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Abstract

Damping is present in all dynamic systems. In one way or another energy is being dissipated
in the system. To capture this aspect of reality in a computational model is a difficult task.
A common simplification is to assume that the damping is of a linear viscous nature. This
assumption provides an equation of motion (linear dynamics) which is easy to handle mathe-
matically. However, the simplicity of linear dynamics can in turn result in a poor representation
of the physical reality. Perhaps the material is not viscous, perhaps friction is present either
inside the material or at the boundaries? Different material models can take different damping
phenomena into account, and it could be wise to work with a model or a combination of models
that represent the physical properties of the material in the best way possible.

This thesis starts with an introduction to linear dynamics of single degree of freedom systems,
where the structure is modeled as a spring and viscous damper in parallel. Free vibration
response, steady-state response and the response to sinus-shaped pulses are discussed.

In the next chapter linear visco-elastic and non-linear frictional material models are discussed.
An introduction to linear visco-elasticity is followed by a comparison between the Kelvin-Voigt
model and the Standard linear solid model, which are the two most basic linear visco-elastic
models, describing solid materials.

This section is followed by a comparison between the two most basic frictional models. These
are 1) a model based on Coulomb friction and 2) a more refined friction model referred to as
the SFS model.

In the following chapter a comparative study of the dynamic behavior of the Kelvin-Voigt model
and the Standard linear solid model (SLS) is conducted. The models are given a structural
formulation and a mass is attached. The main idea is to study if the behavior of the SLS model
could be represented by a Kelvin model. Free vibration response, steady state response and
response to sine-shaped pulses are investigated.

In the last chapter the steady state response of the frictional SFS model is studied. This model
has bilinear hysteresis. The idea is to show the number of physical phenomenas that goes
missing if a system is described as purely linear visco-elastic. Finally a short introduction to
a model which combines both visco-elasticity and friction behavior is given. This model is
referred to as the 5-parameter model.

Keywords: Bilinear hysteresis, Standard linear solid, SLS, Linear Dynamics, Non-linear Dy-
namics
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Abbrevations

FEM Finite Element Method
FFT Fast Fourier Transform
SLS Standard Linear Solid
SFS Simple Friction Solid
SDOF Single degree of freedom
Rd Displacement response factor
ω Angular frequency
f Frequency
ωtr Normalized frequency
ε Strain
ε̇ Strain-rate
u Displacement
u̇ Displacement velocity
ζ Damping ratio
tr Relaxation time
δ Phase angle
φ Phase shift
td Pulse duration time
Edyn Dynamic modulus
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Chapter 1

Introduction

Damping is present in all dynamic systems. In one way or another energy is being dissipated
in the system. To capture this aspect of reality in a computational model is a difficult task. A
common simplification is to assume that the damping is of a particular linear viscous nature.
This assumption provides an equation of motion (linear dynamics) which is easy to handle
mathematically. However, the simplicity of linear dynamics can in turn result in a poor repre-
sentation of the physical reality. Perhaps the material is not viscous, perhaps friction is present
either inside the material or at the boundaries? Different material models can take different
damping phenomena into account, and it could be wise to work with a model or a combination
of models that represent the physical properties of the material in the best way possible.

The main idea of the thesis is to show how more realistic viscoelastic material models and
the inclusion of frictional effects will give rise to various nonlinear dynamic phenomena. The
thesis will present and discuss a number of existing material models and different physical as-
pects connected to them. For example, rate dependence/independence, amplitude dependence/
independence, linearity/non-linearity.

Some examples of material models that will be investigated in a dynamic context are the
Kelvin-Voigt model, the standard linear solid model (SLS) and an enhanced friction-model,
here referred to as the simple friction model (SFS). Where analytical solutions does not exist
or are hard to obtain, numerical timestepping procedures, using the central difference method,
will be applied in order to evaluate the different dynamic systems.

The aim is primarily to see if the standard material model, the Kelvin-Voigt model, used in
linear dynamics is able to capture the dynamic behavior of actual visco-elastic systems. In
order to verify the results the more physically realistic Standard linear solid model will be used
as a reference. Numerical experiments using MATLAB will be carried out in order to compare
the models.

The following topics will be investigated:

• The free vibration response of the systems.

• The steady state response to a harmonic load.

1



Introduction

• The response to pulse excitation.

Moreover the dynamic steady state response of the non-linear amplitude dependent friction
model, termed the SFS model, will be investigated in order to show the variety of dynamic
phenomenas that can be missed if an inherently non-linear system is described by a linear
computational model.

The following pictures shows the mentioned dynamic systems.

k

m p(t)f s

u(t) u(t)
c

Figure 1.1: Freebody diagram of the Kelvin-Voigt model

k

kcc

m p(t)f s

u(t) u(t)

Figure 1.2: Freebody diagram of the Standard linear solid model

k

kF

m p(t)f s

u(t) u(t)
F

Figure 1.3: Freebody diagram of the non-linear SFS model
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Chapter 2

Introduction to linear dynamics

k

m p(t)f s

u(t) u(t)
c

Figure 2.1: Freebody diagram of the Kelvin-Voigt model

Figure 2.1 shows a commonly used and particularly simple setup of a dynamic system, where
the spring and the viscous damper symbolizes a certain material. As the mass m is displaced to
the right, this could be due to a time variant force p(t) or an initial displacement u(0) = u0, the
material reacts with a restoring force fs to the left. The material wants to restore the system
to its equilibrium and it is often assumed that this force is a function of the the displacement
and the rate of this displacement, fs(u, u̇). From Newtons 2:nd law we get

(→) p(t)− fS(u, u̇) = mü (2.1)

The easiest way to describe the restoring force fs is through the model with a spring and a
damper in parallel, displayed in Figure 2.1. The force in the spring is proportional to the
displacement fspring = k∞u and the force in the viscous damper is proportional to the displace-
ment rate fdamper = cu̇. Since they are coupled in parallel the restoring force fs will be the sum
of these two forces and after rearranging Eq.(2.1) one end up with

mü+ cu̇+ k∞u = p(t) (2.2)

This equation is called the equation of motion. The aim here is to find the displacement as a
function of time u(t).

3



2.1 Free vibration response Introduction to linear dynamics

Generally three situations are of interest to study.

1) The response of the system when it is let go from rest, with an initial displacement u(0) = u0
and p(t) = 0

mü+ cu̇+ k∞u = 0, u(0) = u0, u̇(0) = 0 (2.3)

This is one form of a free vibration response used here.

2) The response of the system to a harmonic load p(t) = p0 sin(ωt)

mü+ cu̇+ k∞u = p0 sin(ωt), u(0) = 0, u̇(0) = 0 (2.4)

where ω is the angular frequency of the load. After a while a damped system like this reaches
steady state conditions which makes special solution techniques possible.

3) The response to a pulse load. In this thesis the focus lies on half-sine pulses characterized by
their pulse duration times td. With at rest initial conditions, u(0) = 0, u̇(0) = 0, the equation
of motion becomes.

mü+ cu̇+ k∞u = p(t), p(t) =
{
p0 sin(πt/td) t ≤ td
0 t > td;

(2.5)

2.1 Free vibration response

When trying to determine the free vibration response it is common to introduce a reformulation
of the damping parameter c. The alternative formulation of c is c = 2mζωn where ωn is the
natural angular frequency of the system defined as ωn =

√
k/m. The property ζ is called the

damping ratio.

c is a measure of how much energy is being dissipated in one vibration cycle, while ζ also
depends on the mass and the stiffness of the system.

The value of ζ characterize the system. If ζ > 1 the system is called overdamped, if ζ = 1 the
system is called critically damped and if ζ < 1 the system is called underdamped. Figure 2.2
shows this three characteristics respectively. Most structures have a damping ratio of ζ < 20%.
Damping ratios higher than 20 % will be outside the scope of this thesis.

For more information on free vibrations the reader is referred to Dynamics of structures [1].

4



Introduction to linear dynamics 2.2 Steady state response to harmonic excitation

0 0.5 1 1.5 2 2.5 3

time/T
n

-1

-0.5

0

0.5

1

u
(t

)/
u
(0

)

Underdamped: ζ=0.1
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Figure 2.2: The free vibration response of an overdamped, critically damped and underdamped
system respectively.

Figure 2.3 shows the influence of the damping ratio on the free vibration response. All damping
ratios are under 20 %. The response of the systems are normalized with respect to their natural
period time Tn = 2π/ωn
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Figure 2.3: The free vibration response for different values of the damping ratio ζ. The damp-
ing at ζ = 20% is considerable.

2.2 Steady state response to harmonic excitation

For a damped linear dynamic system the response to a harmonic load p(t) = p0 sin(ωt) will
after some time be a function with the same fundamental frequency ω and a phase-shift φ.
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2.2 Steady state response to harmonic excitation Introduction to linear dynamics

The phase shift describes the phase lag between the movement of the mass and the load p(t).
This function is written u(t) = u0 sin(ωt− φ). All possible combinations of linear springs and
viscous dampers will generate a linear dynamic system and the simplest way to create a linear
model of a solid material is through the Kelvin model, Figure 2.1.

[2]

For a linear system a complex function H∗ = H∗(ω) exists that can relate the static displace-
ment us of the system to the maximum displacement caused by the time-variant force u0.
This relation will be different for different frequencies, i.e H∗ is a function of frequency. For a
load with amplitude p0 the static displacement is determined by the stiffness k of the system
us = p0/k. The magnitude of the complex function H∗(ω) will give the relation between the
quasi-static and the dynamic displacement u0

u0 = |H∗(ω)|us (2.6)

|H∗(ω)| is called the deformation response factor of the system, Rd. For the Kelvin model the
deformation response factor, expressed in terms of the damping ratio ζ, becomes

Rd = |H∗(ω)| = u0

p0/k
= 1√(

1−
(
ω
ωn

)2
)2

+
(
2ζ ω

ωn

)2
(2.7)

The formulation in Equation (2.7) is obtained by rewriting the following expression for the
displacement amplitude.

u0 = p0

|−ω2m+ k∞ + iωc|
(2.8)

where k∗ = k∞ + iωc is the complex stiffness of the system. Figure 2.4 shows Rd as a function
of the normalized frequency ω/ωn, for different different values of the damping ratio ζ. When
the forcing frequency is the same as the natural frequency of the system, resonance occur. This
happens around ω/ωn = 1. The displacement resonant frequency for a Kelvin system is partly
determined by the damping through ωn

√
1− 2ζ2.

The phase-shift φ is obtained by taking the argument of the complex function H∗(ω). Figure
(2.5) shows φ = − arg(H∗(ω)) plotted for different values of the damping ratio.
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Introduction to linear dynamics 2.2 Steady state response to harmonic excitation
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Figure 2.4: The displacement response factor Rd, plotted for different values of the damping
ratio ζ.
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Figure 2.5: The phase shift φ, plotted for different values of the damping ratio ζ.

• At frequencies considerably below the natural frequency, i.e ω/ωn � 1, the response
of the system is controlled by the stiffness k∞. This means that there is no dynamic
magnification of the signal and consequently the dynamic response factor Rd ≈ 1. The
phase shift is close to φ = 0◦, i.e the mass m is moving in phase with the load.
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2.3 Response to a half-sine pulse Introduction to linear dynamics

• At frequencies around the natural frequency of the system, ω/ωn = 1, the response is
controlled by the damping. If no damping is incorporated in the system, ζ = 0%, the
response is unbounded at resonance. At the natural frequency of the system ω = ωn
there is a 90◦ phase shift between the load and the displacement of the mass. φ = 90◦ at
ω = ωn.

• At frequencies much higher than the natural frequency of the system the response is
controlled by the mass m. As the frequency ω increases the displacement response factor
Rd goes towards zero. At these frequencies the phase shift between load and mass is
φ = 180◦

2.3 Response to a half-sine pulse

The final topic of interest is the response of a dynamic system to a pulse load. In this case
the pulse will have the shape of a half sine wave. The equation that governs the response is
Eq.(2.5). A smart way to characterize a pulse is by relating the pulse duration td to the natural
vibration period of the studied system Tn. In Figure 2.7 the response of an undamped system
to a half sine pulse is illustrated. Pulse durations ranging from td = 0.125Tn to td = 3Tn is
included. At td > 1.5Tn two peaks occur in the response during the pulse. At td > 2.5Tn three
peaks occur. Taking the maximum value of the response for a wide range of pulse-durations
td, they can by combined into a shock spectrum. Figure 2.6 shows the shock spectrum of an
undamped Kelvin system. For information on other types of pulse shapes see Dynamics of
structures [1].

0 1 2 3 4 5 6

t
d
/T

n

0

0.5

1

1.5

2

R
e
s
p
o
n
s
e
 f
a
c
to

r,
 R

d

Figure 2.6: Shock spectrum of an undamped Kelvin system
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Introduction to linear dynamics 2.4 Energy
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Figure 2.7: The displacement response of an undamped Kelvin system to half-sine pulses with
different duration times td.

2.4 Energy

This section will describe the basics behind how energy is being dissipated in viscous damping.
A more extensive presentation is found in Dynamics of structures [1].

As mentioned earlier: If the free vibration is disregarded then the displacement response to a
sinusoidal force, p0 sinωt, will be
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2.4 Energy Introduction to linear dynamics

u(t) = u0 sin(ωt− φ) (2.9)

The energy is being dissipated in the dashpot element and the force in this element is fD = cu̇.
This means that the energy dissipated in one vibration cycle will be

ED =
∮
fD du =

∫ 2π/ω

0
(cu̇)u̇ dt =

∫ 2π/ω

0
cu̇2 dt = c

∫ 2π/ω

0
[ωu0 cos(ωt− φ)]2 dt

Using the trigonometric identity cos(ωt− φ) = cosωt cosφ + sinωt sinφ and then the double
angle formulas (cos(2ωt) = 2 cos2(ωt)− 1 = 1− 2 sin2(ωt) and sin(2ωt) = 2 sin(ωt) cos(ωt) one
arrive at

ED = πcωu2
0 = 2πζ ω

ωn
ku2

0 (2.10)

The second identity, 2πζ(ω/ωn)ku2
0, is obtained with use of c = 2mζωn and ω2

n = k/m. As one
can see the amount of damping is proportional to the stiffness k, the driving angular frequency
ω and to the square of the amplitude u0.

When steady state vibrations are established the energy input EI will match the dissipated
energy ED. The energy input due to the applied force p(t) will in one cycle of vibration become

EI =
∮
p(t) du =

∫ 2π/ω

0
p(t)u̇ dt =

∫ 2π/ω

0
[p0 sinωt][ωu0 cos(ωt− φ)] dt = πp0u0 sinφ

Before the steady state conditions occur more energy is entering the system than what is
being dissipated. At ω = ωn and sinφ = 1 the energy input EI is a linear function of the
displacement amplitude u0, (EI = πp0u0) compared to the dissipated energy ED which is
a quadratic function (2πζ ω

ωn
ku2

0). At small amplitudes the linear function grows faster but
eventually the two functions will match no matter how small the damping ratio ζ is. At the
point where the functions match the system has reached steady state. Figure 2.8 shows this.

Energy

u0

ED EI

Figure 2.8: At steady state the dissipated energy ED will match the energy input EI . The
dashed lines shows where ED = EI
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Introduction to linear dynamics 2.4 Energy

If the potential and the kinetic energy is studied during one cycle of vibration it is possible to
conclude that the change in these quantities will be zero over the studied cycle.

Potential energy

Es =
∮
fs du =

∫ 2π/ω

0
(ku)u̇ dt =

∫ 2π/ω

0
k[u0 sin(ωt− φ)][ωu0 cos(ωt− φ)] dt = 0

Kinetic energy

EK =
∮
fI du =

∫ 2π/ω

0
(mü)u̇ dt =

∫ 2π/ω

0
m[−ω2u0 sin(ωt− φ)][ωu0 cos(ωt− φ)] dt = 0

Plotting the restoring force fs(t) and the displacement response u(t) in a (fs, u)-diagram an
elliptical curve is obtained. This curve is often referred to as the hysteresis loop. The area
enclosed by the ellipse will be equal to the dissipated energy ED in one vibration cycle of the
system. Figure 2.9 shows this curve.

The restoring force for this simple material model was fs = k∞u + cu̇. This means that the
tilted ellipse in Figure 2.9 is a superposition of the elastic and viscous response of the material,
where the elastic force only determines the tilt. This means that the elliptical shape stems
from the damping force, or more precisely, the relation between the displacement u(t) and the
displacement rate u̇(t). As the system has its maximum displacement the displacement rate is
zero and vice versa. The following is a rewrite of the damping force fD in order to show this

fD = cu̇(t) = cωu0 cos(ωt− φ)

Using cos(x) =
√

1− sin2(x) one obtains

fD = cω
√
u2

0 − u2
0 sin2(ωt− φ) = cω

√
u2

0 − [u(t)]2

and this can be rewritten on elliptic form

(
u(t)
u0

)2

+
(
fD
cωu0

)2

= 1

This ellipse has the area π(u0)(cωu0) = πcωu2
0 which is in accordance with the result in Equation

(2.10). u0 and cωu0 are the semi-major and semi-minor axes of the ellipse.
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u(t)

f S(t)

Figure 2.9: Diagram showing the relation between the restoring force fS and the displacement
u(t).

2.5 Equivalent viscous damping

Equivalent viscous damping is a concept commonly used to model the damping in actual struc-
tures. The main goal is to obtain a linear equation of motion in order to simplify the mathemat-
ical treatment. If all the damping mechanisms in the actual structure could be gathered into
a corresponding equivalent damping coefficient, ceq, the equation of motion could be expressed
as

mü+ cequ̇+ ku = p(t) (2.11)

and the problem is possible to analyze with help of the well established methods used in linear
dynamics. There exists a number of ways of doing this. Here one method is described, for more
information on the subject see Dynamics of structures [1].

