
Master’s Dissertation
Structural

Mechanics

 Report TV
SM

-5244
JA

C
O

B SK
O

G
LU

N
D    D

Y
N

A
M

IC
 R

ESPO
N

SE O
F C

R
O

SS LA
M

IN
A

TED
 TIM

B
ER

 FLO
O

R
S SU

B
JEC

T TO
 IN

TER
N

A
L LO

A
D

S

JACOB SKOGLUND

DYNAMIC RESPONSE OF CROSS
LAMINATED TIMBER FLOORS
SUBJECT TO INTERNAL LOADS





DEPARTMENT OF CONSTRUCTION SCIENCES

DIVISION OF STRUCTURAL MECHANICS

ISRN  LUTVDG/TVSM--20/5244--SE (1-54)  |  ISSN 0281-6679

MASTER’S DISSERTATION

Supervisor: Dr PETER PERSSON, Division of Structural Mechanics, LTH. 
Assistant Supervisor: Dr HENRIK DANIELSSON, Division of Structural Mechanics, LTH. 

 Examiner: Professor ERIK SERRANO, Division of Structural Mechanics, LTH.

Copyright © 2020 Division of Structural Mechanics,
Faculty of Engineering LTH, Lund University, Sweden.

Printed by V-husets tryckeri LTH, Lund, Sweden, June 2020 (Pl).

For information, address:
Division of Structural Mechanics,

Faculty of Engineering LTH, Lund University, Box 118, SE-221 00  Lund, Sweden.

Homepage: www.byggmek.lth.se

JACOB SKOGLUND

DYNAMIC RESPONSE OF CROSS 
LAMINATED TIMBER FLOORS 

SUBJECT TO INTERNAL LOADS





Abstract

The deregulation of timber for use in large scale constructions has seen the addition
of new innovative timber-based products to a category of products referred to as en-
gineered wood products. A now well established addition to these products is cross
laminated timber, or CLT for short. CLT products use a form of orthogonal layering,
where several parallel wooden boards are arranged in a number of layers, each layer
being orthogonal to the previous. The use of orthogonal layering allows for increased
stiffness in the two plane directions, resulting in a lightweight construction product
with high load bearing capacity and stiffness.

To evaluate the dynamic behaviour of structures, engineers commonly apply the fi-
nite element method, where a system of equations are solved numerically. Given a
sufficient amount of computational power and time, the finite element method can
help to solve most dynamical problems. For sufficiently large or complex structures
the amount of resources needed may be outside the scope of possibility or feasibility
for many. Therefore, evaluating the usage of certain design simplifications, such as
omitting to models aspects of the geometry, or alternative forms of analysis for CLT
panels may help to reduce the time and resources required for an analysis.

In this Master’s dissertation, a seven-layer CLT-panel has been created. In the model,
each individual board and the gaps between the boards are modelled. The seven-layer
model is used as a reference to evaluate the possibility of using less detailed alternative
models. The alternative models are created as a layered 3D model and a composite
2D model, both models omit the modelling of the individual laminations, resulting in
the layers being solid.

The results show small errors for the alternative models when using modal analysis.
Concluding that the modal behaviour and dynamic response of a CLT panel can be
evaluated using a composite 2D model or a less-detailed layered 3D model. This signi-
ficantly reduces the amount of time and computational power needed for an analysis,
and clearly indicates the benefit of using alternative less detailed models.
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Symbols

Mathematical operators

Symbol Description

�T Transpose∫
S

Surface integral∫
V

Volume integral

�i Vector

�ij Matrix

Greek

Symbol Description

σ Stress

ε Strains

φn n:th natural mode

ωn n:th natural frequency [rads/s]

Φij Modal matrix

ζ Damping ratio

ζn Damping ration n:th mode

ν Poisson’s ratio

ρ Density
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Roman

Symbol Description

L Longitudinal

R Radial

T Tangential

V Volume

S Surface

A Area

E Young’s modulus

G Shear modulus

ni Normal vector

Dij Constitutive matrix

Cij Flexibility matrix

bi Body weight vector

ti Traction vector

Pi Force vector

ui Displacement vector

üi Acceleration vector

vi Arbitrary weight vector

Ni Global shape function

Bij Global deformation matrix

M Mass matrix

K Stiffness matrix

qn n:th modal cordinate

Tn n:th natural period [Hz−1]

fn n:th natural frequency [Hz]

a0 Mass proportional damping

a1 Stiffness proportional damping
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CHAPTER 1. INTRODUCTION

1 Introduction

1.1 Background

The early 20th century saw the decline of classical timber constructions for buildings
exceeding two storeys in most urban environments, instead, the construction industry
turned to the use of reinforced concrete. A cheap, robust and far less combustible
material, reinforced concrete has dominated the industry since its introduction and
still does so to this day [3].

The first sign of change to the concrete construction trend came with the addition
of new timber alternatives. Countries around the alps, whom largely had transitioned
to concrete, imagined that the rich woodland that lined their mountainous valleys,
could, with modern technology, constitute the base of a new construction material.
Towards the end of the 1990s Austrian scientists introduced CLT, or Cross laminated
timber, panels [2]. CLT panels consists of a multitude of layers of laminated timber
boards put parallel to one another, where each layer is ordered orthogonal to the pre-
vious, see Figure 1.1. Usually manufactured in an odd number of layers so that the
bottom and top layer are parallel, helping to bolster the panels strength. Each board
is connected to its neighbor by an adhesive, but there also exists CLT boards manu-
factured using screws or nails [19]. Although a light construction product, CLT panels
boost excellent strength and stiffness properties, allowing for construction of larger
structures such as high-rise buildings or arenas. The engineering and architectural
constructional possibilities are heavily amplified by large manufacturing freedoms in
cross section and length. As a result, CLT panels can serve a variety of construction
purposes both aesthetic and load-bearing [2].

The usage of wood as a building material has steadily been increasing, with many
considering it architecturally appealing. In terms of dynamic behaviour, the usage of

Figure 1.1: Illustration of a CLT panel.
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1.2. AIM AND OBJECTIVE

lightweight timber buildings results in wave propagation at a lower frequency range
than for conventional building materials like concrete or steel. Lower frequency sounds
are perceived as more irritating for occupants, and currently only some timber struc-
tures achieve acoustic comfort [11].

A common approach to evaluating the behaviour of structures is a numerical approach
through the finite element (FE) method. The FE method has the added benefit of
allowing a large degree of design freedom, since material parameters, load scenarios,
boundary conditions and dimensions can easily be altered and adjusted. Any CLT
structure could therefore be modelled and evaluated using the FE method before its
construction or installation. Programs applying the FE method require increased com-
putational power when the dimension or amount of details are increased. To reduce
the computational power necessary for an analysis, simplifications in terms of both
geometry and type of analysis are often evaluated.

1.2 Aim and objective

The aim of the Master’s dissertation is to broaden the understanding of the dynamical
response of CLT panels subject to different loads. By using a FE-modelling software,
a detailed high-fidelity model will be used to determine the dynamic response of a
CLT panel, acting as a reference model. The objective is to determine whether a
computationally less requiring and, in terms of design, more time efficient model can
be used to replicate the same dynamic response as the reference model. The report
will thus inquire into:

• Can a more time-efficient model replicate the modal behaviour of the 3D high-
fidelity model.

• Can the same models replicate the dynamic response of a CLT panel subject
to internal loads directly affecting the panel, such as walking or influence from
furniture.

• The feasibility of using less detailed models to replicate the dynamic behaviour
of a 3D model.

Determining the feasibility of using alternative models to replicate the dynamic beha-
viour of CLT structures, may help to identify what forms of assumptions and simpli-
fications can be made when designing numerical CLT models.

1.3 Method

The modeling and numerical analysis will be performed in the finite element soft-
ware ABAQUS CAE. A reference model of a CLT-panel will be constructed and the

2



CHAPTER 1. INTRODUCTION

eigenfrequencies determined. To ensure the validity of the reference model, the eigen-
frequencies will be compared to published results in scientific journals.

Once the reference model has been validated, the model will be subject to various
internal loads and the dynamic response determined. The dynamic response of the
reference model will then be used to develop a more time efficient model that reliably
mimics these results, without requiring the same amount of computational power.

1.4 Limitations

This Master’s dissertation focuses on numerical modelling approaches for CLT floors.
Aimed at performing a comparative dynamic analysis for three different models, the
models are designed using different modelling approaches to achieve the same dynamic
behaviour. In the dissertation, the following effects are assumed to give a negligible
influence on the conclusions:

• Anomalies and external effects such as moisture, knots, fibre misalignment,
cracks etc.

• Non-linear elastic behaviour such as creep.

