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Abstract

Rubber is not only a non-linear elastic material, it is also dependent on strain rate, temperature
and strain amplitude. The non-linear elastic property and the strain amplitude dependence give a
non-linear dynamic behavior that is covered by the models suggested in this thesis. The focus is
on a finite element procedure for modelling these dynamic properties of rubber in a way that is
easy to adopt by the engineering community.

The thesis consists of a summary and five appended papers.

The first paper presents a method to model the rate and amplitude dependent behavior of
rubber components subjected to dynamic loading. Using a standard finite element code, it is
shown how a model can be obtained through an overlay of viscoelastic and elastoplastic finite
element models.

The model presented in the first paper contains a large numberof material parameters that
have to be identified. The second paper suggests a method to identify the material parameters of
this model in a structured way. Experimental data for thirteen different materials were obtained
from harmonic shear tests. Using a minimization approach itis shown how the viscoelastic-
elastoplastic model can be fitted to the experimental data.

Using the methods presented in the first two papers, a radially loaded rubber bushing was
modelled in the third paper. The material properties of the finite element model were based on
dynamic shear tests. The dynamic response of the finite element model of the bushing was then
compared to measurements of a real bushing. Thus, verifyingthe entire procedure from material
test to finite element model.

Steady state loading is a very common load case for many rubber components. Although it is
possible to analyze this load with the earlier discussed viscoplastic model, the regularity of this
load lends it self to described in a more efficient way. For this load case a simplified viscoelastic
method is adopted. The basic idea of this model is to create a new viscoelastic model for each
amplitude. In paper IV this method is compared to the previous viscoplastic model as well as
verifying measurements.

In paper V both the viscoelastoplastic model and the modifiedviscoelastic model are used to
analyze rubber coated rollers. Different aspects of the twomodels are highlighted and the models
are used to analyze how the non-linear dynamic characteristics of the rubber material influences
the rolling contact.

Together the five papers present a set of tools for analyzing the dynamic behavior of rubber
components, from material testing to finite element modelling.
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Chapter 1

Background and Purpose

Dynamically loaded rubber components, such as flexible joints, vibration isolators and shock
absorbers, can be found in many mechanical systems and are often of crucial importance. More-
over,demands for better performing products at lower costswithin shorter development cycles
are a constant challenge to modern industry. As a response tothis challenge, traditional physi-
cal prototyping and testing are gradually being replaced byvirtual prototyping and simulations.
Until recently, rubber components have been more or less overlooked in this context, partly be-
cause of the difficulty of modelling the complex characteristics of rubber, but also due to a limited
understanding of the mechanical properties of rubber materials. The traditional way to develop
new rubber products is through physical prototyping and testing [11], which is a highly time-
consuming and expensive process.

The aim of this thesis has been to develop new and improved methods for virtual prototyping,
in order to predict the dynamic behavior of rubber components. This includes new finite element
models as well as methods to fit these models to experimental data. The focus has been on
developing finite element procedures that can easily be adopted by practicing engineers. To limit
the task, only non-linear elasticity, rate and amplitude dependence have been addressed in the
proposed methods.
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Chapter 2

Overview

This thesis presents two fundamentally different approaches to model the rate and amplitude
dependent properties of rubber: The overlay method and the equivalent viscoelastic method. Both
models are based on using commercially available finite elements codes.

The overlay method models the amplitude and frequency dependence in two parallel consti-
tutive branches. This is done by superimposing a viscoelastic and an elastoplastic finite element
model by an overlay of element meshes. This approach makes itpossible to use commercially
available finite element codes, using only the constitutivemodels that have already been imple-
mented. One of the difficulties with this model is the large number of material parameters that
need to be determined. This is done using a minimization procedure which focuses on good fit to
dynamic modulus and damping.

The equivalent viscoelastic method is restricted to model stationary dynamic loads. The basic
idea is to create an individual viscoelastic model for each amplitude. For each amplitude, the
frequency behavior is addressed by a standard viscoelasticmodel. This provides a model that is
easier to fit to material tests and is computationally more efficient.

Both models uses harmonic shear tests to characterize the dynamic properties of the rubber
material. Based on the expected working condition of the component, the tests are carried out for
a range of different frequencies and amplitudes. An advantage with the simple shear test, is that
the elastic part of the rubber behavior is rather linear. This makes it easier to observe the rate and
amplitude dependence.

Together the different methods provide a useful toolbox from an engineering point of view.
The methods are briefly described in Chapters 4 and 5 and more details are provided in the ap-
pended papers. In Chapter 3 a short introduction to the mechanical properties of rubber is given.
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Chapter 3

Material Properties

This chapter is a brief introduction to various aspects of the mechanical properties of rubber. It
should be noted that rubber is notonematerial, but is a widely used term including a great variety
of very unique materials, all with highly individual properties. Hence, the properties described
certainly do not apply to all rubbers. It is estimated that there are as many as 50,000 rubber
compounds on the market today. Although the focus of this section is on traditional vulcanized
rubber, other rubber-like materials such as the thermoplastic elastomers show similar mechanical
behavior, although the chemical composition is quite different.

3.1 Brief History

Produced from the sap of rubber trees, rubber was first discovered by ancient native tribes in South
and Central America. The word "caoutchouc" comes from the Indian word "cahuchu", meaning
"weeping wood". Rubber was discovered and brought back to Europe by Columbus. As more
rubber found its way to Europe, early scientists began to take an interest. The poor mechanical
properties of unvulcanized rubber meant that it had little value as an engineering material. This
was all to change in 1839, when Charles Goodyear heated sulphur-coated rubber by accident,
thus discovering the process of vulcanization. Producing afirm and stable rubber material, this
discovery was the start of the modern rubber industry [5]. Ever since, new and improved rubber
formulas and manufacturing processes have kept on adding tothe variety of rubber products
available today.

3.2 Molecular Structure

Vulcanized rubber consists of long cross-linked polymer molecules making up a highly elastic
matrix. For nearly all engineering applications, reinforcing filler, usually carbon-black, is added
to the rubber compound (see Figure 3.1). The fine filler particles form a structure within the
material. During vulcanization the filler structure forms both physical and chemical bonds with
the polymer chains. Depending on the application, there canbe several reasons for introducing
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CHAPTER 3. MATERIAL PROPERTIES

fillers, such as increasing stiffness, damping, abrasion resistance and tear strength. In other cases,
filler is simply introduced to reduce material costs.

Figure 3.1: Microstructure for a carbon-black-filled rubber vulcanizate. Grey circles: carbon
particles. Solid lines: polymer chains. Zigzag and dashed lines: crosslinks.

3.3 Damping and Dynamic Modulus

In the literature, several different ways to characterize damping and dynamic modulus can be
found. A common way to describe the characteristics of linear viscoelastic materials is in terms
of a complex modulus [8]. The complex modulus consists of a real part (storage modulus) and an
imaginary part (loss modulus). Another way to describe the complex modulus is in terms of the
absolute value (dynamic modulus) and phase angle.
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Figure 3.2: A typical hysteresis loop in harmonic shear.

Since the dynamic properties of rubber are more or less non-linear, it is not entirely appropri-
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ate to describe the characteristics in terms of a complex modulus. Based on the hysteresis loop in
Figure 3.2, the following two definitions of dynamic shear modulus,Gdyn, and damping,d, have
been used throughout the thesis. The dynamic shear modulus

Gdyn =
τ0
κ0

(3.1)

corresponds to the tilting angle of the hysteresis loop. As seen in Figure 3.2,τ0 is the shear
stress amplitude,κ0 is the shear strain amplitude andUc is the energy loss per unit volume for
one cycle. For a linear viscoelastic material definition 2 equals the absolute value of the complex
shear modulus.

The damping

d =
Uc

πκ0τ0
(3.2)

can be interpreted as a relative measure of the thickness of the hysteresis loop. Applied to a linear
dynamic material, this definition is the sine of the phase angle δ, i.e. d = sin(δ). For small phase
angles it is noted thatsin(δ) ≈ delta≈ tan(δ) which often seen in the literature when damping
is discussed.

3.4 Elasticity

Although rubber is usually thought of as an elastic, incompressible material, in real life there is no
such thing as a purely elastic rubber. Nevertheless, treating rubber as elastic can in some cases be
a good approximation. Examples of this are dynamically loaded unfilled rubber and filled rubber
subjected to quasi-static loads. For many unfilled rubbers,the hysteretic loss is often very small
and can thus be neglected. However, these rubbers are of limited use in practice.

Another example where it can be useful to use an elastic modelis for statically loaded rubber
components. In this case a good approximation can often be achieved by fitting an elastic model
to an experimental loading curve, ignoring the unloading curve. Such a model will yield fairly
accurate results during loading.

3.5 Rate Dependence

It is a well-known fact that the response of rubber components is influenced by the load rate. In
the case of a harmonic load, rate dependence or frequency dependence is shown as an increase in
modulus with increasing frequency, as seen in Figure 3.3. For an increasing frequency the loss
factor will increase at low frequencies, reach a maximum andthen decrease at very high frequen-
cies [8]. Since the emphasis in this thesis is on low frequency behavior (beneath about 200Hz) of
rubber, the measurements presented does not show a decreasein the loss factor. Nevertheless, the
models presented are capable of modelling this behavior as well.

The rate dependent loss is usually attributed to the resistance in reorganizing the polymeric
chains during loading. Since this reorganization cannot occur instantaneously, the loss of energy
will be rate dependent.
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Figure 3.3: General frequency dependence of dynamic shear modulus and damping for a filled
rubber.

3.6 The Fletcher-Gent effect

The amplitude dependence, also known as the Fletcher-Gent or Payne effect [9], is usually not
as well-known as the rate dependence, although in many casesthe amplitude dependence is by
far the most prominent of the two. The effect of the amplitudedependence for a harmonically
loaded rubber is illustrated in Figure 3.4. As can be seen, anincrease in amplitude will lead to a
decrease in modulus. The loss factor, on the other hand, willreach a maximum at moderate strain
amplitudes.
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Figure 3.4: General strain amplitude dependence of dynamicshear modulus and damping for a
filled natural rubber.

From a micro-mechanical point of view, the amplitude dependence is traditionally attributed
to the breakdown and reforming of the filler structure. However, more recent research suggests
that the amplitude dependence is caused by changes in the weak bonds between the filler structure
and the polymeric chains. As the rubber is deformed, these bonds will move along the surface of
the filler, resulting in a rate-independent energy loss.
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3.7 Mullins effect

Mullins effect can in some way also be considered an amplitude dependence. In the case of
a cyclic load, the Mullins effect [7] is observed as a decrease in stiffness during the first few
load cycles. This is often referred to as “mechanical conditioning” or “scragging” of the rubber.
Considering an unconditioned virgin material, further increasing the strain amplitude will lead to
an decreasing modulus partly due to Mullins effect and partly due to the previously mentioned
Fletcher-Gent effect. Contrary to the Fletcher-Gent effect, Mullins effect is not fully reversible.
However, if let alone for a couple of hours or more, the material will heal and the stiffness of the
virgin material will be at least partly restored.

3.8 Other Properties

Besides the rate and amplitude dependence and the non-linear elasticity accounted for in this
thesis, there are a number of other properties worth mentioning.

One property that was encountered during the experimental testing in this work is the temper-
ature dependence. During tests with a large harmonic load the rubber specimen will heat up due
to material damping. The resulting increase in temperaturewill have a similar effect on the dy-
namic properties of rubber as that of a decrease in frequencydescribed by the WLF-shift model
[1]. This effect can also be important for rubber componentssubjected to changes in external
temperature.

The working environment also poses other concerns such as aging and swelling. Oxidation
and ozone cracking, often in combination with thermal aging, may drastically shorten the life
span of a rubber component. This is especially true for thin components, since the aging process
is initiated at the surface. Also, many chemicals such as oilare known to destroy the crosslinks,
thereby reverting the rubber to the gum state, and also causing swelling. Depending on the specific
rubber material, application and environment, different properties have to be considered during
the design phase of a rubber component.
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Chapter 4

Modelling General Dynamic

Loads

As mentioned earlier, the main object of this thesis is to model the rate and amplitude dependent
effects of rubber materials, using the finite element method. For simple shear, the amplitude and
rate dependence can be modelled with simple one-dimensional models. These one-dimensional
models do not only form the basis of the overlay method presented later, but they also provide
a valuable tool for understanding the fundamental behaviorof rubber dynamics. Since the one-
dimensional models are based on the same principles as the finite element models, it is possible
to transfer the parameters between the two models.

The finite element analyzes in this thesis have been carried out inAbaqus [2]. The choice of
using a commercial finite element code makes it easier to focus on the engineering problem rather
than a detailed description of complex finite element models. It will also result in methods that
can be put directly to use in industry. On the downside is the lack of control of how the models
are implemented inAbaqus. AlthoughAbaqus provides a very good manual there will always
be details that are left out of the manual.

4.1 Elasticity

For finite element analysis, rubber is often modelled as a hyperelastic material [4]. Stress-strain
relationships are derived from a strain energy function usually based on the first, and sometimes
also second, strain invariant. Due to incompressibility itcan be argued that the third invariant is
constant and thus will not influence the strain energy. However, when analyzing highly confined
rubber components, the incompressibility properties cannot be neglected and are usually included
by an extra term in the strain energy function based on the volumetric change.

In this thesis only the Yeoh and Neo-Hookean models have beenused. These models are only
dependent on the first strain invariant. This single invariant dependence gives the advantage of
more robust models than for instance the Mooney-Rivlin model, which is also dependent on the
second strain invariant. A Mooney-Rivlin model fitted to a uniaxial test might behave very non-
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physically when loaded in a different direction. In contrast, the Neo-Hookean and Yeoh models
will always yield a physically correct behavior in all directions, as long as they are correctly fitted
for one direction. The strain energy density function of theYeoh model is given by:

W = C10(I1 − 3) +C20(I1 − 3)2 +C30(I1 − 3)3 (4.1)

PuttingC20 andC30 at zero yields the simpler Neo-Hooke model. The main difference between
the two models is the inability of the Neo-Hooke model to capture the increase in stiffness of
rubber during large tensile strains. The Neo-Hooke model isalso incapable of modelling the
modest non-linear behavior during shear.

