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ABSTRACT

The dynamic interaction between a non-viscid, compressible
fluid and an elastic structure is studied. Finite element
formulations, using the weighted residual method, are
derived. Different primary variables in the fluid domain
are used and different source functions are considered.

When a potential field is used, the dynamic interaction
between fluid and structure yields nonsymmetric matrices.
In addition to these, new symmetric formulations for
transient analysis are presented.

Some nonlinear fluid behaviour is taken into consideration.
Applications to a cavitating fluid due to elastic wave
propagation are described.

Numerical experiments show good agreement with what could
be expected from a physical point of view. The nonlinear
formulation shows good agreement with analytical results.

Key words

Finite element method, coupled problem, fluid-structure
interaction, transient, acoustics, cavitation, time
stepping, symmetric, nonlinear  acoustics, submerged
structures.
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1. INTRODUCTION

1.1 Finite elements in fluid-structure analysis

During the last 25 years, the Finite Element Method as a
tool for solving problems in structural mechanics and
continuum mechanics has developed from an exclusive
research area into an everyday reality for both researchers
and practising engineers. The reason for this dynamic
development of the Finite Element Method is of course its
close relation to the everyday engineering need for
analyzing complex structures, along with the development of
powerful computers. During this process, mathematicians
have given the finite element method a firm mathematical
form, using standard mathematical tools such as calculus of
variation, weak solution technique, Rayleigh-Ritz method
and the whole apparatus in error analysis. It would seem
that these two branches have developed quite independently
(see Vichnevetsky [46]). As computer capacity expanded,
there was an increasing wish to explore more sophisticated
physical phenomena and to do so with increasing precision
by the use of the Finite Element Method. In the early
seventies, finite element research began in the field of
fluid mechanics and in 1974 the first conference on that
topic was held at Swansea, UK. In a paper at that
conference 0.C. Zienkiewicz answered the question 'Why
Finite Elements?' from the 1974 horizon. (See Zienkiewicz
[48]). Almost a decade later (1982) the same author was
able to present a far more detailed answer to that question
in a retrospective paper ©presented at the fifth
International Symposium of Finite Elements for Flow
Problems (see Zienkiewicz et al [49]).In that paper the use
of the Finite Element Method is divided into subareas such
as

slow viscid flow

laminar flow

turbulent flow

shallow water flow
meteorology

acoustic phenomena
fluid-structure interaction

XX X X X X X

and arguments are made about research penetrations and the
advantages and drawbacks of the Finite Element Method. I

Introduction
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shall not repeat these arguments here but refer instead to
that paper for such a discussion. A series of proceedings
(see [55]), of which the paper cited above 1is a
representative, gives a good idea of the state of research
in applied finite elements in fluid mechanics.

The present work is confined to the last two areas listed
above. Subsection 1.2 gives examples of the objectives of
this work and in the introduction to Chapter 2 a formal
definition is given. Let us just note that in this work,
the fluid is regarded as compressible and inviscid.

Among the first working in this field were Gladwell and
Zimmermann who presented two papers in the middle of the
1960s (see Gladwell at al [19] and Gladwell [20]). In these
papers, finite element formulations are derived for coupled
fluid-structure vibrations, using both displacement and
fluid pressure as fluid unknowns, although the former did
not work satisfactorily. Some years later Cragg, in a
series of papers dated 1970-1973, presented a variational
formulation of the coupled problem in terms of fluid
pressure (Cragg [8]-[10]).

Fluid-structure interaction touches upon other finite
element disciplines and questions in discrete analysis.
Eigenvalue analysis is discussed by Daniel [12], [13].
Basically fluid-structure formulations lead to nonsymmetric
matrices. However, this can be avoided, for example by
matrix manipulations as is done by Tong [43] and Felippa
[18], although the latter is closely related to
formulations that may be achieved directly via the
differential equations. When passing from continuous
formulations to discrete ones, infinite domains must be
truncated. Different methods can be applied, such as
boundary element methods used by Amin and Wilton [1] where
arguments are made for high order polynomials compared to
low order polynomials. In Szmidt [44], a transmitting
boundary is constructed by wusing the fluid eigenmodes.
Infinite elements are used by many authors such as Bettess
[4], Bettess and Zienkiewicz [5], Sharan [39]. Time
stepping routines for transient analysis are developed by,
for example, Zienkiewicz and Taylor [47] for nonsymmetric,
coupled problems such as fluid-structure interaction. A
nonlinear problem arises because the fluid lacks the
ability to withstand negative absolute pressure. Such
problems are discussed, inter alia, by Newton [23]—[26].

Chapter 1
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An excellent review of the state of the art in
fluid-structure analysis is presented by Zienkiewicz et al
{50} and a good insight can be obtained in Hinton et al
27|. A discussion of the finite element method in
practical acoustics is given in Stanko et al [37]. Finally,
methods for dealing with non-linearized fluid flow without
elastic boundaries are presented by Hughes et al [21] and
Duncan et al [14].

1.2 The aim of the present analysis

The present work is confined to fluid-structure interaction
and acoustic phenomena. The aim is to present, within the
restrictions given in Chapter 2, general finite element
descriptions using different primary variables and allowing
different source terms in the fluid, some of which are
illustrated and checked numerically.

In order to give a physical interpretation of the aim of
this work some examples to which the theory is applicable
are presented in the following.

A liquid container is exposed to external transient
structural load. What are the stresses in the container due
to this load? The liquid is part of the overall behaviour
as it interacts with the structure.

L N
~l | -
e
B R
] L
S I e

Figure 1.1. Filled or partially filled liquid container
exposed to external transient load

Introduction
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In a chemical industry there is a safety valve. When the
valve blows, the air pressure may reach very high levels.
How high? Can it cause ear damage to people close to the
valve?

Figure 1.2. Sudden release of air under pressure

A vibrating equipment is placed in an enclosed space with
elastic walls. As the equipment vibrates, the wall does
likewise. What air pressure levels are we likely to get at
a certain point outside the walls?

\

Figure 1.3. Vibrating equipment in an enclosed space with
elastic walls

Finally, a submerged structure is exposed to underwater
blast loading. The blast wave reaches the structure, which
deforms, and the reflected wave causes the fluid to
cavitate.

Chapter 1
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Figure 1.4. Submerged structure exposed to underwater
explosions

1.3 Summary of contents

Chapter 2 starts with a formal definition of the goal of
this work: what effects should the model consider? Little
attention is given to the structure on its own The aim is
to describe the fluid and the interaction between fluid and
structure using different variables in the fluid
description. Some nonlinear behaviour is also taken into
consideration.

In Chapter 3, finite element models are derived. Different
primary variables are used to describe the fluid. The
scalar field descriptions are non-symmetric, but three
symmetric formulations are also given. Finally, a model for
nonlinear wave propagation is given, with special
application to cavitation.

Chapter 4 deals with the computer programming needed during
the course of the work.

Numerical examples verifying the models and illustrating
the different possibilities within the models are presented
in Chapter 5.

Finally, Chapter 6 contains some concluding remarks:
general results achieved, original features and ideas for
future research and development.

Introduction
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1.4 Notations

Appendix A contains a list of the notations used here. Some
general remarks must be made however. In Chapter 2 8/3t is
used for time derivatives but in Chapter 3, in passing to

finite element modelling, ' i{s used. As scalar product we

use '+' and as vectorial product 'x'. Vectors are written
in boldface.

The finite element formulations using different primary
variables or the symmetric formulations give different
coupling matrices and load matrices. Nevertheless, the same
notation is used in all formulations for a matrix connected
with a specific phenomenon. For instance the coupling mass
matrix is always called MC even if its content or location

in a global matrix changes when another formulation is
used. It is my belief, however, that the confusion in doing
so is less than the confusion that would arise if new
notations were introduced in each new formulation.

There are notations not listed in Appendix A, but these are
used only locally in specific subsections and are never
referred to from any other subsection.

References are made by name and a number in square brackets
which refers to the list in Appendix D.

Chapter 1



- 17 -

2. MATHEMATICAL DESCRIPTION

In this chapter, a mathematical description and a
mathematical derivation are given. The main interest is the
study of the structural behaviour as it interacts with some
fluid. Since the fluid is the reason for the structural
behaviour, the main effort will be directed at deriving and
describing the mathematics of the fluid and the fluid-
structure interaction, and only little attention will be
given to the structural parts on their own.

By way of introduction, in the previous chapter we listed
some applications for the wmodel presented here. These
applications can be interpreted as a working definition of
our model and they are easily restated into a verbal
definition. A structure surrounds, or is surrounded by, a
fluid. We allow the structure to have openings and the
fluid to be infinite. The structure is subjected to forces
or prescribed motions, the fluid to body forces or mass
inflow. The fluid 1is thought of as an inviscid and
compressible fluid, and its boundary consists of structural
members or a free surface with a prescribed external
pressure. On this free surface we allow gravitational
(linearized) waves. The fluid is regarded as a continuum in
areas not subjected to a mass inflow, that is, the fluid
particles maintain the same topological relationship at all
times in those areas. Along the structural members, the
fluid recognizes the structural displacements and the
structural members recognize the fluid pressure as a
distributed load.

2.1 Structure

The structural components can be formulated as

L(us) = Fs(r,t), (2.1)

where L is a partial differential operator with respect to
time and space. u_ is the structural displacement vector,

which is a function of location r and time t. Finally, FS

is an external time dependent load.

The fluid influence on the structure will manifest itself

through the surface load vector (the subscript ’s’ denotes
structure and *f’ fluid)

Hathematical description
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Ff(r,t) = p(r, t)n, (2.2)

where p is the unsteady fluid pressure and n is the outward
unit normal vector at the fluid-structure interface.

2.2 Fluid

The governing equations for the fluid can be obtained from
most books on fluid dynamics (see Cole [7]), but it is
useful to make a complete derivation of these equations so
as to fully understand the simplifications that are made
along the way.

Mass balance for an arbitrary material volume V(t) gives

d A —
W( dV) = Jv(t)q dV, (23)

p
V(t)

where p is the density and q is the added fluid mass per
unit volume and time. Reversal of the order between
differentiation and integration (see Appendix B) yields

A, o vay -
J;(t)(dt + p vev)dV = J;(t)q dv,

where v 1is the {fluid velocity field. Because the volume
V(t) is arbitrary, we have

k=3

+ P vev = q. (2.4)

215

We neglect viscosity, although later on when the system
matrices are defined a Rayleigh-type damping can be taken
into consideration. Internal forces acting upon a volume
V(t) in the fluid act at the boundary S(t) of that volume.
Furthermore, they are perpendicular to the boundary, which
is a consequence of the fluid being inviscid. External
forces are the body forces b (per mass unit). Conservation
of linear momentum yields

d
-— pv dV = - Pn dS + pb dV + dv,
dtj\/(t)pv jsmp JV(t)p fvmqvq

(2.5)

Chapter 2
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where vq is the velocity of the added fluid mass.

Applying Appendix B to the left-hand side and Gauss theorem
the first term on the right-hand side, we have

f [g—t(,av) + ﬁv(v-v)]dv - f (=vB + b + Qv )av.
V(t) v(t)
As before, the volume is arbitrary so we have
d , . o ~ "
Fe(Pv) + pv(vev) = -vp + fb + Wy (2.6)

Now, using Eq. (2.4),

—-@ Ad_v-— —A * A(i.—.v.
qoPV) =qp v+ P ge=av - p(vev)v + s

Combining this result with Eq. (2.6) we obtain

5 dv o A
P gc="Vb+ pb - q(v ~ vq). (2.7)

Egqs. (2.4) and (2.7) are sufficient if we consider an
incompressible fluid for which p is a known and time-
invariant quantity. These equations can then be solved with
respect to p and v. If we consider a compressible fluid, we
need one more relation containing p and p. We assume the
fluid motion to be independent of temperature and therefore
the additional equation (equation of state) is

A

b = 5(p). (2.8)

Summing up the results so far

2 p Tt vp = pb - q(v - vq), (2.9)

Nathematical description
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2.2.1 Linear fluid

The physical model of the fluid, as expressed by Eq. (2.9),
contains effects that can be neglected for our purpose.
These deletions are discussed in this subsection.

The variation of the density is divided into two parts, one
that contains a time-dependent part (p) and one that
contains the static value (ps). Thus

p=rp,+0p
where vp, = 0. The first equation of (2.9) can be rewritten

dp

g P (1 ——)V°V= q.

S

If we assume the variation in time to be far less than the
static value, that is

lBi—(( 1

Ps

we have

dp

gt vV = q.
If we deal with the second equation of (2.9) in the same
way, we end up with the system

-

dp+ Vv =
dt p ‘_qs

dv A
1Ps a¢ © VP

psb - q(v - vq), (2.10)

Chapter 2
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The total time derivatives of p and v are

dp _ dp .

dc = gg T Ve
dv ov
=gt (vov.

The convective terms in these expressions and the influence
of the added fluid mass q on the second equation in Eq.
(2.10) are without significance under certain conditions,
namely that the fluid velocity is considerably smaller than
the speed of sound (these are discussed in detail in
Appendix C). Under such conditions Eq. (2.10) yields

dp

Fc PV = d (2.11)
av A
pS 'a—g-'i* vVp = pr (212)

These two equations together with the equation of state
constitute a physical model for a linearized flow. They
will be used further in the next subsection (2.2.2) as a
basis for a cavitation model.

We can simplify the equations further. As was done in the
case of density, we divide the pressure intoc two parts, p
and Py (same notation as for p), and by linearizing the

equation of state we write

. dp
= + ~ + ) A s
b=p,+pPRDp, p(dp)p:ps

where P is assumed constant. By introducing a new constant

_ | c9p.
= |@pp=p,
we have
b = c2p. (2.13)

Mathematical description
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Eq. (2.11) is then differentiated with respect to time

2
s\ oo 0 O
at

Eq. (2.12) is substituted into this expression, yielding

2
Ir 4. _vp) = 94
6t2+v(psb Vp)—at.

In this relation, p is replaced by p using Eq. (2.13) and p
is replaced by p + P> implying

62

at

k=)

= 02V2p + v2pS - psvob + g%—

o

From the definition of P above, the term V2ps = O so the

final result reduces to a wave equation with source terms

2

Q
o

= czvzp - psV°b + g%. (2.14)

(\Y)

at

By wusing Eq. (2.13) we may instead express the wave
equation in terms of the pressure

2
= C2V2p - c2psV°b e %%‘ (2.15)

Q
T

[\

dt

We now return to Egs. (2.11-12). We apply the gradient to
the first and the partial time derivative to the second of
these equations, and solve with respect to v to get

= Py(vev) + 2 - S yq. (2.16)
S

Chapter 2
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It may be noted that

v(vev) = v2v + vx(vxv).