.
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CHAPTER 2. CROSS LAMINATED TIMBER

2 Cross laminated timber

Cross laminated timber (or CLT) is a common name for timber panels constructed
by numerous layers of wooden boards, where each layer is oriented orthogonal to the
adjacent layer. The orthogonal layering has the added benefit of making CLT panels
bi-dimensional elements, capable of resisting any form of bending parallel to the plane
axis [6]. This, accompanied by good load bearing capacity and high stiffness, compared
to other lightweight products, makes CLT panels suitable as both floor structures
and load bearing walls. In comparison to other building products, such as reinforced
concrete or steel, CLT panels are very light. For constructions of both a simple and
complex nature, lightweight products are more easily transported and assembled [2].

2.1 Background

Timber has historically held an important position for construction through much of
the world. Yet, the combustible nature of timber, in combination with rapid increase
in urbanisation, necessitated a change towards less combustible building materials.
Most countries opted for the usage of mineral based materials such as concrete or
bricks, enforcing legislative restrictions on the use of timber as a building material.
Sweden had experienced vast devastation due to timber related fires during the early
19th century, most famously the complete destruction of Karlstad in 1865. These tim-
ber related fires resulted in limiting the construction of wooden structures to no more
than two storeys in 1874 [18]. Construction during the 20th century would instead
be defined by the emergence of reinforced concrete and steel on a global scale. While
timber would be relegated to only smaller lightweight structures and buildings [3].

Concrete and steel still remain as the leading construction material throughout much
of the world. Yet, innovation and political interest in timber as a construction material
has seen the introduction of new viable timber alternatives. The woodland rich central
European nations of the Alps tasked themselves with the modernisation of timber for
construction purposes in the 1990s. As a result, research effort, most importantly in
Austria, led to the introduction of CLT panels to the public [2].

2.2 Manufacturing

Anomalies, such as branches or knots, along with the natural growth limit of trees
restricts the maximum sizes for high quality sawn timber. Timber products with di-
mensions exceeding this natural limit are examples of Engineered wood products, where
timber boards are held together with adhesive, screws or nails. CLT panels are one
of the latest additions to the engineered wood products. The creation of any CLT
panels starts with the formation of each individual board, as each board is sawed,
dried and graded into strength classes. Adhesive is then applied to the relevant sides
of each board as the layers that constitute the sheet are formed. Compression through
vacuum or hydraulics helps to keep the boards in place as the adhesive hardens [2].

5



2.3. FINGER JOINTS

An added benefit of the engineered wood products process is the homogenization of
these products. In comparison to solid wood products, engineered wood product com-
monly exhibit far less variation in mechanical properties such as stiffness and strength
[16, 19]. As the adhesive hardens, the panel can be bent to create different forms of
curvature if the customer desires it. The possible arc of the panel is determined by
the dimensions, especially thickness, of the panel, and its intended use [19].

The manufacturing process for CLT panels allows for immense dimensional freedoms.
The maximum size of the panels is usually limited by the dimensional capability of the
manufacturing facility. The thickness of the panels may vary between 60 and 500 mm,
with a width between 0.8 and 4.8 m, and panels of lengths up to 30 m are available
[2].

2.3 Finger joints

The natural anomalies and defects of wood creates a problem for the creation of longer
timber boards. Cracks, knots and shakes limit the length of these timber boards and
necessitates the usage of finger joints to join two or more boards for certain length
spans. The finger joints are two interlocking sides profiled in such a way to achieve
maximum contact area for the adhesive to efficiently join the two boards. As the
boards are put together and the adhesive cures, the two timber boards now function
much like a single board [1, 3]. Yet, finger joints are often regarded as weak points
and a common source of failure for glued laminated timber beams subject bending.
Weak points due to the presence of small voids between the fingerjoints, and also the
thickness of the lamination, renders the material far more brittle [16].

2.4 Sustainability

Unlike other common building materials, such as steel, plastic or concrete, wood based
products are organic and thus biodegradable. The recycling or re-usage of most non
organic materials requires many costly steps, resulting in large deposits or landfills
with negative environmental impact. Wooden products are easily recycled into en-
ergy, each kilo of dried wood containing 4.5 kWh, allowing more energy to be retained
from recycling an average house with a wooden frame than it takes to construct the
same house [20].

A European research project evaluated the average carbon emissions during the pro-
duction phase for a four storey building complex. The results show little difference
between the various wooden options, yet the carbon emission from options based on
concrete were about 80 % higher than that of the average wooden construction [2].

For any country with a large forest industry, the increase in demand of wood based
products will help to economically stimulate these industries, ensuring increased pro-
duction and sufficient revenue for the industry to attain long term economic sustain-
ability [21]. Having the material produced and manufactured in the same country also
results in less transport distance and therefore less carbon emissions than importing
non-native forms of material [2].
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CHAPTER 3. MATERIAL PROPERTIES OF WOOD

3 Material properties of wood

Wood, just like most organic materials, is intrinsically complex and properties may
vary heavily between different species. It is thus necessary to understand the properties
of wood from different perspectives, both the large scale macro-perspective along with
the small micro- and sub-micro perspective.

3.1 Anatomy

Figure 3.1 gives an idealised illustration of a timber cross-section, labelling the different
parts from a macro–perspective. Intrinsically complex, the inhomogeneous compos-
ition of wood necessitates a good understanding of the structure, its properties and
parts if one is to adequately describe its mechanical behaviour. The inner heartwood
consist of dead cells which, as long as outer sapwood still remains, will not decay nor
lose any of its initial strength. The outer sapwood acts as the nutrient conduit for
the tree, supplying the leaves with water for the process of photosynthesis, which in
exchange produces a form of sugar called glucose. The sugar is dissolved in water and
forms a viscous sap. The sap is carried from the leaves to the outer cambium and
phloem layer where the sugary sap produces new sapwood and bark. What truly char-
acterises the macro structure of a wood cross-section are the annual growth rings. The
seasonal changes of temperate climates create yearly cyclical growth periods, where
the lighter earlywood is formed during spring and early summer, while the darker
rings, called latewood, are formed during the later parts of the summer. For further
reading see [4, 22].

Every tree expands yearly in an approximately circular fashion, as illustrated in Figure
3.1. The annuals circular rings are used as a reference point to define the principal
directions for the material:

Sapwood

Sapwood

Heartwood

L

T

R

L -Longitudinal
R - Radial
T - TangentialCambium

Phloem

Outer Bark

Annual Rings

Figure 3.1: Idealised cross-section of a soft wood tree.
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3.1. ANATOMY

• Longitudinal: Runs approximately along the height of the tree trunk.

• Radial: Runs perpendicular to the annual rings, and is the normal to the annual
rings.

• Tangential: Runs perpendicular to the radial direction, in the tangential direc-
tion of the annual rings.

The wood fibres run parallel to the longitudinal direction, and it is in the fibre direction
wood exhibits the highest material strength and stiffness. The longitudinal elastic
modulus typically being 10 to 20 times larger than the radial elastic modulus, while
the tangential elastics modulus is at times double that of the radial. The varying
properties in different directions orthogonal to one another is the definition of an
orthotropic material [10, 13].

3.1.1 Micro scale

The micro scale is concerned with the behaviour of wood at a the level of the fibre
cells. The cells are structured as long hollow tubes that run along the longitudinal
axis of the tree, forming transport canals by which fluids are transported from the
roots to the leaves. Softwood is composed of two types of fibre cells:

• The tracheids: Formed during the early growth season, the tracheids make up
around 95% of all the cells in the tree, and provides most of the trees structural
support.

• The parenchyma: Formed during the later part of the growth season, acting
as carbon dioxide storage cells.

Since the tracheid cells are formed during the early growth period, characterised by
considerable fluid transport and growth, these cells are far more voluminous than the
parenchyma cells able to supply the tree with a larger abundance of nutrients. This
difference in cellular vacancy translates into a drastic change in dry density, as the
bulk density of the cellular wall usually ranges around 1500 kg/m3 [13]. Along with
the parenchyma and tracheid cells, there exist much larger fusiform cellular vessels
that also help to transfer nutrients dissolved in water through the tree. These forms
of transport tissues are referred to as xylem, the essential water conducting tissue of
any vascular plants, i.e. plants with vertical upward water transportation [5]. The
cellular wall consist of three primary substances; cellulose, hemicellulose and lignin.

Vessel

Secondary wall 3
Secondary wall 2
Secondary wall 1

Primary wall

Figure 3.2: Illustration of a fibre cell and the cellular wall.
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CHAPTER 3. MATERIAL PROPERTIES OF WOOD

These are long polysaccharide chains formed by interconnecting the monosaccharide
glucose into the micro fibrils that make up the cell walls. The different parts of the
cell walls are labelled according to Figure 3.2. It is important to differentiate between
the various layers of the cellular wall, since the distribution of the cellulose, hemicel-
lulose and lignin varies considerably between the different layers, resulting in separate
mechanical properties.

