
Doctoral Thesis
Structural

Mechanics

JONAS LINDEMANN

TECHNIQUES FOR DISTRIBUTED
ACCESS AND VISUALISATION IN
COMPUTATIONAL MECHANICS



Detta är en tom sida!



Copyright © Jonas Lindemann, 2003.
Printed by KFS i Lund AB, Lund, Sweden, September 2003.

For information, address:

Division of Structural Mechanics, LTH, Lund University, Box 118, SE-221 00  Lund, Sweden.
Homepage: http://www.byggmek.lth.se

Structural Mechanics

ISRN  LUTVDG/TVSM--03/1016--SE (1-175)
ISBN 91-628-5811-4   ISSN 0281-6679

TECHNIQUES FOR DISTRIBUTED

ACCESS AND VISUALISATION IN

COMPUTATIONAL MECHANICS

Doctoral Thesis by

JONAS LINDEMANN



Detta är en tom sida!



Preface

The work presented in this PhD thesis was carried out at the Division of Structural
Mechanics, Lund University.

I would like to express my gratitude to my supervisors, Professor Ola Dahlblom and
Professor Göran Sandberg for their support and for the discussions we have had regarding
the topics in this work. I would also like to thank Karl-Gunnar Olsson for contributing
with the fundamental ideas and discussions of the design and educational aspects of using
finite element software in an educational setting, and Mr Bo Zadig for helping me put it
all together.

There are of course many other people, colleagues of mine at Structural Mechanics
included, who in some way have contributed to the work.

Finally, I am grateful for the opportunity of using the computer resources available
through Lunarc, the center for scientific and technical computing, at Lund University

Lund, September 18, 2003

Jonas Lindemann

i



ii



Contents

I Introduction and overview 1

1 Introduction 3

2 Overview 5

2.1 Different levels of interfaces . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Distributed technologies and middleware . . . . . . . . . . . . . . . . . 6

2.3 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Graphical user interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4.1 ForcePAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.2 ObjectiveFrame . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Visualisation framework . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Concluding remarks 17

3.1 Transparent access to finite element software . . . . . . . . . . . . . . 18

3.2 Visualisation of complex phenomena . . . . . . . . . . . . . . . . . . . 18

3.3 Usability and educational aspects of finite element software . . . . . . 19

II Appended Papers 23

Paper I – An Approach For Distribution Of Resources In Structural

Analysis Software 25

Paper II – Using CORBA Middleware in Finite Element Software 43

Paper III – Software for Numerical Simulation of Drying Induced De-

formation of Wooden Products 85

iii



CONTENTS CONTENTS

Paper IV – Real-time Visualisation of Fibre Networks 93

Paper V – An Approach to Teaching Architectural and Engineering

Students Utilizing Computational Mechanics Software ForcePAD 105

Paper VI – ObjectiveFrame - An Educational Tool for understanding

the Behaviour of Structures 117

III Appendix 127

Paper A.1 – Initial Usability Study of ObjectiveFrame A-1

Paper A.2 – Interactive Visualisation Framework – Ivf++ A-23

iv



Part I

Introduction and overview

1





Chapter 1

Introduction

Computational mechanics software is widely used in many disciplines today. For the most
part, it is used by people with a good understanding of the methods involved. The way in
which finite element applications has been used have not changed much since they were
first conceived. The normal workflow is shown in Figure 1.1. A pre-processor is used to
define the geometry, loads and boundary conditions. The pre-processor then generates
a mesh, which in turn is used for generating an input file for the finite element solver.
The solver writes the results to an output file, which is read into a post-processor for

Preprocessor FE Solver Postprocessor
 Input file  Output  

 file

Figure 1.1: Normal workflow of a finite element application

visualisation. The design of these applications imposes certain restrictions on the use of
computational mechanics software, concerning both its usability and its integration with
other software.

The work presented here aims at extending the context of computational mechanics
software into such areas as computer science, scientific visualisation and human-computer
interaction. Papers I, II and III deal with methods for accessing finite element software
by use of distributed technologies. Paper IV presents a method of visualising computa-
tional results in real-time. Papers V and VI examine the usability of the graphical user
interface, particularly in an educational setting.

