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1. One dimensional transient heat flow

1.1. Introduction

This text is intended to provide an extension to "Introduction to the Finite Element
Method" by Ottosen and Petersson by introducing to the subject of transient �ow
problems. The presentation follows that book as close as possible in notation and
in the derivations of the �nite element equations.

1.2. One dimensional transient heat equation - strong form

At stationary heat conduction the amount of heat supplied to the body per unit
time equals the amount of heat leaving the body per unit time. It is the implied
that there is no variation of temperature or heat �ow with time in a �xed point

in space, although there is a variation from point to point in space. The balance
equation for a one-dimensional heat �ow problem at stationary conditions may be
written as

− d

dx
(Aq) +Q = 0 (1.1)

where A [m2] is the cross-sectional area, q [J/sm2] the heat �ux and Q [J/sm] heat
supply.

Transient heat conduction, however, implies that the temperature and heat �ow,
in a �xed point is a function of time, i.e. q = q(x, t) and T = T (x, t) also the heat
source and the material properties may be functions of time as Q = Q(x, t) and
k = k(x, t). Since the amount of heat supplied to the body per unit time not equals
the amount of heat leaving the body per unit time the temperature will change in the
body. The rate of temperature change, however, depends on the heat capacity c(x, t),
which is a material property that states the resistance to temperature change. The
heat capacity is a scalar parameter that quanti�es the amount of energy required,
per unit mass, to rise the temperature one degree, i.e. in SI units J/(K · kg). The
balance equation (1.1) for the steady state problem may for the case of transient
heat conduction be written as

− d

dx
(Aq) +Q = ρAc

dT

dt
(1.2)

where ρ is the density of the material. By inserting the constitutive relation for one
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4 CHAPTER 1. ONE DIMENSIONAL TRANSIENT HEAT FLOW

dimensional heat conduction, Fourier's law, that is written

q = −kdT
dx

(1.3)

the following di�erential equation is formulated

d

dx
(Ak

dT

dx
) +Q = ρAc

dT

dt
; 0 ≤ x ≤ L (1.4)

k is the thermal conductivity. The one-dimensional transient heat equation estab-
lished applies for the region considered. To solve the di�erential equation a region
and boundary conditions must be speci�ed. Two boundary conditions must be spec-
i�ed; one for each end of the one dimensional body. We may assume one end to
have a prescribed temperature and at the other end a prescribed �ux. The strong
form of one-dimensional transient heat �ow may now be formulated.

Strong form of one-dimensional transient heat �ow

d

dx

(
Ak

dT

dx

)
+Q = ρAc

dT

dt
; 0 ≤ x ≤ L

q(x = 0) = −
(
k
dT

dx

)
x=0

= h

T (x = L) = g

(1.5)

1.3. Weak form of one-dimensional transient heat �ow

The strong form of one-dimensional transient heat �ow may be reformulated into a
weak form in the same manner as for the steady state heat �ow. The weak form
is established by multiply (1.5) with an arbitrary time-independent weight function
v(x) and integrating over the region.∫ L

0

v

[
d

dx

(
Ak

dT

dx

)
+Q

]
dx =

∫ L

0

vρAc
dT

dt
dx (1.6)

The �rst term in this equation may be integrated by parts as∫ L

0

v
d

dx

(
Ak

dT

dx

)
dx =

[
vAk

dT

dx

]L
0

−
∫ L

0

dv

dx
Ak

dT

dx
dx (1.7)

Use of this expression in (1.6) implies that∫ L

0

dv

dx
Ak

dT

dx
dx+

∫ L

0

vρAc
dT

dt
dx =

[
vAk

dT

dx

]L
0

+

∫ L

0

vQ dx (1.8)



1.4. SPATIAL APPROXIMATIONOF ONE-DIMENSIONAL TRANSIENT HEAT FLOW5

Now, using that q = −kdT/dx and inserting the natural boundary condition
q(x = 0) = h, the boundary term may be rewritten to the �nal weak form of one
dimensional transient heat �ow.

Weak form of one-dimensional transient heat �ow∫ L

0

dv

dx
Ak

dT

dx
dx+

∫ L

0

vρAc
dT

dt
dx = −(vAq)x=L + (vA)x=0h+

∫ L

0

vQdx

T (x = L) = g

(1.9)
The main di�erence of the weak form of transient heat �ow compared to the

corresponding steady state case is that we now have derivatives both with respect
to the spatial coordinates and to the time. This implies that approximations for the
temperature must be made in both spatial coordinates and the time.

