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Abstract

A network mechanics model for cellulose fibre fluff is proposed. 2D and 3D versions
of the model have been implemented and the influence of various micro-level pa-
rameters on the global mechanical performance has been determined by means of
computer simulations.

Model networks composed of bonded fibres of arbitrary distribution in length,
curvature, cross-section, stiffness and strength were investigated. The bonds were
modelled as non-linear coupling elements representing stick-slip performance. The
bonds were arbitrarily distributed in stiffness and strength. The fibres were arranged
in a random structure according to an arbitrary orientation distribution. The net-
work geometry was periodic, enabling a cell under observation to be regarded as
one of many identical cells making up a global structure. Periodic boundary and
loading conditions were used to obtain relevant results, even in the case of small
network cells. The networks were analysed by means of the finite element method,
and homogenized mechanical properties such as stress versus strain performance,
initial anisotropic 2D and 3D stiffness properties, strength and fracture energy were
calculated. Fracture localization and geometric quantities, such as the number of
bonds and active part were also studied.

Simulations showed that a cell 1.2 times the fibre length is sufficient for cal-
culation of the initial stiffness values. The dependence of initial stiffness on fibre
and bond stiffness, network density, fibre curl, fibre orientation and fibre length was
studied. Fracture simulations showed that bond ductility is a very important pa-
rameter for 2D networks, giving a stronger and more ductile network. The influence
on fracture of network density, fibre length and fibre orientation distribution was
also examined. A comparison was made between 3D network simulation results and
experimental results for cellulose fibre fluff. Reasonable agreement was observed
up to peak stress. Analysis of the post-peak stress performance requires that size
dependence due to strain localization and heterogeneity in the material, be taken
into consideration.

The models enable systematic analysis and design of network structures. The
2D version has the advantage of requiring less computer capacity, but in order to be
able to draw quantitative conclusions regarding cellulose fibre fluff it is advisable to
use the 3D version.

Keywords: network mechanics, fibre network, cellulose fibres, fracture, stiffness,
computer simulation, 3D model
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1. Introduction

1.1. General remarks

Cellulose fibres are in general obtained by defibration of wood, by either chemical,
mechanical or combined chemical-mechanical processing. A major part of the pulp is
used for making paper, which is manufactured by forming the wet fibres into sheets.
Another important product made from pulp is dry-shaped cellulose fibre fluff, see
Figures 1.1 and 1.2. This kind of material is produced by blowing the fibres, in a dry
condition, into the desired shape. The result is a material used mainly in disposable
nappies and health-care products. It is also possible to blow the fibres together with
an adhesive aerosol. In this case, the bonds between the fibres are stronger, and
fields of application include insulation boards and various moulded products, the
latter being of higher density.

The main functions of some of the products mentioned above are the absorption
of liquid or the prevention of heat transfer, but it is of course also necessary that they
can withstand the mechanical load to which they are subjected when in use. This
study deals with the mechanical properties of dry-shaped cellulose fibre materials,
and examines which factors are of importance for mechanical properties such as
stiffness, strength, strain localization and fracture process of a cellulose fibre fluff.

Figure 1.1: Cellulose fibre fluff seen in a microscope.

1
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Wood is defibred and
pressed into thick sheets in a
wet condition...

...the sheets are then
defibred again and
blown into a dry fluff...

...which is used for making nappies,
heat insulation and moulded
products. These products represent
different degrees of compactness
and adhesive content.

Figure 1.2: Dry-shaped cellulose fibre fluff is made from wood, and is used for dis-
posable nappies, insulation and moulded products.
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1.2. Aim and scope of the investigation

Due to strong competition, the absorbent-product industry is very research intensive.
The need within this industry for methods for the rational analysis of the mechanical
behaviour of fibre materials has been emphasized. The aim of the present study
was to develop a model that enables such mechanical and geometrical analysis of
materials made of cellulose fibres.

Micro-mechanical modelling is an established concept within structural mechan-
ics which consists of making assumptions regarding the properties and behaviour
of the components of a material on a lower structural level, and thereby calcu-
lating the expected behaviour of the material on a higher structural level. The
micro-mechanical model used in this work is a network model, which is particularly
suitable for a material like cellulose fibre fluff due to its network character. In this
study, assumptions are made regarding the fibres, inter-fibre bonds and network ge-
ometry, see Figure 1.3, partly from [60], and the properties on the continuum level
are obtained by computer simulations.

A theoretical model of the fibre material is introduced in terms of fibres, inter-
fibre bonds and the structure into which these are assembled. The model has been
formulated and implemented in a two-dimensional as well as a three-dimensional
version. The implementation involves two separate steps. First a network structure
is generated according to prescribed statistical distributions of the various properties
that define the micro-structure of the material. The resulting structure is then
assumed to be subjected to strain, and the finite element method is used to obtain
the global stiffness properties. Through introducing fracture criteria for fibres and
bonds, non-linear simulation of the fracture process can be carried out.

Computer simulations allow relations to be obtained between parameters on the
microlevel and the global level. The pertinent microlevel parameters include the
length distribution, the orientation distribution, the geometrical and the constitu-
tive properties of the fibres, the constitutive properties of the bonds, the degree
of heterogeneity of the network and also the network density. The corresponding
global characteristics can be divided into geometrical and mechanical properties.
Interesting geometrical properties include the number of bonds and the percentage
of the network that is active. Concerning the mechanics, practical interest is focused
on the stiffness properties and on the fracture process, the latter involving strength,
strain localization and softening. From the application point of view, strain local-
ization is of particular interest, since it may initiate crumbling in the case of cyclic
loading.

Particular attention is paid to the network size needed to obtain relevant com-
putational results. The choice of boundary conditions is important in this context,
and a concept of periodic geometry and boundary conditions is used in an effort to
minimize the required network size, and thereby minimize the number of degrees of
freedom.

Viscous effects and dynamic behaviour of the material are not dealt with in this
study.
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Figure 1.3: Modelling and analysis can be performed at different structural levels.
This study deals with the transition from the fibres to the network. Partly from [60].
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1.3. Organisation of this thesis

In Chapter 2 some earlier work on cellulose fibre network mechanics is summarized.
This includes both analytical network modelling and computer simulations.

In Chapter 3 the proposed 2D and 3D models of fibre networks are presented.
The parameters that define a network are listed and discussed.

Chapter 4 describes how a network is generated and prepared for the analysis of
mechanical performance.

Chapter 5 presents results concerning the purely geometrical properties of a
network, such as the number of bonds and the mechanically active part of the
network.

In Chapter 6, methods for obtaining the global initial stiffness properties of a
network are thoroughly discussed. Different boundary conditions are considered.

In Chapter 7, simulation results of global initial stiffness properties are presented,
in terms of elastic modulus and Poisson’s ratio of networks. These results illustrate
how stiffness properties are affected by boundary conditions, network size, network
density, stiffness properties of fibres and bonds, as well as curl, length and orientation
distribution of the fibres.

Chapter 8 deals with the fracture process. Output parameters of interest are
defined and discussed, and the methods used to obtain them are presented.

Chapter 9 presents results from the analysis of the fracture process. It is demon-
strated how global parameters such as strength, fracture energy and localization
depend on sample size, network density, properties of bonds and other micro-level
parameters.

Chapter 10 contains a discussion of numerical aspects of the study, the problems
that have arisen and how they have been solved.

Conclusions are presented and future plans are outlined in Chapter 11.
Finally, in Appendices A to D, some algorithms and calculations are given.
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1.4. Notations

Notations are explained in the text when they first occur. In addition, a list of the
main notations is given below, together with the corresponding SI units. Bold face
is used to denote vector quantities. A barred letter denotes the arithmetic mean
value of the parameter in question.

Roman upper-case letters

Ab area of bond [m2]
Af cross-sectional area of fibre [m2]
D constitutive matrix [Pa],[N/m]
Dij element in row i, column j of D [Pa],[N/m]
E homogenized elastic modulus for a network [Pa],[N/m]
Ef elastic modulus of fibre [Pa]
Fult ultimate resultant force in bond [N]
G homogenized shear modulus for a network [Pa],[N/m]
GF fracture energy of network, see Section 8.3 [Nm/m],[Nm/m2]
Gf shear modulus of fibre [Pa]
If moment of inertia of fibre [m4]
Jyf out-of-plane bending section constant, curved fibre [m4]
Jzf in-plane bending section constant, curved fibre [m4]
K system stiffness matrix [Nm],[N],[N/m]
Ke element stiffness matrix [Nm],[N],[N/m]
Kvf torsional constant of fibre [m4]
Li side-length of network along axis i, i = x, y, z [m]
Mult ultimate moment in bond [Nm]
Nx probability distribution function for parameter x [-]
RBA relative bonded area [-]
Vh degree of heterogeneity, see Section 3.3 [m2],[m3]

Roman lower-case letters

bf width of rectangular fibre cross-section [m]
c curl index, see Figure 3.1 [-]
e maximum fibre centre-line distance for bond to occur [m]
f force vector [N],[Nm]
hf depth of rectangular fibre cross-section [m]
ki stiffness of spring in direction i, i = x, y, φ [N/m],[Nm/rad]
kn stiffness of normal spring in bond [N/m3]
kt stiffness of shear spring in bond [N/m3]
lch characteristic length [m]
lf fibre length [m]
ls free fibre segment length [m]
nc number of fibre crossings [-]
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nf number of fibres [-]
ns number of slips before complete bond failure [-]
p approximate active part of network [-]
r radius of curvature of fibre [m]
s probability of bond at a fibre crossing [-]
u displacement vector in node, element or structure [m],[rad]
we external work [Nm]
wi internal elastic strain energy [Nm]
x (x, y, z), rectangular Cartesian coordinates [m]

Greek letters

α angle of fibre relative to the x-axis [rad]
β angle of fibre relative to the xy-plane [rad]
γ angle of fibre around its own axis [rad]
ε strain vector, 3D: (εx, εy, εz, γxy, γxz, γyz) 2D: (εx, εy, γxy) [-]
εlim strain in network at maximum stress [-]
εult ultimate strain in network [-]
κ fibre curvature [m−1]
λ1 reduction of bond stiffness at slip [-]
λ2, λ3 reduction of bond strength at slip [-]
µ shear strength factor of bond [-]
ν homogenized Poisson’s ratio for a network [-]
ρ network density; total fibre length per unit area or volume [m−1],[m−2]
ρs sheet density [kg/m2]
ρf fibre density [kg/m3]
σ stress vector, 3D: (σx, σy, σz, τxy, τxz, τyz) 2D: (σx, σy, τxy) [Pa],[N/m]
σadh adhesion strength of bond [Pa]
σmax maximum stress in network [Pa],[N/m]
σn normal stress [Pa]
σult ultimate normal stress in fibre [Pa]
τ shear stress [Pa]
τult ultimate shear stress in fibre [Pa]
θ angle along circle arc fibre [rad]
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9

2. Earlier cellulose fibre network

mechanics modelling

The development of models aimed at improving our understanding of the mechanical
behaviour of fibre networks started with analytical models assuming uniform strain.
Being analytical, the earliest models were confined to rather simple, uniform net-
works. Nevertheless, they produced results of great interest and value. During the
1970s and 1980s the arrival of computers with considerable computation capacity
resulted in the first computer simulations of network behaviour. The evolution has
continued, and in the 1990s several new models appeared, taking more and more
variables into account. The variables included in the models are naturally those
which are believed to be of importance. Experimental progress, i.e. the possibility
of measuring new properties in a network, has also been an important factor in
choosing which parameters to study.

Most references cited in this chapter deal with paper, and this reflects the fact
that not much is to be found in the literature on the geometry and mechanics of dry-
shaped cellulose fibre materials. There are, however, obvious similarities between
the two types of material, the main differences being the density, the more three-
dimensional character and weaker fibre-to-fibre bonding of a fibre fluff.

2.1. Geometry models

A very often cited paper dealing with the geometry of fibre networks was presented
by Kallmes and Corte in 1960 [23]. They stated that the structure of paper, i.e.
the geometric arrangement of fibres and inter-fibre spaces, is an effect of the paper-
making process, as well as the cause of the paper’s properties. In their article,
relations are presented between various geometrical properties of the network such
as number of fibre crossings and average segment length between crossings, and basic
properties of the fibres and the sheet, such as the mean fibre length and number of
fibres.

They considered a two-dimensional sheet, which was defined as a sheet where
the area which is covered by more than two fibres is negligible. Probability theory
was used, and the fibres were assumed to be deposited independently of each other.
Further, it was assumed that the fibres were randomly distributed over the area and
had a uniform orientation distribution. Among the results, the following equations
are cited for n̄c, the average number of fibre crossings in a square of side length L,
occupied by nf fibres of average length l̄f , and l̄s, the average free segment length
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on a fibre. c̄ denotes the average curl index, that is the distance between fibre end
points divided by fibre length, see Figure 3.1.

n̄c =
(nf l̄f )

2c̄2

L2π
(2.1)

l̄s =
l̄fnf c̄

2n̄c
(2.2)

The influence of c̄ was, however, not found to agree with simulation results, as is
further discussed in Section 5.2. In addition to average values of geometrical and
topological properties of the model network, distributions of various properties were
also given, and the analytical results compared with experimental results.

In 1977, Komori and Makishima [31] presented the equations corresponding to
(2.1) and (2.2) for a three-dimensional fibre assembly, where the fibres had an arbi-
trary orientation distribution. If the fibres are not straight, however, the orientation
distribution function must be interpreted as the orientation distribution of the in-
finitesimal fibre segments. For the case of a two-dimensional network with a uniform
orientation distribution, the equations as expected reduce to those of Kallmes and
Corte [23].

In a book presented by Deng and Dodson in 1994 [12], various aspects of the
stochastic geometry of paper are compiled.

2.2. Uniform strain models

The relation between basic fibre and bond parameters and the mechanical properties
of a network has been investigated by means of several network theories. Many
network theories rely on the assumption of uniform strain, that is, that the strain is
equal everywhere in a sheet and thus equal to the average strain. In a heterogeneous
material there is generally not a state of uniform strain since areas of less stiffness
elongate more than stiffer areas when a sheet is subjected to extension. Uniform
strain is, however, a better approximation, the more homogeneous the material.

A typical uniform strain theory is formulated by first making basic assumptions
regarding the geometry of the network, e.g. straight identical fibres positioned uni-
formly in the sheet and oriented according to some arbitrary distribution. The
homogeneous strain assumption implies that each bond centre is displaced accord-
ing to the mean strain field. The rotation of the bond centres can be assumed to
be for example, zero or related to the rotation of the neighbouring fibre segments.
The displacement and rotation of the fibre segment end points are then calculated
as a function of fibre orientation angle and global strain. Assumptions are made re-
garding the types of deformation a fibre can sustain, e.g. axial elongation, bending
and shear. By means of this and assuming constitutive behaviour of the fibre, for
example, linear elastic, the forces in the fibre segments as a function of fibre orien-
tation angle and global strain can be calculated. The number of fibres of a certain
angle crossing a line of unit length parallel to the x- and y-axes, which depends on
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the total fibre length per unit area and the orientation distribution, is calculated.
Finally, the stresses in the x- and y-directions can be integrated and from the re-
lation between the applied strain and resulting stress the elastic coefficients can be
calculated.

Some uniform strain theories which, in principle, follow the outline above are
described in the following. Cox [11] presented a network model in 1952 in which the
fibres were assumed to extend from one side of the network to the other, carry only
axial load and not interact with each other. The elastic coefficients were derived
as a function of the fibre orientation distribution. Due to its simplicity, the Cox
model is of special interest and the main concepts are described here as an example
of a uniform-strain theory. Cox assumed the long straight thin fibres to be oriented
according to the distribution function:

f(α) =
1

π
(1 + a1 cos 2α+ a2 cos 4α+ · · ·+ b1 sin 2α+ b2 sin 4α+ · · ·) , (2.3)

where α is the angle of the fibre relative to the x-axis, ai and bi constants and∫ π

0
f(α)dα = 1 . (2.4)

Each fibre was assumed to extend from one edge of the network to the other, see
Figure 2.1; its bending stiffness assumed to be negligible and there is no interaction
between the fibres. These assumptions imply that the strain field is homogeneous

x

y

Figure 2.1: A Cox network.

throughout the network, and the approximation is thus not concerned with the
uniformity of the strain field, but rather with whether the analysed network is
similar to the real material which is being modelled. If the network is subjected to
a strain

ε = (εx, εy, γxy) ,
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the axial strain in a fibre inclined at an angle α to the x-axis is:

ε = εx cos2 α+ εy sin2 α+ γxy cosα sinα (2.5)

The fibres were assumed to resist only axial stress and to be linearly elastic with
an elastic modulus Ef and cross-sectional area Af . From Hooke’s law we can derive
the force, F , in a fibre:

F = EfAf(εx cos2 α+ εy sin2 α+ γxy cosα sinα) (2.6)

The numbers of fibres at an angle α which intersect a line of unit length perpendic-
ular to the x- and y-directions are ρf(α) cosα and ρf(α) sinα, respectively, where
ρ denotes the total fibre length per unit area. By integrating over α, the forces per
unit length in the x- and y-directions as a function of the strain are obtained. From
this, the elements of the constitutive matrix D can be obtained:

D11 =
K

16
(6 + 4a1 + a2)

D22 =
K

16
(6− 4a1 + a2)

D13 =
K

16
(2b1 + b2)

D23 =
K

16
(2b1 − b2)

D12 = D33 =
K

16
(2− a2)

(2.7)

where
K = AfEfρ =

ρs
ρf
Ef , (2.8)

ρs is the sheet density and ρf is the density of the fibre. Note that the higher
order terms in the expansion of f(α) disappear in the integration. For an isotropic
network, where f(α) = 1/π, (2.7) reduces to

E =
K

3
(2.9)

G =
K

8
(2.10)

ν =
1

3
, (2.11)

E, G and ν denoting elastic modulus, shear modulus and Poisson’s ratio of the net-
work. The stiffness values predicted by Cox’s model are not reached in real cellulose
fibre networks, but they could be viewed as an upper limit. Several authors [24, 45]
have reported stiffness values approaching those calculated by Cox for well-bonded
networks made of long fibres. To approach the homogeneous strain field situation
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in a network where the fibres do not extend from edge to edge, an alternative mech-
anism for transferring forces across the network must be provided. This could be
completely rigid bonds between the fibres and sufficiently high network density to
suppress the effect of bending of the fibres.

Cox also introduced the idea that the effect of short fibres can be approximated
by reducing the fibre modulus by an amount corresponding to the average stress in
a short fibre compared with the stress in an infinite fibre. The stress distribution in
a fibre depends on the transfer of stress between the single fibre and the medium to
which it is bonded. This method of calculation of the stress along a fibre is often
called shear-lag theory.

A strength criterion for uniaxial tension can also be deduced from Cox’s article.
The most severly stressed fibre is oriented in the direction of the strain. When the
stress in this fibre reaches the fibre strength the maximum sheet stress is reached.

Campbell [10] presented a similar long-fibre model, but in a less general manner,
and obtained the same results for the elastic modulus and Poisson’s ratio as Cox.

Van den Akker [61] assumed that apart from axial strain the unbonded parts
of the fibres can also sustain bending and shear. When bending and shear are
considered an assumption has to be made regarding the rotation of the bonds. Van
den Akker assumed the bonds to be rigid and to rotate an amount equal to the
average of the rotations of the two bonded fibres.

Kallmes et al. [24] repeated the calculations of Campbell and Van den Akker,
emphasizing the contributions of the free and bonded parts of the fibre segments.
They also suggested some minor changes in Van den Akker’s theory regarding fibre
curl and the penetration of bending from the unbonded into the bonded fibre re-
gions. Kallmes and Perez [25] also introduced a theory for the entire load-elongation
behaviour of paper relying on the assumption of uniform strain. The total force in
the fibres crossing a line is considered to depend on three factors. The first is the
force in a fibre of orientation θ. This is determined from the uniform strain as-
sumption and assumed linear elastic-brittle material behaviour. The second is the
number of fibres crossing the line. This is obtained as in the previously mentioned
theories, uniform orientation distribution is assumed and only the fibres subjected
to tension are considered. The third factor is the probability that a fibre crossing
the line is carrying a load. This probability is divided into two parts, one taking
account of non-straight fibres not carrying any load, and one taking account of fibres
not carrying any load due to bond failure at their ends. The latter is a function
of relative bonded area, RBA. Failure is assumed to result from either the fibre
strength being exceeded, or from progressive bond failure.

In 1969, Page [44] proposed the following equation for paper strength, T , under
uniaxial tension:

1

T
=

9

8Z
+

12Afρf9.81

bP lfRBA
(2.12)

where Z denotes zero-span tensile strength, ρf fibre density, b shear bond strength
per unit area, P the perimeter of the fibre cross-section and RBA the relative
bonded area of the sheet. Despite the non-rigorous derivation, this equation which
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emphasizes the relative importance of fibre and bond properties for sheet failure,
showed good agreement with experimental results.

Perkins and Mark [46] assumed that the entire fibre segments acted in the same
way and could sustain axial load and bending. In addition, the effect of relative
deformation between the fibres in a bond was taken into account when the elastic
stiffness was calculated. The axial stiffness also includes the effect of out-of-plane
curl.

Kallmes et al. [26] considered only tension in the fibres. They stated that not
all the fibres in the network were active, due to initial slack etc., and that only the
active fibres could carry load.

Page and Seth [45] argued that the elastic modulus of paper is controlled by
three factors, the first being the fibre modulus. For networks of long, straight, well-
bonded fibres the modulus is that derived by Cox. The two factors that cause the
paper modulus to fall short of this value are limitations in the load transfer between
the fibres and defects in the fibres such as micro compressions, curl and kinks. The
elastic moduli resulting from these models are all given in [5], from which Table 2.1
is taken.

Cox [11] also derived the elastic constants for a three-dimensional isotropic net-
work, using the same assumptions as in the 2D case of long fibres carrying only axial
force. The result is

E =
K

6
(2.13)

G =
K

15
(2.14)

ν =
1

4
, (2.15)

where K is given in (2.8).
Qi [49] used the same assumptions regarding the fibre properties but gave an

angular distribution function suitable for describing the three-dimensional fibre ori-
entation distribution in paper. A z-directional ordering parameter defining the de-
gree of out-of-plane orientation of the fibres was given, and the elastic parameters
were calculated for different values of the ordering parameter, both for isotropic
handsheets and machine-made papers showing a non-isotropic in-plane orientation
distribution. The model was further developed [50] to include the effects of transver-
sal fibre stiffness.

Toll and Månson [59] studied a planar fibre network under transverse compres-
sion. The fibres were assumed to be long, lie in one plane and have an arbitrary
orientation distribution in that plane. When the network is compressed more fibre
contact points are created and the beam segments providing resistance to compres-
sion become shorter and stiffer. The stress needed for compressing the network was
found to be proportional to the volume fraction of fibres raised to the power of
five. The results showed good agreement with experiments performed on glass-fibre
networks.
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Table 2.1: Elastic modulus resulting from different uniform strain models. From
Baum [5].

Author Elastic Modulus Ref.

Cox (1952)
1

3

ρs
ρf
Ef [11]

Campbell (1963)
1

3

ρs
ρf
Ef [10]

Van den Akker (1962)
1

3
(1 +

4IfGf

AfGfb2 + 12EfIf + 2GfIf
)
ρs
ρf
Ef [61]

Kallmes et al. (1963)
1

3
(1 +

16IfGf

3AfGfb2 + 36EfIf + 8GfIf
)
ρs
ρfc

Ef [24]

Perkins and Mark (1976)
1 + 2β

3 + 2β

1

1 + 1.5(2a0/tf)2

ρs
ρf
Ef [46]

Kallmes et al. (1977)
1

3
(1− fi)

ρs
ρf
Ef [26]

Page and Seth (1979)
1

3
(1−

w

gRBA
(Ef/2Gf)

1/2)
ρs
ρf
Ef [45]

Notations differing from those in Section 1.4
a0 Measure of slackness in unstrained network
b Unbonded fibre segment length
fi Initial fraction of inactive fibres
g Fibre segment length
tf Fibre thickness
w Fibre width
β Dimensionless parameter which is

a function of fibre geometry and elastic
properties and a0

2.3. Semi-analytical models

As the theory becomes more complicated, the integrations necessary in the ana-
lytical models become difficult. An alternative approach is to calculate the stress
distribution in a single fibre by analytical methods and to use a computer to solve
the resulting equations by numerical methods.

Ramasubramanian and Perkins [53] considered elements consisting of a fibre
connected to a homogeneously strained medium by crossing fibre segments. The
work done on the element was derived assuming axial elastic-plastic behaviour of
the fibre, and taking into account the flexibility of the crossing fibres and the elastic-
plastic behaviour of the bonds. The stress-strain behaviour of a strip of paper was
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obtained by means of computer simulations using the above model. For each level of
global external strain the total work done on the system was numerically calculated,
and the corresponding global stress was obtained as the derivative of the work with
respect to the strain. Poisson’s ratio was treated as a constant during the elastic
part of the straining, and was obtained by a minimum work criterion during the
plastic part.

Kärenlampi studied the effect of distributions of fibre properties on the tensile
strength [27, 28]. An analytical expression was derived for the force across a scan line
at a certain global strain. The expression consisted of integrals of the distribution
functions. The equation was solved numerically for the cases of all fibres parallel to
the direction of strain and uniform orientation distribution. Discrete and continuous
distributions of fibre axial stiffness and maximum external strain without dramatic
fibre or bond failure were considered.

The approach used by Feldman et al. [14] was to generate many fibres crossing a
scan line, using distribution functions for the fibre and bond properties. Integration
was replaced by summation over all the generated fibres. The fibres were assumed to
be straight and lying in one plane. Using a bi-linear stress-strain curve for the single
fibre the stress distribution in a fibre and its bonds was calculated using shear-lag
theory. The strain was increased in small increments and for each strain level all
fibres and bonds were checked against a fracture criterion, maximum axial load for
fibres and maximum shear stress for bonds. When a fibre failed, the load it was
carrying was assumed to be evenly distributed to the 30 closest fibres. The values
for sheet strength obtained agreed quite well with those obtained from the strength
theories [26, 44] and, in addition, the entire stress-strain curve was obtained. The
benefit of this line-simulation approach is that it is not as numerically cumbersome
as the 2D and 3D simulations discussed in the next section, and networks consisting
of very many fibres can be dealt with. On the other hand, more assumptions have to
be made regarding for example the stress distribution in fibres and the redistribution
of load following fibre or bond failure.

2.4. Computer simulations

Since the mid 1970s, much of the work carried out in the area of geometrical and
mechanical properties of random fibre networks has been based on computer simu-
lations. An early example of computer simulation of cellulose fibre structures was
presented by Yang in 1975 [64]. He modelled paper with a two-dimensional network
of randomly distributed fibres with prescribed distributions of length and orienta-
tion. He generated network geometries and compared the number of fibre crossings
and average free fibre segment length with the values predicted by Kallmes and
Corte [23]. The fibres were ribbon-like with non-zero width, and the part of the
fibre area which is in contact with other fibres, the relative bonded area, was com-
puted. Among the geometrical output was also ”percentage of free fibre ends”,
which is closely related to what in this work is called the ”approximate active part”,
see Section 5.3. The linear elastic stiffness was calculated by means of the finite



2.4. COMPUTER SIMULATIONS 17

Figure 2.2: Example of a base element [64].

element method. The fibres were represented by orthotropic quadrilateral elements,
and the areas where fibres overlap were treated as a composite consisting of two
layers of orthotropic material. The concept of sub-structuring was used to overcome
the problem of poor computer capacity, i.e., several small base elements, see e.g.
Figure 2.2, were analysed. These elements were then condensed into quadrilateral
elements with two degrees of freedom at each corner. The condensed base elements,
which have statistical variations in properties, were then used to model the pa-
per sheet. The results of the simulation showed good agreement with experiments
performed on kraft paper.

In 1984, Rigdahl et al. [54] investigated the axial stress distribution in the fibres
of a network by means of finite element simulations. Figure 2.3a shows a simplified
sketch of the network geometry considered. It consists of parallel fibres of finite
length bonded together through fibres crossing at right angles. The fibres were
modelled by linearly elastic straight beam elements, and the fibre-to-fibre bonds
were rigid. It was observed that the axial strain in the fibres was smaller than the
global strain of the network. The strain in a fibre was zero at the fibre end, rose quite
quickly to a plateau value, and, moreover, where the neighbouring fibre ends, there
was a peak in the strain (see Figure 2.3b). This is because the force transmitted
in the neighboring fibre row has to find another way when there is suddenly a
discontinuity in the path. The influence of the stiffness of the inter-fibre bond
was also investigated. This was done by considering two parallel fibres connected
by crossing fibres, fibre-to-fibre bonding not being rigid. One of the fibres was
subjected to a strain corresponding to the result of one of the previously mentioned
analyses, and the transfer of strain to the other fibre as a function of bond stiffness
was studied. It was found that the bond stiffness was of little importance, unless
it is below a certain critical value, in which case the transfer of strain deteriorates
rapidly.

In his thesis of 1991, [19], Hamlen considered mechanical properties as well as the
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ε

fibre length

a) b)

Figure 2.3: a)Illustration of network geometry. b) Strain as a function of position
in a fibre, adapted from [54].

permeability of paper by means of network modelling. He examined the properties
of several regular (triangular, square, hexagonal) and perturbed regular networks,
and concluded that the regular networks needed to give satisfactory results when
modelling paper were not less computationally demanding than random networks.
He therefore chose to study random networks, in two and three dimensions. His
two-dimensional model was composed of linearly elastic straight beams of random
distribution and orientation, connected rigidly at crossings. The network geometry
was periodic, but the loading conditions were not. The fibres were assigned a break-
ing stress in simple tension, adjusted in size to reflect the breaking of bonds. The
results indicated that tensile extension of fibres was the dominant mechanism of force
transfer in a fibre network. He also studied the influence of fibre curl by assigning
a non-linear elastic modulus to the fibres. The elastic modulus was initially set to
zero, and when the network had been strained enough to completely straighten out
a fibre, its modulus was reset to a value representative of a straight fibre. Hamlen
also proposed a three-dimensional network model for paper, called the ”sequential
deposition model”. A network was generated by allowing the projection of a fibre
on the xy-plane to fall down on the already deposited fibres. Initially, it lands on
two points where it first meets previously deposited fibres. Then the fibre contin-
ues to descend between the supports to an extent determined by the fibre stiffness
through a ‘limit angle’, possibly making contact with more fibres. In this model the
fibre-to-fibre bonds are represented by beam elements. The computations proved to
be extremely numerically demanding, in spite of the use of a CRAY-2/512. It was
concluded that here too the dominant mode of deformation was tension in fibres,
followed by shear in bonds. To facilitate further 3D simulations, it was proposed
that the modes of deformation of less importance be neglected, and that alternative
numerical methods of dealing with the non-linearity due to the breaking of elements
be considered.