For a perfect fluid, as long as the body forces are
derivable from a potential function, the velocity field
once irrotational remains that way. Thus

vxv = 0.

This may also be regarded as a constraint - we are only
interested in conservative solutions. If this constraint is
imposed on Eq. (2.16) we once again obtain the wave
equation, now in terms of the velocity field,

2 2
Q—%-: 02V2V'+ g%-— £ vq. (2.17)
dt Pg
If the displacement field u, of the fluid is introduced,
B auf
V=3t

we can integrate Eq. (2.17) with respect to time,
(disregarding the initial state for u, and b and the

f
convective term as before), obtaining
2
d™u 2
5= = <Py, + b - & v, (2.18)
dt Ps
where
t
= [ q dr.
0

Hence the displacement field also satisfies the wave
equation.

The assumption that the velocity field is irrotational
implies that the displacement field also has this property,
i.e.

Mathematical description
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uf = V\l/, (219)

where Y is a potential function to be introduced. Let us
further introduce the potential associated with the body
forces

b = v. (2.20)
Eq. (2.18) yields
2 2
V[—?—;—CZV2\P—¢+C—Q] =0

t P

and therefore the function inside the brackets 1is
independent of position and depends on time only. Because
we can add an extra function of time to Y without changing

the displacement field u, we have with no loss of
generality
2 2
5—‘5 = vy + - S q. (2.21)
at Py

Summing up the alternative formulations obtained in this
subsection we have

9P _ 22, _ , veb + 24
5 =CVp-pyV b + 70 (2.22a)
at
2
9p _ 02V2p - c2p v+b + 2 Qg, (2.22b)
2 s Jt
at
2 2
v 2 2 db ¢
——2=CVV+5t——p—Vq, (2.22c)
at
62“f 2.2 2
T:cvuf+b——VQ, (2.22(1)
dt Ps

Chapter 2
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2 2
¥ 2y + O - S o. (2.22¢)
at S
In the derivation of these equations, we introduced b as
the source of influence inside the fluid. Later, we assumed
the existence of a potential ¢ to the body forces. The
relation b = v might be introduced into Eq. (2.22b), which
would then change to

p)
9P _ 2205 - pb) + =& (2.23)
6t2 S at

jol}

where pSQ) can be interpreted as a prescribed pressure

quantity applied inside the fluid domain.

2.2.2 Nonlinear fluid

Up to now we have regarded the fluid as a linear continuum.
There has been a linear relationship between internal
stresses and displacements or, by using the nomenclature of
Subsection 2.2.1

Under some circumstances, this linear relationship does not
adequately describe what 1is actually happening in the
fluid. When an elastic wave that propagates through a fluid
reaches a structure boundary it will reflect. Depending on
the density of the fluid, the mass and the stiffness of the
structure boundary, the reflection factor may take any
value between -1 and +1. If the fluid is comparatively
incompressible (in some sense) and the structure is
pliable, say a steel construction in water, the reflection
factor is likely to be negative. The result is that the
incident wave carrying a high positive pressure will give
rise to a reflected wave with high negative pressure. As
long as the magnitude of the negative pressure is well
above the hydrostatic pressure, this is acceptable, but
when the absolute pressure drops below zero this is not
acceptable.

Mathematical description
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Observations indicate that when the absolute pressure drops
below zero (possibly depending not only on the magnitude of
the pressure but also on the rate of pressure drop) a field
of micro-bubbles called cavities is formed (see Cole [7],
and Plesset [35]). This formation of micro-bubbles is not
discrete but allows a continuum treatment of the
phenomenon. A zone containing cavities has only limited
ability to withstand negative absolute pressure, but the
exact physical behaviour of cavity formation is not yet
fully understood.

In the following derivation of a cavitating fluid model, we
proceed from Egs. (2.11) and (2.12)

dp

a + psvov = q, (2.24)
av A

pS a"" VD = psb. (225)

By differentiating Eq. (2.24) with respect to time and
eliminating the velocity field we have

IP_ P55 = —p veb+ 24
at2 VP = pst+6t' (2.26)

A constitutive equation linking density and pressure might
be written as

o

3
=P, *p=p,+ olp, 5%), (2.27)

where P, is the reference pressure, p the ambient value of
the pressure and o is a suitable, nonlinear function of p

and dp/dt. Because we might assume that V2pS = 0, we have

2 d
—5 -~ VPp= —pSV°b + &4 (2.28)

Experiment show that a fluid has some slight ability to
withstand tensile forces (See Cole [7]), but there is no

Chapter 2
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agreement on the magnitude of the parameters that might be
involved in o.

St¥#¥ll, quite an elaborate constitutive law would be
- gpy _ 9p
p =0(p. 37) =alp)p + Blp)z; (2.29)

which, in the numerical experiments presented in Chapter 5,
is simplified to

B(p) =0, (2.30)
2 2

a(p) =c¢ when p > -p_/c”, (2.31a)
2

a(p) = ~p/p when p < -p_/c”, (2.31b)

although nothing 1in this formulation excludes more
elaborate forms of constitutive equations. In fact, in the
formulation we use o without specifying its content. The
consequence of Egs.(2.30-31) is that, as long as the
absolute pressure is above zero, there is a linear relation
between the ambient value of density and pressure and that,
when the ambient pressure drops to P this value is

maintained during expansion.
Eq. (2.28) together with the constitutive law in Eq. (2.29)
constitutes a nonlinear wave equation and is of course also

valid for other problems with a nonlinear propagating
velocity in addition to a cavitating fluid.

2.2.3 Boundary conditions

At the beginning of this chapter we listed some features
our model should be able to take into consideration. These
primarily concerned the fluid boundary. Later on in Section
2.2.1, more features were introduced in the fluid domain
resulting in a simplified wmathematical fluid model as
compared to the basic equations stated in Eq. (2.9). In
this subsection, the fluid boundary conditions listed in
the introduction of this chapter are given a mathematical
description. We divide the fluid boundary into four
different parts according to their properties, namely

Mathematical description
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S1 The wet surface, i.e., the fluid-structure interface.
82 A free surface with prescribed external pressure where
we allow linearized waves (gravitational waves).

83 Fixed surface with prescribed external pressure.

S4 An energy absorbing surface, i.e., a surface able to

transmit the incident wave.

We assume that the fluid mass inflow q = 0 in the
neighbourhood of the boundary and we are thereby able to
treat the fluid close to the boundary as a continuum. A
consequence of the continuum hypothesis is that the
displacement field at any time must be a continous mapping
of the initial state. Boundary particles must therefore
remain as boundary particles and interior particles remain
as interior particles at all times.

For each part of the boundary we wish to express the
boundary conditions in different primary variables
according to the finite element formulation in mind. In
Chapter 3, the pressure, the displacement and the
displacement potential are wused for finite element
discretization.

We want to formulate boundary relations for the following
quantities

g%-' n for the pressure and density formulation,
(V'uf) for the displacement formulation,
wWen for the displacement potential formulation,

where m is the outward normal to the fluid boundary.

!

81 is the most essential part of the fluid boundary in the

sense of this work. The motion of the structure and the

Chapter 2
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normal component of the fluid motion coincide, that is

u.;n = u (2.32)

sf’

Here, u is the structural displacement component

sf
perpendicular to the fluid boundary. Changing to the
displacement potential according to Eq. (2.19) we have

wWen = u_.. (2.33)

The second time derivative applied to Eq. (2.32) yields

(2.34)

By combining Egqs. (2.11) and (2.13), we have

a .1
ﬁc—2p+ pSV uf) =0

if no fluid is added at the fluid-structure interface.
Assuming the initial state to be at rest, we have

pSc2V°uf = —p. (2.35)

Sy

The pressure at a point on the surface depends on the
height of the wave created at the surface and on the
external pressure P, We have

p = pg(upem) + p_, (2.36)

where m is a unit vector mnormal to the surface in the
initial state, which is thus independent of time. psg(uf~n)

is essentially the weight of the wave created at the
surface and g 1is the acceleration due to gravity.
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Differentiating twice with respect to time, we have

82(p—pe)

1
L (2.37)
g g¢2

av
P57 *m) =

Eq. (2.12) states that

62uf

P

s = TVP,

at

if no body force is present. Therefore, by changing from
displacement to displacement potential according to Eq.
(2.19), we obtain

2
v(pg ¥, p)=o0.

dt

V)

This relation is satisfied if

p.—=+p =0. (2.38)

Substituting Eq. (2.36) into Eq. (2.38) yields

2
) _
Py —o5 * pe(upen) +p_ =0
dt
or
2 p
gwn=-2L_ ¢ (2.39)
at ps

Finally combining Eqs. (2.36) and (2.35) we obtain

2
PsC VU, = —p g Utm - P, (2.40)
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w

On the surface with no waves the displacement perpendicular
to the surface is assumed to be zero, so

w.en = O (2.41)

£
or
ven = O. (2.42)

The second time derivative of Eq. (2.41) yields

en = 0. (2.43)

Substituting the prescribed zero motion of Eq. (2.41) into
Eq. (2.40) we have

veu, = - 5- (2.44)

Egs. (2.42)-(2.44) give the desired expression to be used

in the finite element formulation. At the S2 boundary the

external pressure P, enters directly via the boundary

condition, while in this case it does so only when the
displacement is the primary variable. In the case of the
pressure formulation the external pressure is taken into
consideration as a prescribed value of the pressure along
the S3 boundary. Finally, in the case of the displacement

potential formulation, Eq. (2.39) gives

o

62¢ _ e
2

= - — (2.4b)
dt Ps

because vy+*n = 0. That is, the external pressure enters the
solution via a prescribed value of the acceleration of the
displacement potential along the S3 boundary.
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Sy

In a discrete analysis, an infinite or semi-infinite domain
must be truncated. This can be achieved in different ways,
for instance by infinite element techniques or boundary
integral methods. Infinite elements have been proposed by
Bettess and Zienkiewicz [4], by Bettess [5] and also by
Olson and Bathe [33]. The latter uses doubly asymptotic
approximation (DAA), that is the infinite fluid is
described as the sum of the plane wave approximation at
high frequencies and the added mass approximation at low
frequencies. The DAA method is also used in connection with
bilinear fluid analysis by Felippa and DeRuntz [17] and by
Wawa and DiMaggio [45] in connection with shock waves. DAA
for fluid-structure interactions was originally developed
by Geers [57]. One of the first to use boundary integral
methods was Berkhoff [33. Perhaps the most elegant way is
that proposed by Smith 41]. If a wave reflects against a
free boundary (i.e. of Neumann type), then the reflected
wave will be of the opposite sign while if the boundary is
fixed (i.e. of Dirichlet type) the reflected wave will have
the same sign. For linearized problems Smith superposes
these two cases and the reflected wave cancels out.

Another approach was proposed by Sommerfield [42]. This
method is exact if the incident wave is perpendicular to
the boundary. If the boundary is located at a large
distance from structural members and from the sources of
disturbances, it is quite accurate. The method is easily
implemented. A derivation of the necessary expressions is
given below.

Assume that the boundary consists of a series of dampers.
The force developed in a damper is

auf

dt

Cd °n,
where Cd is the unknown value of the damping constant and

(Buf/at)°n is the velocity component perpendicular to the

boundary. This term should equal the fluid pressure, thus
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auf
p + ps = Cd T ‘. (2.4:6)
Then
2
dua
9p _ fon= 20 (veu. ) -
3¢ = Cd 6t2 n = Cd cv(v uf) n

where we have used the wave equation given by Eq. (2.22d)
with b = O and vQ = 0. By the use of Eq. (2.35)

9 _ ~ L _ .
5c = cdp vpen. (2.47)

S

Far away from any disturbances, the wave propagates at the
speed of sound c. Therefore

dp .
3¢ = “cvp'm,

which is just the D'Alembert's solution to wave equation,
S0

Cq = PCs (2.48)

which determines the value of the damping constant. Eq.
(2.47) can thus be written

13
vp*n = - E-g% (2.49)
or according to Eq. (2.11)
v .,-1d
Ps 8t "™~ ¢ a8t (2.50)

The feature of the boundary condition as expressed in Eq.
(2.49) is to transmit a right-angle incident wave. Because
the unknown p is only a scalar quantity satisfying the wave
equation in the interior of the domain, then, for any
scalar quantity satisfying the wave equation, Eq. (2.49)
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constitutes a transmitting boundary just by replacing the
variable. The displacement potential should thus satisfy

wWen = - = 2% (2.51)

Finally, differentiating Eq. (2.51) with respect to time
and applying Eq. (2.22e), we have

Replacing v by Up yields

Buf
é‘t—— ‘n = —C V‘uf
or
du
vou, = - ==L n (2.52)
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Formulation
Boundary
P ¥ u,
2
S ov °n—6qu wWen = u czv-u = -
1 gc T 9 = Yst | Ps £~ 7P
at
av 2
S2 Ps 3t n=|gwe*mn-= P, CV u =
2
6t2 6t2 s= f e
_Pe
Ps
av 2
S3 g "= 0 wen = 0 PC ViU, = —p
prescribed prescribed
© 8t2 Ps
Ju
av 1 f
O L VU =T oE P
__1dp - 1o
T ¢ Ot - ¢ 8t

Table 2.1. Required boundary quantities wusing different
fluid formulations
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3. FINITE ELEMENT MODELLING

This chapter contains the discretization of the equations
derived in the previous chapter using the finite element
method. In the fluid domain, we derive finite element
formulations using pressure, displacement potential and
displacement as independent variables. Reformulation is
carried out using the weak formulation and Galerkin’s
method of choosing the test functions, but first some notes
concerning structural discretization.