1.4. Spatial approximation of one-dimensional transient heat

�ow

As for the case of steady state heat �ow an approximation of the temperature is
introduced. The approximation may for the transient case be separated as

T (x, t) = N(x)a(t) (1.10)

where N(x) is the shape functions that are functions of x and a(t) is the nodal
temperatures that are functions of time. The weak form (1.9) contain both dT/dx
and dT/dt. Since a is independent of x we may write

dT

dx
=
dN

dx
a = Ba (1.11)

and since N is independent of t we may write

dT

dt
= N

da

dt
= Nȧ (1.12)

Adopting the Galerkin method the scalar weight function v is chosen as

v = Nc = cTNT (1.13)

and
dv

dx
= cTBT where BT =

dNT

dx
(1.14)

The approximation (1.10) and the choice of the weight function (1.13) is inserted
in the weak form of the one dimensional transient heat �ow (1.8) and also using the
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fact that the vector c is independent of x results in

cT

(∫ L

0

BTAkB dx a +

∫ L

0

NTρAcN dx ȧ +
[
NTAq

]L
0
−
∫ L

0

NTQ dx

)
= 0

(1.15)
where the vector a now contain the nodal temperatures as function of the time and
ȧ contain time derivatives of the nodal temperatures. As this expression is valid for
arbitrary cT vectors it is concluded that∫ L

0

BTAkB dx a +

∫ L

0

NTρAcN dx ȧ = −
[
NTAq

]L
0

+

∫ L

0

NTQ dx (1.16)

which also may be written as

Ka + Cȧ = fb + fl (1.17)

where

K =

∫ L

0

BTAkB dx

C =

∫ L

0

NTρAcN dx

fb = −
[
NTAq

]L
0

fl =

∫ L

0

NTQ dx

(1.18)

De�ning the force vector f as
f = fb + fl (1.19)

equation 1.17 may be written in a compact form as

Ka + Cȧ = f (1.20)

Since the vector a contain the nodal temperatures as function of the time and ȧ
contain time derivatives of the nodal temperatures (1.17) represents a system of
ODE's (ordinary di�erential equations) of order 1 and an approximation in time
must also be made. The matrix C is called the capacity matrix and is the only term
that di�ers from the steady state case.

EXAMPLE 1 - Calculation of element capacity matrix Ce

A linear one-dimensional spring element of length L is assumed. Moreover, the
area, A, the density ρ and the capacitivity c is assumed to be constant. The shape
functions for a linear spring element are given by

N e
1 = 1− x

L
N e

2 =
x

L
(1.21)
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The capacitivity matrix is according to equation (1.16) given by

Ce =

∫ L

0

NeTρAcNedx = ρAc


∫ L

0

N e
1N

e
1dx

∫ L

0

N e
1N

e
2dx∫ L

0

N e
2N

e
1dx

∫ L

0

N e
2N

e
2dx

 (1.22)

Inserting the element shape functions we arrive at

Ce = ρAc


∫ L

0

1− 2
x

L
+
x2

L2
dx

∫ L

0

x

L
− x2

L2
dx∫ L

0

x

L
− x2

L2
dx

∫ L

0

x2

L2
dx

 (1.23)

Integrating results in

Ce = ρALc


1

3

1

6

1

6

1

3

 (1.24)

1.5. Approximation in time of one-dimensional transient heat

�ow

The �nite element equations now have to be approximated in time. Di�erent choices
of the time approximation may be made but here only a linear time approximation
will be considered. The time is divided into a certain number of time-steps ∆t. The
discretization is assumed to start at the time τ = 0 where τ is the time coordinate,
see Figure 1.1.

t

t
i

t
i+1

 t

T

a
i

a
i+1

!