The most commonly used method is to measure the amount of dissipated energy during one
vibration cycle in the actual structure, ED(actual structure). As described earlier the dissipated
energy, during a cycle, is equal to the enclosed area of the hysteresis loop. Knowing this area,
it is possible to determine an equal amount of dissipated energy, during a cycle, for a viscous
system, ED(viscous). By putting

ED(viscous) = ED(actual structure) (2.12)

it will be possible to determine an equivalent viscous damping ratio ζeq.

Earlier, Eq.(2.10), it was shown that

ED(viscous) = 2πζ ω
ωn
ku2

0 (2.13)
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Introduction to linear dynamics 2.5 Equivalent viscous damping

and by putting this equal to the dissipated energy of the actual structure the equivalent viscous
damping ratio ζeq is obtained through

ζeq = 1
2π

1
ω/ωn

ED(actual structure)

ku2
0

(2.14)

The experiment used to determine the force-displacement relation of the actual structure, and
consequently the dissipated energy ED, is a cyclic loading test with displacement amplitude u0.
Moreover, the experiment is conducted at ω = ωn, i.e the natural frequency, and the stiffness
parameter k is the quasi-static stiffness of the structure. This quantity, k, is determined from
a separate experiment.

Since the experiment is conducted at ω = ωn the determined damping ratio is only correct
at this exciting frequency, but it is considered a good approximation also at other frequencies
[1](p. 104).

For a Multi Degree Of Freedom system (MDOF), it is possible to assign an equivalent damping
ratio ζeq to each natural mode of vibration of the structure.
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Chapter 3

Method

Where analytical solutions does not exist or where they are hard to come by it is sometimes
necessary to use numerical methods to obtain an approximation of the correct answer. In this
thesis the Central difference method is used in these cases. This is an explicit time stepping
method which relies on small time-steps in order to get accurate results. For more information
on this method see Dynamics of structures [1].

3.1 Central difference method

m p(t)f s

u(t) u(t)

Arbitrary
material model

Figure 3.1: Freebody diagram of a SDOF system described by an arbitrary material model.

In order to evaluate the dynamic properties of the proposed material models the central dif-
ference method is used. The aim here is to obtain a displacement history from a given load
history. The load history could be a sine function or a frequency sweep for instance. The
equation that is to be solved is the following equation of motion. The equation is established
from the free body diagram displayed in Figure 3.1

mü+ (fS) = p(t) (3.1)

In the above equation, Eq.(3.1), at least the acceleration, ü needs to be approximated and for
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3.1 Central difference method Method

most material models the restoring force fs is dependent on displacement u, velocity u̇ or both.
For instance the restoring force could be a function fs(u, u̇).

In the central difference method the first and second derivative of a function can be approxi-
mated by the following expressions

f ′(x) = f(x+ h)− f(x− h)
2h f ′′(x) = f(x+ h)− 2f(x) + f(x− h)

h2 (3.2)

Being that the first and second time derivative of the displacement u corresponds to velocity
and acceleration respectively, the expressions above, Eq.(3.2), translates into

u̇i = ui+1 − ui−1

2∆t üi = ui+1 − 2ui + ui−1

(∆t)2 (3.3)

Now these expressions can be inserted into the equation of motion. For simplicity the time step
length, ∆t, is held constant throughout the time stepping.

m

[
ui+1 − 2ui + ui−1

(∆t)2

]
+ (fS)i = pi (3.4)

A rearrangement yields the following

[
m

(∆t)2

]
ui+1 = pi −

[
m

(∆t)2

]
ui−1 −

[
2m

(∆t)2

]
ui − (fS)i (3.5)

Now a solution for the unknown displacement, ui+1, is found and consequently the velocity as
well as the acceleration can be updated in accordance with Eq.(3.3). The iteration scheme is
then more or less established, but a few details are missing.

In order to find ui+1 both ui and ui−1 must be known. In the first iteration u1 is sought, this
means that u0 and u−1 needs to be calculated prior to the solution of u1. To do this Eq.(3.3)
is used, with i = 0

u̇0 = u1 − u−1

2∆t ü0 = u1 − 2u0 + u−1

(∆t)2 (3.6)

Since the equation of motion is an initial value problem, the displacement u0 and the velocity
u̇0 are known. This leaves three unknowns in the above equations, u−1, ü0 and the sought
quantity u1. If the equation for u̇0 is solved for u1 and the result is entered into the equation
for ü0 the following expression is obtained

u−1 = u0 −∆t(u̇0) + (∆t)2

2 ü0 (3.7)

16



Method 3.2 Convergence

Now if the initial conditions u0 and u̇0 are used to calculate the structure force (fS)0 at time
t0 = 0. The initial acceleration ü0 is given by

ü0 = p0 − (fS)0

m
(3.8)

and consequently all the needed quantities can be determined and the iteration scheme is
established.

According to Chopra [1] the stability requirement in the central difference method is

∆t
Tn

<
1
π

(3.9)

but the time step size ∆t should be smaller in order to dissolve the input signal in a good way
and get accurate results.

3.2 Convergence

A convergence test was carried out in order to evaluate this solution method.

By calculating the displacement response factor Rd of the Kelvin model analytically, for a large
number of frequencies, the result could be compared to the numerical computations by studying
the residual, residual = Rd,analytical −Rd,numerical. Both Rd,analytical and Rd,numerical are vectors
and consequently the residual is a vector.

In Figure 3.2 the norm of the residual-vector, |residual|, is plotted for different time-step lengths
∆t. The norm is also referred to as the magnitude of the vector, or length of the vector. The
norm of the residual-vector is decreasing as the time-step length is decreased.
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dt, timestep length

10-6
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100

102
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s
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u
a

l|

Figure 3.2: Plot showing the decrease in the residual with decreasing time-step length.
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Chapter 4

Material models

Figure 4.1 shows how the shear modulus and the damping depends on the frequency, for a
certain material. The material in question is HNBR which is a rubber material. The dots in
the figure is the experimental results from material testing and the solid lines are the attempt
to find a material model that can describe the behavior of the material.

A few things can be concluded. Both the shear modulus and the damping is increasing as the
frequency is increased. Moreover damping is present even though the frequency is really low.
Now look at Figure 4.2. Here displacement controlled cyclic loading has been used to test the
material and it seems like the material is getting less stiff as the amplitude on the displacement
is being increased.
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Figure 4.1: Shear modulus and damping as functions of frequency for the rubber material,
HNBR. The dots are the measurements and the solid lines are the fitted material
models.
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Figure 4.2: Amplitude dependence of the hysteresis loop. Material: HNBR

Or in other words: the shear modulus is decreasing as the displacement amplitude is being
increased.

In order to incorporate all of these behaviors in one material model, the model will have to be
both frequency dependent and amplitude dependent, Figure 4.3 shows the dynamic modulus
and the damping of a material model that has these two properties. This is the 5-parameter
model. The figure shows that both the dynamic modulus and the damping is dependent on
both frequency and amplitude. Frequency dependence is also referred to as rate dependence.
The rate at which the load or displacement changes direction.

The following section will present different models that will have either of these features. Two
rate dependent models will be presented in this first section about visco-elastic materials. Later
two friction models will be presented in the section about amplitude dependent materials.
Friction models can also be described in terms of plasticity theory.
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(a) Dynamic shear modulus
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Figure 4.3: Frequency and amplitude dependence of the shear modulus and the equivalent
phase angle respectively. The model is the 5-parameter model, which is both rate-
and amplitude dependent

4.1 Visco-elastic materials

Since dynamic events are time dependent it would be of interest to investigate the time-
dependency of the used material models. Two visco-elastic material models will be treated
here: The Kelvin-Voigt model (or just Kelvin model) and the Standard linear solid model.

If not loaded too close to their ultimate strength polymers and concrete is two examples of
materials that have viscoelastic response. Most of the material presented in this section is
taken from The mechanics of constitutive modeling [3]. For a deeper presentation of viscous
material models the reader is referred to this book.

Experimentally four tests are used to determine the time-dependent nature of a material: creep
test, relaxation test, the response of the material to a constant strain rate i.e to push or pull at
the material with a constant "velocity" and a cyclic loading test where the stress is evaluated
from, for instance, a sinusoidal strain-history.

time time

ε

σ0

σ

ε0

Figure 4.4: Creep test

In a creep test a constant stress, σ0, is applied instantaneously to the material and the strain
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4.1 Visco-elastic materials Material models

response, ε(t), which now may vary with time, is recorded. In addition to the initial strain ε0 a
lot of material will now develop creep strain, see Figure 4.4. In order to model the creep strain
the aim is to find a relationship on the form

ε(t) = JC(t)σ0

where JC(t) is called the creep compliance.

In a relaxation test the situation is reversed. Now a instantaneous step strain, ε0 is applied to
the material and held constant at this value. The material will experience an initial stress σ0,
this stress will however diminish with time, see Figure 4.5. This is due to the phenomena of
relaxation, perhaps a less familiar phenomena compared to the creep behavior which may be
more visibly present in everyday life. Relaxation is in a way the reversed situation compared
to creep and in the same manner a similar relationship is sought, namely

σ(t) = ER(t)ε0

where ER(t) is called the relaxation modulus.

time time

ε.
ε σ

Figure 4.6: Constant strain rate test

In the third test the stress-response σ(t) to a constant strain rate, ε̇ = dε/dt = c, is recorded. A
common feature among materials is that the material gets stiffer as the strain-rate is increased,
i.e. the response is rate-dependent, see Figure 4.6. In analogy with a fluid, think of dragging

ε

time time

ε0
σ0

σ

Figure 4.5: Relaxation test
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Material models 4.1 Visco-elastic materials

your hand through water. If the you drag fast the resistance will be significant while dragging
slow you’ll experience almost no resistance at all.

And in a cyclic loading test the stress response, σ(t), created by a displacement controlled
loading of the test-specimen is recorded. The loading is often sinusoidal, i.e. the strain is on
the form ε(t) = ε0 sin (ωt). If the material exhibits visco-elastic properties a phase-shift δ will
be present between the strain input and stress output, see Figure 4.7. In other words: if the
strain input is a steady-state sinusoidal strain history ε0 sin (ωt), the stress output will be a
phase-shifted sinusoid with the same frequency σ0 sin (ωt+ δ). This will be shown later.

Plotting the strain input and stress output, for a purely visco-elastic material, in the (ε, σ)-plane
an elliptic path is formed due to the phase-shift. The enclosed area inside the ellipse is equal
to the dissipated energy, i.e the energy leaving the system. The formed path that encloses an
area is known as a hysteresis loop, see Figure 4.8. With ε = ε0 sin(ωt) and the stress response
being out-of-phase, σ = σ0 sin(ωt+ δ), the dissipated energy in one cycle can be determined.

Uc =
∮
σ dε =

∫ T

0
σ
dε

dt
dt = σ0ε0ω

∫ T

0
cos(ωt) sin(ωt+ δ) dt

Using the trigonometric formula sin(ωt + δ) = sin(ωt) cos(δ) + cos(ωt) sin(δ), the dissipated
energy becomes

Uc = πσ0ε0 sin δ

Moreover, with the use of complex calculus an equation on the form

σ∗ = E∗(ω)ε∗ (4.1)

can be obtained. Here the stress response σ∗ and the strain input ε∗ is a complex number in
polar form and E∗(ω) is a complex function dependent of frequency ω. E∗(ω) is called the
complex modulus.

time

ε(t)

δ

σ(t)

Figure 4.7: Cyclic loading test
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ε0

σ0

Figure 4.8: The stress σ and the strain ε plotted in the (ε,σ)-plane, giving an elliptical hys-
teresis loop

ε

t1 t1
time time

σ

σ0
ε0

ε0
recovery

Figure 4.9: Recovery test

In addition to these four tests another phenomena could be worth mentioning. What happens
if the stress σ0 is instantaneously removed during a creep test? Here the phenomena of recovery
is important. How much of the developed creep deformation will be permanent? See Figure
4.9.

Problem solving in structural mechanics largely evolves around the Finite Element Method and
in this method the stresses in the system are evaluated from the current displacements. This
would mean that, of the material-behaviors presented above, it is the ones that allows one
to evaluate the stresses from the known displacements (strains) that, primarily, is of interest.
More specifically the relaxation behavior and the stress response to a cyclic displacement.

Earlier the term visco-elasticity was mentioned and perhaps this requires an explanation. If a
material is visco-elastic the principal of linearity will also hold for this material. This linearity
principle can be described through the creep behavior of a material. If a step-stress σ0 is applied
to a visco-elastic material the strain response will be the elastic initial strain plus the developed
creep strain.

Step-stress: σ0 −→ Strain response: εelastic + εcreep

Now if the step-stress is doubled, 2σ0, the two terms in the strain response will also be doubled.
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σs σs

E
σd σd

η

Figure 4.10: A linear spring element (to the left) and a dashpot element (to the right).

Step-stress: 2σ0 −→ Strain response: 2εelastic + 2εcreep

This linearity principal is not just valid for creep, but is assumed to be valid for any loading
situation.

As mentioned earlier two visco-elastic material models will be treated: The Kelvin-Voigt model
(or just Kelvin model) and the Standard linear solid model. Moreover there are two alternative
ways to obtain constitutive relations for a visco-elastic material.

The first approach, and the only one to be used here, is to predefine a combination of linear
springs and dashpots, see Figure 4.10. This will lead to the emergence of linear differential
equations.

The other one is to use hereditary or convolution integrals. This approach is based on super-
position which is a feature connected to the linearity principle mentioned earlier. The strength
of this approach is that the desired material model is not limited to a certain combination of
springs and dashpots.

The following are the constitutive relations that govern the linear spring and the dashpot
respectively

σs = Eεs σd = ηε̇d (4.2)

where subscript s refer to the spring and d to the dashpot, Figure 4.10 gives a further explana-
tion. The dashpot parameter η has the dimension Pa·s. These structural elements can either
be coupled in series or in parallel. For two structural elements coupled in parallel the strain
will be the same in the two elements and consequently the total stress is given as the sum of
the stress in each element

Parallel: ε = ε1 = ε2 σ = σ1 + σ2 (4.3)

The reverse situation is having two structural elements coupled in series. This will lead to a
constant stress throughout the chain of coupled elements, and the total strain then becomes
the sum of the strain in each element.
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4.2 The Kelvin model Material models

Series: σ = σ1 = σ2 ε = ε1 + ε2 (4.4)

As mentioned earlier complex calculus can be used to simplify derivations of particular expres-
sions describing linear visco-elastic materials, for instance the complex modulus. An illustration
of the connection between the complex plane and the (σ, t)-plane or the (ε, t)-plane is found
in Figure 4.11. To the left in this figure a rotating vector diagram is found. The vectors are
rotating with with an angular frequency, ω, and with the phase shift, δ, between them. This
corresponds to the sine-time functions in the time-amplitude plane visible to the right in the
figure.

This means that the harmonic loading can be expressed as a complex number in polar form.

ε∗ = ε0e
iωt = ε0(cosωt+ i sinωt) (4.5)

and consequently this can be used in order to express the complex stress response σ∗. More-
over, the first time-derivative becomes ε̇∗ = iωε∗. This will prove very useful in the coming
derivations.
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tω

*ε

ωt)

t

sin(

sin( t+ω δ)σ=σ
ε=ε

0

0

δ

Re

Im

Figure 4.11: Connection between frequency- and time-domain. To the left a rotating vector
diagram and to the right we see sine-functions in the time domain.

4.2 The Kelvin model

σσ

E

η
ε(t)

Figure 4.12: The Kelvin material model.
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Material models 4.2 The Kelvin model

By putting a spring and dashpot in parallel the Kelvin model is obtained, see Figure 4.12. From
before it is known that if two elements are coupled in parallel the total stress becomes the sum
of the stress in the first element and the stress in the second element, Eq. (4.3). In this case

ε = εE = εη σ = σE + ση (4.6)

With the equations for the spring (σE = EεE) and the dashpot (ση = ηε̇η) respectively the
constitutive equation for the kelvin model becomes

σ = Eε+ ηε̇ (4.7)

Now that the constitutive equation is established its possible to study the behavior of the
model. Examining the relaxation behavior and the response to periodic loading of the Kelvin
model, a few irregularities will emerge.

4.2.1 Relaxation behavior

One of the presented main interest were to study how this model handles a relaxation test. So
if a step-strain ε0 is applied what will happen? During a step-strain ε0 the strain-rate ε̇ will
be infinite and directly after the strain-rate returns to zero. This can be observed in Figure
4.13, during the step the slope of the curve is infinite, ε̇ =∞, and at all other times the slope
is zero, ε̇ = 0. If the step-strain occurs at t = τ this results in the following stress response

σ(t) =∞ at t = τ or σ(t) = Eε0 at t > τ (4.8)

Consequently the Kelvin model can not exhibit a realistic relaxation behavior.

time

ε

ε0

σ

σ0

time

Figure 4.13: Relaxation behavior of the Kelvin model. With ε̇ =∞ during the step and ε̇ = 0
afterwards the stress goes from σ =∞ during the step to σ0 = Eε0.
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Figure 4.14: A triangular strain-pulse creates a discontinuous stress response in the Kelvin
model. This is due to the change in strain rate at T/2.

4.2.2 Triangular pulse load

Before studying the harmonic excitation let’s first look at a transient triangular pulse. Studying
the left part of Figure 4.14 it can be viewed how the strain increases with a constant strain
rate up to a maximum value ε0 and then back to zero.

