Matrix Algebra

Matrix Algebra

- Definitions
- Addition and Subtraction
- Multiplication
- Determinant
- Inverse
- System of Linear Equations
- Quadratic Forms
- Partitioning
- Differentiation and Integration

2.1 Definitions

- Scalar (OD matrix)

- Vector (1D matrix)

$$
\mathbf{a}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] ; \quad \mathbf{b}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] ; \quad \mathbf{c}=\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]
$$

Transpose

$$
\mathbf{a}^{\mathrm{T}}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]
$$

Transpose

$$
\mathbf{B}=\left[\begin{array}{lll}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23} \\
B_{31} & B_{32} & B_{33}
\end{array}\right] ; \quad \mathbf{C}=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22} \\
C_{31} & C_{32} \\
C_{41} & C_{42}
\end{array}\right] \quad \mathbf{B}^{\mathrm{T}}=\left[\begin{array}{lll}
B_{11} & B_{21} & B_{31} \\
B_{12} & B_{22} & B_{32} \\
B_{13} & B_{23} & B_{33}
\end{array}\right]
$$

2.1 Definitions, contd

- Matrix size, [m x n] or [i x j], ([row x col])
- Vector, [m x 1]

$$
\mathbf{C}=\left[\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22} \\
C_{31} & C_{32} \\
C_{41} & C_{42}
\end{array}\right] \quad[\mathrm{m} \times \mathrm{n}]=\left[\begin{array}{lll}
4 & \mathrm{a}
\end{array}\right]
$$

- Square matrix, (m=n) [m x m]
- Symmetric matrix, $\mathbf{B}=\mathbf{B}^{\mathbf{T}}$

2.1 Definitions, contd

- Diagonal matrix

$$
\mathbf{A}=\left[\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

- Identity matrix, (unit matrix), $\quad \mathbf{A I}=\mathbf{A}$

$$
\mathbf{I}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Zero matrix

$$
\mathbf{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] ; \quad \mathbf{0}=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

2.2 Addition and Subtraction

- Vector

$$
\mathbf{c}=\mathbf{a} \pm \mathbf{b}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \pm\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{1} \pm b_{1} \\
a_{2} \pm b_{2} \\
a_{3} \pm b_{3}
\end{array}\right]
$$

- Matrix
$\mathbf{C}=\mathbf{A} \pm \mathbf{B}=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32}\end{array}\right] \pm\left[\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22} \\ B_{31} & B_{32}\end{array}\right]=\left[\begin{array}{ll}A_{11} \pm B_{11} & A_{12} \pm B_{12} \\ A_{21} \pm B_{21} & A_{22} \pm B_{22} \\ A_{31} \pm B_{31} & A_{32} \pm B_{32}\end{array}\right]$

2.3 Multiplication - scalar

- Scalar - vector multiplication

$$
c \mathbf{a}=c\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
c a_{1} \\
c a_{2} \\
c a_{3}
\end{array}\right]
$$

- Scalar - matrix multiplication

$$
c \mathbf{A}=c\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right]=\left[\begin{array}{ll}
c A_{11} & c A_{12} \\
c A_{21} & c A_{22} \\
c A_{31} & c A_{32}
\end{array}\right]
$$

2.3 Multiplication - vector

- Scalar product, (vector - vector multiplication)

$$
\begin{gathered}
\mathbf{a}^{\mathrm{T}} \mathbf{b}=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
{[1 \times \mathrm{n}][\mathrm{n} \times 1]=[1 \times 1]}
\end{gathered}
$$

- Length of vector (cf. Pythagoras' theorem)

$$
|\mathbf{a}|=\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{n}^{2}\right)^{1 / 2}
$$

$$
|\mathbf{a}|=\left(\mathbf{a}^{\mathrm{T}} \mathbf{a}\right)^{1 / 2}
$$

2.3 Multiplication - vector

- Matrix product

$$
\begin{gathered}
\mathbf{a b}^{\mathrm{T}}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\
a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\
a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}
\end{array}\right] \\
{[\mathrm{m} \times 1] \quad[1 \times \mathrm{n}]=[\mathrm{m} \times \mathrm{n}]}
\end{gathered}
$$

