UNIVERSITY

TECHNIQUES FOR DISTRIBUTED
ACCESS AND VISUALISATION IN
COMPUTATIONAL MECHANICS

JONAS LINDEMANN

Structural
Mechanics

Doctoral Thesis







Structural Mechanics

ISRN LUTVDG/TVSM--03/1016--SE (1-175)
ISBN 91-628-5811-4 ISSN 0281-6679

TECHNIQUES FOR DISTRIBUTED
ACCESS AND VISUALISATION IN
COMPUTATIONAL MECHANICS

Doctoral Thesis by
JONAS LINDEMANN

Copyright © Jonas Lindemann, 2003.
Printed by KFS i Lund AB, Lund, Sweden, September 2003.

For information, address:
Division of Structural Mechanics, LTH, Lund University, Box 118, SE-221 00 Lund, Sweden.
Homepage: http://www.byggmek.Ith.se






Preface

The work presented in this PhD thesis was carried out at the Division of Structural
Mechanics, Lund University.

I would like to express my gratitude to my supervisors, Professor Ola Dahlblom and
Professor Goran Sandberg for their support and for the discussions we have had regarding
the topics in this work. I would also like to thank Karl-Gunnar Olsson for contributing
with the fundamental ideas and discussions of the design and educational aspects of using
finite element software in an educational setting, and Mr Bo Zadig for helping me put it
all together.

There are of course many other people, colleagues of mine at Structural Mechanics
included, who in some way have contributed to the work.

Finally, I am grateful for the opportunity of using the computer resources available
through Lunarc, the center for scientific and technical computing, at Lund University

Lund, September 18, 2003

Jonas Lindemann






Contents

I Introduction and overview
1 Introduction

2 Overview
2.1 Different levels of interfaces . . . . . . . .. ... ... ... ...
2.2 Distributed technologies and middleware . . . . . . . .. .. ... ...
2.3 Visualisation . . . . . ... ..
2.4 Graphical user interfaces . . . . . . .. ... oL oL oL
24.1 ForcePAD . . . . . .
2.4.2 ObjectiveFrame . . . . . . . . ... L oo

2.5 Visualisation framework . . . . . . . . . . .. ... ...

3 Concluding remarks
3.1 Transparent access to finite element software . . . . . ... ... ...
3.2 Visualisation of complex phenomena . . . . . . ... ... .. .....

3.3 Usability and educational aspects of finite element software . . . . . .

IT Appended Papers

Paper I — An Approach For Distribution Of Resources In Structural
Analysis Software

Paper II — Using CORBA Middleware in Finite Element Software

Paper III — Software for Numerical Simulation of Drying Induced De-
formation of Wooden Products

iii

co o ot W

10
11
13
15

17
18
18
19

23

25

43

85



CONTENTS CONTENTS

Paper IV — Real-time Visualisation of Fibre Networks 93

Paper V — An Approach to Teaching Architectural and Engineering
Students Utilizing Computational Mechanics Software ForcePAD 105

Paper VI — ObjectiveFrame - An Educational Tool for understanding

the Behaviour of Structures 117
IIT Appendix 127
Paper A.1 — Initial Usability Study of ObjectiveFrame A-1

Paper A.2 — Interactive Visualisation Framework — Ivf++ A-23



Part |

Introduction and overview






Chapter 1

Introduction

Computational mechanics software is widely used in many disciplines today. For the most
part, it is used by people with a good understanding of the methods involved. The way in
which finite element applications has been used have not changed much since they were
first conceived. The normal workflow is shown in Figure 1.1. A pre-processor is used to
define the geometry, loads and boundary conditions. The pre-processor then generates
a mesh, which in turn is used for generating an input file for the finite element solver.
The solver writes the results to an output file, which is read into a post-processor for

Input file [\ 1 Output [\
Preprocessor FE Solver file Postprocessor

Figure 1.1: Normal workflow of a finite element application

visualisation. The design of these applications imposes certain restrictions on the use of
computational mechanics software, concerning both its usability and its integration with
other software.

The work presented here aims at extending the context of computational mechanics
software into such areas as computer science, scientific visualisation and human-computer
interaction. Papers I, IT and III deal with methods for accessing finite element software
by use of distributed technologies. Paper IV presents a method of visualising computa-
tional results in real-time. Papers V and VI examine the usability of the graphical user
interface, particularly in an educational setting.
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Chapter 2

Overview

2.1 Different levels of interfaces

Finite element software often has many user and developer interfaces. To make it easier to
understand how users and developers can interact with finite element software, interfaces
of four different levels are defined, see Figure 2.1

Level 3

Pre and post processor software Level 2
Middleware, Scripting and command line tools Level 1
Level O

Figure 2.1: The different levels of interfaces to finite element software

Each level also has two interface categories, the user interface and the developer in-
terface. The finite element software with its various software components, is at level 0.
The user interface to the finite element software being defined here by input and output
files. The developer interface (if one exists) is defined by header files to library routines
for input and output.

At level 1, the user interface to the software is made less complex and easy to use by
the provided scripting and command-line tools. The user is given greater control and can
use the software in a more flexible way. The developer interface at this level can also use
scripting and command-line tools. Direct access to the software is provided by middleware
software enabling a higher-level interface and a component-based architecture. Special
types of middleware can also provide distributed access to the finite element software.

At level 2, the user and developer interfaces are defined by pre- and post-processor
software, which makes the generation of input data and the analysis of the output data
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more effective. The pre-processor generates the input data for the finite element software,
often using simple geometric shapes to define the object being modeled. This frees the user
from the task of specifying each element in the finite element mesh. The post-processor
software analyses the output of the finite element software and presents the results in
terms of 2D and 3D plots.

At level 3, the user interface is defined as a dedicated application which solves a specific
problem, the details of the finite element software being hidden from users.

Applications written at a specific level often use interfaces located at several levels.
A dedicated application at level 3 can be implemented to use finite element software
directly at level 0 or can access the finite element software by use of middleware or pre-
and post-processing software at level 1 and 2.

2.2 Distributed technologies and middleware

Classical distributed technologies are often based on a client/server architecture that
allows clients to communicate with servers directly. This approach works well when
protocols are well-proven and well-established, but is often difficult to implement if the
systems become more complex. When changes and features are added on the server
side, the client often needs to be updated. To solve this, an additional layer called a
middle-tier (level 1 in Figure2.2) is placed between the client and the server. CORBA [1],
DCOM [2], Java RMI [3], PHP [4] and .NET [5] for example, are technologies that have
been developed to create this middle layer. The main idea is that a set of interfaces is
defined in the middleware software describing the services provided. Clients developed
against these interfaces communicate with the middleware software instead of the real
server system. This allows the server side to be updated and reconfigured without any
of the clients being affected by this. Once an interface has been defined, it can not be
changed. Functions can be added by new interfaces being added to the middle layer.
There are also other benefits of using middleware technologies. Some technologies such
as CORBA, DCOM and .NET are language-neutral. Interfaces are often defined by use
of a special language. From the definition determined in this way, client and server code
can be generated for any language that is supported.

Level 3

Pre and post processor software Level 2

Middleware, Scripting and command line tools Level 1

Finite element software

Level 0

Figure 2.2: Interface levels of distributed technologies and applications

Finite element software today still uses text files to a large extent for communication
with pre- and post-processors. Most finite element software uses a special proprietary-
standard file format. Pre- and post-processor developers often need to support a variety of
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different finite element codes. This requires the development of a large number of export
filters. However, these need to be updated whenever updating of the input and output
file format occurs. Use of text files for communication has other drawbacks as well, such
as ineffective storage schemes. Standardisation efforts often fail because it is too slow to
support many of the features introduced in new versions of finite element softwares. A
solution to this is to use a middle layer between the pre-processor and the finite element
code, just as implemented in modern client /server applications. The middle layer consists
then of a set of general interfaces describing the input and output of the finite element
software. In a perfect world, developers providing finite element software would create a
set of general interfaces for defining such matters as the geometry and properties of the
elements and the results output. Each developer could then add specialised interfaces
for specific feature of their own software. This would make it easier for pre- and post-
processor developers to support a wide range of finite element software. Interfaces to
different packages can be generated in any language automatically from the definitions
the finite element developers provide.

One advantage of using middleware technology is location transparency. This means
that a client using a specific interface does not need to know whether the resources in
question are situated locally or remotely. This in turn allows the computational resources
to be used and configured in a variety of ways without users having to configure their
client applications in any special way.

The new trend which is emerging in distributed computing today is that of GRID
computing. GRID computing connects computational resources such as clusters with
each other to form a "Meta cluster”. Both clusters and grid resources are oriented to
command-line interactions. Although users need to be familiar with a wide variety of
tools and commands in order to use the resources available effectively, this has not been
a problem up to now because most current users of clusters and GRIDs are familiar with
these tools. To gain acceptance for these technologies by a wider user group, however,
the interface to these resources needs to be improved. Middleware technologies such as
CORBA [1], PHP [4], .NET [5] and Java RMI [3] can be the key to providing improved
interfaces to such resources. Figure 2.3 shows an example of a Java-based engineering tool
able to take advantage of distributed resources by executing finite element calculations
remotely. Figure 2.4 shows an effort under way at Lunarc ! to create a more user-friendly
interface to cluster and GRID resources there by providing much of the functionality of
the cluster in a web-based form.

Paper I describes a three-tier finite element application using Microsoft’s Distributed
Component Object Model (DCOM). Paper II provides a more in-depth look at the use
of middleware technologies in computational science and in finite element software. The
performance of CORBA for the transfer of large amounts of data is studied as well. The
paper also includes a complete description of a CORBA-based finite element implemen-
tation. Paper III describes a new finite element application with a plug-in interface for
finite element solvers. Plug-ins will be made available for both local and remote execution
by use of CORBA or other distributed technologies.

ILunarc is the centre for scientific and technical computing at Lund University
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Figure 2.4: Web-based interface to cluster and GRID resources

2.3 Visualisation

In many situations, normal post-processors cannot be used for visualising results. Susanne
Heyden [6] has developed a software for simulating deformation in three-dimensional fi-
bre structures. The code involved produces result files which cannot be readily used in
conjunction with commercially available post-processors. The complexity of the model,
evident in Figure 2.6, requires special methods for efficient visualisation. The methods
are implemented in the C++ OpenGL [7] application FibreScope. During development
of the FibreScope application, different methods for visualising fibre structure were in-
vestigated. In the one method, a circular cross-section is swept along the fibre spine,
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creating an extruded fibre shape, see the image at the left in Figure 2.5. Although this
method provides a good representation of the fibre geometry, a large number of triangles
are generated. A second method, in which the geometry of the fibre is reduced to a single
band consisting of two triangles per fibre segment, was developed for visualising larger
fibre networks. A texture is also applied to the band for representing the fibre structure.
Visibility issues are dealt with by turning the band toward the user at each vertex point
on the fibre. The result is a visualisation with significantly fewer triangles. An example
of this method is shown in the image at the right in Figure 2.5.

Figure 2.5: Fibre visualisation using the extrusion based method (left) and the band
method (right).

The FibreScope application was also used in a recent project [8] to help evaluate
methods for generating random fibre networks of differing properties. With use of the ap-
plication large networks could be rotated and viewed on the screen in real-time, revealing
quickly whether the generation algorithms were working. The generation algorithms will
probably be integrated into the FibreScope application, allowing the latter to be used as
a pre-processor as well. Figure 2.6 shows FibreScope’s main user interface.