Åström and Niskanen reported simulations of fracture in random fibre networks
[2, 3]. They examined 2D random fibre networks of uniform spatial and orienta-
tion distribution; the fibres being straight and the fibre-to-fibre bonds rigid. The
mechanical properties of the networks were evaluated as functions of the width-
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to-length ratio of a fibre segment and the ratio of network density to percolation
network density. They suggested that the specific modulus of elasticity (E of the
network relative to Ef of a fibre) at low densities is a linear function of network
density, and that at high densities it deviates from Cox’s homogeneous field value
by an amount inversely proportional to the network density. Fracture calculations
were performed by introducing fracture criteria for fibres and bonds in terms of
axial strain, and by performing successive linear calculations where the fractured
elements were removed from the structure. The simulations indicated that, in the
case of bond breaking, the strength was equal to the product of the elastic modulus
of the network and the maximum shear strain that a bond can carry. The character
of the stress strain-curve was discussed in terms of comparisons with predictions
from the homogeneous field approximation. Åström et al. [4] performed further
simulations with the model. The distribution of axial stress along the fibres was
examined and was found to agree with the shape derived by Cox using a shear-lag
approach. This distribution is qualitatively similar to the one illustrated in Figure
2.3b. The stress distribution in the fibre segments was found to be exponential.
Niskanen also provides a review of the the knowledge about strength and fracture
of paper [40].

Jangmalm [22] modelled paper with a two-dimensional network composed of
curled fibres. The circle arc fibres were randomly distributed, and length, width,
curl and orientation were described by statistical distributions. The fibre-to-fibre
bonds, which occur at a prescribed percentage of the crossings, were rigid. Although
the fibres were assumed to be curled, they were modelled by straight, linearly elastic
beam elements, but if the free fibre segments were considered to be too long they were
divided into several shorter straight elements. The main objective was to investigate
the influence of fibre curl on the linear elastic stiffness of a network. This is due to
the possibility of measuring fibre curl in pulp with the STFI-FiberMaster, referred
to in [22]. The influence of fibre length and percentage of bonds in the crossings on
the elastic stiffness was also investigated, and some calculations were made using
large-strain theory. The latter showed that the non-linear effect of large strain is
rather small. Comparisons of the results of simulation were made with those from
experiments performed on laboratory sheets made from commercial pulp. It was
found that the effect of curl was stronger in the laboratory sheets than that predicted
by the model. Several possible reasons for the discrepancies were discussed, among
which were the two-dimensional character of the model and the fact that out-of-
plane curl was not taken into account. Further simulations using this model have
been presented [58].

Räisänen et al. [51] developed the model of Åström [4] and simulated fracture in
a 2D network made of rigidly bonded, elastic-plastic fibres showing a bilinear stress-
strain relationship. It was concluded that the stress-strain curve for the network,
with the stress divided by network elastic modulus, is similar to the stress-strain
curve of the fibres, irrespective of network density or degree of bonding. Yield-
ing occurred mainly in the fibres oriented in the straining direction, and occurred
uniformly over the entire network.
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KCL-PAKKA [39] is a model which simulates the 3D geometry of paper by se-
quentially depositing fibres on a square lattice. The fibres are flexible and thus
conform to each other according to the input value of fibre flexibility. Geometrical
and optical properties of the sheet can be calculated from the sheet geometry struc-
ture. Sheet stiffness can be estimated using a derived formula containing geometrical
parameters, such as the relative bonded area.

A 3D network model for application to cement excelsior board was presented by
Stahl and Cramer [57]. The cement-coated wood strands were assumed to be straight
and continuous across the modelled volume and connected by rigid bonds where the
strand volumes interfere. The strands were modelled as 3D linear elastic beams
and fracture of strands were considered through an axial stress fracture criterion.
Comparisons with experimental measurements showed reasonable accuracy of the
model.

The Division of Structural Mechanics in Lund has a tradition of studying the
fracture of heterogeneous materials. This has led to a number of computer simulation
studies in network mechanics, [6], [55], [17], [20], [21] and [52].



3. The model

The modelling includes an in-plane, two-dimensional network model and a three-
dimensional network model. The 2D and 3D models have many features in common
and are both defined in this chapter. The definition of the models is divided into
three parts; Fibres, Section 3.1, Inter-fibre bonds, Section 3.2.1, and Network cell
geometry, Section 3.3. Section 3.4 discusses some aspects of modelling of heterogene-
ity. Assumptions and modelling with regard to boundary conditions and loading are
discussed in Chapter 6.

3.1. Fibres

A wood fibre is a complex composite structure made up of layers of different ortho-
tropic materials with different principal directions. It also contains pores, which
are essential for the tree, but which can be regarded as defects when mechanical
modelling of a single fibre is considered. The pulping process further complicates
the situation by introducing curl and kinks and generally treating the fibre harshly.

As this work deals with micro-mechanical modelling, from the fibre level, to the
homogenized network level, the objective is to devise a simple model of the fibre
which does not explicitly take into account the variables mentioned above. The
model should, however, still be realistic enough to be able to make use of existing
experimental knowledge about fibres and results from micro-mechanical modelling
on the sub-fibre to fibre level.

In this work, the fibre is modelled as a Bernoulli beam of circle-arc shape. The
cross-section is constant along the beam and arbitrary with respect to stiffness prop-
erties since the cross-sectional area and moments of inertia are given as input. The
detection of bonds in the 3D model is based on a circular cross-section, and the
implementation of the fracture criterion used in the analysis of 2D network failure
is based on a rectangular cross-section.

The fibres are assumed to be made of a homogeneous isotropic linearly elastic
material. A fibre is assumed to fail in a brittle manner when

f(σn, τ) = 0 . (3.1)

Fibre fracture is implemented in the 2D model, and f is then set to

21
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f(σn, τ) = max


|σn|

σult
− 1

|τ |

τult
− 1

. (3.2)

Here |σn| is the maximum absolute value of normal stress in the fibre, σult is the
ultimate normal stress, |τ | is the absolute value of shear stress in the fibre, and τult
is the ultimate shear stress. Denoting the axial force N , the bending moment M ,
the shear force V and the area and moment of inertia of the beam cross-section Af
and If , gives for a rectangular cross-section

σn = ±
N

Af
±
M

If

√
3If
Af

, (3.3)

τ =
1.5V

Af
. (3.4)

Second-order effects are not taken into account; that is, the decrease in stiffness
due to a compressive normal force in a fibre, and possible buckling, are disregarded.

Table 3.1 lists the parameters defining a fibre. In a two-dimensional analysis
only the in-plane deformation modes are considered, and thus fewer parameters are
needed. Moments of inertia of the fibre are denoted by J in Table 3.1, which is
the modified bending stiffness used for curved beams. For the fibre geometries used
in this work the difference between J and I is, however, negligible. N represents

Table 3.1: Parameters defining a fibre.

Notation
Parameter 2D 3D
Length lf ∈ Nlf lf ∈ Nlf

Curvature κ ∈ Nκ

Curl index c ∈ Nc

Area of cross section Af ∈ NAf Af ∈ NAf

Moment of inertia, in-plane Jzf ∈ NJzf Jzf ∈ NJzf

Moment of inertia, out-of-plane Jyf ∈ NJyf

Torsional constant Kvf ∈ NKvf

Modulus of elasticity Ef ∈ NEf Ef ∈ NEf

Shear modulus Gf ∈ NGf

Ultimate normal stress σult ∈ Nσult

Ultimate shear stress τult ∈ Nτult

a distribution of the parameter in question. If a parameter is assumed to be of
constant value, N is the Dirac delta distribution. The implementation of other
distributions is discussed in Section 4.1.
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Figure 3.1: Definition of curl index, c, and curvature, κ.
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Figure 3.2: Curl index, c, versus normalized curvature, κlf/2.

A special case is zero fibre curvature corresponding to κ = 0, that is, straight
fibres. In experimental situations fibre curl is often quantified by the curl index, c,
defined as the distance between the end-points of a fibre divided by the fibre length,
see Figure 3.1. Assuming constant curvature, the relation between curl index and
curvature is:

c =
2

κlf
sin(

κlf
2

) (3.5)

Since it is not possible to solve this equation analytically for κ a graphical represen-
tation of (3.5) is given in Figure 3.2. κ is chosen as input in the 2D model while c
is used in the 3D model. In simulations where all the fibres are of the same length
there is no difference between the resulting networks. For a network of varying fibre
length, however, a constant c gives varying fibre curvature depending on fibre length,
and this was found to agree better with experimental results of fibre curvature.
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3.2. Inter-fibre bonds

3.2.1. Bond model consisting of coupled springs

The mechanisms of fibre-fibre interactions in fluffed dry-shaped cellulose fibre mate-
rials are not completely understood; in all probability, several mechanisms are acting
together. One mechanism is that in which kinked fibres hook onto each other, an-
other is fibre-to-fibre friction. Chemical attraction may also play a role. When an
adhesive aerosol is added during the dry-forming process a different type of material
is obtained. The adhesive provides a much stronger fibre-fibre connection than the
mechanisms suggested above. The inter-fibre bonds are not modelled by trying to
imitate any of the above mechanisms explicitly, but rather through introducing a
fictive bond element which enables a wide range of bond behaviour.

A bond is modelled as two circular plates of area Ab connected by distributed
normal and shear springs of stiffnesses kn and kt. The dimension of the spring stiff-
nesses is stress/length and they are symbolically illustrated in Figure 3.3. Note that
there are shear springs in two perpendicular directions on the bond area even though
only one direction is illustrated in the figure. The circular areas are perpendicular
to the line connecting the two fibre centre lines at the bond site, they are assumed
to be at zero distance from each other and are rigidly connected to the fibre centre
lines. The mode of deformation which separates the circular areas is not relevant in
the 2D model, and thus only the shear springs are present in this case. The stiffness
relation resulting from this model is presented in Section 6.1.2.

The bonds show non-linear stick-slip fracture behaviour. A slip criterion is de-
fined, and when this is fulfilled a slip occurs which implies degradation of stiffness
and strength properties of the bond. The number of slips occurring before complete
failure of a bond is denoted ns. The special case of ns = 1 corresponds to brittle
failure. The criterion for a fracture event, a slip, to occur in a bond is

g(σn, τ) = 0 , (3.6)

where σn and τ are average normal and shear stresses over the bond area. In the

k

k

n

t

Figure 3.3: A bond is modelled as two circular areas connected by springs.
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Figure 3.4: Slip criterion for bond.

2D model, σn is always zero. g is set to

g(σn, τ) =
|τ |

µσadh − µσn
− 1 , (3.7)

where σadh represents adhesion strength and µ is a shear strength factor. The slip
criterion is illustrated in Figure 3.4, by indicating the area in the σn-τ plane for
which no slip occurs. In the 2D model, the only possible stress states are situated
on the τ -axis. In [1], friction between two pulp fibres was examined, and the results
support a relationship between normal and friction force, or normal and shear stress,
at the initiation of a slip according to Figure 3.4. Tests were, however, only made for
compressive normal forces. The results of [1] are further commented in Section 8.1.

When the slip criterion is fulfilled for a bond its properties are changed, de-
pending on whether the normal stress is compressive or tensile, as can be seen in
Table 3.2. That is, if a bond under tensile normal stress fulfils the slip criterion

Table 3.2: Change in bond parameters at slip.

New value after slip
Variable σn > 0 σn < 0
Ab Ab Ab
kn 0 kn
kt 0 λ1kt
µ 0 λ2µ
σadh 0 λ3σadh

there is complete fracture of the bond. If, on the other hand, a slip occurs during
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compression, kn is unchanged and kt, µ and σadh are reduced by factors λ1, λ2 and
λ3 respectively. The reduction in kt, µ and σadh can occur at most ns− 1 times, the
nsth time a slip occurs there is complete fracture. Figure 3.5 shows some examples
of how the slip criterion is changed in different cases. Table 3.3 lists the parameters
defining a bond.

τ

ττ

τ

σ σ

σσ

n

Complete 
Fracture

*

*
Slip

n

n

n

Slip

<0

σ

σ

>0

Figure 3.5: Change in slip criterion at slip.

Table 3.3: Parameters defining a bond.

Notation
Parameter 2D 3D
Area Ab ∈ NAb Ab ∈ NAb

Normal stiffness kn ∈ Nkn

Initial shear stiffness kt ∈ Nkt kt ∈ Nkt

Initial adhesion strength σadh ∈ Nσadh σadh ∈ Nσadh

Initial shear strength factor µ ∈ Nµ µ ∈ Nµ

Reduction of shear stiffness at slip λ1 ∈ Nλ1 λ1 ∈ Nλ1

Reduction of shear strength factor at slip λ2 ∈ Nλ2 λ2 ∈ Nλ2

Reduction of adhesion strength at slip λ3 ∈ Nλ3 λ3 ∈ Nλ3

Number of slips before complete failure ns ∈ Nns ns ∈ Nns
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3.2.2. Bond model consisting of uncoupled springs

In the previous section the resistance to relative translational motion and to relative
rotation in the plane of the bond are coupled. In 2D, however, simulations were made
where the translational and rotational stiffnesses were assumed to be independent
of each other. Figure 3.6 shows an illustration of this bond model, where the spring
stiffnesses are denoted kx, ky and kφ.

x
k y

k φk

Figure 3.6: Illustration of a bond consisting of uncoupled springs.

For this case, shear stresses due to forces and moments are considered separately
in the slip criterion, and g is set to

g(F,M) =
|F |

Fult
+
|M |

Mult

− 1 , (3.8)

where |F | is the absolute value of the vector sum of the forces in the x and y springs,
Fult is the ultimate force of the bond, |M | is the absolute value of the moment in
the φ spring and Mult is the ultimate moment of the bond.

Figure 3.7 shows the fracture behaviour of a bond, in this case an x spring, but
the same parameters apply to all springs in a bond. Initially, the spring is defined
by its stiffness k1, and strength Fult1. When the situation g(F,M) = 0 occurs,
the stiffness is reduced by a factor λ1 and the strength is reduced by a factor λ2.
This is repeated ns − 1 times, and when g(F,M) = 0 the nsth time the connection
fails completely. Table 3.4 lists the parameters defining a bond made of uncoupled
springs.

3.3. Network cell geometry

The three-dimensional geometry of a cellulose fibre network is dependent on the con-
stituent fibres, as well as the process which has generated it. Examples of important
fibre properties are length distribution, flexibility of fibres and the tendency to form
bonds with neighbouring fibres. Examples of two different classes of processes are
the wet-forming process, producing paper, and the dry blowing of fibres producing
fluff. In paper production, a dilute suspension of fibres is spread over a wire mesh.
Dewatering leads to a fibre web which has a strong preference for fibre orientation
in the wire plane and also a certain preference for fibre orientation in the machine
direction due to the speed of the wire relative to that of the fibre suspension flow.
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Figure 3.7: Stick-slip fracture performance of a bond consisting of uncoupled springs.

Table 3.4: Parameters defining a bond made of uncoupled springs, used in 2D.

Notation
Parameter 2D
Initial translational spring stiffness kx = ky ∈ Nkx

Initial rotational spring stiffness kφ ∈ Nkφ

Initial ultimate force Fult ∈ NFult

Initial ultimate moment Mult ∈ NMult

Reduction of stiffness at slip λ1 ∈ Nλ1

Reduction of strength at slip λ2 ∈ Nλ2

Number of slips before complete failure ns

When fibres in an air stream are blown towards a permeable wire the result is a
much more three-dimensional structure, where the fibres are not in such good con-
tact with each other as in the case of paper, and where there is inter-fibre contact
the bonds are much weaker.

To model this kind of network geometry is a complicated issue. Modelling of
the full dynamic process of fibres flowing turbulently in the air and landing on the
wire and connecting to other fibres lies well in the future when even more efficient
computational methods and computers will be available. Today, it is necessary to
use a simplified approach. One reasonably simple approach is to place fibres at
random, independent of each other, in space. This method has the benefit of being
relatively fast and easy to implement, but it also has drawbacks. One problem
is the non-physical assumption of the fibres’ positions being independent of each
other, which is obviously not the truth considering the production process. This
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assumption probably also leads to fewer bonds than in a real network, a drawback
which can be compensated for by forming bonds, even if the distance between fibre
centre lines is slightly greater than the fibre extension. A 2D network is a further
simplification, but many fundamental characteristics of a heterogeneous structure
can probably still be captured in this kind of model.

In this work, the network structure was obtained by successively placing fibres
in the studied cell, which in the 3D case is a box of dimensions Lx, Ly and Lz,
and in the 2D case, a rectangle of dimensions Lx and Ly. The fibres are positioned
independently of each other in the cell. The location of a fibre centre in the cell
is random and the fibre orientation is decided according to an arbitrary orientation
distribution. Fibre orientation is defined by the distributions of the angles α, β
and γ. α is the angle of the fibre relative to the x-axis, or in 3D, the angle of the
fibre’s projection onto the xy-plane relative to the x-axis. β and γ apply only to 3D
networks and denote the angle between the line between the fibre end-points and
the xy-plane and the position of a curled fibre around its own axis, respectively. It
should be noted that in order to obtain a nominally isotropic network, a non-uniform
distribution of β must be used. For an isotropic orientation distribution, the number
of fibres having a certain orientation should be proportional to the corresponding
part of the area of a sphere. Since the part of a sphere of radius rs which is defined
by the interval β1 < β < β2 is

1

2πr2
s

2πr2
s

∫ β2

β1

cos βdβ = sinβ2 − sinβ1 , (3.9)

this is the part of the fibres which should have an angle β in the interval β1 < β < β2

in a nominally isotropic network. The number of fibres in a cell is determined from
the network density, ρ, defined as the total fibre length per unit volume or unit area,
and the degree of heterogeneity which is discussed later in this section.

The network geometry is periodic, such that opposite sides of the area or volume
studied match, as shown in Figure 3.8. This allows the cell under observation to be
regarded as one of many identical cells making up a global structure. It also allows
periodic boundary conditions to be specified. These are discussed in Chapter 6.

When two fibres intersect, there is the possibility of interaction between the
fibres. In the 3D model a possible bond site is assumed to exist when the distance
between two fibre centre lines is shorter than an arbitrary interaction distance, e.
This assumption implicitly assumes a circular fibre cross-section of diameter e when
detection of bonds is considered, even though the fibre cross-section is not assumed
to be circular when stiffness is concerned. In 2D analysis there is a possible bond
site at each fibre crossing and it is not necessary to define the diameter of the fibre.
At each possible bond site, the probability of a bond is denoted s. s can be used to
simulate a 3D effect in a 2D network, in which a fibre crossing in the xy-plane does
not automatically imply a bond.

The degree of heterogeneity of a network is an interesting issue. The hetero-
geneity of paper is often quantified by a formation spectrum which describes the
mass variation between different areas of the paper as a function of area size. The
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Figure 3.8: 2D network cell of periodic geometry.

rather complicated expression for the formation spectrum of a 2D random sheet is
given in [34]. A formation spectrum is one way of quantifying the heterogeneity of
a given network. In the method used to generate a network here, a simpler one-
parameter definition of heterogeneity is used. The heterogeneity is defined as the
volume (area), Vh, for which the number of fibres per unit volume (area) is given
as an exact number. The distribution of the fibres within Vh is random. Vh can be
infinite, larger than, equal to or smaller than the network volume (area) V0 which
is to be generated. The implementation supports values of Vh ≥ V0. A high value
of Vh implies a comparatively high heterogeneity while a low value of Vh implies a
more homogeneous material. For the case Vh > V0 the number of fibres, nf , in V0

is binomially distributed, [23]. If a large number of fibres, nh, is deposited indepen-
dently and randomly in Vh, the probability that there are nf fibres, P (nf), in a cell
of size V0 is

P (nf) = (
nh
nf

)(
V0

Vh
)nf (1−

V0

Vh
)nh−nf . (3.10)

If nh and Vh/V0 are large and n̄h = nh/Vh is of moderate size, this reduces to the
Poisson approximation to the Binomial distribution:

P (nf) =
e−n̄hn̄

nf
h

nf !
(3.11)

The number of fibres in V0 is thus different in different simulations of nominally
identical networks. That is, if Vh = ∞ and a cell of size V0 is to be analysed,
the number of fibres in the cell should be chosen from the Poisson distribution
Po(n̄h)=Po(ρV0).
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The parameter Vh gives the possibility to change the size of the simulated volume
V0 without changing the nominal heterogeneity of the network. However, this one-
parameter description does not allow the generation of a network with an arbitrary
formation spectrum; this would require a more complex generation strategy. Most
simulations presented in this thesis were made with Vh = V0.

The parameters defining the network cell geometry are given in Table 3.5.

Table 3.5: Parameters defining network cell geometry.

Notation
Parameter 2D 3D
Size of cell Lx, Ly Lx, Ly, Lz
Network density ρ ρ
Orientation of fibre α ∈ Nα α ∈ Nα, β ∈ Nβ, γ ∈ Nγ

Maximum interaction distance e
Probability of bond at crossing s s
Degree of heterogeneity Vh Vh

3.4. Remarks on heterogeneity and periodic geometry

The concept of periodic geometry and the degree of heterogeneity parameter opens
up several possibilities for performing stiffness simulations and interpreting the re-
sults. One straightforward approach is to set Vh = V0 and simulate an infinite
network made up of identical cells. The resulting homogenized properties, e.g. elas-
tic modulus, E, vary if several simulations are performed on nominally identical
networks. This is illustrated in Figure 3.9 for the case Vh = V0, as different values of
E for the same number of fibres in the cell, nf . The variation is due to differences in
the structure and element properties of the different unit cells. If each simulation is
assumed to represent an infinite network made up of identical cells, the arithmetic
mean value of E is taken to represent the average of several networks.

If, however, Vh is set to infinity, the situation becomes more complicated, but
perhaps more realistic. The task is then to simulate the stiffnesses of several cells,
where the number of fibres in each cell is chosen from the Poisson distribution.
The stiffness of one of these cells is then obtained by assuming that it forms part
of an infinite network made up of identical cells. This is in contradiction to what
was stated above about the varying number of fibres in the different cells, but it
probably provides a fair approximation of the stiffness of a certain cell in the varied-
cell network. The results of this kind of simulation series are illustrated in Figure 3.9
for the case Vh >> V0. The evaluation of the stiffness of the infinite network from the
distribution of stiffnesses of the individual cells in principle require its own micro-
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Figure 3.9: Illustration of stiffness results for different values of Vh.

mechanical study. An estimate of the global stiffness can be obtained from [13]:

E = (Σ(ViEi)
n)1/n (3.12)

This equation assumes that the Poisson ratio, ν, equals zero. Ei denotes the elastic
modulus of a single cell and Vi denotes the part of the total volume occupied by the
cell. n=1 corresponds to parallel coupling of all the cells and n = −1 corresponds
to serial coupling. Serial and parallel coupling are the extreme cases and n should
be chosen such that

−1 ≤ n ≤ 1 . (3.13)

If E is assumed to be a linear function of nf , which according to results in Section 7.3
could be realistic for higher network densities, and n is chosen to be 1, the resulting
value of E is the same as that obtained for Vh = V0. The spread in the results for
the same number of simulations is however larger, as is illustrated in Figure 3.9.
This is consistent with the higher degree of heterogeneity.

The above discussion applies mainly to elastic stiffness where size effects are not
very strong. In determining the strength of a heterogeneous material, the effect of
sample size can never be avoided. This is further discussed in Chapter 8.



4. Generation and analysis of

geometry

The analysis of a fibre network can be divided into two main parts: generation
and analysis of the network geometry, and analysis of the mechanical properties of
the network structure. The first part, which is described in this chapter, consists
of reading in input, generating a network, processing it as is described below and
preparing the necessary input data for the subsequent analysis of the mechanical
properties. The main structure of the geometry generation code is illustrated by
Figure 4.1.

GEOMETRY
GENERATE NETWORK 

READ INPUT

FEM ANALYSIS
PREPARE INPUT FOR

GEOMETRY
ANALYSE NETWORK

Figure 4.1: Main structure of the geometry generation code.

4.1. Input data

Input parameters related to the network are listed in Chapter 3. Many of the
input parameters are given in terms of a statistical distribution. The statistical
distribution is quantified by a cumulative distribution function composed of straight
line segments. In Figure 4.2 an example is given of a hypothetical experimental
distribution and an approximation of this curve made up of three straight lines.
The input to the program is the two vectors of interval boundaries of probability
and values of the variable: (0, p1, p2, p3) and (0, v1, v2, v3). If the variable was
constant at value v, the vectors would be (0, 1) and (v, v). If a random number p

33



34 CHAPTER 4. GENERATION AND ANALYSIS OF GEOMETRY

is obtained from a random number generator, the variable is given the value v, as
indicated by the dotted line in Figure 4.2.

For each variable given in the form of a statistical distribution, a random seed
is given. This implies that identical networks are reproduced if the same seeds are
given in two simulations.

p

p1

p2
1

v1
Variable

Cum. part

Variable

Cum. part

v v2 v3

p3

Figure 4.2: Statistical distribution and approximation consisting of straight lines.

4.2. Generation of network geometry

Network geometry generation is here mainly discussed in relation to 3D networks.
The generation of 2D networks is, in many respects analogous, but simpler, and is
discussed in detail in [20].

A fibre network is generated by sequentially placing fibres in a cell of dimensions
Lx, Ly and Lz, until the desired number of fibres, determined by the network density
and degree of heterogeneity, is reached. That is, since the number of fibres is an
integer, the network density may not be exactly as specified. The steps through
which one fibre is added to the network are illustrated in Figure 4.3.

A fibre is generated by assigning to it values of all the parameters given in
Table 3.1, as well as the orientation angles α, β and γ. The values of these parameters
are calculated from the statistical distributions according to the principles described
in Section 4.1. The input variables relevant for defining the position and orientation
of a fibre are lf , c, α, β and γ.

The fibre is deposited by placing its mid-point inside the cell; for a curved fibre
the mid-point is defined as m in Figure 4.4. The distribution of fibre mid-points
in the cell is such that there is equal probability of a fibre mid-point being placed
anywhere in the cell, and the placement of one fibre is independent of the position
of the other fibres.
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Figure 4.3: Steps through which one fibre is added to the network.

The parameters suitable for defining the geometry and location of a fibre for
computational purposes are the centre point, c, the radius of curvature r, two unit
vectors in the plane of the fibre which constitute a positively oriented orthonor-
mal coordinate system, u and v, and angles relative to u between which the fibre
extends, θa, θb. u is chosen as the unit vector in a fibre plane whose projection
on the xy-plane is parallel to the x-axis. These parameters are illustrated in Fig-
ure 4.4, and are calculated from the input parameters mentioned above, as is shown
in Appendix A. Thus, a point on the fibre, x, is defined by

x = c+ r cos θu+ r sin θv , θa ≤ θ ≤ θb . (4.1)

In the case of 2D modelling, u and v are unit vectors parallel to the x- and y-axes,
respectively, for all the fibres and this reduces the amount of information that must
be stored in the computer.

Since the geometry is assumed to be periodic, a fibre must be modified if part
of it extends outside the cell under investigation; the principle for this modification
is illustrated for the 2D model in Figure 4.5.
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Figure 4.4: Definition of circle arc fibre.

Figure 4.5: Modification of fibre that extends outside the cell.

When a fibre has been deposited, it is checked for crossing points with all previous
fibres. In a 3D simulation, a crossing is assumed to occur if the distance between
two fibre centre lines is shorter than e. The essence of detecting crossings is thus
to determine the shortest distance between two fibres; Two fibres are described by
(4.1):

x1 = c1 + r1 cos θ1u1 + r1 sin θ1v1

x2 = c2 + r2 cos θ2u2 + r2 sin θ2v2
(4.2)

The distance, d, between two points on the fibres defined by angles (θ1, θ2) is then



4.3. ANALYSIS OF NETWORK GEOMETRY 37

d(θ1, θ2) = ((x1 − x2)(x1 − x2)T )
1
2 =

c1c1
T − 2c1c2

T + c2c2
T + r2

1 + r2
2

+(c1u1
T − c2u1

T )2r1 cos θ1

+(c1v1
T − c2v1

T )2r1 sin θ1

+(c2 − c1)u2
T2r2 cos θ2

+(c2 − c1)v2
T2r2 sin θ2

−2u1u2
T r1r2 cos θ1 cos θ2

−2u1v2
T r1r2 cos θ1 sin θ2

−2v1u2
T r1r2 sin θ1 cos θ2

−2v1v2
T r1r2 sin θ1 sin θ2 .

(4.3)

The minimum value of d can be determined by differentiating d with respect to θ1

and θ2, setting the derivatives equal to zero and solving the resulting system of two
non-linear equations in two unknowns. The two non-linear equations can also be
obtained by using the condition that if the two points on the fibres which are closest
to each other are joined by a line, this line is perpendicular to the tangents of the
fibres at both points. It is, however, not easy to calculate the minimum value of d
analytically. Therefore, it was decided to use a numerical approach. The method
used is simply to calculate d for a large number of points (θ1, θ2), and to refine the
search in the area where d is smallest. This is a very time-consuming part of the
network generation. A steepest-decent scheme was also tested, but this strategy was
not always stable and was no faster. In 2D simulations, there is possibility of a bond
occurring wherever two fibres cross. The problem of finding crossings of circle arcs
on a plane is simpler, and an algorithm can be found in [20].

If a crossing is found, a bond is created with the probability s. A bond is created
by assigning to it the properties listed in Section 3.2.1 and assigning the coordinates
of the bond to the fibres involved. Topological information concerning the bond is
also stored.

4.3. Analysis of network geometry

The network geometry is treated and analysed as indicated in Figure 4.6. In order to
analyse the mechanical properties of a network by means of the finite element method
(FEM) the fibres must first be divided into beam elements. Each fibre segment
between two bonds, between a boundary and a bond or between two boundaries
of the network is made into one beam element. To do this, the coordinates of the
bonds on a certain fibre must be sorted in their order along the fibre, since these
points are also the end-points of the beam elements. The fibre segments which are
free ends of fibres with only one, or possibly no end, situated on the boundary or
bonded to another fibre are not made into beam elements. This is because they
would be zero-stress elements that have no influence on the network’s behaviour.

Before the network structure can be analysed by FEM it must be established that
the network is indeed a connected structure, and not composed of several separate
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Figure 4.6: Analysis of network geometry.

clusters of fibres, since this results in a degenerate system of equations. This is
usually only a real issue in the case of network densities close to the percolation
threshold. For 3D simulations there is, theoretically, even the possibility of several
separate connected structures. The algorithm used for verifying connectedness is
discussed and presented in Appendix B.

An interesting geometrical property is the active part of a network. Non-active
parts, are those parts which are in a state of zero stress regardless of loading at the
boundary of the network. In Figure 4.7 the non-active parts of a 2D network are
shown by dashed lines. Most of the zero-stress fibres are removed from the network

Figure 4.7: A fibre network with non-active parts shown dashed.

by not making free fibre ends into beam elements, but there may still be small
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clusters of fibres not in contact with the rest of the network. These must also be
removed in order to provide a positive definite system stiffness matrix. In addition
to isolated clusters of fibres, there may be clusters of fibres in contact with the rest
of the network by only one fibre. These are also zero-stress elements, and could be
removed in order to save degrees of freedom, and to yield the exact percentage of the
fibres that take an active part in the load-carrying structure. If the aim is to obtain
the network stiffness, it is, however, doubtful if it is worthwhile to remove clusters
connected to the rest of the structure by only one fibre, since they are uncommon in
fairly dense networks and detecting them is an extremely time-consuming task. The
detection of zero-stress fibres is carried out in connection with the verification of the
connectedness of the network, and the method is briefly described in Appendix B.

