krot or kvert were kept constant the other varied.  
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With the material properties according to Table 5.6 the estimating calculation, see Appendix 
B, of vertical spring stiffness resulted in kvert=3.14∙108 and by fine-tuning the rotational spring 
stiffness to krot=1.7∙107, the results of Table 5.15 were obtained. 

Table 5.15 Model 4. Buckling load at vertical, horizontal and combined load case, using 
rotational and vertical springs. 

 Step 2    Step 3  Bifurcation value 

Load case U1 
(mm) 

U2 
(mm) 

RF 1 
(kN) 

RF2 
(kN) Fx / Fy  

Eigen 
value 

Hcr 
(kN) 

Vcr 
(kN) 

Vertical 0 -0.01 0 1.79 - / 1 168.59 - 170.38 
Horizontal 0.1 -0.01 1.06 -3.71 1 / - 69359 70.42 - 
Combined 0.1 -0.01 1.06 -3.71 1 / -2.5 58651 59.72 150.34 

The values of horizontal and vertical load cases are reasonable well correlated to experimental 
values of Table 3.1. Also the shape of the buckling modes were well correlated. The 
combined load case is however too high, but after fine tuning the springs stiffness also this 
value could be correlated. However when further analyses were made with the combined load 
cases, varying the vertical to horizontal load ratios, the analyses did not give accurate results 
as can be seen in Figure 5.12. As the vertical load was decreased the horizontal buckling load 
increased far beyond the critical loading point given by the horizontal load case.  

 

Figure 5.12 Buckling load of model using springs, combined lod case. 

The puzzling results showed in Figure 5.12 turned out to depend on the boundary conditions 
set in the linear perturbation, buckle, analysis step. Since the boundary conditions of the 
reference node RP-spring in the horizontal load case was set to uy= 0, the vertical force build-
up in the spring increased to higher levels than those load values that were set as a 
concentrated force, CF2, in the combined load case. Since the linear perturbation analysis 
only makes the eigenvalue extraction the reaction forces is not presented in the results of this 
analysis, therefore it is not possible to predict how large the vertical force was at the 
bifurcation point. 
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5.5.2 Shear wall model 5 – Final adjustments and conclusions 
The impact of the springs stiffness on the buckling load level shows the importance of 
carefully taking the displacements and rotations of the shear wall element into account to 
obtain correlating results. There are however a few disadvantages when using these springs as 
a boundary condition in the linear perturbation, buckle, step, as the results in Figure 5.12 
show.  

To deal with this problem the boundary conditions in the linear perturbation step was 
changed. The new approach was to apply the desired vertical force, then release the vertical 
boundary condition in the linear perturbation step to ensure that the vertical reaction force did 
not increase further. With this approach the resulting vertical force in a combined load case 
can be more exactly controlled.  

To evaluate the effect of this approach loads and displacements were applied directly to RP-
top, and rotation around the z-axis was set free. The Abaqus analyses were made in three 
steps, according to 5.4.3. In step 1 (removal of node over closure) reference points were 
locked in all degrees of freedom. 

Table 5.16 Model5, boundary conditions and results 

Boundary condition  Step 2- static general  Step 3 – linear perturbation 
RP-bottom ux = uy =  uz = 0, ury = urz = 0 ux = uy =  uz = 0, ury = urz = 0 

RP-top ux = U1, uy =U2,  uz = 0, ury = 0 
 uz = 0, ury = 0 [CFx, CFy, CFz] = [Fx, Fy, 0] 

Results Step 2    Step 3  Bifurcation value 

Model U1 
(mm) 

U2 
(mm) 

RF 1 
(kN) 

RF2 
(kN) 

Fx / Fy 
(kN)  

Eigen 
value 

Hcr 
(kN) 

Vcr 
(kN) 

Model5-a 0.2 0 1.73 -8.19 1 / 0 89.256 91.0 8.2 
Model5-b 0.2 -0.02 2.54 -13.3 1 / -0.1 82.749 85.3 21.6 
Model5-c 0.2 -0.2 4.41 -84.33 1 / -1 45.664 50.1 130.0 
Model5-d 0.02 -0.2 0.56 -84.32 0.1 / -1 84.316 9.0 168.5 
Model5-e 0 -0.2 0.13 -84.20 0 / -1 85.413 0.1 169.6 

 

These results are corresponding well to the expected interaction effect. The horizontal critical 
value of Model5-a was too high compared to experiments, thus two trials were made with 
springs inserted in the same manner as explained in 5.5.1.  