FibreScope is implemented in C++ using the FLTK [12] library for the 2D user inter-
face parts and the Interactive Visualisation Framework Ivf++ [13] for the visualisation
parts. Ivf4++ is a C++ Scene graph library using OpenGL for rendering. Through use of
FLTK and Ivf++, FibreScope can be utilised on any platform, such as Linux, SGI/IRIX
or Microsoft Windows, having an OpenGL implementation.

Paper IV describes the various visualisation methods used in FibreScope, comparing
them in terms of performance.
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Figure 2.6: The FibreScope application

2.4 Graphical user interfaces

Finite element software can be used in a wide variety of areas, due to its generality.
One problem, however, is that finite element software packages often require a thorough
understanding of the inner workings of the software (level 2). To allow the benefits of
finite element software to be taken advantage of adequately, the user interface should be
implemented on a higher level, such at level 3 in Figure 2.1. The interface should also be
designed with the target-user group in mind.

Level 3

Pre and post processor software Level 2

Middleware, Scripting and command line tools

Finite element software

Figure 2.7: Interface levels for graphical user interfaces

Teaching mechanics to engineering and design students involves providing students
with the ability to go on from investigating and understanding properties involved to be-
coming actively engaged in designing, articulation and expression, going from inner qual-
ities to outer contours. Tools particularly useful in this process are ones involving simple
sketching and enabling rapid responses to be made in investigating different mechanical
properties such as those of contour deformation, forces and force fields. Sections 2.4.1
and 2.4.2 describe certain tools developed for this purpose.

10
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2.4.1 ForcePAD

In design and in design education, much emphasis is placed on the concept of sketching.
A design is never accepted automatically, but is iterated over time until a satisfactory
solution is found, sketching being used extensively in this process. ForcePAD [9] was
developed as a tool both for enhancing the users understanding of mechanical concepts
and for use in the sketching process, particularly in an educational setting.

The ForcePAD application shown in Figure 2.8 employs metaphor similar to the
metaphors found in such image editing applications as Adobe Photoshop [10] and Jasc
PaintShop Pro [11]. These applications are generally very intuitive and direct, using pens,

© ForcePAd 2 EEX
rd m
% 9
I

5]

U)

i
=)

O X

Figure 2.8: The ForcePAD application

brushes and colour palettes as tools for drawing. The ForcePAD user interface is based
on the same principles. The main difference here is that painting is done not in colour
but with use of a grey scale in which white represents zero stiffness and black maximal
stiffness. Use of the painting metaphor also provides other benefits. ForcePAD is able to
import pixel-based images from files or from the Windows clipboard. Imported images
are automatically converted to grey scale images. Use of this approach makes it easy
for a design student to take a sketch, scan it and then paste it into ForcePAD, where
displacements and stresses can be analysed. Figure 2.9 shows an example of this process.
In the example, ForcePAD is used to import a scanned image, edit and then analyse a
sketch of the Pantheon in Rome. The complete analysis can be carried out in a matter
of minutes.

The ForcePAD application also supports the study of mass, centre of gravity and
equilibrium by use of a special version called ForcePAD/R. Figure 2.10 shows the results
of an assignment in which students photographed objects which they then analysed in
terms of centre of gravity and equilibrium.

11
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Figure 2.10: This brief series of pictures shows how a student coupled mechanical entities
with expression by use of the ForcePAD/R [9] software. The direction of a branch on
the right side in (a) and (b), and thus the support conditions as well, are manifested in
the positioning of the hand, which is closed (a) and open in (b). Note the changes in the
support load that occurs.

ForcePAD is implemented in C++ by use of a set of platform independent libraries.
The finite element code is implemented using the NEWMATO09 [14] matrix and solver

12
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library. The graphical user interface is implemented in the Fast Light Toolkit (FLTK) [12].
This is a user-interface library available for Linux, Mac OS X, Windows and most versions
of UNIX. The library is very efficient and produces highly responsive applications on any
platform. Another advantage of FLTK is that of the graphical user interface designer
FLUID, which comes with the library. FLUID provides almost the same level of rapid
application development as Borland Delphi [15] and Microsoft Visual Basic [16], but
its also providing platform independence. Drawing and visualisation are implemented
with the use of the OpenGL [7] graphics library. OpenGL is generally regarded as a
3D graphics toolkit, although it also has an effective 2D rasterisation interface enabling
hardware-accelerated drawing to be performed rapidly. With the use of this approach,
ForcePAD allows rapid sketching to be done and the finite element meshes to be updated
continually, enhancing the directness of the actions carried out.

Paper V describes the design and implementation of ForcePAD and also presents an
educational case study.

2.4.2 ObjectiveFrame

ObjectiveFrame, see Figure 2.11, was conceived for developing new ideas and principals
for user interaction in 3D finite element software. ObjectiveFrame [17] is a 3D frame-
analysis tool implemented by use of OpenGL. The user interface for it is designed so as to
resemble the way modeling is done in a shop, thus creating a virtual shop. To accomplish
this, interaction with the model needs to be immediate and the representation sufficiently
clear, for a user to feel immersed in the model. This is done by providing ObjectiveFrame
with a fully lit and shaded 3D model, together with direct feedback concerning interaction
with the objects in question.

% % %

Zoom Pan Reset

Figure 2.11: ObjectiveFrame
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One of the most important features of ObjectiveFrame is its ability to visualise the
response of a structure subjected to a user-controlled load in real-time. This enables
users to "feel” the degree of stiffness in different directions in a structure. An example
of this is shown in Figure 2.12. The real-time features of ObjectiveFrame have also been

% % B

Zoom Pan ' Reset

Figure 2.12: Real-time updating of a structure in ObjectiveFrame

exploited in a course in architecture 2 in which students investigate different techniques
for the construction and stiffening of high structures, experimenting with the techniques
in question and exploring the effects these have by "feeling” the mechanical properties of
the structure.

The ObjectiveFrame application is implemented in C++, using a set of platform-
independent libraries. The finite element code is implemented by the use of the NEW-
MATO09 [14] matrix and solver library. The graphical user interface is implemented in the
Fast Light Toolkit (FLTK) [12]. Rendering of 3D graphics is involves the use of the Inter-
active Visualisation Framework Ivf++ [13], a C++ scene-graph library, using OpenGL
for rendering. The ObjectiveFrame application is taken up in Paper VI.

The initial usability testing of the ideas and principals in ObjectiveFrame was done
in the different courses in which it was utilised. This has led to continued developments
of it. However, even though the usability of an application can be tested rather well in a
classroom setting, not all the answers needed can be obtained in this way. To improve the
user interface of ObjectiveFrame still more, an initial usability study was conducted early
in 2003, see Paper A.1l. This study involved analysis of the existing user interface, and a
user test of a new interface design. This new design introduced a more direct approach to
selection, creating of loads and treatment of the boundary conditions. It also introduced a
new and improved method for handling the cursor. Some of the improvements are shown
in Figure 2.13. The improvements achieved on the basis of this usability study will be
included in the next major release of ObjectiveFrame.

2A course in high structures given at the School of Architecture at Chalmers University of Technology
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Figure 2.13: New cursor and load handling in an ObjectiveFrame prototype

2.5 Visualisation framework

Hardware-accelerated 3D rendering is standard on most platforms today. The most com-
mon way of accessing 3D hardware is by means of an API (Application Programmers
Interface). A common API is OpenGL which is platform independent and available on
several hardware platforms. Programming a visualisation application in OpenGL can be a
complicated task, since OpenGL is a low-level API, most advanced functions such as view
transformation and rendering of advanced geometry need to be implemented by the devel-
oper. Performing a given task often involves using several OpenGL calls. A higher-level
library such as Open Inventor, OpenGL Optimizer or OpenGL Performer is frequently
employed to make 3D rendering by means of OpenGL easier. An object-oriented approach
is often used to implement libraries of this type in C++. Major disadvantages of such
libraries are that they are often designed for a specific task and that they tend to be large,
complex, and difficult to extend.

The Interactive Visualisation Framework, Ivf++, was developed as an object-oriented
layer to be placed on top of OpenGL. This library was also the basis for the FibreScope
and ObjectiveFrame applications. The library implements a scene-graph, as well as a
framework for basic user-interfaces and special widgets for interfacing with user interface
toolkits. Ivf++ is an open-source library available for downloading at Sourceforge [25] 3.
Some of the Ivf4++ features are the following:

- Modular library design. Only the parts needed are used.

- Built to be extended.

- Platform independent, compiling on Windows, Linux or SGI/Irix.

- A scene-graph with culling support.

- A reference counting system with smart pointers.

- Texturing supported by image loaders JPEG, PNG, TIFF, TGA or SGI rgb-files.

3D file format support for DXF, AC3d models and polyfiles.

- A user-interface library for creating simple OpenGL applications in FLTK, MFC
and native WIN32.

3Tvf++ 0.6.0 was released as an open source library under the LGPL license [18] in February 2000 .
The current version is 0.9, which since its creation has been downloaded over 12000 times (September
18, 2003)

15
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- 3D user interface controls.

- Stereo support.

- Complete class documentation.
- A User guide.

Paper A.2 describes the major ideas and guiding principles of the Ivf++ library.

16



Chapter 3

Concluding remarks

This work presented here concern ideas and methods on how the context of computational
mechanics can be improved for more efficient utilisation and extended into areas previously
not familiar with or capable of using such tools. Three main areas were studied:

e Providing efficient and transparent access to finite element applications.
e Developing methods for the visualisation of complex phenomena.

e Improving the usability of the finite element method, partly in an educational con-
text.

An appoach to providing more efficient and transparent access to finite element ap-
plications and to other computational mechanics software and libraries, based on the
CORBA specification is introduced and its usefulness explored.

Enhancing the understanding of complex phenomena is highly important. Many com-
putational codes produce large amounts of simulation data that need to be analysed and
evaluated. By creating tools that can visualise these simulations in real-time, understand-
ing of physical phenomena involved is enhanced. A special method for the visualisation
of large fibre networks, one that increases the size of the networks that can be visualised
in real-time, is also introduced.

Improving the usability of finite element software is important if it is to be employed
effectively in an educational setting. Normal computational mechanics codes are often
based on a very flexible hierarchical model, which is an obstacle for users unfamiliar with
it. Two approaches which appear more practicable in this respect are introduced here.
The one approach involves use of a new direct-image-based metaphor for creating a tool
that can be thought to ultimately be useful in facilitating creative processes in the work
of engineers, designers and architects. A second approach aims at improving interactivity
and the understanding of mechanical concepts in a 3D frame application using real-time
feedback of both the interface and the resulting deflection of the structure.

17
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3.1 Transparent access to finite element software

The design of computational mechanics software has not changed fundamentally over the
years. The basic computational code is designed as a normal console application, files or
a relational database being used for communication and storage purposes.

In computer science, many new technologies have emerged which facilitate the more
flexible use of applications. Many applications today have an embedded script language,
such as Python [19], Visual Basic for Applications (VBA) [20], Tcl/Tk [21] or Ruby [22].
These script languages enable users to readily extend and utilise applications in ways that
would otherwise have required their being recompiled. Distributed technologies such as
.NET [5], CORBA [1] and Java RMI [3] provide a middle layer for distributing resources
over the internet. The use of computational mechanics software can be made more flexible
and efficient by use of such technologies.