3



CHAPTER 1. INTRODUCTION

4



Chapter 2

Overview

2.1 Different levels of interfaces

Finite element software often has many user and developer interfaces. To make it easier to
understand how users and developers can interact with finite element software, interfaces
of four different levels are defined, see Figure 2.1

 

Finite element software 

Middleware, Scripting and command line tools 

Pre and post processor software 

Dedicated applications 

Level 0 

Level 1 

Level 2 

Level 3 

Figure 2.1: The different levels of interfaces to finite element software

Each level also has two interface categories, the user interface and the developer in-
terface. The finite element software with its various software components, is at level 0.
The user interface to the finite element software being defined here by input and output
files. The developer interface (if one exists) is defined by header files to library routines
for input and output.

At level 1, the user interface to the software is made less complex and easy to use by
the provided scripting and command-line tools. The user is given greater control and can
use the software in a more flexible way. The developer interface at this level can also use
scripting and command-line tools. Direct access to the software is provided by middleware
software enabling a higher-level interface and a component-based architecture. Special
types of middleware can also provide distributed access to the finite element software.

At level 2, the user and developer interfaces are defined by pre- and post-processor
software, which makes the generation of input data and the analysis of the output data

5



2.2. DISTRIBUTED TECHNOLOGIES AND MIDDLEWARE CHAPTER 2. OVERVIEW

more effective. The pre-processor generates the input data for the finite element software,
often using simple geometric shapes to define the object being modeled. This frees the user
from the task of specifying each element in the finite element mesh. The post-processor
software analyses the output of the finite element software and presents the results in
terms of 2D and 3D plots.

At level 3, the user interface is defined as a dedicated application which solves a specific
problem, the details of the finite element software being hidden from users.

Applications written at a specific level often use interfaces located at several levels.
A dedicated application at level 3 can be implemented to use finite element software
directly at level 0 or can access the finite element software by use of middleware or pre-
and post-processing software at level 1 and 2.

2.2 Distributed technologies and middleware

Classical distributed technologies are often based on a client/server architecture that
allows clients to communicate with servers directly. This approach works well when
protocols are well-proven and well-established, but is often difficult to implement if the
systems become more complex. When changes and features are added on the server
side, the client often needs to be updated. To solve this, an additional layer called a
middle-tier (level 1 in Figure2.2) is placed between the client and the server. CORBA [1],
DCOM [2], Java RMI [3], PHP [4] and .NET [5] for example, are technologies that have
been developed to create this middle layer. The main idea is that a set of interfaces is
defined in the middleware software describing the services provided. Clients developed
against these interfaces communicate with the middleware software instead of the real
server system. This allows the server side to be updated and reconfigured without any
of the clients being affected by this. Once an interface has been defined, it can not be
changed. Functions can be added by new interfaces being added to the middle layer.
There are also other benefits of using middleware technologies. Some technologies such
as CORBA, DCOM and .NET are language-neutral. Interfaces are often defined by use
of a special language. From the definition determined in this way, client and server code
can be generated for any language that is supported.

 

Finite element software 

Middleware, Scripting and command line tools 

Pre and post processor software 

Dedicated applications 

Level 0 

Level 1 

Level 2 

Level 3 

Figure 2.2: Interface levels of distributed technologies and applications

Finite element software today still uses text files to a large extent for communication
with pre- and post-processors. Most finite element software uses a special proprietary-
standard file format. Pre- and post-processor developers often need to support a variety of

6



CHAPTER 2. OVERVIEW 2.2. DISTRIBUTED TECHNOLOGIES AND MIDDLEWARE

different finite element codes. This requires the development of a large number of export
filters. However, these need to be updated whenever updating of the input and output
file format occurs. Use of text files for communication has other drawbacks as well, such
as ineffective storage schemes. Standardisation efforts often fail because it is too slow to
support many of the features introduced in new versions of finite element softwares. A
solution to this is to use a middle layer between the pre-processor and the finite element
code, just as implemented in modern client/server applications. The middle layer consists
then of a set of general interfaces describing the input and output of the finite element
software. In a perfect world, developers providing finite element software would create a
set of general interfaces for defining such matters as the geometry and properties of the
elements and the results output. Each developer could then add specialised interfaces
for specific feature of their own software. This would make it easier for pre- and post-
processor developers to support a wide range of finite element software. Interfaces to
different packages can be generated in any language automatically from the definitions
the finite element developers provide.

One advantage of using middleware technology is location transparency. This means
that a client using a specific interface does not need to know whether the resources in
question are situated locally or remotely. This in turn allows the computational resources
to be used and configured in a variety of ways without users having to configure their
client applications in any special way.