In the first trial a rotational spring was inserted in Model5-a, to control the rotational stiffness 
of RP-top in step 2. The boundary condition of RP-spring was set to urz = 0 in the initial 
displacement, step 2. Thereafter the spring was deactivated in the linear perturbation step.  

In the second trial a vertical spring was inserted in Model5-a, to control the vertical 
displacement of RP-top in step 2. Thereafter the spring was deactivated in the linear 
perturbation step. Different values of the spring stiffness were used 
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Table 5.17 Model5-a, results varying rotational stiffness of RP-top 

 Step 2    Step 3  Bifurcation value 
Spring 
stiffness  

U1 
(mm) 

U2 
(mm) 

RF 1 
(kN) 

RF2 
(kN) 

Fx / Fy 
(kN)  

Eigen 
value 

Hcr 
(kN) 

Vcr 
(kN) 

108 0.2 0 3.74 -9.23 1 / 0 88.483 92.2 9.2 
107 0.2 0 2.10 -8.24 1 / 0 89.342 91.4 8.2 
106 0.2 0 1.77 -8.20 1 / 0 89.266 91.0 8.2 
105 0.2 0 1.74 -8.20 1 / 0 89.257 91.0 8.2 
 

Table 5.18 Model5-a, results varying the vertical stiffness of RP-top 

 Step 2    Step 3  Bifurcation value 
Spring 
stiffness  

U1 
(mm) 

U2 
(mm) 

RF 1 
(kN) 

RF2 
(kN) 

Fx / Fy 
(kN)  

Eigen 
value 

Hcr 
(kN) 

Vcr 
(kN) 

109 0.2 0 1.46 -6.69 1 / 0 90.177 91.6 6.7 
108 0.2 0 0.65 -2.73 1 / 0 92.032 92.7 2.7 
106 0.2 0 0.1 -0.17 1 / 0 93.671 93.7 0.2 
 

The results of Table 5.17 and Table 5.18 show that the use of springs in this manner did not 
give the ability to correlate the results. But more importantly they show that the displacement 
and rotation of the shear wall element at the base state of the linear perturbation has a large 
impact on the critical value. With this insight the vertical force, vertical displacement and 
rotation around the z-axis after the initial displacement step was set to match the experimental 
elements just before the bifurcation point.  

By observing experimental and Pontos measurements, see Appendix A and Appendix B, the 
total vertical force and vertical displacement were determined. To place the element in this 
state an extra static general analysis step was made after the initial displacement, where the 
vertical force was applied instead of the boundary condition. 

Boundary 
condition  

Step2 - 
static general 

Step3 - 
static general 

Step4 – 
linear perturbation 

RP-bottom ux = uy =  uz = 0 
ury = urz = 0 

ux = uy =  uz = 0 
ury = urz = 0 

ux = uy =  uz = 0 
ury = urz = 0 

RP-top ux = 1 
uy = - 0.2 

ux = 5 
CFy = - 9.4  uz = 0, ury = 0 

 uz = 0, ury = 0 uz = 0, ury = 0 [CFx, CFy, CFz] = [1, 0, 0] 

Results Step 2  Step 3  Step 4  Bifurcation value 

Model RF 1 
(kN) 

RF2 
(kN) 

RF 1 
(kN) 

CF2 
(kN) 

Fx / Fy 
(kN)  

Eigen 
value 

Hcr 
(kN) 

Vcr 
(kN) 

Model5-f 12.79 -67.10 2.28 -9.4 1 / 0 69.372 71.65 9.4 

The results from this model are very close to experimental values, the buckling mode shape 
also correspond to experiments. 
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Figure 5.13 Buckling mode shapes, Model5-a and Model5-f 

The decrease of the horizontal buckling load is probably due to the larger vertical 
displacement of the lower left corner of the shear wall element. When the contact area of the 
bottom edge decreases, the compression forces gets more concentrated to the right side of the 
element, which means a higher compressive stress level and therefore a lower bifurcation 
point. This is also demonstrated by the shape of the buckling mode shapes shown in Figure 
5.13, as the out of plane displacements are more concentrated to the right in Model5-f than in 
Model5-a. This reasoning also explains why a higher rotational stiffness generates a higher 
buckling load, i.e. increased rotational stiffness means less rotation of the upper edge, which 
in turn, by the bottom left corner not lifting, gives a more uniform distribution of the 
compressive stress through the element. 