The strain rate is equal to either

ε̇ = ε0

(T/2) = 2ε0

T
or ε̇ = −2ε0

T
when t > T/2

with the strain-rate changing sign at t = T/2 and keeping the constitutive equation, Eq.(4.7) in
mind its possible to conclude that the stress response will be discontinuous for a strain history
of this kind, see left part of Figure 4.14.

The stress being discontinuous in a material is not very realistic and therefore a poor represen-
tation of the reality.

Moreover, studying the area enclosed by the loading-unloading path known as the hysteresis
work, Uc, it gets clear that as the pulse-duration T gets shorter the hysteresis work will grow
infinitely large, see expression below and Figure 4.15.

Uc = ε0 · 2ηε̇ = ε0 · 2η
2ε0

T

4.2.3 Harmonic excitation and complex modulus

Now moving on to a harmonic loading, ε0 sin(ωt), it will be apparent that the equivalent to
the pulse length, the periodic time T , will have a similar effect on the hysteresis work.

As was shown in Eq.(4.5) the harmonic loading could be expressed as a complex number in
polar form ε∗ = ε0e

iωt with the following complex strain-rate ε̇∗ = iωε∗. Inserting this in the
constitutive equation (4.7) yields
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Uc

T

~1/T

Figure 4.15: The hysteresis work connected to a triangle pulse will be inversely proportional
to the pulse-length, T , for the Kelvin model. For short enough pulses it will
therefore grow without bound.

σ∗ = Eε∗ + iωηε∗ = (E + iωη)ε∗ (4.9)

and a complex modulus on the form mentioned earlier is now found through

σ∗ = E∗(ω)ε∗ with E∗(ω) = (E + iωη) (4.10)

this makes it possible to relate the stress response to a harmonic excitation through a multi-
plication with a complex function, E∗(ω). Earlier it was stated that the stress response to a
sinusoidal strain, would be a phase-shifted sinusoid with the same frequency, i.e σ0 sin (ωt+ δ).
This is now possible to show.

Expressing the stress response as a complex number in polar form in the same way the strain
was expressed in (4.5) above, this would read

σ∗ = σ0e
i(ωt+δ)

with δ being the phase angle. Now also express the complex modulus in polar form

E∗(ω) = (E + iωη) = |E∗|ei arg(E∗)

Multiplying with the strain then gives

σ0e
i(ωt+δ) = |E∗|ei arg(E∗)ε0e

iωt = |E∗|ε0e
i(ωt+arg(E∗)) (4.11)

It turns out that the magnitude of the complex modulus |E∗| represents a scaling between the
stress and strain amplitudes. This quantity is often referred to as the dynamic modulus. The
argument of the complex modulus represents the phase angle, δ. Both the dynamic modulus
and the phase angle δ are possible to measure in experiments.

σ0 = |E∗|ε0 and arg(E∗) = δ (4.12)
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Figure 4.16: To the left it can be seen how the dynamic modulus Edyn increases without bound
as the frequency gets higher. To the right it can be seen how the phase angle grows
to towards π/2 with increasing frequency

Evaluating the above expressions in terms of the E-modulus, frequency and dashpot-coefficient
gives

Edyn = |E∗| =
√
E2 + ω2η2 and tan δ = η

E
ω (4.13)

It turns out that the dynamic modulus grow without bound when the frequency increases,
meaning that the material will get infinitely stiff for a high enough frequency. The phase angle
grows towards π/2 for an increasing frequency, see Figure 4.16 where the two quantities are
plotted. Both of these behavior seems unrealistic.

Now the question arise: how does this effect the hysteresis loop. As mentioned: visco-elastic
materials dissipate energy under cyclic loading. Previously the dissipated energy in one cycle
Uc was determined, Eq.(4.1)

Uc = πσ0ε0 sin δ

Substituting the stress amplitude σ0 for Edynε0 and increasing the frequency it is possible to see
how the hysteresis loop is affected. It turns out that the hysteresis work will become infinitely
large as the frequency is increased

Uc = πEdynε
2
0 →∞ as ω →∞

since the dynamic modulus is function that grows with increasing frequency. At low frequencies
visco-elastic materials dissipate no energy. This behavior is visualized in Figure 4.17.
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Figure 4.17: The influence of frequency on the dissipated energy, Uc, for the Kelvin model

4.2.4 Kelvin model: Summary

Below follows a summary of the irregularities associated with the Kelvin model.

• Discontinuous stress response to a step-strain and consequently an inability to exhibit
relaxation behavior.

• Discontinuous stress response to strain functions with non-smooth shifts in the strain rate
ε̇, for instance a triangular pulse.

• Unbounded dynamic modulus Edyn for large frequencies ω.

• And consequently an unbounded hysteresis work Uc for large frequencies.
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4.3 SLS: Standard linear solid model

σσ

η E

E

Figure 4.18: The Standard linear solid model

In the previous section a few different irregularities of theKelvin-model were presented. Amongst
these were the inability to exhibit relaxation behavior, the stress-discontinuity that appeared
after a triangular pulse and the unbounded dynamic modulus Edyn, which resulted in an un-
bounded area of the hysteresis loop as the frequency increased. Naturally it is of interest to
find a material model which does not exhibit these flaws.

The least complex such model is the Standard linear solid model, from here on referred to as
the SLS model. This model is obtained by taking the Kelvin model but also adding a linear
spring in series with the dashpot, i.e the model consist of a spring coupled in parallel with a
dashpot and another spring. Figure 4.18 shows the combinations of springs and dashpots.

Having a spring coupled in series with a dashpot constitutes a Maxwell element. In order to
obtain an expression for the relaxation modulus, ER(t), as well as the complex modulus, E∗(ω),
of the SLS model, it is a good decision to start of with the Maxwell element and then add the
extra spring in parallel at the very end.

4.3.1 The Maxwell model

The Maxwell element is a model of a linear viscoelastic fluid. This will become apparent later
when the relaxation behavior of the model is studied, but first the constitutive equation will
be presented. Figure 4.19 shows the Maxwell element.

As the dashpot and spring are coupled in series, in the Maxwell model, the total strain in the
element is given by

ε = εspring + εdashpot (4.14)

and consequently the time derivative becomes

ε̇ = ε̇spring + ε̇dashpot (4.15)
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η

Figure 4.19: The Maxwell element

With the the use of

σ̇ = Eε̇spring and σ = ηε̇dashpot (4.16)

the constitutive equation can now be written as follows

σ̇ + E

η
σ = Eε̇ (4.17)

Now the relaxation behavior can be studied.

Maxwell model: Relaxation modulus

The normalized relaxation behavior ER(t) can be derived by solving (4.17) for a step strain.
For t > 0 the time-derivative of the strain is zero, ε̇(t) = 0. (4.17) then turns into

σ̇ + E

η
σ = 0 t > 0 (4.18)

The above equation has the following solution

d

dt

(
σe

E
η
t
)

= 0 ⇒ σ(t) = Ce−
E
η
t (4.19)

During the step strain the strain rate, ε̇, is infinite and consequently the dashpot becomes
infinitely stiff. This means that the stress response at t = 0 is governed entirely by the elastic
spring, giving σ(0) = Eε0 and consequently the integration constant C is equal to Eε0. Thus
the full solution becomes

σ(t) = Eε0e
−E
η
t (4.20)

33



4.3 SLS: Standard linear solid model Material models

ε

ε
0

r
t

0

t

η
r

t

E

E

(t)σ

t

(t)ε

Figure 4.20: Relaxation behavior of the Maxwell element. After some time the stress-response
approaches zero.

With the relaxation time tr defined as tr = η/E the relaxation behavior of the Maxwell model
can now be expressed through the relaxation modulus ER(t) as

σ(t) = ER(t)ε0 = Ee−
t
tr ε0 (4.21)

With the relaxation modulus being

ER(t) = Ee−
t
tr (4.22)

Figure 4.20 shows the relaxation behavior of the Maxwell element. The stress-response will
after some time be approximately zero. This is a model of a viscoelastic fluid.

Now moving on to find an expression for the complex modulus of the Maxwell model

Maxwell model: Complex modulus

In the previous section handling the Kelvin model the main idea behind the complex modulus
was presented. The aim was to relate the complex strain to the complex stress through the
multiplication with a complex function termed the complex modulus, E∗(ω).

By solving the constitutive equation of the Maxwell model (4.17) for a steady-state sinusoidal
strain history the complex modulus can be obtained.

Like before the sinusoidal strain history in complex form can be expressed in the following way

ε∗ = ε0e
iωt = ε0(cosωt+ i sinωt) (4.23)

Using this and inserting the following trial solution for the complex stress

σ∗ = Ceiωt

into the constitutive equation (4.17) yields
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σ̇ + E

η
σ = Eε̇ ⇒ iωCeiωt + E

η
Ceiωt = iωEε0e

iωt (4.24)

Now the unknown C can be determined

C = E
iω

iω + E/η
ε0 or C = E

iωtr
iωtr + 1ε0 (4.25)

and consequently the sought relation can be established

σ∗ = E
iωtr

iωtr + 1 ε0e
iωt︸ ︷︷ ︸

ε∗

⇒ σ∗ = E∗(ω)ε∗ (4.26)

where the complex modulus is found to be

E∗(ω) = E
iωtr

iωtr + 1 (4.27)

With the derived expressions for the relaxation- and complex modulus of the Maxwell model,
all that is left in order to obtain the equivalent expressions for the SLS model, is to add a spring
in parallel to the Maxwell element.

4.3.2 Adding the spring: Relaxation modulus, harmonic excitation
and complex modulus of the SLS model

Adding a spring in parallel will generate a model with solid properties. Before the stress relaxed
all the way down to zero, which is the case for a linear visco-elastic fluid, now however a limit of
the relaxation has been introduced. This limit is equal to the E-modulus of the added spring,
denoted by E∞, see Figure 4.21.

Adding the spring in parallel with the Maxwell element means that the total stress will be the
sum of the stress in the added spring and the stress in the Maxwell element like this

σ = σ∞ + σM (4.28)

where subscript M denotes the Maxwell element and the subscript∞ denotes the spring. Now
in order to obtain the relaxation modulus for the SLS model it is just to add the response to
a step strain of a linear spring to the relaxation modulus of the Maxwell model. The response
to a step strain for a linear spring with E-modulus E∞ is

σ(t) = E∞ε0 (4.29)
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Figure 4.22: The generalized Maxwell model

Adding this to the response of the Maxwell model one obtains

σ(t) = ER(t)ε0 =
(
E∞ + Ee−

t
tr

)
ε0 (4.30)

and consequently the relaxation modulus of the SLS model is written

ER(t) = E∞

(
1 + E

E∞
e−

t
tr

)
(4.31)

Many materials have more than one relaxation mechanism. In order to capture this in the
material model it is possible to put several Maxwell elements in parallel, each Maxwell element
could represent a relaxation mechanism with a unique relaxation time tr. Figure 4.22 shows
the generalized Maxwell model with n Maxwell elements coupled in parallel.

Complex modulus, SLS model

Moving on to the complex modulus and the strategy here is the same.

The response of a linear spring to a sinusoidal strain is

σ∗ = E∞ε
∗ (4.32)

36



Material models 4.3 SLS: Standard linear solid model

rω log(         ) t rω log(         )t

o

E

0 0

arg(

o

Eo =δ

E*)
*

2-g

g

E

Figure 4.23: Edyn = |E∗| and δ = arg(E∗) plotted against the logarithmic normalized fre-
quency ωtr, for g = 0.5. Maximum phase angle occur at ωtr ≈ 1 (note the
logarithmic x-axis)

Now adding this response to the response of the Maxwell element one arrive at

σ∗ = E∞ε
∗ + E

iωtr
iωtr + 1ε

∗ (4.33)

And the complex modulus of the SLS model is found to be

E∗(ω) = E∞

(
1 + E

E∞

iωtr
iωtr + 1

)
(4.34)

In the section discussing the Kelvin model it was concluded that the magnitude of the complex
modulus represented a scaling between the stress and strain amplitudes, a quantity called the
dynamic modulus, and that the argument represented the phase angle, δ. This holds also for
the SLS model. Eq. (4.35) shows the relationships again.

σ0 = |E∗|ε0 and arg(E∗) = δ (4.35)

To summarize: The response to a steady-state sinusoidal strain is a steady state sinusoidal
stress with the same frequency, but out of phase.

One of the strongest objections to the Kelvin model was directed towards its behavior at high
frequencies, see Figure 4.16.
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Figure 4.24: Relating the normalized relaxation modulus ER(t)/E0 to the introduced parame-
ters E0, g and tr. E0 = E∞ + E, g = E/E0 and tr = η/E.
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With the SLS model a more realistic behavior is therefore anticipated. Defining the new
quantity g, the relative amount of relaxation (see Figure 4.24 for an explanation), and reminding
ourselves of the definition of the relaxation time , tr

g = E

E∞ + E
tr = η

E

the dynamic modulus and the phase shift can be plotted against the normalized frequency ωtr.
Earlier the complex modulus was found to be

E∗(ω) = E∞ + E
iωtr

iωtr + 1 and consequently Edyn = |E∗| and δ = arg(E∗)

Figure 4.23 shows this plot for g = 0.5 i.e E∞ = E. Note that the axis with the normalized
frequency ωtr is logarithmic, so the maximum phase angle occur at approximately ωtr = 1. For
g ≤ 0.5 and the assumption tan δ ≈ δ an approximation of the maximum phase angle can be
obtained through

δmax = g

2− g for ωtr ≈ 1 and g ≤ 0.5 (4.36)

Maximum phase angle δ also means maximum dissipation of energy, Uc. Remember

Uc = πσ0ε0 sin δ

Studying Figure 4.23 it is possible to conclude that

δ → 0 and Edyn → E∞ as ωtr → 0 (4.37)

and

δ → 0 and Edyn → E∞ + E as ωtr →∞ (4.38)

This means that the response is basically elastic for low and high frequencies. When the
behavior is elastic the dissipated energy Uc is equal to zero.

Figure 4.25 shows the hysteresis and dynamic stiffness of the model for a low, intermediate and
high normalized frequency ωtr

1) ωtr � 1 2) ωtr ≈ 1 3) ωtr � 1

As mentioned, the area of the hysteresis loop is small for low and high frequencies i.e the
response is approximately elastic.
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Figure 4.25: Hysteresis work and dynamic stiffness for a low, intermediate and high frequency.
1) ωtr � 1 2) ωtr ≈ 1 3) ωtr � 1. E0 = E∞ + E

As a last topic in this section we study the normalized dynamic modulus |E∗|/(E∞ + E) and
the phase angle arg(E∗) as functions o normalized frequency ωtr and how different values of g
effect these quantities. Figure 4.26 shows this.

The parameter g was defined as g = E/(E∞ + E). In the following dynamic analysis, SLS
models with a normalized relaxation of g = 0.5 and downwards will be studied. Moreover
the models will be studied in a frequency range where the upper limit is situated well below
ωtr = 1, since this upper limit constitutes a physically reasonable frequency range for a real
material.

4.3.3 SLS model: Numerical evaluation of stress

In a time stepping procedure the following expression could be used to evaluate the stress in
the Maxwell element σM
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Figure 4.26: The absolute value and the phase of E∗ as functions of normalized frequency ωtr
for different values of normalized relaxation g
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∆σM = σM

(
e
−∆t
tr − 1

)
+ 1

2E
(

1 + e
−∆t
tr

)
∆ε (4.39)

The calculated stress increment is then added to the last known value according to

σM,i+1 = σM,i + ∆σM

It should be pointed out that the evaluation of the stress increment contains approximations
which are dependent on the time-step length ∆t. The approximations become better for smaller
time-steps. See Notes on linear viscoelasticity [4] for further details.

4.3.4 SLS model: Summary

Below follows a summary of the improvements obtained with the SLS model compared to the
previously discussed Kelvin model.

• The SLS model can exhibit relaxation behavior.

• The spring in the Maxwell element prevents discontinuous stress response at non-smooth
shifts in the strain rate ε̇

• The dynamic modulus Edyn is bounded at large frequencies ω.

• And consequently the response is almost elastic at high frequencies, i.e the hysteresis
work Uc is bounded.
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4.4 Friction models

In this section two material models which are rate independent, i.e independent of load fre-
quency, will be presented. Moreover the materials are amplitude dependent which is in contrast
to the visco-elastic models previously discussed. The amplitude dependence could be described
as caused by friction or as plasticity. Both view-points are valid. Friction materials could typi-
cally be soils. Friction soils such as sand or gravel. Cracked concrete could also be an example
of a material which is amplitude dependent. Dyrbye [5] justified the use of the SFS model,
which will be presented here, by referring to bridge research. Studies had showed that the
logarithmic decrement was amplitude dependent in a way that could not be explained by any
simpler friction model. Kalmar-Nagy and Shekhawat [6] points to beam column connections
as an example of amplitude-dependent structural behavior. Such connections have bi-linear
hysteresis, something that will be covered here.

4.5 Coulomb friction model

The material presented in this section is mostly based on unpublished writings put together by
my supervisor Per Erik Austrell (personal communication, spring 2017).

The least complex way to model a rate-independent damping behavior is by putting a spring
in parallel with a friction element or a friction block, see Figure 4.27.

E

Y

σσ

ε(t)

Figure 4.27: Coulomb friction material model

Having the spring and the block coupled in parallel yields

σ = σE + σF (4.40)

where subscript E refers to the elastic spring and the subscript F refers to the block. This is in
a way analogous to the Kelvin model, with the dashpot exchanged for a friction block. Figure
4.28 gives an explanation to the behavior of the block. As the node to the right in the figure
moves to the right (i.e the strain-rate is directed to the right) the block reacts with a constant
stress directed to the left. As the node moves to the left the stress in the block is directed to
the right.
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Figure 4.28: The stress in the friction block related to the direction of movement of the node
to the right, i.e the strainrate. Movement to the right is chosen as the positive
direction.