3.1 Structure

As stated in Section 2.1, the structural behaviour is
governed by

L(us) = Fs(r,t) (3.1)

with the boundary condition

Ff(r,t) = p(r,t)*n

due to the distributed pressure load along the fluid
boundary.

A discretized formulation for the structure yields, in
matrix notation '

MU +¢cU0 +KU =1%+1L
S S S

s s s s (3.2)

f E]
where MS, Cs and KS are the structural mass matrix, damping

. . . . e .
matrix and stiffness matrix, respectively. LS is the load

vector due to the external structural loads and Lf is the

load vector due to the coupling effects.

As mentioned above, the test functions and the trial
functions are taken from the same set of functions. This
set may differ from the one to be used in the fluid domain.
The functions in the set to be used in the structural
domain are designated by a subscript ’'s’ i.e., Ns and the
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function set by {NS}. The coupling vector, Lf, between the

structural and fluid domains is thus

Lf = J‘ Né*n.p ds. (3.3)
Sl

Using previously derived relations between pressure and
displacement, we have, according to Eq. (2.35)

L. =-| N -nc2p (veu,)ds, (3.4)
f g S s f
1

when a displacement formulation is used for the {luid.
Using Eqs. (2.35) and (2.22¢) the relation between pressure
and displacement potential implies

8%y
L = _js N_np —5dS + Js N, 'n pscb ds (3.5)

1 gt 1

in case of a displacement potential formulation for the
fluid. This concludes the finite element formulation of the

structure.

3.2 Linear fluid

3.2.1 Pressure formulation

The wave equation using the pressure as independent
variable, Eq. (2.22b), is

2
p _ c2v2p + 02 gg-— 02p v+b. (3.86)
It t s

Multiplication by a test function w = w(x,y,z) yields

2
w gp _ c2wv2p = c2w 9q _ 02p wv+b
at2 dt S
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and integration over the total fluid domain V gives

2
jw 28 qv - czj wo2p dV = CZJ w 24 dV—c2pSJ wy+b dV.
VvV 3t \ v v

(3.7)

Using Green’s first formula, the second integral becomes

fwv2p av = fw(vP)on ds - J (vw)+ (vp)dv,
v S \%

where S is the boundary of V and m is the outward normal of
S. Hence

> 2 5
Jw —g dv + ¢ j (vw)+(vp)dV = ¢ J\WVp’n ds +
vV dt A S

P Jw 8 av - %, wab av. (3.8)

v ot v
According to Eq. (2.12)

Vp:—ps-a—t-"l’pb.

Note that vp = vp. Now, study the following part of Eq.
(3.8)

czj w vp'n dS - 02 p jwv'b dv =
S S Jy

n

=—c2p w§l°n dS+02p Jwb-ndS—
s gt s Jg

= —02p Fw gv. *n dS + c2pS fvw*b dv.

Jg dat v
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We split the surface integral in Eq. (3.8) into four parts
according to the boundary in Table 2.1. Hence

d™u
chs J\ W g%..n,ds = c2ps J‘ W ;f ds, (3.9a)
S S gt
1 1
2
i 2 " (p-p,)
Zp | wemas =S| w e gs, (3.9b)
s Jg dt g Jg 6t2
2 2
c2ps W g%-°n.ds =0, (3.9¢)
vS
3
czps W g%-°n dS =c J\ g%—ds. (3.94d)
vS S
4 4
Finally Eq. (3.8) becomes
2.
2, d™u
w Q—E-dV + 02 (vw)+(vp)dVv = —c2p w st ds +
2 s 2
vV dt \ S at

1

gt>

2
2 a7 (pp_)
+ 9—-J, W——="-dS - ¢ J\ w QE-dS + 02 J‘W Qg-dV -
g Jg S
2
+ 7p J\(Vw)-b. (3.10)
s

In the absence of body force and external applied pressure
(pe) this reduces to
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2 82u
J\w Q—g-dv P J‘(Vw)°(vp)dV = —C2ps J‘ w ;f as -
vV at A% s, at

2 9
S wiPas - was+ P | w8lav. (3.11)
g 2 at
s, ot S,

Discretization of Eq. (3.11) is carried out by expanding
the pressure p in terms of finite element basis functions
or shape functions, each one associated with a unique nodal
point. The shape functions in the fluid domain are
designated by a subscript °'f', i.e. N,., and the function

f
set by {Nf}.
The expression for the pressure p then takes the form

p(r,t) = 3 NJ(r) P.(©). (3.12)
j

where summation is over the number of shape functions and
Pj(t) is the value of the pressure at the associated nodal

point at time t. Clearly we have

d2Pj(t)

dt2

5 (3.13)

2 .
Ip(r.t) _ - Ng(r) .
at 3

Using the standard Galerkin formulation with

w € {Nf},

the discretized form of Eq. (3.10) is

e .

M, P+CP+KP=-L +L +L
s T q

c . ; + L, (3.14)

b
where

P = column matrix for the unknown nodal values of the
pressure,
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)

. J\ N NJ dv + ——-J\ N1 NJ das,
1] V

2

i J
(Cplyy=c Js N; Ny dS.

4
(K.)..=c2 | (o) (wndyav
1 v g4V
2 1 *e
(Ls)i = ¢ pg J; Nf U, ds,

1

2 (a
(L), =c J;Nf 3¢ 4V

(L),

il

Zp J (vN1) b av,
s Jy f

C2 18
i ;JSNf
1

(i = row index, j = column index).

€ das

(L)

1l

e

The matrix denoted Ls couples the fluid domain with the

structural domain and is dealt with in Section 3.3. This
concludes the finite element formulation using pressure as
independent variable.

3.2.2 Displacement potential formulation

The procedure in this subsection is very much the same as
that in the previous subsection. The wave equation using
displacement potential as the primary variable reads
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2 2
a_g =+ b - ,‘;— Q. (3.15)
dt s

Multiplying by a test function w = w(x,y,z) and integrating
over the fluid domain,

5 2
Jwg—;dejwczv%p dV+IW¢dV—C—JwQ av.
vV at s s Ps Jy

(3.16)

Using Green’s first formula on the right-hand side and
rearranging terms,

2
J w 6_\5 dv + 02 J (VW)‘ (V\p)dv = C2 \[ W(V\P)°n ds +
vV 4ot \' S

2
+ J‘w¢ av - 9—-J\WQ av. (3.17)
v Pg Jy

The first term on the right-hand side is rewritten using
the boundary conditions in Table 2.1. Hence

J‘ w(vy) n dS = J‘ wu_. dS,
S S, s
1

5 2
w(vw) n dS = - l-J\ w Q—%-— —l—-J‘ wp_ dS,
Js g gt* 8Py S, ¢

2 2
J W(V\,U)'Il dS = 0,
S
3
[ w(vy)*n dS = - l—J\ w Qﬁ.
US C S at
4 4

Eq. (3.17) then reads
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2
le Q—%-dV + 02 J (vw)+(wyp)dV = c WU e ds +
vV dt \

2 2 2 P
+Jw(¢—§—Q)dv+§—J w(—a—‘é’-—p—e)ds—
Vv S 82

—cj w St as. (3.18)
t
Sy

In the abscence of body forces and external pressure we
have

2
Jwa—\ng P J (vw)+ (w)dV = CZJ wa_, dS -
v 8t v s,

2 2 2
—C—-JdeV—C—Jwa—\gdS—chg% (3.19)
Ps Jy & Js, at S

Expanding ¢ in terms of a set of shape functions Nf (we use

the same notation for the shape functions as in the
previous subsection) yields

W(r,t) = ? Ng(r)-\pj(t),

where summation is over the number of shape functions and
Wj holds the value of Y at the j:th node associated with

J
Nf.
Choosing w according to the Galerkin method with

w € {Nf},

the discretized form of Eq. (3.18) is

Finite Element Nodelling
i‘
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Ml + Cpb o+ Kl = L+ L - L - L, (3.20)

where

¥ = column matrix for the unknown nodal values of the
displacement potential,

(M), = J\N;NJ av + & N id as,
by
_ j
(Cply; = © Jg NiNd as,
4
(K.),. = ¢ | w8}y« (owdyav
£ e L

2 i
L); =c Jg Np u_, dS,

1
i
L) = J\Nf ¢ av
1
(L). = ——-J‘N Q dv
a1 s vV
02 i
(Le)i = EE_ Nf Pe ds
s S2

(i = row index, j = column index).

(The same notation is used as in the previous section, when
the matrix represents the same mathematical phenomenon) .
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3.2.3 Displacement formulation

The major difference between this subsection and the two
previous ones is that the independent variable is no longer
a scalar quantity but a vector field.

Eq (2.22d) shows that each displacement component satisfies
the wave equation

2
du 2

£ 2%a, + b - < v (3.21)
6t2 £ Py

A straightforward Galerkin approach applied to each
component yields for the x-component in a Euclidean space

82u 2
Jw X av=o® Jwvzuxf av + Jw(bx - < Hyav.
vV a8t s s Ps

(3.22)

Green's formula applied to the second term gives

2
J;WV uxde = —J;(Vw)'(vuxf)dV + J;w(vuxf)~n_ds. (3.23)

The drawback in this process is now evident. We are not
able to make any statements about the surface integral in
Eq. (3.23).

The derivation of Eq. (3.21) used the following formula

V(V‘uf) = v2u + VX(VXuf) 7 (3.24)

f

or rather its equivalence for the velocity field. Because
the displacement field is irrotational the last term
vanishes. Eq. (3.21) thus originates from

62u 2

—% = Pv(vy) + b - v (3.25)
dt Ps
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The drawback now is that there is no guarantee of an
irrotational displacement field because this condition is
not imposed on Eq. (3.25). A weak form of Eq. (3.25) using
Green’s formula will by necessity couple the different
components contrary to our wish. The remedy is to replace

vu, in Eq. (3.21) using the formila (3.24), thereby
creating a rotational stiffness in order to prevent a

rotational displacement field. Thus

62uf 2

2
2

=c v(v-uf) - C2K vx(vxuf) +b - - vQ, (3.26)
dt Ps

where «k allows control of the degree of rotational
stiffness. The weak formulation yields

j-w. dv = ¢ J‘wwv(vouf)dV - KC J W‘VX(VXUf))dV +
A%

vV at2 v

2
+ Jw-(b - 2~ vQ), (3.27)
\'% Py
where

w = (wx, W wZ).

Using the following derivative formulae

V‘(W(V‘uf)) (V°w)(V°uf) + w'(V(V°uf)),
v((vxuf)xw) = w*(vx(vxuf)) - (wa)°(vxuf),

we obtain

we(v(veu.))dvV = = (vew)(veu,.)dV + | w(veu,)*n dS
(3.28)
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The surface integral in Eq. (3.28) can be reformulated
using the boundary conditions in Table 2.1. We have

¢ J\ w(vew,)*n ds = - 1—-J\ wpen dS,
f P
S1 S S1

2 J w(veu,)*n dS = -g J w(u,°n)*n dS -
f f
S2 S2

1
_p_s_Js wpendS,
2

02 J w(veu,.)*n dS = - }-—J wp *n dS,
f p e
S3 S S3

Yy
-C I w ———«n] *n dS.
S Jt
4

The surface integral in formula (3.29) vanishes naturally
at the boundary. This is based on the fact that fluid
particles at the boundary remains there at all times. See
further the discussion at the beginning of Subsection
2.2.3. Therefore, vxu, must be parallel to m and (vxuf)xw

is perpendicular to m for any w. The discretization of Eq.
(3.27) 1is carried out by expanding uf(r,t) in terms of

02 J W(V-uf)°n ds
S4

shape functions, the same for all components

u, =3 N (r)ul(t), (3.30)
J

where
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J _
up(t) = (e Upps U p)y
is the wvalue of u, at the j:th nodal point which is

associated with the shape function N%'

Eq. (3.30) is equivalent to

1 2

u, = [N o1 0 N o2 U, = [Nf]Uf
0 N 0 N
£ £
0 0 N 0

where Uf is a column matrix for the unknown nodal values of

ug. (Dimension (Uf) = 3 times the number of nodal points).

Using the same test functions as shape functions, a typical
set of three test functions is

£ Oi 0
Nf Oi
0 0 Nf

In Eq.(3.24) we used vxu, for the curl of u.. At this stage

it is better to use the matrix formulation of the curl

vxXu, = vua

f - £’
where
~ d 5]
vV = 0] —5 5—3;
a3 ad
z 9 "
ad d
_a = 0
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and where u, on the right-hand side is a column vector.

f

Finally, introducing the notation [ﬁf] for the matrix

multiplication [nx n nZ][Nf], the discretized form of Eq.

y
(3.27), using Egs. (3.28) and (3.29), is

MU, +c0 + KU, =L

IR o B Ly s Fle

b

where

M, = p JV[Nf]T[Nf]dV,

Cf = cpg 84[ﬁf]Tﬁf]dS,

~
Il

= ch, LJ(v[Nf])T(v[Nf])dv +

~

(3.31)

+ ke, uV(%[Nf])T(AV'[Nf]) av - gp_ JS [ﬁf]T[ﬁf]ds,
2

n

_ T
L =p V[Nf] b dv,

)

_ T
L =c V[Nf] vQ dv,

~ =T
L, = L -Nf] p ds,

Finite Element MNodelling
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3.3 Fluid-structure interaction

In Sections 3.1 and 3.2 the finite element discretizations
lead to a system of matrices for each domain and the link
between these domains appears as the coupling terms Lf and

Ls on the right-hand side. When using a time—stepping

algorithm for transient analysis of the coupled system or
solving for harmonic excitation, it may be possible to
iterate between the systems (apart from the iteration
needed within each system in transient analysis) until the
residual coupling vectors are sufficiently small. In this
section, however, the aim is to assemble the systems, so
there is no need for separate coupling iterations between
the systems.

For the sake of brevity, we use the same matrix notation
for the same mathematical phenomena, although the content

depends on the independent variable.