4.4. Output from geometry unit

A number of output parameters are obtained from the analysis of the network geo-
metry. These are

• the number of beam elements and total beam length,

• the number of fibre crossings (2D)/possible bond sites (3D)

• the number of bond elements,

• whether the structure is connected or not,

• the active part of the network, for 2D,

• the number of degrees of freedom in the FEM model.

When the final network structure has been obtained, all necessary data defining the
FEM model are formatted according to the standards of the FEM code used for the
analysis of mechanical properties.

In order to visualize the network, geometry data are prepared for the visualisation
package specially developed for this purpose by Olsson, [42]. This consists of Matlab
routines, [37], which produce a VRML file, [63], representing the network, which
can be viewed on a computer with a standard Internet browser. The images of 3D
networks in the report were further processed in the program 3D Studio, [62], to
obtain better printing quality. Figure 9.46 was produced using the program Fibre-
Scope, [33], which was written for real-time visualisation of fibre networks under
deformation. In 2D simulations the visualization process is simpler and in this case,
the Moviestar pre- and post-processing package was used.
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5. Results of geometry analysis

5.1. Basic example networks

Figures 5.3 and 5.4 show examples of 2D and 3D network structures. Unless indi-
cated otherwise the results cited in Chapters 5 and 7 refer to networks with the same
nominal properties as those defined in the basic example networks of Figures 5.3,
5.4 and Table 5.1. The values in Table 5.1 correspond roughly to mean values of
what is known and believed to be true about dry-shaped cellulose fibre materials,
although some simplifications have been made to facilitate the simulations.

An example of a fibre length distribution, from [56], of a CTMP fluff (pre-
pared using a chemical-thermo-mechanical process) is shown in Figure 5.1. The two
curves are the cumulative population distribution of fibre length (the percentage of
the number of fibres that is shorter than a predefined length) and the cumulative
weighted distribution of fibre length (the percentage of the total fibre length that
consists of fibres shorter than a predefined length). The arithmetic mean fibre length
is l̄af = 1.34 mm, and the weighted mean fibre length is l̄wf = 2.18 mm, where

l̄af =

∑nf
i=1 lfi
nf

(5.1)

and

l̄wf =

∑nf
i=1 l

2
fi∑nf

i=1 lfi
. (5.2)

The mean fibre lengths given above were calculated ignoring fibres shorter than
0.11 mm; the extremely short fibres are, however, included in the figure. The arith-
metic mean fibre length of all fibres is approximately 1.0 mm; the weighted mean
fibre length is less affected by ignoring short fibres. For the basic example networks
we chose to use a constant fibre length equal to the arithmetic mean value of the
fibre length for all the fibres, i.e. 1.0 mm.

The fibres in the 2D network are straight, while a curl index of 0.91 was chosen
for the 3D network.

The cross section of a cellulose fibre varies between different tree species as well
as between earlywood and latewood fibres. Figure 5.2 shows a typical fibre cross
section and the simplified cross section used in the calculations. When a suitable
cross section has been chosen, the problem of deciding in what direction the bending
occurs remains. We chose to study a spirally shaped fibre which has an effective
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Figure 5.1: Cumulative distributions of fibre length.

bending stiffness, Ief ,

Ief =
b3
fh

3
f

6(b2
f + h2

f )
, (5.3)

bf denoting width and hf the depth of cross section, see Appendix C. As discussed
in Section 6.1.1, a modified bending stiffness, J , is used instead of I for curved
beams. For the 3D basic example network, however, the ratio (hf/2r)

2 is much less
than 1, and the difference between I and J , can be neglected. For the basic example
networks we thus used a cross-sectional area of

Af = 7 · 10−6 · 35 · 10−6 = 2.5 · 10−10 m2 ,

and moments of inertia

If = Jzf = Jyf =
(7 · 10−6)3 · (35 · 10−6)3

6
(
(7 · 10−6)2 + (35 · 10−6)2

) = 20 · 10−22 m4 .

These values of Af and If define a new rectangular effective cross section of

hef =

√
12If
Af

= 9.8 · 10−6 m , (5.4)

bef =
Af
hef

= 25.5 · 10−6 m , (5.5)
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Figure 5.2: Idealization of fibre cross section.

which is used in 2D fracture simulations where the depth of the cross section enters
the calculations. The torsional constant, Kvf , for a solid rectangular fibre cross
section is, [48],

Kvf = ηhfb
3
f = 0.288hfb

3
f = 35 · 10−22 m4 , (5.6)

where the value of the constant η depends on the ratio bf/hf .
The elastic modulus for a cellulose fibre also varies between different species and

earlywood and latewood, but we chose 35 GPa as a typical value, [29]. The shear
modulus, Gf , was set to 2.6 GPa, see [30].

There is a lack in knowledge regarding inter-fibre bond properties, due to exper-
imental difficulties. For the 2D basic example network we therefore estimated the
stiffness kx to be EfAf/lf , and kφ to be 4EfIf/lf for a 1 mm fibre. These values
correspond to the axial and bending stiffness of a 1 mm fibre. For 3D simulations,
we chose a bond area of radius 1 · 10−5 m. A value of kn of 3 · 1013 Pa/m then gives
approximately the same axial and bending stiffness as a 1 mm fibre. kt was chosen
to be 1/10 of this value, i.e. 3 · 1012 Pa/m.

We assumed a bond in every fibre crossing point and a uniform orientation
distribution. The minimum distance for a bond to occur in a 3D network, e, was
set to 20 · 10−6 m. ρ was set to 60 mm−1 for the 2D network. This means that the
mean number of bonds per fibre, obtained as the total number of bonds from (2.1)
divided by the number of fibres and multiplied by two, is 37. This value is probably
rather high for a dry-shaped cellulose fibre fluff. For the 3D network, ρ was set to
145 mm−2, which corresponds to about 5 bonds per fibre. The side-length of the
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studied cell was 1.2 mm and the heterogeneity parameter Vh was set equal to the
size of the studied cell.

The input parameters of the basic example networks are listed in Table 5.1.
Tables 5.2 and 5.3 give some geometry output parameters for the basic example
networks as well as the mean values from ten different networks that have the same
nominal properties as the basic example networks. For the definition of the active
part, see Section 5.3.

Table 5.1: Input parameters for the basic example networks.

Parameter Value and unit-2D Value and unit-3D

lf 1 mm 1 mm
κ 0 mm−1 -
c - 0.91
Af 2.5 · 10−10 m2 2.5 · 10−10 m2

If , Jzf 2.0 · 10−21 m4 2.0 · 10−21 m4

Jyf - 2.0 · 10−21 m4

Kvf - 3.5 · 10−21 m4

Ef 35 · 109 Pa 35 · 109 Pa
Gf - 2.6 · 109 Pa
Ab - 3.1 · 10−10 m2

kn - 3.0 · 1013 Pa/m
kt - 3.0 · 1012 Pa/m

kx1 = ky1 8750 N/m -
kφ1 2.8 · 10−7 Nm/rad -

Lx, Ly, Lz 1.2 mm 1.2 mm
ρ 60 mm−1 145 mm−2

Nα
1
π
, 0 < α < π 1

π
, 0 < α < π

Nβ - cosβ, 0 < β < π/2
Nγ - 1

π
, 0 < γ < π

e - 20 · 10−6 m
s 1.0 1.0
Vh 1.44 mm2 1.73 mm3
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Figure 5.3: a) 2D basic example network geometry. b) 2D basic example network
with non-active parts removed.
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Figure 5.4: a) 3D basic example network geometry. b) 3D basic example network,
FEM model of active part.
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Table 5.2: Geometry output for the 2D basic example network and for ten other
nominally identical networks generated by other random number seeds.

Result for ten nominally
Result for identical networks

Parameter basic example Average Standard
network value deviation

Number of fibres 86 86 0
Total fibre length 86 mm 86 mm 0 mm
Number of fibre segments 3213 3228 25
Number of fibre crossings 1603 1612 14
Mean no. of crossings/fibre 37 37 0.3
Structure connected yes yes, all -
Active part 95.3% 94.8% 0.6%
Number of beams in FEM model 3211 3223 25
Number of bonds in FEM model 1603 1611 13
Degrees of freedom in FEM model 10164 10181 64

Table 5.3: Geometry output for the 3D basic example network and for ten other
nominally identical networks generated by other random number seeds.

Result for ten nominally
Result for identical networks

Parameter basic example Average Standard
network value deviation

Number of fibres 250 250 0
Total fibre length 250 mm 250 mm 0 mm
Number of possible bond sites 564 566 13
Mean no. of bond sites/fibre 4.5 4.5 0.1
Structure connected yes yes, all -
Number of beams in FEM model 1052 1044 43
Number of bonds in FEM model 555 560 15
Degrees of freedom in FEM model 8856 8723 368
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5.2. Number of fibre crossings

The average number of fibre crossings, n̄c, in a 2D random assembly of fibres with
a uniform orientation distribution is, according to Kallmes and Corte [23],

n̄2D
c =

(nf l̄f )
2c̄2

L2π
. (5.7)

The corresponding relation for 3D networks of straight fibres is, [31],

n̄3D
c =

(nf l̄f )
2πd

4L3
, (5.8)

where d is the fibre diameter. Generally, there is a much stronger tendency for
fibres to cross when they are located in a plane than when they are distributed in
space. To have any crossings at all in a 3D network it is necessary to define the
diameter, d, of the fibres. The parameter corresponding to fibre diameter in the
model in Chapter 3 is e. By means of (5.7) and (5.8) the degree of bonding, s, in a
2D network of straight fibres which gives the same number of crossings as in a 3D
network for the same amount of fibres, can be calculated:

s =
π2d

4L
(5.9)

For d = 0.02 mm and L=1.2 mm this yields s=0.04. This emphasizes the fact that
many more fibres are required to obtain a connected network in 3D.

For the basic 2D example network, (5.7) gives 1635 crossings, and this agrees
well with the value of 1612 crossings obtained as the mean value for ten simulated
networks, see Table 5.2. The standard deviation, as obtained by the numerical
simulations, is equal to 14 crossings. For the basic 3D example network, (5.8) gives
568 crossings and the mean value from ten simulated networks is 566. The standard
deviation is 13 crossings.

According to (5.7) and (5.8) the number of fibre crossings in a network of straight
fibres with a uniform orientation distribution depends only on the total fibre length,
nf l̄f . This agrees well with results from simulations, see Figure 5.5. This diagram
shows the number of crossings in a 2D network relative to the number of crossings
predicted by (5.7). The network density is 20 mm−1, and the orientation distribution
is uniform. The variable on the x-axis is fibre length lf , i.e. all networks have the
same network density, but the networks on the left are made up of many short fibres
and those on the right are made of fewer but longer fibres. The L/lf ratio is 1.2,
except for fibre lengths 10 and 12 mm where it is only 1.0 and 0.8, respectively.
This is to avoid an unreasonably large number of crossings. Ten simulations were
performed for each fibre length considered; the mean value of these is shown as a
dashed line. The values are slightly more scattered for the smallest values of lf , and
for lf = 12 mm there is a decrease to nc/nceq.(5.5)

= 0.97. This is probably because
there are so few fibres that the orientation distribution is no longer uniform, the
latter being an assumption made in the derivation of (5.7). This assumption of



5.2. NUMBER OF FIBRE CROSSINGS 49

2 4 6 8 10 12
0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

l
f
  [mm]

n c/n
c(

eq
.5

.7
)  Eq.(5.7)

 2D

Figure 5.5: Normalized value of nc plotted against fibre length, lf .

ideal uniformity may also be the reason why n̄c from (5.7) in general seems to be
slightly larger than that obtained with the numerical simulations.

The fibre diameter, d, enters the equation for n̄3D
c . Figure 5.6 shows a comparison

between the results obtained with (5.8) and those from a 3D simulation. In the 3D
simulations, ρ=60 mm−2, lf=1 mm, L=1.5 mm and the fibres were assumed to
be straight and of uniform orientation. The values of e, which correspond to d,
simulated were 0.005, 0.01, 0.02, 0.04, 0.06 and 0.08 mm and for each value of e ten
simulations were performed. The results from the individual simulations are shown
as ’+’, and the average is shown as a dotted line. It can be seen that the results are
slightly more scattered than in the 2D simulations, especially for low values of e,
which also implies a low absolute number of crossings. The normalized number of
crossings is also somewhat more below unity, down to 0.91 for e=0.02 mm, compared
with 0.97 for the 2D case.

The average curl index, c̄, appears in (5.7), but this equation is not believed to
be accurate in estimating number of fibre crossings in an assembly of curled fibres,
since in the derivation of the equation in [23], the fact that two curled fibres may
cross each other twice is disregarded. For the case of circular arc shaped fibres of
constant length, it is shown in [20], that the number of crossings in a 2D network is
independent of fibre curvature:

n̄2D
c =

(nf l̄f)
2

L2π
(5.10)

The relation for the 3D case, (5.8), is based on the assumption of straight fibres,
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Figure 5.6: Normalized value of nc plotted against fibre diameter, e.

but it is said in the article, [31], that provided the orientation distribution of small
fibre segments is uniform the same equation applies to curled fibres.

A comparison between the two equations (5.7) and (5.10) as well as results from
numerical simulations are shown in Figure 5.7. The simulations employed the 2D
basic example network as a starting point, and the curvature and the length of the
square, L, were varied. Four different values of curvature were simulated, 0, 1000,
2000 and 3000 mm−1; 0 mm−1 representing a straight fibre and 3000 mm−1 being
close to a semi-circle. The transition from curvature to curl index can be seen in
Figure 3.2. Three different values of L were considered, representing L/lf ratios of
0.6, 1.2 and 2.4. The variation of L means that the assumptions of L2 and nf being
large are violated to different degrees. In the figure the number of crossings relative
to the number of crossings predicted by (5.10) is plotted against the curl index.
The relative standard deviations of the simulation results, which are averages of ten
simulations, are 4-9% for L/lf=0.6 and 1-2% for L/lf=1.2 and 2.4. (5.7) predicts a
pronounced decrease in the number of crossings as the fibres become more curled,
while (5.10) suggests the number of crossings to be independent of the curl index.
The simulations agree well with (5.10), but as the L/lf ratio decreases, the results
deviate more from the prediction of (5.10), especially for low curl indices. Like for
the case in Figure 5.5, this deviation probably occurs because a lower L/lf ratio
means fewer fibres, and fewer fibres means that the orientation distribution tends
to be less uniform. Another assumption which is not fulfilled when the L/lf ratio
decreases is that of L2 being large. In the derivation of nc, a large value of L2 is
assumed. We can say that L2 in the simulations is also large by considering many
cells, but there will then be a periodicity in position and orientation of the fibres



5.3. PERCOLATION AND THE ACTIVE PART OF A NETWORK 51

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

c

   
   

   
   

   
n c/n

c(
eq

.5
.1

0)

 Eq.(5.7)

 Eq.(5.10)  2D

 L/lf=2.4

 L/lf=1.2

 L/lf=0.6

Figure 5.7: Normalized value of nc plotted against curl index, c̄.

which does not agree with the assumptions of random fibre position and orientation
in the entire area.

Simulations of number of bonds were made on 3D networks with non-uniform
orientation distribution. The series of simulations was made on cells ranging from a
cube where Lx=Ly=Lz towards a cell that is compacted in the z-direction and thus
approaching a 2D network. Figure 7.29 shows the five examined network cell sizes.
The number of fibres was 173 in all the cells. The in-plane orientation distribution
was uniform while the out-of-plane angle was smaller as the cell height decreased,
see Section 7.5.

The simulation results, average from ten simulations, are shown in Figure 5.8
as ’o’ signs. The theoretical value of number of bonds for a 2D network, n̄2D

c , is
shown as an ’x’ at Lz/Lx = 0. The values of n̄3D

c obtained from (5.8) are shown by
a dashed line. The dashed line follows the simulation results quite closely down to
Lz/Lx = 0.2, but then it tends to infinity since Lz is in the denominator of (5.8).
This implies that the assumption of uniform orientation distribution of the fibres in
(5.8) is not very important in this case.

5.3. Percolation and the active part of a network

Non-active parts are those parts of a network which are in a state of zero stress
regardless of loading at the boundary of the network. In Figure 5.3a the 2D basic
example network is shown as it appears when first generated, while Figure 5.3b
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shows the active part of the network.
As was seen in Section 5.2, for a reasonably large network the mean number

of fibre crossings in an area depends on the total fibre length only. The active
part of the network, however, depends also on the length distribution of the fibres.
Figure 5.9 shows the percentage of a 2D network which is active as a function of
fibre length for network densities of 2 and 4 mm−1. The values for ρ = 2 mm−1 are
averages from three simulations and the values for ρ = 4 mm−1 represent one single
simulation. The straight fibres have a uniform orientation distribution and interact
at all crossings. In each simulation all fibres are of the same length. As the diagram
shows, for a given network density a small number of long fibres yields a higher
active percentage than a large number of short fibres. The symbols on the x-axis
of Figure 5.9 refer to ρ = 2 mm−1, and represent non-continuous networks, that
is networks that are not connected and hence have no load-bearing function. The
fibre length at which a network of given density theoretically reaches the percolation
threshold, that is, becomes unconnected, is given in [3] as being

lf ≈ 5.7/ρ , (5.11)

which yields lf = 2.85 mm in the case of ρ = 2 mm−1. Despite this the simulated
networks are not connected until lf = 5 mm. This is probably because the results
are widely scattered as the percolation threshold is approached. Figure 5.9 shows
both the active part and the part of the network that is left when only the free fibre
ends have been removed. It should be noted that a fibre that is not in contact with
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Figure 5.9: Active part of network plotted against fibre length, lf .

any other fibre, as well as clusters composed of only two fibres, are included in free
fibre ends in this case, although they can also be viewed as ‘isolated clusters’.

Even at this low density there is little difference between the two parameters.
This indicates that an approximate expression for the active part of a network, p, is
given by the fibre length minus the length of the two free end segments, divided by
fibre length:

p =
l̄f − 2l̄s
l̄f

(5.12)

Employing (2.2), (5.7) and (5.8) this yields, for 2D networks:

p2D = 1−
nf
n̄c

= 1−
π

ρl̄f
, (5.13)

and for 3D networks

p3D = 1−
nf
n̄c

= 1−
4

ρl̄fπd
. (5.14)

The approximate value p2D is shown as a solid line in Figure 5.9, and is supposed
to fit to values denoted by open circles (o), indicating the corresponding numerical
results.

When the probability of interaction s 6= 1 the equation is modified to

p = 1−
nf
sn̄c

. (5.15)
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Figure 5.10: Approximate active part of a 2D network plotted against fibre length,
lf .

In Figure 5.10 the approximate active part, p, predicted by (5.13) is given for
different network densities. At the percolation threshold, ρlf = 5.7, from (5.11), and
this gives p = 0.45. That is, at the percolation threshold fibre length, p is the same
for all densities, which can also be seen from the figure. For higher network densities
the active part increases rapidly towards 1.0, but for ρ = 1 mm−1 the increase is
slower.



6. FEM model and analysis of initial

stiffness

In order to describe the pre-fracture global constitutive properties of a network,
which is a heterogeneous structure, the terminology of elasticity of continuous media
is employed. In linear elasticity of continuous materials, the constitutive properties
are contained in the coefficients describing stress, σ, as a linear function of strain,
ε, i.e. the matrix D in Hooke’s law, [35]:

σ = Dε (6.1)

D is symmetric when a strain-energy function exists, [35], and this is assumed to
be the case here.

The stiffness properties of a fibre network are here characterized by the D matrix
of a continuous medium which yields the same resultant forces on the boundaries as
the network when subjected to the same strain.

The finite element method (FEM), see [43], [65], was used to obtain the stiffness
properties. This is done by dividing the network into beam and bond elements (fibre
segments and inter-fibre bonds), computing the element stiffness matrix for each
element and assembling all element stiffness matrices into a global system stiffness
matrix. The element stiffness matrices for beam and bond elements are given in the
next section. The next step is to prescribe the load on the structure. In this case
the network was loaded by prescribing a global strain, i.e. boundary displacements.
This was done according to the principles in Section 6.2. The system of equations
was then solved, Section 6.3, and the resultant forces and D evaluated as described
in Section 6.4.

TheD matrix obtained from a 3D simulation contains 36 constants, of which only
21 are independent due to the symmetry ofD. To reduce the number of constants, a
method of estimating the two independent elastic constants of an isotropic material
is employed, see Section 6.6. The corresponding method for orthotropic material is
given in Section 6.7.

6.1. Element stiffness matrices

The element stiffness matrix, Ke, gives the reaction forces, f , when the element is
subjected to displacements, u, that is

Keu = f , (6.2)

55



56 CHAPTER 6. FEM MODEL AND ANALYSIS OF INITIAL STIFFNESS

where u is the vector of displacements in the directions of the degrees of freedom of
the element, see Figure 6.1, and f is the corresponding force vector.
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Figure 6.1: Definition of curved beam element geometry and degrees of freedom.

6.1.1. Beam elements

The stiffness matrices used here for beams rely on the assumptions of small strain and
that plane sections perpendicular to the beam axis remain plane during deformation.
In [32], Krenk presents a method of deriving stiffness matrices for beam elements.
The method makes use of the stationary nature of the complementary energy and
a set of homogeneous equilibrium states. A few examples of two-dimensional beam
elements, among which one is of constant curvature, are given in the article. Here,
the method is used to obtain the stiffness matrix of a three-dimensional beam ele-
ment of constant curvature, for small strains. The derivation, which is not repeated
here, leads to the equation

Ke = GTH
−1
G . (6.3)

In the 3D case, G is a 6x12 matrix where each row contains the 12 nodal element
forces for the corresponding equilibrium state, and H is a 6x6 matrix representing
the homogeneous part of the internal energy. From the definition of the six homo-
geneous equilibrium states in Figure 6.2 and the definition of positive directions of
nodal forces in Figure 6.1, G can be established.

G =



−1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 −a 0 0 0 0 0 a
0 0 0 0 −a 0 0 0 0 0 a 0
0 0 0 −a 0 0 0 0 0 a 0 0
0 1 0 0 0 a 0 −1 0 0 0 a
0 0 −1 0 a 0 0 0 1 0 a 0


(6.4)
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Before H is given, some cross-section constants and the elastic energy for a
curved beam are introduced. For a curved beam, a modified bending stiffness pa-
rameter, J , is used instead of moment of inertia, I. Figure 6.3 defines a local
coordinate system, with the origin in the cross-section centroid, and the sign con-
vention for sectional forces. Denoting the cross-sectional area A and the radius of
curvature r, we have:

Jz =
∫
A

y2

1− y/r
dA (6.5)

Jy =
∫
A

z2

1− y/r
dA (6.6)

For a rectangular cross section this gives:

Jz = r3b ln

(
2r + h

2r − h

)
− r2bh = Iz

1 +
3

5

(
h

2r

)2

+
3

7

(
h

2r

)4

+ · · ·

 ,

Jy =
rb3

12
ln

(
2r + h

2r − h

)
= Iy

1 +
1

3

(
h

2r

)2

+
1

5

(
h

2r

)4

+ · · ·

 ,

(6.7)
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Figure 6.3: Sign convention for sectional forces and local coordinate system in the
cross-section centroid.

where I is the moment of inertia of the cross-section and b and h denote width
and depth. For moderate values of the ratio section size to radius of curvature, the
higher order terms of the serial expansion are small, and only the first few terms
need to be considered.

The axial stress in a section of a curved beam, symmetrical about the y-axis, as
a function of the sectional forces is, [41],

σn =
N

A
+
Mz

rA
−
Mz

Jz

y

1− y/r
−
My

Jy

z

1− y/r
. (6.8)

The elastic strain energy per unit length, Eσn , caused by axial stress, is for a
curved beam

Eσn =
∫
A
σnε

r − y

r
dA =

∫
A

σ2
n

E

r − y

r
dA . (6.9)

Using (6.8) and including the effect of torsion this yields the total elastic strain
energy per unit length, Ee,

Ee = Eσn +
T 2

2GKv

=
1

2
(

1

EA
(N +

Mz

r
)2 +

M2
z

EJz
+
M2

y

EJy
+

T 2

GKv

) , (6.10)

where E denotes elastic modulus, G the shear modulus and Kv the torsional constant
of the beam. The effect of shear strains due to shear forces has been neglected in
the calculation of Ee.
H is defined as:

Hij = r
∫ θ0

−θ0
((Ni +

Mzi

r
)

1

EA
(Nj +

Mzj

r
) +Mzi

1

EJz
Mzj+

Myi

1

EJy
Myj + Ti

1

GKv

Tj)dθ

(6.11)

The indices i, j refer to equilibrium state number, and by comparison with (6.10) it
can be seen how H is related to the strain energy of the beam.

In order to evaluate H the section forces along the beam must be known. The
relation between the nodal element forces and the sectional forces along the beam for
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the different equilibrium states can be obtained from equilibrium. These relations
are summarized in Table 6.1.

Table 6.1: Sectional forces along the beam for the six equilibrium states.

no N Vy Vz T My Mz

1 cos θ sin θ 0 0 0 r(cos θ0 − cos θ)

2 0 0 0 0 0 r sin θ0

3 0 0 0 r sin θ0 sin θ −r sin θ0 cos θ 0

4 0 0 0 r sin θ0 cos θ r sin θ0 sin θ 0

5 − sin θ cos θ 0 0 0 r sin θ

6 0 0 1 r sin θ0 sin θ+ −r sin θ0 cos θ+ 0

r(1− cos(θ0 − θ)) r(sin(θ0 − θ)

Now the components of H can be calculated. The non-zero components are:

H11 = 2

(
r

EA
+

r3

EJz

)
θ0 cos2θ0 +

r3

EJz
(θ0 − 3 sinθ0 cosθ0)

H12 = H21 = 2

(
r

EA
+

r3

EJz

)
θ0 sinθ cosθ0 − 2

r3

EJz
sin2θ0

H22 = 2

(
r

EA
+

r3

EJz

)
θ0 sin2θ0

H33 =
r3

EJy
sin2θ0(θ0 + sinθ0 cosθ0) +

r3

GKv

sin2θ0(θ0 − sinθ0 cosθ0)

H44 =
r3

EJy
sin2θ0(θ0 − sinθ0 cosθ0) +

r3

GKv

sin2θ0(θ0 + sinθ0 cosθ0)

H46 = H64 =
r3

EJy
sin θ0(sin θ0 cos2 θ0 − θ0 cos θ0)+

r3

GKv

sin θ0(− sin θ0 cos2 θ0 − θ0 cos θ0 + 2 sin θ0)

H55 =
r3

EJz
(θ0 − sinθ0 cosθ0)

(6.12)



60 CHAPTER 6. FEM MODEL AND ANALYSIS OF INITIAL STIFFNESS

H66 =
r3

EJy
(− sinθ0cos

3θ0 + θ0 cos2θ0)+

r3

GKv

(2θ0 − 4 sinθ0 cosθ0 + sinθ0 cos3θ0 + θ0 cos2θ0)

Since H is close to diagonal, H−1 can be calculated explicitly,

H−1 =



H22/Ha −H12/Ha 0 0 0 0
−H12/Ha H11/Ha 0 0 0 0

0 0 1/H33 0 0 0
0 0 0 H66/Hb 0 −H46/Hb

0 0 0 0 1/H55 0
0 0 0 −H46/Hb 0 H44/Hb


, (6.13)

where
Ha =H11H22 −H

2
12 (6.14)

and
Hb =H44H66 −H

2
46 . (6.15)

Only the multiplication of (6.2), repeated here, remains to obtain Ke.

Ke = GTH
−1
G (6.16)

The stiffness matrix of a two-dimensional curved beam element is obtained ana-
logously, by only considering the in-plane degrees of freedom and equilibrium states.
This gives

G =

 −1 0 0 1 0 0
0 0 −a 0 0 a
0 1 a 0 −1 a

 , (6.17)

H−1 =

 H22/Ha −H12/Ha 0
−H12/Ha H11/Ha 0

0 0 1/H55

 . (6.18)

The stiffness matrix for a plane straight beam element of length l can be found,
for example, in [43]:
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Ke =



EA

l
0 0 −

EA

l
0 0

0
12EI

l3
6EI

l2
0 −

12EI

l3
6EI

l2

0
6EI

l2
4EI

l
0 −

6EI

l2
2EI

l

−
EA

l
0 0

EA

l
0 0

0 −
12EI

l3
−

6EI

l2
0

12EI

l3
−

6EI

l2

0
6EI

l2
2EI

l
0 −

6EI

l2
4EI

l



(6.19)

An alternative to using the curved beam elements here is to divide a curved fibre
into several short straight beam elements. This approach is, however, only applicable
when the ratio of beam depth to radius of curvature is small. If this method is used
only the simple standard straight beam element is needed, but on the other hand,
it entails an excessive number of degrees of freedom. The redundant degrees of
freedom can be eliminated by static condensation before the final system of equations
is solved, but extra computational work is still required to generate the stiffness
matrix. In addition, if the sectional forces are to be determined, the eliminated
degrees of freedom will be needed again. In order to estimate the accuracy of the
approximate method a comparison was made between a curved fibre segment and a
corresponding structure consisting of a number of straight elements. The properties
of the 3D fibre segment were as in the basic example network, and the sector angle,
2θ0, was 0.2 rad. Table 6.2 shows the maximum error in a single coefficient of Ke for
different numbers of straight beam elements used to approximate the curved fibre
segment. For most of the coefficients of Ke the error is considerably smaller than
the maximum error.

Table 6.2: Maximum error for a single component in Ke for different numbers of
straight elements used in the approximation.

Number of Max. error

elements [%]
2 146
3 64
4 38
6 15
8 7
10 4.8
20 1.4
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6.1.2. Bond elements

The derivation of the stiffness matrix for a 3D bond element consisting of circular
plates connected by distributed normal and shear springs, which was defined in
Section 3.2.1, is performed in two steps. First the behaviour of the two circular
areas connected with springs is studied, then the effect of the rigid coupling to the
fibre centre lines is included.

Figure 6.4 shows the circular plates with the corresponding degrees of freedom.
With the x-axis in the centre of the plates the following stiffness matrix is obtained
by integrating the stresses resulting from the different modes of deformation.
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Figure 6.4: Section and plane view of circular areas with degrees of freedom indicated
on the section.

K2
e

=

 K1
e
−K1

e

−K1
e

K1
e

 , (6.20)

where

K1
e

=



knAb 0 0 0 0 0
0 ktAb 0 0 0 0
0 0 ktAb 0 0 0
0 0 0 ktIp 0 0
0 0 0 0 knI 0
0 0 0 0 0 knI


(6.21)

and Ab, Ip and I denote the area, the polar moment of inertia and the moment of
inertia of the circular cross-section, respectively.

The next task is to include the effect of the rigid coupling to the fibre centre lines,
where the fibre nodes are located. Figure 6.5 shows the bond element, from fibre
centre line to fibre centre line. Degrees of freedom u1−u12 in Figure 6.4 correspond
to degrees of freedom u13 − u24 in Figure 6.5. The relation between [f13..f24] and
[u13..u24] is thus known from (6.2) and (6.20):

[f13−24] = K2
e

[u13−24] (6.22)
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Figure 6.5: Bond element.