3.1.2 Anomalies

Figure 3.1 illustrates an idealised cross-section of a tree. In reality, no tree grows per-
fectly in accordance with the three principal orthotropic directions. Therefore, miss-
alignment between the fibre direction and the three principal directions may result
in lower durability and reduced strength properties. This is an important difference,
since the mechanical properties of wood are usually described with the fibre direction
as a reference. As has been mentioned previously, the material strength may vary sub-
stantially between these directions. This creates a potential problem from the growth
of branches as they curve the fibre direction, running parallel to the branches instead
of the stem [4, 13].

As the timber boards are formed and sawed, the branches will give rise to sound
knots, a roughly cylindrical or conical shape curvature running parallel to the branch
direction. If the branch has ceased to function and died, the remaining dead knot
will instead form a much darker circle. These knots have large impact on the mech-
anical behaviour of timber, as they disturb the fibre direction, severely impacting the
strength of the material. These natural anomalies will, depending on size, result in a
lowered grading classification during testing [9].

3.2 Orthotropic behaviour

The relationship between stress and strain is called the constitutive relationship. For
linear elastic behaviour, the relationship can be described by Hooke’s generalized law
in three dimensions [12]:

σi = Dijεi; εi = Cijσi; D−1
ij = Cij where :

σi Stress vector
Dij The constitutive matrix
εi Strain vector
Cij Flexibility matrix

σi =



σxx
σyy
σzz
τxy
τxz
τyz


; Dij =


D11 D12 D13 · · · D1j

D21 D22 D23 · · · D2j

D31 D32 D33 · · · D3j
...

...
...

. . .
...

Di1 Di2 Di3 · · · Dij

 ; εi =



εxx
εyy
εzz
γxy
γxz
γyz


;

γxy=2·εxy
γxz=2·εxz
γyz=2·εyz

Orthotropic materials are a subset of anisotropic materials. Anisotropic materials,
unlike isotropic materials, have varying material properties in different material dir-
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3.2. ORTHOTROPIC BEHAVIOUR

ection and have no form of material symmetry. Orthotropic materials instead have
three symmetry planes, reducing the amount of individual coefficients needed in the
constitutive matrix to adequately describe the material behaviour. For an ortho-
tropic material such as wood, the symmetry planes run parallel to the three principal
directions of longitudinal, radial and tangential, described in Section 3.1. Hooke’s
generalised law for wood can be formulated as [16]:

εLL
εRR
εTT
γLR
γLT
γRT


︸ ︷︷ ︸
εi

=



1
EL

−νRL

ER
−νTL

ET
0 0 0

−νLR

EL

1
νR

−νTR

ET
0 0 0

−νLT

EL
−νRT

ER

1
ET

0 0 0

0 0 0 1
GLR

0 0

0 0 0 0 1
GLT

0

0 0 0 0 0 1
GRT


︸ ︷︷ ︸

Cij



σLL
σRR
σTT
τLR
τLT
τRT


︸ ︷︷ ︸
σi

Where EL, ER and ET are the elastic modulus in the longitudinal, radial and tangential
direction. The shear modulus G describes the ratio between the shear stress τ and
shear strains γ. The coefficient ν denotes Poisson’s ratio, describing the negative ratio
between transverse and axial strain at uniaxial loading.
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CHAPTER 4. STRUCTURAL DYNAMICS

4 Structural dynamics

This chapter presents the theoretical background in structural dynamic and evaluation
of metrics considered in the dissertation.

4.1 Equation of motion

To describe the equation of motion, there exists a necessity to understand the essential
definitions and parameters affecting an arbitrary body. A force vector, described in
Figure 4.1 as dP, affecting an infinitesimally small surface area dA, or dS, is termed
a traction vector if the infinitesimal area approaches zero. The vector ni is a direction
vector acting orthogonal to the body surface, while bi describes the body force [12].

ti =

txty
tz

 = σjini =

σxxnx + σxyny + σxznz
σyxnx + σyyny + σyznz
σzxnx + σzyny + σzznz

 ; ni =

nxny
nz

 ; bi =

bxby
bz



4.1.1 Strong formulation

For the strong formulation of the equation of motion, an arbitrary part of a body is
selected. The body is subjected to two forces, its own body force and the traction
force acting along the body surface described previously [15]. Formulated as Newtons
second law in Eq. 4.1.1: ∫

S

tidS +

∫
V

bidV =

∫
V

ρüi dV; (Eq. 4.1.1)

As the expression is formulated in terms of both the body surface and area, the Gauss
divergence theorem can help to reformulate the traction force in terms of the body

dP

ni

dA

dS

V

bi

y

x

z

Figure 4.1: A visualisation of forces acting on a body.
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4.2. FINITE ELEMENT METHOD

volume. The Gauss divergence theorem state that:∫
V

qi,i dV =

∫
S

qini dS (Eq. 4.1.2)

The traction force acting upon the arbitrary body’s surface can through Eq. 4.1.2, and
the definition given in the beginning of Section 4.1, be defined as:∫

S

σijnj dS =

∫
V

σij,j dV

The initial equation of Eq. 4.1.1 is now solely described in terms of the body volume:∫
V

(
σij,j + bi − ρüi

)
dV = 0 (Eq. 4.1.3)

The equation now holds for any volume V , and the strong formulation is given in
Eq. 4.1.4 as:

σij,j + bi = ρüi (Eq. 4.1.4)

4.1.2 Weak formulation

To move from the strong formulation to the weak formulation, Eq. 4.1.4 is multiplied
by a weight function vi, representing virtual displacement, and integrated over the
arbitrary body: ∫

V

vi
(
σij,j + bi − ρüi

)
dV = 0 (Eq. 4.1.5)

Using the relationship derived from the Green Gauss theorem:∫
V

(φiψij,j + φi,jψij)dV =

∫
V

(φiψij),j dV (Eq. 4.1.6)

Defining the variable φi = vi and ψij = σij in Eq. 4.1.6:∫
V

(viσij,j + vi,jσij)dV =

∫
V

(viσij),j dV (Eq. 4.1.7)

Inserted into Eq. 4.1.5:∫
V

(viσij),jdV−
∫
V

vi,jσijdV +

∫
V

vibidV =

∫
V

ρüi dV (Eq. 4.1.8)

Using Gauss divergence theorem in Eq. 4.1.6, the first term in eq Eq. 4.1.2 can be
redefined in terms of the arbitrary body’s surface, resulting in the weak formulation:∫

V

ρviüi dV +

∫
V

vi,jσijdV =

∫
S

vitidS +

∫
V

vibidV (Eq. 4.1.9)

4.2 Finite element method

The finite element method is a numerical method used to solve complex partial dif-
ferential equations, characterised by having initial- and boundary conditions. The

12



CHAPTER 4. STRUCTURAL DYNAMICS

fundamental principle is the division of domains into smaller subdomains, elements,
where the global behaviour is described through local approximation functions over
each subdomain.

Within the ABAQUS library there exists a wide range of elements, depending on
the problems at hand. 3D continuum elements are commonly formed as either tet-
rahedrons, solid bricks, or triangular elements constructed using a certain number of
nodes, depending on quadratic or linear interpolation. Each node has three degrees
of freedom representing the displacements in the three spatial directions, see figure
4.2. 3D solid continuum elements are commonly used to solve stress and displacement
problems [17].

Linear interpolation Quadratic interpolation

Figure 4.2: Visual illustration of the difference between first and second order elements

Quadratic and linear elements refer to the means of calculating the displacement exist-
ing between two corner nodes. Linear interpolation assumes the displacement between
two points to be described as linear. An element using linear interpolation is referred
to as a first order element. The quadratic, or second order element assumes that the
displacement variation along the edge may be defined as having a quadratic variation,
which is why there is a third node added to the edge between two corner nodes, see
Figure 4.2. Second order elements are considered to be far more accurate than first
order elements when dealing with problem not including complex contact conditions
or severe element distortion. Instead, second order elements are ideal when dealing
with bending dominated problems.