5.5.3 Models used as basis for results 
At this stage it was difficult to in advance determined how large the displacement and rotation 
would be at different combined vertical and horizontal load ratios. And as shown in previous 
discussions the initial displacement is of great importance. Due to this fact the interaction in 
the combined load case was analyzed with Model5-a,-b,-c,-d and -e as basis. In these model 
the initial displacements is reasonably constant. The analysis procedure and boundary 
condition of these models are presented in section 5.5.2 and Table 5.16, to evaluate a larger 
variety of load ratios the reference loads (CFx, CFy) in the buckling step were altered. These 
analyses are presented in graphs with a corresponding estimation of an appropriate trend line, 
like the super ellipse equation (3.1) or the interaction equation (4.20). 

The effect of altering material properties will be studied in the horizontal load case with 
Model5-a as basis, and the vertical load case with Model5-e as a basis. The analyses are 
conducted according to section 5.5.2 with boundary conditions according to Table 5.16, only 
material properties are changed in the models.   

Model5-a Model5-f 
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6 Results  

6.1 Impact of adhesive stiffness 
With Model5-a and Model5-f acting as a basic model in the horizontal and the vertical load 
case, respectively, changes of material properties ,i.e. stiffness, of Adhesive gave the 
following results. 

Table 6.1 Results – Horizontal and vertical buckling load, at various Adhesive stiffness. 

Adhesive 
E – modulus (MPa) 

Horizontal  
Buckling load (kN) 

Vertical 
Buckling load (kN) 

1.1 11.55 87.43 

2 15.69 98.96 

5 27.81 121.78 

10 46.08 139.44 

40 67.38 163.55 

80 71.65 169.61 

1000 76.68 177.04 

5000 77.42 178.05 
 

 Figure 6.1Buckling load, when varying adhesive stiffness (Young's modulus varied). 
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E = 1.1 MPa E = 2 MPa 
Vcr Hcr Vcr Hcr 

    
E = 5 MPa E = 10 MPa 

Vcr Hcr Vcr Hcr 

    
E = 40 MPa E = 80 MPa 

Vcr Hcr Vcr Hcr 

    

Figure 6.2 Contour plots of the Buckling mode shapes, when varying adhesive stiffness. (Red 
equals the largest out of plane displacement). 
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6.2 Impact of Glass stiffness 
With Model5-a and Model5-f acting as a basic model in the horizontal and the vertical load 
case, respectively, changes of material properties ,i.e. stiffness, of Glass gave the following 
results. 

Table 6.2 Results - Impact of Glass stiffness 

Glass 
E – modulus (GPa) 

Horizontal  
Buckling load (kN) 

Vertical 
Buckling load (kN) 

7 27.70* 77.55 

60 67.31 158.54 

70 69.95 165.32 

77 71.65 169.61 

90 74.19 176.81 

500 132.10 292.68 
* this was the third buckling mode, the first two were not valid buckling modes. 

 

Figure 6.3Buckling load, when varying Glass stiffness (Young's modulus varied). 
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Buckling shapes 

 

 

E = 7 GPa E = 60 GPa 
Vcr Hcr Vcr Hcr 

    

E = 77 GPa E = 500 GPa 
Vcr Hcr Vcr Hcr 

    

 

Figure 6.4 Contour plot of the Buckling mode shapes, when varying Glass stiffness. (Red 
equals the largest out of plane displacement). 
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6.3 Combined load case - Interaction effect 
With material properties according to Table 5.6 and Table 5.7, Model5-a,-b,-c,-d and -e acting 
as a basic model, the combined load case gave the following results for different load ratios 

 

Figure 6.5Buckling loads at combined load case, material properties according to Table 5.6 

Fitted curves are calculated according to the super ellipse equation (3.1), and the interaction 
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Figure 6.6Buckling loads at combined load case, material properties according to Table 5.7 

Fitted curves are calculated according to the super ellipse equation (3.1), and the interaction 

formula according to � 𝑉
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7 Concluding remarks and discussion 
The impact of the adhesive stiffness on the buckling load appears to have a decreasing effect 
as the adhesive stiffness increases over about 100 MPa. The buckling shape in Figure 6.2  for 
E = 1.1 MPa resembles the buckling shapes when the relative elastic stiffness of timber studs 
was decreased in relation to the glass stiffness in Figure 6.4. A probable cause is that not 
enough stiffness of the timber studs can be transferred to support the glass edge in an 
adequate manner.   

The timber studs have a larger relative impact on the stability of the shear wall element, which 
can be seen when comparing the results of Table 6.2, Figure 6.5 and Figure 6.6. When 
decreaseing the elastic modulus E1 of the timber the vertical buckling load decreases from 
169.9 kN to 155.5 kN, when decreasing the glass elastic modulus in the same proportion  the 
buckling load change from 169.9 kN to 165.3 kN.   