3.3.1 Pressure formulation

The two sets of equations given in Egs. (3.2) and (3.14)
are ‘

MU +CcU +KU =L%+1L (3.32)
s s s s s s s f
for the solid region and
MfP + CfP + KfP = —LS + Lq + Lb + Le (3.33)

for the fluid region. Here, Lf is a function of fluid

pressure and LS is a function of structural displacement

and thus carry the interaction features of the model. All
other vectors on the right-hand side are true load vectors.

The definitions of LS and Lf read

2 ies
(Ls)i = C Py J; Nf Yst ds

1
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and

(L), = J Ni’n p dS
S

Because

u =u *‘n=2 Nj°n.UJ,
sf S i S s

where the nodal index j runs through the set of structural
trial functions, we have

L =M U, (3.34)

M)..=cp J N N.n as.
s Jg f s
>

In the same way we have

Jp.

J

and thus
Lf = KC P, (3.35)

where

_ 1, N
(K = js N_-n N} ds.
1

As pointed out above, we mneed only consider those
structural degrees of freedom that are involved in
displacements perpendicular to the fluid boundary. The same
is true for the fluid degrees of freedom, i.e., we need
only consider pressure nodes along structural members that
are linked to the structure. ‘
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The assembled system of equations is

X+ [K K IX-= L® (3.36)
S C S
M M 0o C 0 K L +L +L

c f q b e

M olX+ [c o
S S
£ £

where

It is obvious that MC = czpsKZ and that most elements in

these matrices are zero.

3.3.2 Displacement potential formulation

Eq. (3.2) describing the structural behaviour still holds,

MU +¢cU0 +XKU =1%+1L
S S S

s s s s £’

although we have another definition of the coupling vector

), = -

i e i
SNSn\pdS+fstnps¢dS.

1 1

In the fluid domain we have

MG+ Cob + KW =L+ L - L - L, (3.37)

where

(L), = c2j Niu _ ds.

f sf
Sl
Because
u =u *n= > Nj°n.Uj
sf s i s s
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and
y=3N ¥,
. f 3
J
we have
LS = KCUS, (3.38)
where

(K).. = c2j N NJ.n ds.
c’ij f s
S
1
Further, for the solid equations
Lf = —MC\[J + L

e (3.39)

where
_ 1, nd
(Mc)ij = Py J\ Né nNf ds
Sl

and

i
L N 'n pscb ds.

(Lbs)i
1

The total system using displacement potential formulation
reads

X =

L: * Lbs }’
L~ g L
(3.40)

where
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3.3.3 Displacement formulation

The two systems to be assembled are

MU+CcU +KU :L:+Lf

S s s s s
and
Mfo + Cfo + Kfo = —LS + Lb - Lq - Le’ (3.41)
where
i
(Lf)i = J‘ Né n p dS
S
1
and

(L), = J ﬁ; p dS.
S

Here, ﬁ; is an entry in the matrix [ﬁf] defined in

connection with Eq. (3.31).
The degrees of freedom are divided into three groups where
only Usf participates in the interaction between fluid and

structure.
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Then the assembled system is

M U+ |(C U+ [K U =
S S S
Mf Cf Kf
= L: , (3.42)
Lf—L
Lb—Lq—Le
where
U=10
ss
Usf
Uff

The elements at the intersection between Ms and Mf and

between Ks and Kf are the added quantities of corresponding

elements.
The load matrix
~i i
(Lf - LS)i = J‘ (Nf - Né°n)p ds
St

vanishes if the same interpolants are used along the
interface. Otherwise it produces fictitious loads.

3.4 Symmetric formulation of fluid-structure interaction

In Section 3.3, the formulations using a fluid potential
lead to nonsymmetric matrices. For several reasons, it is
desirable that the discrete system is symmetric. Many
common computer codes depend on this and time stepping
algorithms for symmetric problems are far Dbetter
understood. The displacement formulation has this property
but has the drawback of an increase in the number of
unknowns, especially in three dimensional applications.
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In the literature, symmetrization is sometimes achieved by
means of matrix manipulations (see Tong [43]) or modal
techniques (see. Daniel [12]-[13]). In Everstine [15] the
velocity potential is added to the unsymmetric pressure
formulation, leading to a fictitious damped symmetric
system. True symmetric formulations have been introduced
using variational principles for harmonic problems (see
Ohayon [28]-[31]). Recently, a symmetric formulation using
pressure and velocity potential as fluid unknowns was
proposed (see Olson et al [32]). The drawback in this
formulation is still the introduction of a damping matrix,
although the system is conservative.

The object of this section is to introduce a symmetric
formulation for transient analysis using the same method as
in Subsection 3.2.1-2. A striking result in those
subsections is the way the unsymmetric coupling matrices
enter the system. They change in a symmetric manner in
passing from the pressure formulation to the displacement
potential formulation (see Eq. (3.36) and (3.40)). The idea
is to combine the formulations and in that way obtain a
symmetric formulation.

The structural part of the system presented in Subsections
3.3.1 and 3.3.2 reads

€

MU +XKU -MP=L (3.43)
S S S s C S
and
*e *e e
MSUs + KSUs + pSMC\p = LS, (3.44)
where

M= J\ N.-n NJ) ds

c g S f
1

if we neglect structural damping. Furthermore, there are

two relations between pressure and displacement potential

given in subsection 2.2.1 (Egqs. (2.11), (2.12), (2.13) and
(2.19))
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1 . 2¢
C—2p+psvw—q, (3.45)

L oo+ vi=h0 (3.46)
pS

Symmetrization can now be achieved in two ways by combining
one of the structural equations and the relations between
pressure and displacement potential. Differentation of Eq.
(3.45) with respect to time yields

1 .
S P*+p, VY=g (3.47)
C

The weak form using Green’s second formula is

li- p dv - Py J‘Vw'vw dv + Py J\wv¢°n.d8 =
\' \ S

C

= Jwé av. (3.48)
4

The surface integral is reformulated using the boundary
condition at the fluid-structure interface

J wvysn dS = J wu . dS.
g g sf
1 1

The formulation does not allow a fluid boundary of type 82.

Other boundary conditions enters according to Table 2.1.
Spatial integration of Eq. (3.46) yields

—p+i=0 (3.49)

S

because an arbitrary function of time could be added to
and the weak form of Eq. (3.49) is
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wapdV+Jw:j;dV=Jw¢dV. (3.50)
Ps Jy 4 v
Expanding p, ¥ and U g in a set of shape functions
J
=3 N P,
P . P ]
J
=3 v,
v j ¥

=u *n = 2 NJ°n.UJ.
S j S S

usf

(Note that shape functions in the p-field need not be the
i
¥
(3.48) and N; as test function in Eq. (3.50) yields

same as in the y-field.) Using N, as test functions in Eq.

1 .0 .0 T‘.
5 AP - p e+ p U =L (3.51)
C
and
Lomr LA - L. (3.52)
pC c
where
). =[x av
ij Jyv p
K = | vNtewnd av,
(e Jy v
2% i j
= | ¥ N av,
( f)lJ JyP P
N i .
L)y = UVN\IJ q av,
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1 i
(L), =———J\N ¢ av.
Lb i c2 y P
MC is defined in connection with Egs. (3.43) and (3.44).
Note that by that definition Nf = N¢. If the same shape

function set is used in both the p—-field and the JY-field
then A is symmetric and

A = Mf.

Assembling Eqs. (3.44), (3.51) and (3.52)

~ ~ s -

M p M 0 X+ [K 0 0 IX =
S S C S
1
pSMC —pSKf ;E-A 0 0 0
1 T 1
0 c_2A 0 0 0 CMf
L J L Py J
=L:, (3.53)
L
q
Ly
where
X=1[U
S
v
P

Note that the source vectors Lb and Lq influence the

p—-field and the y-field, respectively. Besides the fact
that it is possible to use different interpolants in the
two fields it is also possible to use different numbers of
interpolants. This is basically the same formulation as was
derived by Ohayon [28] for free vibrations.

The other symmetric formulation is achieved in a similar
manner. Integration of Eq. (3.45) results in
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Lop+ v =ioo (3.54)
ps

pLC

The weak form is

1 pr dv—jvww dV+Iquf as =
v v s

c2
Ps

- ijq av (3.55)
Ps Jy

using the boundary condition at the fluid-structure
interface. The weak form of (3.46) is found by using vw as
test function

IVW‘Vp av + p fvwovi av = p va~b av. (3.56)
S S
v A A

Expanding p and ¢y in different sets of shape functions,
{Np} and {N¢}’ using {Np} as test function set in Eq.
(3.55) and using {N¢} in Eq. (3.56) results in
L _wr-slv+ny =L, (3.57)
c's q

2 f

pC

BP + pst(IJ =L, (3.58)

where Mf and Kf are as above (Eq. 3.52). In MC we set
N, = N_ and so
£ P

B

J‘VN *vN_ dV,
v 7¢ P

L =-1-—fNQdV,
a”p, JyP

L, = p, IVVN\,}-b av.

Chapter 3




- 61 -

The assembled system, using Eq. (3.43), is

M 0 0NX+ (K o0 M X =
S S C
0 p K, O 0 0 B
0 0 0 gl - A4 M,
L Ps®
= L‘;, (3.59)
Ly,
-L
q
where
X = |U
S
¥
P

This latter symmetric formulation is quite attractive in
connection with static condensation. Regarding US and Y as

master variables and P as slave variables, no equivalent
masses are attached to the slave variables. The slave
variables are assumed to be unloaded, i.e., Lq = 0. If

T = pscz ;1[-Mz B]

and

where I is the identity matrix, we get the condensed form
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Hee »* ¥ Tr e

MX +KX=(T) Ls , (3.60)
Lb
0
where
X = {0 |,
S
v }
* *x T. 3 - -1. T 2 -1,.T
K = (T )KI' = Ks+psMCMf MC —pC Mch B |,
2..,—1.T 2. T,,-1.T
_—psc BMf MC pC B Mf B
W= (Y = o
-O pst

M and K are the original mass matrix and stiffness matrix.

3.5 Non—linear fluid

The aim in this and the next section is to give a fairly
general formulation of a nonlinear wave propagation problem
although the application in mind is the cavitating fluid.
Cavitating fluids due to underwater shocks were first given
a finite element formulation by Newton [23]—[26] using the
displacement potential in the fluid. Later, Zienkiewicz et
al [51] studied the effect on dams in commection with
earthquakes. Recently Felippa et al [17] reported studies
on hull cavitations using staggered time—integration
routines and special boundary techniques. Using the
displacement potential is advantageous in some sense. Being
a primitive variable it is likely to be robust in numerical
discretization.

Studies by Newton [23]-[25] indicated that the cavitating
fluid might cause spurious pressure oscillations that
generate pressurized zones within the cavitated region and
vice versa. This phenomenon has been named frothing. The
remedy is to introduce numerical damping (see Felippa et al
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[17]). (This is discussed further in section 4.3). The
introduction of numerical damping calls for the calculation

of, basically, 63¢/6t3, which is not naturally present in
the time stepping routine when using Y as a primary
variable. On the other hand, when p is used as primary
variable, numerical damping is generated via Jp/dt, which
is very much present. Above all, p is a physical variable
allowing more general constitutive laws, and boundary
conditions that mnaturally occur, such as pressurized
boundaries, need no special treatment.

Recall the equations given in Subsection 2.2.2

b - v = ~p_v*b + d, (2.28)

p = 0o(p, p). (2.27)

In conformity with the procedure in section 3.2 we have

va.p' dv + L,(VW).(Vp)dV = JSW(Vp)°n ds -

- p, wab av + jwé av. (3.61)
' v

The discussion concerning the surface integral in Eq. (3.8)
also applies to Eq. (3.61), and therefore Eqs. (3.9a-c) can
still be used to reformulate the surface integral. At the
transmitting boundary (84), the fluid is not cavitating

because . this part of the boundary should be located far
away from any irregularity. Hence
2
p=c¢p
and from Eq. (2.49) we have
J w(vp)*n dS = -c J‘ wp dS.
S

4 Sy

The outcome of the S4—boundary is a damping matrix as in
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Subsection 3.2.1. This matrix and the result of the 82 and

S3 boundaries will be neglected in this section.

The conventional finite element scheme 1is derived as
follows. Substituting the constitutive law given in Eq.
(2.27) above into Eq. (3.61) yields

LX)

w}5 dV + | vwvo dV = ~p wu . dS +
S

sf
\' \' S1
+ pSJ‘VW°b dv + J\wé av. (3.62)
N \Y
Because
Vcr:a—(fv;) + S—UVp (3.63)
dp p
we get
Jw.p. dV+jvwa—(.jv[) dV+vag—ZVp dvV =
v y o
= —pg J\ wu ds + Py J‘VW‘b dv + J\wq dv. (3.64)
S1 \' \'

Expanding p in terms of a set of shape functions, {Nf},

p(r.t) = Ng(r)°ﬂj(t), (3.65)
j

where Hj is the unknown value of p at node j and similarly

for p. Further, if

w € {Nf},

we get the discretized form of Eq. (3.61)
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Mfﬂ + CfII + KfII = —LS + Lb + Lq, (3.66)
where N
[
(Mf)ij = ] Nf Nf dv,
V'
i i jy do
(C.).. = | (WN.)+(vN:) dav,
/i3 f f an
\% P
(K.).. = | (oni)e(ondy 82 ay
£71j Jy f £/ 9p
i e
(Ls)i = Pg J Nf Ust ds,
S
1
i
(Lb)i = pg J‘VNf'b av,
V'
i e
(Lq)i = J;Nf q dv,
(i = row index, j = column index) and II is a column matrix
for unknown nodal values of p.
Writing o as in Eq. (2.27)
o(p.p) = al(p)p + B(p)p
we get
a
T =P
dp
(3.67)
oo _ da . 4B
3= PHp TP

and thus in Eq. (3.66) we have
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(Cp)y s = J‘(VN§)°(VNE)B av,
A%
(3.68)

[ contye oy 92 . dp
(Kf)ij = J\(VNf) (VNf)(p P +a+p dp)dv'
\
As a practical approach, we might choose a« and B as

piecewise constant functions. To each subdomain (i.e., to
each element), we assign constant values o, and Be to o and

B, respectively. The element contributions to the matrices
in Eq. (3.68) are

(cf)jj = B, J\ (vN})(ng)dv,
(S
(3.69)
(Kf)jj = a J‘ (vN;)(ng)dv.
e

The constant values o, and Be should then be choosen on the

basis of the nodal values of p at nodal points belonging to
that subdomain.