4.2.1 FE-formulation of motion

In the FE-method, the behaviour of the body is described through approximation
functions. The displacement u is approximated by the global time–independent shape
function N and the nodal displacement by the vector a.

u = Na ⇒ u̇ = Nȧ ; ü = Nä

Using the Galerkin method the following arbitrary functions and vectors are chosen:

vi = Nici ; vTi = NT
i c

T
i ; vi,j = Bijci ; Bij = Ni,j

13



4.3. CALCULATION OF EIGENMODES

The input variables are now described in accordance with the formulation from the
constitutive relationship in Section 3.2:

σTi =
[
σxx σyy σzz σxy σxz σyz

]
; σi = Dijεi = DijBijai

Inserted into the weak formulation:

cTi

(∫
V

BT
ijσidV−

∫
S

NT
i tidS−

∫
V

NT
i bidV + (

∫
V

ρNT
i NidV)äi

)
= 0

The equilibrium equation can now be solved independent of the arbitrary weight vector
ci. The complete FE-formulation of the equation of motion is deduced to:∫

V

BT
ijDijBij︸ ︷︷ ︸
Kij

aidV + (

∫
V

ρNT
i NidV)︸ ︷︷ ︸
Mij

äi =

∫
S

NT
i tidS−

∫
V

NT
i bidV︸ ︷︷ ︸

fi

(Eq. 4.2.1)

To give the formulation a better appearance, the system is reduced to:

Mij äi +Kijai = fi (Eq. 4.2.2)

The equation can also be written in matrix form as:

Mä + Ka = f

4.3 Calculation of eigenmodes

Free vibration of a system is the dynamic response of a structure disturbed from its
equilibrium position, i.e. not subject to any external forces or dynamic excitation. A
multiple degree of freedom system without damping is defined as:

Mü(t) + Ku(t) = 0; where:

M Mass matrix
K Stiffness matrix
u Deformation
ü Acceleration

The displacement of the free vibrations system is described as being a harmonic time
dependent function, given the form:

u(t) = φn (An cos(ωnt) +Bn sin(ωnt))︸ ︷︷ ︸
qn(t)

= φnqn(t) (Eq. 4.3.1)

Tn =
2π

ωn
; fn =

1

Tn
; where :

Tn n:th natural period [s]
fn n:th natural frequency [Hz]
ωn n:th natural frequency [rads/s]

φn = [φ1n φ2n...]
T being the natural modes for the undamped structure and the

deformation having the following derivatives:

u̇(t) = φnωn(−An sin(ωnt) +Bn cos(ωnt))

14



CHAPTER 4. STRUCTURAL DYNAMICS

T1 2T1 3T1 4T1 5T1
−1

−0.5

0

0.5

1

Figure 4.3: Free vibration of an undamped system.

ü(t) = −φnω2
n(An cos(ωnt) +Bn sin(ωnt))

By substituting Eq. 4.3.1 into the equation for a free system without damping, defined
previously, the following equation is acquired:[

−Mω2
nφn + Kφn

]
qn(t) = 0 (Eq. 4.3.2)

The equation has an initial trivial solution when the deformation u(t) = 0 and there
exists no motion within the system. But, the system also has a formal solution in
Eq. 4.3.2, solved through the vector φn and the modal natural frequency ωn as:

[−ω2
nM + K]φn = 0 (Eq. 4.3.3)

This equation also has a trivial solution when the system is not in motion as φn = 0
and a nontrivial solution:

det

−ω2
n

m11 · · · m1n
...

. . .
...

mn1 · · · mnn

+

k11 · · · k1n
...

. . .
...

kn1 · · · knn


 = 0

The equation has the same amount of positive roots as there exist degrees of freedom
for the system. As the characteristic equation is solved and the natural frequencies ωn
are determined, Eq. 4.3.3 may be solved for the corresponding modal vector φn.

Φij = [φin] =


φ11 φ12 · · · φ1n

φ21 φ22 · · · φ2n
...

...
. . .

...
φi1 φi2 · · · φin

 ; where :
Φij Modal matrix
i Corresponding DOF
n Corresponding eigenvector

4.4 Classically damped system

For structures consisting of parts with similar damping mechanisms, classical forms
of damping are usually considered. For a classically damped system the damping is
idealised in a damping matrix. Rayleigh damping is a form of classical damping where
the damping of a structure is assumed to originate from both the mass and stiffness
of the structure. Stiffness proportional damping is due to the energy dissipation in
structures from deformations and is related to the coefficient a1 in:

Cn = a1ω
2
nMn; ζn =

a1
2
ωn; where :

Cn Generalized damping n:th mode
Mn Generalized mass n:th mode
ζn Damping ratio for n:th mode

15



4.5. MODAL ANALYSIS OF CLASSICALLY DAMPED SYSTEMS

ωi ωj

ζn

ζn = a0
2ωn

+ a1ωn

2

c = a0m

c = a1k

ωn

ζ n

Figure 4.4: Rayleigh damping model determining the damping ratio, ζn, using the mass
and stiffness proportional damping coefficients for a frequency interval ωi –
ωj .

The mass proportional damping is related to the coefficient a0 and defined in:

Cn = a0Mn; ζn =
a0

2ωn
(Eq. 4.4.1)

The Rayleigh damping is defined in terms of both the mass- and stiffness proportional
damping as:

C = a0M + a1K (Eq. 4.4.2)

With the damping ratio ζn, for the n:th mode, being described as:

ζn =
a0

2ωn
+
a1ωn

2

For two modes assumed or determined to have the same damping ratio the two coef-
ficients a0 and a1 can individually be solved through:

a0 = ζ
2ωiωj
ωi + ωj

; a1 = ζ
2

ωi + ωj

4.5 Modal analysis of classically damped systems

For any MDOF system with n known natural modes the displacement vector can be
described through modal expansion. This allows for the displacement to be described
in terms of modal contribution as:

u =
n∑
i=1

φiqi = Φq ; Where:
qi i :th modal cordinate
φi i :th eigen mode

16



CHAPTER 4. STRUCTURAL DYNAMICS

Consider the MDOF system with damping subject to a harmonic force in Eq. 4.5.1:

Mü + Cu̇ + Ku = P(t) (Eq. 4.5.1)

Using modal expansion described previously, the system displacements may be rewrit-
ten in terms of modal contribution as:

n∑
i=1

Mφiq̈i(t) +
n∑
i=1

Cφiq̇i(t) +
n∑
i=1

Kφiqi(t) = P(t) (Eq. 4.5.2)

Multiplying all terms in Eq. 4.5.2 with φTn :

n∑
i=1

φTnMφiq̈i(t) +
n∑
i=1

φTnCφiq̇i(t) +
n∑
i=1

φTnKφiqi(t) = φTnP(t) (Eq. 4.5.3)

Due to the orthogonality of natural modes which dictates that:

if

{
i 6= n : φTnKφi = 0 ; φTnMφi = 0; φTnCφi = 0
i = n : φTnKφi = Kn ; φTnMφi = Mn; φTnCφi = Cn

All the terms in each summation disappear except those fulfilling the criteria of modal
orthogonality i.e. When i=n, the system in Eq. 4.5.1 is rewritten as:

Mnq̈n(t) + Cnq̇n(t) +Knqn(t) = Pn(t) (Eq. 4.5.4)

Where:

Mn Generalised mass n:th mode
Cn Generalised damping n:th mode
Kn Generalised stiffness n:th mode
Pn Generalised force n:th mode

Eq. 4.5.4 may be regarded as the governing equation of a SDOF system for the n:th
natural mode. Therefore, a MDOF with N natural modes may be written as a set of
equations in matrix form accordingly:

Mq̈ + Cq̇ + Kq = P(t) (Eq. 4.5.5)

Where:

M=


M1

M2

. . .

MN

 ; C=


C1

C2

. . .

CN



K=


K1

K2

. . .

KN

 ; P=


P1(t)

P2(t)
. . .

PN(t)


The resulting displacement for the system is determined by combining the modal
contributions as:

u(t) =
N∑
i=1

φiqi(t) (Eq. 4.5.6)
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4.6. STEADY STATE DYNAMIC ANALYSIS

4.6 Steady state dynamic analysis

The steady state analysis provides the dynamic steady state response of a system sub-
ject to harmonic excitation at a given frequency. The analysis is usually performed as
a frequency sweep divided into a set number of increments. For each incremental in-
crease the dynamic response is calculated and saved. Therefore, a steady state analysis
using a large number of iterations for a numerically complex model may necessitate
considerable computing power.

Two common approaches for accessing the steady-state response of a system are the
direct-solution and mode-based approach. The direct-solution steady-state analysis
considers the system in terms of the individual degrees of freedom for the whole
model, resulting in a accurate yet computationally expensive analysis. The mode-
based steady-state use the principle of modal superposition described in Section 4.5.
This allows the system to be described using a set of diagonalised matrices, resulting in
less accurate but computationally cheaper and less time consuming steady-state ana-
lysis. A problem for the mode-based approach is discerning the amount of eigenmodes
to use to adequately model the dynamic response of the system, as increasing the
amount of eigenmodes for the steady-state analysis results in larger sets of equation
for the computer to solve.

4.7 Evaluation metrics

When performing comparative studies the means of calculating differences may vary
between different fields of study. This section is concerned with describing metrics
commonly used when comparing different models.