The new trend which is emerging in distributed computing today is that of GRID
computing. GRID computing connects computational resources such as clusters with
each other to form a ”Meta cluster”. Both clusters and grid resources are oriented to
command-line interactions. Although users need to be familiar with a wide variety of
tools and commands in order to use the resources available effectively, this has not been
a problem up to now because most current users of clusters and GRIDs are familiar with
these tools. To gain acceptance for these technologies by a wider user group, however,
the interface to these resources needs to be improved. Middleware technologies such as
CORBA [1], PHP [4], .NET [5] and Java RMI [3] can be the key to providing improved
interfaces to such resources. Figure 2.3 shows an example of a Java-based engineering tool
able to take advantage of distributed resources by executing finite element calculations
remotely. Figure 2.4 shows an effort under way at Lunarc 1 to create a more user-friendly
interface to cluster and GRID resources there by providing much of the functionality of
the cluster in a web-based form.

Paper I describes a three-tier finite element application using Microsoft’s Distributed
Component Object Model (DCOM). Paper II provides a more in-depth look at the use
of middleware technologies in computational science and in finite element software. The
performance of CORBA for the transfer of large amounts of data is studied as well. The
paper also includes a complete description of a CORBA-based finite element implemen-
tation. Paper III describes a new finite element application with a plug-in interface for
finite element solvers. Plug-ins will be made available for both local and remote execution
by use of CORBA or other distributed technologies.

1Lunarc is the centre for scientific and technical computing at Lund University

7



2.3. VISUALISATION CHAPTER 2. OVERVIEW

Figure 2.3: eTool, a web-based engineering tool

Figure 2.4: Web-based interface to cluster and GRID resources

2.3 Visualisation

In many situations, normal post-processors cannot be used for visualising results. Susanne
Heyden [6] has developed a software for simulating deformation in three-dimensional fi-
bre structures. The code involved produces result files which cannot be readily used in
conjunction with commercially available post-processors. The complexity of the model,
evident in Figure 2.6, requires special methods for efficient visualisation. The methods
are implemented in the C++ OpenGL [7] application FibreScope. During development
of the FibreScope application, different methods for visualising fibre structure were in-
vestigated. In the one method, a circular cross-section is swept along the fibre spine,

8



CHAPTER 2. OVERVIEW 2.3. VISUALISATION

creating an extruded fibre shape, see the image at the left in Figure 2.5. Although this
method provides a good representation of the fibre geometry, a large number of triangles
are generated. A second method, in which the geometry of the fibre is reduced to a single
band consisting of two triangles per fibre segment, was developed for visualising larger
fibre networks. A texture is also applied to the band for representing the fibre structure.
Visibility issues are dealt with by turning the band toward the user at each vertex point
on the fibre. The result is a visualisation with significantly fewer triangles. An example
of this method is shown in the image at the right in Figure 2.5.

Figure 2.5: Fibre visualisation using the extrusion based method (left) and the band
method (right).

The FibreScope application was also used in a recent project [8] to help evaluate
methods for generating random fibre networks of differing properties. With use of the ap-
plication large networks could be rotated and viewed on the screen in real-time, revealing
quickly whether the generation algorithms were working. The generation algorithms will
probably be integrated into the FibreScope application, allowing the latter to be used as
a pre-processor as well. Figure 2.6 shows FibreScope’s main user interface.

FibreScope is implemented in C++ using the FLTK [12] library for the 2D user inter-
face parts and the Interactive Visualisation Framework Ivf++ [13] for the visualisation
parts. Ivf++ is a C++ Scene graph library using OpenGL for rendering. Through use of
FLTK and Ivf++, FibreScope can be utilised on any platform, such as Linux, SGI/IRIX
or Microsoft Windows, having an OpenGL implementation.

Paper IV describes the various visualisation methods used in FibreScope, comparing
them in terms of performance.

9



2.4. GRAPHICAL USER INTERFACES CHAPTER 2. OVERVIEW

Figure 2.6: The FibreScope application

2.4 Graphical user interfaces

Finite element software can be used in a wide variety of areas, due to its generality.
One problem, however, is that finite element software packages often require a thorough
understanding of the inner workings of the software (level 2). To allow the benefits of
finite element software to be taken advantage of adequately, the user interface should be
implemented on a higher level, such at level 3 in Figure 2.1. The interface should also be
designed with the target-user group in mind.

 

Finite element software 

Middleware, Scripting and command line tools 

Pre and post processor software 

Dedicated applications 

Level 0 

Level 1 

Level 2 

Level 3 

Figure 2.7: Interface levels for graphical user interfaces

Teaching mechanics to engineering and design students involves providing students
with the ability to go on from investigating and understanding properties involved to be-
coming actively engaged in designing, articulation and expression, going from inner qual-
ities to outer contours. Tools particularly useful in this process are ones involving simple
sketching and enabling rapid responses to be made in investigating different mechanical
properties such as those of contour deformation, forces and force fields. Sections 2.4.1
and 2.4.2 describe certain tools developed for this purpose.