We now require the relation between [f1..f12] and [u1..u12] in Figure 6.5. Let us start
by considering the left part of the element. From equilibrium it follows that:

f1

f2

f3

f4

f5

f6


=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 −d/2 0 1 0
0 d/2 0 0 0 1





f13

f14

f15

f16

f17

f18


= G1



f13

f14

f15

f16

f17

f18


(6.23)

Kinematic reasoning gives, for the corresponding displacements:[
u13−18

]
= GT

1

[
u1−6

]
(6.24)

These relations can be expanded into[
f1−6

f19−24

]
=

[
G1 0

0 I

] [
f13−18

f19−24

]
= A1

[
f13−18

f19−24

]
, (6.25)

[
u13−18

u19−24

]
=

[
GT

1 0
0 I

] [
u1−6

u19−24

]
= AT

1

[
u1−6

u19−24

]
. (6.26)

By combining (6.25),(6.22) and (6.26) we obtain[
f1−6

f19−24

]
= A1K

2
e
AT

1

[
u1−6

u19−24

]
. (6.27)
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Considering the right side of the element we have

f7

f8

f9

f10

f11

f12


=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 d/2 0 1 0
0 −d/2 0 0 0 1





f19

f20

f21

f22

f23

f24


= G2



f19

f20

f21

f22

f23

f24


. (6.28)

Equivalently, for the corresponding displacements, we have[
u19−24

]
= GT

2

[
u7−12

]
. (6.29)

Defining

A2 =

[
I 0
0 G2

]
, (6.30)

finally leads to: [
f1−6

f7−12

]
= A2A1K

2
e
AT

1A
T
2

[
u1−6

u7−12

]
(6.31)

That is,
Ke = A2A1K

2
e
AT

1A
T
2 . (6.32)

In a 2D analysis only the degrees of freedom associated with kt are relevant. This
means that K2

e
is only a 6x6 matrix. Furthermore, the distance d/2 in Figure 6.5

is zero, implying that

Ke = K2
e

=



ktAb 0 0 −ktAb 0 0
0 ktAb 0 0 −ktAb 0
0 0 ktIp 0 0 −ktIp

−ktAb 0 0 ktAb 0 0
0 −ktAb 0 0 ktAb 0
0 0 −ktIp 0 0 ktIp


. (6.33)

When the transversal and rotational stiffnesses are regarded as independent, as
in the alternative 2D model of Section 3.2.2, we simply have

Ke =



kx 0 0 −kx 0 0
0 ky 0 0 −ky 0
0 0 kφ 0 0 −kφ

−kx 0 0 kx 0 0
0 −ky 0 0 ky 0
0 0 −kφ 0 0 kφ


. (6.34)
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6.1.3. Transformation to global coordinates

The element stiffness matrices given above refer to a local coordinate system with
axes parallel to the element’s degrees of freedom. In the fibre network, the elements
have, in general, an orientation that differs from the global coordinate axes. When
this is the case, the element stiffness matrix must be transformed, see [43]:

Kg
e

= ATKl
e
A , (6.35)

where the superscript g denotes global, and the superscript l denotes local.
In the 3D case A is given by

A =


An 0 0 0
0 An 0 0
0 0 An 0
0 0 0 An

 , (6.36)

where 0 is a 3x3 zero matrix and

An =

 nxx̄ nyx̄ nzx̄
nxȳ nyȳ nzȳ
nxz̄ nyz̄ nzz̄

 , (6.37)

nij̄ denoting the cosine of the angle between the global i- and local j̄-axes.
In the 2D case A is given by

A =



nxx̄ nyx̄ 0 0 0 0
nxȳ nyȳ 0 0 0 0
0 0 1 0 0 0
0 0 0 nxx̄ nyx̄ 0
0 0 0 nxȳ nyȳ 0
0 0 0 0 0 1


. (6.38)

In two dimensions, the direction of a bond element is not defined, and if kx = ky,
the bond element is unaffected by the transformation.

When all elements have been transformed into global coordinates, each element
stiffness matrix is assembled into the global stiffness matrix, K.

6.2. Methods of applying strain

To obtain the response of a network, it is subjected to deformations corresponding
to various modes of strain, and the resulting forces on the boundaries of the network
are registered. A deformation to which the network is subjected, reflects a certain
global mean strain, ε= (εx, εy, εz, γxy, γxz, γyz), of the cell. There are several different
methods of applying such a mean strain. A natural concept would be to imitate
the situation when testing a fibre material in the laboratory. This could be a strip
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Figure 6.6: Fibre network in simple tension test.

of material clamped at the ends and otherwise free, see Figure 6.6. This method
would facilitate a direct comparison between the results obtained from tests and
simulations. One problem is, however, that with today’s computer performance it is
not feasible to carry out simulations on a piece of material as large as a test speci-
men.The stiffness parameters are also complicated to evaluate in this deformation
mode: for example, how large is the contraction in this case when contraction is
prevented at the edges and becomes gradually more free towards the centre?

To avoid these problems a concept of cyclic geometry and boundary conditions is
employed. The essence of these is that the network cell under observation is regarded
as one of many identical cells making up a global network structure of infinite size.
This leads to certain continuity requirements, namely that the cells must also match
in a deformed condition.

The boundary conditions that have been used in most of the simulations allow
the boundaries of the cell to deform, but only in such a way that the continuity
requirements are fulfilled. These are defined in (6.39). u1..u6 are the displacements
defined, for example, in Figure 6.1, and superscripts indicate on which side of the
unit cell a certain node is located. The sides of a unit cell are defined in Figure 6.7
and Lx, Ly, Lz denote the cell lengths along the coordinate axes.

us21 − u
s1
1

us22 − u
s1
2

us23 − u
s1
3

us24 − u
s1
4

us25 − u
s1
5

us26 − u
s1
6

us41 − u
s3
1

us42 − u
s3
2

us43 − u
s3
3

us44 − u
s3
4

us45 − u
s3
5

us46 − u
s3
6

us61 − u
s5
1

us62 − u
s5
2

us63 − u
s5
3

us64 − u
s5
4

us65 − u
s5
5

us66 − u
s5
6



=



Lx 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 Ly 0 0
0 Ly 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 Lz 0
0 0 0 0 0 Lz
0 0 Lz 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0





εx
εy
εz
γxy
γxz
γyz


(6.39)
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Figure 6.7: Labelling of the sides of a unit cell.

In two dimensions, this reduces to:

us21 − u
s1
1

us22 − u
s1
1

us23 − u
s1
1

us41 − u
s3
3

us42 − u
s3
3

us43 − u
s3
3


=



Lx 0 0
0 0 0
0 0 0
0 0 Ly
0 Ly 0
0 0 0


 εx
εy
γxy

 (6.40)

Some 2D simulations were also performed with boundary conditions where the
boundaries were forced to remain straight during deformation. This leads to the
following prescribed displacements of each node on the boundary: u1

u2

u3

 =

 x 0 0
0 y 0
0 0 − sin2 α


 εx
εy
γxy

 (6.41)

Here, (x, y) are the coordinates of the node, with the origin in the lower left corner
of the network, and α is the inclination of the fibre. The considerations that lead
to the factor − sin2 α can be found in [20].

The two different kinds of boundary conditions, which in the following are de-
noted S for straight boundaries and C for curved boundaries, are compared in Fig-
ure 6.8. One important consequence of boundary conditions C is that they entail
equilibrium for each node along the boundary. Conditions S only give equilibrium
in a mean sense. The consequences of the different boundary conditions are further
discussed in Section 6.4.

6.3. Solution of the system of equations

The solution of the system of equations for the boundary conditions S, requiring
straight boundaries, is straightforward. All boundary nodes have prescribed values
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b)a)

Figure 6.8: 2D cell subjected to ε = (ε0, 0, 0) for a) boundary conditions S, according
to (6.41), b) boundary conditions C, according to (6.40).

of displacement, and thus there are reaction forces on all the boundary nodes and
no reaction forces occur on any interior node.

For boundary conditions C, allowing curving of the boundaries, the prescribed
displacements are specified in terms of relations between different degrees of freedom,
i.e. constraints. The constrained degrees of freedom are removed from the system
of equations, see [55]. The original system of equations is:

Ku = f (6.42)

The constraints can be formulated as relations between a full and a reduced dis-
placement vector u and ured,

u = Bured + C . (6.43)

For the nodes located along the boundaries, (6.39) rewritten in the form of (6.43) is

us11

us21

us12

us22

us13

us23

us31

us41

us32

us42

us33

us43



=



1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1





us11

us12

us13

us31

us32

us33


+



0
Lxεx

0
0
0
0
0

Lyγxy
0

Lyεy
0
0



. (6.44)

In order to save space this is only given for the 2D case, but the 3D version is
completely analogous. Insertion of (6.43) into (6.42) gives:

KBured +KC = f (6.45)
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In order to obtain a symmetric stiffness matrix, all terms are multiplied by BT :

BTKBured = BTf −BTKC (6.46)

Defining
Kred = BTKB , (6.47)

fred = BTf −BTKC , (6.48)

we now have
Kredured = fred . (6.49)

This system of equations is solved for ured, u is obtained from (6.43) and the
reaction forces are obtained from (6.42).

In (6.49) rigid-body translation must be prevented, by e.g. prescribing zero dis-
placement in the x-, y- and z-directions in an interior node. Rigid-body rotation
is prevented automatically by the constraints. For example, since us12 and us22 must
always be the same, the cell is not able to rotate.

As in the case of boundary conditions S, (6.41), for boundary conditions C there
are also reaction forces on all boundary nodes, and none on the interior nodes.
Moreover, for boundary conditions C the reaction forces in two opposite nodes are
always equal in magnitude and opposite in direction. Should reaction forces occur
in the interior node prescribed zero translation, this indicates lack of equilibrium
due to numerical problems or some other error.

6.4. Evaluation of resultant forces and D matrix

To obtain theD matrix of the equivalent continuous material, the network is succes-
sively subjected to six modes of deformation, corresponding to the six components
of strain. First the strain ε = (1, 0, 0, 0, 0, 0) is applied, representing extension in
the x-direction, without strain in the y- or z-directions or shear strains. The resul-
tant forces on the sides of the network are calculated and are divided by the area
of the side to obtain the stress. In two dimensions there are only three modes of
deformation, and the procedure of obtaining the stresses is illustrated in Figure 6.9.
Note that moments in the boundary nodes are omitted in the figure.

From (6.1) it follows that for ε = (1, 0, 0, 0, 0, 0),

σx
σy
σz
τxy
τxz
τyz


=



D11 D12 D13 D14 D15 D16

D12 D22 D23 D24 D25 D26

D13 D23 D33 D34 D35 D36

D14 D24 D34 D44 D45 D46

D15 D25 D35 D45 D55 D56

D16 D26 D36 D46 D56 D66





1
0
0
0
0
0


=



D11

D12

D13

D14

D15

D16


. (6.50)

Thus, the first column of D is equal to the calculated stress vector. The remaining
columns of D are obtained analogously through applying ε = (0, 1, 0, 0, 0, 0) and so
on.
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Figure 6.9: Evaluation of stresses.

For the case of boundary conditions C, the reaction forces in two opposite bound-
ary nodes are equal in magnitude, and opposite in direction. This means that the
sums of normal forces on opposite boundaries are equal, and the resultants are sit-
uated exactly opposite each other. In Figure 6.9 this means that F s1

x and F s2
x as

well as F s3
y and F s4

y are collinear. Since the moments in opposite boundary nodes
are also equal in size and opposite in direction, the total moment on the network
from moments at the boundary nodes is zero. For the global moment equilibrium
to be satisfied it is then necessary that the forces F s1

y , F
s2
y and F s3

x , F s4
x are of equal

magnitude. The D matrix obtained from boundary conditions C is automatically
symmetric.

When boundary conditions S are employed the forces in opposite nodes are not
equal, and thus F s1

x and F s2
x are not collinear, and F s1

y , F
s2
y , F

s3
x and F s4

x need not
have the same values. Despite this, the global equilibrium of the cell is of course
satisfied. The somewhat absurd consequence of forces in opposite nodes not being
equal, is that if one imagines two neighbouring cells, the forces are not the same
in the two fibre ends that are assumed to be attached to each other in the global
network. The matrix D obtained from boundary conditions S is not symmetric.
Since we want a symmetric D matrix, the mean values across the diagonal are
taken as D. When requiring that the boundaries remain straight, the network is
not allowed to deform in the way that is most natural to it. One may imagine a
rigid frame being attached onto the network, which transfers the forces needed for
the prescribed deformation to be possible. Intuitively this stiffens up the structure.

6.5. Anisotropic, orthotropic and isotropic materials

A linear elastic continuous material can be classified into different categories with
respect to the symmetries of the material. If there are no preferred directions the
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material is isotropic, otherwise it is anisotropic and, in the most general case, D
contains 21 independent constants:

D =



D11 D12 D13 D14 D15 D16

D12 D22 D23 D24 D25 D26

D13 D23 D33 D34 D35 D36

D14 D24 D34 D44 D45 D46

D15 D25 D35 D45 D55 D56

D16 D26 D36 D46 D56 D66


(6.51)

In the case of symmetry with respect to three perpendicular axes, the material
is orthotropic and the number of independent constants is reduced to nine.

Dort=



Ex
F

(1− νzyνyz)
Ex
F

(νyx + νzxνyz)
Ex
F

(νzx + νyxνzy) 0 0 0

Ey
F

(νxy + νzyνxz)
Ey
F

(1− νzxνxz)
Ey
F

(νzy + νxyνzx) 0 0 0

Ez
F

(νxz + νxyνyz)
Ez
F

(νyz + νxzνyx)
Ez
F

(1− νxyνyx) 0 0 0

0 0 0 Gxy 0 0
0 0 0 0 Gxz 0
0 0 0 0 0 Gyz


(6.52)

where
F = 1− νzxνxz − νyxνxy − νzyνyz − νzxνxyνyz − νyxνzyνxz (6.53)

and
Exνyx = Eyνxy
Exνzx = Ezνxz
Eyνzy = Ezνyz .

(6.54)

When the properties are the same in one plane and have different values in the
out-of-plane direction the material is denoted transversely isotropic and the number
of independent constants is five. Prime denoting out-of-plane properties, we have:

Dtrans=



E(ν ′2E − E′)

F1F2
−
E(νE′ + ν ′2E)

F1F2
−
EE′ν ′

F2
0 0 0

−
E(νE′ + ν ′2E)

F1F2

E(ν ′2E − E′)

F1F2
−
EE′ν ′

F2
0 0 0

−
EE′ν ′

F2
−
EE′ν ′

F2

E′2(ν − 1)

F2
0 0 0

0 0 0 G 0 0
0 0 0 0 G′ 0
0 0 0 0 0 G′



,

(6.55)
where

F1 = (1 + ν) , (6.56)
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F2 = νE′ − E′ + 2ν ′2E (6.57)

and

G =
E

2(1 + ν)
. (6.58)

The simplest possible material is isotropic, meaning that it has the same prop-
erties in every direction. In this case, the D matrix contains only two independent
constants, namely the modulus of elasticity, E, and Poisson’s ratio, ν:

Diso =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0

0 0 0
1− 2ν

2
0 0

0 0 0 0
1− 2ν

2
0

0 0 0 0 0
1− 2ν

2


(6.59)

In two dimensions, the corresponding anisotropic D matrix contains 6 indepen-
dent constants:

D =

 D11 D12 D13

D12 D22 D23

D13 D23 D33

 (6.60)

For orthotropic material the number of independent constants is reduced to four,
and on assuming plane stress we obtain

Dort =
1

1− νxyνyx

 Ex Exνyx 0
Eyνxy Ey 0

0 0 Gxy(1− νxyνyx)

 , Exνyx = Eyνxy .

(6.61)
For an isotropic material, the elastic parameters are E and ν, as in the 3D case.

Diso =
E

1− ν2


1 ν 0
ν 1 0

0 0
1− ν

2

 (6.62)

For an isotropic material, D is the same for every material orientation, while for
anisotropic materialsD depends on the orientation of the material. The orthotropic
D matrices given above refer to the case when the coordinate axes coincide with the
principal directions of the material. The inverse of D is generally of a simpler form,
but since it is strain that is prescribed in the simulations it is despite this natural
to use D.

For a three-dimensional isotropic material, it is known that certain restrictions
can be imposed on the elastic moduli. Assuming positive definiteness of the strain
energy, see [35], leads to the conditions
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E > 0 and − 1 < ν <
1

2
. (6.63)

Even if a two-dimensional network is approximately isotropic in its own plane, there
is no reason to believe that it has the same properties in the out-of-plane direction.
Because of this, the restrictions given above are not generally applicable to the
moduli of two-dimensional networks.

Although a network is in general anisotropic, one would expect nearly isotropic
or transversely isotropic behaviour for fairly dense networks, if the fibres have a
uniform orientation distribution. If the orientation distribution Nα is symmetric
with respect to three/two perpendicular axes, nearly orthotropic network properties
can be expected.

If the network is to be represented as an anisotropic material, the D matrix ob-
tained from the simulations requires no further processing, except for symmetriza-
tion for boundary conditions S. For boundary conditions C, the anisotropic repre-
sentation describes exactly how the simulated network responds when subjected to
strain, but it has the drawback of a difficult intuitive physical interpretation of the
constants and requires as many as 21 (6 in two dimensions) constants to characterize
the material.

In cases where the network is nearly isotropic it would be advantageous to char-
acterize the material with the two well-known parameters E and ν instead.

6.6. Approximation of a near isotropic D matrix

It is desirable to have a method of finding the parameters that describe an isotropic
material that is, in some sense, as close as possible to the simulated material. In
order to obtain this isotropic approximation of the anisotropic D matrix resulting
from a simulation, a least-squares procedure is applied.

The heterogeneous network material is assumed to be subject to uniaxial tensile
strain, ε0, in every direction. This results, in general, in different stresses for tensile
strain in different directions. For a homogeneous isotropic material the stresses are,
however, independent of the direction of the applied strain. The idea is to mini-
mize the square of the difference between the stresses obtained for a homogeneous
isotropic material and those obtained for the simulated anisotropic network mate-
rial, summed over every direction of the applied strain, and for each strain direction
summed over the six stress components for all material rotations about the strain
direction.

The orientation of a coordinate system (x′, y,′ z′) relative to the original system
can be defined by three angles (αx, αy, αz), representing successive rotations about
the x-,y- and z-axes.

From (6.1) and (6.59) we have, for an isotropic material
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σisox (αx, αy, αz)

σisoy (αx, αy, αz)

σisoz (αx, αy, αz)

τ isoxy (αx, αy, αz)

τ isoxz (αx, αy, αz)

τ isoyz (αx, αy, αz)


= Diso



ε0
0
0
0
0
0


=



E(1− ν)

(1 + ν)(1− 2ν)
ε0

νE

(1 + ν)(1− 2ν)
ε0

νE

(1 + ν)(1− 2ν)
ε0

0
0
0


, (6.64)

where the superscript iso denotes isotropic material. That is, σx, σy and σz are
constant with respect to material orientation angles (αx, αy, αz), and τxy, τxz and
τyz are identically equal to zero for every value of (αx, αy, αz).

For an anisotropic material all stress components vary with (αx, αy, αz). Since
it is not practically possible to simulate tension in a network in all directions, σs is
obtained by transforming D from one simulation to all material orientations. The
superscript s here denotes simulated network material.

If the coordinate frame is rotated through an angle αx about the x-axis, D is
transformed into

D′(αx) = T 1(αx)DT
T
1 (αx) , (6.65)

where the matrix T 1 is derived in Appendix D. The equivalent relations for rotation
about the y- and z-axes are

D′(αy) = T 2(αy)DT
T
2 (αy) , (6.66)

D′(αz) = T 3(αz)DT
T
3 (αz) . (6.67)

An arbitrary orientation of the x′-axis can be obtained by rotating the coordinate
system through an angle αy, 0 ≤ αy ≤ 2π, followed by rotation through an angle
αz, −π/2 ≤ αz ≤ π/2. For every direction of the x′-axis the y′- and z′-axes are
rotated through an angle αx, 0 ≤ αx ≤ 2π in order to cover every possible material
orientation. This leads to

D′(αx, αy, αz) = T 1T 3T 2DT
T
2 T

T
3 T

T
1 . (6.68)

It should be noted that the order of finite rotations is not arbitrary. In connec-
tion with the integration limits that are chosen here only the rotation sequences
(T 2T 3T 1) and (T 1T 3T 2), counted from the inside, represent uniquely all possible
orientations of the coordinate frame. Even those two sequences give different values
of D′ for the same set of angles (αx, αy, αz), but the integrals over all orientations
are the same.
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This gives the following expression for σs:

σsx(αx, αy, αz)
σsy(αx, αy, αz)
σsz(αx, αy, αz)
τ sxy(αx, αy, αz)
τ sxz(αx, αy, αz)
τ syz(αx, αy, αz)


= D′(αx, αy, αz)



ε0
0
0
0
0
0


=



D′11(αx, αy, αz)ε0
D′21(αx, αy, αz)ε0
D′31(αx, αy, αz)ε0
D′41(αx, αy, αz)ε0
D′51(αx, αy, αz)ε0
D′61(αx, αy, αz)ε0


(6.69)

This expression is too long to present in an explicit form, but it can readily be
calculated using Maple [36].

Now we can give an expression for the square of the difference between the
components of σiso and σs, integrated over all possible material orientations. The
objective is to find the values of E and ν that minimize this functional Q:

Q =
∫
sphere

∫ 2π

0
(σsx − σ

iso
x )2 + (σsy − σ

iso
y )2 + (σsz − σ

iso
z )2+

(τ sxy − τ
iso
xy )2 + (τ sxz − τ

iso
xz )2 + (τ syz − τ

iso
yz )2dαxdAsphere

(6.70)

On inserting (6.64) and noting that dAsphere=cosαzdαydαz we obtain

Q =
∫ π

2

−π
2

∫ 2π

0

∫ 2π

0
((σsx −

E(1− ν)

(1 + ν)(1− 2ν)
ε0)2 + (σsy −

νE

(1 + ν)(1− 2ν)
ε0)2+

+(σsz −
νE

(1 + ν)(1− 2ν)
ε0)2 + (τ sxy)

2 + (τ sxz)
2 + (τ syz)

2) cosαzdαxdαydαz .

(6.71)

Minimize Q with respect to
E

(1 + ν)(1− 2ν)
and

νE

(1 + ν)(1− 2ν)
:

∂Q

∂
E

(1 + ν)(1− 2ν)

=
∫ π

2

−π
2

∫ 2π

0

∫ 2π

0
−2ε0 cosαz(σ

s
x −

E(1− ν)

(1 + ν)(1− 2ν)
ε0)dαxdαydαz = 0

∂Q

∂
νE

(1 + ν)(1− 2ν)

=
∫ π

2

−π
2

∫ 2π

0

∫ 2π

0
−2ε0 cosαz(σ

s
y −

νE

(1 + ν)(1− 2ν)
ε0)−

2ε0(σsz −
νE

(1 + ν)(1− 2ν)
ε0)dαxdαydαz = 0

(6.72)
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Integrating the terms representing σiso and rearranging the equations gives∫ π
2

−π
2

∫ 2π

0

∫ 2π

0
σsx cosαzdαxdαydαz =

E(1− ν)

(1 + ν)(1− 2ν)
8π2

∫ π
2

−π
2

∫ 2π

0

∫ 2π

0
(σsy + σsz) cosαzdαxdαydαz =

2Eν

(1 + ν)(1− 2ν)
8π2 .

(6.73)

It now remains to evaluate the integrals of the stresses for a simulated material.

∫ π
2

−π
2

∫ 2π

0

∫ 2π

0
σsx cosαzdαxdαydαz =

π2

15
(24(D11 +D22 +D33) + 16(D12 +D13 +D23)

+32(D44 +D55 +D66))

∫ π
2

−π
2

∫ 2π

0

∫ 2π

0
σsy cosαzdαxdαydαz =

π2

15
(8(D11 +D22 +D33) + 32(D12 +D13 +D23)+

−16(D44 +D55 +D66))

∫ π
2

−π
2

∫ 2π

0

∫ 2π

0
σsz cosαzdαxdαydαz =

π2

15
(8(D11 +D22 +D33) + 32(D12 +D13 +D23)+

−16(D44 +D55 +D66))

∫ π
2

−π
2

∫ 2π

0

∫ 2π

0
τ sxy cosαzdαxdαydαz =0

∫ π
2

−π
2

∫ 2π

0

∫ 2π

0
τ sxz cosαzdαxdαydαz =0

∫ π
2

−π
2

∫ 2π

0

∫ 2π

0
τ syz cosαzdαxdαydαz =0

(6.74)
The latter three integrals do not enter into the equations, but it is still of interest

that the shear stresses integrated over all orientations equals zero, as in an isotropic
material.

From (6.73) and (6.74) we can now calculate the values of ν and E that minimize
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Q in 3D analysis:

ν =

∫ π
2

−π
2

∫ 2π

0

∫ 2π

0
(σsy + σsz)dαxdαydαz

2
∫ π

2

−π
2

∫ 2π

0

∫ 2π

0
σsxdαxdαydαz +

∫ π
2

−π
2

∫ 2π

0

∫ 2π

0
(σsy + σsz)dαxdαydαz

=

D11 +D22 +D33 + 4(D12 +D13 +D23)− 2(D44 +D55 +D66)

4(D11 +D22 +D33) + 6(D12 +D13 +D23) + 2(D44 +D55 +D66)

E =
(1 + ν)(1− 2ν)

8π2(1− ν)

∫ π
2

−π
2

∫ 2π

0

∫ 2π

0
σsxdαxdαydαz =

(1 + ν)(1− 2ν)

15(1− ν)
(3(D11 +D22 +D33) + 2(D12 +D13 +D23) + 4(D44 +D55 +D66))

(6.75)
An analogous approach is used in 2 dimensions. This gives for σiso as a function

of material orientation angle αz:


σisox (αz)

σisoy (αz)

τ isoxy (αz)

 =
E

1− ν2


1 ν 0
ν 1 0

0 0
1− ν

2



ε0

0

0

 =



E

1− ν2
ε0

νE

1− ν2
ε0

0

 (6.76)

If the coordinate frame is rotated an angle αz, D is transformed into, see [65],

D′(αz) = TDT T , (6.77)

where

T =

 cos2 αz sin2 αz 2 sinαz cosαz
sin2 αz cos2 αz −2 sinαz cosαz

− sinαz cosαz sinαz cosαz cos2 αz − sin2 αz

 . (6.78)

This gives  σsx(αz)
σsy(αz)
τ sxy(αz)

 = D′(αz)

 ε0
0
0

 =

 D′11(αz)ε0
D′21(αz)ε0
D′31(αz)ε0

 . (6.79)
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Denoting cosαz by c and sinαz by s yields:

σsx(αz) = (c4D11 + 2c2s2D12 + 4sc3D13 + s4D22 + 4s3cD23 + 4s2c2D33)ε0

σsy(αz) = (s2c2D11 + (s4 + c4)D12 + 2sc(s2 − c2)D13 + s2c2D22+

2sc(c2 − s2)D23 − 4s2c2D33)ε0

τ sxy(αz) = (−sc3D11 + sc(c2 − s2)D12 + ((c2 − s2)c2 − 2s2c2)D13 + s3cD22+

((c2 − s2)s2 + 2s2c2)D23 + 2sc(c2 − s2)D33)ε0
(6.80)

In Figure 6.10 the stresses σs and σiso are plotted as a function of αz. The compo-
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Figure 6.10: Stresses σs and σiso as a function of the angle αz.

nents of σs plotted are those of the 2D basic example network. The components of
σiso are plotted in the position that the calculations will finally give.

The functional Q now takes the form:

Q =
∫ π

0
(σsx − σ

e
x)

2 + (σsy − σ
e
y)

2 + (τ sxy − τ
e
xy)

2dαz (6.81)

On inserting (6.76) we have

Q =
∫ π

0
(σsx −

E

1− ν2
ε0)2 + (σsy −

νE

1− ν2
ε0)2 + τ s

2

xydαz . (6.82)
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Minimize Q with respect to
E

1− ν2
and

νE

1− ν2
:

∂Q

∂
E

1− ν2

=
∫ π

0
−2ε0(σsx −

E

1− ν2
ε0)dαz = 0

∂Q

∂
νE

1− ν2

=
∫ π

0
−2ε0(σsy −

νE

1− ν2
ε0)dαz = 0

(6.83)

Integrating the last term and rearranging the equations gives∫ π

0
σsxdαz =

E

1− ν2
ε0π

∫ π

0
σsydαz =

Eν

1− ν2
ε0π .

(6.84)

The equations imply that the areas under the curves for isotropic and simulated
material should be the same.

Integrating (6.80) gives∫ π

0
σsxdαz =

π

8
(3D11 + 2D12 + 3D22 + 4D33)∫ π

0
σsydαz =

π

8
(D11 + 6D12 +D22 − 4D33)∫ π

0
τ sxydαz = 0 .

(6.85)

From (6.84) and (6.85) we can now calculate the values of ν and E that minimize
Q for 2D analysis:

ν =

∫ π

0
σsydαz∫ π

0
σsxdαz

=
(D11 + 6D12 +D22 − 4D33)

(3D11 + 2D12 + 3D22 + 4D33)

E =
1− ν2

ε0π

∫ π

0
σsxdαz =

1− ν2

8ε0
(3D11 + 2D12 + 3D22 + 4D33)

6.7. Approximation of a near orthotropic D matrix

If the orientation distribution of the fibres is not uniform, but still symmetric with
respect to perpendicular axes, there is no longer any reason to believe that the
material is isotropic, but rather orthotropic. We thus, want to know which is the
best estimation of orthotropic material parameters.
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One problem that arises is that of finding the principal directions of the simulated
material. The simplest solution would be to assume that the principal directions are
coincident with the symmetry axes of the fibre orientation distribution, which they
should be on taking the average of many networks. A second way is to transform
the D matrix obtained from simulations to different material orientations and check
where a principal direction criterion is best fulfilled. This criterion could be the
maximum value of D11, D22 or D33 and a close to zero value for the components
which are identically equal to zero for an orthotropic material. We chose to use the
first approach since this seems to be a reasonable approximation in the cases where
it is used, see Section 7.5.