4.7.1 Root mean square

The root mean square function, or RMS, is defined as the square root of the sum of
each individual sample point squared divided by the amount of sample points. The
RMS value is a metric for estimating the response of a certain function.

RMS =

√
1

n

∑
n

x2i ; where:
n Sample size
xi Value of the i :th sample point

4.7.2 Normalised relativ frequency difference

In order to study and compare the eigenfrequencies between different models, the nor-
malised relative frequency difference (NRFD) is commonly used, calculated according
to Eq. 4.7.1. Here f ri is the i :th eigenfrequency for the reference model and fai is the
corresponding eigenfrequency for the alternative model.

NRFD =
|f ri − fai |

f ri
(Eq. 4.7.1)
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4.7.3 Percentage error

The RMS percentage error is the relative difference between the RMS value for a
reference model and the value of the alternative model in percent, calculated as:

Error [%] = 100 ·

∣∣∣∣∣RMSAlternative – RMSReference
RMSReference

∣∣∣∣∣ (Eq. 4.7.2)

4.7.4 Velocity error

The velocity error is calculated as the non-weighted difference in error for a specific
frequency. Described as the absolute value of the velocity difference for the reference
model and the alternative model:

verror =
∣∣vReference − vAlternative∣∣ (Eq. 4.7.3)
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5 Numerical models

The CLT panel has seven layers and the following dimensions: 2 m × 6.285 m ×
0.245 m (Width × Length × Height). To determine a suitable numerical model to
evaluate the dynamic analysis of a CLT panel, three different numerical models are
compared. These are named the High-fidelity, Layered and Composite model. All
models are constructed and evaluated in ABAQUS, employing different approaches
to describe the orthogonal layering. The panel is considered to be simply supported,
with the displacement boundary conditions acting horizontally along the middle of the
cross-section. The displacement boundary conditions for one side is prescribed to zero,
while the boundary conditions for the opposite side is prescribed to zero in the z and
y-direction, see Figure 5.2. Deviations, such as fibre misalignment or finger joints, are
assumed to be negligible for the analysis. The material parameters for the softwood is
modelled according to the parameters for spruce of a C24 strength class, see Table 5.1.

Table 5.1: The material parameters used to describe C24 [7].

EL ER ET GLR GLT GRT νLR νLT νTR ρ

Dimension MPa MPa MPa MPa MPa MPa - - - kg/m3

Spruce 11 000 370 370 690 690 50 0.51 0.38 0.31 420

5.1 High-fidelity 3D model

For the High-fidelity model each individual timber board along with the adhesive is
taken into account. High-fidelity, in this case, denotes the high detail correspondence
between the model and a CLT panel. Each individual board is modelled according
to the ortotropic behaviour for wood, described in Section 3.2, where the longitudinal
direction runs along the length of the board. The panel consists of seven layers, each
layer being 35 mm and ordered orthogonally to the previous layer. In each layer the
boards are arranged parallel with one another, separated horizontally by a thin 0.2
mm wide adhesive, the adhesive is modelled as a 0.2 mm wide void. The outer most
boards have different dimensions than the dimensions given in Table 5.2, and are de-
scribed in Figure 5.1.

The decision to model the gaps for the High-fidelity model separates its dynamic beha-
viour from the two other alternative models. For both the Layered and the Composite
model, there is assumed to be full horizontal interaction between two parallel boards in
a layer. The adhesive in the High-fidelity model limits the interaction between boards
to only exist vertically, i.e. there exist no form of interaction between boards in the
same layer. This results in the wave propagation through the High-fidelity model to
move solely between boards vertically.
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5.1. HIGH-FIDELITY 3D MODEL

7×tb
tb

160 mm

160 mm

12×Wb

132.5 mm

132.5 mm

43×Wb

Wb

tb

ta

z
y x

Figure 5.1: A visualisation of the High-fidelity 3D model with the dimensions described
in Table 5.2. The outer boards have been assigned different dimensions to fit
the dimensions of the CLT panel.

Table 5.2: The dimensions of the High-fidelity 3D model in Figure 5.2.

Description Symbol Value Dimension

High-fidelity 3D Model
Width W 2 000 mm
Length L 6 285 mm
Height H 245 mm

Board
Board width Wb 140 mm
Board thickness tb 35 mm

Modelling the adhesive as a 0.2 mm void also impacts the mass matrix and the global
stiffness matrix, since the void contributes nothing to either matrices. Differences
in the stiffness and mass matrices will (see Eq. 4.3.3) also result in larger variations
between eigenfrequencies when comparing two models. Consider also problems using
Rayleigh damping, where the damping matrix is dependent on both the mass and
stiffness matrices.

The High-fidelity model is created using quadratic solid 3D continuum brick blocks
in ABAQUS, having a total of 20 nodes per element (C3D20). Engineering constants
and material orientation are used to define the material parameters for each board in
the three spacial directions. The maximum element length is restricted to 140 mm for
all analysis.

x=0
y=0
z=0

y=0
z=0

H
2

z

x
y

Boundary line

z

y

Figure 5.2: An illustration of the displacement boundary conditions applied over the
cross section of the CLT panel.
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5.2 Layered 3D model

7×tL

W

L

H

z
y x

Figure 5.3: A visualisation of the Layered 3D model.

Table 5.3: The dimensions of the Layered 3D model visualised in Figure 5.3.

Description Symbol Value Dimension

Layered 3D model
Width W 2 000 mm
Length L 6 285 mm
Height H 245 mm

Layer thickness tL 35 mm

The Layered model consists of seven layers, each being 35 mm thick. Each layer is
created as a solid, neglecting to model the boards individually and the gap separat-
ing them. This results in full interaction vertically between parallel layers, but also
complete horizontal interaction between parallel boards within a layer, unlike the High
fidelity model. Omitting to model the individual gaps will result in greater stiffness for
the Layered model than the High-fidelity model, but also less elements. The reduced
amount of elements needed for the Layered model results in a less complex system
of equations and therefore less computational power nessecary for an analysis. The
material orientation for each layer is ordered orthogonal to the previous, like the other
models. Using quadratic 3D continuum brick elements with a maximum length of 140
mm (C3D20) in ABAQUS.
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5.3 Composite 2D model

W
L

z
y x

Figure 5.4: A visualisation of the Composite 2D model and the seven plies created in
ABAQUS.

Table 5.4: The dimensions of the Composite 2D model.

Description Symbol Value Dimension

Composite 2D
Width W 2 000 mm
Length L 6 285 mm

The Composite model is constructed using 2D six degree of freedom per node quadratic
shell element, with a maximum length of 140 mm. The material properties and ortho-
gonal behaviour for each layer are described using seven different plies in ABAQUS
ply stack function, see Figure 5.4. The Composite model, just like the Layered model,
omits the modelling of the gaps. Therefore there exists full interaction both vertically
and horizontally between parallel layers and boards. The Composite model and the
Layered model both consider the CLT-panels layers to be solids. Both models have
the same panel dimension, but two different approaches to describe the orthogonal
layering.

A problem with comparing a 2D model with a 3D model is the application of loads and
boundary conditions at different vertical positions. For the 3D models the boundary
conditions are applied in the middle of the cross-section while the loads are applied
at the surface level, but, for the 2D model the boundary conditions and loads are
projected on the 2D shell.
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5.4 Validation of model

Validating the High-fidelity model is done by comparing the results from the eigenvalue
analysis with the results of another numerical model. In a study from the University
of New Brunswick, a numerical model of a CLT panel was created and verified by
comparing the modal behaviour with experimental data from a laboratory built CLT
panel. The comparison was made for eigenfrequencies below 100 Hz, both models
having the corresponding dimensions of the High-fidelity model [23].

In Table 5.5 the eigenmodes below 100 Hz for the High-fidelity model and the nu-
merical model from the study are compared. The relative error is described in terms
of NRFD in Eq. 4.7.1. Although the two models have the same dimensions, the ma-
terial properties differ. Therefore, the comparison is concerned with comparing the
modal sequence of both models, and allows for some frequency difference between the
two models. The aim is to ascertain corespondent modal behaviour for the two nu-
merical models. From Table 5.5 both models exhibit the same modal sequence, with
the largest NRFD existing for mode (1,2). The NRFD is larger for modes with half
sine waves above one in the y-direction, i.e. mode (1,2) and (2,2).

Table 5.5: Comparison of eigenfrequencies between the High-fidelity 3D model and the
alternative CLT model from the study in [23].