4.2 Rate Dependence

The rate dependence is modelled using a viscoelastic model.The most simple one-dimensional
viscoelastic model to yield a physically correct behavior is the so called standard linear solid
(SLS) model. The SLS model consists of a single Maxwell element coupled in parallel with
an elastic spring. This model will yield good results for a small range of frequencies. In order
to achieve a better fit to a larger range of frequencies, the SLS model can be expanded with
several Maxwell elements coupled in parallel, resulting inthe generalized Maxwell model shown
in Figure 4.1.

Go

τ

κ

o

2

veG

1

veG

veG

2r
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1r
t
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Figure 4.1: The generalized Maxwell model.

The stress response of the generalized Maxwell model is the sum of all the parallel element
stresses. The viscoelastic stress response is given by a hereditary integral according to

τve
i (t) =

∫ t

−∞

GRi
(t− t′)dκ(t′) (4.2)

where the relaxation modulusGRi
for a Maxwell elementi is given by

GRi
= Gve

i exp

(

−t

tri

)

(4.3)

Combining Equations (4.2) and (4.3), and approximating according to the trapezoidal rule, the
viscoelastic stress for Maxwell elementi can be expressed in an incremental form as

∆τve
i ≈ τve

i

(

exp

(

−∆t

tri

)

− 1

)

+
Gve

i ∆κ

2

(

1 + exp

(

−∆t

tri

))

(4.4)
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whereτve
i is the stress at the previous step [10]. Thus, for transient analysis, only the previous

step has to be taken into consideration. The total viscoelastic stress increment for the whole model
is then obtained by adding all incremental stress contributions from all elements.

In the finite element softwareAbaqus, the generalized Maxwell (or Prony series) model has
been implemented based on a hyperelastic model suitable forelastomers.

Another approach to modelling the rate dependence is to use fractional derivatives to describe
it [3]. The advantage of the fractional model is its ability to model a wide range of frequencies
and time resolutions using only a few material parameters, as compared to the many parameters
needed for the generalized Maxwell model. This approach is very powerful for frequency analy-
sis. For transient analysis, however, fractional derivatives tend to be more time-consuming, since
the entire strain history has to be taken into account at eachtime step. Another drawback of this
approach is that it is not yet implemented in commercial finite element codes.

4.3 Amplitude Dependence

In one dimension, the amplitude dependent dynamic stiffness and loss angle can be modelled
with simple Coulomb frictional elements. When coupled together with elastic springs, as shown
in Figure 4.2, it is possible to obtain a rather smooth response as well as a good fit to a large range
of amplitudes. The elastoplastic behavior of this model will be piece-wise kinematic hardening.
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Figure 4.2: The generalized one-dimensional elastoplastic model.

A frictional element coupled in series with an elastic spring yields the most simple non-
hardening elastoplastic model. The stress response for such an elastoplastic elementj can be
expressed in the following incremental form:

∆τep
j =

{

Gep
j ∆κ if elastic

0 otherwise
(4.5)

The total incremental elastoplastic stress response for the one-dimensional model is then given
as the sum of all parallel elastoplastic elements.

In three dimensions, amplitude dependence is modelled by anelastoplastic model. The pre-
ferred model would be a kinematic hardening model based on the same hyperelastic model as
the viscoelastic and elastic models. However, inAbaqus such a model is yet to be implemented.
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Instead, an elastoplastic model based on a hypoelastic description has been used. Another prob-
lem has been the lack of a kinematic hardening model inAbaqus/Explicit. This was solved by
overlaying several non-hardening von Mises models, resulting in a piece-wise linear hardening
model. InAbaqus/Standard a similar model can be obtained with the use of a single kinematic
hardening model.

4.4 The Overlay Method

Experimental findings show that the amplitude dependence and rate dependence can be consid-
ered as two independent types of behavior, i.e. the frequency response is the same for all strain
amplitudes and vice versa. Although not entirely true, thisassumption holds rather well for the
materials investigated in this thesis. On the basis of this assumption it can be concluded that
the rate dependent model and the amplitude dependent model can be coupled together in paral-
lel, greatly simplifying the modelling task. For the one-dimensional case, this is exemplified in
Figure 4.3.
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Figure 4.3: One-dimensional equivalence of the viscoelastic-elastoplastic model.

Figure 4.3 clearly shows that the total stress can be obtained as a summation of the stress
contributions from all parallel contributions. The same approach is used for the three-dimensional
model. Hence, the total stress tensor is obtained as a summation of the stress tensors from all
parallel contributions.

τ = τ
e + τ

ve + τ
ep = τ

e +
M
∑

i=1

τ
ve
i +

N
∑

j=1

τ
ep
j (4.6)

For the finite element model, the above summation of stress tensors is achieved by an overlay
of finite element meshes, according to Figure 4.4. The general idea of this so called overlay
method is to obtain each stress tensor from a separate finite element model. In some finite element
codes, such asAbaqus/Standard it is possible to model the first two terms of Equation 4.6 in
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one model and the third term in a second model. The finite element models are all created with the
same topology. The stress summation is then achieved by assembling each layer of elements into
one set of nodes. This approach yields a model able to represent the combined rate and amplitude
dependence without having to implement any new finite element models.

Hyperelastic FE-model

   -Non-linear elasticity
   -Frequency dependence
   -Amplitude dependence

FE-model containing:

Rheological model

Viscoelastic FE-model

Elastoplastic FE-model

Figure 4.4: Principle of the overlay method.

4.5 Parameter Identification

As previously mentioned, the major drawback of the materialmodel presented was the number
of material parameters that have to be identified. In order toremove this obstacle, a structured
procedure to determine the material parameters was developed.

Using a harmonic shear test, the rubber is characterized at different frequencies and strain
amplitudes. For simple shear, the rubber can be modelled with a one-dimensional model, as pre-
sented in Figure 4.3. Since the parameters of the one-dimensional model are directly transferable
to the finite element model, it is sufficient to fit the one-dimensional model to experimental data.
The material parameters are then simply shifted to the finiteelement model.

4.5.1 Minimization of the Relative Error

The basis of the parameter identification is a minimization of the relative error between the model
and the experimental data. For this purpose an error function ψ, in the least square sense, was
defined according to

ψ = (1− α)

m
∑

i=1

(

ddyn,i − dexp, i

dexp, i

)2

+ α

m
∑

i=1

(

Gdyn,i −Gexp, i

Gexp, i

)2

. (4.7)

Minimization of ψ gives a good fit to measured dampingdexp and dynamic shear modulus
Gexp. The weight factorα is used to put emphasis either on a good fit to dynamic modulus or
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on damping. In order to evaluate the error function, the dynamic shear modulusGdyn and the
dampingd of the model have to be calculated at all them points of measurement. This can be
very time-consuming if the error function has to be evaluated repeatedly during the numerical
minimization.

4.5.2 Implementation

The fit of the resulting model will depend on the choice of the weight factorα and the numberN
of viscoelastic and numberM of elastoplastic contributions.

To provide a good understanding of how these three parameters influence the resulting model,
it is important that the user gets direct feedback on the chosen material model and weight factor.
In order to achieve this user-interactivity, the computational time for the parameter identification
has to be short.

Figure 4.5: Screen capture of the graphical user interface.

Using a combination of analytical approximations and numerical time stepping to calculate
the model response, an effective method to minimize the error function was developed. The ana-
lytical approximations are used to speed up the costly repeated evaluations of the error function,
while the more time-consuming numerical time stepping is used to guarantee the accuracy.
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To simplify the process of finding the material parameters, the fitting procedure was imple-
mented in a graphical user interface, usingMatlab [6]. The graphical user interface shown in
Figure 4.3 makes it easy to try different numbers of viscoelastic and elastoplastic contributions
and to test different weight factors in order to obtain the best possible fit.
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Chapter 5

Modelling Stationary Dynamic

Loads

The case of stationary dynamic loading is found in many industrial applications. Compared to
a general dynamic load, the regularity of a stationary dynamic load lends itself to be described
in a simplified and also more efficient manner. It should be noted that stationary dynamics also
include general periodic loads and is not restricted to onlyharmonic loads.

5.1 Equivalent Viscoelasticity

The viscoelastic procedures available in commercial finiteelement codes are in their original form
unable to account for the Fletcher-Gent effect.

The basic idea for the equivalent viscoelastic approach is that due to the repetitive character
of stationary loading it is possible to foresee the largest amplitude during a load cycle. Based on
knowledge of amplitudes in different material points it is possible to create a viscoelastic model
that will give a correct estimate of damping and dynamic modulus with respect to frequency for
a predicted amplitude.

Compared to the viscoelastoplastic approach of the previously discussed overlay method the
equivalent viscoelastic model make no assumptions of the mechanics behind the amplitude de-
pendence. Nor does it require the amplitude and frequency dependence to be independent of each
other. This lack of restrictions allows the equivalent viscoelastic model to be fitted more closely
to the experimental data. It also means that any amplitude dependence present in the measure-
ment will be included in the model no matter if it is caused by Mullins effect or the Fletcher-Gent
effect.

Even if the equivalent viscoelastic model can be made to behave in a correct manner in terms
of damping and modulus it should be noted that the time response will be slightly different.
Considering the shape of the hysteretic loop during one loadcycle the equivalent viscoelastic
model will have an almost perfect elliptic shape whereas thehysteretic loop of a typical amplitude
dependent rubber material will have sharper corners and a more asymmetric shape, particulary for
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low frequency loading and quasi-static loading.

The analysis is carried out in two steps. First an initial analysis is carried out. Based on the
result of the initial analysis an approximate amplitude foreach element is determined. In the
second step each element is given an equivalent viscoelastic model based on the amplitude of the
previous step.

The viscoelastic model can be either a frequency domain or a time-domain viscoelastic model.
The frequency domain model is restricted to harmonic loads.

5.2 Rolling Dynamics

Rolling contact is an important application for rubber. Apart from the obvious application of
tires, rubber coated rollers are central to many industrialprocesses. For rubber coated rollers, it is
common with large loads and high speeds. This make it important to include both amplitude and
frequency dependence in the model.

It is easy to see that the dynamic modulus is the single most important material property to
control the contact pressure and contact width. However, the influence of material damping is
not as straight forward. To understand the influence of material damping in rolling, it is noted
that damping is a result of a difference between the loading and unloading part of the load cycle.
During the initial part of the contact the rubber contact will resist the increasing load and the
pressure will increase fast. In the second and unloading part of the load cycle the inherent damping
will reduce the force by which the rubber regains its undeformed shape. Thus the contact pressure
during rolling will be asymmetric. This is true independentof the damping is caused by plastic
or viscous effects.

In general rolling is a transient load case and need to be modelled through a transient time
stepping analysis. This general approach is needed when therolling speed is not constant or when
rolling over non-smooth surfaces. As the contact simulation works best with small time steps, an
explicit time stepping scheme is usually preferred.

Although not a harmonic load case, steady state rolling overa flat surface is an example of a
stationary dynamic load case and is thus suited for the equivalent viscoelastic model. Compared
to a transient analysis the equivalent viscoelastic model performs computationally much more
efficient for this load case.
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Chapter 6

Future Research

As often with research projects, more questions have been raised than answered in the course of
this work. By using the present thesis as a basis, it is possible to continue in many directions.

There are other important rubber characteristics that might be incorporated in the model pre-
sented, depending on the application and choice of material. Factors such as temperature depen-
dence and a more thorough approach to Mullins effect can be taken into consideration.

Considering the complexity of dynamic harmonic testing, other potentially simpler and less
time consuming methods might be interesting to investigate. With a relaxation test it might be
possible to characterize the entire rate dependence in a single test. With several relaxation tests
of different step sizes it could be possible to cover the amplitude dependence as well. Another
approach might be to use different impact tests as a simple way to characterize the dynamic
properties of rubber. Viewing the finite element model as an advanced extrapolation of material
test data, it can be argued that the test method should be chosen to reflect the load of the intended
application. I.e. when modelling a shock absorber it would make good sense to obtain the material
parameters from an impact test, whereas a harmonic test method is more suitable when modelling
a vibration damper.

Multi-body dynamics (MBD) simulations are another important area for models of rubber
dynamics. Bushings incorporated into existing MBD codes such asADAMS andDADS are
greatly simplified and are a source of uncertainty when analyzing system dynamics. A low degree
of freedom model for rubber bushings can be based on the same principles as the material models
presented in this thesis.
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Modelling amplitude dependent
dynamics of rubber by standard
FE-codes

Per-Erik Austrell, Anders K Olsson
Division of Structural Mechanics, Lund University, Sweden

ABSTRACT: For most engineering rubbers, material damping is caused by two different mech-
anisms, resulting in rate dependent and amplitude dependent behavior respectively. This paper
presents a simple engineering approach to model the elastic-viscoelastic-elastoplastic character-
istics of rubber materials, providing a finite element modelsuitable for analyzing rubber compo-
nents subjected to cyclic as well as transient loads. Although constitutive models with the above
characteristics exist, they have yet to be implemented in commercial finite element codes. The
advantage of the suggested method is the ability to use already existing FE-codes for the purpose
of analyzing the amplitude and rate dependent behavior of rubber components. This is done by
a simple overlay of finite element meshes, each utilizing a standard hyperelastic, viscoelastic and
elastoplastic material model respectively. Hence, no implementation of new material models is
required. To demonstrate the ability of the method, an axi-symmetric rubber bushing subjected to
a stationary cyclic load has been analyzed, with material properties measured using a sinusoidal
shear test.

1 Introduction

Rubber components such as shock absorbers, vibration dampers, flexible joints etc, are often
used as coupling elements between less flexible or rigid structures. Knowledge of how these
elastomeric components affect the dynamic characteristics of the complete system, are often of
crucial importance. In industries, such as the vehicle industry, where rapid development of new
products or models is of essence, virtual prototyping and simulations are increasingly important.
In most of these simulations, the non-linear dynamic behavior of rubber components are usually
completely overlooked or, at best, greatly simplified.