User interface codes are often implemented in Java, C or C++. Interfacing compu-
tational codes based on these languages often requires special interface layers, the de-
velopment of which can be time-consuming. Through use of CORBA and the interface
definition language (IDL) for describing the functionality of computational mechanics
codes, many of these problems can be solved. Using IDL, functionality of a computa-
tional code can be defined in a language neutral way allowing the code for interfacing
with IDL-specified objects and functions to be generated in any desired language auto-
matically. The original computational code can still be kept in the original implementation
language, providing stability and maintainability.

Another way of accessing a computational code is by providing an interface to a script-
language. Through using CORBA when developing computational codes, interfacing with
script-languages becomes an automatic process. Some CORBA implementations, such as
fnorb [23] and omniORB [24] support the generation of interfaces to script languages
directly from the IDL-definitions involved.

Computational mechanics codes implemented with use of a CORBA interface also take
advantage automatically of the distributed features of CORBA. Location transparency
is implicit in the CORBA specification. A client application accessing CORBA objects
or functions does not need to be implemented in any special way for calling remote
or local objects. This enables computational mechanics codes to be placed on powerful
computational resources allowing clients located either remotely or locally to access them.
Client applications involving either aweb-based client or a stand-alone client can access
the resources available, providing for efficient use of the computational resources.

The implementation and performance characteristics of using CORBA and other dis-
tributed techniques in computational mechanics software are taken up in Papers I, IT and
I11.

3.2 Visualisation of complex phenomena

The visualisation of complex phenomena in results provided by computational mechanics
codes is important for the evaluation and understanding of physical phenomena. For the

18
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analyses carried out to be efficient, and understanding of phenomena that is provided to
be adequate it is also important that the visualisation obtained can be interacted with the
in real-time. This enables results to be animated, providing for a better understanding of
time dependant effects.

Efficient real-time rendering also facilitates computational steering. The results at each
time step of a simulation being visualised allows the user to determine quickly whether or
not the simulation is errorneous, allowing the simulation to be terminated if appropriate or
the parameters to be changed in the course of the simulation, reducing the time required
for analysis.

The large amount of result data that computational software produces, can be difficult
to analyse and to evaluate if non-conventional geometries and enteties are employed. At
the same time standard post-processors are often designed for standard element types
only, having difficulties in dealing with non-standard elements. Visualising the behaviour
of the thousands of fibres included in a fibre network simulation [6] often requires advanced
3D graphics hardware. Taking advantage of techniques developed in the field of scientific
visualisation, such as billboarding, impostors and texturing, can improve performance
and reduce the hardware requirements considerably.

A special textured billboard method was developed to increase the number of fibres
that can be visualised in real-time. This method involves a line being swept along the
fibre spine, reducing the triangles to two per fibre segment. Visibility issues are solved by
orienting the band toward the user at each spine vertex. Due to the band fibre being flat,
however, the fibres do not look round unless special measures are taken. These involve
applying a special gradient texture to the band.

Paper IV describes the method implemented here and the post-processor software
FibreScope developed for this method.

3.3 Usability and educational aspects of finite element
software

Computational mechanics software is often designed to be very general, supporting sev-
eral types of elements and differing geometries. The software typically employs a hier-
archical description of the problem to be studied, see COSMOS [26], MSC/Patran [27],
ABAQUS/CAE [28]. If the user is familiar with the conceptual model involved, hierar-
chical models can be both efficient and flexible, but if the user is not, the complexity of
such models can be difficult to handle, see Shneiderman p.68 [29].

The overall usability of computational mechanics tools needs to be improved if these
are to be used effectively in a broad context, such as in an educational setting or with
divergent groups of users. The demands on usability placed on conventional computational
software in an educational setting is often greater than that placed on it in an engineering
setting. Students unfamiliar with finite element method is scarcely able to make adequate
use of an advanced finite element package.

In a problem-based learning environment, applications need to support both exper-
imentation and an iterative design process, creating a virtual workbench. The major
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methods of implementing this in computational mechanics software are to make applica-
tions more direct and to provide rich feedback. To accomplish this, the principles used in
the design of user interfaces in computational mechanics software need to be changed.

One approach suggested in the work reported here is to replace the classical hierarchi-
cal modelling approach by an image-based modelling metaphor, such as found in Adobe
Photoshop [10] for example. Image-editing applications are often very direct and easy
to use, being based on the direct-manipulation concept!, creating structures as easy as
selecting a brush and moving the pointer. The user can also see the results immediately.
The ForcePAD [9] application described in Paper V implements the suggested image-
based modeling metaphor in a 2D finite element application. Instead of drawing with
color as in an image editor, the user draws with a grey scale, white representing no stiff-
ness at all and black maximum stiffness. The user is able to quickly create and solve finite
element models without having to spend time on modeling the geometry. The ForcePAD
software has successfully been used in teaching students in engineering, architecture and
industrial design.

In 3D finite element modeling, problems of usability are even more problematic. Many
finite element pre-processors simply extend the metaphors found in mechanics textbooks
to 3D conditions. This approach has two main drawbacks. One is that mechanics text-
books often concern 2D problems, where the metaphors in question work satisfactory.
Extending these metaphors to 3D conditions is not always intuitive. A second drawback
is that the symbols found in textbooks often require a thorough understanding of the
underlying principles. To make 3D finite element modeling more accessible to a larger
user group, the user interface needs to be improved. The ObjectiveFrame application
described in Paper VI, was developed to study possible improvements that can be made
in existing 3D finite element packages. ObjectiveFrame implements a user interface that
responds directly to the user’s inputs, any changes in the dimensions involved or rotation
of a beam being instantly displayed. ObjectiveFrame also takes real-time feedback one
step further. Users are able to "feel” the stiffness of a structure by placing a load on the
structure involved the displacements that occur being updated and visible immediately
in the 3D view. A small usability study concerned with a new version of ObjectiveFrame
was carried out, a version which involved use of 3D widgets allowing load and boundary
condition placement to be determined by use of a direct approach, see Paper A.l.

LA software using direct manipulation should possess the following properties: visibility of the objects
of interest, rapidity and reversibility, incremental action, and replacement of a complex command language
syntax by direct manipulation of the object of interest [30]
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Abstract. A sample structural mechanics code is implemented using the Fortran 90 language.
This code is encapsulated by DCOM components using the C++ Language. The different
components of the code can be transparently placed either locally or remote without changing
the client application.
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1 Introduction

A complex hardware product often consists of many exchangeable components. As long as a
component fits into the product, the internal implementation can differ. Software components
are analogous to hardware components. A Software component consists of a description of its
interface and an implementation. Components in programs can be exchanged without the need
for recompilation, as long as the program uses the same component interface. The use of
components in software development has increased during the last few years. The reason for
this is the need to reduce the size of the client programs. When the first client/server systems
appeared the client software were often large programs. Most of the processing was done in
the client program and the database server was used as data storage. The problem with these
systems was the cost of maintaining and installing the client software. The new systems
being developed today often use a three-tier approach. A thin client with little or no data
processing capabilities is used. Instead of calling the database servers directly, they use a set
of components placed on central servers for data processing. These components then access
the database servers. The components are often implemented using the DCOM or CORBA
standards. The advantage of this approach is that the components can be placed on powerful
systems reducing the amount of processing needed at the client. The client software can then
be reduced to only handle user interface interaction.

In the present work, a three-tier approach is applied to structural analysis software. The
computational parts of analysis codes can be placed on remote servers. Access to the codes
can be achieved using components implemented using DCOM or CORBA. The clients can
use these components as if they were located on the same machine, making it possible to
create integrated programs with transparent access to advanced computational resources.

2 Three-tier applications

Three-tier and n-tier applications emerged from the need to shield the client program from
changes at the server side by placing a layer between the client and the server. A detailed
history of the client/server architecture is described in [11]. In the following, the three-tier
approach as applied to database applications is briefly described. For a more detailed
description of how to implement, three-tier applications see for example [9].

The logical three-tier model divides an application in three or more logical components. Each
component is responsible for a well-defined task. An application can for example consist of
the following components:

— Presentation service responsible for displaying data and editing data.
— Logic/Rules service.
— Database service responsible for storing the data with referential integrity.
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The components of the logical model can be grouped together in different configurations to
form a physical model.

In the physical two-tier application the logic/rules service are combined with either the
presentation service or the database service to form a physical two-tier implementation. When
the logical logic/rules service is combined with the presentation service, the client is often
called fat client, see Figure 1. When the logic/rules service is combined with the database
service this is often called fat server, see Figure 2. The three logical services can also be
placed as separate applications at many different servers forming a physical three-tier
application. See Figure 3.

Client Server
Presentation Database
Logic/Rules

Figure 1 - Fat client

Client Server
Presentation Logic/Rules
Database

Figure 2 - Fat server

Client Middle layer Server

Presentation Logic/Rules Database

Figure 3 - Physical three-tier application

Today the middle layer often consists of distributed objects implemented using either
CORBA or DCOM. These middle layer objects handle the application logic and database
connections in an object oriented way. The clients in a physical three-tier application are very
light applications, only containing code to display and edit the information it receives from
the middle layer. This implementation enables developers to have a greater flexibility in the
choice between different hardware and software configurations. It also enables existing
systems to be integrated in new program developments. In this scenario, the middle layer also
shields the client applications from any changes if the existing system is upgraded in the
future.
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3 Distributed Computing

Distributed Computing is defined as a type of computing in which different components and
objects comprising an application can be located on different computers connected to a
network, for an overview see [13]. During the last decades distributed computing has evolved
and a number of enabling technologies have been developed. Both DCOM and CORBA
implementations make use of these technologies. The following sections describe some of
these technologies.

The OSF Distributed Computing Environment [13] is a vendor-neutral set of distributed
computing technologies. DCE provides the following services

— Remote Procedure Call
— Directory Services

— Time Service

— Security Service

— Threads Service

These services lay the foundation for the distributed object models DCOM and CORBA.

The remote procedure calls service of DCE [13] enables one program to call a subroutine on a
different computer without knowing that the implementation of the subroutine is placed on a
server. A first version of RPC was developed in the early eighties by Sun Microsystems as a
part of their Open Network Computing architecture (ONC). DCOM as well as many CORBA
ORB implementations are based on the RPC service.

4 Distributed Object Computing

There are today two coexisting technologies for distributed object computing DCOM and
CORBA.

Microsoft's distributed COM (DCOM) [4] extends the Component Object Model (COM) [12]
to support communications among objects on different computers on a local area network
(LAN) or the Internet. For a more technical description see [12]. Because DCOM is based on
COM many existing COM-based applications can be distributed without modification.
DCOM also introduces new facilities for actively controlling remote objects previously not
available to COM.

Initially DCOM could only be used on the Microsoft Windows NT and Windows 95
operating systems, but this has changed during the last two years. DCOM is currently
implemented on the following platforms:

— Compagq, Tru64 UNIX
— Compag, OpenVMS Version 7.2
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— Sun Microsystems, Solaris
— Linux

— Silicon Graphics, IRIX

— Hewlett Packard, HP/UX
— IBM, OS/400 and AIX

CORBA [7] is the Object Management Group's specification for interoperability and
interaction between objects and applications. Objects and applications can be placed on any
platform and accessed from any platform. CORBA 1.1 was released in 1991 and defined the
Interface Definition Language (IDL) and the Application Programming Interfaces (API) that
enable client/server interaction within a specific implementation of an Object Request Broker
(ORB). CORBA 2.0 was released 1994 and specifies how ORBs from different vendors can
interoperate. Because CORBA is a specification, it is platform independent. To use the
CORBA specification an ORB has to exist for the specified platform. ORB:s exists for almost
all existing platforms today.