10



CHAPTER 2. OVERVIEW 2.4. GRAPHICAL USER INTERFACES

2.4.1 ForcePAD

In design and in design education, much emphasis is placed on the concept of sketching.
A design is never accepted automatically, but is iterated over time until a satisfactory
solution is found, sketching being used extensively in this process. ForcePAD [9] was
developed as a tool both for enhancing the users understanding of mechanical concepts
and for use in the sketching process, particularly in an educational setting.

The ForcePAD application shown in Figure 2.8 employs metaphor similar to the
metaphors found in such image editing applications as Adobe Photoshop [10] and Jasc
PaintShop Pro [11]. These applications are generally very intuitive and direct, using pens,

Figure 2.8: The ForcePAD application

brushes and colour palettes as tools for drawing. The ForcePAD user interface is based
on the same principles. The main difference here is that painting is done not in colour
but with use of a grey scale in which white represents zero stiffness and black maximal
stiffness. Use of the painting metaphor also provides other benefits. ForcePAD is able to
import pixel-based images from files or from the Windows clipboard. Imported images
are automatically converted to grey scale images. Use of this approach makes it easy
for a design student to take a sketch, scan it and then paste it into ForcePAD, where
displacements and stresses can be analysed. Figure 2.9 shows an example of this process.
In the example, ForcePAD is used to import a scanned image, edit and then analyse a
sketch of the Pantheon in Rome. The complete analysis can be carried out in a matter
of minutes.

The ForcePAD application also supports the study of mass, centre of gravity and
equilibrium by use of a special version called ForcePAD/R. Figure 2.10 shows the results
of an assignment in which students photographed objects which they then analysed in
terms of centre of gravity and equilibrium.

11



2.4. GRAPHICAL USER INTERFACES CHAPTER 2. OVERVIEW

Figure 2.9: ForcePAD example involving scanned images

Figure 2.10: This brief series of pictures shows how a student coupled mechanical entities
with expression by use of the ForcePAD/R [9] software. The direction of a branch on
the right side in (a) and (b), and thus the support conditions as well, are manifested in
the positioning of the hand, which is closed (a) and open in (b). Note the changes in the
support load that occurs.

ForcePAD is implemented in C++ by use of a set of platform independent libraries.
The finite element code is implemented using the NEWMAT09 [14] matrix and solver

12



CHAPTER 2. OVERVIEW 2.4. GRAPHICAL USER INTERFACES

library. The graphical user interface is implemented in the Fast Light Toolkit (FLTK) [12].
This is a user-interface library available for Linux, Mac OS X, Windows and most versions
of UNIX. The library is very efficient and produces highly responsive applications on any
platform. Another advantage of FLTK is that of the graphical user interface designer
FLUID, which comes with the library. FLUID provides almost the same level of rapid
application development as Borland Delphi [15] and Microsoft Visual Basic [16], but
its also providing platform independence. Drawing and visualisation are implemented
with the use of the OpenGL [7] graphics library. OpenGL is generally regarded as a
3D graphics toolkit, although it also has an effective 2D rasterisation interface enabling
hardware-accelerated drawing to be performed rapidly. With the use of this approach,
ForcePAD allows rapid sketching to be done and the finite element meshes to be updated
continually, enhancing the directness of the actions carried out.

Paper V describes the design and implementation of ForcePAD and also presents an
educational case study.

2.4.2 ObjectiveFrame

ObjectiveFrame, see Figure 2.11, was conceived for developing new ideas and principals
for user interaction in 3D finite element software. ObjectiveFrame [17] is a 3D frame-
analysis tool implemented by use of OpenGL. The user interface for it is designed so as to
resemble the way modeling is done in a shop, thus creating a virtual shop. To accomplish
this, interaction with the model needs to be immediate and the representation sufficiently
clear, for a user to feel immersed in the model. This is done by providing ObjectiveFrame
with a fully lit and shaded 3D model, together with direct feedback concerning interaction
with the objects in question.