The stiffness and damping properties of dynamically loadedrubber components are usually
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dependent on both frequency and amplitude. For most engineering rubbers, damping is caused by
two different mechanisms at the material level, resulting in viscous (rate dependent) and frictional
(amplitude dependent) damping respectively. Constitutive models for rubber used in standard
large strain FE-codes are usually either hyperelastic or viscoelastic. Elastoplastic models, needed
to model the frictional damping, are also normally suppliedin order to model the plastic behavior
of metal. Based on these commonly available models, a novel FE-procedure able to model the
dynamic behavior of rubber materials including both rate and amplitude dependence as well as
nonlinear elastic behavior, is proposed. The model handlesboth harmonic and transient loads.
The advantage of the proposed method is that no advanced constitutive modelling or programming
skills are required, since it only utilizes already available and implemented constitutive models.

This paper is a development of a conference proceeding by Austrell & Olsson (2001).

Apart from this introductory section, the paper consists offour major sections, outlining the
basic ideas of the overlay method and a final section where themethod is applied to a rubber
bushing. In section 2 a brief discussion of different material properties for rubber is given and the
three constitutive branches used in the presented overlay method is discussed. Section 3 discusses
the the double shear test and important properties such as damping and dynamic modulus. It is
argued that the elastic response of rubber in simple shear isalmost linear, which enables the
shear tests to be modelled using one-dimensional symbolic models. Hence, in section 4 different
one-dimensional models are examined. For the one-dimensional models the total stress is given
as a summation of the shear stresses. In section 5 it is argued, that for a general load case, the
one-dimensional models may be generalized into three dimensions by adding stress components
instead of only shear stresses. Thus allowing for the material parameters for the one-dimensional
model to be copied to the FE-model. This last step is done using the novel approach of overlay
of finite element meshes. To demonstrate the ability of the proposed method an axi-symmetric
rubber bushing, subjected to a stationary cyclic load, has been analyzed in section 6. It is shown
how the presented method can be used to model the non-linear dynamic behavior of a rubber
bushing.

2 Constitutive Branches

Rubber has a very complex material behavior. Besides the non-linear elastic behavior, most engi-
neering rubber materials also show a considerable materialdamping, which give rise to hysteretic
response in cyclic loading. Apart from the strain level, thedynamic response of rubber is depen-
dent on the present strain rate and the strain history. For a harmonic load this behavior can be
observed through the dependence on frequency and amplituderespectively. Dynamic modulus
and damping of a typical engineering rubber can vary with several hundred percents due to varia-
tions in frequency and amplitude. Several authors have successfully modelled the frequency and
amplitude dependencies as two approximately independent material behaviors (Austrell 1997;
Kaliske & Rothert 1998; Miehe 2000 and Sjöberg 2000). The ability to model the rate depen-
dence separately from the amplitude dependence is a useful property, greatly simplifying the
material modelling. The treatment of rate and amplitude dependent properties by two indepen-
dent branches is also used in the presented model. It should however be noted that this theory
has mostly been used to model highly filled rubbers which are very common in engineering ap-
plications. A study by Chazeau et al (2000) on the amplitude dependence on low-filled rubbers
suggests that the observed amplitude effects also contain time dependence.
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The mechanical behavior can be divided into three principlebranches. The first and most
dominant branch in terms of stress magnitude being the non-linear elastic branch. The proposed
model does not favor any specific hyperelastic model. Instead the user is free to use whatever
hyperelastic model available in the FE-code.

The rate dependent second branch, is modelled using a viscoelastic material model based on
a Prony series approach. Other authors, such as Enelund et al. (1996), have proposed the use of
fractional derivatives in order to model the rate dependence of rubber. The advantage of fractional
derivatives is the ability to model a wide frequency range with only a few material parameters.
Prony series on the other hand offer a numerically more effective method to model the response
to a general strain history, since only the previous step hasto be considered, as compared to the
fractional approach were the entire previous strain history has to be considered for each step.
Another advantage of the Prony series is that it is already implemented in many commercial
FE-codes.

For the rate-independent third branch, only the Payne effect (Payne 1965) is included in the
proposed model. For a harmonic load, the Payne effect is observed as a decrease in dynamic
modulus for increasing amplitudes. The decrease in modulusis modelled using an elastoplastic
material model similar to Kaliske & Rothert (1998) and Miehe(2000). The used elastoplastic
model results in a piecewise linear kinematic hardening lawafter applying the overlay method.

Apart from these three fundamental branches, discussed above, rubber also shows other
important material behaviors, such as Mullins effect (Mullins 1969), temperature dependence,
swelling and ageing, to name only a few. These effects are however not accounted for in the
presented model. The model presented in this paper is applicable for general dynamic loads and
for elastomers without pronounced damage behavior. Depending on the type of analysis, the ap-
plication and elastomer in question, other material behaviors might have to be included in the
model. If required, it is possible to include both Mullins effect as well as temperature dependence
without any major changes to the model described in this paper. Temperature effects can be added
using a WLF-shift function according to (Ferry 1970). The WLF-shift can be viewed as a scaling
of the time for the viscoelastic part. Kari & Sjöberg (2003) uses the WLF-shift in conjunction
with a fractional viscoelastic model. Mullins effect is usually modelled with a damage model,
which basically reduces the elastic strain energy functionwith a scalar factor dependent on the
maximum deformation, see for example Simo (1987) and Miehe (1995). Considering a cyclic
load with constant amplitude, Mullins effect is seen to disappear during the first few load cycles.

3 Harmonic Shear Test

Since the elastic part of the material is almost linear during shear, most of the testing is done using
a double shear test specimen. The linear elasticity obtained during simple shear makes it easier
to observe the nonlinear dynamic properties. The experimental data presented in this article was
obtained from a double shear specimen according to Fig. 1. The double shear specimen consists
of three steel cylinders connected by two rubber discs.

When subjecting the test specimen to a stationary cyclic load a hysteretic loop according to
Fig. 2 is obtained. A correct material model should exhibit the same dynamic shear modulus
Gdyn and dampingd as obtained in the test.
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Figure 1: The double shear specimen.
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Figure 2: Typical hysteretic loop for a rubber material subjected to a stationary cyclic load.

34



For cyclic loads, the dynamic shear modulus is defined by

Gdyn =
τ0
κ0

, (1)

whereτ0 is the amplitude of the shear stress andκ0 is the amplitude of the shear strain, as defined
in Fig. 2. A correct description of the dynamic modulus, obtained from the material model, is
vital in order to achieve a finite element model with a correctdynamic stiffness.

For viscoelastic materials, the damping is attributed the phase angleδ asd= sin(δ). However,
for a material with elastoplastic properties, the phase angle is not well defined. In this paper, the
dampingd is defined by

d = sin(δ) =
Uc

πκ0τ0
(2)

whereUc is the hysteric work, corresponding to the area of the hysteretic loop in Fig. 2. I.e.,
damping could be viewed as a normalization of the hystereticwork. A large damping yields a
large difference between the loading and unloading curves in the hysteric response. For a linear
viscoelastic material, definition (2) will yield the same result as the argument of the complex
modulus. I.e. the definition is not in conflict with linear viscoelastic theory. Instead it could be
viewed as extension of the concept of damping into elastoplasticity.

In Fig. 3 a typical hysteresis loop from the dynamic shear tests is shown. Using the definitions
in Eq. (1) and (2) it is easy to calculate the obtained dynamicshear modulus and damping. The
deviation from viscoelastic behavior is clearly observed in the sharp corners of the hysteretic loop.
A purely viscoelastic material would had exhibited elliptic shaped loops, with rounded corners.

In the following section it is discussed how the dynamic simple shear behavior may be mod-
elled with one-dimensional models.
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Figure 3: Hysteretic response, obtained from a double shearspecimen subjected to a sinusoidal
load atf = 0.05Hz.
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4 One-Dimensional Models

When subjected to simple shear, the elastic branch of the model behaves almost linear. For simple
shear, this observation makes it possible to reduce the material model to a linear one-dimensional
elastic-viscoelastic-plastoelastic model. Thus, the behavior of the rubber material, subjected to
simple shear, can be discussed using one-dimensional symbolic models.

Using mechanical analogy, one-dimensional models consisting of linear spring and damping
elements is used to describe and interpret the dynamic behavior of filled elastomers for sim-
ple shear. Models like this can also be used to model rubber components subjected to one-
dimensional loads, for instance in vehicle-dynamic simulations. They also provide a useful and
illustrative general understanding of the material characteristics.

Next a viscoelastic and an elastoplastic model are discussed. These models are then com-
bined in parallel forming a viscoelastic-elastoplastic model with both frequency and amplitude
dependent properties. The viscoplastic model exhibits thesame principle behavior as found in
the experimentally obtained data. Finally a five-parameterviscoplastic model is used to illustrate
the rate and amplitude dependence of the dynamic modulus.

4.1 Viscoelastic model

G

κ
Gη

oo

τ

Figure 4: Mechanical anology illustrating a viscoelastic model, the so called standard linear
solid model.

The simplest viscoelastic model that exhibits a physicallyreasonable behavior is a spring
combined in parallel with a Maxwell element according to Fig. 4. This is the so called "Standard
Linear Solid" model, abbreviated the "SLS-model". The SLS-model is made up of two spring
elements with the elastic shear modulusG andG∞ and a dashpot element with the viscosity co-
efficientη. This model is able to reproduce the frequency dependent damping of rubber material.
It provides a qualitative correct behavior of the dynamic modulus and damping. The dynamic
modulus increases with increasing frequency and the damping reaches a maximum where the
increase in dynamic modulus is at its maximum. Since the model is purely viscoelastic it does
not reflect the amplitude dependence. Therefore the dynamicmodulus and the damping is only
dependent on the frequency.

In Fig. 5 the dynamic behavior of the SLS-model is shown at three different frequencies. The
frequency is increased from 1) representing a low frequencyto 3) representing a high frequency.
It can be seen that a very low or high frequency results in an almost elastic shear modulus. That
is, the damping is almost zero, which is illustrated by the very narrow hysteretic response with
the loading and unloading curves being nearly identical. When the frequency is close to zero the
elastic shear modulus is given byGdyn ≈ G∞. (WhereG∞ denotes the relaxation modulus at
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Figure 5: Harmonic excitation of a viscoelastic model and the hysteretic response at increasing
frequencies 1) to 3).

time t= ∞, corresponding to zero frequency.) The elastic shear modulus corresponding to a high
frequency is given byGdyn = G0 = G∞ +G.

The dynamic shear modulus increases fromG∞ toG0 with increasing frequency. The maxi-
mum damping is found at frequency 2) for which the distance between the loading and unloading
curve reaches its maximum.

4.2 Elastoplastic model

oo

τ

κ
Gτy

G

Figure 6: Mechanical analogy illustrating a simple elastoplastic material model, which is able
to represent an amplitude dependent dynamic shear modulus.

Besides the viscous type of damping described earlier thereis also a rate independent damping
in filled rubber materials. A simple model describing rate independent damping is obtained by
replacing the dashpot in the SLS-model with a frictional element according to Fig. 6. During slip
between the element surfaces, symbolically illustrated inthe figure, the frictional element stress
is limited to±τy. The stress is thus limited to the prescribed stress independent of the relative
velocity of the contacting surfaces.

The model in Fig. 6, with two parallel springs with the elastic shear modulusG andG∞, is
the mechanical analogy for an elastoplastic material with linear kinematic hardening. The stress
in the model is in this case independent of the strain rate.

When the model is subjected to cyclic loading, the frictional element causes a difference
between the loading and unloading curves and the hystereticresponse is given the shape of a
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Figure 7: Periodic excitation of an elastoplastic model andthe hysteretic response at two different
amplitudes. Depending on the amplitude two different dynamic shear modulus are obtained.

parallelogram according to Fig. 7, provided that the limiting stress is reached in the frictional
element. All type of periodic loading with a certain amplitudeǫ0 provides the same results in the
stress-strain graph, independent of load shape and load rate.

The frictional element provides a non-linearity that may beobserved from the parallelogram
shaped hysteretic response. This also results in an amplitude dependent dynamic shear modulus.
As can be seen in Fig. 7, it is obvious that the dynamic shear modulus decreases with increasing
amplitude.

4.3 Viscoelastic-elastoplastic model

For filled elastomers damping is caused by two different mechanisms at the material level, result-
ing in viscous and frictional damping respectively. Reorganization of the rubber network during
periodic loading results in a viscous type of resistance. A common view is that the Payne effect
is caused by frictional damping attributed to the filler structure and the breaking and reforming
of the structure which take place during loading and unloading. The stresses obtained in a filled
rubber material can thus be divided into a dominant elastic part, but also a viscous and a frictional
part.

κ
τ

Figure 8: Mechanical analogy illustrating a simple five parameter viscoplastic material model
resulting in a frequency and amplitude dependent dynamic shear modulus and damping.

Combining the viscoelastic and the elastoplastic model in parallel yields a material model
which sums the elastic, viscous and frictional stresses. A simple model of this viscoplastic type
is shown in Fig. 8. The model simulates the frequency and amplitude dependence in a physically
correct manner.
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Figure 9: Amplitude and frequency dependence of the dynamicshear modulus ( See Eq. (1).) for
the simple five parameter model.
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Figure 10: Amplitude and frequency dependence of the phase angle (See Eq. (2).) for the simple
five parameter model.
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The combined frequency and amplitude dependence of the dynamic shear modulus and phase
angle according to the material model in Fig. 8 is illustrated in Fig. 9 and 10. The phase angle is
directly proportional to the damping and thus also proportional to the hysteresis. That is, a large
phase angle yields a large difference between the loading and unloading curve. Values of the
dynamic shear modulus and phase angle for which the amplitude and frequency result in a power
output which exceeds a certain limit have been removed from the figure. The separable amplitude
and frequency dependence of the model is in agreement with experimental findings according to
(Austrell 1997).

elastoplastic part

κ
τ

elastic part

viscoelastic part

Figure 11: The generalized one-dimensional viscoelastic-elastoplastic model.

The one-dimensional model shown in Fig. 8 can be generalizedby adding more viscous and
frictional elements in parallel, according to Fig. 1. The model can then be given a quantitative bet-
ter fit to experimental data. In section 5 this enhanced modelis generalized into three dimensions
for the purpose of finite element calculations. Since the one-dimensional model is equivalent to
simple shear of the the three-dimensional model, the material parameters are the same for the one-
dimensional model and the three-dimensional model. Hence,once the one-dimensional model is
fitted to the simple shear test, the material parameters can by shifted to the three-dimensional
model FE-model.