The implementation described in this paper was performed using the DCOM specification,
but it could also have been implemented using the CORBA specification.

5 Distributed Component Object Model (DCOM)

DCOM is widely used for distributed computing on the Windows platform because it is built
into Microsoft's operating systems. Most applications using the Component Object Model
(COM) can without modification be distributed using DCOM. To use all facilities available in
DCOM, modifications to the code are necessary. This chapter will introduce DCOM and the
terms used when developing distributed applications with this specification. For a more
detailed, description, see [4].

The DCOM specification is language neutral, which makes it possible to write COM and
DCOM objects using any language. One of the advantages of this approach is the possibility
to encapsulate existing code into DCOM objects.

DCOM/COM objects are accessed through a set of interfaces. The interface is a contract
between the client and the object. Once an interface has been released, it can not be changed.
If it could be changed, clients using this interface would crash. Functionality is added by
adding a new interface to an object. This makes it possible for older clients to access the new
object through the old interface.

31



ECCM '99, Miinchen, Germany

Old client >0 Old object
|0ldInterface
Old dlient Updated
—»O0——
object
I0ldInterface
INewInterface
New client

Figure 4 - Extending object functionality

New interfaces can be derived from existing ones using inheritance. Each interface in DCOM
is given a globally unique identifier called GUID. The GUID identifier is a 128-bit value
generated with a special algorithm guaranteeing it will be statistically unique.

Objects in DCOM implement the functionality of the interfaces. There are three main object
types in DCOM. In-process object, Out of process objects and Remote objects.

In-process objects reside in the same process as the client application, see Figure 5. Calls to
object methods are done directly through the virtual method table. This means no
performance loss when calling an object method. In-process objects are implemented as
dynamic link libraries (DLL).

Process

Client >0 Object

Figure 5 - In-process object

Out of process objects are objects residing in different processes. Clients can not directly call
an object in a different process. DCOM handles this by placing a proxy-object in the client
process. These proxy-objects then call the DCOM run-time that marshals the parameters over
the process boundaries. In the server, a special stub-object calls the actual object itself. Figure
6 illustrates this. The advantage using out of process objects is fault-tolerance. If the object
crashes it won't take down the client process. The disadvantage of out of process objects is the
time required marshalling the data over the process boundaries. Out of process-objects are
often implemented as executable files. In-process objects can also be implemented as out of
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process objects by using a special application (dllhost.exe) which loads the object into its
process space.

Process Process

Client o—I Object

Figure 6 - Out of process objects

Remote objects are objects residing on different machines. These objects are handled in the
same way as out of process-objects with a proxy/stub mechanism.

Network

Process Process

Client o— Object

Figure 7 - Remote objects

6 A sample finite element implementation based on DCOM

To illustrate the method for distribution of resources a three-dimensional beam analysis
program was chosen as sample implementation. The goal of the sample implementation was
to divide it into self contained components. These are then assembled in a visual development
system as Borland Delphi 4 [2] or Microsoft Visual Basic 6.0 [6].

The sample application was implemented as a 32-bit Windows application using a three-
dimensional user interface implemented in OpenGL [8] see Figure 8. The application was
divided into six logical components see Figure 9. By dividing the application into
components, the application becomes easier to maintain during development and after. By
dividing the middle-layer into more components, the application is more open for different
distributed configurations.
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[ / Frame3D - Structural Mechanics.

Figure 8 - Sample frame application

Presentation layer Middle-layer Impl. layer
Application FrameSolver external solver
Editor FrameModel

Result viewer

FrameResult

Figure 9 - Logical system components

6.1 Interfaces

In the Frame application, a set of interfaces is used to control the functionality of the different
objects. Figure 10 shows the interfaces used in the application. There are two major of

advantages of using interfaces in an application:

34




ECCM '99, Miinchen, Germany

1. When functionality is added this is done by adding new interfaces to the objects. This
makes it possible for older clients to use the old interfaces without modification.

2. The middle-layer and implementation layer can be changed completely as long as the new
implementation supports the published interfaces clients can use the new implementation
without modification.

There are two kinds of interfaces in the Frame application. The first interfaces are the default
interfaces returned when an object has been created. From these interfaces, a set of general
finite element interfaces can be retrieved to edit finite element data.

Presentation layer Middle layer Implementation layer

Frame3D FrameSolver External
solver

ICalcControl——
|
[@—ICalcControlEvents:

IFrameModel

IFrameModel

IvfEdit FrameModel

\Noqe5e14>
[ElementSet——
+——IBounda ryFondmons—b

INodel oad: >

IFrameResul

Iviviewer FrameResult
IDisplacements——>

\E\eme%vtForces—b —
IReactionForces—

Figure 10 - Interfaces used in the Frame application

Interface Description

INodeSet Defines a set of functions for handling a set
of nodes.

IElementSet Defines a set of functions for describing a
set of elements.

IBoundaryConditions Defines functions for setting boundary
conditions.

INodeloads Defines functions for defining node loads.

IDisplacements Defines functions for accessing the global
displacements

IReactionsForces Defines function for accessing the global
reactions.

IElementForces Defines functions for accessing element
forces.

Table 1 - General finite element interfaces used in the Frame application
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If the solver is updated to handle structural dynamic problems, new interfaces can be derived
from the above interfaces to implement the new functionality. As an example,
IDynamicNodeLoads extends the INodeLoads interface and IDynamicDisplacements extends
IDisplacements. The new solver can still be used as a static solver by using the old interfaces.

Interfaces can also be officially released with the software, enabling third party software to
integrate with the application. This can create new applications that integrate many
disciplines. A pre-processor can use the interfaces directly to define the finite element model
instead of creating an input file.

6.2 Presentation layer components

The presentation layer objects are responsible for interaction and presentation of the model for
the user.

The main application is implemented using Borland Delphi 4 [2] integrated development
environment (IDE). Delphi is used to assemble the sample application components into a
Windows application. The only code written in the Delphi application is code for managing
menus, toolbars and component states. Main functionality is contained in the IvfEdit and
IvfViewer components.

The NfEdit-component handles three-dimensional geometry editing. The component is
implemented in C++ as a Microsoft Foundation Classes (MFC) [5] ActiveX component.
Drawing is done using a special developed visualisation class library (Interactive
Visualisation Framework, IVF) implemented using OpenGL [8]. When the application has
been started, the component is given an interface to the FrameModel middle-layer component
enabling it to update this component automatically. To enhance performance the IvfEdit- and
FrameModel components both maintain an internal representation of the finite element
model. This prevents network- or inter-process communication each time a geometric element
is added or removed in the IvfEdit-component. Updating of the FrameModel component is
done using the Load and Store methods of the vfEdit-component. The Load method reads the
model stored in FrameModel and creates an internal representation using IVF. Store transfers
the internal IVF model to the FrameModel-component.

<«— | Store

IvfEdit - FrameModel —>

Figure 11 - IvfEdit integration with FrameModel
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The IvfViewer -component is responsible for visualising the result database. The component is
implemented in C++ as a Microsoft Foundation Classes (MFC) [5] ActiveX component.
Drawing is done using a special developed visualisation class library (Interactive
Visualisation Framework, IVF) implemented using OpenGL [8]. When the application has
been started the component is given an interface to the FrameResult middle-layer component
enabling it to retrieve information directly from this component.

IvfViewer o FrameResult
<«— | Load

Figure 12 - IvfViewer integration with FrameResult

6.3 Middle-layer components

The middle-layer components shield the client application from the finite element solver
details. By using a middle-layer, the finite element implementation can easily be replaced
without changing the client applications.

The FrameModel component stores all information needed to describe the finite element
model. The component is implemented using C++ and Microsofts Active Template Library
(ATL). For a description of how ATL is used, see [10]. ATL is a set of template classes for
creating DCOM/COM objects. The template classes have predefined implementations of most
of the standard DCOM/COM interfaces that make it easier to create components for
DCOM/COM.

IFrameModel O— FrameModel

INodeSet O—

IElementSet O—]

INodeLoads J) J) IBoundaryConds

Figure 13 - The FrameModel component

FrameModel maintains an internal class structure describing the finite element model. The
classes are exposed with the interfaces INodeSet, I[ElementSet, INodeLoads and
IBoundaryConds. With these interfaces, it is possible to create nodes, elements, loads and
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boundary conditions. In the Frame application, the FrameModel component stores itself to
disk using a simple textfile. In larger projects, it will probably be necessary to store the finite
element model in a relational database to handle large data volumnes.

The FrameSolver component manages the finite element solver. The DCOM object is
implemented using C++ and Microsoft Active Template Library (ATL). The solver itself can
be implemented by calling an external commercial solver or placing custom solver code
directly into the component. The last choice is probably the best if a new solver is to be
developed. When developing solvers in Fortran, DIGITAL Visual Fortran 6.0 [1] can create
special interface modules to enable Fortran code to call DCOM/COM objects directly.

FrameSolver

5

ICalcControl

IFrameSolver O——

Figure 14 - The FrameSolver component

If the FrameSolver component is to be placed on other operating systems than Windows, it is
important to develop the component without using any of the Windows user interface
routines. When using standard ATL generated objects, this is no problem.

The FrameResult component is responsible for managing the results generated from the
calculation. This component was implemented using Object Pascal and the Delphi IDE [2].
The results were stored in a relational database. Results from the database are accessed from
the interfaces IDisplacements, IReactionForces and IElementForces.

IFrameResult O— FrameResult

IDisplacements O—

IReactionForces O—

|[ElementForces (g

Figure 15 - The FrameResult component

The Microsoft Jet Database engine was used in the Frame application, but if a large amount of
data is to be handled a more powerful database engine has to be used. With larger problems
terabyte size data are common and places high demands on the database engine.
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6.4 Three-tier implementations

Using the components described in the previous section and the three-tier model described in
chapter 2 make it possible to configure the application in many different ways. One
configuration is to place all components on the local machine. This has the advantage of not
relying on any external resources. A disadvantage is that the installation can be quite
complex. All components has to be installed and registered. Updating of software often
requires a new installation. Figure 16 shows an example of this type of installation.

Local machine
Client Middle-layer Impl. layer
Application FrameModel
[
Editor FrameSolver Ext. Solver
[
Result viewer FrameResult

Figure 16 - Local installation

Another configuration is shown in Figure 17. This is a physical two-tier configuration. In this
configuration, the middle-layer and implementation layer components are grouped together on
a remote machine. The client contains only the application and the visual components. This
configuration is typically used if a shared calculation server is installed in the network. The
advantage of this configuration is that the client side is easy to maintain and is freed from
heavy calculations. The disadvantage of this configuration is that the remote machine is fixed
and difficult to modify.

A way of making the configuration more flexible is to divide the components into a physical
three-tier solution. In this configuration the middle-layer and implementation layer are placed
on different machines. The middle-layer in this configuration can then distribute the work
over many machines. The configuration is also more flexible in that the implementation layer
can be placed on a super computer and the middle-layer on small Windows NT or Unix
servers. Figure 18 shows a physical three-tier configuration.