Figure 2.11: ObjectiveFrame

13



2.4. GRAPHICAL USER INTERFACES CHAPTER 2. OVERVIEW

One of the most important features of ObjectiveFrame is its ability to visualise the
response of a structure subjected to a user-controlled load in real-time. This enables
users to ”feel” the degree of stiffness in different directions in a structure. An example
of this is shown in Figure 2.12. The real-time features of ObjectiveFrame have also been

Figure 2.12: Real-time updating of a structure in ObjectiveFrame

exploited in a course in architecture 2 in which students investigate different techniques
for the construction and stiffening of high structures, experimenting with the techniques
in question and exploring the effects these have by ”feeling” the mechanical properties of
the structure.

The ObjectiveFrame application is implemented in C++, using a set of platform-
independent libraries. The finite element code is implemented by the use of the NEW-
MAT09 [14] matrix and solver library. The graphical user interface is implemented in the
Fast Light Toolkit (FLTK) [12]. Rendering of 3D graphics is involves the use of the Inter-
active Visualisation Framework Ivf++ [13], a C++ scene-graph library, using OpenGL
for rendering. The ObjectiveFrame application is taken up in Paper VI.

The initial usability testing of the ideas and principals in ObjectiveFrame was done
in the different courses in which it was utilised. This has led to continued developments
of it. However, even though the usability of an application can be tested rather well in a
classroom setting, not all the answers needed can be obtained in this way. To improve the
user interface of ObjectiveFrame still more, an initial usability study was conducted early
in 2003, see Paper A.1. This study involved analysis of the existing user interface, and a
user test of a new interface design. This new design introduced a more direct approach to
selection, creating of loads and treatment of the boundary conditions. It also introduced a
new and improved method for handling the cursor. Some of the improvements are shown
in Figure 2.13. The improvements achieved on the basis of this usability study will be
included in the next major release of ObjectiveFrame.

2A course in high structures given at the School of Architecture at Chalmers University of Technology

14



CHAPTER 2. OVERVIEW 2.5. VISUALISATION FRAMEWORK

Figure 2.13: New cursor and load handling in an ObjectiveFrame prototype

2.5 Visualisation framework

Hardware-accelerated 3D rendering is standard on most platforms today. The most com-
mon way of accessing 3D hardware is by means of an API (Application Programmers
Interface). A common API is OpenGL which is platform independent and available on
several hardware platforms. Programming a visualisation application in OpenGL can be a
complicated task, since OpenGL is a low-level API, most advanced functions such as view
transformation and rendering of advanced geometry need to be implemented by the devel-
oper. Performing a given task often involves using several OpenGL calls. A higher-level
library such as Open Inventor, OpenGL Optimizer or OpenGL Performer is frequently
employed to make 3D rendering by means of OpenGL easier. An object-oriented approach
is often used to implement libraries of this type in C++. Major disadvantages of such
libraries are that they are often designed for a specific task and that they tend to be large,
complex, and difficult to extend.

The Interactive Visualisation Framework, Ivf++, was developed as an object-oriented
layer to be placed on top of OpenGL. This library was also the basis for the FibreScope
and ObjectiveFrame applications. The library implements a scene-graph, as well as a
framework for basic user-interfaces and special widgets for interfacing with user interface
toolkits. Ivf++ is an open-source library available for downloading at Sourceforge [25] 3.
Some of the Ivf++ features are the following:

- Modular library design. Only the parts needed are used.
- Built to be extended.
- Platform independent, compiling on Windows, Linux or SGI/Irix.
- A scene-graph with culling support.
- A reference counting system with smart pointers.
- Texturing supported by image loaders JPEG, PNG, TIFF, TGA or SGI rgb-files.
- 3D file format support for DXF, AC3d models and polyfiles.
- A user-interface library for creating simple OpenGL applications in FLTK, MFC
and native WIN32.

3Ivf++ 0.6.0 was released as an open source library under the LGPL license [18] in February 2000 .
The current version is 0.9, which since its creation has been downloaded over 12000 times (September
18, 2003)

15



CHAPTER 2. OVERVIEW

- 3D user interface controls.
- Stereo support.
- Complete class documentation.
- A User guide.

Paper A.2 describes the major ideas and guiding principles of the Ivf++ library.

16



Chapter 3

Concluding remarks

This work presented here concern ideas and methods on how the context of computational
mechanics can be improved for more efficient utilisation and extended into areas previously
not familiar with or capable of using such tools. Three main areas were studied:

• Providing efficient and transparent access to finite element applications.

• Developing methods for the visualisation of complex phenomena.

• Improving the usability of the finite element method, partly in an educational con-
text.

An appoach to providing more efficient and transparent access to finite element ap-
plications and to other computational mechanics software and libraries, based on the
CORBA specification is introduced and its usefulness explored.