The buckling shape is strongly dependent on the ratio between the stiffness of glass and the 
stiffness of the vertical timber studs. If the ratio in this model is given by [E-modulus Glass / 
E-modulus timber], then a larger ratio means that the buckling shape tends more to the shape 
of a column. This is illustrated in Figure 6.4. Considering the buckling load there is a 
significantly large difference in the capacity of a plate supported on two sides (i.e. slender 
column) or a plate simply supported around all edges. The timber studs should therefore be 
design to contribute with a large bending stiffness to stiffen the plate edge, thus the capacity 
of the glass plate increases 

The horizontal buckling load can be increased by improving the corner ties. This would 
increase the timber frame’s horizontal stiffness as well as increasing the bending stiffness of 
the vertical edge of the plate.  

The fitted curves to the results of varying load ratios in Figure 6.5 and Figure 6.6 correspond 
approximately to the interaction formula (4.20) discussed in 4.1 and to earlier experimental 
values fitted with the super ellipse curve. However more analyses need to be done in order to 
draw any conclusions about the most appropriate formula. 

The linear perturbation buckling analyses was in the end, after a lot of work, a good tool to 
use when estimating the critical load limit of the timber glass shear wall. However, the 
boundary conditions have showed to be of great importance in order to get an accurate result. 
When using the rigid bodies there must be a carefully chosen preload and pre displacement in 
order to calculate a correct eigenvalue, since the nonlinear behaviour in the contact condition 
is not included in the eigenvalue analysis. 
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8 Suggestions for Further work    
When using this type of shear wall element as a horizontal stabilizer the vertical “hold down 
support” is of importance. How to practically solve this would be an interesting problem for 
further studies. If for example the timber frame is bolted into the floor structure, what kind of 
stresses occurs in the adhesive bond lines and which stiffness would be appropriate to use? 
There is also the question of what happens when several elements are connected and the 
vertical sides can interact. 

The brittle behavior of glass has been discussed in this thesis, and it would be of interest to 
evaluate if a laminated glass plate could give the shear wall element increased capacity. Like 
the steel plate that has the ability to carry load after the bifurcation point, perhaps the laminate 
sheet could prevent the propagation of cracks and create a redundant structure.  
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Appendix A 
Graphs generated from the experimental measurements. 

Vertical load case: 
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Horizontal load case: 
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Combined load case 
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Loading ratios: 
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Appendix B 

Determining vertical spring stiffness from Pontos measurements.  
The load applying beam with measuring points 

 

Values from the Pontos measurements were picked to estimate the vertical stiffness. 

 Element Vert. 
force dY 7 dV/dy dY 8  dV/dy dY 9 dV/dy 

AV01b 40 -0.516   -0.525   -0.489   
      -141   -142   -183 
  80 -0.799   -0.807   -0.708   
      -215   -183   -177 
  120 -0.985   -1.025   -0.934   
  mean -174           
AV02 30 -0.741   -0.585   -0.44   
      -211   -162   -161 
  60 -0.883   -0.77   -0.626   
      -179   -207   -132 
  90 -1.051   -0.915   -0.853   
  mean -175           
AV03 30 -1.041   -0.73   -0.357   
      -244   -222   -155 
  60 -1.164   -0.865   -0.551   
      -259   -172   -200 
  90 -1.28   -1.039   -0.701   
  mean -209           
 mean 186 kN/mm     
 

To correlate the vertical stiffness of the model so that it better match the real shear wall, a 
spring is added. The stiffness of the added spring is calculated as illustrated below:  

  
7 8 9 
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1

k𝑡𝑜𝑡
=

1
𝑘1

+
1
𝑘2

  →   𝑘1 =
1

1
k𝑡𝑜𝑡

− 1
𝑘2

   

The vertical stiffness in the Abacus models were found by making a vertical displacement ∆uy 
and observing the reactionforce ∆F2, this gives 𝑘2 =  ∆F2 ∆𝑢𝑥⁄ . Models with different 
material properties were evaluated.    