The following equation gives the total strain in the material. First term is the elastic part and
the second term describes the stress in the friction block as explained above.

σ = Eε+ Y sign(ε̇) sign(ε̇) =
{

1 if ε̇ > 0
−1 if ε̇ < 0 (4.41)

In order to see the physical irregularities connected with the proposed model one can return to
the triangular pulse presented in the previous section where the Kelvin model was discussed.

time ε

Y

ε0

σ
Eε0ε0

ε

T

Figure 4.29: A triangular strain yields a discontinuous stress response.

Studying Figure 4.29 it can be noted that the model, through the friction block, is able to
dissipate energy. The area of the hysteresis loop, which is equal to the dissipated energy during
the pulse, is

Uc = 2Y ε0 (4.42)

So far everything is in order, but looking at the stress-response it can be noted that it is
discontinuous at the point where the strainrate ε̇ changes direction. The point where the
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change of direction occur is (T/2, ε0). In this point the strainrate is discontinuous but even
with a smooth strain function ε(t) with a continuous strain rate the stress response will be
discontinuous.

Take the strain function ε = ε0 sin(ωt). Inserting this function into equation (4.41) gives the
following stress response

σ = Eε0 sin(ωt) + Y sign(cosωt) (4.43)

and it gets clear that the strain rate changes direction when the strain is at its maximum ε0,
giving a discontinuous stress response even for this smooth strain function. Figure 4.30 below
shows this.

Y Y

time

σ0

-σ0

Figure 4.30: Discontinuous stress response (solid line) to a continuous smooth strain function
(dashed line).

The stress response is therefore a periodic but non-harmonic discontinuous function.

Doing a Fast Fourier Transform (FFT ) on the stress response σ(t) one can see that the response
contains odd multiples of the fundamental frequency. In other words: A harmonic strain
generates a stress-response that contains the strain frequency, ω, plus odd multiples of this
frequency i.e 3ω, 5ω, 7ω, etc.

The FFT is a way to investigate if the response to a sinusoidal strain is linear or non-linear
respectively.

• If the response to a sinusoidal strain with the frequency ω only contains this frequency
then the response is linear.

• If the response contains the frequency ω plus other frequencies the response is non-linear

In Figure 4.31 the non-linear response of the Coulomb model can be studied.
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Figure 4.31: Division of the stress response into its different frequency components. Model
parameters: E = 1, Y = 0.5. Applied strain: ε(t) = sin(2πt), i.e f = 1 Hz

The hysteresis loop associated with the cyclic straining ε(t) = ε0 sin(ωt) of the model is shown
in Figure 4.32. Maximum strain ε0 and maximum stress σ0 occur at the same time, i.e stress
and strain are in phase (phase angle is zero). All periodic strain functions generates the same
hysteresis work as long as the strain amplitude ε0 is the same. The dissipated energy in one
cycle is

Uc = 2Y 2ε0

Y

Y

ε

σ

ε0

-ε0

Eε0

-Eε0

Figure 4.32: Hysteresis loop associated with a periodic strain function with amplitude ε0

Again the reader is reminded of the discontinuous stress response that occur when the strain
changes direction. In previous section a quantity called the dynamic modulus Edyn was deter-
mined for viscoelastic models. It was defined as the relation connecting the maximum stress
to the maximum strain, σ0 = Edynε0. In this model, with maximum stress being Eε0 + Y , the
expression for the dynamic modulus becomes
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Edyn = σ0

ε0
= Eε0 + Y

ε0
= E + Y

ε0
(4.44)

The strain-amplitude dependence of the dynamic modulus is illustrated further in Figure 4.33.
What is troubling here is that the dynamic modulus approaches infinity as the strain amplitude
approaches zero, i.e

Edyn = E + Y

ε0
→ ∞ as ε0 → 0

This shows the need for a more sophisticated material model describing strain-amplitude de-
pendence i materials.

Edyn

ε0

E

Figure 4.33: Amplitude dependence of the dynamic modulus Edyn

4.5.1 Coulomb friction model: Summary

Below follows a summary of the irregularities associated with this friction model.

• The stress response to a known strain will be discontinuous if the strain changes direction.

σ = Eε+ Y sign(ε̇) sign(ε̇) =
{

1 if ε̇ > 0
−1 if ε̇ < 0 (4.45)

• The dynamic modulus approaches infinity as the strain amplitude approaches zero

Edyn = E + Y

ε0
→ ∞ as ε0 → 0
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4.6 SFS: Simple frictional solid model

The material presented in this section is basically a rewrite of chapter 10 in the thesis Modeling
of elasticity and damping for filled elastomers [7]. The reader is referred here for further
information.
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Figure 4.34: The SFS model to the left and the associated hysteresis loop to the right.

If the dashpot in a SLS-element is exchanged for a pair of friction blocks one obtain a model that
describes a solid with frictional damping. In contrast to the rate-dependence of the dashpot,
the friction blocks are rate-independent. Since the upper spring with stiffness E∞ and the lower
friction-spring element is coupled in parallel the total stress is the sum of the stress in the upper
spring σ∞ and the stress in the lower friction-spring element σf , i.e

σ = σ∞ + σf (4.46)

Figure 4.34 shows this relation and the hysteresis loop associated with a periodic strain. This
hysteresis loop is only dependent on the strain amplitude of the periodic strain. Consequently
a sine, sawtooth or square shaped periodic strain function yields the same hysteresis work,
regardless of frequency, if the strain amplitude ε0 is the same.

4.6.1 Evaluating the stress in the friction element

The friction-spring element acts like a linear elastic perfectly plastic spring, here referred to as
the friction element. Since the stress-strain curve of such a spring is bilinear a check is required
to find out if the current displacement is in the elastic or plastic region, see Figure 4.35.
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Figure 4.35: The elastic perfectly plastic spring, referred to as the friction element and the
associated load-curve.

The strain in the friction element will be the sum of elastic and (frictional) plastic strain,
ε = εe + εp. To obtain an algorithm which evaluates the stress in the friction element σf it is
necessary to know when the strain transitions from the elastic to the plastic region. If a small
strain ∆ε is added to the existing strain ε and knowing that the maximum stress in the friction
element is Y it is possible to determine this. Therefore a strain increment is defined

∆ε = ∆εe + ∆εp

The aim is to determine a stress increment ∆σf . Since the stress is the same throughout
the whole friction element it is possible to determine the stress only from the elastic spring
σf = Eεe. The expression for the stress increment then becomes

∆σf = E∆εe (4.47)

Suppose that the current stress σf is known, then a trial stress can be defined under the
assumption that the strain increment is purely elastic

σtrail = σf + E∆ε

The total stress in the element σf is limited to

−Y < σf < Y

and this condition is tested for each increment, ∆εe. If the trial stress σtrial is larger than the
yield stress , then at least a part of the strain increment is plastic. Eventually there is ∆εe = 0,
if the strain increment is purely plastic. This leads to the condition:

if |σtrial| > Y then σf = ±Y (4.48)

An algorithm for evaluating the stress in the element can now be written as follows
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Table 4.1: The algorithm used to evaluate the stress σf in the friction element

i=1,2,3...

1. ∆ε = εi+1 − εi

2. σtrial = (σf )i + E∆ε

3. α = Y/σtrial

4. if α > 1 then α = 1

5. (σf )i+1 = ασtrial

For the simpler friction model presented in the previous section it was shown that the stress
response to a sinusoidal strain ε(t) = ε0 sin(ωt) was discontinuous. Figure 4.36 shows how the
SFS model responds to a sinusoidal strain and the frequency content of that response. Just
like the simpler model the stress response contains odd multiples of the fundamental frequency
ω = 2πf . The used model parameters were: E∞ = 1 Pa, E = 1.5 Pa and E∞ = 0.5 Pa. The
strain amplitude was ε0 = 1
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Figure 4.36: Frequency content of the stress-response. Plotting parameters: E∞ = 1 Pa,
E = 1.5 Pa and E∞ = 0.5 Pa. The used strain amplitude was ε0 = 1

Now moving on to study the dynamic modulus of the SFS model
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Figure 4.37: Definition of the dynamic modulus Edyn from the hysteresis loop. Maximum
stress and maximum strain occur simultaneously.

The amplitude dependence of the SFS model is illustrated in Figure 4.37. Maximum stress and
maximum strain occur at the same time, and the dynamic modulus is calculated at this point
as Edyn = σ0/ε0. If the strain amplitude is below the yield limit εs = Y/E the model is fully
elastic with a constant modulus E + E∞. When the strain amplitude exceeds the yield limit
we have σ0 = Y + E∞ε0. This gives the following expression for the dynamic modulus in the
strain range ε0 > εs

Edyn = σ0

ε0
= Y + E∞ε0

ε0
= E∞ + Y

ε0
ε0 > εs (4.49)

In contrast to the simpler friction model the dynamic modulus of the SFS model is not un-
bounded when the strain-amplitude approaches zero, Figure 4.37 shows the dynamic modulus
as a function of strain amplitude ε0.

1
E

εσ f
ε

σ fY

-Y

ε0εs

-ε0

EY

Figure 4.38: The hysteresis loop associated with the friction element.

Now the focus is directed towards the damping of the model. The linear spring does not
contribute to the damping so it is only necessary to look at the friction element. Figure 4.38
shows the hysteresis loop associated with a periodic strain with amplitude ε0. The area enclosed
in one period, i.e the dissipated energy is
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4.6 SFS: Simple frictional solid model Material models

Uc = 2Y · 2(ε0 − εs) (4.50)

If ε0 < εs the response is elastic and the dissipated energy is zero. Using the following definition
of normalized damping

d = Uc
πσ0ε0

(4.51)

and inserting the expression for the stress amplitude σ0 = Y + E∞ε0, an expression for d can
be obtained

d = 4
π

ε0 − εs(
1 + E∞

Y
ε0
)
ε0

ε0 > εs (4.52)

Defining a normalized strain as α = ε0/εs and inserting this into Eq. (4.52) yields

Edyn
E∞

= 1 + E

E∞

1
α

and d = 4
π

α− 1(
1 + E∞

E
α
)
α

(4.53)

With the introduction of the parameter h = E/E∞ these expressions can be plotted as functions
of the normalized strain α for different values of h, Figure 4.39 shows this. An increase in h
leads to an increase in damping and maximum damping occur around α = 2− 3.
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Figure 4.39: To the left: the dynamic modulus as a function of the normalized strain for
different values on h. To the right: the equivalent phase angle d as a function of
the normalized strain for different values on h. The phase angle is equal to the
damping.

Similar to the generalized maxwell model, Figure 4.22, where several Maxwell elements were
coupled in parallel it is possible to couple several friction elements in parallel to get a better fit
to the experimental results. Figure 4.40 shows this and the obtained model behavior.
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Figure 4.40: Generalized friction model and the obtained load-curve

4.6.2 SFS model: Summary

Below follows a summary of the improvements obtained with the SFS model compared to the
simpler friction model.

• No discontinuities in the stress response regardless of strain type.

• An upper bound on the dynamic modulus is introduced due to the spring in the friction
element. For strain amplitudes smaller than the yield-strain limit εs = Y/E the response
is purely elastic with the constant modulus E∞ + E.
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4.7 Concluding remarks

An introduction to visco-elastic and frictional material models has now been given. Both the
linear visco-elastic SLS model and the non-linear friction SFS model was introduced in order
to obtain visco-elastic and friction models without discontinuities in the stress-response.

If the SLS and the SFS model is combined one obtains a material model which is both rate-
and amplitude dependent. This model was referred to as the 5-parameter model, see Figure
4.41. Such a model can be used in order to model the material that was presented in the
introduction to this chapter, see Figure 4.1 and 4.2. Moreover the model can be extended with
more Maxwell and friction elements in order to better capture the behavior of a real material.

E

σσ

Y EF

Evη

ε(t)

Figure 4.41: The 5-parameter model

52



Chapter 5

Load definition and
structural formulation

The following chapter defines the conditions for the dynamic analyses of the presented material
models. Initially a fictitious test-specimen is defined in terms of geometry and then a realistic
frequency range, in which to conduct the dynamic analyses, is determined.

5.1 Geometry-dependent structural formulation

In order to investigate the dynamic properties of the material models a transition from a
material formulation, independent of geometry, into geometry-dependent structural formulation
is needed. Figure 5.1 shows the idea.

σσ

E

η
ε(t)

(a) Kelvin material model

k

f s

u(t)
c

f s

(b) Kelvin structure model

Figure 5.1: Transition from material to structure.

To keep it simple a fictitious bar-shaped test specimen could be used. A bar is a structural
element used when the load is applied mainly in the axial-direction of the structural element i.e
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5.2 Load definition Load definition and structural formulation

in the length direction of the bar. The fictitious test-specimen is given the following dimensions.
Moreover it is assumed that the bar-structure is weightless.

Bar length: L = 10 cm

Area of bar cross-section A = 1 cm2

The aim is now to move from a material-formulation where the strains ε are related to the
stresses σ into the structural-formulation where displacements u are related to forces in the
structure fs. It should be noted that the Poisson effect will be neglected.

Eε = σ ⇒ ku = fS

ηε̇ = σ ⇒ cu̇ = fs

Doing this requires multiplication with the determined dimensions of the structure. With
u = εL and f = σA the stiffness k [N/m] can be obtained through

E · A
L
· ε · L = σ · A ⇒ EA

L
u = fs (5.1)

in the same way the c-parameter can be determined

η · A
L
· ε̇ · L = σ · A ⇒ ηA

L
u̇ = fS (5.2)

Consequently the k- and c-parameters becomes

k = EA

L
[N/m] and c = ηA

L
[kg/s]

5.2 Load definition

In order to find a reasonable frequency range in which to conduct the studies the decision
was taken to let pulses with different duration times, td, define the endpoints of the frequency
interval.

A pulse with a duration time of td = 5 ms is considered a short pulse. The upper boundary of
the pulse duration was chosen to be td = 50 ms.

If the pulse has the shape of a half-sine function, the period-time of the sine function would be
2td. Utilizing this, it is possible to estimate the highest frequency to be triggered by a pulse of
a certain duration.
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Load definition and structural formulation 5.2 Load definition

f = 1
2td

(5.3)

This will give the following boundaries of the frequency range of interest

td = 50 ms⇒ f = 10 Hz td = 5 ms⇒ f = 100 Hz

Now for a certain material it is possible to connect a mass to the structure which will make the
eigen-frequency of the Single degree of freedom (SDOF) system fall within the desired frequency
interval [10, 100] Hz.

Using the described, weightless, test specimen with length L = 0.1 m and cross-sectional area
A = 1 cm2 and wanting the first natural frequency to appear at 10 Hz with an added mass
m = 1 kg gives a numerical value on the E-modulus: E∞ ≈ 4 MPa (3.948 MPa). This is
a reasonable E-modulus for a rubber material. Figure 5.2 shows a free body diagram of the
structure with the added mass m.

k

m p(t)f s

u(t) u(t)
c

Figure 5.2: Freebody diagram of the Kelvin system
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Chapter 6

Linear Dynamic systems

In order to compare the dynamic behavior of the SLS model to the Kelvin model two approaches
are possible. Figure 6.1 shows the two dynamic systems respectively.

k

kcc

m p(t)f s

u(t) u(t)

(a) A dynamic SLS system

k

m p(t)f s

u(t) u(t)
c

(b) A dynamic Kelvin system

Figure 6.1: The two studied linear dynamic systems

The most common one would be to use equivalent viscous damping as described in Section 2.5.
For a SDOF-system the material behavior will in a way be equivalent at the natural frequency
of the system but not at any other frequency. This approach is always a possibility when
the displacement are within the linear-elastic regime of the structure. The down side of this
approach is that for a real structure a measurement would be required in order to determine
the damping parameter and this parameter would only guarantee a good result at the specific

57



6.1 Fitted material approach Linear Dynamic systems

natural frequency. I.e if the mass of the structure or the mass applied to the structure would
change the determined damping parameter would not be correct [1].

The other approach, and perhaps the more interesting of the two, would be to try to fit the
2-parameter Kelvin model to the material behavior of the 3-parameter SLS model for a wide
range of frequencies. The fit would be carried out without an attached mass, m. The Kelvin
model could be fitted to the SLS model in the desired frequency interval [10, 100] Hz, in terms
of dynamic modulus and phase angle.

If this is possible, two material models are obtained which have a similar behavior on a certain
frequency range. What will now happen if a mass m is attached to the materials? Will the
fitted Kelvin model behave in accordance with the SLS model also with the mass attached?
Altering the mass will change the natural frequency. Could the fitted Kelvin model also be
used to model the dynamic behavior of the SLS model for a wide range of natural frequencies?
Adding different masses the natural frequency could be made to appear at for instance 10, 50
and 90 Hz.

6.1 Fitted material approach

Picking a SLS material with g = 0.5 translates into

E∞ = E

In a previous section the stiffness of the upper linear spring (see Figure 5.1) was set to E∞ ≈ 4
MPa (3.948 MPa). This is a reasonable E-modulus for a rubber material. Setting the relaxation
time to tr = 0.0005 s one obtains a model which also has a reasonable amount of damping in
the studied frequency range. Remember the definition of the relaxation time tr = η/E.

Now a least squares fit can be carried out in order to find the η-parameter of the Kelvin model.
Since the internal damping of a material is closely connected to the phase angle δ, the starting
point will be to try to fit the expression for the phase angle of the Kelvin model to that of the
SLS model. The phase angle δ is equal to the argument of the complex modulus arg(E∗(ω)).
For the SLS model and Kelvin model respectively we have

δSLS = arg(E∞ + E
iωtr

1 + iωtr
) δKelvin = arg(E∞ + iωc) (6.1)

Numerically the above expressions can be plotted for different frequencies ω. The best fit in a
least square sense would be |r| = |δSLS − δKelvin| where r is the residual vector and |r| is the
length of this vector. Table 6.1 shows the fitting procedure.
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Table 6.1: Least squares fit of the phase angle δ of a Kelvin model to a SLS model.