Enhancing the understanding of complex phenomena is highly important. Many com-
putational codes produce large amounts of simulation data that need to be analysed and
evaluated. By creating tools that can visualise these simulations in real-time, understand-
ing of physical phenomena involved is enhanced. A special method for the visualisation
of large fibre networks, one that increases the size of the networks that can be visualised
in real-time, is also introduced.

Improving the usability of finite element software is important if it is to be employed
effectively in an educational setting. Normal computational mechanics codes are often
based on a very flexible hierarchical model, which is an obstacle for users unfamiliar with
it. Two approaches which appear more practicable in this respect are introduced here.
The one approach involves use of a new direct-image-based metaphor for creating a tool
that can be thought to ultimately be useful in facilitating creative processes in the work
of engineers, designers and architects. A second approach aims at improving interactivity
and the understanding of mechanical concepts in a 3D frame application using real-time
feedback of both the interface and the resulting deflection of the structure.

17



CHAPTER 3. CONCLUDING REMARKS

3.1 Transparent access to finite element software

The design of computational mechanics software has not changed fundamentally over the
years. The basic computational code is designed as a normal console application, files or
a relational database being used for communication and storage purposes.

In computer science, many new technologies have emerged which facilitate the more
flexible use of applications. Many applications today have an embedded script language,
such as Python [19], Visual Basic for Applications (VBA) [20], Tcl/Tk [21] or Ruby [22].
These script languages enable users to readily extend and utilise applications in ways that
would otherwise have required their being recompiled. Distributed technologies such as
.NET [5], CORBA [1] and Java RMI [3] provide a middle layer for distributing resources
over the internet. The use of computational mechanics software can be made more flexible
and efficient by use of such technologies.

User interface codes are often implemented in Java, C or C++. Interfacing compu-
tational codes based on these languages often requires special interface layers, the de-
velopment of which can be time-consuming. Through use of CORBA and the interface
definition language (IDL) for describing the functionality of computational mechanics
codes, many of these problems can be solved. Using IDL, functionality of a computa-
tional code can be defined in a language neutral way allowing the code for interfacing
with IDL-specified objects and functions to be generated in any desired language auto-
matically. The original computational code can still be kept in the original implementation
language, providing stability and maintainability.

Another way of accessing a computational code is by providing an interface to a script-
language. Through using CORBA when developing computational codes, interfacing with
script-languages becomes an automatic process. Some CORBA implementations, such as
fnorb [23] and omniORB [24] support the generation of interfaces to script languages
directly from the IDL-definitions involved.

Computational mechanics codes implemented with use of a CORBA interface also take
advantage automatically of the distributed features of CORBA. Location transparency
is implicit in the CORBA specification. A client application accessing CORBA objects
or functions does not need to be implemented in any special way for calling remote
or local objects. This enables computational mechanics codes to be placed on powerful
computational resources allowing clients located either remotely or locally to access them.
Client applications involving either aweb-based client or a stand-alone client can access
the resources available, providing for efficient use of the computational resources.

The implementation and performance characteristics of using CORBA and other dis-
tributed techniques in computational mechanics software are taken up in Papers I, II and
III.

3.2 Visualisation of complex phenomena

The visualisation of complex phenomena in results provided by computational mechanics
codes is important for the evaluation and understanding of physical phenomena. For the

18



CHAPTER 3. CONCLUDING REMARKS

analyses carried out to be efficient, and understanding of phenomena that is provided to
be adequate it is also important that the visualisation obtained can be interacted with the
in real-time. This enables results to be animated, providing for a better understanding of
time dependant effects.

Efficient real-time rendering also facilitates computational steering. The results at each
time step of a simulation being visualised allows the user to determine quickly whether or
not the simulation is errorneous, allowing the simulation to be terminated if appropriate or
the parameters to be changed in the course of the simulation, reducing the time required
for analysis.

The large amount of result data that computational software produces, can be difficult
to analyse and to evaluate if non-conventional geometries and enteties are employed. At
the same time standard post-processors are often designed for standard element types
only, having difficulties in dealing with non-standard elements. Visualising the behaviour
of the thousands of fibres included in a fibre network simulation [6] often requires advanced
3D graphics hardware. Taking advantage of techniques developed in the field of scientific
visualisation, such as billboarding, impostors and texturing, can improve performance
and reduce the hardware requirements considerably.