5 The Overlay Method

According to the one-dimensional viscoplastic model shownin Fig. 1, the total stress is obtained
by adding the elastic stress, the viscous stress, and the plastic stress. A direct generalization of the
one-dimensional stress to a three dimensional state of stress is to add elastic, plastic and viscous
stress tensors. The total stress tensorτ is then given by

τ = τ
e + τ

ep + τ
ve (3)

where the different stress tensors are obtained from a hyperelastic, an elastoplastic and a
viscoelastic material model. For consistency, all these models should be based on the same hy-
perelastic model.

The elastoplastic part of the stress tensor is given by a summation
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τ
ep =

M
∑

j=1

τ
ep
j (4)

where the terms are obtained from a non-hardening plasticity model, according to von Mises,
implemented for large strains. The model used in section 6 uses three terms in the summation
above.

The viscoelastic stress contribution is also given by a summation according to

τ
ve =

N
∑

k=1

τ
ve
k (5)

where the terms are obtained from a visco-hyperelastic model, suitable for large strains.

5.1 Implementation of the Overlay Method

Since the commercial FE-codes do not contain any suitable constitutive model, this paper pro-
poses a novel engineering approach. Using only standard FE-codes, a three-dimensional model
is obtained through an overlay of FE-meshes. With this approach, the implementation of a new
constitutive model is avoided. The basic approach using theoverlay method, is to create one
hyperelastic, one viscoelastic and one elastoplastic FE-model, all with identical element meshes.
Assembling the nodes of these models according to Fig. 12, yields a finite element model that cor-
responds to the five-parameter model discussed earlier. In order to create a model corresponding
to the generalized mechanical analogy in Fig. 1, a suitable number of viscoelastic or elastoplas-
tic FE-models are simply connected in parallel by assembling different layers of elements to the
same nodes.

In Abaqusboth the hyperelastic and the viscoelastic parts can be modelled with a single
FE-model based on a viscoelastic Prony series. The elastoplastic part can be modelled with sev-
eral parallel elastoplastic FE-models based on a non-hardening elastoplastic material model. In
Abaqus/Standard there is also a possibility to define a piecewise kinematic hardening elastoplas-
tic model. Unfortunately, neither Abaqus nor Marc contain any elastoplastic models based on
hyperelasticity. Hence, in the following section the plastic part is based on a hypoelastic material
model.

Preliminary investigations indicate that the material parameters needed for the finite element
models can simply be copied from the one-dimensional model which has been fitted to experimen-
tal data in simple shear. A fitting procedure for the one-dimensional model is further discussed in
(Olsson & Austrell 2001).

The reason why the one-dimensional mechanical analogy seems to be easily generalized into
three-dimensions has not been thoroughly investigated. However, one reasonable explanation
for this behaviour is that the isotropic and incompressiblecharacteristics of rubber provides a
constraint that reduces the degrees of freedom in the three-dimensional model.
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   -Non-linear elasticity
   -Frequency dependence
   -Amplitude dependence

FE-model containing:

Viscoelastic FE-model

Hyperelastic FE-model

Elastoplastic FE-model

Mechanical analogy

Figure 12: Basic idea of the overlay model.

6 Cylindric Rubber Bushing

A cylindric component according to Fig. 13 has been studied when subjected to a stationary
cyclic load. The bushing consists of one outer and one inner steel tube, with rubber in between.
The component is subjected to large amplitudes at low frequencies. A finite element analysis
of the component, using a material model that combines non-linear elastic properties with rate
independent damping, has been performed. The dimensions used in the computations arer =
20mm, R=40mm andH = 50mm.

R

H

r

Figure 13: The analyzed cylindric component.

The model was fitted to the hysteretic response presented in Fig. 3. The experimental data
were obtained using a double shear test specimen according to Fig. 1. Fig. 14 shows the response
of the one-dimensional material model subjected to the sameload as the test specimen.
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Figure 14: The one-dimensional material model subjected toa sinusoidal shear load atf =
0.05Hz.

The rubber bushing was modelled inAbaquscombining a hyperelastic material model and
three elastoplastic models. The elastoplastic models werebased on hypoelasticity with isotropic
von Mises plasticity without hardening. An inconsistency with the used model is that the elasto-
plastic part is hypoelastic while the elastic part is hyperelastic. It would be preferable if the same
hyperelastic base was used for the entire model, but as stated previouslyAbaqusdoes not contain
any hyperelastic plastic materials models at the present date.

6.1 Axial Shear Load

Fig. 15 shows the cylindric component during axial cyclic shear loading. The load case is a
displacement controlled cyclic loading with gradually increasing amplitude. The state of stress is
very close to simple shear.

The shear stressτ shown in the graph is the mean stress computed as the axial load, obtained
from the finite element analysis, divided by a cylindric surface area with the radius(r +R)/2,
resulting inτ = P/(π(r +R)H). As can be seen in the graph, the dynamic modulus decreases
with increasing strain amplitude. Another interesting observation made from the graph is that the
shape of the hysteretic response is in good agreement with the experimental result, according to
Fig. 3, used to obtain the one-dimensional material model.

6.2 Axial Tension

Fig. 16 shows the cylindric component subjected to a homogeneous stress. This load is not in
agreement with the present component design, with one innerand one outer metal pipe vulcanized
to cylindrical surfaces of the rubber part. However, this load case is of great interest since it
shows the behavior of the material model during pure tensileand compressive loading. The load
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Figure 15: Amplitude dependent dynamic stiffness. Finite element analysis of the cylindric
component subjected to an axial cyclic shear loading.
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Figure 16: Amplitude dependent dynamic stiffness. Analysis of a cylindric component subjected
to axial cyclic tensile/compressive load.
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case is a displacement controlled cyclic loading with gradually increasing amplitude. The stress
(same in all elements) shown in the graph is calculated as theaxial forceP , obtained from the
finite element analysis, divided by the original cross-sectional areaA = π(R2 − r2). The graph
illustrates the influence of the non-linear elastic stress contribution on the hysteretic response at
different amplitudes.

6.3 Radial Load

−2 0 2 4 6 8
−1

0

1

2

3

4

5

Displacement [mm]

F
or

ce
  [

kN
]

1

2

3

1

2

3

Figure 17: Amplitude dependent dynamic stiffness. Analysis of the cylindric component subjected
to a radial cyclic load.

Fig. 17 shows the cylindric component subjected to a radial load. The load case is dis-
placement controlled and cyclic, with gradually increasing amplitude. Since there is no sense in
presenting a specific stress in this highly inhomogeneous stress state, the graph shows the relation
between the radial forceP , obtained from the finite element analysis, and the radial displacement.
Similar to the previous load case, the graph also shows the influence of the non-linear elastic stress
contribution on the hysteretic response.

6.4 Torsional Load

Fig. 18 shows the cylindric component subjected to a torsional load. The load case is displace-
ment controlled and cyclic, with gradually increasing torsion. The graph shows the relation be-
tween the torsional momentMt, obtained from the finite element analysis, and the torsion pre-
sented in radians. As expected the hysteretic response shows in principle the same behavior as
for the axial shear load in Fig. 15, since torsion in principle is a state of shear.
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Figure 18: Amplitude dependent dynamic stiffness. Analysis of the cylindric component subjected
to a torsional cyclic load.

7 Conclusions

Using a novel engineering approach, it is shown how already existing FE-codes can be used to
model the dynamic behavior of rubber components. The use of existing FE-codes makes it easy to
create a highly advanced model without implementing a new constitutive model. The presented
method is able to represent the non-linear elastic behavior, as well as the rate dependent and
amplitude dependent inelastic properties of rubber material. The model discussed works equally
well for a general dynamic load as well as for creep and relaxation analysis and other cases of
transient dynamic loads.

Finally, a cylindric rubber bushing, subjected to different low frequency cyclic load cases, was
analyzed using the proposed method. A harmonic simple sheartest was used to obtain the material
parameters. The component characteristics were then calculated for different load directions,
giving a physically reasonable behavior.
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Notation

The following symbols are used in this paper:

G = shear modulus
Gdyn = dynamic shear modulus
G∞ = long term shear modulus
G0 = instant shear modulus
τ = shear stress
τ0 = shear stress amplitude
τy = yielding shear stress
τ = stress tensor
κ = shear strain
κ0 = shear strain amplitude
d = damping
δ = phase angle
Uc = dissipated energy for a closed hysteresis loop
η = viscosity coefficient
M = number of elastoplastic components
N = number of viscoelastic components

Superscripts

e = elastic
ep = elastoplastic
ve = viscoelastic
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Parameter identification for a
Viscoelastic-Elastoplastic Material
Model

Anders K Olsson, Per-Erik Austrell
Division of Structural Mechanics, Lund University, Sweden

ABSTRACT: A fitting procedure for a viscoelastic-elastoplastic material model capable of rep-
resenting amplitude and rate dependent properties of filledelastomers is presented. The material
model contains a lot of parameters that have to be fitted to experimental data. A method to fit such
a viscoelastic-elastoplastic material model to data obtained from a stationary dynamic shear test
is suggested. Using this method, the material model was fitted to experimental data for thirteen
different elastomers. Simulated dynamic modulus and damping are compared to experimental
data and presented for a wide range of frequencies and strainamplitudes.

1 Introduction

Filled rubber is a two-phase material consisting of long polymer chains in a structure of micro-
scopical carbon-black particles. Reorganization of the rubber network during dynamic loading
gives rise to a viscous damping. When subjected to a dynamic load, breaking and reforming of
the carbon-black structure results in a frictional elastoplastic damping.

Experimental results have shown that the viscoelastic behavior is almost independent of the
elastoplastic behavior (Warnaka 1962). This observation of independence between the viscoelas-
tic and elastoplastic behavior is the foundation of severalmodels for modelling the dynamic be-
havior of rubber (Kaliske & Rothert 1998), (Miehe & Keck 2000) and (Sjöberg & Kari 2002).

The model addressed in this paper has previously been described in (Austrell & Olsson 2001).
A one-dimensional mechanical analog in simple shear, wherethe elastic properties of rubber are
rather linear, is shown in figure 1. This makes it possible to represent the material model as a
one-dimensional model according to the figure, where the elastoplastic elements are coupled in
parallel with the viscoelastic elements. The reason for having more than one viscoelastic and more
than one elastoplastic stress component, is to get an improved fit to a wider range of frequencies
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Figure 1: The one-dimensional mechanical analog representation of the material model.

and strain amplitudes.

In (Austrell & Olsson 2001) it is shown how this model is easily generalized into three di-
mensions by an overlay principle, by merging several viscoelastic and elastoplastic FE-meshes.
The advantage of this approach is that it does not require anyimplementation of new constitutive
laws, since it only uses already implemented models. Another advantage of this approach is the
ability to use the parameters already obtained for the one-dimensional model in figure 1. Hence,
it is sufficient to fit the one-dimensional model to the experimental data. The material parameters
can then simply be shifted to the finite element model.

The drawback with the above model is the large number of material parameters that are
needed. Because of the number of material parameters, it is almost impossible to fit the ma-
terial model by hand. This obstacle is removed by the method presented here. A structured fitting
procedure makes it easy to obtain the material model from experimental data.

Viscoelastic models using fractional derivatives such as (Enelund et al 1996), (Sjöberg & Kari
2002) generally do not need as many parameters to describe the viscoelastic part of the material
and are thus easier to fit to experimental data. Models like these are usually better suited for
evaluation in the frequency domain than in the time domain, where they tend to be rather time-
consuming. This is due to the fact that the entire load history has to be taken into account at
every time increment. In the presented method it is only needed to store the previous stress state
in the time stepping. Another obstacle with the fractional derivative model is the absence of
commercially available FE-codes.

The elastoplastic part of this model consists of an overlay of ideally (non-hardening) elasto-
plastic models. When connected together their behavior will be piece-wise kinematic hardening.
A continuous kinematic hardening model could replace this elastoplastic part. However, since
kinematic hardening still is rare in commercial finite element codes, a simple overlay of ideally
elastoplastic models was chosen.
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2 Test method

A test batch of 13 different elastomers has been evaluated bydynamic simple shear tests. Exper-
iments were carried out at the Marcus Wallenberg Laboratoryin Stockholm (Kari & Lindgren).
The test object used is the so called double shear test specimen according to figure 2.

6 mm

φ=25 mm

6 mm

Figure 2: Double shear specimen, used for testing at simple shear.

The test specimens have been subjected to a sinusoidal load,for a wide range of different
frequencies and amplitudes, with shear strain amplitudes up to 12% and frequencies up to 180
Hz. To prevent hysteretic heat build-up from ruining the result, the measurements were performed
during a very brief time period, but still long enough to obtain a stationary reading. For each
strain amplitude and frequency, about 20 load-cycles have been performed, out of which five were
evaluated. A typical hysteresis loop from a load cycle is shown in figure 3. For a given frequency,
measurements were conducted at four different amplitudes,starting with the smallest amplitude.
Thus, also damage effects were included in the measurement.However, the investigated material
model does not include any damage effects. This conflict between model and measurement is
further discussed in section 6.

The dynamic behavior of rubber materials can be characterized by the dynamic shear modulus
and the phase angle, i.e. the aim of the fitting procedure is a material model with the same
stiffness and damping properties as the tested rubbers. Thedynamic shear modulusGdyn and the
corresponding damping parameterd, are defined according to

Gdyn =
τ0
κ0

, d =
Uc

πκ0τ0
(1)

with variablesUc, τ0 andκ0 defined in figure 3. The hysteretic work per unit volumeUc is
obtained through numerical integration of the experimentally recorded time history data. It can be
noted that the damping parameterd is identical tosin(δ) for a purely linear viscoelastic model,
whereδ is the phase angle. Assuming simple shear, the shear stressτ and shear strainκ are
calculated according to

τ =
P

2A
, κ =

u

H
(2)

whereP is the shear force,2A is the two shearing areas,u is the displacement andH is the
thickness of the shear specimen. This is, however, only truefor a pure state of simple shear. Finite
element analysis indicates that this approach leads to an underestimate of the shear modulus with
approximately 6%. Thus the obtained shear modulus should beincreased by 6%.
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Figure 3: Typical hysteretic loop for a filled rubber.