Mode (1,1) (1,2) (2,1) (2,2) (3,1)
High-fidelity 3D model 11.5 19.6 39.6 48.2 74.8
Ussher et al [23] 11.5 22.9 39.1 51.8 72.7
NRFD [%] 0 16.8 1.3 7.5 2.8
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6 Effect on dynamic properties

The dynamic properties chapter is concerned with comparing the eigenfrequencies
and eigenmodes for the three models described in Chapter 5. The eigenvalue analysis
is performed for frequencies below 120 Hz for the High-fidelity model. Any mode
existing inside the frequency range for the High-fidelity model will be included for
any other model, even if the mode is above 120 Hz. The eigenvalue analysis aims
at comparing the modal behaviour of each model in comparison to the High-fidelity
model, i.e. concluding what differences separate the different models in terms of
dynamic properties, and ascertaining the validity of using either the Layered or the
Composite model to adequately replicate the behaviour of the High-fidelity model.

6.1 High-fidelity 3D model

The eigenfrequencies and mode shapes of the High-fidelity model is determined us-
ing quadratic 3D continuum elements, modelling the gaps between each board in the
same layer as 0.2 mm voids. The first eight numerically determined eigenmodes are il-
lustrated in Figure 6.1, while the corresponding eigenfrequencies are given in Table 6.1.

The modes for the High-fidelity model do not include more than two half sine waves
in the y-direction, see Figures 6.1–6.3. This means that only eigenmode two, four, six
and eight exhibit bending and or twisting about the x -direction, while all eigenmodes
display bending about the y-direction.

Table 6.1: Summary of the first eight eigenfrequencies for the High-fidelity 3D model.

Mode (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Frequency [Hz] 11.47 19.62 39.60 48.24 74.81 82.81 112.21 119.67
Figure 6.1 (a) (b) (c) (d) (e) (f) (g) (h)

27



6.1. HIGH-FIDELITY 3D MODEL

(a) Mode(1,1): 11.47 Hz. (b) Mode(1,2): 19.62 Hz.

(c) Mode(2,1): 39.60 Hz. (d) Mode(2,2): 48.24 Hz.

(e) Mode(3,1): 74.81 Hz. (f) Mode(3,2): 82.81 Hz.

(g) Mode(4,1): 112.21 Hz. (h) Mode(4,2): 119.67 Hz.

Figure 6.1: The first eight eigenmodes computed with the High-fidelity 3D model.
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6.2 Layered 3D model

The Layered model is created using the same quadratic 3D continuum elements as
the High-fidelity model. However, as has been mentioned in Section 5.1, the Layered
model considers each layer to be a solid, omitting to model each individual board or
gap separating them. The first eight numerically determined eigenmodes are illus-
trated in Figure 6.2, while the corresponding eigenfrequencies are given in Table 6.2.

The Layered model exhibit the same eigenmodes as the High-fidelity model and in
the same order. The eigenfrequencies for the Layered model are marginally higher
than those of the High-fidelity model, this being true for all eigenfrequencies.

Table 6.2: Summary of the first eight eigenfrequencies computed with the Layered 3D
model.

Mode (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Frequency [Hz] 11.53 22.45 39.93 52.21 75.62 87.33 113.65 124.70
Figure 6.2 (a) (b) (c) (d) (e) (f) (g) (h)
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6.2. LAYERED 3D MODEL

(a) Mode(1,1): 11.53 Hz. (b) Mode(1,2): 22.45 Hz.

(c) Mode(2,1): 39.93 Hz. (d) Mode(2,2): 52.21 Hz.

(e) Mode(3,1): 75.62 Hz. (f) Mode(3,2): 87.33 Hz.

(g) Mode(4,1): 113.65 Hz. (h) Mode(4,2): 124.70 Hz.

Figure 6.2: The first eight eigenmodes of the Layered 3D model.
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6.3 Composite 2D model

The Composite model is evaluated using 2D quadratic shell elements, modelling each
layer as a solid, using the ply-stack function in ABAQUS. The first eight numerically
determined eigenmodes for the Composite modell are illustrated in Figure 6.3, while
the corresponding eigenfrequencies are given in Table 6.3.

The eigenfrequencies for the Composite model are marginally higher than those of
the High-fidelity model, just like the Layered model. The modal sequence for the
Composite model corresponds with both the Layered and the High-fidelity model for
the first eight eigenmodes.

Table 6.3: Summary of the first eight eigenfrequencies computed with the Composite 2D
model.

Mode (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)

Frequency [Hz] 11.57 22.43 40.12 52.33 75.94 87.53 113.76 124.60
Figure 6.3 (a) (b) (c) (d) (e) (f) (g) (h)
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6.3. COMPOSITE 2D MODEL

(a) Mode(1,1): 11.57 Hz. (b) Mode(1,2): 22.43 Hz.

(c) Mode(2,1): 40.12 Hz. (d) Mode(2,2): 52.33 Hz.

(e) Mode(3,1): 75.94 Hz. (f) Mode(3,2): 87.53 Hz.

(g) Mode(4,1): 113.76 Hz. (h) Mode(4,2): 124.60 Hz.

Figure 6.3: The first eight eigenmodes of the Composite 2D model.
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6.4 Differences in dynamic properties

The summary of the first eight eigenmodes is given in Table 6.4. In order to study and
compare the eigenfrequencies between different models, we use the normalised relative
frequency difference (NRFD) used according to Eq. 4.7.1. All models exhibit the same
eigenmodes within the analysed frequency range, and all modes appear in the same
order. The eigenfrequencies are lower for the High-fidelity model compared to the two
alternative models, this becomes evident in Table 6.4.

It is clearly shown in Figure 6.4 that the largest error between the High-fidelity model
and the alternative models exists for modes above one half sine wave in the y-direction.
The bending motion of these modes are more complex as the bending acts about the
two axes, resulting in larger discrepancies between the eigenfrequencies than for the
simpler modes with bending in only one direction. When comparing modes with one
half sine waves in the y-direction, the NRFD is comparatively small and seems to
neither be increasing nor decreasing.

Table 6.4: Summary of the first eight eigenfrequencies of the three models arranged
according to eigenmodes.

Mode (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)
High-fidelity 3D model 11.47 19.62 39.60 48.24 74.81 82.81 112.21 119.67
Layered 3D model 11.53 22.45 39.93 52.21 75.62 87.33 113.65 124.70
Composite 2D model 11.57 22.43 40.12 52.33 75.94 87.53 113.76 124.60
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Figure 6.4: The NRFD between an alternative model and the High-fidelity 3D model,
comparing the first eight eigenmodes, according to Eq. 4.7.1.

Table 6.5: Summary of the NRFD displayed in Figure 6.4

Mode (1,1) (1,2) (2,1) (2,2) (3,1) (3,2) (4,1) (4,2)
NRFD Layered 3D model [%] 0.88 14.42 0.83 7.60 1.08 5.18 1.28 4.20
NRFD Composite 2D model [%] 0.88 14.32 0.83 7.60 1.08 5.70 1.38 3.96
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7 Effects on dynamic response

The dynamic response chapter is concerned with the dynamic response for the three
models when subject to surface loads. Each model will be subject to two different load
scenarios illustrated in Figures 7.1 and 7.3 respectively, where the dynamic response
of each model is determined through a steady state analysis using Rayleigh and modal
damping over a frequency range of 1–120 Hz, using 0.5 Hz increments. The steady
state dynamic analysis provides the steady state response of the system subject to
harmonic excitation at a given frequency. For each load position the velocity in two
points will be evaluated. To discern the ability of the Layered and Composite models
to replicate the dynamic behaviour of the High–fidelity model, the mobility in each
measure point is compared. By evaluating the transfer and point mobility, the com-
parison aims to find any difference in vibration propagation throughout the structure
depending on modelling approach. When evaluating the transfer mobility, the com-
parison is concerned with the complex velocity in the z–direction. Evaluation of a
measure point coinciding with a load point is known as point mobility. The real part
of the of the point mobility, when evaluating vibration velocity, is directly proportional
to the amount of energy entering the evaluated structure [14]. This chapter is divided
into different sections where:

Section 7.1: Addresses the damping used for the steady-state analyses.
Section 7.2: Considers a direct-solution steady-state analysis with Rayleigh damp-
ing.
Section 7.3: Considers a mode-based steady-state analysis using both Rayleigh and
direct damping.
Section 7.4: Summarises the results from the steady-state analyses.

7.1 Damping

For the analyses two approaches to account for the damping have been considered,
Rayleigh damping and direct modal damping, both being classical forms of damping.
The damping parameters are selected from measured data of a scale-sized experimental
structure representing a part of a two storey building. The model was analysed for
frequencies up to 100 Hz, acquiring the damping parameters in Table 7.1.