A special textured billboard method was developed to increase the number of fibres
that can be visualised in real-time. This method involves a line being swept along the
fibre spine, reducing the triangles to two per fibre segment. Visibility issues are solved by
orienting the band toward the user at each spine vertex. Due to the band fibre being flat,
however, the fibres do not look round unless special measures are taken. These involve
applying a special gradient texture to the band.

Paper IV describes the method implemented here and the post-processor software
FibreScope developed for this method.

3.3 Usability and educational aspects of finite element

software

Computational mechanics software is often designed to be very general, supporting sev-
eral types of elements and differing geometries. The software typically employs a hier-
archical description of the problem to be studied, see COSMOS [26], MSC/Patran [27],
ABAQUS/CAE [28]. If the user is familiar with the conceptual model involved, hierar-
chical models can be both efficient and flexible, but if the user is not, the complexity of
such models can be difficult to handle, see Shneiderman p.68 [29].

The overall usability of computational mechanics tools needs to be improved if these
are to be used effectively in a broad context, such as in an educational setting or with
divergent groups of users. The demands on usability placed on conventional computational
software in an educational setting is often greater than that placed on it in an engineering
setting. Students unfamiliar with finite element method is scarcely able to make adequate
use of an advanced finite element package.

In a problem-based learning environment, applications need to support both exper-
imentation and an iterative design process, creating a virtual workbench. The major

19



CHAPTER 3. CONCLUDING REMARKS

methods of implementing this in computational mechanics software are to make applica-
tions more direct and to provide rich feedback. To accomplish this, the principles used in
the design of user interfaces in computational mechanics software need to be changed.

One approach suggested in the work reported here is to replace the classical hierarchi-
cal modelling approach by an image-based modelling metaphor, such as found in Adobe
Photoshop [10] for example. Image-editing applications are often very direct and easy
to use, being based on the direct-manipulation concept1, creating structures as easy as
selecting a brush and moving the pointer. The user can also see the results immediately.
The ForcePAD [9] application described in Paper V implements the suggested image-
based modeling metaphor in a 2D finite element application. Instead of drawing with
color as in an image editor, the user draws with a grey scale, white representing no stiff-
ness at all and black maximum stiffness. The user is able to quickly create and solve finite
element models without having to spend time on modeling the geometry. The ForcePAD
software has successfully been used in teaching students in engineering, architecture and
industrial design.

In 3D finite element modeling, problems of usability are even more problematic. Many
finite element pre-processors simply extend the metaphors found in mechanics textbooks
to 3D conditions. This approach has two main drawbacks. One is that mechanics text-
books often concern 2D problems, where the metaphors in question work satisfactory.
Extending these metaphors to 3D conditions is not always intuitive. A second drawback
is that the symbols found in textbooks often require a thorough understanding of the
underlying principles. To make 3D finite element modeling more accessible to a larger
user group, the user interface needs to be improved. The ObjectiveFrame application
described in Paper VI, was developed to study possible improvements that can be made
in existing 3D finite element packages. ObjectiveFrame implements a user interface that
responds directly to the user’s inputs, any changes in the dimensions involved or rotation
of a beam being instantly displayed. ObjectiveFrame also takes real-time feedback one
step further. Users are able to ”feel” the stiffness of a structure by placing a load on the
structure involved the displacements that occur being updated and visible immediately
in the 3D view. A small usability study concerned with a new version of ObjectiveFrame
was carried out, a version which involved use of 3D widgets allowing load and boundary
condition placement to be determined by use of a direct approach, see Paper A.1.

1A software using direct manipulation should possess the following properties: visibility of the objects
of interest, rapidity and reversibility, incremental action, and replacement of a complex command language
syntax by direct manipulation of the object of interest [30]

20



Bibliography

[1] Object Management Group Inc., http://www.omg.org, 2000

[2] Microsoft Corporation, DCOM Technical Overview, 1996

[3] Sun Microsystems Inc., JavaTM Remote Method Invocation, http://java.sun.com/-
j2se/1.3/docs/guide/rmi/index.html, 2003

[4] PHP - PHP Hypertext Preprocessor, http://www.php.net, 2003

[5] Microsoft .NET Framework, http://msdn.microsoft.com/netframework, 2003

[6] Heyden S, A 3D Network Model for Evaluation of Mechanical Properties of Cellulose
Fibre Fluff, Report TVSM-1011, Division of Structural Mechanics, Lund University,
2000

[7] OpenGL, http://www.opengl.org, 2003

[8] Edlind N, Modelling and Visualization of the Geometry of Fibre Materials, Report
TVSM-5117, Division of Structural Mechanics, Lund University, 2003