We thus assumed that the principal directions are known to coincide with the
coordinate axes. For simplicity, the calculations are shown for two dimensions, but
the 3D case is completely analogous. We use the same approach as for isotropic
material, that is minimize the expression

Q =
∫ π

0
[(σsx − σ

ort
x )2 + (σsy − σ

ort
y )2 + (τ sxy − τ

ort
xy )2]dαz , (6.86)

with respect to the four independent components of Dort, see (6.61).
σs is the same as in the preceding section, that is∫ π

0
σsxdαz =

π

8
(3Ds

11 + 2Ds
12 + 3Ds

22 + 4Ds
33)∫ π

0
σsydαz =

π

8
(Ds

11 + 6Ds
12 +Ds

22 − 4Ds
33)∫ π

0
τ sxydαz = 0 ,

(6.87)

where the superscript s has been added to emphasize that we are referring to the
components of D obtained from simulations. σort is not as simple as in the isotropic
case, the superscript ort here denoting orthotropic material, since it is dependent
on the material orientation angle αz. That is: σortx (αz)

σorty (αz)
τ ortxy (αz)

 = Dort′(αz)

 ε0
0
0

 =

 Dort′

11 (αz)ε0
Dort′

21 (αz)ε0
Dort′

31 (αz)ε0

 (6.88)

In analogy with σs, this yields∫ π

0
σortx dαz =

π

8
(3Dort

11 + 2Dort
12 + 3Dort

22 + 4Dort
33 )∫ π

0
σorty dαz =

π

8
(Dort

11 + 6Dort
12 +Dort

22 − 4Dort
33 )∫ π

0
τ ortxy dαz = 0 .

(6.89)
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On inserting the expressions for σort and σs into (6.86), it is found that the best
estimate is to take the coefficients directly from the simulated D matrix, that is:

Dort
11 = Ds

11

Dort
12 = Ds

12

Dort
22 = Ds

22

Dort
33 = Ds

33

(6.90)

The components Ds
31 and Ds

32 provide a measure of the correctness of the approx-
imation to orthotropic material, since they should be identically equal to zero in a
truly orthotropic material.

The step from components of Dort to the individual physical constants Ex, Ey,
Gxy, νxy and νyx consists of solving the non-linear system of equations

Ex
1− νxyνyx

= Dort
11

Ey
1− νxyνyx

= Dort
22

Exνyx
1− νxyνyx

= Dort
12

Eyνxy
1− νxyνyx

= Dort
12

Gxy = Dort
33

. (6.91)

The solution to this is: 

Ex = Dort
11 (1−

(Dort
12 )2

Dort
11 D

ort
22

)

Ey = Dort
22 (1−

(Dort
12 )2

Dort
11 D

ort
22

)

νyx =
Dort

12

Dort
11

νxy =
Dort

12

Dort
22

Gxy = Dort
33

, (6.92)

providing the parameters used to describe an orthotropic network in the next chap-
ter.



82 CHAPTER 6. FEM MODEL AND ANALYSIS OF INITIAL STIFFNESS

The corresponding solution for three dimensions is obtained using Maple, [36]:

Ex =
Dort

11 D
ort
22 D

ort
33 −D

ort
11 (Dort

23 )2 −Dort
22 (Dort

13 )2 −Dort
33 (Dort

12 )2 + 2Dort
12 D

ort
13 D

ort
23

Dort
11 D

ort
33 − (Dort

13 )2

Ey =
Dort

11 D
ort
22 D

ort
33 −D

ort
11 (Dort

23 )2 −Dort
22 (Dort

13 )2 −Dort
33 (Dort

12 )2 + 2Dort
12 D

ort
13 D

ort
23

Dort
11 D

ort
33 − (Dort

13 )2

Ez =
(Dort

11 D
ort
22 D

ort
33 −D

ort
11 (Dort

23 )2 −Dort
22 (Dort

13 )2 −Dort
33 (Dort

12 )2 + 2Dort
12 D

ort
13 D

ort
23

Dort
11 D

ort
22 − (Dort

12 )2

νyx =
−Dort

13 D
ort
23 +Dort

33 D
ort
12

Dort
11 D

ort
33 − (Dort

13 )2

νxy =
−Dort

13 D
ort
23 +Dort

33 D
ort
12

Dort
22 D

ort
33 − (Dort

23 )2

νxz =
Dort

13 D
ort
22 −D

ort
23 D

ort
12

Dort
22 D

ort
33 − (Dort

23 )2

νzx =
Dort

13 D
ort
22 −D

ort
23 D

ort
12

Dort
11 D

ort
22 − (Dort

12 )2

νyz =
Dort

11 D
ort
23 −D

ort
12 D

ort
13

Dort
11 D

ort
33 − (Dort

13 )2

νzy =
Dort

11 D
ort
23 −D

ort
12 D

ort
13

Dort
11 D

ort
22 − (Dort

12 )2

Gxy = Dort
44

Gxz = Dort
55

Gyz = Dort
66

(6.93)
When a material that is close to transversely isotropic is expected, we want

a method to find the transversely isotropic parameters that correspond to the D
obtained from the simulations. Transverse isotropy is viewed as a special case of
orthotropy. The difference betweenD for a transversely isotropic and an orthotropic
material is that for a transversely isotropic material D11 = D22 and D13 = D23. The
coefficients of the transversely isotropic D are obtained through taking the mean
values as follows:

Dtrans
11 = Dtrans

22 =
Dort

11 +Dort
22

2
, (6.94)

Dtrans
13 = Dtrans

23 =
Dort

13 +Dort
23

2
. (6.95)
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7. Results from the analysis of initial

global stiffness properties

This chapter presents results concerning the initial global stiffness of a network as
a function of various micro-level parameters. The simulation and representation
of the initial global stiffness properties were discussed in detail in the preceding
chapter. If isotropy is assumed, the elastic modulus, E, and the Poisson ratio,
ν, represent the initial stiffness. These are obtained from the results of three or
six simulations corresponding to the different modes of unit strain in 2D and 3D
modelling respectively. In Section 7.1, however, stiffness is in some cases given in
terms of a single component of D. These results are based on simulations of only
one mode of strain. In Section 7.1 the relative variation in the stiffness, rather than
the absolute value, is the primary concern. Because of this, the simpler method of
evaluating stiffness is considered to be sufficient.

7.1. Effect of boundary conditions and sample size

Since computer resources are limited, it is preferable to analyse as small a cell as
possible. At some point, however, the results are affected if the cell is too small
compared with the fibre length. To determine the smallest possible cell size, nu-
merical simulations were carried out to examine the dependence of the calculated
stiffness on the sample size and the modelling of boundary conditions. The networks
that were simulated had material properties equal to those specified for the basic
example networks, Section 5.1. In Figures 7.1-7.4 and 7.8, the relationship between
components of D and cell size to fibre length ratio L/lf is plotted.

Figures 7.1 and 7.2 show the results from 2D simulations of networks for which
ρ = 40 mm−1. For every value of L/lf considered, ten different geometries were
simulated, each geometry being subjected to the two sets of boundary conditions
discussed in Section 6.2: S in Figure 7.1 and C in Figure 7.2 . It can be seen from the
figures that the scattering of the points is considerable for low values of L/lf , and
that the scattering gradually decreases as L/lf increases. It is also noted that the
scattering is greater for boundary conditions S. The solid line indicates the average
of the ten simulations, while the dashed lines denote the standard deviation. For
boundary conditions S the average stiffness initially increases and decreases, but
from L/lf = 1.2 it decreases. Boundary conditions C, on the other hand, produce a
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Figure 7.1: D11 plotted against L/lf : Boundary conditions S.
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Figure 7.2: D11 plotted against L/lf : Boundary conditions C.
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rather constant stiffness from L/lf ≈ 1.0. This suggests that the stiffness is depen-
dent on sample size for boundary conditions S at these values of L/lf and ρ, but
not when boundary conditions C are imposed.

Figure 7.3 shows the average value of D11 from ten calculations, as a function
of L/lf for three different densities, ρ = 30, 40 and 50 mm−1. The results of
calculations using both boundary conditions are shown for each density. These
results also indicate that when using boundary conditions S, one must analyse a
much larger network in order to obtain a correct value of the stiffness than is the
case for boundary conditions C. It is concluded that for boundary conditions C,
L/lf ≥ 1 is a minimum requirement for obtaining reliable stiffness values. For the
conventional boundary conditions S, the corresponding minimum requirement can
be estimated to be L/lf > 3. This crude estimate is based on the results shown in
Figure 7.3, which shows that S still gives much higher calculated stiffness than C at
L/lf = 2.0 and 2.5.
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Figure 7.3: D11 plotted against L/lf .

Figure 7.4 shows results from 3D simulations. Boundary conditions C were used
and the components D11 to D66 are plotted against L/lf . For each value of L/lf
ten different geometries were simulated and the points represent the average of
these. D11, D22 and D33 are related to the stiffness in the x-, y- and z-directions,
respectively. The network has approximately the same stiffness in the three different
directions, which is expected as the orientation distribution of the fibres is uniform.
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As for 2D simulations, there is a tendency for the stiffness to increase for small values
of L/lf . These results suggest that a slightly larger ratio of L/lf must be used than
in 2D to achieve size independence. D44, D55 and D66 are approximately equivalent
to the three different shear moduli of the network. The variation in shear moduli
for a given value of L/lf is smaller than that of D11-D33, and the size dependence
is also less pronounced.
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Figure 7.4: Diagonal components of D plotted against L/lf .

Figures 7.5 and 7.6 show the results corresponding to Figure 7.4, but now rep-
resented by the approximated isotropic elastic parameters E and ν. The solid line
represents the average value and the dotted lines the standard deviation. As in the
2D case, there is a greater scattering of the results for the smallest values of L/lf ,
and a constant value of E is reached at approximately L/lf=1.2. ν is quite constant,
around 0.25, except for the smallest values of L/lf , where it is somewhat higher.

Since boundary conditions C allow smaller cells, it is concluded that the use of
these conditions is by far the more economic alternative. The gain is not quite as
large, however, as one might at first expect. This is because conditions C involve the
use of constraints, which makes the solution of the system of equations more time-
consuming and requires more memory. The next issue is to determine what value of
L/lf is optimal. The standard deviation decreases moderately with increasing L/lf ,
which means that the number of simulations can be decreased for larger values
of L/lf . Since the computational time increases dramatically, however, as L/lf
increases, from a computational point of view it is best to select a minimal value of
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Figure 7.5: E plotted against L/lf .
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L/lf . Unless otherwise stated, boundary conditions C and L/lf = 1.2 are used in all
the initial stiffness simulations discussed in the following. In the networks simulated
in this section all fibres are assumed to be of the same length. For the case of a
statistical distribution of fibre length, the requirement L/lf ≥ 1.2 may have to be
modified depending on the distribution.

In the above, it has been implicitly assumed that the stiffness of a network is
size independent, and that size dependencies in the results are caused by boundary
effects in the simulations. This assumption may, however, not be correct for all
networks. There may be a real size dependence of the stiffness due to the effects
of scattering in stiffness values in different areas of a heterogeneous material. The
influence of increased cell size on stiffness lies somewhere between the influences of
the extreme cases of coupling more and more material cells in series or in parallel.
In parallel coupling, the total stiffness is not affected by scattering in the values of
the components, while a structure coupled in series is weakened by scattering. This
effect is illustrated by a simple example of springs coupled in series and parallel in
Figure 7.7. The average spring stiffness is the same in all four cases. As a growing
cell could be viewed as a combination of serial and parallel coupling, the weakening
effect of scattering on global stiffness may be of significance if the scattering is large
enough. As the scattering in stiffness results increases for decreasing network density,
this would be important in particular for low network densities. Figure 7.8 shows
results from 2D simulations of ρ = 15 and 20 mm−1, with boundary conditions C.
The solid lines denote the averages of ten calculations, while the dotted lines denote
the standard deviation. There is a weak tendency towards increasing slope of the
curves as ρ decreases, but the large standard deviation makes definite conclusions
difficult. This issue is further discussed in Section 9.1.1.
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Figure 7.7: Example showing the effect of scattering in stiffness properties for spring
couplings.
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7.2. Global elastic stiffness vs stiffness of components

The global elastic stiffness of a network depends on the relative stiffness properties
of the components. Depending on the relation between fibre stiffness and bond
stiffness, different modes of deformation may dominate the network. The relations
between axial and bending stiffness of the fibres and normal and shear stiffness of
the bonds cause the same kind of effects. To examine the effect of the stiffness of
the components on the global elastic stiffness, simulations were performed using the
basic example networks. Several stiffness parameters were varied over a wide range.
The parameters considered for 2D networks were stiffness of bonds, kx = ky and
kφ, and moment of inertia, If , cross-sectional area, Af , and elastic modulus, Ef , of
fibres, and for 3D networks elastic modulus, Ef , and shear modulus, Gf , of fibres
and normal and shear stiffnesses, kn and kt, of bonds.

Each point in the diagrams of Figures 7.9-7.12 shows the average of three simu-
lations. For 2D simulations, the coefficient of variation for E was < 1%, except for
the If -curve in Figure 7.10 where it was 1-5%. For ν the coefficient of variation was
1-5% except for a few values in the lower ranges of If , Figure 7.10, where it rose to
at most 11%. For 3D simulations the coefficient of variation was 15-20% for E and
1-5% for ν. The higher standard deviation for 3D simulations was caused by a less
dense 3D example network.

In Figure 7.9 the influence of the stiffness of the bonds in a 2D network is shown.
The variable on the x-axis is log(kx/k

0
x), where k0

x denotes kx for the basic example
network. Analogous notation is used in Figures 7.10 to 7.12. Since it was found
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that the rotational stiffness has very little influence on E, two curves showing the
variation of kx and ky are plotted, one with an extremely high and one with an
extremely low value of kφ. When kx = ky approaches zero, the global stiffness
obviously also approaches zero. When the value of kx = ky increases, a plateau is
reached where the bonds are rigid compared with the fibres. One can compare this
plateau value with the value predicted by Cox’ homogeneous field approximation,
(2.9).

For the basic example network, (2.9) gives E = 17.5 · 104 N/m and the plateau
value obtained from the simulations is E = 13.2·104 N/m. Accordingly, the homoge-
neous field assumption predicts a significantly stiffer network, even when assuming
the bonds to be rigid. This is probably due to bending of the fibres, as discussed in
Section 2.1.

Poisson’s ratio, in contrast to the elastic modulus, is affected by kφ, as can be
seen in Figure 7.9. For a weak φ spring ν is approximately constant, whereas it
is strongly dependent on kx and ky in the case of stiffer φ springs. For the stiffer
x and y springs ν is close to the value of 1/3 predicted by (2.9) for a 2D network
experiencing homogeneous strain.

E and ν for a 2D network as a function of log(If/I
0
f ), log(Af/A

0
f) and log(Ef/E

0
f)

are shown in Figure 7.10. It can be seen that Af is the most important variable and
that If has less influence on E, when varying the parameters around the values of
the basic example network. Changing the ratio Af/If means primarily distorting
the cross section, and this is not very realistic over the wide ranges considered here.
In Figure 7.10 it can also be seen that ν shows moderate variations, except for very
small values of Af . Here, ν suddenly decreases, and even attains negative values.
For small values of Af the fibre elongation deformation mode is much weaker than
the other deformation modes. This means that the length of the fibres changes,
but no angles change, through bending of the fibres, or through deformation in the
bonds. When this is the case, the deformation resulting from uniaxial tension is
close to a simple rescaling of the network, which then becomes wider as well as
longer, corresponding to a negative value of ν. Negative values of ν have also been
found experimentally in paper, see [47], which is a dense cellulose fibre network.

Figure 7.11 shows E and ν for a 3D network as a function of bond stiffness.
The three curves represent variation of kn, kt and kn and kt together. The results
show that kt, which represents a deformation mode of fibres sliding relative to each
other, has a stronger influence on network stiffness than kn, which represents fibre
separation. Network stiffness does not tend as strongly to zero when kn is decreased,
as when the resistance to the sliding mode is weakened. When kn and kt are varied
together a plateau is reached where the bonds are rigid compared with the fibres,
as for 2D networks. Cox’ homogeneous strain prediction for 3D networks is given in
(2.13). This gives a value of E as high as E = 210 · 106 N/m2 for the basic example
network compared with E = 5.1 ·105 N/m2 which is the plateau value obtained from
the diagram. That is, the 3D basic example network is 400 times weaker than a
homogeneous strain network would be. This is because fibre curl and bending and
torsion of fibres has a considerable influence on the network at this low density.
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Poisson’s ratio, ν, on the other hand, is not significantly affected by the deviation
from homogeneous strain. The value of ν is quite close to 0.25, irrespective of the
values of kn and kt, except for extremely low values of kt where ν decreases and even
attains negative values.

Figure 7.12 shows E and ν for a 3D network as a function of fibre stiffness. Both
Ef and Gf were varied by the same amount. As expected, E approaches zero as
fibre stiffness vanishes and reaches a plateau when the fibres become rigid compared
with the bonds. The value of ν is quite stable around 0.22-0.25.

7.3. Global elastic stiffness vs network density and degree of
fibre-to-fibre interaction

The network density was found to have a strong influence on the elastic stiffness of
the network structure. Simulations were performed for six different densities for 2D
and 3D networks.

In Figures 7.13 and 7.14 E and ν for a 2D network are plotted against network
density ρ. The five curves represent different probabilities of interaction at a fibre
crossing, s=1.0, s=0.8, s=0.6, s=0.4 and s=0.2. For densities of ρ=30-60 mm−1

ten simulations were performed for each value of ρ, but for ρ=70 and 80 mm−1 it
was deemed sufficient to perform seven and three simulations, respectively, due to
the small standard deviation at the higher values of ρ. Vertical lines indicate the
standard deviation in E in Figure 7.13. The lower densities are omitted for s=0.4
and s=0.2, since the results showed too much scattering to be relevant. The value
of Poisson’s ratio, ν, is rather stable at around 0.34; it is only due to the scale of
the diagram that one can detect any differences, irrespective of changes in ρ and
s, except for s = 0.2, which yields a somewhat higher value of ν. The standard
deviation is not plotted since the curves are often so close that the error bars would
interfere.

Figures 7.15 and 7.16 show E and ν as a function of network density for 3D
networks. The same five values of probability of interaction at a fibre crossing were
simulated, but for s = 0.2 E was to small to plot in Figure 7.15. Ten simulations
were performed for each value of ρ and s, and the vertical lines denote standard
deviation in Figure 7.15. E as a function of ρ is more linear in the 2D case than
in the 3D case, where the dependence of E becomes greater than linear for the
lower density values. One reason for this difference between 2D and 3D networks
is probably that the simulated 3D networks are closer to the percolation threshold.
Poisson’s ratio increases slightly, from just below 0.25 to just over 0.25. For the
lower values of s and ρ, ν is not plotted due to the networks being unconnected or
the spread in the results being too great. As in the 2D results, the curve for s = 0.2
differs from the other curves.
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Figure 7.13: E plotted against ρ and s.
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7.4. Global elastic stiffness vs fibre curl

Fibre curl is found to have a strong influence on the global elastic stiffness of a
network. This is because curled fibres have lower values of axial stiffness, and also
because the geometry of the network becomes different. The load-bearing lines no
longer extend as straight lines, but take a curved path.

Simulations have been carried out in 2 and 3 dimensions to evaluate the depen-
dence of E and ν on the degree of curl of the fibres. The curl indices considered
were 0.7, which is close to a semi-circle, 0.8, 0.9 and 1.0, which corresponds to a
straight fibre.

2D simulations were performed for two different network densities and the results
are shown in Figures 7.17 and 7.19. Each point is the average of two or three
simulations; standard deviations are indicated by vertical lines. It can be seen that
E increases with increasing curl index for both ρ=40 mm−1 and ρ=60 mm−1, but
c has a greater influence on the less dense network. Here, the ratio between E for
straight fibres and E for c=0.7 is equal to 3.6, while the same ratio for ρ=60 mm−1 is
only 1.9. Poisson’s ratio does not differ much between the two densities, but shows
a clear tendency to increase as the fibres become more curled, as can be seen in
Figure 7.19. Poisson’s ratio does even increase above 0.5, a fact that is discussed
in Section 6.5.
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Figure 7.17: E plotted against the curl index, c.

3D simulations were performed for three different network densities and the
results are shown in Figures 7.18 and 7.19. Each point is the average of ten simu-
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Figure 7.18: E plotted against the curl index, c.

lations, and the standard deviations are indicated by vertical lines. As for the 2D
case, E increases as the fibres become straighter. The ratios between E for c = 1
and c = 0.7 are 2.4, 2.7 and 3.1 for the three densities 145, 200 and 250 mm−2,
respectively. That is, in contrast to the 2D network, the influence of fibre curl is
greater for higher densities. Fibre curl does not have much influence on ν, but there
is a weak tendency for ν to decrease as the fibres become straighter.

The effect of fibre curl can be imagined as consisting of two interactive effects.
One is that the whole fibre does not extend straight across the network, but describes
a curved path. The other is that the fibre segment between two neighbouring bonds
is curved, and is thus weaker in the axial direction. The two different effects will be
of differing importance depending on the average free fibre segment length. The free
fibre segment lengths have different sizes for 2D and 3D networks, (5-8 bonds/fibre
for 3D and 27-37 for 2D), and this could provide the explanation of the contradictory
results concerning the effect of curl for different densities. The effect of axial stiffness
is large when the free fibre segments are long, and should vanish as the free fibre
segment length approaches zero. The curved path effect is probably small in the
somewhat undefined limiting case of the longest possible fibre segments since then
only one or few fibre segments extend from one border of the network to the other.
The observation that the curved path effect increases for medium segment lengths
and decreases or vanishes again as the free fibre segment length approaches zero
would be consistent with the simulation results obtained.

The relative importance of the two effects has been investigated for the 2D case.
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Figure 7.19: ν plotted against the curl index, c.

In addition to the simulations with curled fibres, simulations have been performed
in which the beam elements were replaced by straight ones in the curled global
geometry. A network of straight fibres was also generated, with the same nominal
properties as the network of curled fibres, but the beam elements were replaced
by curved ones, with the curl indices that were considered above. A sketch of the
networks and notations used is presented in Figure 7.20. Figure 7.21 shows E as
a function of the curl index for the different types of networks. E for a network
of curled fibres, Figure 7.17, is illustrated by solid lines. The dotted lines marked
CS and SC represent networks according to Figure 7.20, and the dash-dotted lines
indicate the value of E for a network of straight fibres. It is concluded that the
effect of fibres not extending straight across the network is more important than
that of the axial stiffness being lower for this case. Moreover, in the cases shown in
the figure the two effects seem to be additive.

Figure 7.22 shows the corresponding curves for ν. It can be seen that a network
of type SC gives a value of ν that is practically identical to that of a network of
straight fibres. Somewhat surprisingly, a network of type CS exhibits even higher
values of ν than the network consisting of curled fibres. Obviously, ν is not very
dependent on the axial stiffness of the fibres, which is also consistent with the results
shown in Figure 7.10, in the range close to the basic example network. A geometry
made up of curled fibres, on the other hand, has a rather strong increasing effect on
ν.

An approximate method of accounting for curled fibres might be to reduce the
axial stiffness of the beam elements. The results presented here indicate, however
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that, at least for high network densities, this approach would not give satisfactory
results.
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Figure 7.22: ν plotted against the curl index, c.

7.5. Global elastic stiffness vs orientation distribution

In the preceding sections results have been presented in terms of the elastic modu-
lus and the Poisson ratio for the isotropic continuous material which most closely
resembles the simulated network material in mechanical behaviour. This was done
as when the fibres have a nominally uniform orientation distribution, the network
is expected to be close to isotropic, at least at sufficiently high network densities.
Now we shall investigate the influence on the elastic stiffness of a non-uniform ori-
entation distribution of the fibres. Two different kinds of non-uniform orientation
distributions were investigated; 2D networks where there is a preference for one fibre
direction in the plane, and 3D networks where the fibres tend to lie in one plane.

For a 2D network with a non-uniform orientation distribution there is no longer
any reason to believe that the network’s performance will be the same in each
direction. If, however, the orientation distribution is symmetric with respect to two
perpendicular directions, we can expect nearly orthotropic behaviour. Some 2D
networks with orientation distributions satisfying this condition are examined, and
the results are given as orthotropic material parameters, according to the principles
presented in Section 6.7.
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One way of defining an orientation distribution is [64],

f(α) =
1

π
− a cos 2α . (7.1)

This distribution function satisfies the criterion∫ π

0
f(α)dα = 1 , (7.2)

for all values of the constant a, but to avoid negative probabilities should only be
used for −1/π ≤ a ≤ 1/π. Simulations have been performed for the cases of a = 0,
1/(2π) and 1/π, giving the distribution functions shown in Figure 7.23. The curves
in the figure have been approximated by ten straight line segments, and this is also
the input to the program which generates the network. For comparison, Figure 7.24
shows an example of the fibre orientation distribution of a commercial kraft paper
[64]. The network with a = 0 is the 2D basic example network, and for the other
values of a all properties except the orientation distribution are the same as for the
2D basic example network. Figure 7.25 shows examples of network geometries for
the three different values of a. For each value of a, 10 simulations were performed
of nominally identical networks.
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Figure 7.23: Fibre orientation distributions for different values of a.

The simulations for a = 0 are the same as those performed for the basic example
network, but they have been evaluated as for an orthotropic material. Ideally, Ex
and Ey, as well as νyx and νxy, should be identical. That they are not, implies
that the networks which have nominally uniform orientation distribution are not
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Figure 7.24: Fibre orientation distribution of commercial kraft paper, [64].

Figure 7.25: Examples of network geometries for the cases a=0, a = 1/(2π) and
a = 1/π.

exactly isotropic, but they are still quite close. As a increases there is a stronger
tendency for the fibres to be oriented vertically, as can be seen from Figures 7.23
and 7.25. This results in an increasing modulus Ey and decreasing Ex, as can be
seen in Figure 7.26, where the mean values and standard deviation of Ex, Ey and
Gxy are indicated. The shear modulus, Gxy, decreases only slightly as a increases.
In Figure 7.27 Poisson’s ratios, νyx and νxy, are shown against a. At a=0 they are
almost the same, but as a increases, νyx increases considerably while νxy decreases
moderately. A comparison can be made with (2.7), which predicts the coefficients
of D for the case of uniform strain and an orientation distribution of the form of
(2.3). Disregarding the absolute values, (2.7) predicts D12 and D33 to be constant
and D11 and D22 to vary linearly. This agrees quite well for D33 which is equal to
Gxy. That it agrees equally well for the other components of D can be seen by the
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use of (6.91).
Finally, Figure 7.28 shows a typical example of the difference between D from a

simulation, denoted Ds, and the corresponding estimated value of orthotropic D,
denotedDe, as a function of θ. The figure is based on a simulation where a = 1/(2π)
and Ds is

Ds =

 0.6130 0.3340 0.0273
0.3340 1.3236 0.0328
0.0273 0.0328 0.3146

 · 105 ,

and the estimated value of orthotropic De is, from Section 6.7,

De =

 0.6130 0.3340 0
0.3340 1.3236 0

0 0 0.3146

 · 105 .

The difference between the solid lines, which represent Ds, and the dotted lines,
which are De, is rather small. This indicates that the assumption discussed in
Section 6.7, i.e. assuming the principal directions of the simulated material to be
coincident with the symmetry axes of the orientation distribution, is acceptable.
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Figure 7.26: Elastic moduli plotted against orientation distribution parameter, a.
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Simulations were also performed on 3D networks with a non-uniform orientation
distribution. A series of simulations was performed on cells ranging from a cube,
where Lx=Ly=Lz, to a cell that is compacted in the z-direction and thus approaching
a 2D network. Figure 7.29 shows the five network cells investigated. The number of
fibres was 173 in all the cells. This corresponds to a network density of 100 mm−2

for the case of Lz/Lx = 1.0, and a density of 500 mm−2 when Lz/Lx = 0.2. The
simulations can be viewed as an illustration of how the network properties change
when a fixed number of fibres form a network which ranges from a full 3D network
to close to a 2D network. The orientation distribution in the xy-plane, which is
quantified by the angle α, is uniform. The out-of-plane angle β is distributed as

f(β) =
Lx
Lz

cos β 0 ≤ β ≤ arcsin
Lz
Lx

. (7.3)

Except for cell size, the distribution of β and the network density, all other param-
eters are as in the 3D basic example network.

The material properties were evaluated as for a transversely isotropic material,
see Section 6.7. The parameters given in the figures are in-plane and out-of-plane
elastic modulus and Poisson’s ratio, showing the average of ten simulations. Fig-
ure 7.30 shows in-plane and out-of-plane elastic modulus multiplied by Lz as a
function of Lz/Lx. As the network is compacted the fibres become more oriented
in the xy-plane giving an increased stiffness in this plane. The number of inter-
fibre bonds also increases, making the fibre segments shorter and thus decreasing
the influence of bending and torsion. These two effects result in an extremely high
increase in in-plane stiffness. The out-of-plane stiffness also shows an increase as
the ratio Lz/Lx decreases. This implies that the effect of shorter fibre segments
is more important than that of fewer fibres being oriented in the z-direction. The
ratio Ein−plane to Eout−of−plane is 0.8 at Lz/Lx = 1.0 and 44 at Lz/Lx = 0.2. At
Lz/Lx = 1.0 the ratio should ideally be equal to 1.0; this was not so, due to the con-
siderable spread in the results at this low density. The coefficients of variation from
the simulations range from approximately 0.35 for Lz/Lx = 1.0 down to 0.10 for
Lz/Lx = 0.2. Figure 7.31 shows in-plane and out-of-plane Poisson ratio as a function
of Lz/Lx. Here the coefficients of variation range from approximately 0.45 down to
0.1. νin−plane can be interpreted as the strain in the y-direction relative to that in
the x-direction when the network is stressed in the x-direction. Correspondingly,

0.60.8 L     / L    =1.0 0.4

x

z

L

L

z x 0.2

Figure 7.29: Investigated 3D cell shapes. Lx = Ly for all cells.
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Figure 7.30: ELz plotted against Lz/Lx=Lz/Ly.

νout−of−plane is the strain in the z-direction relative to that in the x-direction when
the network is stressed in the x-direction. νout−of−plane decreases as the network
becomes more two-dimensional. νin−plane fluctuates but overall decreases somewhat
as Lz/Lx decreases. For 2D networks ν is typically around 0.34, see Section 7.3.
The difference between an ideal 2D network and one in which Lz/Lx = 0.2 can
be expected to be rather large, but the fact that νin−plane for Lz/Lx = 0.2 is only
around 0.15 indicates that the phenomena which are included only in the 3D model,
such as torsion and separation of fibres at the bonds, have an appreciable influence
on the shear contraction.

7.6. Global elastic stiffness vs length distribution

The length of the fibres has a considerable influence on the stiffness properties of
a network. Extremely short fibres can be likened to dust and do not constitute a
connected structure. As the fibres become longer, the structure gradually becomes
more like a real network and becomes stiffer. This effect has been studied for 2D
networks. Figure 7.33 shows E plotted against fibre length for networks which are
all of constant fibre length and network density 40 mm−1. The solid line in the
diagram connects points which show averages of ten calculations. Vertical lines
denote standard deviation. The elastic modulus increases considerably as the fibre
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length is increased at constant network density. Poisson’s ratio, on the other hand,
is stable around 0.33-0.34 for all fibre lengths investigated, which can be seen from
Figure 7.34.