3 Fitting procedure

Although the one-dimensional material model is rather simple in its appearance, the number of
material parameters to be determined makes the fitting procedure difficult. The dynamic behavior
of rubber components is mainly attributed the dynamic stiffness and the damping properties. Thus
the aim is to obtain a material model that exhibits the same stiffness and damping as the rubber
material, for a given range of frequencies and strain amplitudes.

3.1 An optimization approach

The fitting procedure can be viewed as a least square minimization of the relative error of the
material model compared to the experimental data. For this purpose an error functionψ is estab-
lished:

ψ = (1− α)

m
∑

i=1

(

ddyn,i − dexp, i

dexp, i

)2

+ α

m
∑

i=1

(

Gdyn,i −Gexp, i

Gexp, i

)2

(3)

The dampingdi and shear modulusGdyn,i are calculated from the material model at the spec-
ified frequencies and amplitudes, wherem is the total number of measurements. Thus the error
function is a function of the material parameters (see fig. 1): ψ= ψ(G∞,G

ve
1
, tr1, ...,G

ep
1
, κy1, ...).

By choosing the scale factorα, it is possible to decide whether to emphasize a correct modelling
of the dynamic modulus or a correct modelling of the damping.

In a similar manner it is also possible to chose individual weight factors for each measurement
i. This might be useful if the measurements are not evenly distributed or if extra emphasize is to
be given for certain frequencies and amplitudes.

Evaluation of theoretical damping and dynamic stiffness can be done in two different ways.
The most correct way to obtain the behaviour of the material model is to use a time-stepping
algorithm. This is however, a time-consuming procedure, especially if the optimization algorithm
is such that the error function needs to be evaluated repeatedly. For a large amount of measure-
ments and an increasing number of material parameters this approach will be very slow. A more
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efficient approach is to use an analytical approximation. However, the poor accuracy of this ap-
proach yields a model with poor fit to experimental data. A wayto work around this problem
is to use the analytical approach for repeated evaluations and to use the time stepping algorithm
to calibrate the analytical expression with certain intervals. The fitting procedure was developed
using this basic idea.

3.2 Analytical approximation of damping and modulus

The one-dimensional model consists of three different types of elements, namely the elastic ele-
ment, the viscoelastic Maxwell element and the elastoplastic element (fig. 1). In order to calculate
the total dampingdtot and dynamic shear modulusGtot

dyn for the entire model, damping and mod-
ulus are calculated for each of the elements.

Starting with the single Maxwell element, it can be shown (Austrell 1997) that the viscoelastic
damping is given by

di = sin(δi) =
1

√

1 + ω2t2ri

(4)

and that the dynamic shear modulus is given by

Gve
dyni

=
Gve

i ω
2t2ri

1 +ω2t2ri

. (5)
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Figure 4: The complex modulus of the viscoelastic Maxwell components (solid lines) and the
resulting viscoelastic modulus plotted in the complex plane

In figure 4 the viscoelastic branch is plotted in the complex plane. Summing up the total
dynamic contribution from all theN Maxwell elements and the purely elastic element results in
the following expression

Gve
dyn =

√

√

√

√

(

G∞ +

N
∑

i=1

Gve
dyni

cos(δi)

)2

+

(

N
∑

i=1

Gve
dyni

sin(δi)

)2

(6)

whereδi is the phase angle according to equation (4). In a similar manner the total viscous
damping can be expressed as:

dve =
1

Gve
dyn

N
∑

i=1

Gve
i ω

2t2ri

(1 + ω2t2ri
)3/2

(7)
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Thus, the viscoelastic part of damping and dynamic shear modulus is calculated with the
analytical expressions (6) and (7).

The behavior of the elastoplastic elementj depends on whether it is plastic or not, i.e. whether
the shear strain amplitudeκ0 is larger than the yield strainκy or not.

1

τ

κ

G

j

j
ep

2κ0

y2κ

Figure 5: The hysteretic loop of one elastoplastic element.

From the elastoplastic response of a single element, shown in figure 5, it can be seen that the
shear stress amplitudeτep

0j
for an elastoplastic element is given by

τep
0j

=

{

Gep
j κyj

if κ0 > κyj

Gep
j κ0 otherwise

(8)

Using the definition of equation (1) and by looking at figure 5,it can be seen that the dynamic
modulus for an elastoplastic elementj is given by:

Gep
dynj

=

{

Gep

j
κyj

κ0

if κ0 > κyj

Gep
j otherwise

(9)

For the maximal strainκ = κ0, all the elastoplastic elements will have reached their maximal
stress levelτep

j = τep
0j

. Hence, the elastoplastic stress amplitude is obtained as the sum of the stress
amplitudes from all of the elastoplastic elements. From thedefinition of dynamic shear modulus
according to equation (1) the total dynamic shear modulus for the elastoplastic partGep

dyn is then
given by

Gep
dyn =

M
∑

j=1

Gep
dynj

. (10)

The hysteretic workUcj
is given by the inclosed area in the hysteretic loop, seen in figure 5.

Simple geometry yield

Uep
cj

=

{

4κsj
Gep

j (κ0 − κyj
) if κ0 > κyj

0 otherwise.
(11)
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Adding up the hysteretic work done in each element, the totalplastic damping, as defined in
equation (1), is found to be

dep =

∑M
j=1

Uep
cj

πκ0

∑M
j=1

τep
0j

. (12)

Thus, the elastoplastic part of damping and dynamic shear modulus is calculated with the
analytical expressions (10) and (12).

Since the largest stress for the total elastoplastic contribution does not occur at the same
time as for the viscoelastic contribution, adding the contributions from all elements in the model
becomes rather complicated and numerically time consuming. The elastoplastic response can be
approximated with its basic Fourier component (Harris & Stevenson 1986). This approximation
makes it possible to represent both the elastoplastic response and the viscoelastic response in a
complex plane, as seen in figure 6.

G
epGdyn

δ
ve
dyn

dyn

epδ

ve Gδ

Im

Re

Figure 6: Approximative representation of the viscoelastic and elastoplastic response in the com-
plex plane.

Based on this complex representation and using the approximation cos(δ) ≈ cos(δep) ≈

cos(δve), the total dynamic shear modulus is obtained from the following expression

Gdyn ≈ Gep
dyn +Gve

dyn (13)

noting thatGve
dyn also contains the elastic contributionG∞. Another way to reach expression

(13) would be to approximate the viscoelastic part with an elastoplastic part. As explained for
equation (10), the total dynamic modulus for elastoplasticmodels can be derived through a simple
summation. Hence, using this elastoplastic approximationwill also result in equation (13).

From the representation of figure 6 and some trigonometry, using d = sin(δ), the total damp-
ing is calculated similar to a generalized Maxwell model.

d ≈
Gep

dynd
ep +Gve

dynd
ve

Gdyn

(14)

With equation (13) and (14) it is possible to calculate the error function (3) analytically. Due to
the approximations introduced, this expression has to be calibrated using a more time consuming
time stepping approach. The calibration is done by multiplying equation (13) and (14) with a
scalar correction factor. This correction factor will be dependent on both frequency and strain
amplitude, as well as the material parameters.
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3.3 Numerical evaluation of damping and modulus

A more accurate way to calculate damping and modulus is by a numerical time stepping algo-
rithm. The elastoplastic stress for an elementj can be expressed in the following incremental
form.

∆τep
j =

{

Gep
j ∆κ if elastic

0 otherwise
(15)

The viscoelastic stress response is given by a hereditary integral according to

τve
i (t) =

∫ t

−∞

GRi
(t− t′)dκ(t′) (16)

where the relaxation modulusGRi
for a Maxwell elementi is given by

GRi
= Gve

i exp

(

−t

tri

)

(17)

Combining equation (16) and (17), and approximating according to the trapezoidal rule, the vis-
coelastic stress for elementi can be expressed in an incremental form

∆τve
i ≈ τve

i

(

exp

(

−∆t

tri

)

− 1

)

+

Gve
i ∆κ

2

(

1 + exp

(

−∆t

tri

))

(18)

whereτi is the stress at the previous step.

The total stress increment for the whole model is then obtained by adding all incremental
stress contributions from all elements. In doing so for eachstep in strain history, the stress history
is derived. From the stress history, the dynamic modulus anddamping is obtained using the
definitions in equation (1).

3.4 Implementation

The multi-dimensional line search algorithmfminconprovided by the optimization tool-box in
Matlab (MathWorks Inc.) has been used to find the minimum of the errorfunction in equa-
tion (3). To do this, the error function has to be calculated at all strains and frequencies where
measurements have been made, i.e., damping and dynamic modulus have to be calculated at all
experimental points.

To reduce the search area, the following constraints are imposed.

tr1
> tr2

> ... > trN

κy1
> κy2

> ... > κyM

κy1
< max (κ0)

(19)

To further reduce the search area and to avoid nonphysical material parameters, each param-
eter is given an upper and a lower bound, besides the bounds inequation (19). This upper and
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lower bound can also be used to avoid extremely high modulus which will ruin the computational
performance when an explicit finite element method is used. The bound is also useful in order to
prevent the creation of elastoplastic or viscoelastic contributions that will always behave elastic
for the given strain amplitudes and frequencies.

Since the material model may contain a large number of parameters it is often difficult to find
a true global optimum. To stabilize the optimization algorithm it is important to use a structured
approach. The fitting is done in four steps:

• At first a rough guess of the material parameters is made. Bothyield strains and relaxation
times are given a logarithmic distribution over the measured amplitudes and frequencies
respectively.

• Secondly, the shear moduli of the elastic and the elastoplastic elements are fitted to only
the lowest frequency for which the influence of the viscoelastic elements may be neglected.
The yield strains for the elastoplastic contributions are unchanged at this stage.

• The third step is to fit all of the shear moduli to all test data.After this step the model
should be fairly accurate.

• The final step is then to fit all material parameters to all testdata, resulting in a minor
adjustment of the material model.

For the last three steps the error-functionψ according to equation (3) is minimized using
an iterative method for which the error-function has to be evaluated repeatedly. As already men-
tioned, the analytical solution by itself is not accurate enough to provide a good fit for the material
model and the numerical solution is too time-consuming to beevaluated more than a few times
during the fitting algorithm. The solution to this problem, is to use the analytic expression when
minimizing. When the minimization has converged, the analytical and numerical damping and
modulus are then compared and a correction factor is calculated. The analytical expressions for
damping and modulus are then adjusted with the correction factor, in order to give accurate result.
The minimization algorithm is repeated using the adjusted analytical expression. This procedure
is repeated for the last three steps above. The correction factor will depend on frequency and
strain amplitude as well as material parameters.

It should be noted that although the described method has been shown to work well in find-
ing a minimum for the error function, it does not guarantee that the obtained minimum is truly
global. Nor is it certain that the true minimum would providethe best material model from an
engineering point of view. Once a material model is obtainedit therefore has to be compared
to the experimental data, as is done in section 5. If the obtained material parameters does not
provide a good enough fit, a change in weight factor or number of viscoelastic and elastoplastic
contributions are made, and the fitting procedure is restarted with the new error function. Each
fitting procedure takes about one minute on a regular1000MHz PC, depending of the number of
elements and the number of measurements.

To enhance the interactivity the fitting procedure was implemented using a graphical user-
interface inMatlab. Weight factor, number of elastoplastic and viscoelastic contributions can be
easily set in the user-interface, and the resulting model plotted in comparison with the experimen-
tal data.
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4 Materials and experimental findings

The dynamic shear modulus and damping have been measured for13 different rubber materials.
The materials and their hardness are presented in table 1. The hardness for the rubber materials
has been measured for sample plates from the same batch as thetest specimen were manufactured
from. Compared to most other rubber the tested materials arerelatively hard and with a high
degree of damping.

Material Hardness
NR60, Svedala Skega ∼60
NR80, Svedala Skega ∼80
ECO 3575s, Ahauser 56-59
HGSD 78, Scapa Rolls 76-77
HGSD 85, Scapa Rolls 83-85
HNBR 78 Shore A, Trelleborg 78-82
Hypalon 72 Shore A, Trelleborg 72
EPDM 0591, Ahauser 94-95
PUR 9180h, Ahauser 82-86
PUR 9190h, Ahauser 94-95
PUR 9290h, Ahauser 86-87
Adilithe III, Sami 87
Silicon 80 Shore A, Trelleborg 80-84

Table 1: The tested materials and their measured hardness [Shore A].

• The two NR materials, provided by Svedala Skega, are EV-vulcanized and carbon-black
filled natural rubber. The main difference between the two ismuch higher modulus of the
80 Shore NR compared to the 60 Shore NR. They both clearly exhibit Mullins effect. The
natural rubbers show high amplitude dependence, though some of it is clearly accredited to
Mullins effect and not to the Payne effect. If previously conditioned, the amplitude depen-
dence would not be as high. The frequency dependent damping behavior of the NR rubber
deviates from all the other materials except the EPDM. For all other materials damping
increases with an increase in frequency. Comparing hardness and modulus it is noticed
that there is no good correlation between the two as reportedby (Lindley 1974) for natural
rubbers.

• The ECO material from Ahauser is an epichlorohydrine rubber. The ECO, like the two
natural rubbers also show a pronounced amplitude dependence.

• The two HGSD materials from Scapa Rolls are different gradesof hypalon rubber, as is the
hypalon from Trelleborg. The characteristics of the three hypalons are a low modulus in
combination with a large frequency dependence and a very small amplitude dependence.

• HNBR is a hydrogenated acrylonitrile butadiene rubber. HNBR is interesting in the sense
that it combines high amplitude dependence with a high frequency dependence.

• The EPDM material from Ahauser is an ethylene propylene diene rubber. The material has
a higher modulus than the natural rubbers but otherwise verysimilar in its behavior.
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• The PUR materials from Ahauser as well as the Adilithe material from Sami are four dif-
ferent grades of polyurethanes. The four polyurethanes arehighly elastic low-damped ma-
terials, with a relatively high modulus.

• Finally the last material is a silicon material from Trelleborg. With a high amplitude de-
pendence and a low frequency dependence.

5 Fit to experimental data

In this section the fit of the material model to experimental data from 13 different rubber materials
is described. All the tested rubbers exhibit more or less amplitude and frequency dependent
modulus and damping.