Figure 1.1: Integration in time.
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Since the temperatures is assumed to vary linearly within each time-step, the
variation of the temperature may according to Figure 1.1 be written as

a(τ) =
ai+1 − ai

∆t
τ + ai (1.25)

This approximation in time may also be written in terms of time functions (c.f.
shape functions) as

a(τ) = Giai +Gi+1ai+1 (1.26)

where Gi and Gi+1 are the linear time functions that according to (1.25) are

Gi = 1− τ

∆t
; Gi+1 =

τ

∆t
(1.27)

The derivative of the temperature in time may then immediately be written

ȧ(τ) = − 1

∆t
ai +

1

∆t
ai+1 =

ai+1 − ai

∆t
(1.28)

The temperatures ai at the time ti is now assumed to be known and it is then the
temperatures ai+1 at the time ti+1 that is to be determined. To introduce this choice
of the time approximation, the FE-formulation given by (1.17) is multiplied with a
weight function in time w(τ) and integrated over the time-step∫ ∆t

0

w(Ka + Cȧ) dτ =

∫ ∆t

0

wf dτ (1.29)

the integrals may be separated∫ ∆t

0

wCȧ dτ +

∫ ∆t

0

wKa dτ =

∫ ∆t

0

wf dτ (1.30)

the time approximation given in (1.25) and (1.28) is now inserted in (1.31)∫ ∆t

0

wC
ai+1 − ai

∆t
dτ +

∫ ∆t

0

wK

[
ai +

ai+1 − ai

∆t
τ

]
dτ =

∫ ∆t

0

wf dτ (1.31)

Since C, K, ai and ai+1 are independent of time

C
ai+1 − ai

∆t

∫ ∆t

0

w dτ + Kai

∫ ∆t

0

w dτ + K
ai+1 − ai

∆t

∫ ∆t

0

wτ dτ =

∫ ∆t

0

wf dτ (1.32)

This equation may now be divided by
∫ ∆t

0
wdτ which results in

C
ai+1 − ai

∆t
+ Kai + K

∫ ∆t

0

wτ dτ∫ ∆t

0

w dτ

ai+1 − ai

∆t
=

∫ ∆t

0

wf dτ∫ ∆t

0

w dτ

(1.33)
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Introducing Θ as the weighting parameter as

Θ =
1

∆t

∫ ∆t

0

wτ dτ∫ ∆t

0

w dτ

(1.34)

equation (1.33) may be written as

C
ai+1 − ai

∆t
+ K [ai + Θ (ai+1 − ai)] = f̄ (1.35)

where f̄ represents an average value of f and is given by

f̄ =

∫ ∆t

0

wf dτ∫ ∆t

0

w dτ

(1.36)

this load vector may also be assumed to vary linear in time and may then according
to (1.26) be written as

f(τ) = Gifi +Gi+1fi+1 = (1− τ

∆t
)fi +

τ

∆t
fi+1 (1.37)

The �nal form of the force vector may now be determined by inserting equation
(1.37) in (1.36) to get

f̄ = fi + Θ(fi+1 − fi) (1.38)

By solving (1.35) for ai+1 we get

ai+1 = (C + ∆tΘK)−1
[
(C−∆tK(1−Θ))ai + ∆t̄f

]
(1.39)

If a proper choice of Θ is made the equation above may be solved for ai+1 when the
current temperatures ai are known. Equation (1.39) may also be written as

K̂ai+1 = f̂ (1.40)

where

K̂ = (C + ∆tΘK)

f̂ =
[
(C−∆tK(1−Θ))ai + ∆t̄f

] (1.41)

K̂ and f̂ only contain known values and may be calculated at step ai.
The �nal task is now to choose the weight parameter Θ. It was shown earlier

that the weight function introduced in the weak form of the steady state heat �ow
could be chosen in several di�erent manners. This is also the case for the weight
parameter Θ.
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1.6. Choice of weight parameter Θ

The point collocation method, described in Ottosen and Peterson, is adopted to
determine the weight parameter Θ. The Dirac's δ-function may be chosen at di�erent
times in the time-step. Three common choices will be examined here; at τ = 0, at
τ = ∆t/2 and at τ = ∆t.

Choosing w = δ(τ − 0)
The weight parameter Θ was de�ned according to (1.34) that for a choice of w

as a dirac's δ-function at τ = 0 is written

Θ =
1

∆t

∫ ∆t

0

δ(τ − 0)τ dτ∫ ∆t

0

δ(τ − 0) dτ

=
1

∆t

0

1
= 0 (1.42)

This choice result in Θ = 0 giving that the new temperature at ai+1 may, according
to equation (1.39), be written as

ai+1 = ai −C−1∆tKai + C−1∆t̄f (1.43)

This choice result in a method that is called Forward Euler or Explicit Euler since
the temperatures at the next time-step is calculated from the temperatures at the
current time step only. Moreover, no inversion is required for the the conduction
matrix K.