When all the fibres are of the same length, the simulations show quite clearly that
longer fibres lead to a stiffer network and that Poisson’s ratio is not affected much.
In order to investigate the case where the fibre length is given by a statistical distri-
bution, networks with the same network density, 40 mm−1, but a length distribution
similar to that of the CTMP fluff of Figure 5.1 were simulated. The population dis-
tribution in length, the weighted length distribution and the cumulative population
distribution in length of the fibres are given in Figure 7.32. It should be noted that
in the last bar of the population distribution there is an over-representation of 4 mm
fibres, since from the cumulative population distribution 2% of the fibres are exactly
4 mm. The arithmetic mean fibre length is 0.85 mm and the weighted mean fibre
length 1.77 mm. The mean value of E from ten simulations is 6.48 · 104 N/m; this
value is indicated by the dashed line in Figure 7.33. If the network with varying
fibre length can be described by some characteristic fibre length with regard to the
initial elastic modulus, the arithmetic mean fibre length does not seem to be the
appropriate value. For the case investigated, the constant fibre length which gives
the same value of E is approximately 1.55 mm, which is closer to the weighted mean
fibre length. More simulations are needed to confirm this hypothesis, but it seems
probable that this tendency holds, since longer fibres contribute more to the stiff-
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ness of the network. The average Poisson ratio for networks of varying fibre length,
shown as a dashed line in Figure 7.34, is 0.336. That is, Poisson’s ratio does not
seem to be affected by either mean fibre length or length distribution.
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Figure 7.32: Population distribution, weighted distribution and cumulative popula-
tion distribution of fibre length.
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8. Analysis of the fracture process

The fracture of a heterogeneous structure is a non-linear process; the properties of
the structure changing as failure progresses in the material. The analysis of non-
linear fracture can, however, be performed as a series of linear steps, if it is assumed
that the behaviour of each component of the structure is step-wise linear. This
approach has been used, and it is further described in Section 8.2. The fracture
criteria and behaviour of the components of the network are defined in Chapter 3,
and the numerical values used are given in the next section. It is more complex
to quantify the fracture process of a material than the initial stiffness properties.
The output parameters used to characterize fracture in this study are discussed in
Section 8.3.

8.1. Input parameters for fracture analysis

The input parameters for the fracture analysis are given in the form of 2D and
3D example networks. In the next chapter different parameters from these basic
fracture example networks are varied, and their influence on the fracture behaviour
of the network is investigated. The input parameters required for the basic fracture
example networks are much the same as those in the basic example networks of
Section 5.1. Some parameters must, however, be changed, and the fracture-related
variables are included.

When the initial stiffness was considered, it was concluded in Section 7.1 that
a cell length of 1.2 times the fibre length is sufficient. When fracture localization
phenomena are studied, results in the next chapter indicate that the cell length
must be about twice the fibre length. The size of the cell has considerable influence
on the number of degrees of freedom in the simulation. For example, for the same
fibre length and network density a cell side length twice the fibre length implies
23/1.23 = 4.6 times more degrees of freedom than in a 3D elastic simulation where
L = 1.2lf . In addition, the larger system of equations must be solved many times.
This makes the choice of long fibres very expensive in terms of computational time.

Since the results from Section 7.6 indicate that the weighted mean fibre length
is more relevant for the mechanical properties of a network than is the arithmetic
mean, the 2D fracture simulations were performed with a fibre length of 2 mm. For
the 2D basic fracture example a side-length L=4 mm was chosen. To compensate
for the longer fibre length, it was decided to assume a lower network density in the
2D basic fracture example network; ρ=8.7 mm−1 instead of 60 mm−1 which was
used in the elastic simulations. In relation to a typical fluff material of the kind

113
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used in disposable nappies, ρ=8.7 mm−1 is estimated to be more realistic in terms
of the corresponding number of fibre-to-fibre bonds per fibre, which is about 5.5 in
this case.

For the 3D case, however, the effect of longer fibres is even greater and the fibre
length was chosen to be 1 mm, as in the 3D basic example network. The network
density was set to 100 mm−2, corresponding to about 3 bonds per fibre.

The ultimate tensile stress of softwoods such as spruce or pine, containing no
faults, is about 100 MPa in the direction of the fibres. The cross-section of wood,
however, consists partly of pore space, indicating a higher value of ultimate stress for
the material in a single fibre. Yet the fibre is weakened by the defibration process,
and the ultimate normal stress for a fibre was therefore set to 100 MPa in the 2D
basic fracture example network. The ultimate shear stress was set to a lower value,
50 MPa.

The strength parameters of the fibre-to-fibre bonds can, at present only be esti-
mated in a rough manner. It is known that in a dry-shaped cellulose fibre material
to which no adhesive has been added, it is the bonds that break, and not the fibres.
Bearing this in mind, and the assumption that the parts of degree of utilization origi-
nating from translation and rotation are of the same order of magnitude, the strength
values for the 2D network were chosen to be Fult=3.5·10−3 N and Mult=5.6·10−9 Nm.
For the 2D basic fracture example network, completely brittle failure of bonds was
assumed, and ns was thus set to 1.

For the 3D basic fracture example network guidance can be found in [1], where
friction between pulp fibres was investigated by Andersson and Rasmuson. One
fibre was fixed in a horizontal position and another fibre, loaded by a small weight,
was slid upwards against it, and the lifting force was recorded. The friction forces
obtained from the measured values were fitted to three different friction models.
One of the two models that showed the best fit is:

F = µF0N + F0 , (8.1)

where F denotes the friction force and N denotes the normal force. The values of
the constants µF0 and F0 obtained for friction under dry conditions fitted to this
friction model are given in Table 8.1. The three pulps investigated were a kraft
pulp and two TMP pulps with the high freeness values of 514 and 700 mL CSF,
respectively. (8.1) and Table 8.1 are also illustrated in Figure 8.1. Considering the

Table 8.1: Values of F0 and µF0 obtained for friction under dry conditions, [1].

Pulp F0 [mN] µF0

Kraft 0.06 0.56
TMP 514CSF 0.17 0.66
TMP 700CSF 0.53 0.44
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Figure 8.1: Frictional force as a function of normal force for three different pulps,
according to (8.1) and Table 8.1.

results in [1], the values of σadh and µ were set to 5 · 105 Pa and 0.5 respectively.
5 · 105 Pa corresponds to a value of F0 of 0.15 mN. Several stick-slips do not change
the values of µF0 and F0, according to [1]. This implies values of λ2 and λ3 of unity.
For the 3D basic fracture example network, ns was, however, set to 1, making λ2 and
λ3 unnecessary. The stiffness of a bond element, which can be seen as governing the
small-scale deformation of a bond before a slip occurs, is assumed to be the same
as in the 3D elastic example network.

The input parameters for the basic fracture example networks are summarized
in Tables 8.2 and 8.3, which also indicate in which section the variation of a certain
parameter is discussed. Unless otherwise stated, the simulations in Chapter 9 refer
to networks with the properties listed in Tables 8.2 and 8.3.

8.2. Method of analysis

A non-linear fracture analysis can be performed as a series of linear steps, assuming
that the behaviour of each component of the structure is step-wise linear. Using
this method of non-linear analysis, the equilibrium conditions are fulfilled during
the entire course of loading and fracture, apart from effects of round-off errors. The
drift from the equilibrium path that may occur in conventional incremental analysis
is avoided, and there is no need for iterations, as in methods of the Newton-Raphson
kind.
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Table 8.2: Input parameters for the 2D basic fracture example network.

Parameter Value and unit Varied in Section
lf 2 mm 9.1.5
κ 0 mm−1 9.1.5
Af 2.5 · 10−10 m2

If 2.0 · 10−21 m4

Ef 35 · 109 Pa
σult 100 MPa 9.1.2
τult 50 MPa 9.1.2

kx1 = ky1 8750 N/m 9.1.3
kφ1 2.8 · 10−7 Nm/rad 9.1.3
Fult1 3.5 · 10−3 N 9.1.2, 9.1.3
Mult1 5.6 · 10−9 Nm 9.1.2, 9.1.3
ns 1 9.1.3, 9.1.5
λ1 1.0 9.1.3, 9.1.5
λ2 1.0

Lx, Ly 4 mm 9.1.1, 9.1.5
ρ 8.7 mm−1 9.1.4, 9.1.5
Nα

1
π
, 0 < α < π

s 1.0 9.1.5
Vh 16.0 mm2

In the present analysis, a unit strain is first applied to the structure in each
step. The degree of utilization is then calculated for the elements which have a
fracture criterion. In 2D networks, both fibre segments and bonds can fail, but
in 3D networks fracture is considered for bonds only. The element that is utilized
the most is detected and the applied strain is proportioned so that the degree of
utilization is exactly unity in the most severely stressed element. The reaction forces
obtained are proportioned to the same degree, and thus we obtain corresponding
values of stress and strain for the situation when the first element is about to break,
or more generally, a change in properties is about to take place, giving new linear
characteristics. Next, the global stiffness matrix is adjusted according to the new
properties of the partly broken element, and a new linear step is performed. This
process can continue until the structure collapses completely and can no longer
sustain any load.

Each linear step is performed according to the principles described in Chapter 6,
using cyclic boundary and loading conditions. The procedure of finding and re-
moving the most severely loaded element between two successive steps is described
below. The element forces are calculated from (6.2), which is repeated here:

Keu = f (8.2)
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Table 8.3: Input parameters for the 3D basic fracture example network.

Parameter Value and unit Varied in Section
lf 1 mm 9.2.4, 9.2.5
c 0.91 9.2.3, 9.2.5
Af 2.5 · 10−10 m2

If , Jzf 2.0 · 10−21 m4

Jyf 2.0 · 10−21 m4

Kvf 3.5 · 10−20 m4

Ef 35 · 109 Pa
Gf 2.6 · 109 Pa
Ab 3.1 · 10−10 m2

kn 3.0 · 1013 Pa/m 9.2.3, 9.2.5
kt 3.0 · 1012 Pa/m 9.2.3, 9.2.5
σadh 5 · 105 Pa 9.2.5
µ 0.5
ns 1
λ1 1.0
λ2 1.0
λ3 1.0

Lx, Ly, Lz 2 mm 9.2.2
ρ 100 mm−2 9.2.1, 9.2.3, 9.2.5
Nα

1
π
, 0 < α < π

Nβ cos β, 0 < β < π
2

9.2.2
Nγ

1
π
, 0 < γ < π

e 20 · 10−6 m
s 1.0
Vh 8.0 mm3

Ke is the element stiffness matrix, in global coordinates, and u is the vector of
displacements in the directions of the global degrees of freedom of the element. f
is also in global coordinates, and must be transformed into local element directions
before it can be used in a fracture criterion. This is valid for the 2D beam elements
and the bond elements used in 3D modelling. The 2D bond elements have the same
local and global directions and these need not be transformed. From the fracture
criterion (3.2) we can see that the degree of utilization, m, for a beam element is

m = max


|σn|

σult

|τ |

τult

, (8.3)
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where, according to (3.3) and (3.4), for a straight beam of rectangular cross-section

σn = ±
N

Af
±
M

If

√
3If
Af

,

and

τ =
1.5V

Af
.

N , M and V denote normal force, bending moment and shear force, respectively in
the most stressed section of the beam. Since there is no load on the beams between
the bond elements, N and V are constant throughout the element. M varies linearly
and thus reaches its maximum value at one of the ends of the element.

The degree of utilization for a 2D bond element of uncoupled springs is, from
(3.8),

m =

√
F 2
x + F 2

y

Fult
+
|M |

Mult

. (8.4)

For the 3D bond element the scale factor for the stress, cσ, for which the fracture
criterion, (3.7), is exactly fulfilled is:

cσ =
µσadh
|τ |+ µσn

(8.5)

The most stressed element is the one that has the smallest positive value of cσ.
When an element of the structure reaches a degree of utilization of unity it

breaks, and the properties of the network structure change. When a beam element
breaks, it does so in a brittle manner. This is taken into consideration by assembling
the negative value of the broken element’s stiffness matrix into the system stiffness
matrix, i.e. by removing this element from the system. When the fracture criterion
for a bond is fulfilled, the system stiffness matrix is adjusted in a similar way, except
that the bond element is not removed altogether. If we have the reduction coefficient
for bond stiffness, λ1, the negative element stiffness matrix multiplied by (1 − λ1)
is assembled into the system stiffness matrix, except when the bond reaches final
failure and is removed altogether.

Loading of a network is defined in terms of global straining of the network. A
2D strain state is described by the strain vector ε=(εx, εy, γxy), which has three
components. A strain state can thus be viewed as a point in a three-dimensional
strain space, and the loading of a structure can be represented by a path in strain
space. The situation for a 3D simulation is analogous, the difference being that the
strain space is six-dimensional. When using the method outlined above the path
must be composed of piece-wise straight lines.

The simplest case is to follow a straight line from the origin. This means that the
ratios between the single strain components are fixed, and only one calculation needs
to be performed during each step. All simulations reported on in the next chapter are
of this type, and the line followed from the origin is the εx- εy- or εz-axis. Typically,
the path from original structure to complete failure consists of a ‘two-steps-forward
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one-step-back’ walk on the εx-axis. It is equally simple to follow one line from the
origin to a certain extent and thereafter change into another one. An example of
this is to strain the material in the x-direction until it is partly broken, unload
the structure and then subject it to pure tension in the y-direction until complete
failure. A more complex situation arises if one wants to study a strain path that does
not pass the origin, for example constant strain in the x-direction under increasing
strain in the y-direction. Under these circumstances three or six calculations have
to be performed in each step, corresponding to the different modes of strain. This
is because, since the strain components do not increase proportionally, the effect of
each strain component on each element of the structure must be obtained.

If one wishes to use the results obtained from simulations on small cells for
analysis of a larger structure made of the same material, the effect of heterogeneity
and size must be taken into account. One way is to build up the large object of
finite elements of the same size as the simulated cells. The finite elements should
have material properties according to the stress-strain curves obtained from the
simulations. The variation in material properties for the finite elements should be
according to the spread in simulation results. If the studied structure is much larger
than the simulated cells it might be necessary to apply the above process in two
steps.

It should be noted that all simulations in this study are based on small dis-
placement theory. Most of the results in the next chapter are within the small
displacement range, the few which are not might be unreliable.

8.3. Output parameters from fracture analysis

An example of important output from fracture analysis is the set of points in the
σxεx plane representing global force in the direction of strain versus global strain.
By definition,

σx = Fx/Ly for 2D, (8.6)

σx = Fx/LyLz for 3D and (8.7)

εx = ∆ux/Lx . (8.8)

Each σxεx point corresponds to the fracture, partial or complete, of one component
of the structure. Each linear step can be represented by a line extending from the
origin to the point at which the first element fails in that step. Since the stiffness of
a structure decreases as more components fail, the chronological order of the failure
points is defined by a successively smaller inclination of the lines from the origin to
the point.

A great deal of information can be extracted from these points. The inclination
of the line from the origin to the first point gives the initial stiffness of the network,
denoted (σx/εx)0. The highest value of the global mean stress attained is denoted
the maximum stress, σmax, and the corresponding value of strain is denoted the limit
strain, εlim. The ultimate strain, εult, that is, the strain at which the last component
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fails rendering the network completely separated, was not used to characterize the
material in this study, since there is a considerable scatter in this value between
nominally identical networks. The last few points may also be unreliable due to
numerical problems arising when the structure approaches zero stiffness. An inte-
grated measure of the straining capacity which is not so sensitive to the variations
in single points is preferable. Fracture energy is such a measure. The various output
parameters, excluding fracture energy, obtained from the global σxεx response are
summarized in Figure 8.2, where the points have been joined together by straight
lines. Fracture energy and its coupling to internal elastic energy is discussed in more
detail below.

x

ε

σ

lim ult
x

xε(     /      )xσ
0

εε

maxσ

Figure 8.2: Illustration of some fracture output parameters.

The amount of energy that has to be supplied to a network to cause its complete
failure is an important parameter. A low fracture energy implies a sudden, brittle
mode of failure, while a higher value indicates fracture in a more ductile manner.

In each linear step, the external energy that has been supplied to the system is
equal to the internal energy stored in the structure. Since the work w of a force F
and a moment M is

w =
∫

(Fd(∆u) +Md(∆θ)) , (8.9)

the internal elastic strain energy stored in a bond element, wbi , is

wbi =
knAb(∆ux)

2

2
+
ktAb((∆uy)

2 + (∆uz)
2)

2
+
ktIp(∆θx)

2

2
+
knI((∆θy)

2 + (∆θz)
2)

2
.

(8.10)
For a bond element consisting of uncoupled springs the elastic strain energy is,

wbi =
kx(∆ux)

2

2
+
ky(∆uy)

2

2
+
kφ(∆θ)2

2
. (8.11)

∆u denotes the extension of a spring, and ∆θ is the rotation. The internal elastic
strain energy for a fibre segment modelled as a 3D Bernoulli beam, wfi , was given
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in (6.10):

wfi =
∫ 1

2
(

1

EA
(N +

Mz

r
)2 +

M2
z

EJz
+
M2

y

EJy
+

T 2

GKv

)dx , (8.12)

where N , M and T denote normal force, bending moment and torque in the fibre
segment, and the integration is performed along the axis of the beam. For 2D beams
the out-of-plane quantities are excluded.

Fracture was defined in (3.6) to occur in a bond element when

g(F ) = 0,

where g is defined in (3.8). The path from the point where the fracture criterion is
reached, down to zero force in the spring, has been defined to be a vertical line in
Figure 3.7. This means that the fracture of a single bond is assumed to be a stable
process, without any dynamic effects. An alternative assumption could be a fracture
curve as shown in Figure 8.3, where the difference between the strain energy in the
spring at the onset of fracture and the fracture energy consumed by the spring
material, is transformed into kinetic energy during unstable fracture, resulting in
dynamic effects.

F

∆

Fracture energy

ux

x

Dynamic effects

Figure 8.3: Force-extension diagram for a spring. Alternative where part of the
elastic energy gives dynamic effects at failure.

The external energy supplied to a network, wne , is the integral of force multiplied
by the displacement of the boundary nodes. When cyclic boundary and loading
conditions are used, the reaction forces in two opposite nodes are always equal in
magnitude and opposite in direction. This means that if a network is subjected to
a strain ε= (εx, 0, 0, 0, 0, 0) the external energy supplied to the network in a linear
step, wne , is simply

wne =
FxεxLx

2
, (8.13)

Fx denoting the resultant force in the x-direction on the faces of the network that
are perpendicular to the x-axis, Lx being the length of the cell in the x-direction.
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In a linear step, wne , which is equal to the area under the Fx-∆uxgraph for the
network is equal to the sum of the internal strain energies of all the elements of the
network, see Figure 8.4,

wne = Σwbi + Σwfi . (8.14)

Contribution of el. no. 1 to total strain energy

∆

Contribution of el. no. 2 to total strain energy

xu

xF

Contribution of el. no. n to total strain energy

Figure 8.4: The external energy is equal to the sum of the internal elastic strain
energies of the components of the network.

Within each linear step there is thus equality between external and internal
energy. We now compare the internal elastic energy stored in the structure in two
successive steps. A network is assumed to be loaded to the extent of failure of the
most severely stressed element; this element fails and the new structure obtained
when the failed element is removed, or assigned new stiffness properties, is loaded to
the same strain. The value of Fx will now be lower for the same value of ∆ux, since
the structure has lost some stiffness due to the removal or change of the fractured
element. Thus, the internal strain energy is now smaller, and the difference between
the total internal strain energies before and after element failure consists of the
fracture energy of the failed element plus the energy lost due to load redistribution
within the network; see Figure 8.5, for a simple symbolic example, and Figure 8.6.
The fracture energy of a network, wn, is thus larger than the sum of the fracture

energies of the failed components, Σwfc.

wn ≥ Σwfc , (8.15)

wn =
∫ εult

0
FxLxdεx . (8.16)

The total fracture energy of a network is the area under a curve joining the points
in some way. Figure 8.7 shows two different ways of joining the points, representing
different fracture mechanisms, the second of which is used when fracture energy is
evaluated.

The total fracture energy, wn, is divided into two parts, the part before maximum
load is reached, wn1 , and the part after maximum load, wn2 , see Figure 8.8. wn1



8.3. OUTPUT PARAMETERS FROM FRACTURE ANALYSIS 123

w

∆Global F-    u  curve

2 1

1

n

1F   =0.5k    uF   =2k    u∆

k  =k   =k   =k

fc

n

u

F   =k   u

321

21

∆
∆

∆

ultultult

1 ∆

∆

u∆ 2

2
u∆

1

1strain energy=0.5k(        ) +0.125k(       ) +0.125k(       )

32 11

strain energy=0.5k(       ) 

1

2
1

1

w   =2.125k(    u  )∆

w  =2.25k(    u  )
2

u1u∆ ∆ 22

1

k   u

u∆

u

strain energy=0

After failure of spring 1:

2k   u

uu ∆∆

F

∆

∆

2

k

After failure of spring 3:

Before failure of spring 3:

k

1

k

k

32

1

k

Figure 8.5: Strain energy at different stages of failure.

represents the loss of energy, or dissipation, when a structure is loaded to maximum
load and then unloaded. This energy is related to the more or less evenly distributed
damage to the material as the global load increases. If the network is reasonably
homogeneous one may, as a first approximation, assume wn1 to be proportional to
the volume, or in 2D, the area of the network.

wn2 represents the dissipation when the global load Fx decreases, as ∆ux increases.
When Fx decreases the parts of the structure outside a localized fracturing region
are unloaded and contract elastically without any dissipation. The dissipation wn2
is instead due to the increasing strain and fracture taking place in the localized
fracture process region. Since the fracture events after peak global load can be
assumed to be localized to one section, one may, as a first approximation, assume
wn2 to be proportional to LyLz in 3D and Ly in 2D. The ratio wn2/Ly corresponds
directly to the material parameter ”critical energy release rate, Gc”, used in linear
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Figure 8.7: Different ways of calculating the fracture energy.

elastic fracture mechanics, and to the fracture energy, GF , used in non-linear fracture
mechanics. Here the notations

GF = wn2/Ly and (8.17)

GF = wn2/LyLz (8.18)

will be used for 2D and 3D modelling respectively.
From the fracture energy, GF , the strength, σmax, and the stiffness (σx/εx)0, an

absolute length scale characteristic of the material, can be defined as

lch = (σx/εx)0GF/σ
2
max . (8.19)

When analysing fracture, such an intrinsic length is needed due to size effects during
fracture, even for homogeneous materials. lch is also a measure of the brittleness of
the material, a low value indicating a brittle material, and corresponding directly
to the ratio (Kc/σmax)

2 used in linear elastic fracture mechanics, Kc being the frac-
ture toughness of the material. Empirically, it has been found that lch is usually
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related to the geometrical size of the particles and pores, etc. in a material. In the
present calculation of lch, (σx/εx)0 was used as a measure of the elastic stiffness of
the material. For some applications, E or σmax/εlim may be more relevant alterna-
tive measures of the elastic stiffness. Values of lch for various materials have been
reported by Gustafsson [16].

The σxεx curves obtained from simulations show pronounced saw-tooth behaviour.
This kind of fracture behaviour is usually not seen in experimental curves. This is
because very fast unloading of the material would be required to be able to follow
a curve that exposes snap-back performance, faster than is possible in practice. In
deformation-controlled experiments, the strain is not allowed to decrease at all, mak-
ing it impossible to record the snap-back behaviour of the sample, see Figure 8.9.
Although difficult to record experimentally, this saw-tooth kind of behaviour may
not be unrealistic: when testing a sample as small as those studied in numerical sim-
ulations, each individual fracture event within the micro-structure of the material
might very well give a noticeable saw-tooth in the global σxεx curve.

x

wn

w

x

2

n
1

u∆

F

Figure 8.8: Definition of wn1 and wn2 .

In addition to the stress-strain relationship of the network, it is also interesting
to study the localization of the fracture. This is done by plotting the positions of the
failed bonds, the zero-stress beams or the remaining active structure of the network
as fracture progresses.
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Figure 8.9: Snap-back behaviour.
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9. Results from the analysis of the

fracture process

9.1. Fracture in 2D networks

9.1.1. Effect of sample size

The results obtained from a fracture test or simulation of a heterogeneous material
are dependent on the sample size. This effect can be seen in a series of simulations
where the shape and size of the sample have been varied. The 2D cells shown in
Figure 9.1 were subjected to uniaxial tension in the x-direction, ε = (εx, 0, 0), and
maximum stress, initial stiffness, fracture energy and localization were evaluated.
Apart from the cell size and degree of heterogeneity, all other properties of the
networks are as given in Table 8.2. Only the fracture of bonds was considered. For
each cell size, five simulations were made, and the averages of the results are given
in the following figures.
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Figure 9.1: Shape and size of investigated 2D cells.

If we regard a square with sides of length L=1.2 lf as a basic unit cell, the
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following samples in series 1 are 2, 4, 6 and 8 times longer than the basic cell. These
longer samples should, however, not be regarded as a number of statistically equal
unit cells coupled in series. In general the weakest link will determine the strength
of a serial system. This phenomenon is described by Weibull theory for certain serial
systems, cf. [7]. As the number of cells coupled in series increases, the probability
of a really weak cell increases, and therefore it is expected that the strength will
decrease as the length of the sample increases in the loading direction. This is
indeed the case for the computational results; see Figure 9.2, where maximum stress
is plotted against L/lf for series 1.
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Figure 9.2: Maximum stress plotted against L/lf for series 1.

The dashed line connects the average of the simulation results with vertical lines
denoting the standard deviation. The solid line shows the size effect prediction of
Weibull theory, which is

σamax
σbmax

= (
las
lbs

)1/m , (9.1)

where las and lbs are the lengths of two samples a and b, and m is a function of
the coefficient of variation, cf. [16]. In Figure 9.2, m, which is 1.88, is based on the
average coefficient of variation of the different cell sizes, 0.56. The simulation results
show a greater decrease in strength than that predicted by Weibull theory. This is
because a basic assumption of Weibull theory is not fulfilled in the present case.
In Weibull theory, cells coupled in series are assumed to have the same strength
distribution as a sample consisting of a single cell. This condition would have been
fulfilled if the network had been generated in such a way that the density in each of
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the square cells coupled in series had been the same. In the present case, however,
the network is generated with a prescribed average network density for the whole
sample, and due to the random positioning of the fibres there are variations in the
average network density from one region of the basic cell to another. Since the
weakest link determines the strength, fracture will usually occur in a region of low
density. The average of the network density in the fracture zone, taken as a strip
of width equal to the fibre length across the sample, is shown in Figure 9.3, vertical
lines denoting standard deviation.
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Figure 9.3: Average network density in the fracture zone plotted against L/lf for
series 1.

While the strength of a sample of length 9.6lf is determined by a zone of density
5.7 mm−1, the strength of a sample of length 1.2lf is determined by a fracture zone
extending over almost the whole sample, and hence of density 8.7 mm−1. Figure 9.4
shows examples of the networks of series 1, with fracture zones indicated. It is also
clear from this figure that the density in the fracture area decreases as sample length
increases.

Series 2 can be compared to unit cells coupled in parallel, although this is not
strictly the case. In this case fracture in the weakest cell does not imply global
failure, since the forces can be redistributed to other paths where the material is
stronger. Because of this, Weibull theory is no longer applicable. Instead, one
may as a first approximation expect that the maximum stress remains at an almost
constant level as the sample height increases. The computational results are shown
in Figure 9.5 and Table 9.1.
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Series 3 is a combination of the former two, and the results should be somewhere
between the extreme cases of series 1 and series 2. The maximum stress is shown as
a function of the the characteristic L/lf ratios of the different series in Figure 9.5.

FZFZ FZ

FZ

FZ=fracture zone

Figure 9.4: Examples of networks and fracture zones from series 1.
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Figure 9.5: Maximum stress plotted against L/lf for series 1, 2 and 3.
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Figure 9.6: Normalized initial stiffness plotted against L/lf .

In series 2 the maximum stress remained rather constant, and in series 3 it decreased,
but not as strongly as in series 1. In Table 9.1, mean values and coefficients of
variation for the calculated strengths as well as the other parameters studied with
respect to sample size are given.

In Figure 9.6 the initial stiffness is plotted against L/lf for the three series. The
heavy lines are estimations made within the 90% confidence interval, the limits of
which are also indicated in the figure. As far as strength is concerned, the weakest
part of the material is decisive, and it is then obvious to expect a dependence on
heterogeneity and sample size. The initial stiffness, on the other hand, is an inte-
grated measure of the properties of the whole sample. As discussed in Section 7.1,
the resulting global stiffness in serial coupling is, despite this, dependent on varia-
tions in stiffness in a sample, since a weak part weakens the structure more than a
stiff part stiffens it. As expected from this, the serial coupling of series 1 shows a
pronounced decrease in initial stiffness as the sample length increases. For series 2
the initial stiffness remains constant, as is expected in parallel coupling. Series 3
shows a moderate decrease, although much more obvious than that in Figure 7.8.
It seems that the density here is low enough to render the effect of heterogeneity
significant.

Another interesting property of a network is the fracture energy, see Section 8.3
for definition. The fracture energies, GF , for the different series are plotted against
L/lf in Figure 9.7. The heavy lines are estimates made within the 90% confidence
interval, as in Figure 9.6. For series 1, GF decreases as L/lf increases, although not
as strongly as in the case of maximum stress. This means that the elongation of
the fracture zone before complete fracture increases as L/lf increases, as could be
expected when the network density decreases. For series 2 both the maximum stress
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and GF are approximately constant, which means that the elongation of the fracture
zone is also approximately constant. The curve of series 3 is, as usual, situated
between the two extreme cases. The fracture energy, GF , shown in Figure 9.7
corresponds to the localized fracture dissipation. The part of the fracture energy
corresponding to the pre-fracture distributed dissipation is almost negligible in this
case. This result is, however, not thought to be general. Very different results might
be obtained if a network with, for instance, bonds with other properties is analysed.
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Figure 9.7: Fracture energy plotted against L/lf .

Figure 9.8 shows examples of networks and locations of the fractured bonds for
the three sample sizes of series 3. As indicated before, it can be seen from the
figure that the fracture process zone is of the same order of magnitude as the fibre
length. Hence, in the smallest network in which L/lf = 1.2, one cannot distinguish a
localized fracture zone since the entire area under observation represents a fracture
zone. If one wishes to study localization phenomena, the dimensions of the cell
studied should therefore be well over one fibre length; twice the fibre length was
used in the following.

The final conclusion is that the results of a 2D or 3D fracture simulation of a
heterogeneous material must always be considered in relation to the size and shape
of the sample. The phenomenon of sample-size dependence cannot be avoided in
either experiments or simulations.
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Figure 9.8: Networks and locations of fractured bonds.
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Table 9.1: Average and coefficient of variation, (c.o.v.), of Fx/(EfLylfεx), σmax and
GF versus sample size.

LxLy/l
2
f

(σx/εx)0 [N/m] σmax [N/m] GF [Nm/m]

Average c.o.v. Average c.o.v. Average c.o.v.
Series 1
1.2× 1.2 1300 0.50 1.70 0.34 0.99 · 10−5 0.46
2.4× 1.2 630 0.61 0.84 0.58 0.91 · 10−5 0.74
4.8× 1.2 640 0.72 0.56 0.55 0.63 · 10−5 0.76
7.2× 1.2 480 0.66 0.30 0.71 0.56 · 10−5 1.55
9.6× 1.2 340 0.73 0.20 0.64 0.33 · 10−5 0.69
Series 2
1.2× 1.2 1300 0.50 1.70 0.34 0.99 · 10−5 0.46
1.2× 2.4 1500 0.52 1.72 0.19 1.30 · 10−5 0.17
1.2× 4.8 1400 0.23 1.55 0.30 1.49 · 10−5 0.23
Series 3
1.2× 1.2 1300 0.50 1.70 0.34 0.99 · 10−5 0.46
2.4× 2.4 1100 0.47 1.06 0.13 1.20 · 10−5 0.24
4.8× 4.8 970 0.47 0.67 0.25 0.72 · 10−5 0.24

9.1.2. Fracture of an example network

The 2D basic fracture example network of Section 8.1, shown in Figure 9.9, will be
used to demonstrate the character of different kinds of network failure: failure of
bonds only, failure of fibre segments only, and simultaneous failure of bonds and
fibres.