Using the previously presented method to fit the material model to experimental data, a set
of material parameters was obtained for each material. (Seetable A1 in the appendix.) Different
numbers of elastoplastic and viscoelastic contributions,as well as different choices of weight-
factorsα according to equation (3) were tried. The aim was to find a goodfit to both damping
and modulus and at the same time keep the needed number of material parameters to a minimum.
The number of material parameters is of course dependent on the sought accuracy of the model
as well as the range of frequencies and amplitudes in the experimental data.

Since the elastoplastic models in most finite element codes need a yield stressτy instead of a
yield strainκy, only the yield stress is provided in the tables. The relation between yield stress
and yield strain isτy = Gκy.

In figure 7 to 19 the obtained material models are compared to experimental data. Presented
damping and dynamic shear-modulus are defined according to equation (1). The theoretical val-
ues, shown in the graphs, are calculated at the same amplitude and frequency as the measured
values. Due to difficulties to obtain a specified strain amplitude during the measurements, the
amplitude might fluctuate slightly from the specified strainamplitude. This is seen in the model
curve as a deviation from the expected smooth curve.

For both the NR materials, there is a clear conflict between appropriate fit to dynamic modulus
and fit to damping. This is due to the fact that all tests were carried out on unconditioned rubber
and the fact that the filled NR exhibited a lot of damage effects. This effect is further discussed in
the next section.

For many of the materials it can be seen that the assumption ofindependence between ampli-
tude and frequency behavior is not entirely true. For the dynamic shear modulus this is observed
as a change in curvature, with respect to frequency, at different amplitudes. If the assumption
was completely true, the frequency response of the dynamic shear modulus would have the same
shape for all amplitudes. Thus, it is impossible to get a perfect fit to the dynamic shear modulus
with the existing model.

The EPDM material and the two NR materials all behave similarwith respect to damping.
(See figure 14, 7 and 8.) In contrast to the other materials, damping does not increase mono-
tonically with increasing frequency. The frequency response of the damping seem to be highly
dependent on the strain amplitude. As seem in the figures thistype of behavior is hard to simulate
with the material model at hand. It is however possible to model a roughly correct damping.
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Figure 7: Dynamic shear modulus (left) and damping (right) of NR60. Solid line: material
model. Dotted line: experimental data.© : κ0 = 1%; ▽ : κ0 = 3%; ⊔⊓ : κ0 = 7%; △ :
κ0 = 12%.
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Figure 8: Dynamic shear modulus (left) and damping (right) of NR80. Solid line: material
model. Dotted line: experimental data.© : κ0 = 1%; ▽ : κ0 = 3%; ⊔⊓ : κ0 = 7%; △ :
κ0 = 12%.
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Figure 9: Dynamic shear modulus (left) and damping (right) of Eco3575. Solid line: material
model. Dotted line: experimental data.© : κ0 = 1%; ▽ : κ0 = 3%; ⊔⊓ : κ0 = 7%; △ :
κ0 = 12%.
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Figure 10: Dynamic shear modulus (left) and damping (right)of HGSD78. Solid line: material
model. Dotted line: experimental data.© : κ0 = 1%; ▽ : κ0 = 3%; ⊔⊓ : κ0 = 7%; △ :
κ0 = 12%.
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Figure 11: Dynamic shear modulus (left) and damping (right)of HGSD85. Solid line: material
model. Dotted line: experimental data.© : κ0 = 1%; ▽ : κ0 = 3%; ⊔⊓ : κ0 = 7%; △ :
κ0 = 12%.
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Figure 12: Dynamic shear modulus (left) and damping (right)of HNBR. Solid line: material
model. Dotted line: experimental data.© : κ0 = 1%; ▽ : κ0 = 3%; ⊔⊓ : κ0 = 7%; △ :
κ0 = 12%.
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Figure 13: Dynamic shear modulus (left) and damping (right)of Hypalon72. Solid line: material
model. Dotted line: experimental data.© : κ0 = 1%; ▽ : κ0 = 3%; ⊔⊓ : κ0 = 7%; △ :
κ0 = 12%.
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Figure 14: Dynamic shear modulus (left) and damping (right)of EPDM. Solid line: material
model. Dotted line: experimental data.© : κ0 = 0.667%; ▽ : κ0 = 2%; ⊔⊓ : κ0 = 4%;
△ : κ0 = 6.7%.
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Figure 15: Dynamic shear modulus (left) and damping (right)of Pur9180. Solid line: material
model. Dotted line: experimental data.© : κ0 = 0.667%; ▽ : κ0 = 2%; ⊔⊓ : κ0 = 4%;
△ : κ0 = 6.7%.
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Figure 16: Dynamic shear modulus (left) and damping (right)of Pur9190. Solid line: material
model. Dotted line: experimental data.© : κ0 = 0.667%; ▽ : κ0 = 2%; ⊔⊓ : κ0 = 4%;
△ : κ0 = 6.7%.
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Figure 17: Dynamic shear modulus (left) and damping (right)of Pur9290. Solid line: material
model. Dotted line: experimental data.© : κ0 = 0.667%; ▽ : κ0 = 2%; ⊔⊓ : κ0 = 4%;
△ : κ0 = 6.7%.
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Figure 18: Dynamic shear modulus (left) and damping (right)of SamiIII. Solid line: material
model. Dotted line: experimental data.© : κ0 = 0.667%; ▽ : κ0 = 2%; ⊔⊓ : κ0 = 4%;
△ : κ0 = 6.7%.
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The four tested polyurethanes (figure 15-18) all exhibit a relatively low damping and low
amplitude dependence. The lack of amplitude dependence is especially obvious for the dynamic
modulus.
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Figure 19: Dynamic shear modulus (left) and damping (right)of Silicon. Solid line: material
model. Dotted line: experimental data.© : κ0 = 1%; ▽ : κ0 = 3%; ⊔⊓ : κ0 = 7%; △ :
κ0 = 12%.

6 Limitations of the viscoelastic-elastoplastic model

As previously mentioned this material model has two basic limitations. Firstly, it assumes inde-
pendence between frequency and amplitude. Secondly, it does not include any damage effects.

As seen in section 5, the assumption of independence betweenrate and amplitude behavior
does not hold entirely for all materials. This is most clearly seen in the dynamic shear modulus
for the two natural rubbers in figure 7a and 8a. Due to independence between viscoelastic and
elastoplastic effects in the model, the modelled frequencydependence will be the same for all
amplitudes.

The second limitation means that the model is best suited to model conditioned rubber or
rubber with negligible damage properties. For a rubber without damage effects the hysteresis
loops at constant frequency should fit inside each other for all amplitudes, as seen for the HNBR
rubber. The opposite is seen for the NR60 material in figure 20.

For a material with little or no damage effects, such as the HNBR in figure 21, the viscoelastic-
elastoplastic material model provides a good fit to experimental data. Although it is possible to
fit the material model to a conditioned rubber with damage effects, it has to be remembered that
the obtained material model will then be fitted to a specific level of damage. Thus, if used in a
finite element model it will only yield valid results if the entire component has reached the same
level of damage as previously obtained in the material tests. For an unconditioned rubber with
pronounced damage effects it is not possible to obtain a goodfit of the model to both damping
and shear modulus, as seen in figure 20. The dashed line indicates a viscoelastic-elastoplastic
model able to simulate the dynamic modulus of unconditionedNR. A model fitted like this would
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Figure 20: Hysteretic loops for an unconditioned, 60 Shore Afilled natural rubber at four different
amplitudes (solid line). Possible viscoelastic-elastoplastic model (dashed line).
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Figure 21: Hysteretic loops for an unconditioned hydrogenated nitrile rubber at four different
amplitudes.
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overestimate the damping severely. If the model, on the other hand, was to be fitted to obtain a
correct damping property, the fit to dynamic modulus would bepoor, especially when amplitude
dependence is considered.

By inspecting the hysteretic loops at the lowest frequencies, it was concluded that only the
two NR materials show significant damage effects.

7 Conclusion

Stationary dynamic shear tests were performed on 13 unconditioned rubbers. The tests were
conducted for frequencies up to180Hz and shear strain amplitudes up to 12%. These test data
make up a unique material, which could be useful for other researchers.

For rubber exhibiting little or no damage effects, it was shown how the investigated viscoelastic-
elastoplastic material model could be fitted to both frequency and amplitude dependence. For
rubber with a more pronounced damage behavior it was shown that viscoelastic-elastoplastic ma-
terial model alone was insufficient to model the dynamic modulus and damping. In order to model
these effects, a damage model would have to be included.

It is thus concluded that the viscoelastic-elastoplastic material model is a suitable model for
conditioned rubber or rubber with little or no damage effects.
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A. Material parameters

NR60 NR80 Eco3575 HGSD78 HGSD85 HNBR Hyp72
G∞ 1.65 3.84 2.31 2.32 4.52 3.94 2.48
Gve

1 0.133 0.436 0.424 0.536 1.21 0.991 0.800
Gve

2
0.128 1.15 2.19 0.673 1.38 0.762 1.19

Gve
3 - - - 0.0662 0.190 8.31 6.05

Gve
4

- - - 3.06 6.08 - -
tr1 0.0750 0.0244 0.00702 0.0629 0.0648 0.0105 0.0677
tr2 0.00159 0.00148 0.000540 0.00548 0.00622 0.00399 0.00592
tr3 - - - 0.00520 0.00496 0.000528 0.000528
tr4 - - - 0.000447 0.000551 - -
Gep

1
4.01 14.2 5.94 0.648 0.875 7.15 4.94

Gep
2

0.641 1.83 0.542 0.0834 0.401 3.21 0.380
Gep

3
- - - - - 0.701 -

τy1 0.0287 0.0941 0.0321 0.00251 0.00423 0.0236 0.00254
τy2 0.0221 0.0763 0.0266 0.00420 0.0119 0.0807 0.00934
τy3 - - - - - 0.0493 -

EPDM Pur9180 Pur9190 Pur9290 SamiIII Silicon
G∞ 9.08 7.70 20.6 9.94 11.2 3.14
Gve

1
1.88 0.510 2.02 0.470 0.610 0.212

Gve
2

1.30 0.713 0.109 0.679 0.218 0.0214
Gve

3 3.55 0.904 2.22 1.16 1.25 0.786
Gve

4
- 2.82 7.54 5.31 7.62 -

tr1 0.0816 0.830 0.0637 0.284 0.0715 0.0215
tr2 0.00975 0.0588 0.00742 0.0401 0.0197 0.00725
tr3 0.00130 0.00633 0.00488 0.00601 0.00521 0.00123
tr4 - 0.000583 0.000527 0.000504 0.000408 -
Gep

1
10.1 1.30 3.16 0.560 0.865 4.56

Gep
2

1.49 0.649 4.30 0.494 0.641 0.548
Gep

3
1.89 - - - - -

τy1 0.0477 0.00499 0.0147 0.00252 0.00433 0.0266
τy2 0.0303 0.0216 0.144 0.0163 0.0209 0.0182
τy3 0.122 - - - - -

Table A1: Material parameters given in [MPa] except fortr, given in [s].
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Finite Element Analysis of a Rubber
Bushing Considering Rate and
Amplitude Dependent Effects

Anders K Olsson, Per-Erik Austrell
Division of Structural Mechanics, Lund University, Sweden

ABSTRACT: A cylindrical bushing subjected to a stationary cyclic load is analysed with emphasis
on the amplitude and frequency dependent damping and modulus. The material parameters were
determined from a dynamic shear test, in terms of a viscoelastic-elastoplastic model. Using an
overlay of finite element meshes, the material model was implemented in a finite element model
of the cylindrical bushing and subjected to a radial cyclic load. The calculated damping and
stiffness for the bushing were verified with measured data from the actual bushing. Results show
that the viscoelastic-elastoplastic model can be made to represent the amplitude and frequency
dependence seen in the two natural rubbers investigated in this paper. It is also seen that the
model, although fitted to a shear test, performs fairly well for a more general load case as well.

1 Background

The traditional way to develop new rubber components is through manufacturing prototypes,
testing, modifying the prototype and more testing. The ability to model the dynamic behaviour
of rubber components introduces advantages in terms of lesstesting and prototyping, resulting
in faster development times and reduced costs. The finite element model also provides a tool to
analyse local stresses and strains within the component in amore detailed way than can be done
in testing. Thus, providing the engineer with useful information of how to optimise the geometry
of the component in order to make better use of the rubber material and to increase the expected
life-time of the component.

It is a well-known fact that the dynamic properties of rubberare dependent on both amplitude
and frequency. An increase in amplitude yields a decrease inmodulus. This softening effect is
usually referred to as the Payne effect (Payne 1965, Warnaka1962). The frequency dependence
can be observed through an increase in modulus and damping for increasing frequency.
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The frequency dependence is usually modelled with a viscoelastic model, whereas the Payne
effect can be described with an elastoplastic model. Arguing that there is no connection between
the amplitude and rate dependence, authors such as Sjöberg &Kari (2002), Miehe (2000) and
Austrell (1997) have coupled the viscoelastic and elastoplastic models in parallel, adding the
stress contributions from each branch. This simplified approach has shown good agreement with
measurements.

2 Methods

Austrell et al. (2001) presented a simple finite element method, with the capability to model the
amplitude and frequency dependent properties of filled rubber. A method to fit this material model
to experimental data was suggested by Olsson & Austrell (2001). The purpose of this paper is
to evaluate these two methods by investigating the dynamic behaviour of a rubber bushing. Two
different grades of NR were investigated. For each of the twomaterials one double shear test
specimen and one cylindrical rubber bushing were manufactured.

elastoplastic part

κ

τ

viscoelastic part

y

oo

y

G

M
τ

τ
1

ep

1

ve

Gve
1

G

G
ep

M

G
ep

2

G

1

t r2

y

elastic part

r

ve
2

G
N

2

t

τ

t r
N

Figure 1: A one dimensional symbolic interpretation of the material model.

For simple shear, the material model can be interpreted as a one-dimensional symbolic model
as shown in Figure 1. The fundamental assumption of this model lays in the ability to model the
amplitude and frequency dependence as two separate behaviours. Thus, enabling the frequency
dependent viscoelastic branch to be coupled in parallel with the amplitude dependent elastoplastic
branch. This parallel coupling is also the foundation of theoverlay method suggested by Austrell
et al. (2001), which was used to create the finite element model presented in this paper.