Choosing w = δ(τ −∆t)
For a choice of w as a dirac's δ-function at τ = ∆t equation (1.34) becomes

Θ =
1

∆t

∫ ∆t

0

δ(τ −∆t)τ dτ∫ ∆t

0

δ(τ −∆t) dτ

=
1

∆t

∆t

1
= 1 (1.44)

This choice result in Θ = 1 giving that the new temperature at ai+1 may, according
to equation (1.39), be written as

ai+1 = (C + ∆tK)−1(Cai + ∆t̄f) (1.45)

This choice result in a method that is called Backward Euler and is an implicit
method since it requires an inversion of the conduction matrix K.

Choosing w = δ(τ −∆t/2)
For a choice of w as a dirac's δ-function at τ = ∆t/2 equation (1.34) becomes

Θ =
1

∆t

∫ ∆t

0

δ(τ − ∆t

2
)τ dτ∫ ∆t

0

δ(τ − ∆t

2
) dτ

=
1

∆t

∆t/2

1
=

1

2
(1.46)
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This choice result in Θ = 1/2 giving that he new temperature at ai+1 may, according
to equation (1.39), be written as

ai+1 = (C +
∆t

2
K)−1

[
(C− ∆t

2
K)ai + ∆t̄f

]
(1.47)

This choice result in a method that is called Crank-Nicolson from its founders and
is also an implicit method.

The choice of Θ = 0 is conditionally stable which means that a stable solution
is only achieved for ∆t smaller than a certain limit.

EXAMPLE 2 - Transient heat �ow through a concrete wall

Consider a 1m thick concrete wall. The temperature distribution for a transient
temperature change in the wall is going to be analysed for 12 hours of total time.
One-dimensional �ow is assumed since the analaysis is made for a part of the wall far
from the edges of the wall. On the inside boundary the temperature is held constant
at 0◦C and on the outside boundary the temperature is changed from 0◦C to 20◦C at
t=0. The initial temperature is 0◦C. The density ρ = 2400kg/m3, the speci�c heat
capacitivity c = 1000J/(K ·kg) and the thermal conductivity k = 1.4J/(K ·ms). The
calculation is made for 1m2 of the wall. The wall is divided with 10 one dimensional
linear elements. The element sti�ness matrices becomes

Ke =

[
14 −14
−14 14

]
and the element capcitivity matrices

Ce =

[
8 4
4 8

]
104

Analyses are made with the time stepping scheme described above for the three
choices of Θ = 0, 0.5 and 1 is performed. The total analysis time is 12 · 3600 s.

First, a choice of ∆t = 3600 s is made. Thus analyses for 12 time steps are
performed. Figure 1.2 show the temperature in the middle of the wall, (x = 0.5) for
the three choices of Θ and ∆t = 1 · 3600.

It is evident that the solution will become unstable for euler forward for a choice
of ∆t=3600s.

Secondly, a choice of ∆t = 0.24 ·3600 = 864 s is made. Thus analyses for 50 time
steps are performed. Figure 1.3 show the temperature in the middle of the wall,
(x = 0.5) for the three choices of Θ and ∆t = 1 · 3600. Figure 1.3 show that the
choice of Θ = 0.5, for this example, gives the solution that is closest to the exact
solution.
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Figure 1.2: Temperature at x=0 for the �rst 12 hours with a time step ∆t=3600s.
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Figure 1.3: Temperature at x=0 for the �rst 12 hours with a time step ∆t=864s.



2. Two- and three-dimensional

transient heat flow

2.1. Two dimensional transient heat equation - strong form

As for one dimension the balance equation for the steady-state case may be re-
written to be valid for the transient case by adding a heat capacity term as

− div(thq) + thQ = ρthc
dT

dt
(2.1)

where th is the thickness, q is the �ux, ρ is the density of the materia and c is
the heat capacity. By inserting the constitutive relation for two dimensional heat
conduction, Fourier's law, that is written

q = −D∇T (2.2)

The strong form of two-dimensional transient heat �ow may now be formulated as

Strong form of two-dimensional transient heat �ow

div(thD∇T ) + thQ = ρthc
dT

dt
; in region A

qn = h on Lh

T = g on Lg

(2.3)

2.2. Weak form of two-dimensional transient heat �ow

The strong form of two-dimensional transient heat �ow may be reformulated into
a weak form in the same manner as for the steady state heat �ow. The weak
form is established by multiply the balance equation (2.1) with an arbitrary time-
independent weight function v(x, y) and integrating over the region.