39



ECCM '99, Miinchen, Germany

Local machine

Client

Application

Editor

Remote machine

Result viewer

Middle-layer Impl. layer
FrameModel
I
FrameSolver | | Ext. Solver
I
FrameResult DBMGR

Figure 17 - Physical two-tier configuration

Remote machine 4
Remote machine 3

Local machine

Client

Application

Editor

Remote machine 1

Middle-layer

FrameModel

FrameSolver

Result viewer

Remote machine 2

Impl. layer

Ext. Solver

FrameResult

DBMGR

Figure 18 - Physical three-tier implementation

7 Conclusion

Using a three-tier implementation, with interfaces and components creates a very flexible
finite element application. The three-tier implementation protects the client applications from
changes in configuration and solver design. Components are easily configurable and
maintainable which reduced development. By using interfaces when communicating with
components, the need to recompile client software when new functionality is introduced in the
solver components is reduced. Interfaces can also be published enabling other software to use
the finite element application in an effective way.
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The DCOM and CORBA specifications also enable new ways to use software. Client
software can easily distribute calculations over available workstations. High Performance
Computing (HPC) centres would be able to host a set of applications as DCOM or CORBA
objects. From a web site users can register themselves as users and download client
applications that connect to the objects. This would make high performance computing more
available to a wider user group.
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Abstract. Distributed middleware technologies, such as CORBA can
enable finite element software to be used in a more flexible way. Adding
functionality is possible without the need for recompiling client code.
Applications and libraries can expose their functionality to other ap-
plications in a language neutral way, enabling a more direct and easy
transfer of data, without the need for intermediate input and output
files. The CORBA software components can be easily configured and
distributed tranparently over the network. A sample structural mechan-
ics code, implemented in C++ is used to illustrate these concepts. Some
future directions, such as placing CORBA enabled finite element software
on HPC centres are also discussed.

1 Introduction

A complex hardware product often consists of many exchangeable components.
As long as a component fits into the product, the internal implementation can
differ. Software components are analogous to hardware components. Compo-
nents in programs can be exchanged without the need for recompilation, as long
as the component interface is unchanged. The use of components in software de-
velopment has increased during the last few years. The reason for this is the need
to reduce the size of the client programs. When the first client/server systems
appeared, the client software were often large programs. Most of the processing
was done in the client program and the database server was used as data storage.
The problem with these systems was the cost of installing and maintaining the
client software. New systems developed today often use a thin client with little or
no data processing capabilities. Instead of calling the database servers directly,
they use a set of components placed on central servers for data processing. These
components then access the database servers. The advantage of this approach is
that the components can be placed on powerful systems, reducing the amount
of processing needed at the client. This approach has been successfully applied
to database applications. It is of interest to apply this technique to analysis
software as well. Using the technique of distributed computing, clients can use
components as if they were located on the same machine, making it possible to
create integrated programs with transparent access to computational resources,
such as available workstations on the network or resources at High Performance
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Computing (HPC) centres. This would make high performance computing more
available to a wider user group.

The present work describes structural analysis software, where the compu-
tational parts of analysis codes can be placed as components on remote servers.
Before describing the structural analysis code, a brief overview of client/server
architecture will be given.

2 Client/server architecture

Three-tier and n-tier applications emerged from the need to shield the client
program from changes at the server side by placing a layer between the client and
the server. The history of the client/server architecture is described by Schussel
[25]. For a more detailed description over the client /server architecture, see Orfali
and Harkey [18]. The logical three-tier or n-tier model divides an application
into three or more logical components. Each component is responsible for a well-
defined task. In a database application there would be a presentation layer for
displaying data and modifying data, a logic and rules layer and a database layer
responsible for storing the data.

The components of the logical model can be grouped together in different
configurations to form a physical model. One of the most interesting combi-
nations of the logical model is when the three logical services are placed as
separate applications on different computers, forming a physical three-tier ap-
plication. This implementation enables developers to have a greater flexibility in
the choice between different hardware and software configurations.

3 Distributed computing

Distributed computing is defined as a type of computing in which different com-
ponents and objects comprising an application can be located on different com-
puters connected to a network; for an overview see [16].

Currently, there are three coexisting technologies for distributed object com-
puting DCOM [2], Java Remote Method Invocation RMI [24] and CORBA [1].
Microsoft’s distributed COM (DCOM) extends the Component Object Model
to be used over the network. RMI or Remote Method Invocation [24] is a dis-
tributed technology based on the Java language. CORBA is the Object Man-
agement Group’s [1] specification for interoperability and interaction between
objects and applications. Objects and applications can be placed on any plat-
form and accessed from any platform.

This paper describes an implementation in CORBA. In a previous paper [12]
a DCOM based implementation has been studied.

DCOM is mainly used on Microsoft compatible platforms, but using third-
party products, it can be ported to most Unix platforms. This technology enables
Java objects to communicate transparently over the network. To use the CORBA
specification there has to be an ORB (Object Request Broker) for the specified
platform. There are ORBs for almost all existing platforms today.
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4 CORBA

4.1 Concepts and Terminology

To describe a CORBA based implementation, it is important to understand some
terminology and concepts of a CORBA implementation. Some of the more im-
portant concepts and terminology is shown below. A more thorough description
can be found in Henning and Vinoski [10].

— A client is an entity that invokes a request on a CORBA object.

— A CORBA object is a “virtual” entity capable of being located by an ORB
and having client requests invoked on it.

— A server is an application with one or more CORBA objects.

— An object reference is a handle used to identify, locate and address a CORBA
object. Object references is the only way for a client to access CORBA
objects.

— A servant is a programming language entity that implements one or more
CORBA objects.

Communication in CORBA is done by a client invoking requests on a CORBA
object through either a statically linked stub in the client application or through
the dynamic invocation interface (DII). The requests are dispatched to the local
ORB which in turn dispatches these requests to an ORB on the remote ma-
chine. The remote ORB then dispatches the request to an object adapter, which
then directs the request to the servant implementation code. Figure 1 shows an
overview of the CORBA architecture.

4.2 Interface definition language

To access a CORBA object the client must know which methods and properties
it contains. This description is called an interface. To describe such interfaces
CORBA wuses the Interface Definition Language (IDL). In this language the
object interfaces are described. Using a separate language for describing the
objects makes CORBA language neutral. This enables CORBA applications to
be implemented in a variety of different languages. To implement CORBA clients
and objects the IDL definition is compiled using an IDL compiler. This compiler
takes the interface definition and generates the implementation code for both
client and server, in the desired implementation language.

The following code shows an example of a simple IDL interface, declaring an
interface to an Echo object. In this case the object echoes the string word back
to the calling client.

interface Echo {
string Shout(in string word) ;

}
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Fig.1. CORBA architecture

Compiling this example using a C4++ IDL compiler, will generate a header
file and an implementation source file for accessing the object described from
a C++ based application and the skeleton code for implementing the servant
object in C++.

In Orbacus [17] the IDL compiler implements the interface in the Echo object,
using C++ classes. The generated client code is shown below.

class Echo : virtual public CORBA::0Object {
Echo(const Echo&);

public:

char* Shout(const char* word);

};

The different files generated by the C++ IDL compiler are shown in figure 2.

4.3 Name service

One of the biggest benefits of CORBA is location transparency. Information
about server location is often not included in the client application. This makes
it easy to configure a client/server setup. A client only needs an object reference
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Fig. 2. Relationships between the files generated by the C++ IDL compiler

to connect to an object. Object references are unique identifiers, which also
include information about the location of objects. To connect to objects the
client needs a way of retrieving an object reference. Before the introduction of
CORBA 2.3, object references were often transferred using files over a network
file system or using a non-standard method of name lookup. In CORBA 2.3
a name service was introduced. The name server stores object references in a
human readable form. When a server is started, it creates an entry in the name
server for the object reference. The client then queries the server by name to
receive the object reference. See Figure 3. By using a name server, client/server
configuration can be done transparently. Name server location is the only thing
that has to be configured for the servers and the clients. Clients and servers get
the location of the name server by specifying special command line options.

Name server

3. Receives reference 1. Adds name and reference

2. Requests object by name

Client

4. Connects to object

Fig. 3. Name server lookup

49



4.4 Object creation and destruction

Before request to an object can be made, the object implementation (servant)
must be instantiated and activated. In CORBA this is done by the object
adapter. Earlier CORBA specifications only included a limited basic object
adapter (BOA). To enhance the functionality of this object adapter many ORB
vendors added non-standard extensions. The consequence of this was that the
server side of a CORBA application became ORB dependent. With CORBA 2.3
this limitation was removed by the introduction of the Portable Object Adapter
(POA).

Different types of policies for the creation and destruction of objects can
be specified using lifetime policies for the portable object adapter (POA) in
CORBA. Figure 4 illustrates the typical lifetime of a CORBA object. The default
policy is TRANSIENT. In this policy the object can not be reactivated, when it
has been deactivated. The object reference of a TRANSIENT object is only valid
when the object is active. The PERSISTENT lifetime policy enables objects to be
activated and deactivated multiple times. This requires that the object servants
are able to store their state in a persistent form between the activations.

Object exists

N

Object active

Servant Servant
.—Creat\on created destroyed —Destruction%@

Object inactive

Fig. 4. Object creation and destruction

Because CORBA is a distributed technology, the creation of objects must be
handled in a different way than it is handled when creating local objects. In a
CORBA system, objects are created by special factory objects.

The destruction of a CORBA object is not done by the factory, instead a
special method is declared in the object interface for removing the object. If
the factory was responsible for destroying the object, the client referencing the
object would also have to reference the factory when destroying the object. This
would be quite complex if the object reference has been passed from object to
object. The process of creating and destroying is discussed in detail in Henning
and Vinoski [10].

5 CORBA in finite element software

Most finite element applications communicate using files. The input model is
described in a text file in some form. Generated results are often stored in a
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binary output file or in a database. If other applications, such as pre and post
processors are integrated with the finite element application they have to gener-
ate and read these files. This generates a lot of extra steps to integrate existing
finite element codes. Using CORBA the inner object model and functions of
the application can be exposed directly to other applications, which can access
them either locally or remotely. To communicate with the CORBA enabled ap-
plication, a wrapper for the given implementation language is generated from
an interface definition as given in the IDL specification. The exposed objects
and functions are accessed from the client applications as local objects and func-
tions in the clients native implementation language. Element coordinate lists and
topology can be sent directly to the finite element application, over the network
or in the same memory space with good performance. This approach can also
be implemented using DCOM [2] which has been done by Lindemann et al. [12],
Larsson [11] and Dolenc and Duhovnik [3].

The normal way of distributing finite element applications, is to install the
software on a remote server and letting the users log in remotely and execute
the application. If the server is behind a firewall, a distributed file system can be
used to access the generated files. The process can be simplified using scripts and
remote execution, but the process is still quite complicated and the applications
still communicate using files. CORBA enabled applications can access resources
transparently over the network or locally. A CORBA enabled pre processor does
not need to know the location of the finite element application when compiled.
When the application is executed, it queries a CORBA name server which then
provides the location of the finite element application to be used.

Functionality of the CORBA application is defined using the interface defi-
nition language IDL. To interface a pre-processor with a CORBA enabled finite
element application, the IDL file is compiled, generating the necessary commu-
nication code and interface functions and classes. The client application is then
recompiled and linked with the IDL generated code. To make this work, existing
finite element applications must be CORBA enabled. Most finite element ap-
plications today are not CORBA enabled, making it difficult to integrate them
into other CORBA based systems. To make interaction of CORBA enabled fi-
nite element applications a reality, a set of standardised IDL definitions must
be agreed upon. A standardised set of interfaces enables component oriented
applications, where the different application components can be exchanged in
an easy way. To integrate finite element codes today in CORBA based systems
is to use CORBA wrappers. This approach is used by Forkert et al. [27] in the
TENT framework which is a integrated simulation environment. This framework
uses CORBA wrappers and a set of translators to create input files and process
results. Another implementation of CORBA is done by Frisch and Ertl [5] where
a finite element solver is integrated with a post processing tool. Figure 5 shows
an example of a component based finite element system.