Material properties according to Table 5.6 gives:   

 

𝑘2 =  ∆F2 ∆𝑢𝑥⁄ =  105.3 (kN) 0.25(mm) = 421 kN/mm⁄  

𝑘1 =
1

1
1.8 ∙ 105 −

1
4.21 ∙ 105

= 3.14 ∙ 105 N/mm   

Material properties according to Table 5.7 gives: 

 

𝑘2 =  ∆F2 ∆𝑢𝑥⁄ =  117.6 (kN) 0.3(mm) = 392 kN/mm⁄  

𝑘1 =
1

1
1.8 ∙ 105 −

1
3.92 ∙ 105

= 3.33 ∙ 105 N/mm   

Determining vertical displacements in horizontal load case, from 
Pontos measurements.  

 Element H. force Y 7 (mm) ∆y(mm) Y 8 (mm) ∆y(mm) Y 9 (mm) ∆y(mm) 
AH02 0 -0.03 0 -0.039 0 0.02 0 
    0.392 0.422 0.061 0.1 0.008 -0.012 
   1.789 1.819 0.625 0.664 0.008 -0.012 
    3.165 3.195 1.494 1.533 0.282 0.262 
  Hcr 4.154 4.184 2.322 2.361 0.961 0.941 
  

 k2 = Abaqus stiffness  

k1= spring stiffness 

ktot=1.8 ∙10
5
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Appendix C 

Tables associated with the results.  
Impact of Adhesive stiffness 

Vertical        
Basic model5-e         

Model U1 U2 RF 1 RF2 Fx / Fy 
Eigen 
value Hcr Vcr 

 (mm) (mm) (kN) (kN) (kN)  (kN) (kN) 
Model5-

e 0 -0.2 0.13 -84.2 0 / -1 85.413 0.1 169.6 

         Mod 
num Emodulus RF 1 RF2 Eigen 

value 
Vcr    

 Mpa N N (kN)    
1 1 156 79245 8.1824 87.43    
2 2 153 79846 19.109 98.96    
3 5 146 81083 40.698 121.78    
4 10 140 82108 57.333 139.44    
5 40 131 83712 79.833 163.55    

Basic 80 130 84200 85.413 169.61    
6 1000 127 84981 92.062 177.04    
7 5000 133 85378 92.667 178.05    
Horizontal        

Basis model5-f        
Results Step 2  Step 3  Step 4  Bifurcation value 

Model 
RF 1 RF2 RF 1 CF2 Fx / Fy Eigen 

value 
Hcr Vcr 

(kN) (kN) (kN) (kN) (kN) (kN) (kN) 
Model5-

f 12.79 -67.1 2.28 -9.4 1 / 0 69.372 71.65 9.4 

         Mod 
num Emodulus RF 1 RF2 Eigen 

value 
Hcr    

 Mpa N N (kN)    
1 1 2273 9400 9.2767 11.55    
2 2 2274 9400 13.416 15.69    3 5 2275 9400 25.536 27.81    
4 10 2276 9400 43.801 46.08    
5 40 2278 9400 65.102 67.38    Basic 80 2280 9400 69.372 71.65    
6 1000 2281 9400 74.403 76.68    
7 5000 2281 9400 75.134 77.42    
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Impact of Glass stiffness 

Vertical        
Basic model5-e        

Model U1 U2 RF 1 RF2 Fx / Fy 
Eigen 
value Hcr Vcr 

 (mm) (mm) (kN) (kN) (kN)  (kN) (kN) 
Model5-

e 0 -0.2 0.13 -84.2 0 / -1 85.413 0.1 169.6 

         Mod 
num 

E-
modulus RF 1 RF2 Eigen 

value 
Vcr    

 Gpa N N (kN)    
1 7 2 13018 64.535 77.55    
2 60 95 67276 91.268 158.54    
3 70 114 77238 88.086 165.32    

Basic 77 130 84200 85.413 169.61    
4 90 154 97124 79.682 176.81    
5 500 590 267141 25.543 292.68    
Horizontal        

Basis model5-f        
Results Step 2  Step 3  Step 4  Bifurcation value 

Model 
RF 1 RF2 RF 1 CF2 Fx / Fy Eigen 

value 
Hcr Vcr 

(kN) (kN) (kN) (kN) (kN) (kN) (kN) 

Model5-f 12.79 -67.1 2.28 -9.4 1 / 0 69.372 71.65 9.4 

         Mod 
num Emodulus RF 1 RF2 Eigen 

value 
Hcr    

 Gpa N N (kN)    
1 7 2211 9400 25.49* 27.70 * Third mode, first two 

negative 
2 60 2269 9400 65.036 67.31    3 70 2275 9400 67.672 69.95    Basic 77 2280 9400 69.372 71.65    4 90 2280 9400 71.912 74.19    5 500 2284 9400 129.82 132.10    
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