The dynamic shear test was used to obtain the viscoelastic-elastoplastic material model ac-
cording to Olsson & Austrell (2001). The non-linear elasticfoundation of the model was obtained
through an extra quasi-static shear test. The material model was then implemented in a finite el-
ement model using an overlay of finite element meshes as discussed by Austrell et al. (2001).
Measurements of the real bushing were used in order to verifythe finite element model when
a harmonic radial load was applied. Hence, the material model is fitted for simple shear, but
evaluated for a more general load case.
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3 Mechanical testing

The cylindrical bushings and the double shear test specimens were tested in aSchenk tensile
machine with a 7kN load cell. Tests were carried out by Lars Janerstål at Volvo Car Corporation.

Since the mechanical properties of rubber are sensitive to temperature changes, it is important
that the experiments are carried out at a constant temperature. To avoid heat build-up in the rubber
only a few cycles were performed at each frequency and amplitude.

During the first load cycles most NR show a significant softening effect, the so called Mullins
effect (Mullins 1969). To remove this softening effect fromthe measurements, the rubber com-
ponents were conditioned at an amplitude 10% higher than thehighest measured amplitude. Fur-
thermore, the tests were conducted starting with the highest amplitudes and finishing with the
lowest.

3.1 Materials

Two different carbon-black-filled natural rubbers were examined. Both grades had a hardness of
50 IRHD, which according to Lindley (1974) means they shouldhave roughly the same shear
modulus. One grade is a low filled rubber commonly found in automotive applications, referred
to as material A in this paper. The other grade with slightly more filler and higher damping is
referred to as material B in this paper. To achieve the same hardness for both materials softener
was added to material B.

4 Shear test

For simple shear, the elastic part of the rubber behaviour isalmost linear at moderate strains. This
property is advantageous when characterizing the material, since it makes it easier to isolate the
non-linear dynamic properties. For this reason the material parameters were obtained solely from
the double shear test. The utilized, double shear test specimens consist of three steel cylinders
connected with two circular rubber plates, as shown in Figure 1.

φ
25 6

Figure 2: The double shear test specimen used in the evaluation of the material parameters.

The dynamic shear tests were performed as described in Section 3. Dynamic shear modulus
Gdyn and dampingd were measured at frequencies ranging from 0.1-50Hz and shear strain am-
plitudes ranging from 1-50%. The dynamic shear modulus and damping were defined according
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to

Gdyn =
τ0
κ0

, d =
Uc

πκ0τ0
(1)

whereτ0 represents the stress amplitude,κ0 the strain amplitude andUc the hysteretic work per
unit volume and load cycle.

As suggested by Olsson & Austrell (2001) a good fit to damping and dynamic shear modulus
was sought through a minimization of the error functionψ given as

ψ = α

m
∑

i=1

(

di − dexp, i

dexp, i

)2

+ (1− α)

m
∑

i=1

(

Gi −Gexp, i

Gexp, i

)2

(2)

wherem is the number of measurements. The error function is solely dependent on the material
parameters. Hence, minimizing this function yields the sought material parameters. By choosing
the weight factorα it is possible to decide whether to focus on a good fit of the dynamic modulus
or damping. This is further discussed by Olsson & Austrell (2001).
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Figure 3: Dynamic shear modulus of material A at different strain amplitudes. Dashed line:
Measured data. Solid line: Model.

The models slight deviation from the expected smooth curve (see Figure 3-6) is due to prob-
lems to keep a constant amplitude during the tests. Since themodel is evaluated at the exact
amplitudes and frequencies as recorded in the test, the lackin accuracy of the amplitude will also
be reflected in the model curve. It should be noted that the test equipment experienced difficulties
at the lowest amplitudes due to the very small displacementsand forces. Hence, the result for the
lowest amplitudes might be somewhat unreliable.

The obtained material parameters are presented in Table 1. Further increasing the number of
viscoelastic and elastoplastic contributions will give a slight improvement of the model, best seen
in an improved fit of the dynamic shear modulus for low frequencies. It was however decided that
this slight improvement was not worth the extra computational costs involved when implemented
in the finite element model.
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Figure 5: Dynamic shear modulus of material B at different strain amplitudes. Dashed line:
Measured data. Solid line: Model.

4.1 Fit of non-linear elasticity

In order to capture the non-linear elastic characteristicswith the Yeoh-model (Yeoh 1990) a quasi
static shear test according to Figure 7 was performed. The three parameters were then fitted with
a standard least square method (Austrell 1997).

81



0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

D
am

pi
ng

Frequency [Hz]

1%
2%
5%
10%
20%
50%

Figure 6: Damping of material B at different strain amplitudes. Dashed line: Measured data.
Solid line: Model.

Table 1: Material parameters
Material A B
G∞ [MPa] 0.613 0.495
Gve

1 [MPa] 0.0227 0.0108
Gve

2
[MPa] 0.103 0.0457

Gve
3

[MPa] - 0.152
tr1 [s] 0.0110 0.00921
tr2 [s] 0.00105 0.00874
tr3 [s] - 0.000798
Gep

1
[MPa] 0.291 1.31

Gep
2

[MPa] 0.128 0.316
Gep

3
[MPa] 0.0626 0.130

Gep
4

[MPa] - 0.0620
τy1 [MPa] 0.00247 0.00793
τy2 [MPa] 0.00573 0.0121
τy3 [MPa] 0.0132 0.0234
τy4 [MPa] - 0.0318
C20/C10 -0.0725 -0.124
C30/C10 0.0153 0.0397

For simple shear the shear stress of the Yeoh-model is given as a function of the shear strain
κ according to

τ = 2C10κ+ 4C20κ
3 + 6C30κ

5 (3)

TheC10 parameter governs the initial shear modulus (C10 = G/2), whereas theC20 andC30
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Figure 7: Quasi-static shear test of material A. Dashed line: Hyperelastic Yeoh-model. Solid
line: Measured data (strain rate: 0.9%/s).

parameters govern the non-linear elastic response. Hence,the characteristic non-linear shape
is determined by the ratiosC20/C10 andC30/C10 and the overall modulus is set by theC10

parameter. Since the principle non-linear elastic response is thought to be independent of dynamic
properties, the two ratios are kept unchanged and theC10 parameter is fitted to the dynamic shear
test along with the amplitude and rate dependent parameters, as discussed in the next section.

5 Rubber bushing

Two bushings were examined, one of material A and one of material B. The rubber bushing
consists of one outer and one inner steel tube connected withrubber. Similar bushings are found
in modern automotive suspensions.

Dynamic stiffnessKdyn and dampingdbush for the rubber bushing are defined in a similar
manner as for the shear test

Kdyn =
F0

u0

, dbush =
Whyst

πF0u0

(4)

whereF0 is the amplitude of the force,u0 the displacement amplitude andWhyst the hysteretic
work per load cycle.

5.1 FE-model

The FE-model was created inAbaqus with 8-node hybrid elements. Due to symmetry only one
fourth of the bushing had to be modelled, as seen in Figure 4. SinceAbaqus does not provide a
viscoelastic-elastoplastic model, the FE-model was created using the overlay method. In this case
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Figure 8: The cylindric bushing and FE-model.

a viscoelastic finite element model was merged with three respectively four elastoplastic finite
element models, for material A and B.

Figure 9: The FE-model subjected to a 3mm radial displacement.

The viscoelastic branch was modelled with Prony-series based on a hyperelastic Yeoh-model.
It would be desirable to use the same hyperelastic Yeoh-model as a base for the elastoplastic
branch. But, this type of elastoplasticity is currently unavailable inAbaqus. Hence, the elasto-
plasticity has been modelled with several ideally elastoplastic hypoelastic models coupled in par-
allel in accordance with the overlay method. InAbaqus/Standard this elastoplastic model could
also be achieved by a single model with piecewise kinematic hardening.

A radial sinusoidal displacement was analyzed for different frequencies and amplitudes. The
deformed finite element model is shown in Figure 9. As can be seen in the Figure, the radial
load case introduces both tension and compression, as well as shear. The calculated damping and
stiffness are presented to the left in Figure 10-13.
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Figure 10: Dynamic stiffness for the cylindrical bushing with material A. (Left: FE-model, Right:
Measurement
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Figure 12: Dynamic stiffness for the cylindrical bushing with material B. (Left: FE-model, Right:
Measurement

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

D
am

pi
ng

Frequency [Hz]

u
0
 = 0.20 mm

u
0
 = 0.50 mm

u
0
 = 0.80 mm

u
0
 = 1.5 mm

u
0
 = 3.0 mm

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

D
am

pi
ng

Frequency [Hz]

u
0
 = 0.20 mm

u
0
 = 0.50 mm

u
0
 = 0.80 mm

u
0
 = 1.5 mm

u
0
 = 3.0 mm

Figure 13: Damping for the cylindrical bushing with material B. (Left: FE-model, Right: Mea-
surement)
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5.2 Verification

The bushings were loaded in the radial direction as described in Section 3. Measured dynamic
stiffness and damping for the rubber bushing are shown to theright in Figure 10-13. These results
should be compared to the predicted results, shown to the left in Figure 10-13, obtained from the
finite element model.

When the FE-model is compared to the measurements it can be seen that the dynamic stiffness
of the bushing is overestimated for both materials. Dampingon the other hand seems to be well
predicted for material B, but underestimated for material A.

In an effort to keep the computational costs to a minimum a rather coarse finite element mesh
was used for the analysis. Tests with finer meshes show that the predicted stiffness will drop
approximately 3% for a fine mesh, which partly explains the deviation between measured and
calculated stiffness. On the other hand, a finer mesh did not affect the predicted damping.

The slight error in the finite element model might to some extent also be explained by dif-
ferences in material properties of the double shear specimen and the rubber bushing. Although
the components were manufactured from the same batch, slight deviations in the manufactur-
ing process due to different geometries, might result in different degrees of cross-linking during
vulcanization.

Given the above uncertainties, and also the fact that the material model did not fit the shear
test perfectly, the results are as good as could be expected.

5.3 Shape of hysteretic response

Although emphasis for the fitting procedure was on dynamic modulus and stiffness, it is also
important to obtain a correct shape for the hysteresis loop during a load cycle. For a purely
viscoelastic material the hysteretic response will have anelliptic shape. Whereas a purely elasto-
plastic model will have a more parallelogram shaped response with sharp corners.

The hysteretic response for the rubber bushing of material Bis shown in Figure 14. Showing
both elastoplastic and viscoelastic effects, the obtainedloop is a mixture of a parallelogram and
an ellipse. As expected from the dynamic stiffness presented in Figure 12, the hysteretic response
of the finite element model is slightly too stiff. Apart from the deviation in stiffness, the shape of
the hysteresis loop from the model seems to be in good agreement with the measured response.

5.4 Mullins effect

During the tests it was observed that Mullins effect seemed to recover faster than anticipated.
However, no further measurements to verify this observation were made. Since the mechanical
conditioning of the specimens were done only once, it is likely that the measurements to some
extent were influenced by Mullins effect. To investigate this observation, a discontinuous damage
model (Miehe 1995) given by

τ = τ(1 − d∞(1− e
−amax

η )) (5)
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Figure 14: Hysteretic response for the rubber bushing of material B at f = 50Hz. Solid line:
FE-model, Dashed line: Measurements

was added to the viscoelastic-elastoplastic model. The viscoelastic-elastoplastic stress is referred
to asτ andη andd∞ are material parameters. This damage model is solely dependent on the
highest strain energyamax, given by the hyperelastic Yeoh-model.

When fitted to the dynamic simple shear tests no significant improvements were seen. The
most noticeable change was a slightly improved modelling ofthe amplitude dependent dynamic
shear modulus. As already mentioned, similar improvementscould be obtained through the addi-
tion of more viscoelastic and elastoplastic contributions. It was decided that the small improve-
ments were not worth the added complexity introduced by the damage model. Hence no further
damage modelling were performed.

6 Summary and conclusions

The non-linear dynamic properties of two grades of low-filled natural rubber were examined.
Measurements show that the dynamic shear modulus vary with over 100% (see Figure 5), in this
case mainly due to the amplitude dependence but frequency also plays a important role.

A viscoelastic-elastoplastic material model was fitted to asimple shear test and implemented
in a finite element model. It was shown that the obtained finiteelement model could be used
to predict the dynamic properties of a cylindrical rubber bushing subjected to a dynamic radial
load. When compared to measurements of the same bushing, it was concluded that the finite
element model showed a principally correct rate and amplitude dependence. Although not in
absolute agreement with experimental data, the result is a great improvement if compared to
results obtained with purely hyperelastic or viscoelasticmodels.

88



7 Acknowledgement

All tests presented in this paper were performed at Volvo CarCorporation. The authors would like
to thank Anders Wirje and Lars Jarnerstål at Volvo Car Corporation for their work and support of
the project.

References

Austrell P-E., Olsson A.K. 2001, A Method to Analyze the Non-Linear Dynamic Behaviour
of Carbon-Black-Filled Rubber Components Using Standard FE-codes. Second European
Conference on Constitutive Models for Rubber, Germany

Austrell P-E. 1997,Modeling of Elasticity and Damping for Filled Elastomers. Lund University,
Division of Structural Mechanics, Report TVSM-1009, Sweden

Kaliske M., Rothert H. 1998, Constitutive Approach to Rate Independent Properties of Filled
Elastomers.Int. J. Solids Structures, Vol. 35, No. 17, pp. 2057-2071

Lindley P.B. 1974,Engineering design with natural rubberMRPRA

Miehe C. 1995, Discontinuous and continuous damage evolution in Ogden-type large-strain elas-
tic materialsEur. J. Mech., A/Solids, Vol. 14, pp. 697-720

Miehe C., Keck J. 2000, Superimposed finite elastic-viscoelastic-plastoelastic stress response
with damage in filed rubbery polymers. Experiments, modelling and algorithmic implemen-
tationsJ. Mech. Phys. Solids, 48, 323-365

Mullins L. 1969, Softening of Rubber by DeformationRubber Chemistry and Technology, Vol.
42, pp. 339-362

Olsson A.K., Austrell P-E. 2001, A fitting procedure for a viscoelastic-elastoplastic material
model.Second European Conference on Constitutive Models for Rubber, Germany

Payne A.R. 1965,Reinforcement of elastomersG. Kraus, Ed., Interscience, Chap. 3, New York

Sjöberg M., Kari L. 2002, Non-Linear Behavior of a Rubber Isolator System Using Fractional
DerivativesVehicle System Dynamics, Vol. 37, No. 3, pp. 217-236

Warnaka G.E. 1962,Effects of Dynamic Strain Amplitude on the Dynamic Mechanical Properties
of Polymers. ASME Rubber and Plastics Div., Paper 62-WA-323, New York

Yeoh O.H. 1990, Characterization of Elastic Properties of Carbon-black-filled Rubber Vulcan-
izates.Rubber Chemistry and Technology, Vol. 63,pp. 792-805

89



Detta är en tom sida!