The trend today is that many applications are becoming web-based. Many
companies are using an internal web for distributing knowledge in the organisa-
tion. A CORBA based finite element application can effectively be used together
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Fig. 5. Interfaces with different FE applications

with a web-based application. Java is CORBA enabled by default, enabling a
Java based web application having access to CORBA based services. An exam-
ple of this could be a web-based engineering tool providing support for engineers
making design decisions. The tool first uses a parameterised model to give quick
answers within certain parameter ranges. If the parameters are outside these
ranges a simulation is initiated using a remote CORBA enabled finite element
application. The results are then stored in a database to be reused later on.
The advantage of using CORBA in this application is flexibility. The client does
not communicate directly with the finite element application but through the
CORBA server. The CORBA server can choose to execute the finite element
application on the same machine or it can delegate the execution to another ma-
chine. This can be done without changing anything in the client code. Figures 6
and 7 show an example of how an application of this kind can be constructed.
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Fig. 6. Virtual Engineering Tool
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5.1 CORBA as a scripting interface to FEA applications and
libraries

A powerful concept that can be used together with CORBA enabled application
is scripting. There exist a number of very powerful scripting languages such as
Python [22], Ruby [23], Perl [19] and Tcl/Tk [21], that can be used together
with CORBA. Using CORBA with a scripting language, a parametric study
of a problem can easily be implemented without the need to create input file
and read result files. CORBA applications are accessed as standard Python
objects, all input generation and result processing can be done directly in the
scripting language, communicating directly with the finite element application.
This works with local objects as well as remote objects. Interfacing scripting
languages with CORBA objects can be problematic, because it often requires
using an ORB from another vendor or developer. There exist differences between
different ORBs today which can make it difficult connecting these with each
other. These differences will probably become less important as the CORBA
standard evolves.

The following code excerpt illustrates how a parametric study can be done
using CORBA and Python. The CORBA ORB used with Python is Fnorb [7].

HI R
# Python CORBA client example. #
HIH
import sys

# Fnorb modules.

from Fnorb.orb import CORBA

# Stubs generated by ‘fnidl’.

import FEApplication

def main(argv):
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print ’Initialising the ORB...’
# Initialise the ORB.

orb = CORBA.ORB_init(argv, CORBA.ORB_ID)
server = ... get object reference somehow ...

# Do a parameter study
parameter = 0.2

while parameter < 3.2:
server.setWidth(parameter)
server.set{... additional parameters ...}
server.execute ()

# process results

server.getMaxStress(...)

parameter = parameter + 0.2
return 0O

if __name__ == ’__main__"’:
sys.exit(main(sys.argv))

5.2 CORBA as a language neutral description for libraries

CORBA objects are designed to be accessed remotely, but if the objects are lo-
cated in the same process space any calls to object methods are treated as normal
function calls with approximately the same performance as a normal function
call. The GNOME desktop environment [8] uses CORBA to provide a language
interface to the different libraries. Interfaces are described using IDL and from
these, interface code for languages such as Python [22], Ruby [23], Perl [19] and
Tcl/Tk [21] and C/C++ can be generated. This is similar to the approach Mi-
crosoft is using in the Component Object Model(COM) [2]. COM/DCOM uses
a modified version of the IDL language to describe the interfaces for the objects
and components. This enables the use and interoperability of the COM/DCOM
objects from all supported languages. The approach described above can also
be effectively used to encapsulate PDE and finite element libraries into CORBA
libraries with interfaces described in IDL. The advantage of this is that the
libraries become language neutral. Users of the libraries can choose whatever
language is supported by the their CORBA ORB and generate the interface au-
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tomatically from the IDL interface files. The method is similar with the method
used by the SWIG tool [20]. SWIG or Simplified Wrapper and Interface genera-
tor uses a special interface file . i-file to define an interface to a C or C++ library,
which is then used to generate interface code for different higher level scripting
languages. The advantage of using CORBA is that the library definitions can be
used remotely as well.

5.3 Performance

An important factor to consider when implementing a CORBA based finite
element application data is transfer performance. Often large data sets of several
gigabytes have to be transferred when doing finite element simulations. There
are some factors to consider when designing a CORBA interface. The cost of
each request on a CORBA object is determined by the latency and marshalling
rate. The latency is the cost of sending a message. The marshalling rate is the
cost of sending the input and return variables. For a more detailed discussion
see chapter 22.3 in Henning and Vinoski [10]. One of the most critical factors for
performance is the latency. The latency time of invoking a request on a CORBA
object is approximately 500-5000 times higher than doing a function call in C++-.
For more detailed study of CORBA performance and scalability see Gokhale and
Schmidt [26] and the OMG whitepaper [14]. Finite element input data should be
transferred in few CORBA requests, so that the latency overhead is minimized.
The mashalling rate is also an important factor determining the performance of
the finite element application. To determine the optimal block size and transfer
speed when transferring data between a client and a server, a test application was
written. In the application blocks of sizes 2° to 227 are sent between a client and
a servant on a 100 Mbit/s network. When transferring a block using CORBA the
servant application also has to allocate memory for the return variable. The size
of the array to be received is not known by the servant which has to allocate the
array in some way. The way this is done by the CORBA ORB is not defined. In
ORBacus this is done using a block allocation scheme for the array. To measure
the real transfer speed the application tests the time it takes to allocate the array
it sends. The test application is written in C++ using the ORBacus [17) CORBA
ORB. A special test function was defined in IDL containing just a single CORBA
sequence<octet>. The simulation of allocation is done by sequential adding of
values to the block. This can be thought of as simulating the bytes arriving and
being added to the sequence on the server side. To get an accurate allocation
time the procedure is repeated 100 times. Mashalling rate is measured by calling
the test function with the allocated block. This is done 20 times to get a good
result. A test application using normal socket communication was implemented
to compare the CORBA application to an alternative network implementation.
Figure 8 shows the mashalling rate of different block sizes. The solid line with the
+ symbols indicates CORBA mashalling rate without consideration of allocation
time. The dashed line shows the rate with allocation time considered. The dotted
line marked with squares shows the standard socket applications throughput.
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The dotted line marked with the symbol (*) is the peak transfer rate over a 100
Mbit /s network.
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Fig. 8. CORBA Mashalling rate of different block sizes

From the diagram it can clearly be seen that blocks larger than 10 kb can be
effectively sent using CORBA with high mashalling rates. A block of 16384 kb
achieves a transfer rate of 10998 kb/s. The TCP/IP socket application achieves
a transfer rate to 10817 kb/s. The value achieved for the TCP/IP application
would probably be slightly higher if a more efficient implementation was used.
The decrease in transfer speed shown at the end of the curve at 32768 kb is
probably due to memory swapping at the server machine, which was a PIII 967
MHz machine with 256 Mb memory. The allocation test was done on an AMD
1700+ machine with 512 Mb of memory. The source code for the test routine is
shown below.

void doBandwidthBenchmark(Node: :FileTransfer_var &fileTransfer) {
int i, j, k;
Node: :TFileBlock block;

for (i=0; i<28; i++)

{
int blockSize = pow(2,i);
double duration;
double durationTotal;
double allocTime;
clock_t start, finish;
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//

// Measure allocation speed
//

Node: :TFileBlock* blockTest;

start = clock();
for (k=0; k<100; k++)

{
blockTest = new Node::TFileBlock();
for (j=0; j<blockSize; j++)
{
blockTest->length(j+1);
(*blockTest) [j]1 = j;
}
delete blockTest;
}

finish = clock();
allocTime = (double) (finish - start) / CLOCKS_PER_SEC / 100.0;

//
// Allocate block to transfer

/7

block.length(blockSize) ;
block[blockSize-1] = 42;

/7

// Measure transfer time

//

start = clock();
for (j=0; j<20; j++)
fileTransfer->blockTest (block); // blockTest(...)
// is the test function
finish = clock();

//

// To obtain the transfer rate the allocation time has to
// be subtracted from the time measured, because the

// servant will allocate a TFileBlock on the server side

//

duration = (double) (finish - start) /
CLOCKS_PER_SEC / 20.0 - allocTime;

durationTotal = duration + allocTime;

printf ( "%f %f %f %f %f %f\n",
block.length()/1024.0,
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block.length()/duration/1024.0,
block.length()/durationTotal/1024.0,
duration,

durationTotal,

allocTime

5.4 CORBA Interface design for distributed applications

The object-oriented nature of CORBA makes it possible to create an object
model which is very expressive. All features such as polymorphism, data cap-
suling, inheritance can all be applied to a CORBA object. A remote object is
accessed in the same way as its local counterpart, enabling the creation of very
advanced and complex interfaces. Using the same guidelines for object-oriented
design as in other object-oriented languages such as C++ or Java can be prob-
lematic. As discussed in section 5.3 a request on a CORBA object is 500-5000
times slower than making a function call in C4++. This has to be considered
when designing CORBA interfaces.

Fem System Factory

lFemSysrem & 5| FemModel |, | FemNodeSet |, ;_
i
oS
R

i

Fig. 9. Interfaces in the ObjectiveFrame application

Most finite element applications today deal with a large number of nodes
and elements, producing large amounts of data. CORBA interfaces for finite
element applications must take this into concideration. In a previous application
ObjectiveFrame, a very expressive CORBA interface was developed, as shown
in figure 9. The interface made it easy to transfer and communicate with the
CORBA objects, but it was not very efficient. To define a node set with the
CORBA object several requests had to be made, as shown in the code below.
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DFEMC: :FemNode_var dfemcNode = dfemcNodeSet->getNode();
dfemcNodeSet->first();

for (i=0; i<nodeSet->getSize(); i++)

{
// node and nodeSet are a C++ objects
CFemNode* node = nodeSet->getNode(i);
node->getCoord(x, y, 2z);
// dfemcNode and dfemcNodeSet are CORBA objects
dfemcNode->setCoord(x, y, z);
dfemcNodeSet->next () ;

}

To set the coordinates of a node set, a special node interface is retrieved (dfemc-
NodeSet->getNode()). This interface is used to set the properties of the current
node. Changing to a different node is done by calling the next () and previous()
methods of the node set interface. This interface design requires two CORBA
requests per node, which is not very efficient. To modify the design to support
efficient data transfers, additional methods has to be added to the node set
interface to support block transfer of nodes. The code would then change to:

// nodeSet is a C++ object
TNodeCoordArray array = nodeSet->getNodeCoordsArray() ;

// dfemcNodeSet is a CORBA object
dfemcNodeSet->setNodeCoordsArray (array) ;
dfemcNodeSet->set. ..

This design still has the possibility to access individual nodes on the CORBA
node set using the node interface.

CORBA has advantages even if the interfaces are very simple and shallow.
Creating distributed network applications using conventional TCP/IP socket
programming can be difficult and error prune. A lot of testing is required to
create a stable network protocol. Transferring data between different hardware
platforms will also require the programmer to take care of the different byte-
orderings existing on these. Multiuser systems is also an issue making the appli-
cations even more complex, requiring threaded code. Using CORBA, networking
code is already implemented in the ORB. Byte ordering is also automatically
handled and the transferred data can be assumed to be correct on every hardware
platform. Most CORBA ORBs also handle the threading issues automatically.