−
∫
A

v div(thq)dA+

∫
A

vthQda =

∫
A

vρthc
dT

dt
dA (2.4)

13
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The �rst term in this equation may be integrated by parts using the Green-Gauss
theorem ∫

A

v div(thq)dA =

∮
L

vthq
TndL−

∫
A

(∇v)T thqdA (2.5)

Use of this expression in (2.4) implies that∫
A

(∇v)T thqdA =

∮
L

vthq
TndL−

∫
A

vthQda+

∫
A

vρthc
dT

dt
dA (2.6)

Now, using that q = −D∇T , inserting the natural boundary condition qn = h
on Lh and rearranging the terms, the �nal weak form of two dimensional transient
heat �ow is established.

Weak form of two-dimensional transient heat �ow∫
A

(∇v)T thD∇TdA+

∫
A

ρthc
dT

dt
dA = −

∮
Lh

vthhdL−
∮
Lg

vthqndL+

∫
A

vthQdA

T = g on surface Sg

(2.7)
The main di�erence of the weak form of transient heat �ow compared to the

corresponding steady state case is that we now have derivatives both with respect
to the spatial coordinates and to the time. This implies that approximations for the
temperature must be made in both spatial coordinates and the time.

2.3. Spatial approximation of two-dimensional transient heat

�ow

As for the case of steady state heat �ow an approximation of the temperature is
introduced. The approximation may for the transient case be separated as

T (x, y, t) = N(x, y)a(t) (2.8)

where N(x, y) are the shape functions that is functions of x and y whereas a(t) are
the nodal temperatures that is functions of time. The weak form (2.7) contain both
∇T and dT/dt. Since a is independent of the spatial co-ordinates we may write

∇T = ∇Na = Ba (2.9)

and since N is independent of t we may write

dT

dt
= N

da

dt
= Nȧ (2.10)

Adopting the Galerkin method the scalar weight function v is chosen as

v = Nc = cTNT (2.11)
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and
∇v = cTBT where BT = ∇NT (2.12)

The approximation (1.10) and the choice of the weight function (1.13) is inserted
in the weak form of the one dimensional transient heat �ow (2.6) and also using the
fact that the vector c is independent of x and y results in

cT

(∫
A

(BTthDBdAa +

∫
A

NTρthcNdA ȧ +

∮
Lh

NTthhdL+

∮
Lg

NTthqndL−
∫
A

NTthQdA

)
= 0

(2.13)
where the vector a now contain the nodal temperatures as function of the time and
ȧ contain time derivatives of the nodal temperatures. As this expression is valid for
arbitrary cT vectors it is concluded that∫

A

(BTthDBdAa +

∫
A

NTρthcNdA ȧ = −
∮
Lh

NTthhdL−
∮
Lg

NTthqndL+

∫
A

NTthQdA

(2.14)
which also may be written as

Ka + Cȧ = fb + fl (2.15)

where

K =

∫
A

BTthD B dA

C =

∫
A

NTρthcN dA

fb = −
∮
Lh

NTthhdL−
∮
Lg

NTthqndL

fl =

∫
A

NTthQ dA

(2.16)

De�ning the force vector f as
f = fb + fl (2.17)

equation 2.25 may be written in a compact form as

Ka + Cȧ = f (2.18)

Since the vector a contain the nodal temperatures as function of the time and ȧ
contain time derivatives of the nodal temperatures (1.17) represents a system of
ODE's (ordinary di�erential equations) of order 1 and an approximation in time
must also be made. The matrix C is called the capacity matrix and is the only term
that di�ers from the steady state case.
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EXAMPLE 2 - Capacity matrix Ce for a two-dimensional linear triangle element

T
2

T
3

T
1

●

(x
1
,y
1
)

●

●

(x
3
,y
3
)

(x
2
,y
2
)

x

y

The capacity matrix in two-dimensions is written

C =

∫
A

NTρthcN dA (2.19)

For a linear triangle element it becomes

Ce = ρthcAe

 1/6 1/12 1/12
1/12 1/6 1/12
1/12 1/12 1/6

 (2.20)

where Ae is the element area.