Figure 9.1.2 shows the progression of network failure for the case of failure in
bonds only. This mode of failure is accomplished by giving the beam elements a
much higher strength, or by only evaluating the degree of utilization in the bond
elements. The three columns show active structure, zero-stress fibre segments and
fractured bonds, initially and after 12, 50, 75 and 96 bonds have failed. Final failure
occurs after the 97th bond has failed, and after this step the entire structure is
stressless. The corresponding σxεx-curve is given in Figure 9.11, with indications
of which points on the curve correspond to the states shown in Figure 9.1.2. The
corresponding results from the case of beam failure only are shown in Figures 9.12
and 9.13.

Finally, Figure 9.14 shows the σxεx-curve for the case when both strength of
beams and bonds are as described in Section 8.1, and both degrees of utilization are
evaluated. For the strength parameters chosen here, almost only bonds fail; of the
88 failed elements at complete fracture only 5 are beam elements. The domination
of bond failure reflects the performance of a dry-shaped material. If the strength
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parameters for the bonds were adjusted to reflect the strength of bonds of a wet-
shaped material, such as paper, the occurrence of beam failure, i.e. fibre failure,
would be more frequent.

With respect to strength, Figures 9.11 and 9.14 show that prevention of beam
failure does not lead to any increase at all for the present network. Comparing
Figures 9.14 and 9.13, it can be seen that the prevention of bond failure gave an
approximately 60% increase in strength. For a real network, bond failure can be
avoided by using an adhesive aerosol, as discussed in Chapter 1.

The character of the fracture process is somewhat different depending on whether
bond or beam failure is considered. When a beam has failed a load-bearing path has
been completely destroyed, whereas when a bond fails load may still be transmitted.
There is more of a pull-out fracture phenomenon when bonds fail; only when a fibre
end has been completely pulled out of the structure is the load-bearing path entirely
destroyed. This explains why it takes fewer element failures to reach complete failure
when only beam failure is considered. The curves of Figures 9.11 and 9.14 are similar,
since both show fracture when bond failures are dominant.

To give a numerical example and an illustration to (8.15), which states that the
fracture energy wn of a network is greater than the sum of the fracture energies
of the failed components, wfc, the network with only bond failures is considered.
For this network wn is 7.2 · 10−8 Nm, while the sum of the fracture energies of the
failed bonds is only 0.6 · 10−8 Nm. The difference between the fracture energy of a
material and the sum of the fracture energies of the failing micro-components of the
material, even when there is no plastic dissipation, is in principle quite important
and can also be of significant magnitude. In the present example less than 10% of
the total energy corresponds to fracture energy of the failing components. The other
part, more than 90%, can be attributed to the heterogeneity of the material. This
major part of the fracture energy can be regarded as a result of instabilities within
the micro-structure of the material.

Figure 9.9: 2D basic fracture example network.
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Figure 9.10: Fracture process of example network, fracture of bonds only considered,
i.e. fracture of fibres prevented.
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Figure 9.11: Stress-strain relationship of example network, fracture of bonds only
considered, i.e. fracture of fibres prevented.
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2 steps
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Figure 9.12: Fracture process of example network, fracture of fibres only considered,
i.e. fracture of bonds prevented.
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Figure 9.13: Stress-strain relationship of example network, fracture of fibres only
considered, i.e. fracture of bonds prevented.
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Figure 9.14: Stress-strain relationship of example network, both fracture of bonds
and of fibres considered.
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9.1.3. Influence of properties of bonds

In the following analysis it was assumed that only bonds fail, that is, the fibres are
assumed to be strong enough to avoid fibre failure. Under these circumstances the
influence of the properties of the bonds on the fracture behaviour of 2D networks
is studied. The bond properties taken into consideration are stiffness, strength and
degree of ductility, the last property being quantified by ns, the number of slips
before complete failure, and by λ1 and λ2, see Figure 3.7.

Starting out by considering one single linear elastic spring, the effect of changing
spring properties can be seen in Figure 9.15. In a) two springs of equal stiffness
but different strength are compared, and in b) the springs are equal in strength but
differ in stiffness. From the F -∆u-relationships it can be seen that if the spring
strength F is doubled and the stiffness k is kept constant, both the ultimate force
and ultimate extension ∆u are doubled, while the fracture energy, w, increases four
times. If instead the spring stiffness is doubled and the strength is kept constant, as
in b), the ultimate force does not change but both ultimate extension and fracture
energy reach only half their original values.
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Figure 9.15: a) Effect of modified spring strength. b) Effect of modified spring stiff-
ness.

When a network is considered instead of a single spring, the conclusions from
the spring case are directly applicable to the case of change of strength, provided
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that only bonds fail. This is illustrated in Figure 9.16, where the stress-strain
relationship of the example network of the previous section is given, together with
the corresponding curve for the same network when the strength of the bonds has
been doubled (dashed line in the diagram). Doubling the strength of the bonds here
means doubling of both the ultimate force and ultimate moment. As is expected
from the spring case, the ultimate stress and the ultimate strain are twice the value
of the example network, and the fracture energy is hence increased by a factor of
four. When only fracture of bonds is considered, and the strength of the bonds is
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Figure 9.16: Change in stress-strain relationship for fracture example network when
the bond strength is doubled.

modified, the fracture behaviour of the new network can be obtained from the simple
relations of Figure 9.15a. From these relations it is also found that the intrinsic or
characteristic length parameter of the material, lch, see (8.19), is not affected by the
bond strength.

If, on the other hand, we choose to modify the spring stiffness, the situation is
more complicated. This is because the relation between bond and beam stiffnesses
influences the fracture behaviour. Simulations have been made on the basic 2D
fracture example network geometry described in Section 8.1, with bond stiffnesses
multiplied by 0.01, 0.1, 1, 10 and 100. All other parameters, including the bond
strength parameters, were kept constant according to Table 8.2. The studied varia-
tion in bond stiffness is about the same as that which gives strong influence on the
initial stiffness of the network according to Figure 7.9. Bond stiffness k here includes
all three stiffness values kx, ky and kφ, which are all multiplied by the same constant.
Due to the considerable differences in magnitude it is not possible to show all five
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curves in the same diagram. Figure 9.17 shows the stress-strain relationship of the
example network, and the two networks with reduced bond stiffnesses. It is clear
that the initial stiffness decreases and the maximum stress and limit strain increase
as the bond stiffness decreases. Figure 9.18 shows the corresponding relationships
for the example network and the two networks with higher values of stiffness. The
curves for 10k and 100k partly coincide and are difficult to distinguish. Figures 9.19
and 9.20 show the maximum stress and fracture energies as a function of k/k0; k
denoting the stiffness of bonds in the network studied and k0 being bond stiffness
of the 2D fracture example network.

In Table 9.2 the results are given numerically, also for the initial stiffness, (σx/εx)0,
and the characteristic length, lch. It should be noted that the computational results
for the various values of k/k0 are obtained from one single network geometry.

Table 9.2: Material property parameters and stiffness of bonds.

k/k0 (σx/εx)0 σmax GF lch

[N/m] [N/m] [Nm/m] [m]
0.01 110 6.56 210 · 10−5 5.4 · 10−3

0.1 430 3.28 30 · 10−5 12 · 10−3

1 1100 1.22 1.8 · 10−5 13 · 10−3

10 1600 0.61 0.36 · 10−5 16 · 10−3

100 1800 0.42 0.30 · 10−5 31 · 10−3

Although the effect of changing the bond stiffness seems very large from the
diagrams, it is not as great as the effect of changing the strength. In the stiffness
case we obtain an increase in ultimate stress of approximately a factor 16 when the
stiffness is decreased by a factor 10000. In the case of change of strength, there is
direct proportionality between the increase in bond strength and network ultimate
stress.
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Figure 9.17: Stress-strain relationship of example network when bond stiffness is
decreased.
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Figure 9.20: Fracture energy plotted against k/k0.
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Simulations have also been made in order to investigate the influence of the
ductility of bonds on global fracture behaviour. The stick-slip behaviour of the
bonds is defined in Figure 3.7. The parameters used were reduction in stiffness
between two slips λ1 = 0.5, and reduction in strength between two slips λ2 = 1.0.
The number of slips investigated before complete failure, ns, were 1, 2 and 5. The
network density was 20 mm−1 and the other input parameters were as listed in
Table 8.2. As many as five slips before final failure of a bond may seem a lot, but
the relative displacement of two fibres in a bond here is still on the microscopic level.
The effect of fibres slipping and forming new bonds in a new geometric configuration
remains to be accounted for.

Two simulations were made for each value of ns. In order to speed up the
calculations, more than one bond was modified in each step for the cases of ns = 2
and 5. Figure 9.21 illustrates the effect of this approximation, the first diagram
showing the result for ns = 2 when only one bond is modified in each step, and the
second the result when five bonds are modified in each step. The details of the curve
are changed, but the overall shape is much the same. For ns = 5, ten bonds were
modified in each step.

If the results from all the simulations are plotted in the same diagram the curves
interfere making interpretation difficult. In order to avoid this problem the average
of the two curves in the different simulations was replaced by a hand-drawn sim-
plified approximation. Figure 9.22 shows the two original curves together with the
approximated one in the same diagram, for the case of ns = 5.

The results of the simulations are shown in Figure 9.23. It is clear that an increase
in bond ductility has a remarkable effect on the global strength and fracture energy.
This is because the greater ductility allows the degree of utlisation to become more
evenly distributed over the network. The stiffness of a bond that is severely stressed
is reduced, allowing other less stressed bonds to take over part of the load. Ideally,
one could imagine a situation where every bond in the network reaches final failure
at the same time, although this would cause a very abrupt failure. The ultimate
stress and fracture energy as a function of ns are shown in Figures 9.24 and 9.25.
In Table 9.3 the results for initial stiffness and characteristic length are also given.

Table 9.3: Material property parameters and ductility of bonds.

ns (σx/εx)0 σmax GF lch

[N/m] [N/m] [Nm/m] [m]
1 25000 22 6.8 · 10−5 3.5 · 10−3

2 25000 30 14 · 10−5 3.9 · 10−3

5 25000 56 120 · 10−5 9.6 · 10−3
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Figure 9.21: Stress-strain relationship for the same network when 1 and 5 bonds
have been broken in each step.
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Figure 9.25: Fracture energy plotted against ns.

9.1.4. Influence of network density

The influence of network density on the fracture behaviour of a 2D network has been
examined by simulating a series of networks of density ρ= 8.7, 15 and 20 mm−1.
Bond failure is assumed, and the other properties of the networks correspond to
those of the 2D fracture example network. Five simulations were performed for each
value of network density, and the average of the results is given in the following
figures. The stress-strain relationships for the different densities are all given in
Figure 9.26, despite large differences in both maximum stress and strain. To fa-
cilitate interpretation of the figure, hand-drawn approximations have been used, as
described above. As ρ increases, the networks become considerably stronger, and
also more brittle. The maximum stress and fracture energy, average and standard
deviation, are shown as a function of network density in Figures 9.27 and 9.28.

In the work of Åstrom and Niskanen, [2], where the bonds were assumed to be
rigid, it was concluded that the strength of a network is proportional to the elastic
modulus of the network multiplied by the ultimate shear strain in a bond. From
Figure 9.29 it is clear that the results of the present simulations agree with previous
work, [2], in that the maximum stress of a network divided by the initial stiffness
is almost exactly constant. If the bonds are linearly elastic, the ratio between fibre
and bond stiffness is kept constant and failure is allowed to occur only in the bonds,
it is obvious that the strength will also be proportional to the ultimate strain of the
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bonds, see Figure 9.16. If the ultimate strain of the bonds is increased by increasing
ns from 1 to 2 and then to 5, an increase in network strength is again observed,
although it is not proportional to the ultimate strain, see Figure 9.19.

In Table 9.4 the computational results for initial stiffness, strength, fracture
energy and characteristic length are given numerically. It is interesting to note
that the fairly moderate increase in density from 15 mm−1 to 20 mm−1 gives more
than a two-fold increase in stiffness, strength and fracture energy. In the region
from 8.7 mm−1 to 15 mm−1 the effect on stiffness and strength is even greater.
The theoretical percolation density of the network is 5.7/2.0=2.9 mm−1. Since the
strength is low already at ρ = 8.7 mm−1, the sensitivity of the strength to density is
probably very small in the region from the percolation point up to about 8 mm−1.

From Table 9.4 it is also interesting to note that the coefficient of variation for
the various properties is greater at low density. This is in agreement with the more
heterogeneous character of the geometry of networks with low density. Also, the
variation of the intrinsic material length parameter, lch, with density is consistent.
The lowest value, 2.9 mm, at the highest density, ρ = 20 mm−1, may correspond
to the more brittle character of more homogeneous materials. The variation of lch
with density seems also to reflect the general absolute size of the micro-structure of
the material. Although the fibre length is the same for the different networks, the
free fibre segment length as well as the size of the open areas, the ‘pores’, is much
smaller at a density of ρ = 20 mm−1 than at ρ = 8.7 mm−1.
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Figure 9.26: Stress-strain relationships for different network densities.
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Table 9.4: Average and coefficient of variation, (c.o.v.), of material properties at
different densities.

ρ (σx/εx)0 [N/m] σmax [N/m] GF [Nm/m] lch

[mm�1] Average c.o.v. Average c.o.v. Average c.o.v. [m]
8.7 1271 0.45 1.2 0.41 1.35 · 10−5 0.35 11.9 · 10−3

15 9126 0.19 8.4 0.19 2.61 · 10−5 0.18 3.4 · 10−3

20 23018 0.09 21.7 0.15 6.01 · 10−5 0.27 2.9 · 10−3
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9.1.5. Simulation of complex 2D example network

This section gives an example of a simulation of a 2D network of curled fibres of vary-
ing length. The length distribution of the fibres is the same as shown in Figure 7.32
in Section 7.6, approximately representing the length distribution of a CTMP pulp.
The radius of curvature of the fibres is 1.4 mm. At a fibre crossing the probability
of a bond is 0.4, and each bond is assumed to exhibit a stick-slip performance. The
number of slips before complete failure is five, and at each slip the stiffness is reduced
by a factor of 0.5, while the strength is unaffected. The orientation distribution is
uniform. The network density is 22.1 mm−1, giving an average free fibre segment
length of 0.18 mm. This corresponds to a three-dimensional fibre fluff of density 80
kg/m3, if it is assumed that the fibres are randomly distributed in space, see [20].
Failure of bonds only is considered and ten bonds are modified in each step. The
input parameters of the network are summarized in Table 9.5.

Table 9.5: Input parameters for the complex 2D example network.

Parameter Value and unit
lf see Figure 7.32
κ 714 mm−1

Af 2.5 · 10−10 m2

If 0.2 · 10−20 m4

Ef 35 · 109 Pa
σult 100 MPa
τult 50 MPa

kx1 = ky1 8750 N/m
kφ1 2.8 · 10−7 Nm/rad
Fult1 3.5 · 10−3 N
Mult1 5.6 · 10−9 Nm
ns 5
λ1 0.5
λ2 1.0
L 4.2 mm
ρ 22.1 mm−1

Nα
1
π
, 0 < α < π

s 0.4
Vh 17.6 mm2

Figure 9.30 shows an illustration of the network, which consists of 1800 active
beam elements and 1005 bonds, and the approximate active part is 70%. The
number of degrees of freedom in the finite element model is 6366.

Figure 9.31 shows the stress-strain relationship of the network. There are 39
steps before maximum stress is reached, and after 95 steps the network has failed
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completely. (σx/εx)0 = 1.29 · 103 N/m, σmax = 5.81 N/m, GF = 20 · 10−5 Nm/m
and lch = 7.6 · 10−3 m.

Figure 9.32 shows the locations of the failed bonds after 16, 39 70 and 95 steps.
The first column indicates bonds that have slipped at least once, the second in-
dicates at least three slips and the third indicates five slips, which corresponds to
completely failed bonds. It can be seen that bonds slip throughout the network,
but the completely failed bonds tend to be concentrated along a localized fracture
zone. Maximum load is reached after 39 steps. At this point, 210 bonds have been
modified and one has reached final failure. This first final failure corresponds to
maximum load, and reveals that the stress-strain relationship begins to show saw-
tooth behaviour. After 95 steps, 380 bonds have been modified, and 53 have failed
completely.

Figure 9.33 shows the bonds that fail while the stress is increasing (first row),
and the bonds that fail while the stress is decreasing (second row). Although the
side of the square, 4.2 mm, is only 1.5 times the distance between the end-points of
the longest fibres, 2.8 mm, there is a weak tendency towards localization.

Figure 9.30: Complex 2D example network geometry.
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9.2. Fracture in 3D networks

9.2.1. Influence of network density

The influence of network density on the fracture behaviour of 3D networks has been
examined by simulating a series of networks of densities ρ=75, 87.5, 100, 112.5,
125 and 137.5 mm−2. Apart from network density, the other properties of the
networks correspond to those of the 3D fracture example network. To reduce the
computational time, five bonds were allowed to slip in each step. Five simulations
were made for each value of network density, and the averages of the results are given
in the following figures. The stress-strain relationships for the different densities are
all given in Figure 9.34. Hand-drawn approximations have been used, according
to the principle described in Section 9.1.3. As ρ increases, the networks become
stronger, they reach maximum stress at a lower strain and the curves show a steeper
descent after maximum load. The change in the stress-strain curves as network
density increases is similar to that for 2D networks, Figure 9.26, except that the
tendency towards reaching maximum stress at a lower strain for higher density is
stronger for 3D networks. The maximum stress and fracture energy are plotted
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Figure 9.34: Stress-strain relationship for different densities.

against ρ in Figures 9.35 and 9.36. When the fracture energy was calculated, the
part of the stress-strain curve where the strain exceeded 1.0 was disregarded, in order
to avoid the influence of the last points where the results were deemed unreliable.

From Figure 9.37 it is clear that for the networks simulated here, the maximum
stress divided by the initial stiffness is not independent of network density, as was
the case for the 2D networks (Figure 9.29). The average free fibre segment lengths
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are, however, different for the 2D and 3D networks. For the 2D networks simulated
in Section 9.1.4, the average free fibre segment length varied from 0.18 to 0.08 mm
and for the 3D networks the corresponding values ranged from 0.42 to 0.23 mm. For
the two highest densities in Figure 9.37 the values of σmax/(σx/εx)0 are almost the
same, indicating that the constancy of σmax/(σx/εx)0 with respect to density is not
valid for densities close to the percolation threshold.

In Table 9.6 the computational results for initial stiffness, strength, fracture
energy and characteristic length are given numerically. It is interesting to note
that the the intrinsic material length parameter, lch, here increases with density,
as opposed to the 2D simulation results of Table 9.4. As for σmax/(σx/εx)0, the
difference in the values for the two highest densities is small. The fact that the
dependence of lch on ρ differs from that of 2D networks may be due to the larger
free fibre segment length.
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Figure 9.37: Maximum stress divided by initial stiffness, plotted against ρ.

9.2.2. Influence of fibre orientation

Simulations were made to investigate the influence of the orientation distribution of
the fibres on the fracture behaviour of the network. It was previously concluded,
in Section 5.2, that the fibre orientation distribution does not have much influence
on the number of bonds. Results in Section 7.5 showed that both the in-plane and
out-of-plane initial stiffness increase when the network becomes more planar. This
section presents results from fracture simulations performed on networks with Lz/Lx
ratios of 1.0 and 0.8, i.e., networks similar to the first two networks in Figure 7.29.
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Table 9.6: Average and coefficient of variation, (c.o.v.), of material properties at
different densities.

ρ (σx/εx)0 [Pa] σmax [Pa] GF [Nm/m2] lch [m]

[mm�2] Average c.o.v. Av. c.o.v. Average c.o.v. Average c.o.v.
75.0 1820 0.27 85 0.15 0.0390 0.34 9.9 · 10−3 0.34
87.5 7860 0.25 140 0.14 0.0858 0.14 32 · 10−3 0.31
100.0 19300 0.12 200 0.06 0.0886 0.23 41 · 10−3 0.21
112.5 34200 0.27 250 0.17 0.1050 0.28 59 · 10−3 0.34
125.0 92000 0.22 350 0.10 0.1360 0.16 100 · 10−3 0.25
137.5 122000 0.06 420 0.06 0.1460 0.19 100 · 10−3 0.13

Networks with smaller Lz/Lx ratios have not been simulated since the number of
degrees of freedom increases rapidly as the network is compressed. The only input
parameters which differ from the 3D basic fracture example network are Lz and the
distribution of β for the networks where Lz/Lx=0.8. In this case β is distributed
according to (7.3). Five networks for each Lz/Lx ratio were simulated and were
subjected to uniaxial tension in the x-, y- and z-directions, each simulation starting
from an undamaged network. Five bonds were allowed to slip in each step. When
the fracture energy was calculated the part of the stress-strain curve where the strain
exceeded 1.0 was disregarded, as in the above.

The results from the simulations are shown in Figure 9.38 and Table 9.7. The
values of σmax, Gf and lch for the Lz/Lx=1.0 networks are approximately equal for
uniaxial strain in the x-, y- and z-directions, as is expected since the orientation
distribution is uniform. The limit strain, however, is more scattered. Since the
results are approximately equal, the stress-strain curves representing uniaxial strain
in the three different directions are plotted as one curve in Figure 9.38. For the
networks where Lz/Lx=0.8, the same applies to strain in the x- and y-directions,
and these results are presented as one curve in Figure 9.38. Straining in the z-
direction gives, however, different results and is represented by the middle curve in
the figure.

When the same number of fibres form a network in a cell of smaller height,
and the fibres have a stronger tendency to be oriented in a plane, more bonds are
formed and the free fibre segments become shorter. This gives an effect on the stress-
strain curve similar to that of higher network density, where the maximum stress
is higher and is reached at a lower level of strain. The Lz/Lx=0.8 networks also
become stronger for strain in the z-direction, indicating that the effect of shorter
fibre segments is more important than the fact that fewer fibres are oriented in the
z-direction, as was also the case for initial stiffness. From Table 9.7 it is not possible
to make a distinction between the in-plane and out-of-plane directions for the values
of Gf and lch for Lz/Lx=0.8, but the difference in the stress-strain curve can be seen
clearly in Figure 9.38.
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Table 9.7: Average and coefficient of variation, (c.o.v.), of material properties for
networks with different values of Lz/Lx and strain in different directions.

Lz/Lx Dir. σmax [Pa] εlim GF [Nm/m2] lch [m]

Av. c.o.v. Average c.o.v. Average c.o.v. Average c.o.v.
1.0 x 200 0.06 0.047 0.68 0.089 0.23 0.041 0.21
1.0 y 180 0.07 0.040 0.68 0.091 0.17 0.051 0.42
1.0 z 210 0.05 0.048 0.74 0.113 0.26 0.049 0.20
0.8 x 400 0.06 0.012 0.42 0.141 0.26 0.091 0.23
0.8 y 370 0.16 0.021 0.71 0.135 0.22 0.101 0.21
0.8 z 270 0.06 0.019 0.45 0.152 0.28 0.088 0.27

9.2.3. Influence of properties of bonds

The stiffness and strength properties of the bonds have influence on the fracture of
a network. The conclusions reached without any simulations in Section 9.1.3 are
valid also for 3D networks. That is, if Ef , Gf , kn and kt are divided by a constant,
network strain is multiplied by the same constant but the stress is unaffected, see
Figure 9.15b. If σadh is multiplied by a constant both stress and strain are multiplied
by the same constant, as in Figure 9.15a. To obtain the effect on the stress-strain
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curve for the case when only bond stiffness is changed, simulations are, however,
necessary. Figure 9.39 shows results from simulations on one single network where
the bond stiffness values, kn and kt, were as in the 3D basic fracture example network,
1/10 of these values and 1/100 of these values. The network density was 125 mm−2

and the fibre curl was set to 0.84. The curves in the figure are hand-drawn approxi-
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Figure 9.39: Stress-strain relationships for different values of bond stiffness.

mations. A lower bond stiffness gives as expected a less stiff network. The limit
strain increase as bond stiffness decreases, and there is also a small decrease in
maximum stress.

In the 2D networks the bond ductility had considerable influence on the stress-
strain relationship. This was not found for the 3D networks. The bonds were
assumed to be ductile only in compression. In the simulations, where the networks
were subjected to uniaxial tension, almost all the bonds failed in tension, and thus
in a brittle manner. Because of this, there was no noticeable effect of bond ductility
in 3D. Figure 9.40 shows an example of the stress distribution in the bond elements
in the first computational step, for a network with input parameters as in the 3D
fracture example network. The stress state for each bond is indicated by ’+’, in the
σn-τ plane. The total number of bonds was 1216, and five of them were allowed to
slip in the first step. For those five bonds a circle is added around the ’+’. The
fracture criterion is also illustrated in the figure. The average degree of utilisation
for the five elements for unit uniaxial strain was 200, giving a strain value of 0.005
for the first point on the stress-strain curve.

One problem with the bond model used is that a bond can sustain an arbitrarily
large load in compression. In particular for networks of highly curled fibres there
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Figure 9.40: Stress distribution in the bonds for the first step.

is the risk that when the network is almost failed, a structure consisting of curled
fibres hooked into each other around the cell remains. In a real fluff this would
lead to large deformations in the fibres, finally causing tension and fracture in the
bonds. In the small displacement computational model the forces are, however,
always calculated from the original geometry. One approximate way of taking the
real process into account would be to define a compressive fracture stress for the
bonds.

9.2.4. Influence of fibre length

The fibre length distribution was found to have a considerable influence on the
elastic stiffness. The influence of fibre length on the fracture behaviour was also
examined. The basis of the simulations is the cumulative population distribution
of fibre length, shown in Figure 9.41. This distribution was constructed to fit the
values of arithmetic and weighted mean fibre lengths which were measured for the
pulp described in Section 9.2.5. The arithmetic mean fibre length of the pulp was
1.4 mm and the length-weighted mean fibre length was 2.3 mm. Since it is desirable
to keep the maximum fibre length low, and thereby the cell size and number of
degrees of freedom, the distribution was constructed so that the maximum fibre
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length was 4 mm. To compensate for the longest fibres in the pulp, 6% of the fibres
was given a length of 4 mm. Simulations were performed for a network density of
125 mm−2 for six different fibre length distributions; constant fibre lengths of 1.0 mm,
1.4 mm and 2.3 mm, the length distribution of Figure 9.41 and length distributions
where all the fibre lengths from the distribution in Figure 9.41 were divided by two
and three respectively. The two latter distributions approximately take account of
shorter effective fibre length due to kinks. The other input parameters were as in
the 3D fracture example network. Three networks were simulated for each length
distribution, except for the latter two, for which only two simulations were carried
out. Eight bonds were allowed to slip in each step. In these simulations the longest
fibres were twice the cell length. This may cause problems, such as a false simulation-
induced increase in network stiffness. It was, however, not possible to increase the
cell size due to lack of computer capacity.

Figure 9.42 shows the stress-strain relationships for the six different length dis-
tributions and Table 9.8 gives the numerical values of maximum stress, limit strain,
fracture energy and characteristic length. For the three constant fibre lengths, it is
clear that longer fibres give a stronger network and a lower value of limit strain. The
stress-strain curve for networks with a fibre length distribution as in Figure 9.41 lies
between the curves for 1.4 and 2.3 mm fibres, i.e., if this fibre length distribution
is to be represented by one constant fibre length, a value between the mean and
weighted mean value should be used. It is interesting to note that the curve for
2.3 mm fibres lies above the curve for distributed fibre length, implying that more is
lost with the shorter fibres than is gained with the longer fibres in the distribution.
The curves for 1 mm fibres and the network in which the fibre lengths in Figure 9.41
were divided by two are difficult to separate, one difference being, however, that the
limit strain is higher for the 1 mm fibre network. This conclusion is unfortunately
unreliable due to the large scattering of the limit strain results. Figure 9.43 shows
maximum stress as a function of fibre length for the three constant fibre lengths.
For the case simulated there is direct proportionality between maximum stress and
fibre length. The limit strain as a function of fibre length, shown in Figure 9.44, is
decreasing, but not linearly.
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Table 9.8: Average and coefficient of variation, (c.o.v.), of material properties for
networks with different fibre length distributions. A: fibre lengths as in Figure 9.41.
B: fibre lengths as in Figure 9.41, divided by two. C: fibre lengths as in Figure 9.41,
divided by three.

lf [mm] σmax [Pa] εlim GF [Nm/m2] lch [m]

Average c.o.v. Average c.o.v. Average c.o.v. Average c.o.v.
2.3 970 0.10 0.002 0.25 0.28 0.26 0.41 0.27
1.4 530 0.05 0.006 0.18 0.21 0.31 0.22 0.33
1.0 320 0.35 0.015 0.75 0.14 0.34 0.11 0.13
A 720 0.09 0.002 0.38 0.21 0.39 0.30 0.58
B 330 0.12 0.010 0.71 0.13 0.04 0.12 0.22
C 190 0 0.044 0.51 0.053 0.08 0.025 0.18
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9.2.5. Comparison with experimental results

To evaluate the accuracy of the model and to study the calibration of input data
for a specific material, simulation results were compared with experimental results
from tests on a fluff material. The tests were performed by SCA Research [56]. The
chemical pulp used for the fluff specimens was geometrically characterized by the
STFI-Fibermaster. The arithmetic mean fibre length was 1.4 mm and the weighted
mean fibre length was 2.3 mm. On calculating these mean fibre lengths, fibres
shorter than 0.11 mm were disregarded. The arithmetic mean value for fibre curl
was 0.88, and the length-weighted value was 0.84. There were on average about
3 kinks per fibre. The width and length of the specimens were both 80 mm, and
the test span was 60 mm. The average bulk of the specimens was 20.2 g/cm3 and
the specimens were strained at a constant speed of 1 mm/s. Figure 9.48 shows ten
measured stress-strain curves.

A network cell of size 2x2x2 mm3 with properties similar to the tested fluff was
simulated. The length distribution illustrated in Figure 9.41 corresponds to the
mean and weighted mean values of the fibre length of the tested fluff. On assuming
the density of the fibre material to be 1600 kg/m3 and using the fibre cross-sectional
area of the basic example networks a bulk value of 20.2 g/cm3 gives a network
density of 125 mm−2. The length-weighted mean value of fibre curl, c=0.84, was
chosen for the simulations. With the input values above, and values from the 3D
fracture example network for the other parameters, the stress-strain curve shown in
Figure 9.45 was obtained. In this simulation only one bond was allowed to slip in
each step, which explains the saw-tooth appearance. It is obvious that the maximum
stress is reached at a very low strain compared with the experimental results; about
0.3% compared with 8%.