An attractive approach as compared to the conventional
finite element procedure is mentioned by Hughes et al [21]
and references are made there to several authors working
along this line. Christie et al [58] have termed it
'product approximation', Spradley et al [59] called it the
'general interpolants method'. Fletcher [60] and Fletcher
et al [61] have introduced the 'group finite element
formulation'. Their investigation clearly indicates a
considerable gain in

¥ computer economy,

% accuracy, in particular for high order elements,
when treating a nonlinear problem. Their conclusions apply
particularly with regard to compressible fluid flow. The

explanation is that the scheme does not connect the
nonlinear contributions between nodes to the same degree as
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the conventional procedure. This quality 1is central when
computing a non-smooth solution, as is the case when the
fluid is cavitating.

Both p and p are expanded in terms of the same set of trial
functions

p(r.t) =3 Ng(r)°ﬂj(t), (3.70)
J

p(r.t) = 3 Ng(r)~Pj(t), (3.71)
j

where Hj and Pj are the nodal values of p and p. Because

Po(t) = o, (t), ﬁj(t)) (3.72)
we have
vp(r.t) = 3 vN§~a(nj,ﬁj). (3.73)
J
If
w € [Nf]

we get the discretized form of Eq. (3.62)
Mfﬂ + Kfa(H,H) = —LS + Lb + Lq, (3.74)

where
_ iy, J
(Kf)ij = J;(VNf) (VNf)dV.

o(Il,I) is a column matrix and at the i:th row we have

(o(n,z‘r))i = a(ni,ﬁi).
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The other matrices in Eq. (3.74) are defined in Eq. (3.66).

Writing o as in Eq. (2.27)
U(Hi,Hi) = a(Hi)Hi + B(Hi)ﬂi
and the second term in Eq. (3.65) becomes

Keo(TLT) = KA T+ K, B,

where A and B are diagonal matrices

A = Diag (a(ﬂi)),
B = Diag (B(T,)).

3.6 Nonlinear fluid-structure interaction

(3.75)

(3.76)

In Eq. (3.2) the fluid domain was coupled to the structural

domain by the vector Lf where

i
(Lf)i = J; Né np(r,t)ds.
1

A quasi-linearized form of Eq. (3.77) is

i do Jdo -«
S Sp
1

Expanding p in terms of the shape functions yields

L.=CIl +XT,
f c c

where

(3.78)

(3.79)
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(C)s. = N;.n.ﬁg-Ng ds,
J us ap
1
(3.80)
_ [ Nt 82§
(K5 = | Nomgo Np ds.
St

If the special form for o in Eq. (2.27) is used we get

_ i, J
(€44 = J‘ N -n B N7 dS,

C
S
(3.81)
- i, J
() = J’ N_-n a Ny dS.
S

Likewise, the coupling vector in Eq. (3.66) is rewritten
using structural discretization

L =u_U_, (3.82)

where
— i j.
(Mc)ij = Py J Nf Ng n dsS.
Sl

Assembling Eqs. (3.2) and (3.66) yields

M o][t]l+[c ~c]U]1+[xK -k][U]-=
S “S S C .S S C S

M_ M, 0 Cl|f 0 K ||m

= L: . (3.83)
Ly *+ Ly

Finally, if instead the ‘product approximation' scheme is
applied to Eq. (3.77), we get
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L, = K o(I1,1), (3.84)

where

_ 1,
() = J; N_-n N dS.
1

By using the constitutive law as expressed in Eq. (2.27) we
obtain

Ly =KAT+X_BI. (3.85)

Assembling the Egs. (3.2) and (3.74) yields

M o[ 71+ fc ol[0]1+ [ -kK1]1[u
S "S S ‘S S C S .
Mo M| | o ollr 0 K ||o(m.i)

- [L: } (3.86)
L, +L
q

b

or by using Eqs. (3.76) and (3.85)

M 01X+ [c —XB
S . S C
MM, 0 KB

C

)‘(+EK -K A|X =
S C

0 KfA

e

= LS , (3.87)
Ly *+ Ly

where X = [US H]T. The nonlinear part of the damping and

stiffness matrices can be separated

I 0
0O B

]

C K
s ¢
0 Kf

S

0 K.B

C. KB
c
f
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I O
0 A

3

K -KA
s c
0] KfA

= |IK -K
S C
[O Kf]

where 1 is the identity matrix.

The gain in computer economy is obvious when one compares
Eq. (3.87) to Eq. (3.83). In Eq. (3.87), the nonlinear
contribution is separated in diagonal wmatrices. This is
particularly beneficial when an explicit time stepping
algorithm is employed.
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4. PROGRAMMING

4.1  CAMFEM

In modern technology, the researcher often reaches the
point where ideas must be transformed into computer code.
The work involved in this, starting from an empty screen,
should never be underestimated. In many cases, however, the
researcher does so without being able to consider previous
experience and to use existing computer codes, because they
are developed for other applications or new routines are
not easily added to the existing code. Much work is thus
spent on routines for common data and matrix handling.

During the course of this study, those aspects of
programming have been minimized by using a computer
program, CAMFEM, designed for research purposes. CAMFEM is
based on a command language in which a command in general
consists of a logical name for a certain operation followed
by arguments. The basic structure of the program is shown
in Fig. 4.1 below.

BASIC
COMMANDS

MATRIX
PROBLEM COMMANDS
INDEPENDENT
COMMANDS SYSTEM
SPECIAL PURPOSE
COMMANDS VERSION OF

CAMFEM

GRAPHICS
COMMANDS

PROBLEM
DEPENDENT
COMMANDS

Figure 4.1. Structure of the program CAMFEM

The first four sets, called problem independent commands,
are within the original frame of CAMFEM. The researcher
adds to this his own problem dependent commands and obtains
his own version of CAMFEM. For a more detailed description
of the facilities of the CAMFEM concept, see Dahlblom and
Peterson [11] and Peterson [34]. The problem dependent
commands are of two types
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* element routines,
% time stepping routines,

which are discussed in detail in the following sections.

4.2 Space discretization

The types of finite elements used for space discretization
are of three kinds

¥ structural elements,
» fluid elements,
% coupling routines,

and are dealt with in the following subsections. The
routines are constructed for two dimensional applications,
but the intrinsic logic in the coupling routines has of
course no two—dimensional limitation.

4.2.1 Structural elements

A simple two-dimensional beam element with 6 degrees of
freedom is chosen as structural element. Finite element
formulations for beams are standard procedure but because
the beam is of interest in connection with the coupling
routine, we will give a full description of the element
chosen.

Uy Ug
uy U, u
U3

| L
i L A
—X

Figure 4.2. Structural element used in the numerical
examples

The element has three degrees of freedom in each node, two
displacements and one rotation. For a single beam, the
restrictions of the trial functions for the left-hand node
are
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1 X
NS = 1 - rs
2 X\ 2 X3
NS = 1 - 3(],—: + 2(1-? , (41)
2 3
S L L2

where L is the beam length. The right-hand node has similar
trial functions.

[ .
{\ N2

N

Unit slope

Figure 4.3. Trial functions for the left beam node

According to Euler-Bernoulli beam theory, the differential
operator in Eq. (2.1) for axial displacement is

2
d d d
at
and for transverse displacement
2 2
L2=62EI 82+m62, (4.3)
Ix Ix at

where E is Young’s modulus, I the moment of inertia, A the
cross sectional area, and m the beam mass per unit length.

Using standard Galerkin methods the differential operators
together with the trial functions give the following
element matrices (see for example Segerlind [38])
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e mL
M = (140 0 0 70 0 0
0] 156 22L 0 54 -13L
0  22L a1? o 13L - 32
70 0] 0] 140 0 0
0 54 13L 0] 156 -22L
0o -13L - 3? 0 -22L 412
(4.4)
e EA ' EA
K, = - O 0 - O o ]
12E1 6EI 12E1 6ET
° = S % -3 5
L L L L
o 6EI 4EI  , _ 6EI 2E1
L2 L L2 L
EA EA
- 0] 0] i 0 0]
12EI 6EI 12E1 6F1
O -5 ~35 ° 3
L L L L
6E1 2E1 6E1 4ET
o = T ° -5 T
L L
(4.5)

4.2.2 Fluid elements

In Chapter 3, the finite element derivation using a scalar
field as a primary fluid unknown yields similar matrices.
The primary difference between the pressure formulation and
displacement potential formulation, apart from their
different physical interpretations, lies mnot in their
content but in the location of the coupling matrices. In
the formulation for a nonlinear fluid in Section 3.6, the
difference, besides the nonlinearity, is a multiplying
constant. For this reason we need only develop one fluid

Programming




- 76 —

element and yet cover all fluid scalar field formulations
presented in this work. The choice of fluid element has
fallen upon a four node quadrilateral element (Fig. 4.4)
made up of three triangular elements where the midnode
(node number 5) is regarded as a slave node.

Figure 4.4. Four triangular elements constitute a
quadrangle

In each triangle we have three nodes and thus the trial
functions are first-order polynomials.

Figure 4.5. The restriction of the trial function at node 4
to the quadrangle

Figure 4.6. Trial function at node 5

From the triangle with nodes 1, 2 and 5 we have the
following contribution. The trial functions are

Chapter U




- 77 -

1 .2 B -1
[Nf Ng Nf] =[1xy]cC", (4.6)
where
C =11 X vy
1 x2 y2
L x5 vy

and (Xi’yi) are the coordinates at node number i. The

corresponding mass matrix (see Eqs. (3.14), (3.20), (3.66)
and (3.74) give us

U Ny N dA] =ct J E]D x ylaa ¢t =

e

=c’TJ 1 x y]dadl, (4.7)

e 2
x X Xy
2
Yy ¥ ¥

where the integration runs over the element e. The
corresponding stiffness matrix is

T
i - ||1& g_ -1
U va‘ng dA] =C J 9% [1 x y] x|[1 x y]dA ¢ "=
e el|d_ g
dy dy
-1 -1
=C I 0 0 0]dA C . (4.8)
e 0 1 O
0 0 1

The contributions from each one of the four triangles are
assembled into matrices for the five node elements in Fig.
4.4. Static condensation is then performed on node number
5. If the quadrangle in Fig. 4.4 is a rectangle, these
steps are easily performed using the side lengths as
parameters.
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Figure 4.7. Rectangular element

The mass and stiffness contributions from element number 1
are

b
M,o=2212 1 17, (4.9)
L4854
11 2
K, = L [a24b2 a>b> —2a2]. (4.10)
1 4ab 9 9
a -b a +b -2a
222 242 42>

These contributions yield the following 5x5 matrices

wo=24 1 0 1 2], (4.11a)
1 410 2
01 4 1 2
1 01 4 2
2 2 2 2 8
1
K' ==L [24 B 0 -B -2A], (4.11b)
4ab| "5 oA B 0 -2A
O -B 24 B -2A
B 0 B 92A -2A
“2A -2A -2A -2A SA

where A = a2+b2 and B = a2—b2.

Finally static condensation (see Zienkiewicz [52] pages
548-549) on an element level yields
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m=2M1 5 3 5] (4.12a)
5 11 5 3
3 5 11 5
5 3 5 11]

K=gr[34 C -A D], (4.12b)
C 34 D -A
A D 3A C
D -A C 3A

where A is as above and C = a2~3b2 and D = —3a2+b2.

4.2.3 Coupling routines between fluid and structure

The element size in the fluid domain and in the structural
domain puts a limit to the possibility of detecting the
high frequency content in a transient response. Required
element sizes are easily computed as a function of the
wavelength. For the structure elements, having a third
degree polynomial approximation, the numerical solution is
likely to imitate the physical behaviour as long as the
element length is shorter than, say, half the wavelength.
In the fluid, one might expect reasonable agreement if the
element length is less than one fifth of the actual
wavelength, because we have linear approximation within
each element. These size estimations are of course rough
upper bound estimates. Numerical resolution is thus linked
to the wavelength. Furthermore, the wavelength is linked to

the frequency (f) as f_l in the fluid domain and as f_1/2
in the structural domain. Because the coupling routines
lock a certain number of structural elements to a certain
number of fluid elements, it is only at a fixed frequency
that the coupling routines produce numerical resolution of
the same quality in both the structural and fluid domains.
Away from the fixed frequency, either the fluid or the
structure defines an upper bound for the size of the
coupling element. Because the decrease of wavelength in the
fluid as the frequency increases is faster than in the
structure, the fluid element size will define the upper
bound for an acceptable numerical resolution at higher
frequencies.
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The two—node beam in Fig. 4.8 has four degrees of freedom
that affect the displacements perpendicular to the {luid

boundary.

Figure 4.8. Structural degrees of freedom interacting
with the fluid

The corresponding trial functions are

2 X 2 X 3
NS = 1-3 [i_] + z[i‘] s (413)
2 3
N“:’ = x-25—+ %5,
L
2 3
5 X X
Ns = 3[-1-: - Z[K} s
N6 _ - )ﬁ + i
s L L2

A case in which a beam interacts with three fluid elementis
shown in Fig. 4.9. The trial functions for these elements

are discussed below.

0
X
I l
' |
L ———d
Figure 4.9. Fluid-structure element coupling
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At the fluid-structure interface, the fluid trial functions
at two fluid nodes are shown in Fig. 4.10.

Figure 4.10. Fluid trial functions along the structural
boundary

In Sections 3.3 and 3.6, we gave the expressions for the
coupling matrices. The basic structure of these is

J N en NJ as (4.14)
g S f

1
or its transpose, possibly multiplied by some constant.
The expressions in Eq. (4.13) define the non-zero N;~n for

n parallel to the y-axis in a Cartesian coordinate system.