2.4. Approximation in time of two-dimensional transient heat

�ow

The �nite element equations now have to be approximated in time. Di�erent choices
of the time approximation may be made but as for the one-dimensional case, only a
linear time approximation is considered. Since the approximation in time is scalar,
the time approximation that was made for the one-dimensional case is also valid for
two- and three-dimensional cases. It was concluded that the temperatures at the
next time step ai+1 could be written

K̂ = (C + ∆tΘK)

f̂ =
[
(C−∆tK(1−Θ))ai + ∆t̄f

] (2.21)

where the average force f̄ is

f̄ = fi + Θ(fi+1 − fi) (2.22)

K̂ and f̂ only contain known values that may be calculated at step ai. The choices
of the weight parameter Θ that was made for the one-dimensional case is also valid
for the two- and three-dimensional cases.
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2.5. Three-dimensional transient heat �ow

The strong form of three-dimensional form of transient heat �ow may be directly
stated as

Strong form of three-dimensional transient heat �ow

div(D∇T ) +Q = ρc
dT

dt
; in region V

qn = h on surface Sh

T = g on surface Sg

(2.23)

and the corresponding weak form as

Weak form of three-dimensional transient heat �ow∫
V

(∇v)TD∇TdV +

∫
V

ρc
dT

dt
dV = −

∫
Sh

vhdS −
∫
Sg

vqndS +

∫
V

vQdV

T = g on surface Sg

(2.24)

inserting approximation of T (x, y, z, t) and the choice of the weight function v(x, y, z)
according to Galerkin's method the �nal fe-form yields

Ka + Cȧ = fb + fl (2.25)

where

K =

∫
V

BTD B dV

C =

∫
V

NTρcN dV

fb = −
∫
Sh

vhdS −
∫
Sg

vqndS

fl =

∫
V

NTQ dV

(2.26)



Exercises – Transient heat flow 

 

T1. 
Consider a bar of length L, constant cross-sectional area A and constant thermal conductivity k. The 

bar is made of steel with density ρ and heat capacity c and it is provided with an external heat supply 

𝑄(𝑥) = 𝑄0(10 − 6𝑥/𝐿) of dimension [W/m]. The flow of heat is assumed to be one-dimensional in 

the axial direction of the bar. 

The balance equation for transient heat conduction is given by 

−
𝑑

𝑑𝑥
(𝐴𝑞) + 𝑄 = 𝜌𝐴𝑐

𝑑𝑇

𝑑𝑡
 

(a) Using the boundary conditions 𝑇(0) = 80°𝐶 and 𝑞(𝐿) = 105 W/m2 for 𝑡 ≥ 0, give the 

strong formulation of the problem. 

(b) Derive the corresponding weak formulation. 

(c) Derive the FE formulation of the problem. 

(d) Consider the bar as one element with linear temperature approximation and determine 

𝐊, 𝐂, 𝐟𝐛 and 𝐟𝐥. 

(e) Divide the bar into three equally long elements with linear temperature approximation in 

each of the elements and determine 𝐊, 𝐂, 𝐟𝐛 and 𝐟𝐥. 

At 𝑡 = 0, the temperature is 80°𝐶 in the whole bar. To determine the temperature distribution in the 

bar for 𝑡 > 0, a time-stepping procedure is adopted. A linear approximation of the temperature 

variation between time ti and ti+1 is assumed, yielding the time-stepping scheme 

𝐊̂𝐚i+1 = 𝐟 

where 

𝐊̂ = (𝐂 + ∆𝑡𝛩𝐊) 

𝐟 = [(𝐂 − ∆𝑡𝐊(1 − 𝛩))𝐚i + ∆𝑡𝐟]̅ 

The Forward Euler method is given by 𝛩 = 0 and the Backward Euler method given by 𝛩 = 1. 

(f) Consider the equation system obtained in (d). For 𝐿 = 6 m, 𝐴 = 2 ∙ 10−3 m2, 𝑘 = 104 W/mK, 

𝑄0 = 9 W/m, 𝜌 = 7800 kg/m3 and 𝑐 = 490 J/K∙kg, determine 𝐚1 manually by calculating 𝐊̂ 

and 𝐟 with use of 𝐚0. Insert the boundary condition (𝑇(0) = 80°𝐶) and solve for 𝐚1. Employ 



both the Forward Euler method and Backward Euler method, using the time step ∆𝑡 = 120 s, 

to solve the problem. 

(g) With help of Matlab, plot 𝑇(𝐿, 𝑡) for 0 ≤ 𝑡 ≤ 10 h, using again both the Forward Euler 

method and Backward Euler method, with the time step ∆𝑡 = 120 s, to solve the problem. 