5.5 CORBA in GRID computing

An important area where CORBA can be used is GRID computing. Grid Com-
puting is a concept of creating grids of computational and storage resources,
in the same way as the the world wide web is a grid of information resources.
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CORBA can effectively be used as the glue connecting the different resources
located at geographically different locations. A computing cluster can have a
CORBA based interface for monitoring, job submission and control. By provid-
ing each cluster with a CORBA interface it is relatively simple to connect these
together creating ”Meta”-clusters. Figure 10 shows an example of a CORBA
enabled grid system.

Client

FiIeTransfer| |ServanthntroIIer| | Nodelnformation | | Commandinterface

Fig. 10. Example of a CORBA based grid

6 Example of a Finite element CORBA implementation

The educational software ForcePAD [6] was modified to use a CORBA based fi-
nite element solver. The ForcePAD application is an intuitive tool for visualising
the behaviour of structures subjected to loading and boundary conditions. For-
cePAD uses a bitmap canvas on which the user can draw the finite element model
using standard drawing tools. When the calculation is executed the bitmap im-
age is transferred to a finite element grid, which is then solved. The main win-
dow is shown in Figure 11. The application consists of four components divided
into three layers, as shown in figure 12. The user interface is responsible for
interactively defining the problem. The ForcePadSolver component contains the
interfaces used to describe the finite element model used in the application. The
name server components handle the location of available CORBA ForcePAD-
Solver components in the network. The FE solver components are responsible
for executing the calculations. By providing the functionality of the application
in a component based form, the application can be configured and maintained
in a more flexible way.
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Fig. 12. Application components

6.1 ForcePadSolver server

The middle layer of the application is implemented in a single server. The ORB
used in the implementation is ORBacus [17], which is a commercial ORB avail-
able with source for multiple platforms, including Microsoft Windows and many
Unix dialects. For non-commercial use It can be used without cost. The FE
solver is implemented in C++ using the newmat09 [13] library, which is freely
available with source code. In this version of the application, the FE solver is
statically linked into the ForcePadSolver server, but it is possible to implement
the FE Solver as a separate CORBA object or use a standard FE code.
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To make this example easier to follow, the interface of the ForcePAD server
is made deliberately shallow. A more object-oriented interface as described in
section 5.4 is probably to be preferred. To enhance the network performance
the interface transfers the entire finite element grid in one large block. The full
IDL source code is found in appendix A. Figure 13 shows the interfaces used in
the ForcePadSolver server. The main interface in the server is the FemSystem

FemSystem Fem System Factory

+getFemGrid() +create()
+getFemSolver()
+remove()

VRN

Fem Solver Fem Grid
+execute() +setSize()
+getLastError() +setStiffness()
+remove() +setForces()
+setBCs()
+getDisplacements ()
+getResults()
+remove()

Fig. 13. Interfaces used in the finite element server

interface. Every time a client connects to the server it will create this object,
using the FemSystemFactory factory object. The factory object is instantiated
and registered in the name server when the server is started. The FemSystem
object, when instantiated will create an instance of a FemSolver object and
a FemGrid object. These objects are returned from the FemSystem object. A
ForcePadSolver server can hold one instance of FemSystem objects for each client
connected to the server, as shown in Figure 14.

The code below shows how a FemSystem object is created from C++ using
the FemSystemFactory object.

femSystemFactory = ... Get from name server ...
femSystem = femSystemFactory->create();

femGrid = femSystem->getFemGrid();

femSolver = femSystem->getFemSolver();

The FemGrid object defines the finite element model and the FemCalc is used
to control the calculation of the finite element model.

To reduce the marshalling times for the FE model, data will mainly be trans-
ferred using the CORBA data type sequence. This data type is a dynamic array
of a specified type. The following code illustrates a typical data transfer from
the client to a CORBA object in the ForcePAD client application. The complete
client code can be found in appendix C.
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Fig. 14. Object creation using the FemSystemFactory object

// CORBA defined datatype:

typedef sequence<double> TStiffnessVector;

ForcePadSolver: :TStiffnessVector stiffnessVector(nStiffness);
stiffnessVector.length(nStiffness);

// Transfer internal fem model to stiffnessVector

1 = 0; float value;
for (i=0; i<rows; i++)

for (j=0; j<cols; j++)
for (k=0; k<2; k++)
{
value = m_femGrid->getGridValue(i, j, k);
stiffnessVector[1++] = (double)value;

}

// Invoke request on femGrid CORBA object

femGrid->setStiffness(stiffnessVector);

When all input data has been transferred to the CORBA object FemGrid, the
finite element model can be solved. The execution of the finite element solver is
controlled by the FemCalc object. The following code from the client application

shows how the calculation is initiated:

femSolver->execute();
error = femSolver->getLastError();

In the ForcePadSolver server the execute() method is implemented as a
blocking call. This means that the execution of the client application will wait
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until the server is finished. To solve this, the execute () could be implemented
as an asynchronous method call in CORBA. Additional methods for monitoring
the execution would have to be added to the interface as well.

The results from the calculation are also retrieved using the CORBA data
type sequence. The difference is that the sequence vectors now are preallocated
and must be transferred back to the C++ class CFemGrid. The following client
code shows how the results are retrieved from the FemGrid object.

// CORBA defined datatype:
// typedef sequence<double> TDisplVector;

ForcePadSolver: :TDisplVector* displacements;

// Invoke request on femGrid CORBA object
femGrid->getDisplacements (displacements) ;

// Store displacement values in local class m_femGrid

m_femGrid->setDisplacementSize(displacements->length()); for
(i=0;i<displacements->length(); i++)
m_femGrid->setDisplacement (i+1, (*displacements)[i]);

// Ve are responsible for deleting the return values

delete displacements;

The lifetime policy used in the ForcePadSolver server is TRANSIENT. A calcu-
lation in ForcePAD does normally not execute more than a few seconds, so the
policy PERSISTENT will not be necessary in this case, it is better suited for ap-
plications executing over several days. The client applications can then connect
and disconnect to object during the execution.

6.2 Server implementation

The ForcePAD solver server is implemented as a C++ console application using
the ORBacus [17] ORB. A skeleton implementation for the server is generated
using a special switch in the ORBacus IDL compiler.

The compiler generates a special skeleton implementation class from which
the implementation classes are derived. A sample implementation class is also
generated. The generated skeleton classes handle the requests from the clients
and dispatch them to the implementation class. The skeleton class itself is derived
from a number of classes in the ORBacus ORB.

To handle object creation and destruction automatically, each servant is also
derived from the RefCountServantBase base class. This class implements a ref-
erence counting scheme which automatically destroys the object servant when
there are no connections to the object. Depending on the implementation, more
complex schemes of object creation and destruction can be implemented, see [10]
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for more details. Part of the source code for the server implementation can be
found in appendix B.

The process of executing a calculation starts with a request to the FemSolver
method execute(). The FemSolver reads the input model from the FemGrid
object and assembles the finite element model. The solver from the newmat09
[13] is then called. When the solution is found the results are stored back in the
FemGrid object. The results are now available to the client application.

6.3 Client/server configurations

The easiest configuration of the finite element system is to install the client ap-
plication together with the ForcePADSolver server and the finite element solver
on a single computer, see Figure 15. This configuration is typically used to do
calculations that fit into the memory of the local machine.

Local computer

User interface

Presentation layer

ForcePadSolver Name server
server
Middle layer
FE Solver

Implem entation layer

Fig. 15. Local configuration

In the first distributed configuration, the middlelayer and implementation are
moved to a separate computer. This configuration requires the server to be able
to run a CORBA ORB. If the server running the finite element solver does not
support running an ORB, the middlelayer can be placed on a separate computer.
Execution of the finite element solver can then be done using rexec, rsh or
ssh utilities. Figure 16 shows two of the possible configurations. Many more
configurations are possible. By providing location transparency, the CORBA
objects can be configured in almost any way without needing to recompile the
clients and the servers.

6.4 Client application

To create a platform independent application, ForcePAD uses the fast light
toolkit (FLTK) [4]. FLTK is a lightweight user interface toolkit written in C++.
The toolkit can be used on Windows 9x/NT/2000/XP and most Unix dialects
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Local computer

User interface
Local computer

User interface Presentation layer

i

Presentation layer Remote computer 1

Remote computer ForcePadSolver Name server
server
ForcePadSolver Name server Middie layer
server

Middle layer

Remote computer 2

FE Solver FE Solver

Implementation layer Implementation layer

1

Fig. 16. Remote configuration 1 and 2

with good performance. The 2D graphics in ForcePAD is implemented using
OpenGL [15].

One goal of the client application is to hide the CORBA implementation from
the user. The user should not be able to notice that the client is using CORBA
for interfacing with the ForcePADSolver server.

7 Conclusion

Using a three-tier implementation with interfaces and components, creates a
very flexible finite element application. The three-tier implementation protects
the client applications from changes in configuration and solver design. By using
interfaces when communicating with components, the need to recompile client
software when a new functionality is introduced in the solver components is
reduced. Interfaces can also be published enabling other software to use the
finite element application in an effective way. The CORBA specification also
enables new ways of using software. Applications can expose functionality to
other applications which can use it either locally or remotely, without having to
use intermediate files. By using a special language IDL to define the interfaces
to objects and functions, users of the objects can freely choose to implement
client applications in any language supported by their CORBA implementation.
CORBA exposed objects and methods can also be used in scripting environments
to effectively control complex simulations. Client software can easily distribute
calculations over available workstations. High Performance Computing (HPC)
centres would be able to host a set of applications as CORBA objects. From a
web site, users can register themselves as users and download client applications
that connect to the objects. This would make high performance computing more
available to a wider user group.
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A ForcePAD IDL description

The following section contains the IDL interface description used when generat-
ing implementation and client interface code for the ForcePADSolver server.

#ifndef _ForcePadSolver_
#define _ForcePadSolver_

#pragma prefix "localdomain.domain"
module ForcePadSolver {
// Type definitions

typedef long RetVal;

typedef sequence<double> TStiffnessVector;
typedef sequence<double> TDisplVector;
typedef sequence<double> TResultVector;
typedef sequence<double> TForceVector;
typedef sequence<long> TForceDofVector;
typedef sequence<double> TBCVector;
typedef sequence<long> TBCDofVector;

// FemGrid interface

interface FemGrid {
void setSize(in long rows, in long cols);
void setStiffness(in TStiffnessVector rowStiffness);
void setForces(in TForceVector forces, in TForceDofVector forceDofs);
void setBCs(in TBCVector bcs, in TBCDofVector bcDofs);
void getDisplacements(out TDisplVector displacements);
void getResults(out TResultVector results);
void remove();

};
// FemGridFactory interface

interface FemGridFactory {
FemGrid create();

};
// FemSolver interface

enum TErrorType {
ET_NO_ERROR,
ET_NO_ELEMENTS,
ET_NO_BCS,
ET_NO_LOADS,
ET_UNSTABLE,
ET_INVALID_MODEL,
ET_LOAD_OUTSIDE_AE,
ET_BC_OUTSIDE_AE

};

interface FemSolver {
void execute();
TErrorType getLastError();
void remove();

};

// FemSolverFactory interface

interface FemSolverFactory {
FemSolver create();

};

// FemSystem interface
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interface FemSystem {
FemGrid getFemGrid();
FemSolver getFemSolver();
void remove();

};
// FemSystemFactory interface

interface FemSystemFactory {
FemSystem create();
};
};

#endif

B ForcePADSolver server implementation code

This appendix contains the implementation code for the ForcePADSolver server.
The main program initialising the ForcePADSolver server is also listed. Some
code is deliberately left out, indicated with special remarks in the code.