2.3 Multiplication - matrix

- Matrix - vector multiplication

$$
\begin{aligned}
& \mathbf{c}=\mathbf{A} \mathbf{x}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
A_{11} x_{1}+A_{12} x_{2} \\
A_{21} x_{1}+A_{22} x_{2} \\
A_{31} x_{1}+A_{32} x_{2}
\end{array}\right] \\
& \text { [} \mathrm{m} \times \mathrm{n} \text {] }[\mathrm{n} \times 1 \mathrm{l}]=[\mathrm{m} \times 1] \\
& \text { [3×2] [2×1] }=[3 \times 1]
\end{aligned}
$$

- Vector - matrix multiplication

$$
\begin{aligned}
& \mathbf{c}^{\mathrm{T}}= \mathbf{x}^{\mathrm{T}} \mathbf{A}=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right] \\
&=\left[\begin{array}{lll}
x_{1} A_{11}+x_{2} A_{21} & x_{1} A_{12}+x_{2} A_{22} & x_{1} A_{13}+x_{2} A_{23}
\end{array}\right] \\
& {[1 \times \mathrm{m}] \quad[\mathrm{mxn}]=\left[\begin{array}{ll}
1 \times \mathrm{n}]
\end{array}\right.}
\end{aligned}
$$

2.3 Multiplication - matrix

- Matrix - matrix multiplication

$$
\begin{aligned}
\mathbf{C}=\mathbf{A B}= & {\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22} \\
A_{31} & A_{32}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right] } \\
= & {\left[\begin{array}{ll}
A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{12}+A_{12} B_{22} \\
A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{12}+A_{22} B_{22} \\
A_{31} B_{11}+A_{32} B_{21} & A_{31} B_{12}+A_{32} B_{22}
\end{array}\right] } \\
& {[\mathrm{mxn}] \quad[\mathrm{nx} \mathrm{p}]=[\mathrm{m} \times \mathrm{p}] }
\end{aligned}
$$

Note! $\mathrm{AB} \neq \mathrm{BA}$

2.3 Multiplication - matrix, contd

- Product of transposed matrices

$$
(\mathbf{A B})^{\mathrm{T}}=\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}
$$

$$
(\mathbf{A B C})^{\mathrm{T}}=((\mathbf{A B}) \mathbf{C})^{\mathrm{T}}=\mathbf{C}^{\mathrm{T}}(\mathbf{A B})^{\mathrm{T}}=\mathbf{C}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}
$$

- Distribution law

$$
\begin{aligned}
(\mathbf{A}+\mathbf{B}) \mathbf{x} & =\mathbf{A} \mathbf{x}+\mathbf{B} \mathbf{x} \\
\mathbf{x}^{\mathrm{T}}(\mathbf{A}+\mathbf{B}) & =\mathbf{x}^{\mathrm{T}} \mathbf{A}+\mathbf{x}^{\mathrm{T}} \mathbf{B} \\
(\mathbf{A}+\mathbf{B}) \mathbf{C} & =\mathbf{A C}+\mathbf{B C} \\
\mathbf{C}(\mathbf{A}+\mathbf{B}) & =\mathbf{C A}+\mathbf{C B}
\end{aligned}
$$

2.4 Determinant

- The determinant may be calculated for any square matrix, [$\mathrm{n} \times \mathrm{n}$]
- Cofactor of matrix, $\mathbf{A} \quad$ (i=row, $k=$ column $)$

$$
A_{i k}^{\mathrm{c}}=(-1)^{i+k} \operatorname{det} M_{i k}
$$

- Expansion formula

$$
\operatorname{det} \mathbf{A}=\sum_{k=1}^{n} A_{i k} A_{i k}^{\mathrm{c}}
$$

where i indicates any row number in the range $1 \leq i \leq n$.