What is the value at 𝑇(𝐿, 𝑡 = 10ℎ)? Compare with exercise 9.1 (g). 

(h) Repeat (g), now using the equation system obtained in (e). 

(i) Repeat (g) and (h) using ∆𝑡 = 360 s, what is observed for the different time stepping 

methods? 



Solutions, T1 

(a)   

𝐴𝑘
𝑑2𝑇

𝑑𝑥2
+ 𝑄 = 𝜌𝐴𝑐

𝑑𝑇

𝑑𝑡
 

𝑇(𝑥 = 0) = 80°𝐶 

𝑞(𝑥 = 𝐿) = − (𝑘
𝑑𝑇

𝑑𝑥
)

𝑥=𝐿
= 105 𝑊/𝑚2 

(b)  

∫
𝑑𝑣

𝑑𝑥
𝐴𝑘

𝑑𝑇

𝑑𝑥
𝑑𝑥

𝐿

0

+ ∫ 𝑣𝜌𝐴𝑐
𝑑𝑇

𝑑𝑡
𝑑𝑥

𝐿

0

= −(𝑣𝐴 ∙ 10)𝑥=𝐿 + (𝑣𝐴𝑞)𝑥=0 + ∫ 𝑣𝑄𝑑𝑥
𝐿

0

 

𝑇(𝑥 = 0) = 80°𝐶 

(c)  

𝐊𝐚 + 𝐂𝐚̇ = 𝐟b + 𝐟l 

  𝐊 = ∫ 𝐁T𝐴𝑘𝐁𝑑𝑥
𝐿

0
 ; 𝐂 = ∫ 𝐍T𝜌𝐴𝑐𝐍𝑑𝑥

𝐿

0
 

  𝐟b = −[𝐍T𝐴𝑞]0
𝐿 ;  𝐟l = ∫ 𝐍T𝑄𝑑𝑥

𝐿

0
 

(d)  

  𝐊 =
𝐴𝑘

𝐿
[

1 −1
−1 1

] W/K; 𝐂 =
𝜌𝐴𝑐𝐿

6
[
2 1
1 2

] J/K  

  𝐟𝐛 = [
(𝐴𝑞)𝑥=0

−𝐴 ∙ 10
] W; 𝐟𝐥 = Q0L [

4
3

] W 

(e)    

  𝐊 =
𝐴𝑘

(𝐿/3)
[

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

] W/K; 𝐂 =
𝜌𝐴𝑐𝐿

6
[

2 1 0 0
1 4 1 0
0 1 4 1
0 0 1 2

] J/K 

  𝐟𝐛 = [

(𝐴𝑞)𝑥=0

0
0

−𝐴 ∙ 10

] W;  𝐟𝐥 = Q0L [

1.556
2.667
2.000
0.778

] W 

 



(f)  

𝐚0 = [
80
80

]      ⇒    Forward Euler:   𝐊̂ = [
15288 7644
7644 15288

] J/K;   𝐟 = [
1860480 + ∆𝑡𝐴𝑞(𝑥=0)

1830000
] J 

                     Backward Euler: 𝐊̂ = [
15688 7244
7244 15688

] J/K;   𝐟 = [
1860480 + ∆𝑡𝐴𝑞(𝑥=0)

1830000
] J 

Solving the resulting systems: 

Forward Euler:    [
15288 7644
7644 15288

] [
80
𝑇2,1

] = [
1860480 + ∆𝑡𝐴𝑞(𝑥=0)

1830000
] 

  ⇒    7644 ∙ 80 + 15288 ∙ 𝑇2,1 = 1830000     ⇒     𝐚1 = [
80

79.70
]  K 

Backward Euler:      [
15688 7244
7244 15688

] [
80
𝑇2,1

] = [
1860480 + ∆𝑡𝐴𝑞(𝑥=0)

1830000
]  

  ⇒      7244 ∙ 80 + 15688 ∙ 𝑇2,1 = 1830000      ⇒      𝐚1 = [
80

79.71
] K 

(g,h) 

𝑇(𝐿, 𝑡 = 10ℎ) = 68.6°𝐶 (in all four cases). The same value as obtained in 9.1 (g), where a steady 

state was assumed. Hence, at 𝑡 = 10ℎ we have reached a steady state. 

 