It is obvious from Fig. 4.10 that the restrictions of N to

f
the boundary are as follows
X L
N;(x) -4 173 8 $x <3 (4.15a)
0 = < <L
3
X L
3 f 0 S x < §
2 b L 2L
Nf(x) = 2-3 E '3— <{x g '3‘—, (4.15b)
21
0 3 <x <L
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N2 (x) = NF(Lx), (4.15¢)
Ni(x) = Np(Lx). (4.154d)
N/ N%
[ r
C/ 11:/\
] A~
T
=
G) Unit slope b)

Figure 4.11. Trial functions at the fluid-structure
interface for a) structure b) fluid. The
“figure shows the trial functions restricted
to one structural element

The cross 1integrations between the two sets of trial
functions are

ULN1 N dx] = tes [257 390 150 13].  (4.16)
o ° 21L 70L 40L 4L
13 150 390 257
-4l -40L -70L -21L

(Originally, N; in Eq. (4.14) belongs to the set of test

functions in the structural domain but, following the
Galerkin method, they coincide).
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If the structural element at the fluid boundary has a
non-zero slope, the four fluid degrees of freedom interact

. . i
with the six structural degrees of freedom, i.e., Ng°n £ 0

for i = 1,...,6. The coupling matrix is therefore derived
by making a rotation of the structural degrees of freedom
as presented in Eq. (4.13).

Xl

e

N
s

AN
AN
v

%
_&

Figure 4.12. Non-horizontal fluid-structure interface

Let T be
T = |-sina cosa O O 0] ol. (4.17)
0 0 1 0 0 0
0 0 0 -sina cosa O
0 0 0O O 0 1
The rotated coupling matrix is then
T i ] .
C="T- N~ Ns dx’|. (4.18)
o S f
We once again stress the fact that, regardless of whether
we use pressure formulation, displacement potential

formulation or if we are dealing with a cavitating fluid,
the coupling matrices have essentially the same structure.
(See further Eqs. (3.34), (3.35), (3.38), (3.39), (3.82)
and (3.84)). Some of the coupling matrices use the
transpose of Eq. (4.18), i.e.,
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Ioad o],
[jz Ng N dx ] T. (4.19)

This completes the derivation of the element routines.

4.3 Time discretization

In a transient analysis, the behaviour and the efficiency
of the solution dependent on the time-stepping strategy.
Such discussion is held in Belytschko et al [53]. Routines
are also developed, especially for fluid-structure
interaction, in Neishlos et al [22], Zienkiewicz and Taylor
[47] and in Sharan and Gladwell [40]. The routines used in
the present analysis are based on implicit schemes of
Newmark-type closely related to those described in [56].

4.3.1 Linear fluid

The system to be solved by the time stepping algorithm is
MX + CX + KX = L, (4.20)
. T T T
where X might be any of [US P] , [US H] , [Us W] or

[Us v P]T and the system matrices change according to the

scalar field formulation used in the fluid domain. (See
Egs. (3.36), (3.40), (3.53) and (3.59)). The time interval
of interest is divided into a set of time stations to’ tes

s tn, tn+1’ ey tN.

During each time station, the equilibrium equation (4.20)
takes the form

MX w1 * pr B = Lep (4.21)
where Xn+1’ Xn%l gnd Xn+1 are the calculated approximations

to'X(tn+1), X(tn+1) and X(tn+1) and Ln+1 = L(tn+1). These

approximations also satisfy the following equations
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2

_ p L4
1 = X1 ¥ AtnB X 41 (4.22)
X =%+ At v X (4.23)
n+1 nt1 n “n+l’
where
P X+ At X+ A2 (2 - )X (4.24)
n+1 n nn n ‘2 n )
is a predictor value to X(tn+1) and
.p . . _ .
X 41 = X + Atn(l 7)Xn (4.25)

is a predictor value to X(tn+1)' B and v are the Newmark

parameters that control the accuracy and stability of the

method and At =t -t .
n n+1 n

X3

Eliminating Xn+1 and kn from Eq. (4.21) by the use of Egs.

(4.22)-(4.23) gives the following scheme:

s

1. Initialize X , X and ¥ .
0] 0] (0]

2. Form the effective stiffness matrix

1 0t
Kepg =K+ —5 M+ KB c.
n

: P P
3. Calculate the predictor values Xn+1 and Xn+1
according to (4.24) and (4.25).

4, Calculate the effective forces at time station
tn+1
F . =1 . +—2—ux? _ +cC

X xP o _XP
eff n+1 2 n+1 At n+l n+l]’
AtnB n
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5. Solve

Koer %ne1 = Forg

6. Calculate acceleration and velocities at time
station t

n+1
. _ 1_ _ p
Xn+1 -2 (Xn+1 Xn+1)’
AP
n
Ld _ .p (X
] = Xn+1 + Atnw Xn+1'

Set n = ntl and go to step 3 to continue the
calculation at the next time station.

4.3.2 Nonlinear fluid

In this Subsection only the ‘'group finite element
formulation' is continued.

If the fluid is allowed to cavitate, the governing equation
is as was derived in section 3.6

M o0)[G1+([c O)f0)+ K -K)[U =
S "S S ‘S S C S .

MM, o ollr 0 K ||o(mi)

= L: ) (3.86)
Lb + Lq

As long as the fluid does not cavitate, Eq. (3.86) is
equivalent to Eq. (4.20) and therefore a transient analysis
of Eq. (3.86) starts with step 1-6 of the preceding
subsection though in step 6, before going to the next time
station, a check is made whether or not cavitation does
occur. If so, the time stepping scheme is altered. This
altered scheme needs the calculation of the tangential
damping matrix (C&J and the tangential stiffness matrix

(Kp).
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If by FI = FI(Us’ ﬁs’ I, ﬁ) we mean the internal
F.=(c 0][0)+ K -K)[U ,
I S .S s (] S .
0 O 0 Kf o(T, 1)
we have
aFI
CT = ——= CS ol + KS —-KC I 0],
U I 1o o 0 K[lo 3
. o(ll,, I.)
where 2 = Diag g J ] and
alr,
J
GFI
KT - B(US, my - Ks —Kc L of.
0 K o0 =
f
a(ﬂj,ﬁj)
where 3 = Diag ———éﬁg———].

If we instead use Eq. (3.72), i.e.,

F.=[c -X1f1 olx+ (K -K]1[T 0)X,
I S c s c
0 Kc|lo B 0 K.|{0 A

T
where X = [US H] ., we get
BFI
CT =—=1/C -K||I O
a% S c
0 Kf 0 B
and

forces

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)
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I
KT =3 = CS —KC 0 0| + KS —KC I O ,
0 Kf 0 B 0 K.[{0O A’+A

(4.31)
where

(T )
A’ = Diag 'Ta'H—J * HJ],
J

B’ = Diag W * H,]]
J

Finally, the constitutive law to be used in the numerical
experiments described in (2.28)-(2.29) yields

cr = [C, 0], (4.32)

Kp = FKS —KCHI 0 ] (4.33)

and

(Il )
A’+A = Diag B_HJ— HJ + a(HJ)]
J

will have a zero diagonal element whenever the
corresponding mnodal point is cavitating 1i.e., when

Hj < ~pO/c2, while those corresponding to a non-cavitating

nodal point will take a constant value, 02.

In order to prevent frothing (see Section 3.5), artifical
damping is introduced in the following manner. Let

L3 2 N
T.,01.) =D At © I, + o(I.)I.,
o(lly.15) e Iy + allly) T,
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where At is the time step used and D is a dimensionless
damping coefficient. The matrix B in Eq. (4.29) becomes

B = D-At > I.

This does not affect KT because B’ = O but CT is changed

according to Eq. (4.30).

At any time station we wish to satisfy the following
equation

MXn_+1 " FI,n+1 = Ln+1’

where M is defined in Eq. (3.71). FI,n+1 = FI(Xn+1’ Xn+1)

is the approximation to the internal forces at time station

t o1 Xn+1 is the calculated approximation to X(tn+1) and

similarly for X and X . Furthermore, the calculated
n+1 n+1

approximations should satisfy Eqs. (4.22)-(4.23).

As mentioned at the beginning of this subsection, the
nonlinear calculation starts with a linear one as described
in subsection 4.3.2. When the check in step 6 of that
scheme indicates a cavitating nodal point, we alter the
scheme as follows:

1. Use the last non—-cavitated values of X, X and X as
initial values.

2. Set the iteration counter i = O.

3. Calculate the predictor values (see Eqs. (4.24)-

(4.25))

i _ P
Xn+1 B Xn+1’
.1 _ Op
n+l = “n+l’
00i
n+1l 0.
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4. Calculate the residual forces

ooi
res Ln+1 - MXn+1 - FI,n+1'

5. Form, if necessary, the effective stiffness matrix

1 ¥
K = — M + C,. + .
eff At2B AtnB T KT
n
6. Solve
i i
Keff X" = Fres

7. Calculate the corrector values

i+l _ i i

Xn+1 T “n+l + X,

i+l i+l b 2
n+l ~ (Xn+1 Xn+1)/AtnB’
i+l ep i+l

Xn+1 = Xn+1 + Aty Xn+1.

8. Check the convergence condition

IAXiI < error.

If this is not satisfied set i = i+1 and go to step
4, otherwise continue.
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9. Use the corrector values as calculated values at
tilne station t

n+l
Xn+1 = X;:i’
.n+1 = X;:i’
3in+1 = Xiii'

Set n = ntl and check whether the values indicate a
cavitating nodal point. If so, continue the
calculation at the next time station according to step
1-9 in this subsection, otherwise continue according
to step 1-6 in the preceding subsection.
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5. NUMERICAL EXAMPLES

The numerical examples presented in this chapter represent
some of the different types of problems that this work is
able to deal with. The geometry of the examples is
deliberately kept simple, because only in a simple geometry
can the reader's intuition guide his expectation of what
happens in a specific problem. Also, if something
unexpected happens, in a simple problem it is possible to
trace this odd behaviour back as an outcome of the coupling
between the two domains, and thereby to appreciate how well
the models described in this work represent real
conditions.

The examples are organized in three sections

excitation in the fluid,
excitation on the structure,
transient excitation with a cavitating fluid.

The first two sections are divided into two subsections,
for harmonic excitation and transient excitation. In the
linear cases we use pressure formulation in the fluid
because pressure is an easily visualized field.

5.1 Excitation on the structure

The example chosen for illustrating excitation on the
structure is a rectangular fluid domain with stiff
boundaries and in the middle, dividing the fluid into two
parts, a thin structure. The three dimensional counterpart
is shown in Fig. 5.1: a metal sheet is mounted inside a
closed room with rigid walls.

144

[

L
2.88

Figure 5.1. The three dimensional example for structural
excitation

The air on one side of the steel sheet is not allowed to
pass to the other side.
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Both in the harmonic case and the transient case, the load
is applied along the centre line of the metal sheet. The
metal sheet is simply supported along the edges parallell
to the load and is free to move along the other edges. The
Poisson's ratio is set to zero. The membrane action is
neglected.

The two dimensional counterpart, i.e. the cross-section of
the room in Fig. 5.1, is divided into 648 fluid elements
and 12 beam elements corresponding to 740 fluid degrees of
freedom and 36 structural degrees of freedom. Each fluid
element is square with a side length of 8 cm.

The beam elements are given data corresponding to a 2 mm
steel sheet.

length = 24 cm,

E = 0.2:10"2 Pa,
A = 0.2-1072 n?,
I = 0.67-10"° n?,
Mass = 15.66 kg/m.

The fluid mesh is shown in Fig. 5.2. The problem has two
symmetry axes that are taken into consideration in the
calculation, and only one—quarter of the mesh is therefore
used.

144

—
X

y -

2.88 g

Figure 5.2. The fluid mesh and the intersecting beam

5.1.1 Harmonic excitation

The force applied to the structure is a vertical harmonic
point load at the centre of the structure.
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The discretized load vector is

L? = [0...-1...0]" % () (5.1)

where the only non-zero element is the y-direction at the
centre of the beam. If we neglect the initial state we get

(K - o"MX = L (5.2)

This system is solved for w/2m between 100 Hz and 400 Hz in
steps of 2 Hz with f(w) = 4.0 and for three cases

A. A simple structure with no interaction,
B. The box filled with air,
C. The box filled with water.

'Filled with air' means that p = 1.29 kg/m3 and ¢ = 340 m/s

while 'filled with water' means that p = 1000 kg/m3 and

c = 1500 m/s.

An eigenvalue calculation for the beam on its own gives the
following six resonance frequencies in the interval between
100 Hz and 400 Hz:

101.4 Hz,
140.7 Hz,
191.8 Hz,
257.0 Hz,
333.4 Hz,
395.6 Hz.

Note that the last frequency corresponds to the highest
bending mode that the structural discretization is able to
deal with.

Below, in Figs. 5.3-5.5, the vertical displacement of the
structure at three nodes is shown.
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Figure 5.3-4. Logarithmic displacement in metres at node I
(5.3) and node II (5.4) versus frequency
a) non-interacting beam, b) filled with air

c) filled with water
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Figure 5.5.
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c)

Logarithmic displacement in metres at node III
versus frequency

a) non-interacting beam, b) filled with air,
c) filled with water
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When the beam interacts with air the displacement-frequency
diagram shows that, apart from different amplitudes, new
peaks have developed at 240 Hz, 268 Hz and 340 Hz. The
first is close to a crucial wavelength for the fluid
domain, namely 1.44 m, but 268 Hz is harder to identify. In
Fig. 5.4, more fluid tracks can be traced; 118 Hz and 354
Hz correspond to the wave lengths 2.88 m and 0.96 m,
respectively. The latter is one-third of the transverse
dimension. When the structure interacts with water, it is
clear that the resonance frequencies are considerably
displaced towards lower values. The former highest
structural resonance at 394 Hz is now located at 196 Hz.