2.4 Determinant, examples

Cofactors

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \begin{aligned}
& \mathbf{A}_{11}^{c}=(-1)^{(1+1)} 4=4 \\
& \mathbf{A}_{12}^{c}=(-1)^{(1+2)} 2=-2
\end{aligned}
$$

Determinant

$$
\operatorname{det} \mathbf{A}=1 \cdot 4+2(-4)=-2
$$

Cofactors
\(\mathbf{B}=\left[\begin{array}{lll}1 \& 2 \& 3

4 \& 5 \& 6

7 \& 0 \& 5\end{array}\right] \quad |\)| $\mathbf{B}_{11}^{c}=(-1)^{(1+1)}(5 \cdot 5-6 \cdot 8)=-23$ |
| :--- |
| $\mathbf{B}_{21}^{c}=(-1)^{(2+1)}(2 \cdot 5-3 \cdot 8)=-14$ |
| $\mathbf{B}_{31}^{c}=(-1)^{(3+1)}(2 \cdot 6-3 \cdot 5)=-3$ |

Determinant

$$
\operatorname{det} \mathbf{B}=1(-23)+4 \cdot 14+7(-3)=12
$$

2.5 Inverse Matrix

- The inverse \mathbf{A}^{-1} of a square matrix \mathbf{A} is defined by

$$
\mathbf{A}^{-1} \mathbf{A}=\mathbf{A A}^{-1}=\mathbf{I}
$$

- The inverse may be determined by the cofactors, where

$$
\operatorname{adj} \mathbf{A}=\left[\begin{array}{cccc}
A_{11}^{\mathrm{c}} & A_{12}^{\mathrm{c}} & \cdots & A_{1 n}^{\mathrm{c}} \\
A_{21}^{\mathrm{c}} & A_{22}^{\mathrm{c}} & \cdots & A_{2 n}^{\mathrm{c}} \\
\vdots & \vdots & & \vdots \\
A_{n 1}^{\mathrm{c}} & A_{n 2}^{\mathrm{c}} & \cdots & A_{n n}^{\mathrm{c}}
\end{array}\right]^{\mathrm{T}}
$$

is the adjoint of \mathbf{A} and

$$
\mathbf{A}^{-1}=\operatorname{adj} \mathbf{A} / \operatorname{det} \mathbf{A}
$$

note that \mathbf{A}^{-1} only exists if $\operatorname{det} \mathbf{A} \neq 0$

2.4 Inverse, examples

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \quad \operatorname{adj} \mathbf{A}=\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right] \\
\mathbf{A}^{-1}=\operatorname{adj} \mathbf{A} / \operatorname{det} \mathbf{A}=\left[\begin{array}{cc}
4 & -2 \\
-3 & 1
\end{array}\right] \frac{1}{(-2)}
\end{gathered}
$$

What happens if $\operatorname{det} \mathbf{A}=0$?

$$
\mathbf{B}=\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 5
\end{array}\right] \quad \operatorname{adj} \mathbf{B}=\left[\begin{array}{ccc}
-23 & 22 & -3 \\
-14 & -16 & 6 \\
-3 & 6 & -3
\end{array}\right]^{\mathrm{T}}
$$

$$
\mathbf{B}^{-1}=\operatorname{adj} \mathbf{B} / \operatorname{det} \mathbf{B}=\left[\begin{array}{ccc}
-23 & 14 & -3 \\
-22 & -16 & 6 \\
-3 & 6 & -3
\end{array}\right] \frac{1}{12}
$$

2.6 Systems of Linear Equations

-number of equations is equal to number of unknowns

- Linear equation system

$$
\mathbf{A x}=\mathbf{b}
$$

A is a square matrix [$n \times n$], \mathbf{x} and $\mathbf{b}[\mathrm{n} \times 1]$ vector

$$
\begin{aligned}
& \mathbf{b}=\mathbf{0}=>\text { Homogeneous system } \\
& \mathbf{b} \neq \mathbf{0}=>\text { Inhomogeneous system }
\end{aligned}
$$