B.1 Header file ForcePADSolver_impl.h

#ifndef ___ForcePadSolver_impl h__

#define ___ForcePadSolver_impl_h

#include <ForcePadSolver_skel.h>

#include "FemGrid.h"
#include "Forces.h"
#include "BCs.h"

#include <vector>
namespace ForcePadSolver {

class FemGrid_impl : virtual public POA_ForcePadSolver::FemGrid,
virtual public PortableServer::RefCountServantBase
{
FemGrid_impl(const FemGrid_impl&);
void operator=(const FemGrid_impl&);

PortableServer: :POA_var poa_;
private:
CFemGrid* m_femGrid;
CForces* m_forces;
CBCs* m_bcs;
public:
FemGrid_impl (PortableServer: :POA_ptr);
“FemGrid_impl();

virtual PortableServer::POA_ptr _default_POAQ);

virtual void setSize(CORBA::Long rows, CORBA::Long cols)
throw(CORBA: : SystemException) ;
virtual void setStiffness(const ForcePadSolver::TStiffnessVector& rowStiffness)
throw(CORBA: : SystemException) ;
virtual void setForces(const ForcePadSolver::TForceVector& forces,
const ForcePadSolver::TForceDofVector& forceDofs);
virtual void setBCs(const ForcePadSolver::TBCVector& bcs,
const ForcePadSolver: :TBCDofVector& bcDofs);
virtual void getDisplacements(ForcePadSolver::TDisplVector_out displacements)

69



throw(CORBA: : SystemException) ;

virtual void getResults(ForcePadSolver::TResultVector_out results)
throw(CORBA: : SystemException) ;

virtual void remove()
throw(CORBA: : SystemException) ;

// Non-CORBA access methods

CBCs* getBCs();

CForces* getForces();

CFemGrid* getFemGrid();
};

class FemGridFactory_impl : virtual public POA_ForcePadSolver::FemGridFactory,
virtual public PortableServer::RefCountServantBase

{
FemGridFactory_impl(const FemGridFactory_impl&);
void operator=(const FemGridFactory_impl&) ;

PortableServer: :POA_var poa_;
public:

FemGridFactory_impl(PortableServer: :POA_ptr);
“FemGridFactory_impl();

virtual PortableServer::POA_ptr _default_POAQ);

virtual ForcePadSolver::FemGrid_ptr create()
throw(CORBA: : SystemException) ;
};

class FemSolver_impl : virtual public POA_ForcePadSolver::FemSolver,
virtual public PortableServer::RefCountServantBase
{
FemSolver_impl(const FemSolver_impl&);
void operator=(const FemSolver_impl&);

PortableServer: :POA_var poa_;
private:

CFemGrid* m_femGrid;

double m_maxNodeValue;

double m_maxStressValue;

CForces* m_forces;

CBCs* m_bcs;

ForcePadSolver: :TErrorType m_errorStatus;
public:

FemSolver_impl (PortableServer: :POA_ptr) ;

“FemSolver_impl();

virtual PortableServer::POA_ptr _default_POAQ);

virtual void execute()
throw(CORBA: : SystemException) ;

virtual ForcePadSolver::TErrorType getLastError()
throw(CORBA: : SystemException) ;

virtual void remove()
throw(CORBA: : SystemException) ;

// Non-CORBA access methods

void setBCs(CBCs* bcs);

void setForces(CForces* forces);

void setFemGrid(CFemGrid* femGrid);
};

class FemSolverFactory_impl : virtual public POA_ForcePadSolver::FemSolverFactory,
virtual public PortableServer::RefCountServantBase

{
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FemSolverFactory_impl(const FemSolverFactory_impl&);
void operator=(const FemSolverFactory_impl&);

PortableServer: :POA_var poa_;
public:

FemSolverFactory_impl(PortableServer: :POA_ptr) ;
“FemSolverFactory_impl();

virtual PortableServer::POA_ptr _default_POAQ);

virtual ForcePadSolver::FemSolver_ptr create()
throw(CORBA: : SystemException) ;
};

class FemSystem_impl : virtual public POA_ForcePadSolver::FemSystem,
virtual public PortableServer::RefCountServantBase

{
FemSystem_impl (const FemSystem_impl&) ;
void operator=(const FemSystem_impl&) ;
PortableServer: :POA_var poa_;
private:
ForcePadSolver: :FemGrid_ptr m_femGridRef;
ForcePadSolver: :FemSolver_ptr m_femSolverRef;
FemGrid_impl* m_femGridImpl;
FemSolver_impl* m_femSolverImpl;
public:
FemSystem_impl (PortableServer: :POA_ptr);
“FemSystem_impl();
virtual PortableServer::POA_ptr _default_POAQ);
virtual ForcePadSolver::FemGrid_ptr getFemGrid()
throw(CORBA: : SystemException) ;
virtual ForcePadSolver::FemSolver_ptr getFemSolver()
throw(CORBA: : SystemException) ;
virtual void remove()
throw(CORBA: : SystemException) ;
};

class FemSystemFactory_impl : virtual public POA_ForcePadSolver::FemSystemFactory,
virtual public PortableServer::RefCountServantBase
{
FemSystemFactory_impl(const FemSystemFactory_impl&) ;
void operator=(const FemSystemFactory_impl&) ;
PortableServer: :POA_var poa_;

public:

FemSystemFactory_impl(PortableServer: :POA_ptr);
“FemSystemFactory_impl () ;

virtual PortableServer::POA_ptr _default_POA();
virtual ForcePadSolver::FemSystem_ptr create()
throw(CORBA: : SystemException) ;
};

} // End of namespace ForcePadSolver

#endif
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B.2 Implementation file ForcePADSolver_impl.cpp

#include <0B/CORBA.h>
#include <ForcePadSolver_impl.h>

#include <iostream>
using namespace std;

#include "calfem.h"
#include <set>

//
// Constructor for the FemGrid implementation
//
ForcePadSolver::FemGrid_impl::FemGrid_impl(
PortableServer: :POA_ptr poa)
: poa_(PortableServer: :POA::_duplicate(poa))

{
// Construct implementation objects
m_femGrid = new CFemGrid();
m_femGrid->setUseImage (false);
m_forces = new CForces();
m_bcs = new CBCs();
}
ForcePadSolver: :FemGrid_impl::~“FemGrid_impl()
{
// Delete implemenation objects
delete m_femGrid;
delete m_forces;
delete m_bcs;
}
1171777777177777717777777777777777777777777777717777777777777
///// FemGrid_impl access methods /1117
///// getFemGrid(), getForces(), getBCs(), left out /7117

[I11110777777771777177771777777717777777777177117771177711777

PortableServer: :POA_ptr
ForcePadSolver: :FemGrid_impl::_default_POA()
{
return PortableServer::POA::_duplicate(poa_);

}

//

// Implements the CORBA method setSize

//

void

ForcePadSolver: :FemGrid_impl: :setSize(
CORBA: :Long rows,
CORBA: :Long cols)
throw(CORBA: : SystemException)

{
m_femGrid->setGridSize(rows, cols);

}

//

// Implements the CORBA methods setStiffness

//

void

ForcePadSolver: :FemGrid_impl::setStiffness(
const ForcePadSolver: :TStiffnessVector& rowStiffness)
throw(CORBA: : SystemException)

int i, j, k;
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int rows, cols;

// Initialise the stiffness grid
m_femGrid->getGridSize (rows, cols);
m_femGrid->initGrid();
m_femGrid->initDofs();

m_femGrid->initResults();

// Transfer the incoming rowStiffness vector
// to the internal implementation grid

k = 0;

for (i=0; i<rows; i++)
for (j=0; j<cols; j++)

m_femGrid->setGridValue(i, j, 0, (float)rowStiffness[k++]);
m_femGrid->setGridValue(i, j, 1, (float)rowStiffness[k++]);

}
}
//
// Implements the CORBA setForces method
//
void

ForcePadSolver::FemGrid_impl::setForces(
const ForcePadSolver: :TForceVector& forces,
const ForcePadSolver: :TForceDofVector& forceDofs)
throw(CORBA: : SystemException)

{
int i;
m_forces->clear();
// Transfer incoming force vectors to internal
// force list instance
for (i=0; i<forces.length(); i++)
m_forces—>add(forceDofs[i], forces[il);
}
//
// Implements the CORBA setBCs method
//
void

ForcePadSolver: :FemGrid_impl: :setBCs(
const ForcePadSolver: :TBCVector& bcs,
const ForcePadSolver::TBCDofVector& bcDofs)
throw(CORBA: : SystemException)

{
int i;
m_bes->clear();
// Transfer incoming bc vectors to internal
// bc list instance
for (i=0; i<bcs.length(); i++)
m_bcs—>add (bcDofs [i], bes[il);
}
//
// Implements the CORBA getDisplacements method
//
void

ForcePadSolver: :FemGrid_impl: :getDisplacements(
ForcePadSolver: :TDisplVector_out displacements)
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throw(CORBA: : SystemException)

{
int i;
// Instantiate CORBA displacement return vector
displacements = new ForcePadSolver::TDisplVector;
// Get displacements from internal implementation
int displSize = m_femGrid->getDisplacementSize();
// Resize CORBA vector
displacements->length(displSize-1);
// Copy internal results to CORBA return vector
for (i=0; i<displSize-1; i++)
{

(*displacements) [i] = m_femGrid->getDisplacement (i+1);

}

}

//

// Implements CORBA getResults method

//

void

ForcePadSolver::FemGrid_impl::getResults(
ForcePadSolver: :TResultVector_out results)
throw (CORBA: : SystemException)

{
// Instantiate CORBA result return vector
results = new ForcePadSolver::TResultVector;
int i, j, k, 1;
int rows, cols;
double values[3];
// Resize return vector from grid size
m_femGrid->getGridSize (rows, cols);
results—>length(rows*cols*2*3);
// Copy results to CORBA result vector
1=20;
for (i=0; i<rows; i++)
for (j=0; j<cols; j++)
for (k=0; k<2; k++)
{
m_femGrid->getResult(i, j, k, values);
(*results) [1++] = values[0];
(*results) [1++] = values[1];
(*results) [1++] = values[2];
}
}
//
// Implements CORBA remove method
//
void

ForcePadSolver: :FemGrid_impl: :remove()
throw(CORBA: : SystemException)

{
// Get object id of this
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PortableServer: :POA_var poa = _default_POAQ);
PortableServer: :ObjectId_var id = poa->servant_to_id(this);
poa—>deactivate_object(id);

}

[11717117777777717777177771777177717777177771177111771117711777
///// FemGridFactory_impl empty constructor left out /1117

///// FemGridFactory_impl empty destructor left out /7117
///// FemGridFactory_impl::_default_POA() left out /1177
/////////////////////////////////////////////////////////////
//

// Implements CORBA FemGridFactory create method

//

ForcePadSolver: :FemGrid_ptr
ForcePadSolver: :FemGridFactory_impl: :create()
throw(CORBA: : SystemException)

{

// Create a FemCalc implementation Object

FemGrid_impl* impl = new FemGrid_impl(_default_POAQ));

PortableServer: :ServantBase_var result = impl;

return impl-