Table 7.1: The damping parameters from the experimental structure in [8].

a0 3.06
a1 3.22·10−5

ζ 1.1 %
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7.2. DIRECT SOLUTION - EFFECTS ON MOBILITIES

7.2 Direct solution - Effects on mobilities

The direct-solution steady state calculates the response of a system directly in terms
of each individual degree of freedom, without reducing the system. This results in
a computationally cumbersome yet accurate analysis. In this section only Rayleigh
damping is considered.

7.2.1 Load position 1

The first load scenario evaluates a concentrated load placed in the centre of the CLT
panel acting in the z–direction. The load position and measure points in relation to
the CLT panel are illustrated in Figure 7.1. For each measure point separated from the
load position the complex velocity is calculated and plotted, comparing the transfer
mobility for the different models. Since load position one and measure point one are
situated in the same node, the point mobility in measure point one will be evaluated
in terms of the real part of the response, see Figure 7.2.

From the results in Figure 7.2, load position one excites eigenmode (1,1) and (3,1)
according to the frequencies from Table 6.4. All models for load position one exhibit
the same modal response with smaller velocity differences. In terms of both the trans-
fer and point mobility, the maximum velocity difference is smaller for the Layered
model than the Composite model when comparing it to the High-fidelity model.

MP 2

MP 1

L
2

W
2

LP 1
L=6.285 m
W=2 m

0.14m

1.12m

y

x

Figure 7.1: An illustration of the first load position, LP 1, and the position of the two
measure points, MP 1 and MP 2, on the CLT panels surface.
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(a) The point mobility in MP 1, plotting the
real part of the velocity in the z–direction.
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(b) The error in velocity comparing the altern-
ative models with the High-fidelity model in
(a).
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(c) The transfer mobility in MP 2, plotting the
complex velocity response in the z–direction.
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Figure 7.2: Velocity response in MP 1 and MP 2, using direct-solution steady-state and
LP 1.
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7.2.2 Load position 2

The second load scenario evaluates the steady state response for a concentrated load
placed on the surface of the CLT panel, see Figure 7.3. For load position two the load
point does not coincide with a measure point, therefore only the transfer mobility will
be evaluated in terms of the complex velocity in the z -direction. For each measure
point and each model the direct steady state response will be calculated using Rayleigh
damping according to the parameters in Section 7.1.

Measure point one excites eigenmode (1,1) and (3,1), the same as those in Figure 7.2,
showing relatively small differences in velocity between models. The second measure
point excites all eight modes below 120 Hz for the High-fidelity model. For modes
below two sine waves in the y–direction all models closely replicate the same velocity
response for a given frequency. While modes above one sine wave in the y–direction
are exited at lower frequencies for the High-fidelity model than the alternative models.
This is to be expected considering the error between eigenfrequencies for the three
models in Figure 6.4.
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Figure 7.3: An illustration of the second load position, LP 2, and the position of the two
measure points, MP 1 and MP 2, on the CLT panels surface.
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(a) The transfer mobility in MP 1, plotting the
complex velocity response in the z–direction.
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(b) The error in velocity comparing the altern-
ative models with the High-fidelity model in
(a).
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(c) The transfer mobility in MP 2, plotting the
complex velocity response in the z–direction.
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Figure 7.4: Velocity response in MP 1 and MP 2, using direct-solution steady-state and
LP 2.
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7.3 Alternative analysis

For a mode-based steady state analysis, a sufficient amount of eigenmodes need to be
extracted from an eigenvalue analysis to adequately describe the dynamic behaviour
of the system. The use of modal superposition allows the deformation of the model to
be explained in terms of individual modal contributions within a specified frequency
range. The mode-based approach is less accurate than the direct-solution steady state,
but is far less computationally cumbersome. For this section, the result of a mode-
based steady state analysis for the alternative models are compared to the response of
the direct-solution steady state response of the High-fidelity model.

7.3.1 Rayleigh damping

In Figure 7.5, mode-based steady state analyses with Rayleigh damping have been
performed using four different frequency ranges for the High-fidelity model. The per-
centage error, described in Eq. 4.7.2, between the RMS value for the direct-solution
and mode-based steady state analysis is plotted on the y–axis. Since an increase in
number of eigenmodes used for the analysis results in an large set of equations to be
computed, a smaller frequency range is preferred. From the error presented in Table
7.2, using a frequency range of 240 Hz (23 modes) results in a sufficiently accurate
result. The results for the mode-based steady state analyses using Rayleigh damping
and a frequency interval of 240 Hz are given in Figures 7.6–7.7.
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Figure 7.5: Plotting the relative error for the High-fidelity 3D model when comparing a
direct-solution and mode-based steady state analysis using Rayleigh damping
with four different frequency ranges. In the graph, L denotes the load
position and M the measure point. The relative error is calculated according
to Eq. 4.7.2.
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Table 7.2: Summary of the errors in Figure 7.5, arranged according to the LP, MP and
frequency range.

Scenario Relative error [%]
LP MP 120 Hz 240 Hz 360 Hz 480 Hz

1
1 0.27 0.21 0.20 0.20
2 0.20 0.11 0.11 0.11

2
1 0.19 0.11 0.11 0.11
2 3.11 2.16 2.55 2.55
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(a) The point mobility in MP 1, plotting the
real part of the velocity response in the z–
direction.
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(b) The error in velocity comparing the altern-
ative models with the High-fidelity model in
(a).
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(c) The transfer mobility in MP 2, plotting the
complex velocity response in the z–direction.
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Figure 7.6: Comparing the response of the High-fidelity model in LP 1, using a
direct-solution steady state with Rayleigh damping, with a mode-based
steady state for the alternative models using a 240 Hz frequency range and
Rayleigh damping. The error calculated according to Eq. 4.7.3.
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(a) The transfer mobility in MP 1, plotting the
complex velocity response in the z–direction.
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(b) The error in velocity comparing the altern-
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(a).
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(c) The transfer mobility in MP 2, plotting the
complex velocity response in the z–direction.
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Figure 7.7: Comparing the response of the High-fidelity model in LP 2, using a
direct-solution steady state with Rayleigh damping, with a mode-based
steady state for the alternative models using a 240 Hz frequency range and
Rayleigh damping. The error calculated according to Eq. 4.7.3.
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7.3.2 Direct modal damping

With the use of modal superpositioning, the damping ratio may be applied to each
individual mode in a classical damping matrix. An ideal approach when dealing with
systems with similar damping mechanisms distributed through the system. In Fig-
ures 7.8–7.9, a mode–based steady state analysis with the same damping ratio as the
experiment in Section 7.1 is performed.

Although the results from the mode-based steady state analysis with modal damp-
ing clearly replicates the dynamic behaviour of the High-fidelity model for all measure
points, the amplitude of the velocity response is far larger when using modal damp-
ing for the alternative models. This becomes evident when comparing the maximum
velocity difference with the previous results. This difference in maximum velocity
also translates into large differences in RMS values between different models. The
frequency discrepancy between the High-fidelity model and the alternative model for
modes above on half sine wave in the y-direction also exists when using modal damp-
ing, see Figure 7.9.
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(a) The point mobility in MP 1, plotting the
real part of the velocity response in the z–
direction.

0 20 40 60 80 100 120

Frequency [Hz]

10
-10

10
-8

10
-6

10
-4

10
-2

E
rr

o
r 

[m
/s

]

Layered        Max error: 4.27E-04 m/s

Composite    Max error: 2.66E-04 m/s

(b) The error in velocity comparing the altern-
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(a).
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(c) The transfer mobility in MP 2, plotting the
complex velocity response in the z–direction.
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Figure 7.8: Comparing the response of the High-fidelity model in LP 1, using a
direct-solution steady state with Rayleigh damping, with a mode-based
steady state for the alternative models using a 240 Hz frequency range and
modal damping. The error calculated according to Eq. 4.7.3.
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(a) The transfer mobility in MP1, plotting the
complex velocity response in the z–direction.
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(b) The error in velocity comparing the altern-
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(a).
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(c) The transfer mobility in MP2, plotting the
complex velocity response in the z–direction.
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Figure 7.9: Comparing the response of the High-fidelity model in LP 2, using a
direct-solution steady state with Rayleigh damping, with a mode-based
steady state for the alternative models using a 240 Hz frequency range and
modal damping. The error calculated according to Eq. 4.7.3.
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7.4 Response differences

In Table 7.3 the velocity RMS values for the three models are given ordered according
to load position and measure point for a direct-solution steady state with Rayleigh
damping. The error is described by comparing the RMS value for the alternative model
with that of the High-fidelity model using Eq. 4.7.2. From the results in Table 7.3,
the Layered model exhibits far smaller errors than the Composite model, the errors
being below one percent for all measure points. The smallest error for the Composite
model was achieved when evaluating the point mobility in measure point one during
load position one. Incidentally, this was the measure point with largest error for the
Layered model.