In Section 9.2.1 it was shown that a lower network density gives maximum stress
at a higher strain. This network density effect can also be obtained by changing the
interaction distance, e, or the degree of interaction, s. It doesn’t, however, appear
to be realistic to change either of these parameters, from a physical point of view.
The limit strain is also affected by the stiffnesses of the components of the network.
If, for example, Ef , Gf , kn and kt were to be decreased by a factor of ten, the strain
at maximum stress would be increased by a factor of ten. The values of Ef and Gf

are believed to be fairly well known and accurate, and there should, thus, not be a
need for calibration of these parameters. The values of kn and kt, are on the other
hand only crude estimates. From Section 9.2.3 it can be seen that a decrease in only
kn and kt changes the simulated stress-strain curve towards the experimental curve,
but the values of kn and kt alone can hardly explain the deviation.

A parameter which has influence on the limit strain is the fibre length distribu-
tion. The results in Section 9.2.4 show that longer fibres give a distinct increase in
maximum stress and a decrease in limit strain. A possible explanation of the dis-
crepancy between Figures 9.45 and 9.48 is that a typical fibre acts as several shorter
fibres from a mechanical point of view, due to kinks. Figure 9.47 shows results from
simulations where all the fibres were assumed to be 1.1 mm long. The bond stiffness
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Figure 9.45: Stress-strain relationship for a network with fibre lengths according to
Figure 9.41, c=0.84 and ρ=125 mm−2.

values were set to kn = 3.0 · 1011 Pa/m and kt = 3.0 · 1010 Pa/m and σadh was set to
6.5·105 Pa. All input values are given in Table 9.9 and Figure 9.46 shows an example
of a simulated network geometry. For this case, the simulated values of maximum
stress and limit strain are close to the experimental ones, see Table 9.10. The ex-
perimental values are averages from 25 tests, and not only from the ten tests for
which the stress-strain curves are shown in Figure 9.48. Handdrawn approximations
of the average stress-strain curves from experimnets and simulations, respectively,
are given in Figure 9.49. The strains are quite large in these simulations, probably
making small displacement theory unreliable for the largest strains.

The post-peak parts of the curves can not be compared directly, due to the
different specimen sizes. The test specimen is 60x80x9 mm3, corresponding to 30
serially coupled elements of 180 cells coupled in parallel, in total 5400 simulated
cells. When the load on the test specimen decreases, most of the specimen contracts
while a fracture zone expands. In the simulated cell, most of the cell can be regarded
as a fracture zone and it is therefore not relevant to compare the strain for the two
cases.

The average strain at fracture, which was defined to occur at 50% of maximum
load in the experiments was 14%, corresponding to 8.4 mm elongation. If the fracture
zone is assumed to be 2 mm wide, and the irreversible strain outside the fracture
zone is estimated to be roughly 2%, corresponding to 1.16 mm elongation, the
elongation of the fracture zone is 7.24 mm, corresponding to a strain of 360%. This
reasoning would have been more relevant if the experiment had been carried out
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on a specimen corresponding to 30 simulated cells in a row. The fracture process
would then probably have been more brittle giving a smaller strain in the fracture
zone. When many cells are coupled in parallel, there is a redistribution of load from
weaker to stronger zones giving a more ductile fracture with a higher fracture strain.

Table 9.9: Input parameters for simulations that were compared with experiments.

Parameter Value and unit
lf 1.1 mm
c 0.84
Af 2.5 · 10−10 m2

If , Jzf 2.0 · 10−21 m4

Jyf 2.0 · 10−21 m4

Kvf 3.5 · 10−20 m4

Ef 35 · 109 Pa
Gf 2.6 · 109 Pa
Ab 3.1 · 10−10 m2

kn 3.0 · 1011 Pa/m
kt 3.0 · 1010 Pa/m
σadh 6.5 · 105 Pa
µ 0.5
ns 1
λ1 1.0
λ2 1.0
λ3 1.0

Lx, Ly, Lz 2 mm
ρ 125 mm−2

Nα
1
π
, 0 < α < π

Nβ cosβ, 0 < β < π
2

Nγ
1
π
, 0 < γ < π

e 20 · 10−6 m
s 1.0
Vh 8.0 mm3
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Table 9.10: Maximum stress and limit strain from experiments and simulations.

σmax [Pa] εlim
Experiments 520 0.075
Simulations 500 0.077

Figure 9.46: Example of network with input as in Table 9.9.
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Figure 9.47: Stress-strain curves for cellulose fibre fluff obtained from simulations.
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Figure 9.48: Stress-strain curves for cellulose fibre fluff obtained from experiments.
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10. Numerical considerations

When numerical simulations are performed some computer-related issues must be
dealt with. Firstly, it must be established that the correct solution to the problem is
obtained. For example, an ill-conditioned system matrix can arise in several ways.
This must be prevented since it often causes erroneous results. A correct solution
is, however, not sufficient. It is also desirable to have as short a computational time
as possible, to be able to perform as many and as extensive simulations as possible,
given limited computer resources.

10.1. Correctness of solutions

The system stiffness matrix can become ill conditioned if there is a large difference
in magnitude between the coefficients in the matrix. This problem may arise from
differences in stiffness between the different components of the network or extremely
short beam elements.

The character of a dry-shaped cellulose fibre material is in general such that
the inter-fibre bonds are much weaker than the fibres, and the fibres themselves
are weaker in bending than in axial deformation. The differences in stiffness are,
however, not so great that we can disregard the deformation of the stiffer components
by, for example, considering the fibres to be rigid, or rigid in the axial direction. This
means that we have a system of equations in which the coefficients are of various
orders of magnitude, which implies numerical problems in the solution procedure.
This problem is further emphasized by the fact that we often want to perform
parameter studies over wide ranges of the various material properties. To reduce
the effects of these phenomena, the coefficients of the stiffness matrix were rescaled.
By rescaling the dimension of length, a better-conditioned system matrix can often
be achieved, as is exemplified in [20].

Extremely short beam elements can also cause numerical problems. Since the
fibres are independently positioned when the network is generated, it is possible for
the distance between two bond sites on a fibre to be arbitrarily short. Since beam
length is raised to the power three in the denominator of the beam stiffness matrix,
these coefficients become extremely large and may cause numerical problems. In
studies where the bonds are assumed to be rigid, e.g. [3, 22], this problem has
been overcome by merging two closely neighboring bonds into one. The use of
this method is, however, not straightforward when the bond is represented by a
compliant element. Instead, the beam is slightly modified by moving one of its
nodes a short distance. This is also physically reasonable, since the centres of two
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fibres cannot be closer to each other than one fibre width. In most of the 3D
simulations a bond was moved a distance equal to 1/5000 of the mean fibre length
if a beam element was shorter than 1/5000 of the mean fibre length. In the 2D
simulations beams which were shorter than 1/100 of the mean fibre segment length
were modified by moving one end a distance equal to 1/10 of the mean fibre segment
length. This causes a slight distortion of this fibre, as well as of the fibre connected
at the displaced node. The short fibre segments occur relatively often in pairs or
triplets, in the form of triangles, in which case the local distortion of the network
becomes somewhat greater. This is, however, not believed to have an appreciable
effect on the final solution since the distortion is very local and occurs quite rarely,
and in 3D networks very rarely.

10.2. Speed of simulations

The software used for the 2D simulations consisted of a Fortran code for the gen-
eration of the network geometry and Matlab/Calfem, [37, 9], routines for the FEM
analysis. For the 3D simulations Matlab was used for both network generation and
FEM analysis. Matlab was chosen because of its flexibility and because code can
be generated and debugged quickly. Matlab is, however, not known for high-speed
performance, and some weak points had to be dealt with.

One time-consuming part of the program is the detection of bond sites in three
dimensions. The complexity of the problem increases as the square of the number
of fibres, making it very important that what must be done very many times does
not take too long a time. Matlab Compiler [38], was used to produce C code for this
subroutine. Matlab Compiler is most efficient for code using real scalars and many
loops. The code for the detection of connections does not contain many loops, but
does contain many trigonometric functions which leads to time-consuming call-backs
to Matlab from the C code. However, the compiled code performs better than the
original one, and contributes to making the detection of bonds feasible.

Another problem is the assembling of element stiffness matrices into the sparse
global stiffness matrix. Here, the problems are not caused by the inherent properties
of the assembling process itself, but rather by Matlab’s inefficient way of expanding
sparse matrices when assembling is performed in a straightforward manner. This
problem was overcome by using an improved assembling method which creates vec-
tors containing all the information on the positions and values of the elements of
the stiffness matrix. The contributions from all the elements are then entered into
the stiffness matrix in one single operation, which is much faster than entering them
one by one but, on the other hand, requires more memory.

The solution of the sparse system of equations is also time-consuming for large
systems. Instead of using the standard Matlab sparse solver, a direct solver provided
by SGI, which was optimized for the hardware used, was utilized.



11. Concluding remarks

11.1. Summary and conclusions

A network mechanics model for describing dry-shaped materials made of cellulose
fibres has been proposed. 2D and 3D versions of the model have been implemented,
and various parameter studies have been performed.

The network is composed of fibres, which are modelled as beams of constant cur-
vature made of linear elastic material. Length, cross-sectional properties, curvature,
elastic modulus and strength parameters for the fibres constituting the network are
given in terms of arbitrary statistical distributions.

Where fibres cross there may be a fibre-fibre interaction. The inter-fibre bonds
are modelled by an assembly of springs. Stiffness and strength properties of the
bonds are given in terms of arbitrary statistical distributions, and the probability
of a bond at a fibre crossing point is another input parameter. The bonds can
be assigned linear or non-linear behaviour. The non-linear model corresponds to
stick-slip performance in the bond.

The fibres are positioned at random in the cell, and oriented according to a
statistical distribution. The network density is assigned a deterministic value for a
cell of specified size and governs the number of fibres. The geometry is periodic,
i.e., the cell under consideration is regarded as one of many identical cells making
up a global structure of infinite size. Loading is applied by a set of cyclic boundary
conditions such that each point on the boundary of a cell is in equilibrium with
the corresponding point of the neighbouring cell. At the same time, geometric
compatibility is achieved at each boundary point. In addition to this method of
loading, the more conventional method where straight boundaries are assumed to
remain straight was also implemented.

The geometric output parameters considered were the number of fibre crossings
and the ratio that quantifies the mechanically active part of the network. It was
verified that the number of crossings obtained from simulations agreed with the
number predicted by a theoretical formula from the literature, except for the case of
curled fibres where the formula fails, and a new one was given for the special case of
arc-shaped curled fibres. For densities above the percolation point, the mechanically
active part was found to be well-approximated by the part of the network that is
not free fibre ends. This quantity is easily calculated using well-known equations.

A general concept for subjecting a cell with periodic geometry to a load and,
through the use of a least-squares method obtaining the homogenized elastic pa-
rameters for an elastic material structure has been developed. The method is in-
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dependent of the kind of heterogeneous material inside the cell, as long as it is of
periodic structure, and was used to obtain the isotropic stiffness parameters E and
ν, as well as the corresponding transversely isotropic or orthotropic parameters for
two- and three-dimensional elasticity.

Several simulations were performed in order to obtain the global elastic stiffness
properties of a network. 2D and 3D example networks with representative properties
were used, and the input parameters varied in order to elucidate their influence on
global elastic stiffness.

Simulations show that the use of cyclic boundary conditions allows the simu-
lation of smaller cells than does the use of conventional boundary conditions. For
the case of constant fibre length, a cell length of 1.2 times the fibre length seems
to be adequate to avoid a false, simulation-induced, size dependence of the initial
stiffness. The conventional conditions with straight boundaries seem to give too
high a network stiffness, even when the length of the cell is several times the length
of a fibre.

The influence of the individual stiffness components on the global initial stiffness
has been examined. It was found that the transversal spring stiffness was of greater
importance than the rotational spring stiffness of the bonds in a 2D network and that
the axial stiffness of straight fibres is more important than the bending stiffness. For
3D networks, the transversal spring stiffness had a stronger influence on the stiffness
than the normal spring stiffness.

Simulations show that curled fibres give a less stiff network. For higher network
densities this is, in the first place, due to the fibres not extending along a straight
path with the bonds along a straight line. For lower network densities the smaller
axial stiffness of curled beam segments is also of importance.

If there is a preferred orientation for the fibres, the network becomes stiffer in
this direction. Simulations of networks of a constant number of fibres, ranging from
an isotropic cube to a thin, transversely isotropic, almost planar network show that
the in-plane stiffness increases as the network becomes more planar, but also that
the out-of-plane stiffness increases, indicating that the effect of shorter free fibre
segments is more important than that of fewer fibres being oriented in the out-of-
plane direction.

With constant network density, long fibres give a stiffer network than short ones,
and for a statistical distribution in length the weighted mean fibre length seems to
be a more relevant parameter than the arithmetic mean fibre length.

A study of the influence of network density and the number of fibre-to-fibre
interaction points on the homogenized stiffness properties shows that the elastic
modulus rises rapidly with density, but Poisson’s ratio is less affected.

Fracture criteria have been introduced and the non-linear fracture process of
networks analysed. The fracture process has been quantified in terms of global
stress versus strain performance, maximum stress, fracture energy, intrinsic length
and localization of fracture.

Some results regarding sample size dependence of fracture properties have been
given and a comparison made with Weibull theory. It could be concluded that the
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result of a fracture simulation is always size-dependent, and that Weibull theory is
not applicable due to assumptions concerning heterogeneity and material properties
not being fulfilled.

The characteristics of fibre and bond failure have been investigated by simulating
a 2D network. The failure of a fibre segment has a greater influence on the fracture
process than the failure of a bond, since when bond failures are considered the fibres
must be pulled out of the network. For dry-shaped materials containing no adhesive,
bond failure is dominant.

In the case of bond failure, simulations have shown that increased strength of the
bonds result in a stronger and more ductile network. For 2D networks ductile bonds
gave a much stronger and more ductile network. For 3D networks the influence
of bond ductility was, however, negligible since the bond was assumed to fail in a
non-brittle manner only for compressive normal stress, and most of the bonds fail
in tension when the network is subjected to uniaxial tension.

As for network density, a higher density gives a stronger but more brittle network
for both 2D and 3D networks. Long fibres resulted in a stronger network for which
the maximum stress was reached at a lower strain than for short fibres.

2D and 3D networks showed many qualitative similarities, but also some differ-
ences, the main one being that ductile bonds had a much greater influence on 2D
networks. Some differences were probably caused by the fact that the simulated 2D
networks generally had shorter free fibre segment lengths than the 3D networks.

For 3D networks it was possible to make a quantitative comparison with exper-
imental results. When the fibre length distribution was adjusted to approximately
account for a shorter effective fibre length due to kinks in the fibre, reasonable agree-
ment was found between the simulated and experimental stress-strain relationships
up to maximum stress. The post-peak parts of the curves require further analysis
before a relevant comparison can be made, since the experiments were performed on
a specimen that was much larger than the simulated cell. This means that the size
effects due to strain localization and heterogeneity in the material must be taken
into account.

11.2. Future developments

Possible future work on network mechanics models for cellulose fibre materials should
include both further simulations within the present model and the development of
new or completed models. Further simulations with the present model would involve
the many variations of input data which have not yet been studied, and further sim-
ulations for the verification of the model and comparisons with experimental results.
One parameter which could be given more attention is the degree of heterogeneity,
and its influence on the mechanical properties of a network.

As for further development of the model, there are several possibilities. One of
them is a new strategy for the generation of the network geometry. In the present
model the fibres are positioned independently of each other. A more representative
geometry would probably be obtained if the manufacturing process of fibres falling
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and making contact with other fibres could be modelled. An alternative method
might be to take the network geometry directly from experimental observations, if
available. An, as yet, unexplored area is the effect of initial stresses in the network,
originating from the manufacturing process. Initial stresses may very well be an
important factor for the fibre-to-fibre interaction. Initial stresses might be obtained
from more realistic geometry generation, or could be approximated by some modifi-
cation of the bond model. The modelling of the fibres can be improved by considering
kinks, which affect the fibre geometry and have low or zero bending stiffness. The
results obtained with the present model suggest that defect zones in the fibre, which
make a fibre act like separate fibres may be important for the mechanical behaviour
of a network. The model could also be refined by including large-displacement the-
ory and time-dependent effects, but it is believed that the modifications mentioned
above would be of greater practical interest in the modelling of fluff.



A. Generation of fibres

The position, geometry and orientation of a fibre are given by the input variables
m, lf , c, α, β and γ, see Section 4.2. These variables are also defined in Table A.1.

Table A.1: Input variables defining fibre position, geometry and orientation.

m Coordinates for the mid-point of the fibre.
lf Length of the fibre.
c Curl index of the fibre.
α The unit vector directed as the line between

the end points of the fibre is denoted d.
α is the angle between the projection of d onto
the xy-plane and the x-axis.

β β is the angle between d and the xy-plane.
γ s is a unit vector that is perpendicular to

d, and whose projection onto the xy-plane
is parallel to the x-axis. γ is the angle between
s and the normal from d towards the fibre.

From the input variables, the variables suitable for computational purposes, c,
r, θa, θb, u and v, see Section 4.2 and Figure 4.4, are calculated as is illustrated in
the flow chart in Figure A.1. The numbers in circles in the figure refer to the steps
which are explained below.

1. The unit vector directed as the line between the end points of the fibre is
denoted d, see Figure A.2a. d is chosen so that its z-component ≥ 0. The angle
between d and the xy-plane is β and the angle between the projection of d on the
xy-plane and the x-axis is α. This gives:

d = (cosβ cosα, cos β sinα, sinβ)(cos2β cos2α+ cos2β sin2α+ sin2β)−
1
2 (A.1)

2. The vector s is used as a reference axis for the angle γ, which defines the
position of a curved fibre around its own axis, see Figure A.2a. s is chosen to be
the unit vector that is perpendicular to d and whose projection onto the xy-plane is
parallel to and directed along the x-axis. We use the fact that the scalar product of
two perpendicular vectors is equal to zero, (A.2), and that the projection of s onto
the xy-plane, (A.3), must have a component in the y-direction that is equal to zero.
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Figure A.1: Flow chart showing the calculation of fibre parameters.

That is:
d · s = 0 , (A.2)

s− s · (0, 0, 1)(0, 0, 1) must be of the form (a, 0, 0), a arbitrary . (A.3)

This yields

s = (dz, 0,−dx)
1√

d2
x + d2

z

, (A.4)

where dx and dz denote the first and third components of d. For the special case
of d in the xy-plane s is chosen to be the unit vector in the xy-plane which is
perpendicular to d and has a positive x-component.

s = (dy,−dx, 0), if sx < 0 then s = (−dy, dx, 0) . (A.5)

s0 is the vector that makes (d, s, s0) an ortho-normal base. The definition of
the vector product yields

s0 = d× s . (A.6)

3. t is the unit vector that is perpendicular to d and points from the line
between the fibre end points to the fibre. The position of the fibre, and thus the
direction of t, is given by the angle γ, see Figure A.2a.

t = cos γs+ sin γs0 (A.7)
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4. n is the unit normal vector to the plane of the fibre, which has z-component
nz > 0, see Figure A.2b. Since both d and t are in the plane of the fibre, the vector
product is used to obtain n which is perpendicular to both of them.

n = d× t, if nz < 0 then n = −n . (A.8)

5. u and v are perpendicular unit vectors in the plane of the fibre, see Figure
A.3. u is chosen so that its projection onto the xy-plane is parallel to the x-axis. In
analogy with step 2 we have

n · u = 0 , (A.9)

u− u · (0, 0, 1)(0, 0, 1) must be of the form (a, 0, 0), a arbitrary . (A.10)

This yields

u = (nz, 0,−nx)
1√

n2
x + n2

z

, (A.11)
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where nx and nz denote the first and third components of n. For the special case
of n in the xy-plane u is chosen to be

u = (n2,−n1, 0), if ux < 0 then u = (−n2, n1, 0) . (A.12)

v is the vector that makes (n,u,v) an on-base. The definition of the vector product
yields

v = n× u . (A.13)

6. The curvature of the fibre is obtained from (3.5) by means of tabulated
corresponding values of c and κ. The radius of curvature of the fibre is denoted r,
and is simply obtained by inversion of the curvature, κ.

r =
1

κ
(A.14)

7. c is the centre point of the circle of which the fibre is a part. From Figure
A.3 we can see that

c = m− tr . (A.15)

8. θa and θb are the angles relative to u at the beginning and end of the fibre,
see Figure A.3. The fibre is defined by a counter-clockwise rotation from θa to θb.
The total sector angle of the fibre is

αtot =
lf
r
. (A.16)

From the definition of scalar product we can calculate δ, which denotes the angle
from u to the radius from c to m,

δ = arccos(t · u) . (A.17)

This finally gives

θa = δ −
αtot
2

, (A.18)

θb = δ +
αtot
2

. (A.19)

An arbitrary point on the fibre can now be denoted x and obtained from

x = c+ r cos θ · u+ r sin θ · v, θa ≤ θ ≤ θb . (A.20)



B. Analysis of connectedness of

networks

The first thing that must be established is what is meant by a connected network.
When studying a global network, made up of many cells, a network is considered
to be connected if it is of such geometry that it can sustain a load in an arbitrary
direction. For the individual cell this implies that there must be a locally con-
nected structure within the cell, which is connected with itself across the left-right,
back-front and up-down boundaries. Figure B.1 shows some schematic examples of
connected and unconnected 2D networks. Note in particular example three, which
represents a cell structure which is not connected with itself although it is locally
connected and linked to all cell boundaries.

The criterion described above is a sufficient condition for connectedness of a
network, but it is not necessary. This can be seen in Figure B.2, which shows a
network that is connected, but still does not satisfy the criterion stated above. The
implementation applies the criterion above, and should a network of the type shown
in Figure B.2 occur, it is thus falsely classified as not connected.

Graph theory, cf. [8], is used to determine whether a network satisfies the criterion
described above or not. The network is viewed as a graph, with beam elements as
edges which connect nodes (inter-fibre bonds or points on the boundary). A graph
can be described by an incidence matrix, in which a 1 in position (i, j) means
‘connection between nodes i and j’, that is ‘a beam element between bonds i and
j’, and a 0 denotes no connection. The first step is to sort the graph into connected
graphs. A connected graph is a graph in which there is a path between every pair of
nodes. This is done as follows: Choose an arbitrary node. Incorporate into this node
all nodes that have paths to it. Choose a new starting node, which has not previously
been classified as a member of a connected graph, and incorporate all nodes that
have paths to it. Repeat this until every node is part of a connected graph. In the
implementation this is done by means of manipulations in the incidence matrix.

We now have a number of connected graphs. The next step is to go through
these and check if any of them satisfies the conditions stated above. If there is a
bond at every fibre crossing there can only be one connected graph that satisfies
the conditions in 2D networks. In a 3D network, as well as in a 2D network where
there is not a bond at every crossing there is a theoretical possibility that there
may be two or more independent connected structures. This possibility is not taken
into account in the implementation. If a connected graph is found, which is also
connected with itself across the borders, it must be completed with possible parts
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9 cells

Connected

Not connected

Not connected

Not connected

1 cell

Figure B.1: Examples of connected and unconnected 2D networks.

that it is connected to across borders, but not inside the cell. The rest of the
connected graphs, if any, are ‘islands’, i.e. clusters of fibres with no contact with
the rest of the global network. Those are removed and thus disregarded in the
mechanical analysis.

Clusters of fibres that are attached to the rest of the network by only one fibre
are detected as follows. For every beam element: Remove the beam element and go
through the procedure described above. If there are now two connected graphs, the
one that does not satisfy the conditions in the beginning is a ‘peninsula’.
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Figure B.2: A connected network which is difficult to detect.
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C. Effective bending stiffness of a

spiral beam

Assume a spiral beam with moments of inertia Ix′ and Iy′ around its principal axes,
which completes one revolution in a distance l. We want to know the moments of
inertia of the non-spiral beam which yield the same angle change ∆φx = u′(l)−u′(0)
when subjected to moment mx, as in Figure C.1.
The bending stiffness of a spiral beam varies along the z-axis. Therefore, we start
by computing the change in φx per unit length as a function of z for a spiral beam
segment of length l subjected to moment mx. We begin by considering the change

m

α
x’

x

y y’

z

y

x

mx

l

x

Figure C.1: Spiral beam segment and cross section.

in angle per unit length around the principal axes of the beam cross section, x′, y′,
which are rotated an angle α relative to the nominal x- and y-axes.

dφx′

dz
=
mx cosα

EIx′

dφy′

dz
=
mx sinα

EIy′
(C.1)

From this we can calculate the change in angle per unit length around the x-axis.

dφx
dz

=
mx

E
(
cos2 α

Ix′
+

sin2 α

Iy′
) (C.2)

To obtain the total change in angle we integrate over the revolution length, l.
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∆φx =
∫ l

0

dφx
dz

dz =
mx

E

∫ l

0
(
cos2 α

Ix′
+

sin2 α

Iy′
)dz (C.3)

Since
α =

z

l
2π (C.4)

and

dz =
l

2π
dα , (C.5)

(C.3) gives

∆φx =
mxl

2πE

∫ 2π

0
(
cos2 α

Ix′
+

sin2 α

Iy′
)dα =

mxl

2πE
(
π

Ix′
+

π

Iy′
) =

mxl

2E
(

1

Ix′
+

1

Iy′
) . (C.6)

For a non-spiral cross section with moment of inertia Ie around the x-axis, the
change in angle along the length l when subjected to the moment mx is:

∆φx =
mxl

EIe
(C.7)

By setting ∆φx for spiral and non-spiral beams equal, and solving for Ie we obtain

Ie =
mxl

E
mxl

2E
(

1

Ix′
+

1

Iy′
)

=
2Ix′Iy′

Ix′ + Iy′
. (C.8)

For a rectangular cross section of width b and depth h this yields

Ie =
2
bh3

12

b3h

12
bh3

12
+
b3h

12

=
b3h3

6(b2 + h2)
. (C.9)



D. Transformation of the D matrix

The transformation of the constitutive matrix D when the coordinate system is
rotated is derived using the transformation relations of second order tensors. We
have two coordinate systems x= (x1, x2, x3) and x0= (x′1, x

′
2, x
′
3). When x is rotated

into x0 a second-order tensor Tpq is transformed as, [35]:

T ′ij = api a
q
jTpq (D.1)

where ark = cos(x′k;xr). The inverse relation is

Tpq = api a
q
jT
′
ij . (D.2)

The nine components of ark for the cases of rotation α1 about the x1-axis, α2 about
the x2-axis and α3 about the x3-axis, can be identified from Figure D.1 to have the
values given in Table D.1.

x  ,  x’
x

x’1

1

1

1

1 x  ,  x’
1

2

2

3

x

x’

x

3

2

3

x’3 x’

3x  ,  x’3

1

x

2 2

2

2

2x’
3

3

1α

x α

α

x

x’

α

α

α

Figure D.1: Rotations about the x1-, x2- and x3-axes.

From (D.1) and Table D.1 the transformation relation for tensorial strain for
rotation about the x1-axis can be calculated. Denoting sinα1 by s and cosα1 by c
this yields in matrix form:
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Table D.1: Components of ark for rotations about the x1-, x2- and x3-axes.

ar
k

α1 α2 α3

a1
1 1 cosα2 cosα3

a1
2 0 0 − sinα3

a1
3 0 sinα2 0

a2
1 0 0 sinα3

a2
2 cosα1 1 cosα3

a2
3 − sinα1 0 0

a3
1 0 − sinα2 0

a3
2 sinα1 0 0

a3
3 cosα1 cosα2 1



ε′11

ε′22

ε′33

ε′12

ε′13

ε′23

ε′21

ε′31

ε′32


=



1 0 0 0 0 0 0 0 0
0 c2 s2 0 0 sc 0 0 sc
0 s2 c2 0 0 −sc 0 0 −sc
0 0 0 c s 0 0 0 0
0 0 0 −s c 0 0 0 0
0 −sc sc 0 0 c2 0 0 −s2

0 0 0 0 0 0 c s 0
0 0 0 0 0 0 −s c 0
0 −sc sc 0 0 −s2 0 0 c2





ε11

ε22

ε33

ε12

ε13

ε23

ε21

ε31

ε32


(D.3)

The corresponding relation for the engineering strain, ε, can be obtained by use of
the symmetry of ε and the fact that γxy = ε12+ε21, γxz = ε13+ε31 and γyz = ε23+ε32.

ε′x
ε′y
ε′z
γ′xy
γ′xz
γ′yz


=



1 0 0 0 0 0
0 c2 s2 0 0 sc
0 s2 c2 0 0 −sc
0 0 0 c s 0
0 0 0 −s c 0
0 −2sc 2sc 0 0 c2 − s2





εx
εy
εz
γxy
γxz
γyz


(D.4)

The transformation relation for tensorial stress is equivalent to (D.3), and the
corresponding relation for the engineering stress σ is obtained by use of the sym-
metry of σ:
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σ′x
σ′y
σ′z
σ′xy
σ′xz
σ′yz


=



1 0 0 0 0 0
0 c2 s2 0 0 2sc
0 s2 c2 0 0 −2sc
0 0 0 c s 0
0 0 0 −s c 0
0 −sc sc 0 0 c2 − s2





σx
σy
σz
σxy
σxz
σyz


(D.5)

(D.4) is written in the form:
ε0 = T (α1)ε (D.6)

The inverse relation is
ε = T (−α1)ε0 . (D.7)

From (D.4) and (D.5) it can be seen that the corresponding relations for σ are

σ0 = T T (−α1)σ (D.8)

and
σ = T T (α1)σ0 . (D.9)

Using (D.8), (6.1) and (D.7) gives:

σ0 = T T (−α1)σ = T T (−α1)Dε = T T (−α1)DT (−α1)ε0 = D0ε0 . (D.10)

That is,
D0 = T T (−α1)DT (−α1) , (D.11)

or with the notation of Section 6.6,

D0 = T 1(αx)DT
T
1 (αx) (D.12)

with

T1(αx) =



1 0 0 0 0 0
0 c2 s2 0 0 2sc
0 s2 c2 0 0 −2sc
0 0 0 c s 0
0 0 0 −s c 0
0 −sc sc 0 0 c2 − s2


. (D.13)

The transformation matrices T2 and T3 for rotation about the x2- and x3-axes are
obtained analogously from (D.1) and Table D.1.

T2(αy) =



c2 0 s2 0 −2sc 0
0 1 0 0 0 0
s2 0 c2 0 2sc 0
0 0 0 c 0 −s
sc 0 −sc 0 c2 − s2 0
0 0 0 s 0 c


(D.14)
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and

T3(αz) =



c2 s2 0 2sc 0 0
s2 c2 0 −2sc 0 0
0 0 1 0 0 0
−sc sc 0 c2 − s2 0 0

0 0 0 0 c s
0 0 0 0 −s c


, (D.15)

s and c now denoting the sine and cosine of αy and αz.
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[3] Åström, J.A. and Niskanen, K.J. Symmetry-Breaking Fracture in Random Fibre
Networks. Europhys. Lett., 21(5), pp. 557-562, 1993.
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