η-parameter ||δSLS − δKelvin||

1790 0.1921
1800 0.18809
1810 0.18782
1820 0.19129
1830 0.19831

Apparently η = 1810 Pa·s provides the best fit to a SLS-material with relaxation parameter
g = 0.5 and relaxation time tr = 0.0005 s, in the frequency range [10, 90] Hz. Figure 6.2 shows
the fitted curves.
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Figure 6.2: To the left we have the phase angle δ plotted for the two models in the chosen
frequency range. To the right the same curves are plotted as functions of nor-
malized frequency. SLS-parameters: g = 0.5, tr = 0.0005. Kelvin-parameters:
E∞ = 3.948 MPa η = 1810 Pa·s
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Figure 6.3: To the left we have the dynamic modulus Edyn plotted for the two models in the
chosen frequency range. To the right the same curves are plotted as functions of
normalized frequency. SLS-parameters: g = 0.5, tr = 0.0005. Kelvin-parameters:
E∞ = 3.948 MPa η = 1810 Pa·s

Figure 6.3 shows the dynamic modulus Edyn of the reference SLS material and the fitted Kelvin
material plotted against the frequency and the normalized frequency respectively. The used
damping parameter η in the Kelvin model is the parameter determined from the curve-fitting,
η = 1810 Pa·s. At high frequencies the dynamic modulus of the Kelvin model deviates signif-
icantly from the dynamic modulus of the SLS reference model. The SLS material gets much
stiffer at high frequencies.

Figure 6.4 shows what happens if the frequency range is extended further. At higher frequencies,
f > 100 Hz, it is no longer possible to fit a Kelvin model, in a satisfactory way, to a SLS model
with these particular parameters (g = 0.5, tr = 0.0005 s). Note that the frequency-axis is
logarithmic.
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(a) Dynamic modulus as a function of frequency
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Figure 6.4: The dynamic modulus and phase angle of the two models plotted in a wider fre-
quency interval. Note that the frequency-axis is logarithmic.
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Linear Dynamic systems 6.2 Steady-state response: Fitted material approach

6.2 Steady-state response: Fitted material approach

As presented before (see Figure 5.1): Transitioning from a material-formulation in terms of
stresses and strains into a structural-formulation, where displacements are related to forces,
yields

k∞ = E∞A

L
, c = ηA

L
, (6.2)

The chosen test bar had the following dimensions:

Length: L = 10 cm, cross-section area: A = 1 cm2

The numerical values on the structural-parameters then becomes:

k∞ 3948 [N/m]

kc 3948 [N/m]

c 1.81 [kg/s]

For a sinusoidal steady-state excitation, p∗ = p0e
iωt, the steady state displacement amplitude

u0 can be expressed analytically for these two material models, since they are linear. As shown
before Eq.(2.8), the expression for the steady state displacement amplitude of the Kelvin system
is

Kelvin : u0 = p0

|−ω2m+ k∞ + iωc|
(6.3)

where p∗ = p0 i.e p∗ is placed along the real-axis. k∗ = k∞ + iωc is called the complex stiffness
of the system. Clearly the complex stiffness k∗(ω) is the structural equivalent to the complex
modulus E∗(ω). Consequently the steady state displacement amplitude u0 of the SLS system
can be determined in the same manner since we know the complex modulus of the SLS model.
For the dynamic SLS system we get

SLS : u0 = p0∣∣∣−ω2m+ k∞ + kc
iωtr

1+iωtr

∣∣∣ (6.4)

The quasi-static displacement, uqs, is equal to p0/k∞ for both models. When the loading is slow
the dashpots generates no resistance at all. The quantity of interest here is the displacement
response-factor Rd, which is a scale factor between the quasi-static displacement uqs and the
displacement caused by the dynamic loading u0

Rd = u0

uqs
(6.5)
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6.2 Steady-state response: Fitted material approach Linear Dynamic systems

If the fitted structural parameter c is inserted into Eq.(6.3) a comparison between the two
models is possible.

By attaching different masses to the structure the resonant frequency will appear at different
places in the frequency interval [10, 90] Hz. Starting off with a mass m = 1 kg and using the
following definition

fn,∞ = 1
2π

√
k∞
m

(6.6)

the first system will have a resonance peak at around 10 Hz (k∞ = 3948 N/m). With the same
stiffness parameter and a desired resonance-peak at 50 Hz the second system will have a mass
m = 0.04 kg and to have the peak appear at 90 Hz in the third and last system the attached
mass m would have to be m = 0.012346 kg. To summarize:

Added mass fn,∞

m = 1 kg → 10 Hz
m = 0.04 kg → 50 Hz
m = 0.0123 kg → 90 Hz
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Figure 6.5: Steady-state response of the SLS and the Kelvin system respectively. Attached
mass m = 1 kg

The steady-state response of the system with the attached mass m = 1 kg in terms of displace-
ment response factor Rd and corresponding phase-shift φ can be studied in Figure 6.5. Both
models have a peak in the response factor Rd at roughly the same frequency, this is also indi-
cated by the phase-shift φ which is plotted to the right in Figure 6.5 for different frequencies.
In linear dynamics the phase-shift φ is equal to π/2 at the natural frequency of the system [1]
(Page: 88).

However, the two models differ significantly in the magnitude of the response factor Rd. For
the Kelvin system, Rd is around 35 compared to an Rd-value of 32 for the SLS-system. This
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indicates that the two models does not have the same amount of damping at this frequency
and that the damping is low in both systems.

Mathematically, the damping is what keeps the displacement from going towards infinity at
resonance. One way of comparing the amount damping at a certain frequency is to study the
phase-angle δ of the material at this particular frequency, see Equation (6.1).

The other option would be to compare the damping of the models in terms of the damping
ratio ζ. Through the relation c = 2mζωn a specific damping ratio ζK is connected to the fitted
c-parameter of the Kelvin system. Using equivalent viscous damping as described earlier an
approximate damping ratio could be connected to the SLS system, ζeq,SLS, as well. How this is
done is described in detail in Appendix A.

Let us present both in order to get a feeling for the relation between the two quantities.
Remember that ζeq,SLS is an approximation.

Table 6.2: Damping parameters of the SLS and the Kelvin system respectively. Attached mass
m = 1 kg

δ [rad] ζ

SLS: 0.0313 1.57 %
Kelvin: 0.0288 1.44 %

Even though the difference in phase-angle between the two material models is not larger than
0.0025 radians this results in the quite severe difference in the response-factor Rd. To illustrate
this further we look at an arbitrary Kelvin system.

For ζ = 1% the response factor becomes Rd = 50 at resonance

For ζ = 2% the response factor becomes Rd = 25 at resonance

Obviously both models are very sensitive to the value of the chosen damping-parameters when
the damping is small. 1 % or 2 % makes a big difference, and consequently this is something
to think about when analyzing results from simulations.

A last observation before moving on: Looking at the Kelvin model primarily, there is a factor
2 between phase-angle δ and the damping ratio ζ. Approximately this is true also for the
SLS-system when the phase angle is compared to the equivalent viscous damping ratio ζeq.

We will return to this observation later. Perhaps it will be helpful in an attempt to estimate
an equivalent damping parameter ζeq that could be used to fit the steady state response of a
Kelvin system to the steady state response of a SLS system.

63



6.2 Steady-state response: Fitted material approach Linear Dynamic systems

35 40 45 50 55 60 65

Frequency [Hz]

0

1

2

3

4

5

6

7

8
D

e
fo

rm
a

ti
o

n
 r

e
s
p

o
n

s
e

 f
a

c
to

r 
R

d
SLS

Kelvin

35 40 45 50 55 60 65

Frequency [Hz]

0

0.5

1

1.5

2

2.5

3

3.5

P
h
a
s
e
 s

h
if
t 
φ

SLS

Kelvin

Figure 6.6: Steady-state response of the SLS and the Kelvin system respectively. Attached
mass m = 0.04 kg

In the next two systems the resonance peaks occur at roughly 50 Hz, see Figure 6.6. The
fitted Kelvin system is close in terms of magnitude of the response factor Rd. Both systems
have a response factor Rd between 6 and 7. A small horizontal drift of the respective peaks is
visible however. The peak of the Kelvin system occur at a frequency slightly below the natural
frequency of the system, fn = 50 Hz. This is a characteristic feature of a Kelvin system. The
more damping, the more the peak drifts towards a lower frequency. The displacement resonance
frequency for a Kelvin system is ωn

√
1− 2ζ2 [1] (Page: 82)

The SLS system have a small drift to the right instead. This seems reasonable since the maxwell
element adds an extra spring to the system. At 50.62 Hz the phase shift φ is π/2, see Table 6.3.
In linear dynamics the undamped natural frequency is defined as the frequency at which the
phase shift φ is π/2. If this is true also for the SLS system (which is linear) then its behavior
is similar to that of the Kelvin system: the phase shift is π/2 at 50.62 Hz and the peak in the
response factor occur at a slightly lower frequency, f = 50.32 Hz.

Since the material models were fitted only with regard to the phase angle δ of the materials, the
dynamic modulus Edyn could differ significantly as the frequency gets higher. This quantity is
now included in the table below. As a reminder: Edyn is the magnitude of the complex modulus
|E∗(ω)|.

Table 6.3: Damping parameters and dynamic modulus of the SLS and the Kelvin system re-
spectively. Attached mass m = 0.04 kg

δ [rad] ζ Edyn [MPa] f(φ = π/2) f(max(Rd))

SLS: 0.14858 7.68 % 4.088 50.62 Hz 50.32 Hz
Kelvin: 0.14305 7.20 % 3.989 50.00 Hz 49.74 Hz

Table 6.3 shows that the quotient δ/ζ is close to 2 also for these two systems. The forth column
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Linear Dynamic systems 6.2 Steady-state response: Fitted material approach

shows at which frequency f the phase shift is π/2 and the fifth column shows at which frequency
the response factor has its maximum value.
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Figure 6.7: Steady-state response of the SLS and the Kelvin system respectively. Attached
mass m = 0.0123 kg

With an attached mass of m = 0.0123 kg the two studied systems have their respective natural
frequencies at around 90 Hz, see Figure 6.7. The general behavior of the two systems is similar
to the behavior of the systems showed in the previous Figure 6.6, but here the behavior is more
accentuated. The respective peaks in the response factor is closer to each other in terms of the
magnitude, slightly below Rd = 4, but further apart in terms of frequency. These two systems
are the most highly damped systems showed so far. Looking at Table 6.4 we see that the phase
angle δ is around 0.25 [rad] which translates into a damping ratio of about ζ = 13%. This is a
significant amount of damping.

Table 6.4: Damping parameters and dynamic modulus of the SLS and the Kelvin system re-
spectively. Attached mass m = 0.0123 kg

δ [rad] ζ Edyn [MPa] f(φ = π/2) f(max(Rd))

SLS: 0.23910 13.137 % 4.364245 93.51 Hz 92.20 Hz
Kelvin: 0.25368 12.963 % 4.078366 90.00 Hz 88.47 Hz

In Table 6.4 it is noticeable that the SLS system has its peak in response factor Rd at a frequency
slightly lower than the frequency at which the phase shift φ is π/2. This is consistent with the
results presented in Table 6.3 earlier.

6.2.1 Summary of the Fitted material approach

Below follows a summary of the findings presented in this section.
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6.2 Steady-state response: Fitted material approach Linear Dynamic systems

• At low damping, Figure 6.5, the systems deviate mainly in terms of the magnitude of the
peaks. A damping ratio of ζ = 2% rather than 1% makes a huge difference in terms of
the magnitude of the response factor Rd.

• At low damping the systems seem to have the same stiffness since the peaks in response
factor occur at the same frequency.

• At high damping the situation is reversed. The systems are close in magnitude of the
response factor, but the peaks are further apart in terms of frequency

• At high frequencies the SLS system gets stiffer and its natural frequency start to deviate
from fn = (

√
k∞/m)/2π. The Kelvin system also gets stiffer in terms of dynamic stiffness

but this does not effect the resonance frequency.

• When fitting the Kelvin material model to the SLS model the focus should lie on the
phase angle δ. The reason for this is that the dynamic modulus Edyn of the Kelvin model
does not influence the natural frequency of the Kelvin system anyway. The Kelvin model
lacks what is called a modulus effect, due to the fact that the model only contains one
spring element.

All in all, this seems like a fairly successful method to capture the behavior of a material
described by the SLS model. The desire to use the Kelvin model in computations stems from
the simplistic mathematical treatment.

It was no problem to extend this approach to different reference materials described by a SLS
model. Starting with a material with the same normalized relaxation parameter g but lowering
the relaxation time tr resulted in a SLS model to which a Kelvin model could be fitted easily
in terms of the phase angle δ

With the following material parameters

g E∞ [MPa] E [MPa] tr [s]

0.5 3.948 3.948 0.00025

a least squares fit of the phase angle could be carried out. The following table shows the fitted
η-parameter

η-parameter ||δSLS − δKelvin||
950 0.046963256076712
960 0.029224836191831
970 0.031711273210136

Figure 6.8 shows the fitted curves in terms of the dynamic modulus Edyn (to the left) and phase
angle δ (to the right). Focusing on the phase angle the fit is really good, which was already
indicated by the small residual, |δSLS − δKelvin|.
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Figure 6.8: The dynamic modulus and the phase angle of the two models respectively. SLS-
parameters: g = 0.5, tr = 0.00025 s. Kelvin-parameters: E∞ = 3.948 MPa,
η = 960 Pa·s

Now the steady-state dynamic analysis with the three different masses can be repeated with
this new material and the new fitted Kelvin model. The results will not be presented explicitly
but a summary of the findings follows here:

The fitted Kelvin model proved to be a good approximation to the SLS reference system. The
systems were studied at fn,1 = 10 Hz (m = 1 kg), fn,2 = 50 (m = 0.04 kg) and fn,3 = 90 Hz
(m = 0.0123 kg). As before fn is defined as (

√
k∞/m)/2π.

The two systems had peaks in the response factor that were similar in magnitude. And the
peaks occurred at roughly the same frequency. It is safe to conclude that a good fit in terms
of the phase angle of the materials will generate quite accurate approximations in terms of the
dynamic behavior.

Now what if the relaxation time tr was increased rather than decreased? Will it be harder to
find a damping parameter η to use in the Kelvin model.

Imagine a new material with the same parameters as the previous except for the relaxation
time tr which is now increased to tr = 0.00075 [s].

g E∞ [MPa] E [MPa] tr [s]

0.5 3.948 3.948 0.00075

A least squares fit of the phase angle gives the η-parameter

η-parameter ||δSLS − δKelvin||
2450 0.515797681130279
2460 0.515078177791386
2470 0.515647547929513
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Already now we see that the residual is bigger in this case. Figure ( 6.9 shows the fitted curves
in terms of the dynamic modulus Edyn (to the left) and phase angle δ (to the right).
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Figure 6.9: The dynamic modulus and the phase angle of the two models respectively. SLS-
parameters: g = 0.5, tr = 0.00075 s. Kelvin-parameters: E∞ = 3.948 MPa,
η = 2460 Pa·s

The conclusion is that as the relaxation time increases the harder it will be to fit a Kelvin
model to the SLS reference model and consequently the approximation to the dynamic SLS
system will be poor.

The aim in this section was to fit the material behavior of the Kelvin model to the SLS reference
model over the frequency interval [10, 90] Hz and the corresponding interval of the normalized
frequency ωtr. Then compare the steady state response of the fitted Kelvin system to the
reference SLS system.

As the relaxation time decreases the normalized frequency interval gets shorter making it easier
to fit the Kelvin model over this frequency interval.

An example:

• At f = 100 Hz the normalized frequency ωtr of the current material is equal to 2πftr =
0.47 for tr = 0.00075 s (Figure 6.9).

• At f = 100 Hz the previous material, with tr = 0.00025 s, only has a normalized
relaxation-value of ωtr = 0.16 s (Figure 6.8)

• On the normalized frequency interval [0, 0.16] the function describing the phase angle δ
of the SLS model will basically be a straight line. And it is easy to fit curves to straight
lines.

So for certain materials this is a good approach.
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6.3 Steady-state response: ”New Kelvin” approach

By the dynamic analyses it was indicated that, at resonance, the relation between the phase
angle of the materials δ and the damping ratio of the systems ζ was

δ = 2ζ (6.7)

see Table 6.2, 6.3 and 6.4 respectively.

The phase angle of the SLS reference material δ is known for all frequencies. If the relation
δ = 2ζ holds for all SLS materials it would be possible to fit a dynamic Kelvin system with the
damping ratio ζ = δ/2 to a dynamic SLS reference system.

Another observation was that the dynamic SLS system was slightly stiffer than the Kelvin
system at high frequencies, i.e the resonance occurred at a slightly higher frequency than fn.
To obtain this behavior for the Kelvin system, the single spring that governs the stiffness will
have to be made stiffer in some controlled way.

One quantity that is known prior to the dynamic analysis, i.e at the material stage, is the
dynamic modulus of the material Edyn. Translating this into a normal stiffness of a bar yields

kdyn = EdynA

L
(6.8)

Through numerical testing it was concluded that for the SLS system the frequency

fn,dyn = 1
2π

√
kdyn
m

(6.9)

represented an upper limit for the resonance peak. In other words: the resonance will occur in
the frequency interval

[fn,∞, fn,dyn] (6.10)

which means that the stiffness of the Kelvin system should be somewhere in the interval

[k∞, kdyn] (6.11)

With this information at hand it is perhaps possible to create a Kelvin system which approx-
imates a dynamic reference SLS system by just knowing the phase angle δ and the dynamic
modulus Edyn of the SLS model.