Finally, the contour levels for air pressure measured in
decibels for certain frequencies are shown. Note that the
first frequency corresponds to a wave length equal to the
horizontal transverse dimension, while the second frequency
is in harmony with the height of the fluid domain. 340 Hz
is just above a structural resonance which the pattern
indicates, while at 360 Hz the fluid resonance is
preferred; the horizontal transverse dimension is three
times the wave length.
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120 Hz
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106.
102,
98.0
94.0
20,0
86.0
82.0
78.0
74.0
70.0
66,0
82.0
58.0
54.0

50.0
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5.1.2 Transient excitation

The force applied to the structure is a vertical point load
at the centre of the structure and the corresponding
discretized load vector is

L‘; = [0...-1...0]%¢(¢) (5.3)

In the calculation, f(t) is given the following time
history

flt)
(N)

t +
0.001 1 tls)

Figure 5.6. Time history for the applied transient
structural load

Two calculations were performed,

A. A simple beam with no interaction,
B. The beam interacting with air.

The calculations were performed over 1 second using the
implicit algorithm described in Section 4.3 using 4 time
stations between 0 and 0.002 s and beyond that 499 time
stations. During the first interval, all four result
vectors were saved for plotting and every fourth vector was
saved thereafter.

The structural displacement at the locations I, II and III
(see Fig. 5.7) is shown below. At the centre where the load
is applied, the non-interacting beam has a peak value of 14
mm while in the interacting case, the peak value is
approximately 0.2 mm. This is natural because even small
displacements of the structure create high fluid pressures
in the closed box. What is somewhat more surprising is the
way the high-frequency content is amplified for the
interacting beam. Note also that, for the interacting beam,
while the centre node (I) vibrates below its unloaded
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position, node III vibrates above that position, quite
contrary to the behaviour of the non-interacting beam.

Finally, the lower part of 'snapshots' of the air pressure
levels at six time stations are shown.

.20 .40 .60 .80 1.00
-2.0r TIME (s)

-10.0 -

-12.0

-14.0

DISPLACEMENT (mm)

DISPLACEMENT (mm) TIME (s)

12
.08
.04

-.04
=.08 [
=12 F
-.16
-.20 -
-.24F
=28
-.32F
-.36 -

Figure 5.7. The displacement time history for a non-—
interacting beam (top) and an interacting
beam (bottom).
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2.5 ms

L 100

L9REE-]
©  .850E-1
= 775E-)
LTO0E=)
L625E-1
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.400E-)
.325E-1
.250E-)
L175E-1
s 100E-1
.250E-2
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4.0 ms

4.5 ms
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5.2 Excitation in the fluid

The example chosen is a rectangle of dimensions indicated
in Fig. 5.8.

The interior of the rectangle is divided into 648 fluid
elements, corresponding to 703 fluid degrees of freedom.
Each fluid element is square with a side length of 10 cm
and has physical parameters corresponding to air, that is

p=1.29 kg/mB,
c = 340 m/s.
1.8
i;f i m
36

Figure 5.8. The dimensions and the mesh for the example

The boundary of the rectangle is divided into 36 beam
elements corresponding to 108 degrees of freedom, where
each beam element covers 3 fluid elements at the interface.
The beam elements are given the following physical values

Harmonic Transient
calculations calculations
Length (m) 0.3 0.3 0.3
E (Pa) O.2°1O12 O.2°1O12 0.2'1012
A (m2) b.1-16 > 0.2-1072 0.4-1072
I (m4) 0.83-10 % | 0.67-10° | 0.53-1078
mass (kg/m) | 7.83 15.66 31.32
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In both cases, the source of influence is placed in the
centre of the rectangle as a point source. The
displacements of the structure in the four corners are
locked and the symmetric mnature of the problem is
exploited.

Source
node

? 3.6

Figure 5.9. Location of the source node

This two-dimensional problem has a three-dimensional
counterpart, a parallelepiped box whose two opposite sides
are rigid. The other four sides are elastic and the source
is a line source between the two rigid sides. (See Fig.
5.10). The data given to the structure correspond to a 1 mm
and 2 mm steel sheet in the harmonic case and a 4 mm steel
sheet in the transient case.

Figure 5.10. The three dimensional counterpart to the
problem in this section

5.2.1 Harmonic excitation

The system is driven by the added fluid mass per unit area
and time (volume velocity), denoted q in subsection 2.2. We
assume
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a(3<.v.t) = A(0)+5_(x.y)-e ", (5.4)

i.e., that q has a harmonic variation in time (v = angular
frequency)- (50 is the Dirac function at the centre of the

rectanggle. A(w) is a scalar function allowing an amplitude
variation by frequency. Then

Q% = A(0) &_(x,y)io 'V (5.5)
and
A(w)*i-w 10t r = centre node
(Lq)r = { 0 r # centre node

is the right-hand side as defined in Eq. (3.36), (see also
Eq. (3.14)).

If we neglect the initial state

(K + WX = A(0)+i-0 &, (5.6)
where & is a column matrix and

{ 1 r = centre node

(6)1' = 0 r # centre node

and X contains the complex amplitude of the structural
vibration and of the fluid pressure. The phase angle is

obviously * 90° in every degree of freedom.

The system is solved for w/2m between 50 Hz and 300 Hz in
steps of 5 Hz and for three cases:

A. Stiff boundary,
B. Elastic boundary (2 mm steel sheet),
C. Elastic boundary (1 mm steel sheet).

The fluid pressure is measured in decibels. The
displacement amplitude is also represented on a logarithmic
scale, 1og|US|, in the diagrams below. In Fig. 5.11 and
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5.13 A(w) =1, i.e., the source has a constant amplitude
variation. Fig. 5.11 a) and b) show the response in the
centre node where q is applied.

PRESSURE (dB) PRESSURE (dB
130. 130.
120. 120.
140. 110.
100. 100.
90. 90.
80. 80.
70. 70.
60. 60.
50. 50.
40. 40.
30. 30.
20. 20.
10. 10.

0. 1 1 1 1 1 1 1 i 0 1

1 1 1 1 1 J
50. 100. 150. 200. 250. 300. 50. 100. 150. 200. 250. 300.
FREQUENCY (Hz) FREQUENCY (Hz

a) b)

Figure 5.11. The decibel (frequency) history at the centre
node with a) stiff boundary b) elastic
boundary (2 mm steel sheet)

L G P G e ¢

1 1 1

The responses at three other fluid nodes and one structural
node, located as indicated in Fig. 5.12 are presented
below. In Fig. 5.13, the left column represents the case
with a stiff boundary and the right column the case with a
2 mm steel sheet boundary.

—

. \Flgure 5.14
| | o

3.6 ?

Figure 5.12. Location of nodes for frequency response
presentation in Fig. 5.13-5.14

An eigenvalue analysis of the structure on its own gives
the following eigenvalues in the range 50 Hz to 300 Hz: 98,
127, 154, 182, 220 and 247 Hz. In Fig. 5.14, these are
marked '»°'.
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PRESSURE (dB) PRESSURE  (dB)
130. 130.
120. 120.
110, F 110.
100. [ 189 100.
™ 90.
80. B0.
720. 70.
60. 60.
50. 50.
40. 40.
30. 30.
20. 20.
10. 0.1
0' 1 1 1 L 1 1 1 1 1 J 0. L 1 1 1 1 1 = 5 il J
50.  400.  450.  200.  250.  300. 50.  100.  150.  200.  250.  300.
FREQUENCY (H2) FREQUENCY (Hz)
PRESSURE (dB) PRESSURE (dB)
130, 130.
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110. 110.
100. 100.
90. 90.
80. 80.
70. 70.
60. 60.
50. 50.
40. 40.
30. F 30.
20. 20.
10. 10. +
0' 1 1 1 1 1 1 1 1 1 =} 0. 1 1 1 1 1 1 1 1 1 J
50.  400.  450.  200.  250.  300. 50.  100.  150. 200,  250.  300.
FREQUENCY (Hz) FREQUENCY (Hz)
PRESSURE (dB) PRESSURE (dB)
130. 130.
120. 120.
110. 110.
100. 100.
90. 9.
80. 80.
70. 70.
60. 60.
50. 50.
40. 40.
30. 30.
20. 20.

10. 10.

0. 0. 1 1 1 1 1 Y 1 1 1 1 J
-10. 50.  100.  150.  200.  250.  300.
0. FREQUENCY (Hz)
-30.

-40.
_50. L T S T S
50.  100.  150.  200.  250.  300.
FREQUENCY (Hz)
a) b)

Figure 5.13 a) and b). Fluid pressure amplitude measured in
decibels as a function of frequency
at three different nodes, for a
a) stiff and b) elastic boundary,
respectively
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Figure 5.14. Structural displacement in the middle of the
horizontal boundary (2 mm steel sheet) as a
function of frequency

It is reasonable to expect resonance at frequencies for
which the corresponding wavelengths are in harmony with the
dimensions of the fluid domain (3.60 m x 1.80 m). Such
frequencies are easily computed: 95, 189 and 283 Hz. In
Fig. 5.13 (top left), these frequencies are indicated. Two
other peaks are present at 212 Hz and 270 Hz. The latter
corresponds to a wavelength in harmony with another

characteristic distance in the fluid domain; 1.80/27.
Those frequencies are also indicated in Fig. 5.14.
Comparing the left column in Fig. 5.13 with the right
column, representing the elastic boundary case, a new peak
has entered representing the structural resonance at 98 Hz.
Apart from this, the peaks differ in height and, above all,
a careful measurement of their location shows that the
peaks have shifted towards higher frequencies.

Some frequencies have been picked for colour plotting. The
pictures show the air pressure level curves when the source
node is normalized to 100 dB at all frequencies. In the
elastic boundary case, the 1 mm steel sheet is chosen. At
100 Hz the wavelength almost coincides with the width of
the fluid domain, which the colour plot clearly shows,
while the frequency 190 Hz corresponds to a wavelength in
harmony with both the height and the width of the fluid
domain.
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In Table 5.1,

the original values at the centre are given.

The difference between 100 dB and those values should be

subtracted from the

colour

plots

in order to achieve
as was used in the frequency response figures

A(w) = 1,
above.
Frequency (Hz)| a) Stiff b) Elastic
boundary (dB)| boundary (dB)
100 51 82
145 59 59
190 96 73

Table 5.1. The original values
certain frequencies.

at

the centre node for

Numerical Examples
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Stiff boundary

100 Hz
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Elastic boundary (1 mm steel sheet)
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Fig. 5.15 shows the vibration shapes of the elastic
boundary. The shapes are greatly exaggerated and only the
displacement resultant is taken into consideration (no
nodal rotation).

100 Hz 145 Hz 190 Hz

Figure 5.15. Vibration shapes for 1 mm steel sheet

5.2.2 Transient excitation

The fluid domain is exposed to a mass inflow represented by

its second time derivative, q
q(x,y.t) = 6C(x,y)°f(t), (5.7)

where 6C is the Dirac function and ¢ stands for the centre.

Its time history is shown in Fig. 5.16.

Kg/szt
410"

1 2 3 4 5 6 Time (ms)
Figure 5.16. The source function applied at the centre

The corresponding mass velocity q is obtained by
integration (see Fig. 5.17). A physical interpretation of
q, as given in Fig. 5.17, would be a sudden discharge of
fluid along the centre line in Fig. 5.10. The mass velocity
rises during 2 ms to the sustained velocity.

Chapter 5
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The discrete system

MX + KX = Ly (3.36)

is now solved, using the implicit algorithm described in
Subsection 4.3.1. 300 time stations were used, equally
distributed over the time interval O ms to 6 ms, i.e., the

time steps used were At = 2°1O_5 sec. In the interval from

O ms to 2 ms, the results were saved for plotting every

4-10_5 sec and, beyond that, every 16'10_5 sec. In order to
capture the high frequency content of the source function
and to obtain a quantitatively reliable result 1in the
neighbourhood of the source, a finer mesh is needed.

Kgls
40 t

1| 2 3 4 5 6 Time (ms)

Figure 5.17. The volume velocity history to which the
centre node is exposed

The colour plots show the pressure wave emerging from the
centre. After 3 ms, the pressure wave reaches the closest
structural part and starts to reflect against the wall. The
incident wave and the reflected wave overlap at the
boundary, which is well established after 4 ms. Finally,
after 6 ms the wave reaches the most distant boundary and
the reflected waves from the top and bottom overlap at the
centre. Note that the colour scaling in the last 5 plots
coincides.

Numerical Examples
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4 ms

5 ms

6 ms
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Fig. 5.18 shows the structural displacement during the last
three milliseconds. The displacement is greatly
exaggerated. In the left-hand picture, the maximum
displacement is 0.9 mm.

4Lms 5ms 6 ms

Figure 5.18. Deformed structural shape after 4 ms, 5 ms and
6 ms

Finally, Fig. 5.19 presents the pressure time history at
the centre and at three other nodes distributed along the
horizontal centre line. The locations of these nodes are
indicated in the figure.The time between the peak in the
top left figure and second peak in the top right figure,
which 1is due to reflection against the boundary, is
4.12 ms. With ¢ = 340 m/s this corresponds to approximately
1.40 m, which is the actual distance from the midpoint to
the boundary and back to that specific node.
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Figure 5.19. Pressure as a function of time
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5.3 Transient excitation with regard to cavitation

The nonlinear fluid model presented in Sections 3.5-3.6 has
been tested in one example. This example by Bleich-Sandler
[6] is the only one in which an exact solution has been
obtained. Originally, this is a one-dimensional problem,
although the data for the numerical test correspond to the
two—dimensional counterpart. The problem consists of a
plate, initially at rest, on the surface of a semi—infinite
space of fluid (Fig. 5.20). The surface mass is exposed to

a plane pressure wave with a sudden rise and an exponential
decay.

/Surface mass

1300 fluid
elements
2x2cm?

Figure 5.20. The Bleich-Sandler cavitating fluid example

The calculations were performed using 1300 fluid elements
of 2 cm side length. This was enough to ensure that the
boundary conditions at 'infinity' did not interfere with
the interesting part of the solution. Physical data
correspond to those used in Bleich-Sandler [6], although
these are transformed into SI-units.

Speed of sound in the fluid c = 1423.4 nw/s,
Speed of sound in the cavitated region ¢, = 0 m/s,
Density of the fluid p_ = 999.83 kg/m3,
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144.68 ke/m>.