The RMS values from the two mode-based steady state analyses with Rayleigh and
modal damping for the alternative models are given in Tables 7.4 and 7.5 respectively.
The RMS value for the High-fidelity model using a direct-solution steady state analysis
is used as a comparison for the alternative models. The RMS values for the Layered
model directly replicates those in Table 7.3 when using Rayleigh damping, resulting in
the same errors. The analyses for the Composite model resulted in smaller errors when
using a mode-based steady state with Rayleigh damping than a direct solution analysis.

The mode–based steady state analysis with modal damping gives by far the largest
errors between the High–fidelity and alternative models, with only one measure point
giving relatively small errors.
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Table 7.3: Summary of the RMS value for a direct-solution steady state analysis using
Rayleigh damping according to the values in Section 7.1. The error describes
the relative error when comparing the High-fidelity and an alternative model.

Scenario Root Mean Square [10−5 m/s] Error[%]

LP MP High-fidelity Layered 3D Composite 2D Layered 3D Composite 2D

1
1 3.55 3.52 3.62 0.85 1.97
2 3.05 3.04 3.48 0.33 14.10

2
1 3.05 3.04 3.48 0.33 14.10
2 7.72 7.68 9.14 0.52 18.39

Table 7.4: Summary of the RMS value for the alternative models using a mode-based
steady state analysis with Rayleigh damping according to the values in
Section 7.1. The analysis is performed with a frequency range of 240 Hz. The
error describes the relative RMS error when compared with the value of a
direct-solution steady state analysis for the High-fidelity model.

Scenario Root Mean Square [10−5 m/s] Error[%]

LP MP Layered 3D Composite 2D Layered 3D Composite 2D

1
1 3.52 3.41 0.85 3.94
2 3.04 3.05 0.33 0.00

2
1 3.04 3.05 0.33 0.00
2 7.68 7.77 0.52 0.65

Table 7.5: Summary of the RMS value for the alternative models using a mode-based
steady state analysis with modal damping according to the values in
Section 7.1. The analysis is performed with a frequency range of 240 Hz. The
error describes in the same manner as in Table 7.4.

Scenario Root Mean Square [10−5 m/s] Error[%]

LP MP Layered 3D Composite 2D Layered 3D Composite 2D

1
1 6.03 5.04 69.86 41.97
2 4.13 3.93 35.41 28.85

2
1 4.13 3.93 35.41 28.85
2 8.00 7.85 3.63 1.68
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8 Discussion

In the investigation the High-fidelity 3D model is assumed to be the most accurate
model. This assumption is due to the fact that the High-fidelity model is concerned
with modelling each individual board and the gaps separating them horizontally for
all seven layers, thus most accurately replicating a CLT panel. Therefore the two
alternative models, the composite 2D and Layered 3D model, were evaluated by their
ability to replicate the dynamical behaviour of the High-fidelity model.

Given the size and complexity of the High-fidelity model, the partitioning and model-
ling of each gap is very time-consuming. In total 193, each 0.2 mm wide, gaps needed
to be modelled on a large CLT panel by manually entering the dimensions and posi-
tion of them. This results in increased possibility of human error impacting the result.
However, more than one High-fidlity model have been created, both showing the same
exact modal behaviour.

8.1 Dynamic properties

Comparing the eigenfrequencies for the three numerical models, summarised in Table
6.4, the frequencies for the High-fidelity model are lower for all studied modes (below
120 Hz). The discrepancy for eigenfrequencies above one half sine wave in the y-
direction are noticeably larger then those with only one half sine wave, this is clearly
shown in Figure 6.4. The error for these eigenfrequencies also becomes smaller when
comparing higher frequencies. The eigenfrequencies for both the Layered 3D and Com-
posite 2D models seem to correspond quiet well with one another. But, it seems like
the design simplification of omitting to model the gap between individual boards, re-
garding layers to act as solid layers, results in matching modal behaviour but higher
eigenfrequencies. This increase in eigenfrequencies is assumed to be due to the higher
stiffness of the alternative models, as the modelling of the gap directly decreases the
stiffness of the High-fidelity model. If the eigenfrequencies for the alternative models
are to correspond more accurately with the High-fidelity model, the material paramet-
ers for each solid layer may have to be altered to account for the gap.

8.2 Dynamic response

Considering the direct steady-state using Rayleigh damping, the Layered 3D model
gave more accurate results than the Composite model, showing RMS errors below one
percent for all measure points. This also indicates that using a Composite 2D model
may be deemed a less accurate approach given the RMS errors shown in Table 7.3
when using a direct-solution steady-state analysis. This could be expected given the
velocity error being larger for the Composite model than the Layered 3D model for all
measure points, see Figures 7.2 and 7.4. As the Layered and the High-fidelity model
are both 3D models, and the load for the Composite 2D model is projected on the
plane located in the middle of the cross-section, it is expected that the former models
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would more accurately replicate each other’s dynamic response.

The use of a mode-based steady-state using Rayleigh damping results in smaller errors
between the three models. Considering that all models exhibit the same mode sequence
and mode shapes, a mode-based approach should result in small differences between
the responses of the alternative models. This is due to the dynamic response being
calculated in terms of modal contribution, see Section 4.5. From the results shown in
Table 7.4, the error for both models can be considered quite small. Yet, once again, the
Layered 3D model is more consistent with the results of the High-fidelity model. The
small errors in shown in Table 7.4 indicates that the use of a mode-based steady-state
with Rayleigh damping yields the smallest errors for the alternative models. This is
a desired result as the mode-based steady-state requires less computational resources
thanks to the approach of modal super-positioning and orthogonality of natural modes.

The mode based analysis with direct modal damping yielded the largest errors for
the alternative models when compared to the direct-solution steady-state of the High-
fidelity model, the results shown in Table 7.5. This is probably due to direct modal
damping applying a constant viscous damping factor for all modes, while Rayleigh
damping varies over different modes. When comparing the velocity errors shown in
Figures 7.6 and 7.8, the error for mode (3,1) is about the same, while the error for
mode (1,1) is considerably larger when using direct modal damping. This could be due
to the difference in damping being larger for mode (1,1) than mode (3,1), as damping
is the only difference between the two analyses.

8.3 General discussion

To model the adhesive as 0.2 mm thick void, in comparison to model the adhesive as
a material with certain properties, will undoubtedly have some effect on the results,
as this modelling approach results in the gaps contributing nothing to the stiffness
or the mass matrices. At the same time there can be no form of wave propagation
horizontally between each individual board. A possible problem derived from the de-
cision of modelling the gaps in this way is the existence of elements with a high aspect
ratio. The aspect ratio is the proportion between the longest and shortest edge of an
element. To acquire reliable results the face of element should take a rectangular geo-
metric form, and the aspect ratio should be as close to unity as possible, far too large
aspect ratios may reduce the accuracy of the analysis [12]. Currently the maximum
element face aspect ratio is 175.
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9 Conclusion

9.1 Summary of results

The aim of this Master’s dissertation is to evaluate the possibility of using less detailed
alternative models and/or using computationally less cumbersome analyses when eval-
uating the dynamic response of CLT panels subject to internal loads. The results
clearly indicate the possibility of using less detailed models when determining the dy-
namic response of CLT panels. The results in this dissertation concludes that:

• For eigenfrequencies up to 120 Hz, omitting to model the gaps results in a max-
imum NRFD of 14.4 % for modes above one half sine wave in the y-direction,
while the maximum NRFD for all other modes does not exceed 1.4 %.

• The Layered 3D model with quadratic elements most accurately replicated the
dynamic response of the High-fidelity 3D model when using a direct-solution
steady state analysis with Rayleigh damping.

• The results from the mode-based analysis with Rayleigh damping indicate that
both the Layered 3D and Composite 2D models are suitable alternatives for
determining the dynamic response of a CLT panel when using modal analysis.

• The lower RMS velocity value for the Layered 3D model, when compared to
the High-fidelity 3D model, indicates the importance of good adhesion between
boards to reduce the dynamic response of a CLT panel.

9.2 Future work

From the work performed in this dissertation, suggestions for future research include:

• Evaluate different methods of modelling the adhesive, preferably using a exper-
imental CLT panel as a reference. In this dissertation the adhesive is modelled
as a 0.2 mm void, which may not accurately represent reality.

• This dissertation is concerned with only internal loads. Evaluating the possibility
of using alternative less-detailed models and/or modal analysis to evaluate the
dynamic response of a CLT panel subject to external loads, such as traffic loads.

• In this dissertation a numerical model is used as a reference model, assuming
it replicates the behaviour of a CLT panel. Using an experimental model as a
reference model would result in a more reliable result, and the exact Rayleigh
damping parameters for the CLT panel could be assessed.
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