In the next section an extensive examination of the natural frequency of the SLS system will
be presented. How is the relaxation time tr and g-factor effecting the natural frequency?
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Now, the following is an example of how a dynamic SLS system with a natural frequency around
fn could be approximated by a Kelvin system, using the method that was just presented.

• Start by determining the dynamic stiffness at f = fn where fn is 1
2π (
√
k∞/m)

kdyn = A

L
Edyn(2πfn) = A

L

∣∣∣∣∣E∞ + E
i2πfntr

1 + i2πfntr

∣∣∣∣∣
Since it is unknown at this point what the real natural frequency of the system is, the
above estimation of the stiffness just serves as a starting point for this method.

• Determine an angular frequency using the dynamic stiffness kdyn

ωn,dyn =
√
kdyn
m

• Use this angular frequency to determine the phase angle δ

δ(ωn,dyn) = arg
(
E∞ + E

iωn,dyntr
1 + iωn,dyntr

)

• The damping ratio becomes

ζ = 1
2δ(ωn,dyn) → c = 2mζωn,dyn

• Pick a suitable stiffness in the stiffness interval, [k∞, kdyn] to apply to the Kelvin system.
This will simulate a modulus effect which is not present in the Kelvin model. It turned
out that the results became better if the picked stiffness was closer to kdyn than to k∞,
however this is not something that can be known at this point. An example of a weighted
stiffness could be

kKel = 1
5 (4 · kdyn + k∞)

A clue to how to make a better estimation of the stiffness is presented in the next section.

• Insert this stiffness kKel into the expressions for the displacement response factor Rd and
the phase shift φ. Use c = 2m

(
1
2δ
)
ωn,dyn as the damping parameter

Rd = u0

uqs
= 1
|−ω2m+ kKel + iωc|

and φ = − arg
(
−ω2m+ kKel + iωc

)

The following plots shows the steady-state response to sinusoidal excitation for the SLS reference
system together with the two approximations termed ”Old Kelvin” and ”New Kelvin”. ”Old
Kelvin” refers to the approximation obtained by the ”fitted curve” - the approach that was
presented in the previous section. Again this curve is plotted in red, see Figure 6.5, 6.6 and
6.7. ”New Kelvin” refers to the approximation method that was just presented, where use was
made of the relation between the phase angle δ and the damping ratio ζ. This curve is plotted
as a black dashed line. The used material parameters for the SLS model are:
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g E∞ [MPa] E [MPa] tr [s]

0.5 3.948 3.948 0.0005

Like before c = 1.81 kg/s was used in the ”Old Kelvin” system.

At first a mass m = 1 kg was attached to the structures generating the following result.
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Figure 6.10: Steady-state response of the reference SLS system and the two approximations
(”Old Kelvin” and ”New Kelvin”). Attached mass m = 1 kg

Studying Figure 6.10 closely it can be noted that the ”New Kelvin” approximation has basically
the same damping as the reference system, i.e the magnitude of the response factor is almost
identical at resonance. The respective damping ratio ζ of the two approximations is presented in
the following table as a comparison. The phase angle δ for the three materials is also presented.
The phase angle is evaluated at fn = 10 Hz.

Table 6.5: Damping parameters of the three systems respectively. Attached mass m = 1 kg

δ [rad] ζ

SLS 0.031343 -
”Old Kelvin”: 0.028799 1.568 %
”New Kelvin”: 0.031342 1.440 %

In the next figure, Figure 6.11, a mass m = 0.04 kg has been attached to the structures
generating the following result.
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Figure 6.11: Steady-state response of the reference SLS system and the two approximations
(”Old Kelvin” and ”New Kelvin”). Attached mass m = 0.04 kg

Again the ”New Kelvin”-approach matches the response of the SLS reference system in terms of
magnitude of the response factor, but now also in terms of the damped natural frequency. The
damping ratio of the approximations ζ and phase angle δ for the three materials is presented
in the following table (Table 6.6). The phase angle is evaluated at fn = 50 Hz. Note the close
approximation of the phase angle δ generated by the ”New Kelvin”-approach.

Table 6.6: Damping parameters of the three systems respectively. Attached mass m = 0.04 kg

δ [rad] ζ

SLS 0.148589 -
”Old Kelvin”: 0.143051 7.202 %
”New Kelvin”: 0.148235 7.546 %

Lastly a mass m = 0.0123 kg was attached to the structures generating the following result.
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Figure 6.12: Steady-state response of the reference SLS system and the two approximations
(”Old Kelvin” and ”New Kelvin”). Attached mass m = 0.0123 kg

Studying Figure 6.12 it can be concluded that the ”New Kelvin”-approach is a fairly successful
way to approximate the response of a SLS system. Now looking at Table 6.7 it can be noted
that the damping of the ”Old Kelvin”-system is actually higher than the damping of the SLS
reference system which would indicate that the SLS system should have a bigger response factor
than the ”Old Kelvin” system. Theory says that in a Kelvin system the response at resonance
is controlled solely by the damping of the system. Can this be the case also for the SLS system?
Looking at Figure 6.2 the Kelvin model has a bigger phase angle in a wide range around 90
Hz, so it is not a question of at which particular frequency the phase angle δ was evaluated.
There must be something else effecting the SLS system.

Now this is perhaps where the modulus effect comes in. Both the Kelvin model and the SLS
model have an increasing dynamic modulus Edyn in terms of the material, but this fact only
effects the SLS model when the respective dynamic systems is studied. For higher frequencies
the dynamic SLS system gets stiffer resulting in a resonance frequency slightly higher than
fn = (

√
k∞
m

)/2π, whereas for an unmodified but damped Kelvin system the resonance frequency
always occur slightly below fn = (

√
k∞
m

)/2π. In other words: the increase in dynamic stiffness of
the Kelvin material model does not effect the dynamic system where a mass has been attached.

If the response at resonance for a SLS system is not just controlled by the damping of the
system but also by the extra stiffness, connected to the modulus effect, this could explain why
the response of the SLS system is smaller.

Table 6.7: Damping parameters of the three systems respectively. Attached mass m = 0.0123
kg

δ [rad] ζ

SLS 0.239105 -
”Old Kelvin”: 0.253678 12.96 %
”New Kelvin”: 0.235477 12.37 %
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6.3.1 Summary of the ”New Kelvin”-approach

By using the approach presented in this section it will perhaps be possible to model a material,
using the more physically correct SLS material model, and from the fitted SLS model estimate
the damping ratio ζ. This damping ratio can then be applied to a dynamic Kelvin system in
order to model the dynamic response of the examined material.

Now you have made an estimation of the damping ratio of a material purely based on measure-
ments of the dynamic modulus Edyn and phase angle δ of the material in question.

This is obviously a short-cut compared to the widely used concept of equivalent viscous damping
where dynamic testing of a structure is needed to estimate a damping ratio ζ.

Now it is possible to carry out the dynamic steady state calculations without having to involve
a more complex material model than the Kelvin model.

6.4 Free vibration response of dynamic SLS systems

In this section it is examined how the relaxation time tr and the stiffness relation between the
Maxwell element and the spring element is affecting the natural frequency of the SLS system.

The stiffness relation between the Maxwell element and the spring element is expressed through
the parameter g, where

g = E

E∞ + E

Earlier it could be noted that the resonance frequency of the SLS system occurred at a slightly
higher frequency than fn, where fn was defined as (

√
k∞
m

)/2π. This behavior was traced back
to the ”modulus effect” which was something that the more crude Kelvin model was lacking
due to the fact that the model only contains one spring element.

By keeping the g-parameter constant and altering the relaxation time tr the effect of this
quantity on the natural frequency of the system can be studied. The situation is then reversed
by keeping the relaxation time tr constant and altering the g-parameter. The natural frequency
is calculated by doing a free vibration simulation of the dynamic system and taking the mean
value of the period time Tn of three consecutive periods. The simulation is carried out using
the central difference method with a time-step length ∆t of 5 · 10−6 s.

First the effect of the g-parameter was studied. Three different parameters was used creating
three different models. The following table contains the details.
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Model g E∞ [MPa] tr [s]

1 0.5 3.948 0.0005
2 0.3 3.948 0.0005
3 0.1 3.948 0.0005

Figure 6.13 shows the dynamic modulus Edyn and phase angle δ as a function of frequency for
the three respective models. At low frequencies the stiffness is basically the same. At 90 Hz
Model 1 (g = 0.5) is by far the stiffest. The suspicion is then that the dynamic system based on
Model 1 one will have the highest damped natural frequency, because of the mentioned modulus
effect.
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Figure 6.13: g = 0.5 g = 0.3 g = 0.1

Making the transition from the material formulation into the structural formulation and attach-
ing different masses makes it possible to obtain the natural frequency of the current system.

Nine different masses are attached so that fn goes from 10 Hz to 90 Hz with intervals of 10 Hz.
This is shown in the left column of Table 6.8. The other columns shows the natural frequency of
each system for the nine different masses. At low frequencies the deviation from fn is negligible,
this is also something that was reflected when looking at the dynamic modulus Edyn, see Figure
6.13. At higher frequencies, most notable around 90 Hz, the difference in dynamic modulus is
significant, resulting in a slight increase of the natural frequency. Remember that the natural
frequency of any system is proportional to the square-root of the stiffness. That’s why the
difference in natural frequency will not become that dramatic even though the difference in
dynamic modulus is big.
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Table 6.8: Natural damped frequency of three different SLS systems. The systems have differ-
ent normalized relaxation factors, g

fn [Hz] f(g = 0.5)[Hz] f(g = 0.2)[Hz] f(g = 0.1)[Hz]

10 10.0040 10.0033 10.0000
20 20.0267 20.0133 20.0000
30 30.1114 30.0601 30.0300
40 40.2414 40.1070 40.0534
50 50.4796 50.2513 50.0835
60 60.8273 60.4839 60.1202
70 71.3436 70.5882 70.2576
80 82.0277 80.8625 80.3213
90 92.9440 91.3659 90.3614

In the following each model has the same relaxation parameter g but the relaxation time tr is
different. The following table shows the details of the models.

Model g E∞ [MPa] tr [s]

1 0.5 3.948 0.00075
2 0.5 3.948 0.00050
3 0.5 3.948 0.00025

Studying Figure 6.14 it can be noted that the longest relaxation time, tr = 0.00075 s, results
in the highest dynamic modulus.
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Figure 6.14: tr = 0.00075 s tr = 0.0005 s tr = 0.00025 s

As for the natural frequency, the conclusion made previously holds for this situation as well: a
big dynamic modulus will result in a relatively high natural frequency. Table 6.9 shows this. At
high frequencies the system with tr = 0.00075 s has a substantially higher natural frequency.
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Table 6.9: Natural damped frequency of three different SLS systems. The systems have differ-
ent relaxation times, tr

fn [Hz] f(tr = 0.00075) [Hz] f(tr = 0.00050) [Hz] f(tr = 0.00025) [Hz]

10 10.0067 10.0040 10.0000
20 20.0736 20.0267 20.0133
30 30.2115 30.1114 30.0300
40 40.5570 40.2414 40.0748
50 51.1073 50.4796 50.1295
60 61.9707 60.8273 60.2047
70 73.2064 71.3436 70.3120
80 84.9269 82.0277 80.4807
90 97.1943 92.9440 90.6947

With the information provided in Table 6.13 and 6.14 it might be possible to obtain an analytical
expression to determine the natural frequency of an SLS system. And perhaps it will be possible
to do a better estimate of the stiffness kKel used in the ”New Kelvin”-approach, which was
presented in section 6.3.

6.4.1 Free vibration response: Summary

By plotting the quotient fn,SLS/fn at each natural frequency fn (10,20, ... , 90 Hz) it is revealed
that the curve describing the increase in natural frequency has the same shape as the curve
describing the increase in dynamic modulus. This perhaps comes as no surprise. Figure 6.15
shows the increase in natural frequency in percent compared to fn. For instance: for a system
with tr = 0.00075 s the natural frequency is 8 % higher than fn = 90 Hz for the same attached
mass. The increase gets bigger at high frequencies, generally it looks like it follows the behavior
of the dynamic modulus Edyn.

To summarize: If a parameter is changed, whether it is tr or g, and this leads to an increase in
the dynamic modulus Edyn this will cause an increase in the natural frequency of the system
fn,SLS.
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Figure 6.15: This figure shows how much the natural frequencies of the SLS systems deviates
from fn in percent.

6.5 Half sine pulse response: A comparison

In Dynamics of structures [1] the response to a half sine pulse is derived without taking damping
of the structural model into account. This simplifies the mathematical treatment of the problem.
Moreover it is said that damping has a small influence on the structural-response to an impulse-
load. Here the response to a half-sine impulse is tested numerically through a time stepping
procedure, the central difference method, which makes it possible to study the influence of
damping on the response.

The half-sine pulse is characterized by its amplitude p0 and the pulse duration td. The pulse
p(t) is defined as

p(t) =
{
p0 sin(πt/td) t ≤ td
0 t > td;

This pulse determines the magnitude of the displacement response-factor Rd of the visco-elastic
model.

The response-factor is often presented in terms of the quotient td/Tn which relates the pulse-
duration td to the natural period-time of the structure Tn (the natural period time is of course
connected to the natural frequency of the system). Here a number of numerical simulations of
pulses with different pulse-durations td was carried out and the corresponding maximum of the
response factor Rd was stored. If each maximum of the response factor Rd is plotted against
the corresponding td-value a shock-spectrum is generated. It tells the reader what pulse-length
generates the biggest response of a particular dynamic system, defined by its period time Tn.

In this thesis two pulse-durations td were used to define the frequency range in which to conduct
the studies of the material models and the related dynamic systems. These pulses were
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td = 50 ms⇒ f = 10 Hz td = 5 ms⇒ f = 100 Hz

The lower pulse-duration time, 5 ms, will now serve as a lower limit of the pulse-duration during
the study of the response of the systems to a pulse load.

Again the interest falls on comparing a dynamic SLS system to a Kelvin system. Two SLS
materials will be tested: one with g = 0.5, tr = 0.0005 s and one with g = 0.2, tr = 0.001
s. To each SLS material a Kelvin material will be fitted in terms of the phase angle δ of
the SLS material. This procedure has been described in Section 6.1. The aim is to assign a
suitable η-paramater to the Kelvin model which will generate a Kelvin material model with
approximately the same amount of damping in the material as the reference SLS model. The
η-parameter is then converted into a c-parameter which governs the viscous damping of the
dynamic Kelvin system.

The material parameters of the first SLS system to be tested is presented in the following
table. The parameters of the Kelvin approximation is also presented, moreover a second Kelvin
system, with no damping, is included in the analysis to show the impact of damping on the
dynamic response.

Material g k∞ [N/m] tr [s] c [kg/s]

SLS reference 0.5 3948 0.0005 -
Kelvin (damped) - 3948 - 1.81
Kelvin (undamped) - 3948 - 0.0

In Figure 6.16(a) a mass of m = 1 kg was attached to the structures giving the systems a
period time of approximately Tn = 0.1 s (fn ≈ 10 Hz). Half sine pulses of different durations
generated the shock-spectrum shown in the figure. Figure 6.16(b) shows a zoom in at the first
peak in the shock-spectrum.

A few things can be noted. The damping of the SLS system and the corresponding Kelvin
system is low, therefore the difference in response compared to the purely elastic system is
small. In Table 6.2 numeric values on the damping are presented for the two systems. Moreover
the maximum response seems to occur at around td/Tn = 0.8 which with Tn = 0.1 s would
mean a pulse duration of td = 80 ms. A pulse with such long duration generates a relatively
slow impact which does not create a resisting force in the dashpots, and consequently there is
almost no damping (note: in a dashpot the force fD is proprotional to the velocity u̇). Moreover
the stiffness of the systems is basically the same since the spring in the Maxwell element in the
SLS system does not contribute since the dashpot is inactive.
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Figure 6.16: The Shock-spectrum of the three systems respectively. The SLS reference system
(g = 0.5) is compared to both a damped (c = 1.81kg/s) and undamped (c = 0kg/s)
Kelvin system. Tn = 0.1 s, attached mass m = 1 kg

The next system is more interesting. Here a mass m = 0.0123 kg has been attached to the bar-
structures resulting in a period time around Tn = 0.0111 s (fn ≈ 90 Hz). Figure 6.17(a) shows
the shock spectrum, and (b) shows the zoom in on the peak. The response of the SLS system
is slightly smaller compared to the damped Kelvin system. From the steady state analysis
it was shown that the models had similar damping at 90 Hz, see Table 6.4, so perhaps this
difference could be ascribed to the modulus effect that is present in the SLS system. So if the
SLS system is stiffer this could explain the slightly smaller response. The relative increase in
natural frequency of the SLS systems, caused by the increase in stiffness, was studied in Section
6.4. Figure 6.18(a) shows that the SLS system is stiffer, i.e higher natural frequency, and that
the decay of the response is similar, i.e the damping ratios corresponds.