[9] ForcePAD, http://www.byggmek.lth.se/resources/forcepad/forcepad.htm, 2003

[10] Adobe Photoshop 7, http://www.adobe.com/products/photoshop/main.html, 2003

[11] Jasc Paint Shop Pro 7, http://www.jasc.com, 2003

[12] B. Spitzak, Fast Light Toolkit FLTK, http://www.fltk.org, 2003

[13] Interactive Visualisation Framework - Ivf++, http://www.gorkon.byggmek.lth.se/ivfweb,
2003

[14] Newmat C++ matrix library, http://www.robertnz.net/nm intro.htm, 2003

[15] Borland Delphi, http://www.borland.com, 2003

[16] Microsoft Visual Basic, http://msdn.microsoft.com/vbasic, 2003

[17] ObjectiveFrame http://www.byggmek.lth.se/resources/objectiveframe/objectiveframe.htm,
2003

[18] The GNU Lesser General Public License, http://www.fsf.org/licenses/licenses.html-
#LGPL, 2003

21



BIBLIOGRAPHY BIBLIOGRAPHY

[19] Python, http://www.python.org, 2003

[20] Microsoft Visual Basic for Applications, http://msdn.microsoft.com/vba, 2003

[21] Tcl Developers site, http://www.tcl.tk, 2003

[22] Ruby: Programmers’ Best Friend, http://www.ruby-lang.org/en, 2003

[23] The pure Python CORBA ORB, http://www.fnorb.org, 2003

[24] The omniORBpy version 2 User’s Guide, http://omniorb.sourceforge.net/-
omnipy2/omniORBpy, 2003

[25] Sourceforge - Breaking Down The Barriers to Open Source Development,
http://www.sourceforge.net, 2003

[26] COSMOSWorks, http://www.solidworks.com/pages/products/cosmos/cosmosworks-
.html, 2003

[27] MSC.Patran, http://www.mscsoftware.com/products/products detail.cfm?PI=6,
2003

[28] ABAQUS Inc., http://www.abaqus.com, 2003

[29] B. Shneiderman, Designing the user interface : strategies for effective human-
computer interaction, Third edition, Addison-Wesley, 1998

[30] J. Preece et al, Human-Computer Interaction, Addison-Wesley, 1994

22



Part II

Appended Papers

23





Paper I

An Approach For Distribution Of

Resources In Structural Analysis

Software

European Conference on Computational Mechanics - ECCM 99

25



26



27



28



29



30



31



32



33



34



35



36



37



38



39



40



41



42



Paper II

Using CORBA Middleware in

Finite Element Software

Future Generation Computer Systems, 2003, Accepted for publication

43



44



45



46



47



48



49



50



51



52



53



54



55



56



57



58



59



60



61



62



63



64



65



66



67



68



69



70



71



72



73



74



75



76



77



78



79



80



81



82



83



84



Paper III

Software for Numerical

Simulation of Drying Induced

Deformation of Wooden Products

IUFRO Conference on Wood drying, 2003

85



86



87



88



89



90



91



92



Paper IV

Real-time Visualisation of Fibre

Networks

The Visual Computer, 2002

93



94



95



96



97



98



99



100



101



102



103



104



Paper V

An Approach to Teaching

Architectural and Engineering

Students Utilizing Computational

Mechanics Software ForcePAD

Electronic Journal of Information Technology in special theme Construction on
ICT Supported Learning in Architecture and Civil Engineering, 2003,
The paper is accepted with minor revisions, not included in this version

105



106



107



108



109



110



111



112



113



114



115



116



Paper VI

ObjectiveFrame - An Educational

Tool for understanding the

Behaviour of Structures

Applied Virtual Reality in Engineering & Construction Applications of Virtual
Reality Current Initiatives and Future Challenges, AVR II and CONVR, 2001

117



118



119



120



121



122



123



124



125



126



Part III

Appendix

127





Paper A.1

Initial Usability Study of

ObjectiveFrame

2003

A-1



A-2



A-3



A-4



A-5



A-6



A-7



A-8



A-9



A-10



A-11



A-12



A-13



A-14



A-15



A-16



A-17



A-18



A-19



A-20



A-21



A-22



Paper A.2

Interactive Visualisation

Framework – Ivf++

http://www.gorkon.byggmek.lth.se/ivfweb, 2003

A-23



A-24



A-25



A-26



A-27



A-28



A-29



A-30



A-31



A-32



A-33



A-34



A-35



A-36



A-37



A-38



A-39



A-40



A-41



A-42



A-43



A-44