Surface mass density m, =

Atmospheric pressure PA = 1.0133°1O5 Pa,
Peak value of the incident wave P, = 7.1016-10° Pa,
Decay length of the incident wave L =1.445 m,
Acceleration due to gravity g = 9.8146 m/s2.

f‘/P(x,t)=Ppexp(—(x+cf)/L)

.
.

Figure 5.21. Incident plane pressure wave

The time integration procedure is described in Subsection
4.3.2. The check for convergence was made using the maximum
norm, i.e.

maxlxil { error
i

-3 .
and the error was set to 10 . Normally it took two
iterations per time station to satisfy this condition, and
never more than three iterations.

At the surface of the fluid, the hydrostatic pressure PH

was equal to the atmospheric pressure and increased
linearly into the {luid half space consistent with the
acceleration due to gravity and the fluid density. The
calculations were performed over 13 milliseconds using 1950
time stations, i.e., the length of the time step was

6.667'10—6 second. At time zero the pressure wave was
initialized as though it was starting at infinity, i.e.,

Numerical Examples
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P _exp(-x/L)
p(x.0) = p—z"
p(x,0) = - £ p(x,0),
p(x,0) = (9)°(x.0).

At each time station, a check was made for cavitating
nodes, that is, whether

p(x.t) < PH/c2

In order to avoid numerical destruction of the wavefront it
was 'ramped’ over 5 elements and the time was measured from
the arrival of half the 'ramped’' front at the surface mass.
This had no impact on the timing of the velocity peak but
made the pressure wave act as intended behind the front. A
check was also made to ensure that the pressure wave kept
its profile. This check was located in time and space so as
not to disturb the reflected wave or the cavitating zone.
Four sets of runs were performed with different artificial
damping coefficients D = 0.5, 0.25, 0.1 and 0. In Figs.
5.22, 5.23 and 5.25, the upward velocity of the surface
mass for these cases is shown. The solid lines refer to the
present analysis while the discrete symbols are taken from
Bleich-Sandler [6]. (Note that the values in that paper are
given in a non-dimensional form). The figures also show the
upward velocity when no check for cavitation is made. As
can be seen, the numerical results in the first cases are
in excellent agreement with the analytical results and the
smoothing effect of the artificial damping has only slight
impact on the timing of the solution. The cavitating zone
opens after 0.36 ms, i.e., after the peak velocity has
occurred. After 6 ms the non-cavitating solution has a zero
upward surface mass velocity while the cavitating fluid
makes the surface mass velocity continue below zero. After
10.6 ms the cavitated zone closes and a secondary pressure
wave reaches the surface mass after approximately 12 ms,
which is clearly wvisible in Figures 5.22 and 5.23.
Furthermore, there is a considerable difference in the peak
displacement when the fluid is allowed to cavitate.
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Figure. 5.22. Upward velocity and upward displacement of
the surface mass, D = 0.5
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Figure 5.23. Upward velocity of the surface mass, D = 0.25
(top) and D = 0.1 (below)
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In Fig. 5.24 the cavitating zone is shown for D = 0.5 and
D = 0.1. The interfaces between cavitated and non-cavitated
regions are made up of horizontal lines because only
cavitated nodes are displayed. The result agree closely
with those of Bleich-Sandler [6]. The cavitated region
never reaches the surface and closes after 10.6 ms. For
D = 0.1 the upper interface is 'fragmentized' due to the
spurious pressure oscillations. These oscillations have a
devastating effect on the solution when D = 0. Fig. 5.25
shows the upward velocity of the surface plate for this
case.

DEPTH (m)
3.80 —— PRESENT ANALYSIS

r . e REFERENCE (B)
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2.00
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1.00
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1 1 1 1 1 1 ! 1 1 4 1 1 J
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_ REGION

2.00F

1.50 -

1.00

.60 |

hidil} i 1 1 ! ! i I 1 1 1 1 i

2.0 4.0 6.0 8.0 10.0 12.0
TIME {ms)

Figure 5.24. Time history of the cavitated region,
D =0.5 (top) and D = 0.1 (below)
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6. CONCL.UDING REMARKS

6.1 Conclusions

This study is concerned with finite element modelling of
fluid-structure interaction. The structure is not merely a
boundary condition in a fluid domain, but the dynamic
behaviour of the structure interacts with the {fluid.
Different primary variables are used in the fluid domain
and different source functions for transient and harmonic
analysis are described for every choice of primary
variable. It is thus my belief that this work presents a
general and concise description of situations in which
different fluid 'load' conditions can be simulated. In the
numerical examples, cases with both fluid and structural
source functions are illustrated for both transient and
harmonic cases.

Symmetric formulations are derived by using mixed fluid
primary variables, one of which is basically similar to the
one given by Ohayon [29], although the version presented
here is applicable to general transient fluid source
functions. The other formulations are new with respect to
transient analysis, although recently and parallel to this
work, similar formulations for eigenvalue problems have
been proposed by Felippa [18].

Some nonlinear behaviour in the fluid domain is also taken
into consideration. The model can handle wave propagation
in which the speed of sound is a function of the primary
variable. As a special application, the model is applied to
cavitation in the fluid due to reflection against an
elastic boundary.

The nonlinear model proposed in this study is preferable to
the one presented by Newton [23]-[26] and Felippa [17] when
a more sophisticated equation of state for a cavitating
fluid is required and also if a nonlinear speed of sound is
to be considered. Furthermore, it seems that special
boundary conditions are more easily dealt with in the
present formulation. The finite element model is verified
against an analytical solution given by Bleich and Sandler
[6] and the agreement between analytic and numerical
results is very good.
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All derivations are based on the weighted residual method
and the Galerkin approach for choosing test functions,
al though reformulations using other principles for chosing
test functions are possible.

6.2 Future developments

In numerical analysis of wave propagation, a crucial point
is to minimize the overshoots at the wave front by
increasing the diagonal dominance. There is a need to
incorporate such ideas in fluid-structure interaction.

In the present work, an implicit routine is adopted for
treating a cavitating fluid. It would be economic with
regard to computer costs to investigate an explicit time
stepping procedure. When submerged structures exposed to
explosions are studied using the cavitating fluid concept,
nonlinear structural behaviour such as buckling must be
taken into consideration. Therefore such a phenomenon
should be of interest in fluid-structure interaction.

Numerical implementation of symmetric formulations
presented in this work is presently being carried out. A
physical interpretation of eigenvectors obtained due to
these symmetric systems is also of interest.

Chapter 6
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APPENDIX A: Notations

A coupling matrix in connection with a symmetric
formulation or matrix for discrete formulation of
constitutive law in connection with nonlinear fluid

B coupling matrix in connection with a symmetric
formulation or matrix for discrete formulation of
constitutive law in connection with nonlinear fluid

b body force acting in the fluid
c speed of sound
C f luid-structure coupling damping matrix
c .
Cd damping constant
Cf fluid damping matrix
C structure damping matrix
s
D damping constant
F force acting on the structure
Ff structural load due to fluid interaction
F external structural load
s
g acceleration due to gravity
I identity matrix
K fluid-structure coupling stiffness matrix
c
Kf fluid stiffness matrix
K structure stiffness matrix
s
L differential operator

Notations
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fluid load vector due to the body force

fluid load vector due to external time—dependent

pressure

structure load vector due to fluid interaction

fluid load vector due to structure interaction

structure load vector due to external time-—

dependent load

fluid load vector due to added fluid mass

fluid-structure coupling mass matrix

fluid mass matrix

structure mass matrix

unit vector

trial function in the fluid domain

trial function in the structure domain

fluid pressure, ambient value

fluid pressure, reference value

fluid pressure, total value
fluid pressure vector

external time-dependent pressure

added fluid mass per unit volume and time
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Q added fluid mass per unit volume, Q = Jm q dr
0

T vector (x,y.z)

81—84 fluid boundaries

t time

u, fluid displacement field

u_ structural displacement field

US structure displacement vector

v fluid velocity field

\Y material volume in the fluid

W scalar test function

w vector test function

U g structure displacement component interacting with
the fluid

a(p) constitutive law linking density change to pressure
change

B(p) constitutive law linking density change to pressure
change

B Newmark time integration parameter

Y Newmark time integration parameter

At time step

¢ body force potential, b = V¢

displacement potential field

Notations



130 -

<2

fluid displacement potential vector

fluid density vector

fluid density, ambient value

fluid density, reference value

fluid density, total value

constitutive law linking density change to

pressure change

volume integral

surface integral

the del operator, [

oz

da 4

ax ’ a_y-;

g
dz
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APPENDIX B

This appendix derives the formula (B5) for interchanging
the order between space integration and time derivation
used in section 2.2.

Suppose a fluid particle occupies the point T = (rl,r2,r3)

at time t and the point r r02’r03) at time O.

o= (To1:

Now consider the rate of change of some property f(r,t)
assigned to a material volume V(t). Then

d _d . . B
I V(t)ic‘(r,t)d\’(r)] = dtUV(O)f(r(rO’t)’t) J av( O)]‘
d
= Jv(o)E fr(rg. ). €3 d¥(rg). (B.1)
where
d(r,,r,,r,)
- 9T _ e 1'"'2°°3
e detaro - ta(]“01”02’1"03)'
But
d df (r(ry,t),t)
ge(f(x(ry.t),t) J) =] AT +
+ £(x(ry. 1), 1) 9 (B.2)
and

4] _ é_riz_] _ 9.E3£§1:§2:ﬁ§3] _
t ~ dt — dt -
6rO BrO

.

) a(rl,r2 r3) . B(rl,rz,rs) . a(rl,rz,rB)

Bro BrO Bro

Integration rules
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Because det(AB) = det(A)+det(B), where A and B are square
matrices, we have

a(rl,r2,r3) arl Brl Brl
= det dr ar Jr =
6ro 01 02 03
6r2 6r2 ar2
8r01 6r02 6r03
8r3 6r3 6r3
-6r01 6r02 arOB_
6r1 Brl 6r1 Brl Grl
:deta— 0 06 3 3 :a J
1 Yor  “To2 9oz 1
6r2 6r2 8r2
0] 1 0 3 3 3
ro1  “To2  “To3
6r3 6r3 8r3
0 0 1 5 3 5
| [%Fo1  9To2  “To3)

and

gr, ar
4 _ [T 2 3) 1 ol
= [zr t g+ arBJ J = (ver)J. (B.3)

The last integration of (B.1) then yields

as ]
J;(O)[J ac(r(ro:£).8) + f(r(rO’t)'t)’J(V‘r)]dV(rO) -

_ daf - o
= J;(t)[ét(r,t) + £(r,t)(v )}dV(r). (B.4)
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Finally we have

d_ £(r,t)av(r)| =

at Uy (r ]

- df(rt) | i, t)(ver) |av(z.). B.5
Jv(t)[ dt v ] 0 (B.5)

Integration rules
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APPENDIX C

This appendix discusses the possibility of neglecting the
convective terms when linearizing the fluid equations.

Eq. (2.13) states that p = czp. Replacing p by p in Eq.
(2.10) yields '

dp

qc TP VY =4 (C.1)

dv 2
Py ge T SV = psb q(V'vq). (C.2)

Furthermore we have

de _Gp , ..

dc =3¢t Ve, (C.3)
dv _ dv

a'= at + (V V)V (C.4)

We want to be able to ignore the last term in Eq. (C.2),
(C.3) and (C.4). Under what circumstances will this give a
good approximation?

Substituting Eq. (C.3) and (C.4) into Eq. (C.1) and (C.2)
respectively yields

gp + p VeVt VeVp =q, (C.5)
t
av 2
Py Fg T C VP + Py (vev)v = psb - q(v;vq). (C.6)

Solving Eq. (C.6) with respect to vp and substituting into
Eq. (C.5) yields

d

6€ + p VeVt Vevp = q, (C.5)
2 dp e [ _ . Ov

¢ Frt Py (c vev — ve(vev)v) PV Fr =

= -p_v'b + (@ + ve(v-v ))a. (C.7)
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Suppose that ]vl < ¢ and qul { c. Then we can neglect

(‘P;Vd)q in comparison with c2q

and

. . . 2
ve(v*V)Vv in comparison with c“vev

The first deletion is obvious and the second deletion is
due to:

ij
ve (V'V)V = .E.Vjvi &‘
lsJ 1

(C.8)

We can =always choose the coordinate system so that at a
specific point, Vo = Vg o= 0, that is,

Ve (V‘V)V = V% o (C,Q)

c2V°v =c 3 —1 (C.10)

if [v| = v, K,

These size estimations imply that the influence of (vev)v
and q(vhvd) in Eq. (C.6) on the system of equations given

by Egs. (C.5) and (C.6) are negligible compared to v+v and
q in Eq. (C.5).

The result is a reduced system

dp . . _

T + pVV + Vevp = q, (C.5)
av 2

Py ST eV = psb. (C.11)

Discussion of the deletion of the convective derivative
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A physical interpretation of the cancellations resulting in
Eq. (C.11) is that the influence of the variation in space
of the fluid velocity field is mainly due to PV in Eq.

(C.5). The influence of the added fluid mass is due mainly
to density increase as long as the added fluid particles
have a low velocity relative to the fluid velocity field.

In the same manner, we can eliminate of the influence of
the density variation in space as expressed by v+vp in Eq.

(C.5) compared to 02Vp in Eq. (C.11). Multiply Eq. (C.5) by
v and add Eq. (C.11) to the result. We have

d e} 2
v % + p v(veV) + p (—Blt’—+ (v(vevp) + c“vp) =
= qv + psb, (C.12)
9 , Pvp = p b (C.11)
Ps Bt p= Py ’
Because
2. 2
lv(vevp) | = |vllvevp| < |v]%|vp| << ™ vp|

. . . 2
we can neglect v{vevp) 1in comparison with c¢“vp. By
substituting Eq. (C.11) in Eq. (C.12) we obtain

d

v(é—fci + p v - q) =0, (C.13)
av 2 -

ps g"' c Vp = pr. (Cll)

Because v # O we have the system given in Egs. (2.11) and
(2.12).
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