Returning to Figure 6.17 and studying the response of the undamped Kelvin system it can
be noted that the damping of the two other systems plays a significant role when the pulse
durations are short. The resposne of the damped systems is smaller throughout the whole
spectrum but more so around td/Tn = 0.5 to td/Tn = 1.5. These quotients corresponds to
pulse-durations of

td = 0.5Tn = 5.6 ms td = 1.5Tn = 16.7 ms

which is slightly above the lower limit of pulse durations of interest, which was 5 ms.
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Figure 6.17: The Shock-spectrum of the three systems respectively. The SLS reference system
(g = 0.5) is compared to both a damped (c = 1.81 kg/s) and undamped (c = 0
kg/s) Kelvin system. Tn = 0.0111 s, attached mass m = 0.0123 kg

Figure 6.18(a) shows the response in time of the SLS and Kelvin system to a pulse with
td = 0.8Tn = 8.9 ms. The pulse is plotted as a solid black line to the left in the figure.
Figure 6.18(b) shows the response of the systems to a pulse with td = 2.5Tn = 27.8 ms. At
1.5 < td/Tn < 2.5 two peaks develops in the response during the pulse. When td/Tn < 2.5 the
first of the peaks is the biggest. At td/Tn = 2.5 the two peaks are roughly the same size which
the figure shows. At td/Tn > 2.5 the second peak is the biggest, moreover a third smaller peak
develops during the pulse.

If td/Tn = 1.5, 2.5..., and the system is undamped, the mass stays still after the for pulse ends.
The mass has zero velocity and no displacement. For a system with damping this is clearly not
the case, the velocity and displacement are small though, see Figure 6.18(b).
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Figure 6.18: SLS parameters: g = 0.5, tr = 0.0005 s. Kelvin parameters: k∞ = 3948 N/m,
c = 1.81 kg/s. Period time: Tn = 0.0111 s, attached mass m = 0.0123 kg
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Now a new SLS material is introduced. The material has the relaxation parameter g = 0.2
and relaxation time tr = 0.001s. Following the procedure described in Section 6.1 a damping
parameter η can be assigned to a Kelvin model in order to make the model fit the curve of the
phase angle of the SLS model.

A least squares fit of the curves describing the phase angle of the materials resulted in the
following damping parameter η

η-parameter ||δSLS − δKelvin||
790 0.196356045429581
800 0.193626450554188
810 0.194779809724235

Figure 6.19 shows the phase angle plotted against the frequency (to the left) and normalized
frequency ωtr (to the right).
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Figure 6.19: To the left we have the phase angle δ plotted for the two models in the chosen
frequency range. To the right the same curves are plotted as functions of nor-
malized frequency. SLS-parameters: g = 0.2, tr = 0.001. Kelvin-parameters:
E∞ = 3.948 MPa η = 800 Pa·s

In terms of the structure, η = 800 Pa·s corresponds to c = 0.8 kg/s. The bar-length is again 10
cm and the area of the cross-section is 1 cm2. The following table contains material parameters
of the systems. An undamped Kelvin system is also included.

Material g k∞ [N/m] tr [s] c [kg/s]

SLS reference 0.2 3948 0.001 -
Kelvin (damped) - 3948 - 0.8
Kelvin (undamped) - 3948 - 0.0

Like before a mass of m = 1 kg was attached to the structures giving the systems a period time
of approximately Tn = 0.1 s (fn ≈ 10 Hz). Figure 6.20(a) and (b) shows the shock spectrum
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where (b) is a zoom in of the first peak which is of most interest. The results are similar to
those shown in Figure 6.16. The damping is low in both systems since the pulse durations are
long, giving a slow impact. A slow impact does not generate a resting force from the dashpots.
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Figure 6.20: The Shock-spectrum of the three systems respectively. The SLS reference system
(g = 0.2) is compared to both a damped (c = 0.80kg/s) and undamped (c = 0kg/s)
Kelvin system. Tn = 0.1 s, attached mass m = 1 kg

Again its more interesting to look at the systems where the attached mass is m = 0.0123 kg
giving a natural frequency of the systems of about 90 Hz. Figure 6.21 shows the shock spectrum,
where (b) in the figure is a zoom in on the peak. These two systems have lower damping, the
Kelvin system has c = 0.8 kg/s compared to c = 1.81 kg/s in the previous case. However the
response of the SLS system is slightly smaller again which points towards the modulus effect
discussed earlier. The difference is very small though. Again the most relevant interval of the
pulse durations is

td = 0.5Tn = 5.6 ms td = 1.5Tn = 16.7 ms

which is close to the lower limit of the pulse duration times, 5 ms.
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Figure 6.21: The Shock-spectrum of the three systems respectively. The SLS reference system
(g = 0.2) is compared to both a damped (c = 0.80kg/s) and undamped (c = 0kg/s)
Kelvin system. Tn = 0.0111 s, attached mass m = 0.0123 kg

Figure 6.22 shows the response in time for the two systems. Here its obvious that these to
systems have a more moderate damping than the systems showed in Figure 6.18, since the
decay of the displacement is lower per cycle. Figure 6.22(a) roughly shows the maximum
response of the system, which occur around td = 0.8Tn = 9 ms. Figure 6.22(b) shows the
response to a pulse with td = 2.5Tn = 28 ms. Here two peaks have developed during the pulse.
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Figure 6.22: SLS parameters: g = 0.2, tr = 0.001 s. Kelvin parameters: k∞ = 3948 N/m,
c = 0.80 kg/s. Period time: Tn = 0.0111 s, attached mass m = 0.0123 kg

6.5.1 Response to pulse excitation: Summary

It seems to be no problem to use a fitted Kelvin system to approximate the response of a
SLS system to a half sine pulse load. Pulse durations from 5 ms and upwards were studied.
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The fit is based on measurements of the phase angle δ of the SLS material. Through a least-
squares fit the Kelvin model approximately gets the same phase angle δ as the SLS material
over the frequency range [10, 90] Hz. This generates two material models with roughly the
same damping, since the phase angle is closely connected to the damping of the material. The
dynamic modulus Edyn is not taken into account.

Maybe a small modulus effect can be noticed for the SLS system with a natural period Tn >
1/90 = 0.0111 s, see Figure 6.17 and 6.21. From td/Tn = 1 the response of the SLS system
is slightly smaller compared to the damped Kelvin system, perhaps this could be attributed
to the extra stiffness connected to the modulus effect. In other words: the response seems to
be controlled mainly by the spring stiffness k∞ which is the same for both systems and the
damping, which is considerable for the systems with a short period time Tn < 0.01 (fn: 90 Hz).

6.6 Concluding remarks

As we have seen in the previous sections it is possible to approximate the response of a SLS
system to different dynamic events, e.g steady state vibrations and pulse excitation, with the
use of a Kelvin system. The major concern prior to the analyses was that sudden changes in
displacement, i.e high displacement rates u̇, would yield an unphysical response of the Kelvin
model. This was perhaps best visualized by applying a step-strain to the Kelvin material. As
the strain rate ε̇ was infinite during the step, the stress response became infinite. But what
happens if this situation is simulated numerically. Of course the strain rate can not be infinite
during a step-strain experiment, some time needs to pass as the step-strain is applied.

If 5-10 ms is the roughly estimated time needed to apply the sudden strain, then a strain-rate
can be calculated and consequently also a "continuous" stress response even for the Kelvin
model. This was tried for a Kelvin material and a reference SLS material with the following
familiar material parameters.

Material g E∞ [MPa] tr [s] η [Pa·s]

SLS reference 0.5 3.948 0.0005 -
Kelvin - 3.948 - 1810

It turned out that for the realistic strain application times (5-10 ms) the maximum stress-
response of the Kelvin model did not deviate from the more physically correct response of
the SLS model. Not even if the strain application time was lowered to 1 ms, a difference in
maximum response occurred. Figure 6.23 shows the response of the two material models to a
step-strain, where the strain was applied during a time interval of 1 ms. The time-step length
in the calculations was ∆t = 0.1 ms. (b) is a zoom in on the stress response peak.
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Figure 6.23: The response to a step-strain. In (b) the peak of the response has been zoomed
in.
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Chapter 7

Dynamics of SFS- and
5-parameter systems

This chapter contains an analysis of the steady state response of the dynamic SFS system. This
material model is non-linear and as we will see this gives rise to a couple of phenomenas not
visible in the study of the linear visco-elastic models. At the end a short section is devoted
to the dynamic behavior of the 5-parameter model, which combines the linear visco-elastic
properties of the SLS model with the amplitude dependence of the SFS model.

7.1 Steady state analysis of the SFS-model

k

kF

m p(t)f s

u(t) u(t)
F

Figure 7.1: The dynamic SFS system.

The rate independent material model presented in Section 4.6 has now been turned into a
dynamic system, see Figure 7.1. The material model consisted of a linear elastic spring coupled
in parallel with an elastic perfectly plastic spring. The elasto-plastic spring was referred to as
a friction element. The loading curve of the friction element is shown in Figure 7.2. Since the
stress-response is bi-linear the stress in the friction element had to be evaluated through an
algorithm. This will naturally be the case also for the dynamic system.
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Figure 7.2: Load-curve of the elastic perfectly plastic spring, referred to as the friction element

The table below illustrates the transition from material to structure. This means that the same
algorithm used to evaluate the stress in the friction element from the strains ε can be used to
evaluate the resisting force in the friction element from the displacements u in the dynamic
system, see Table 4.1.

Material Structure

E∞ [Pa] → k∞ [N/m]
E [Pa] → kF [N/m]
Y [Pa] → F [N]

The dynamic system in Figure 7.1 is subjected to a sinusoidal load p(t) = p0 sin(ωt).

Two relations can be established that, as we will see, governs the response of the model to a
sinusoidal load. These are

h = kF
k∞

and p0

F
(7.1)

The h-parameter can be recognized from previous sections where it represented an equivalent
quantity, namely h = E/E∞. Numerical testing shows that the quotient between the load
amplitude and the yield-force p0/F represents the amplitude dependence of the model. It can
be viewed as a normalized amplitude.

Most of the findings presented here was pointed at in the the article Nonlinear dynamics of
oscillators with bilinear hysteresis and sinusoidal excitation [6], where the dynamic model with
bilinear hysteresis was given a purely mathematical treatment.

The approach here is instead to use a time-stepping procedure, the Central difference method,
to evaluate the response of the system to a sinusoidal load. The equation that is being solved
numerically is the following

mü+ fs(u) = p(t) (7.2)
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where fs(u) has to be evaluated from increments of the displacement ∆u. The material could
either yield or not. If no yielding is present no energy is being dissipated from the system and
the system is linear elastic with the stiffness k = k∞ + kF . So if the displacement amplitude is
small, no yielding, the natural frequency of the system is

fn,2 = 1
2π

√
k∞ + kF

m
(7.3)

7.1.1 Steady state SFS

Initially a result that is valid for a dynamic system with dry friction or Coulomb friction was
tested numerically. Apparently, for dry friction the response to a sinusoidal load is unbounded
at resonance if

po >
4F
π

= 1.273F (7.4)

So for a sinusoidal load where the excitation frequency matches the natural frequency of the
system (fn,1 = 1

2π

√
k∞
m
) the response is unbounded [1]. This result turned out to be valid also

for the SFS model.

Now we move on to study the steady state response for values on the normalized amplitude
which are below p0/F = 4/π. The study is started at p0/F = 1.2 and is continued down to
values just above p0/F = 0.1 The used system had the following stiffness parameters.

k∞ 3948 [N/m]
kF 3948 [N/m]
h 1

The specific value of the yield limit F is not of interest, the response is only dependent on the
ratio between the force amplitude p0 and the yield limit F . For this model, where h = 1, i.e
k∞ = kf , and an attached mass of m = 1 kg the following two frequencies might be of interest

f1 = 1
2π

√
k∞
m

= 10 Hz f2 = 1
2π

√
k∞ + kF

m
= 1

2π

√
2k∞
m

=
√

2f1 (7.5)

With these relations, the frequency range of interest is

f = [10,
√

2 · 10] Hz

The steady state response was calculated numerically. The response u0 to a load p(t) =
p0 sin(2πft) was recorded for Ttot = 100 s. The steady state response was taken as the max-
imum value of u0 in the time interval [0.9Ttot, Ttot]. Initially it was made certain that steady

89



7.1 Steady state analysis of the SFS-model Dynamics of SFS- and 5-parameter systems

state was reached during this time-interval for all frequencies f in the frequency interval. The
steady state response u0 was also normalized with regard to the quasi static response uqs. The
displacement response factor Rd is defined as

Rd = u0

uqs

The quasi static displacement can be calculated with acceptable accuracy with the following
algorithm, Table 7.1.

Table 7.1: Calculation of quasi-static displacement uqs

1. If uqs is in linear elastic region: uqs = p0
(k∞+kF )

2. Calculate yield displacement: uF = F
kF

3: Check: uqs > uF

4: If yes: uqs = p0−F
k∞

5: If no: uqs = p0
(k∞+kF )

The tested frequency interval was normalized with regard to fn, where fn is defined as

Definition: fn = 1
2π

√
k∞
m

With h = 1 this means that at around f/fn = 1.4 we have the interesting value
√

2fn.

In Figure 7.3 the steady state response as a function of frequency has been plotted. Different
values of the normalized amplitude p0/F was tried. Looking at 7.3(a) it can be noted that
the peaks increase in magnitude and creeps closer to f/fn = 1 as the normalized amplitude
is increased. This is consistent with the behavior of the dynamic modulus of the SFS model,
see Figure 4.37. The stiffness approaches k∞ as the displacement amplitude is increased and
consequently the resonance occur closer and closer to fn. In (a) the curves are more or less
horizontal until they take a steep turn upwards towards the peak, see low left corner of (a).
When the curves are horizontal no energy is being dissipated.
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Figure 7.3: Steady-state response of the SFS system to different values of the normalized am-
plitude p0/F . SFS-parameter: h = 1

If the normalized amplitude p0/F is being decreased further strange things begin to happen. In
Figure 7.3(b) it can be noted how the peaks move towards

√
2fn as the normalized amplitude

is decreased, moreover the peaks of Rd start to increase in magnitude.

How is this explained and will it be a problem for a structure?

At small displacements u < uF the response of the system is undamped and elastic with the
natural frequency

√
2fn for h = 1. uF is the displacement where the system goes from elastic

to plastic response and consequently the point at which energy is starting to dissipate in the
system.

At another look at Figure 7.3(b) it can be seen that the peaks are surrounded by plateaus
on both sides. At these plateaus and below, it could be checked that no energy was being
dissipated. This means that the dynamic amplification Rd times the quasi-static displacement
uqs is roughly equal to uF = F/kF , i.e the displacement will reach the yield limit but not much
further. At amplitudes below p0 < 4F/π the response is bounded at resonance.

However, with no energy being dissipated in the system other things can be observed. Take the
curve where p0/F = 0.2 as an example: Energy is only being dissipated on the curve-section
where the peak is located, i.e from the plateau on the left side of the peak to the plateau on
the right side of the peak, (approximately from f/fn = 1.35 to f/fn = 1.5).

At the plateaus where no energy is dissipated the forcing frequency f coexists with the natural
frequency of the system

√
2fn, in the literature this is referred to as linear beating. See [8] for

more information on the subject.

Two examples of this phenomena is included. Figure 7.4(a) shows the time signal of the response
to a load with p0 = 0.2F and the frequency f = 1.28fn. Doing a FFT on the time signal reveals
the frequency content. Figure 7.4(b) shows the response in the frequency domain, here it is
clear that the response contains both the forcing frequency 1.28fn and the natural frequency√

2fn of the system.
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Figure 7.4: The steady state response to a sinusoidal load with the frequency f = 1.28fn. The
response contains both the forcing frequency f = 1.28fn and the undamped natural
frequency of the system

√
2fn.

Figure 7.5 shows another example of linear beating but here the forcing frequency is changed
to 1.33fn which is closer to where the peak occurs. Figure 7.5(a) shows the time signal of the
response and Figure 7.5(b) shows the frequency content. The signal obviously contains more
of the forcing frequency 1.33fn than of the natural frequency.
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Figure 7.5: The steady state response to a sinusoidal load with the frequency f = 1.33fn. The
response contains both the forcing frequency f = 1.33fn and the undamped natural
frequency of the system

√
2fn.

Looking back at Figure 7.3(a)-(b) it looks like energy is being dissipated for some values of the
normalized amplitude p0/F , but not at all frequencies. The relation between the normalized
amplitude and the frequency seems to determine if energy is being dissipated or not. This
relation was sought numerically and eventually it was possible to divide the frequency-amplitude
plane into two parts, one part where no energy was being dissipated and one where energy was

92



Dynamics of SFS- and 5-parameter systems 7.1 Steady state analysis of the SFS-model

being dissipated. Figure 7.6(a) shows this partition of the amplitude frequency plane for a SFS
system with

m = 1 kg h = 1 k∞ = 3948 N/m fn = 10 Hz

If the frequency/amplitude combination is in the shaded area of the plane there will be no
hysteresis work done, i.e no dissipated energy. If the combination lands in the unshaded area
of the plane energy will be dissipated.

(a) fn = 10 Hz. Attached mass m = 1 kg (b) fn = 90 Hz. Attached mass m = 0.0123 kg

Figure 7.6: Partition of the frequency-amplitude plane. In the shaded areas no energy is
being dissipated in the system. SFS-parameter: h = 1

Figure 7.6(b) shows a slightly different system. The system parameters are

m = 0.0123 kg h = 1 k∞ = 3948 N/m fn = 90 Hz

The behavior of this model 7.6(b) is completely analogous to that of the system in 7.6(a). The
frequency at which the normalized amplitude is zero but energy is still being dissipated is equal
to f =

√
2fn in both systems, f =

√
2 ·10 Hz and f =

√
2 ·90 Hz respectively. This is of course

due to the rate independent nature of the SFS material model.