- Assume that $\operatorname{det}(A) \neq 0$

$$
\mathbf{x}=\mathbf{A}^{-1} \mathbf{b}
$$

2.6 Linear Equations

-number of equations is equal to number of unknowns

- Homogeneous system $\mathbf{b}=\mathbf{0}$, (trivial solution: $\boldsymbol{x}=\mathbf{0}$)
$\mathrm{Ax}=\mathbf{0}$
- If $\operatorname{det} \mathbf{A}=0$, a non-trivial solution exists - Eigenvalue problems
- If $\operatorname{det} \mathbf{A} \neq 0$, no non-trivial solution exists
- Inhomogeneous system $\mathbf{b} \neq \mathbf{0}$
$\mathbf{A x}=\mathbf{b} ; \quad \mathbf{b} \neq \mathbf{0}$
- If $\operatorname{det} \mathbf{A} \neq 0$, one unique solution given by (2.53) exists
- If $\operatorname{det} \mathbf{A}=0$, no unique solution exists. Depending on the specific b-matrix we may have no solution or an infinity of solutions

2.8 Quadratic forms and positive definiteness

- If

$$
\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x}>0 \quad \text { for all } \mathbf{x} \neq \mathbf{0}
$$

- then the matrix \mathbf{A} is positive definite

$$
\text { If } \mathbf{A} \text { is positive definite then } \operatorname{det} \mathbf{A} \neq 0
$$

- If \mathbf{A} is positive definite, all diagonal elements must be positive

2.9 Partitioning

The matrix A may be partitioned as

$$
\mathbf{A}=\left[\begin{array}{cc:c}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
\hdashline A_{31} & A_{32} & A_{33}
\end{array}\right]
$$

and if

$$
\left.\begin{array}{ll}
\mathbf{B}=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] ; & \mathbf{C}=\left[\begin{array}{l}
A_{13} \\
A_{23}
\end{array}\right] \\
\mathbf{D}=\left[\begin{array}{ll}
A_{31} & A_{32}
\end{array}\right] ; & \mathbf{E}=\left[A_{33}\right.
\end{array}\right]
$$

A may be written

$$
A=\left[\begin{array}{ll}
B & C \\
\mathbf{D} & \mathbf{E}
\end{array}\right]
$$

2.9 Partitioning, contd

An equation system can be written

$$
\mathbf{A x}=\mathbf{f}
$$

with

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] ; \quad \mathbf{f}=\left[\begin{array}{l}
f_{1} \\
f_{2} \\
f_{3}
\end{array}\right]
$$

introduce

$$
\mathbf{y}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] ; \quad \mathbf{z}=\left[x_{3}\right] ; \quad \mathbf{g}=\left[\begin{array}{l}
f_{1} \\
f_{2}
\end{array}\right] ; \quad \mathbf{h}=\left[f_{3}\right]
$$

The partitioned equation system is written

$$
\left[\begin{array}{ll}
B & C \\
D & E
\end{array}\right]\left[\begin{array}{l}
\mathbf{y} \\
z
\end{array}\right]=\left[\begin{array}{l}
\mathbf{g} \\
\mathbf{h}
\end{array}\right]
$$

or

$$
\begin{aligned}
& \mathrm{By}+\mathrm{Cz}=\mathbf{g} \\
& \mathrm{Dy}+\mathbf{E z}=\mathbf{h}
\end{aligned}
$$

2.10 Differentiation and integration

- A matrix \mathbf{A}

$$
\mathbf{A}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right]
$$

- Differentiation

$$
\frac{\mathrm{d} \mathbf{A}}{\mathrm{~d} x}=\left[\begin{array}{ccc}
\frac{\mathrm{d} A_{11}}{\mathrm{~d} x} & \frac{\mathrm{~d} A_{12}}{\mathrm{~d} x} & \frac{\mathrm{~d} A_{13}}{\mathrm{~d} x} \\
\frac{\mathrm{~d} A_{21}}{\mathrm{~d} x} & \frac{\mathrm{~d} A_{22}}{\mathrm{~d} x} & \frac{\mathrm{~d} A_{23}}{\mathrm{~d} x}
\end{array}\right]
$$

- Integration

$$
\int \mathbf{A} \mathrm{d} x=\left[\begin{array}{lll}
\int A_{11} \mathrm{~d} x & \int A_{12} \mathrm{~d} x & \int A_{13} \mathrm{~d} x \\
\int A_{21} \mathrm{~d} x & \int A_{22} \mathrm{~d} x & \int A_{23} \mathrm{~d} x
\end{array}\right]
$$