Figure 7.7 shows the general behavior of a SFS system with h = 1. The partition is described
by two curves. These are:

f <
√

2fn : p0

F
(f) = 2

1−
(

f√
2fn

)2


f >
√

2fn : p0

F
(f) = 2

−1 +
(

f√
2fn

)2
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Figure 7.7: Partition of the frequency-amplitude plane for h = 1 and normalized frequency
f/fn

If a material with a different h = kF/k∞-value is introduced the behavior of the coherent system
will be slightly different. Figure 7.8 shows the behavior for h = 2 (a) and h = 3 (b). The curves
describing the partition of the plane for h = 2 (a) could be approximated with

f <
√

3fn : p0

F
(f) = 1.4

1−
(

f√
3fn

)2


f >
√

3fn : p0

F
(f) = 1.4

−1 +
(

f√
3fn

)2


Why the starting value of the left curve is p0
F

(0) = 1.4 is not entirely clear, and a connection to
h can not be presented.
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(a) h = 2 (b) h = 3

Figure 7.8: Partition of the frequency-amplitude plane for h = 2 and h = 3, respectively. In
the shaded areas no energy is being dissipated in the system.

The curves describing the partition for h = 3 (b) has a similar approximation, namely

f <
√

4fn : p0

F
(f) = 1.25

1−
(

f√
4fn

)2


f >
√

4fn : p0

F
(f) = 1.25

−1 +
(

f√
4fn

)2


Here the starting point of the left curve in (b) has been moved down even further. The amplitude
value where the frequency is f = 0 is now p0

F
(0) = 1.25. Maybe a connection to the increased

h-value is to be found.

A more general observation is that the part of the amplitude-frequency plane where hysteresis
do occur seems to get bigger as the h-value increases, and perhaps in the next analysis it will
be clear why.

The next objective is to study the influence of the h-value on the steady state response. Nu-
merically the steady state analysis was carried out in the same manner as the previous steady
state analysis of the SFS system, which was described earlier in this section. Figure 7.9 shows
the response in terms of the displacement response factor Rd as the h-value is being altered.
The amplitude was kept fixed at p0 = F
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Figure 7.9: The variation of the steady-state response of the SFS-system to different h-values.

Evaluating the damping at the peaks, in terms of an equivalent phase angle d, will explain the
overall behavior. With α = (kFu0)/F the equivalent phase angle can be calculated through

d = 4(α− 1)
π(1 + k∞α/kF )α

see, Equation (4.52) and Figure 4.39 for more details. The following table, 7.2, shows how the
equivalent phase angle, i.e the damping d is varying with h.

Table 7.2: Variation of the damping, d, with the normalized stiffness h

h-parameter Equivalent phase angle, d

0.5 0.097789
1 0.17919
2 0.30592
3 0.39908
4 0.46992

The reason the damping d grows with h can be explained by the following equation which
describes the energy that is being dissipated in one vibration cycle. The energy is described in
terms of the material.

Uc = 4Y (ε0 − εs) [J/m3] where εs = Y

E

An increase of the h-factor can be interpreted as an increase in the kF stiffness which is the
stiffness of the elasto-plastic spring (the friction element). In terms of the material this quantity
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is referred to as E. How an increase of the stiffness in the friction element is affecting the
hysteresis work is illustrated in Figure 7.10. In (a) the material has a stiffness E1 which is
bigger than the stiffness in (b) which is E2. The displacement ε0 is the same. It is clear that
an increase in stiffness generates a bigger enclosed area, which means a larger hysteresis work.
So with

E1 > E2 ⇒ Uc,1 > Uc,2

under the assumption that the displacement ε0 is the same.

1

E

εs

-ε0

ε0
ε

σ f

-Y

Y

1

(a) E1

-ε0

ε0
ε

σ f

-Y

Y

εs

1
E2

(b) E2

Figure 7.10: The hysteresis work is dependent on the stiffness E of the friction element. Here
E1 > E2, which yields Uc,1 > Uc,2, where Uc is the area enclosed by the loop.

7.1.2 Response to a swept sine-wave

A final topic to be examined is the response of the SFS system to a load p(t) = p0 sin(ωt) with
a increasing/decresing frequency in time. This is known as a sine-sweep where the freuquency
of the sine-wave is being increased or decreased as time goes on. The sine-sweep used here is a
linear frequency-sweep starting at a frequency f0 and stopping at a frequency f1. It is possible
to change the direction of the sweep from low → high frequencies, to high → low frequencies.
The built in Matlab function chirp(t, f0, t(end), f1) was used to generate the load vector
p(t), where [t, t(end)] marks the starting and end point of a time-vector.

The system studied had the following stiffness parameters and mass. Different values of the
normalized amplitude p0/F was being used to examine the effect of this choice. The natural
frequency fn according to previous definition.
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Table 7.3: System parameters

k∞ 3948 [N/m]
kF 3948 [N/m]
h 1
m 1 [kg]
fn 10 [Hz]

The frequency range was set to [7, 21] Hz and the total sweep-time was 100 seconds, giving
7.14 [s/frequency]. Time step length: 5 · 10−4 seconds.

At an early stage it was discovered that the response in terms of the displacement response
factor Rd was dependent on the direction of the sweep, i.e if the sweep was from a low to a
high frequency or vice versa. Figure 7.11 shows this for a normalized amplitude p0/F of 1.0. In
7.11(a) the sweep was from 7 to 21 Hz and in 7.11(b) from 21 to 7 Hz. The peaks have roughly
the same magnitude but the occur at slightly different frequencies. When sweeping from 21
to 7 Hz the peak moves closer to fn and the appearance of the peak in 7.11(b) is less pointy,
compared to 7.11(a). The frequency axis has been normalized.
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(a) Sweep from 7 to 21 Hz during 100 seconds.
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(b) Sweep from 21 to 7 Hz during 100 seconds.

Figure 7.11: The influence of sweep-direction. Amplitude: p0 = 1.0F .

In Figure 7.12 the amplitude was increased to p0 = 1.1F . The difference in response caused by
the sweep direction is now increasing. In 7.12(a) the magnitude of the peak is smaller and the
peak occurs further away from fn than in 7.12(b).
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(a) Sweep from 7 to 21 Hz during 100 seconds.
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(b) Sweep from 21 to 7 Hz during 100 seconds.

Figure 7.12: The influence of sweep-direction. Amplitude: p0 = 1.1F .

A further increase of the amplitude generates the same pattern. In Figure 7.13 the amplitude
was increased to p0 = 1.2F . Now Rd ≈ 15 in 7.13(a) compared to Rd ≈ 20 in 7.13(b). The
frequency at which the peaks occur is also quite different, now the peak in 7.13(b) occur very
close to fn.
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(a) Sweep from 7 to 21 Hz during 100 seconds.
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(b) Sweep from 21 to 7 Hz during 100 seconds.

Figure 7.13: The influence of sweep-direction. Amplitude: p0 = 1.2F .

This behavior of the SFS system to a swept sine-load might be useful knowledge in real-world
situations. Since the linear visco-elastic systems are independent of the sweep-direction it might
be an idea to try both sweep-directions when a real dynamic system is being tested. If the
response is independent of sweep-direction the system could be modeled as linear. If it is not
independent of the sweep-direction the response is in part non-linear. So in order to investigate
if damping in the form of friction is present in a dynamic system it could be an idea to try both
sweep-directions.

If the amplitude is increased even further another peculiarity of the SFS system is revealed.
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For an amplitude slightly smaller than p0 = 2F resonances well below fn occur in the system.
Kalmar-Nagy and Shekhawat [6] refer to these as sub-harmonic resonances. Figure 7.14 shows
this. In Figure 7.14(a) the system has a mass m = 1 kg, with the same stiffness parameters as
in Table 7.3, this gives the natural frequency fn = 10 Hz.

In Figure 7.14(b) the mass of the system has been changed to m = 0.0123 kg and with the
same stiffness parameters this results in a natural frequency of fn = 90 Hz

Consequently the highest peak of the sub-harmonic resonances occur at roughly 0.4fn. Figure
7.15 shows the general case with normalized frequency.

(a) m = 1 kg, fn = 10 Hz (b) m = 0.0123 kg, fn = 90 Hz

Figure 7.14: Sub-harmonic resonances. System parameters: h = 1, p0 = 2F

Figure 7.15: Sub-harmonic resonances occurring from f = 0.4fn and down for h = 1 and
p0 = 2F .

One thing that might be in connection to the sub-harmonic resonances was the response to
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a sine-wave with forcing frequency f = 3 Hz. At all other frequencies f that was tried, both
lower and higher, the Fourier spectrum only contained odd harmonics of the forcing frequency,
i.e 3f, 5f, 7f... etc. But for f = 3 Hz the signal contained a whole range of frequencies, Figure
7.16 shows this, where 7.16(b) is a zoom in of 7.16(a). The main peaks occur at f = 3, 9, 15
Hz then there are several frequencies in between. The peak occurring slightly to the left of
f = 3 Hz, see 7.16(b), seems to coincide with one of the sub-harmonic resonances that can be
found at a frequency close to f = 2 Hz, see Figure 7.15. I was unable however to determine if
this observed behavior at f = 3 Hz held any significance to the occurrence of the sub-harmonic
resonances.
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Figure 7.16: Frequency content of the response to a load with the frequency f = 3 Hz. System
parameters: m = 1 kg, fn = 10 Hz

7.2 Summary and concluding remarks

Some of the things that could be concluded in this section, concerning the dynamic SFS system,
is summarized in the following bullet list.

• The system can be characterized to some extent by the following quantities
Normalized amplitude: p0/F

Normalized stiffness: h = kF/k∞

• If the amplitude/yield limit relation exceeds

p0 >
4
π
F

the response at resonance will be unbounded

• The resonances occur in a frequency interval that is determined by h. Ex. with h = 2
the interval becomes
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[fn,
√

3fn]

• The combination of loading frequency f and normalized amplitude p0/F determines if
energy is being dissipated in the system. It was possible to make a partition of the
amplitude-frequency plane to establish this relation

• An increased h-value resulted in increased damping in the system leading to a smaller
response at resonance.

• If the load p(t) is a swept sine wave the response of the system is dependent on sweep-
direction, i.e from low to high frequency or vice versa. The sensitivity to sweep-direction
increases with increased amplitude.

• Sub-harmonic resonances occur at 0.4fn and downwards if the amplitude is roughly po =
2F or higher.

7.3 5-parameter dynamic system

In this short section some attention will be directed towards the concern involving amplitude-
dependence of natural frequencies. When the SFS model was studied it was concluded that the
resonance frequency would occur in a frequency interval dependent on the ratio of the stiffness
parameters of the system.

For h = 1 the frequency interval would be [fn,
√

2fn] etc. If the normalized amplitude p0/F
was big the resonance occurred close to fn and if p0/F was small the resonance occurred at√

2fn.

k

m p(t)f s
c kc

kFF
u(t) u(t)

Figure 7.17: 5 parameter system

Now if it is assumed that the damping in a structure is of both a viscous and frictional nature
the 5-parameter model could be used to build up the dynamic system, Figure 7.17 shows the
dynamic model.
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The question is: will the viscous part of the damping to some extent soften the effects of the
load-amplitude on the resonance frequency.

In order to investigate this a sine-sweep was used. Table 7.4 shows the parameters of the first
system that was examined.

Table 7.4: System parameters

k∞ 3948 [N/m]
kc 3948 [N/m]
kF 3948 [N/m]
m 1 [kg]
fn 10 [Hz]

In Figure 7.18(a) the load amplitude p0 was 5 times higher than the friction factor F . This
yields a displacement response u(t) which to its shape and resonance frequency is similar to that
of a viscous system. Lowering the amplitude however the resonance frequency will again appear
at a higher frequency, roughly f =

√
2fn. This is shown in Figure 7.18(b) for an amplitude of

p0 = 0.1F . The peak has the flat top which indicates that this is the only place where friction
is the cause of the damping. From a previous discussion, see Figure 7.3(b), it is possible to
conclude that

For p0 = 0.1F Rduqs ≈ uF

This means that the maximum displacement of the system at this load amplitude is roughly
uF which is the yield limit.
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(a) p0 = 5F
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(b) p0 = 0.1F

Figure 7.18: 5-parameter system. Sine sweep. Attached massm = 1 kg

Another system was tried where the mass was exchanged for a lighter one which increased the
natural frequency of the system. Table 7.5 shows the used parameters.
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Table 7.5: System parameters

k∞ 3948 [N/m]
kc 3948 [N/m]
kF 3948 [N/m]
m 0.0123 [kg]
fn 90 [Hz]

In Figure 7.19(a) the amplitude is p0 = 5F . At these higher frequencies the viscous damping
effects are more accentuated than in the previous system.

In figure 7.19(b) the amplitude is p0 = 0.1F . The amplitude dependence of the resonance
frequency seems to remain also for this system. In this case no energy is being dissipated in
the friction block, not even at resonance. The damping in the system is purely viscous.
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(a) p0 = 5F
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(b) p0 = 0.1F

Figure 7.19: 5-parameter system. Sine sweep. Attached m = 0.0123 kg

This section was included in order to illustrate the amplitude dependence of resonance fre-
quencies in systems with partly bilinear hysteresis. The effect of the rate-independent bilinear
hysteresis is greater at low frequencies due to the rate-dependent nature of the viscous element.
At high amplitudes the viscous part of the damping introduces a boundary on the displacement
response u, something that was lacking in the purely frictional model.

When the 5-parameter model was used no apparent influence of sweep direction could be ob-
served, which is in contrast to SFS system.
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Chapter 8

Discussion

In this thesis the dynamic response of different material models has been investigated in the
frequency interval [10, 90] Hz. Periodic sine shaped loads and half-sine shaped pulses has been
applied to the different dynamic systems.

8.1 A comparison between Kelvin- and SLS systems

The first aim of this thesis was to investigate if more complex visco-elastic solid models are
needed to properly represent the behavior of solid materials in dynamic events, or if the Kelvin
model, despite its weaknesses, is sufficient in the studied frequency interval.

It could be concluded that if the phase angle of the Kelvin model was fitted to the phase angle
of an SLS model in a satisfactory way over the frequency interval [10, 90] Hz, the maximum
dynamic steady state response of the fitted Kelvin system and a SLS system would be similar.
Especially in terms of damping.

If the normalized frequency range [0, ωtr] was short a satisfactory fit between the phase angles of
the respective models were easier to obtain. 90 Hz is the maximum frequency in the frequency
interval, consequently the maximum of the normalized frequency range is dependent on the
relaxation time of the SLS model. Maximum of ωtr is equal to 2π90tr.

By doing parallel calculations of the equivalent viscous damping ratio ζeq an even more successful
way of approximating the damping of the SLS system was found. The relationship found was

δ = 2ζ (8.1)

where the phase angle δ of the SLS model could be calculated for different frequencies in the
interval. The steady state response of a dynamic SLS system at resonance could then be
approximated by a Kelvin system with the damping ratio ζ = δ/2. This was shown in Section
6.3.

The main difference in the dynamic steady state response of the Kelvin and SLS system could
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be traced to the modulus effect. A Kelvin model is build up of only one spring with stiffness
k∞, this means that the undamped natural frequency of the system is always ωn =

√
k∞/m.

The SLS model however contains two springs k∞ and kc which can contribute to the stiffness
of the system depending on the frequency. At high natural frequencies, in this thesis obtained
by lowering the mass m, the natural frequency of the SLS system is deviating from the Kelvin
system. This was shown in Section 6.4

Both methods presents an opportunity to estimate the damping, in terms of the damping ratio
ζ, of a material purely based on measurements of the phase angle δ. This is a short-cut compared
to the widely used concept of equivalent viscous damping, where dynamic measurements are
needed.

As a summary it can be said that a Kelvin system can be used in order to approximate the
damping of a SLS system, but if a modulus effect is desired the Kelvin model will not be able
to deliver this. However a suggestion on how to mimic a modulus effect of the Kelvin system
is included in Section 6.3.

Numerically the force in the SLS system is calculated from increments of displacement. This
force increment ∆fM is dependent on the time-step length ∆t since approximations of integrals,
by the trapezoidal rule, is used in the evaluation of the increment. Perhaps the SLS system
could be more sensitive to the choice of time-step lengths due to this?

8.2 Dynamic SFS systems

The behavior of dynamic systems with bilinear hysteresis is obviously a lot different compared
to the response of visco-elastic solids.

If amplitude dependent hysteresis is present in a system it is perhaps necessary to take this
into account. Here are two suggestions on how to investigate this.

If dynamic experiments are possible a sine sweep can be used. If the response of the system is
dependent on sweep-direction, from low to high etc., this could be a sign of non-linear response
and perhaps a Kelvin model will not be a good choice of material model.

Periodic quasi static displacement controlled loading is a material-test in order to determine if
damping is present in the material even at really low frequencies. If energy is being dissipated
at low frequencies it is probably not a good idea to use a model which only covers viscous
damping.

The inclusion of bilinear hysteresis in the computational models comes with a computational
cost since the stresses is updated with use of an algorithm. A check is required to see if the
stress is purely alastic or both elastic and plastic.
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Chapter 10

Appendix A

SLS system: Equivalent viscous damping approach

The following is a description of how the equivalent viscous damping is calculated for a SLS
system. The equivalent viscous damping is defined as

ζeq = 1
2π

1
ω/ωn

ED
ku2

0

In the above equation k is equal to the quasi-static stiffness k∞. The dissipated energy ED in
a SLS material during one cycle is

ED = πp0u0 sin δ

In forced vibration the maximum amplitude u0 occur when the phase angle is approximately
δ = 90◦ (At the natural frequency the phase angle δ = 90◦). If the natural frequency of the
SLS model is roughly

fn =
√
k∞
m

and the maximum amplitude occur at the frequency f , an equivalent viscous damping parameter
could be determined through

ζeq = 1
2π

1
(f/fn)

πp0u0

k∞u2
0

where sin δ ≈ 1 has been used, and the above expression simplifies to

109



Appendix A

ζeq = 1
2

1
(f/fn)

p0

k∞u0
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