Paper IV

Considering Amplitude

Dependent Effects During Cyclic

Loads by an Equivalent

Viscoelastic Model

Yet to be submitted

91



Detta är en tom sida!



Considering Amplitude Dependent
Effects During Cyclic Loads by an
Equivalent Viscoelastic Model

Anders K Olsson, Per-Erik Austrell, Göran Sandberg
Division of Structural Mechanics, Lund University, Sweden

ABSTRACT: Although it is well known that the dynamic properties of rubber depend on both fre-
quency and amplitude, there are no commercially available finite element codes that take account
of these effects. This paper outlines a simplified procedureto extend the usability of the com-
mercially available frequency dependent viscoelastic finite element models, to also take account
of the amplitude dependence. By first calculating the load level at each element it is possible
to obtain an equivalent viscoelastic model for a cyclic load. Using this approach two different
frequency dependent models are treated; one frequency and one time domain viscoelastic model.
Both models are verified against experimental data with goodresults.

1 Background and introduction

It has long been customary to model rubber with either hyperelastic or viscoelastic material mod-
els. However, it is well known that the dynamic properties ofrubber are dependent of both
amplitude and frequency. Considering a harmonic load, the dynamic modulus of the rubber ma-
terial will increase if the frequency increase. Likewise, an increasing amplitude will results in a
decreasing dynamic modulus. The importance and influence ofthese two behaviours will depend
on the rubber material as well as the load ranges of the particular application.

Amplitude dependence is attributed to two different phenomena, the so called Mullins (Mullins
1969) effect and the Payne (Payne 1965) or Fletcher-Gent effect. The Mullins effect is seen as a
softening effect during the first load cycles. This softening effects is believed to be caused by the
breakdown of the filler structure and is usually thought of asan irreversible phenomena. However
when left unloaded for a couple of hours the material in this paper was observed to regain much
of its virgin properties. The Payne effect on the other hand is not dependent on the number of
load cycles or previous loads and is completely reversible.
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The Mullins effect will temporarily disappear if the material is initially loaded at a higher
amplitude. The Payne effect on the other hand is not dependent on previous load cycles.

The aim of the suggested equivalent viscoelastic approach is to model both frequency and
amplitude dependent effects. The basic idea is that, even though the rubber material is not purely
viscoelastic, it is possible to create a suitable equivalent frequency dependent viscoelastic model
for any given amplitude. Hence the choice of material parameters for this equivalent viscoelas-
tic model is governed by the strain amplitude. Using this approach, the model is restricted to
modelling stationary dynamic loads, for which an amplitudecan be determined. By a simpli-
fied engineering approach this method works well in conjunction with commercial finite element
codes, using the already available material models.

The combined frequency and amplitude dependent propertiesof rubber material have pre-
viously been modelled by coupling a viscoelastic material model in parallel to an elastoplastic
(Miehe 2000) (Austrell & Olsson 2001) forming a viscoelastoplastic model. By coupling the
two constitutive branches in parallel the frequency and amplitude dependence are assumed to be
independent of each other. No such assumption is needed for the studied equivalent viscoelas-
tic model. Unlike the viscoelastoplastic model the suggested equivalent viscoelastic model can
capture a coupled dependence between amplitude and frequency. Another interesting feature of
the equivalent viscoelastic model is that it makes no distinction between the Mullins or Payne
effect as they are both only treated as amplitude dependence. I.e. if the material tests of which
the model is based on contain Mullins effect, so will the model.

2 Measurements

Two different rubber components were used for this study: one double shear test specimen and
one cylindrical rubber bushing. Both components were manufactured using the same carbon black
filled natural rubber and subjected to sinusoidal loads using a hydraulic test rig. Fitting the model
only to the shear test and comparing the resulting finite element model to the real bushing provides
a good verification of the model. The same two components werepreviously used to verify the
viscoelastic-elastoplastic model described in (Olsson & Austrell 2003) using an overlay method
(Austrell & Olsson 2001).

φ
25 6

Figure 1: The double shear test specimen used in the evaluation of the material parameters.

To remove the influence of the Mullins effect in the measurements, both components were
conditioned at a 10% higher displacement than the highest recorded amplitude. The tests were
then conducted starting at the highest amplitude and finishing at the lowest. Both material and
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component tests were carried out by Lars Janerstål at Volvo Car Corporation in Gothenburg,
Sweden.

2.1 Material test

The double shear test specimen as shown in figure 1, consists of three steel cylinders connected
together with two thin rubber pieces. The purpose of the double shear test is to obtain a true
simple shear deformation. However finite element calculations of the test specimen show that a
shear modulus obtained from this test has to be increased by 6percent to yield the same values as
the ideal simple shear test, indicating that a perfect simple shear load case is not obtained. This
deviation was accounted for when fitting the material modelsused in the finite element model.
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Figure 2: Measured dynamic stiffness of the rubber material.

Using a hydraulic test rig, the dynamic shear modulusGdyn and dampingd were measured
at frequencies ranging from 0.1-50Hz and shear strain amplitudes ranging from 1-50%. The
dynamic shear modulus and damping as seen in figure 2 and 3 weredefined according to

Gdyn =
τ0
κ0

, d = sin(δ) =
Uc

πκ0τ0
(1)

whereτ0 represents the stress amplitude,κ0 the strain amplitude,δ the phase angle andUc the
hysteretic work per unit volume and load cycle.

Both material models presented in this paper were based on the dynamic shear data presented
in figure 2 and 3.

2.2 Radially loaded bushing

A cylindrical rubber bushing as seen in figure 4 was subjectedto a sinusoidal load in the radial
direction. The rubber bushing consists of one outer and one inner steel tube connected with
rubber. Similar bushings are found in the flexible joints of most modern car suspensions.
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Figure 3: Measured damping of the rubber material.
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Figure 4: The cylindric bushing and FE-model. Dimensions are given in mm.

Dynamic stiffnessKdyn and dampingdbush for the rubber bushing are defined in a similar
manner as for the shear test

Kdyn =
F0

u0

, dbush =
Whyst

πF0u0

(2)

whereF0 is the amplitude of the force,u0 the displacement amplitude andWhyst the hysteretic
work per load cycle. The dynamic stiffness and damping were measured at frequencies ranging
from 1-50Hz and amplitudes ranging from 0.20-3.0mm. Experimental data from the bushing are
presented in figure 5 and 6. This data was only used for the purpose of verifying the finite element
models.
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Figure 5: Measured dynamic stiffness of the rubber bushing.
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Figure 6: Measured damping of the rubber bushing.

3 Equivalent viscoelasticity

Two different equivalent viscoelastic models are presented in this paper. The first model is based
on time domain viscoelasticity and the second on frequency domain viscoelasticity. The basic idea
of both models is that the material can be modelled as purely viscoelastic for a given amplitude.
I.e. each different amplitude will give rise to a unique viscoelastic model. Considering a finite
element analysis, for every element the equivalent shear strain amplitude has to be determined
so that an appropriate viscoelastic model can be assigned toeach element. Therefore the finite
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element analysis is carried out in four steps:

• An initial displacement controlled elastic FE-analysis isperformed using a hyperelastic
material model.

• The output file is read and the equivalent shear strain amplitude is calculated for each
element with equation 4.

• Based on the obtained amplitudes each element is assigned anappropriate viscoelastic ma-
terial model.

• A new input-file is then created and executed with the new equivalent viscoelastic material
models assigned to each element.

In case of a load controlled analysis the above procedure needs to be repeated to find an appropri-
ate elastic modulus for the initial finite element model to ensure that the elastic and viscoelastic
model yield the same global displacements.

In this paper the elastic analysis of the first step was performed with a Neo-Hooke hyperelastic
model with the strain energy potentialW = C10(I1 − 3). For a simple shear load case the first
strain invariant isI1 = κ2 + 3. For a general load case an equivalent shear strainκeq can be
calculated from the strain energy amplitudeW0 according to:

κeq =

√

W0

C10

(3)

I.e. the simple shear load case and the general load case are compared by putting their elastic
strain energy equal.

It should be clear that even though the equivalent viscoelastic models can be made to yield a
correct dynamic modulus and damping, their response to a harmonic load will be slightly different
considering the shape of the hysteretic loop. Whereas the measured hysteretic loop may in some
cases be asymmetric with sharp corners, the equivalent viscoelastic loop will always be more
ellipsoidal with rounded corners.

An attempt to further improve the accuracy of the equivalentviscoelastic procedure was made
by computing the the equivalent strain amplitude using an iterative scheme for which the equiva-
lent strain amplitude was updated each step. Although the global behavior converged within the
first iteration the element stresses did not fully converge and this iterative scheme was abandoned.

4 Equivalent time domain viscoelasticity

The time domain viscoelastic model inAbaqus is based on a Prony-series approach. The one-
dimensional mechanical analog representation of this model is illustrated in figure 7.

For each measured strain amplitude a time-domain viscoelastic material model as seen in
figure 7 was fitted. Thus, an individual set of material parameters exists for each measured am-
plitude. The behavior of this time-domain viscoelastic model for simple shear is shown in figure
8 and 9.
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Figure 7: One-dimensional mechanical analogy for the time domain viscoelastic model.
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Figure 8: Simulated dynamic modulus using the equivalent time domain viscoelastic model.

Comparing the time-domain viscoelastic model with the measured data in figure 2 and 3 for
simple shear it is seen that there is a good agreement betweenthe two. The chosen viscoelastic
model imposes a relation between the damping and the dynamicmodulus. In short, a high deriva-
tive of the dynamic modulus with respect to frequency yieldshigh damping. In reality damping
is only partly caused by viscoelastic effects. Modelling the entire damping as purely viscoelastic
leads to an overestimation of the viscoelastic part of the damping and hence also an overestima-
tion of the derivative of the dynamic modulus with respect tofrequency. This effect is clearly
visible for the time-domain equivalent viscoelastic model.

4.1 Finite element model

The finite element analysis is performed in four steps as previously described. For the time do-
main viscoelastic model the fitted material parameters are only valid at the measured amplitudes.
For all other amplitudes the material parameters are obtained by linear interpolating between the
existing sets of material parameters. Choosing the relaxation timestr the same for all sets of pa-
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Figure 9: Simulated material damping using the equivalent time domain viscoelastic model.

rameters will simplify this interpolation. For amplitudesoutside the measured amplitude range,
the material parameters are set equal to those of the nearestmeasured amplitude. A finite element
model of the cylindric bushing in figure 4 was created and loaded with a sinusoidal load in the
radial direction. Calculated stiffness and damping of the bushing is shown in figure 10 and 11.

The finite element analyzes were performed inAbaqus/Implicit using the hyperelastic large
strain viscoelastic material model which is based on Prony-series. Eight-node hybrid formulation
brick elements were used to model the rubber material and thesteel was modelled as rigid.
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Figure 10: Simulated dynamic stiffness for the rubber bushing using the equivalent time domain
viscoelastic FE-model.
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Figure 11: Simulated damping for the rubber bushing using the equivalent time domain viscoelas-
tic FE-model.

5 Equivalent frequency domain viscoelasticity

Considering a steady state stationary dynamic analysis thedynamic modulus and damping can be
described in terms of a complex modulus. In this analysis thevibration is treated as a perturbation
around an elastically predeformed state. Thus the equations describing the stationary load case
is reduced to a linear system of complex equations. This yields a very fast solution compared to
a time domain viscoelastic model which must be solved through time-stepping. InAbaqus the
frequency dependent complex modulus is given in tabular form such as recorded from a frequency
sweep. Thus there is no fitting of material parameters for this model.

For the equivalent frequency domain viscoelastic model thefrequency dependence is deter-
mined from the amplitude obtained from the initial hyperelastic model.

5.1 Finite element model

The cylindrical bushing was analyzed using the equivalent frequency domain viscoelastic model.
Since the frequency dependence was only measured at five amplitudes for the the double shear
specimen, the material parameters for all other amplitudesare obtained by linear interpolation of
the measured data. For amplitudes outside the measured amplitude range, the frequency depen-
dent material data are set equal to those of the nearest measured amplitude.

Simulated stiffness and damping of the cylindric bushing are presented in figure 12 and 13,
which should be compared to the corresponding measurementsin figure 5 and 6. The bushing is
loaded in the radial direction.

As previously, the finite element analyzes were performed inAbaqus/Implicit using eight-
node hybrid formulation brick elements to model the rubber material. The used material model
allows for a large strain hyperelastic initial static load case from which the small strain steady state
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Figure 12: Simulated dynamic stiffness for the rubber bushing using the equivalent frequency
domain viscoelastic FE-model.
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Figure 13: Simulated damping for the rubber bushing using the equivalent frequency domain
viscoelastic FE-model.

analysis is performed using a frequency dependent complex modulus given in a tabular manner.
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6 Result discussion

As seen in figure 10-13, both FE-models show the same behavioras the real bushing presented in
figure 5 and 6. Yielding almost identical result both models overestimates the dynamic stiffness
of the bushing and underestimates the damping.

The overestimation of dynamic stiffness is partly due to a fairly course finite element mesh as
seen in figure 4. Calculations with finer meshes show that the stiffness can be reduced by at least
6%, whereas the damping is hardly affected at all by a finer mesh.

During manufacturing the bushing is vulcanized at an elevated temperature at which it re-
ceives its elastic properties. Thus at room temperature there will be residual stresses in the rubber
material of the bushing. This pre stressed state is not included in the analysis shown in figures 10
to 13. In order to get an estimate of the influence of the residual stresses an initial temperature
load was added to the equivalent frequency domain viscoelastic model. Assuming a temperature
coefficient of220 · 10−6/K a 120K temperature drop was modelled prior to the steady state dy-
namic analysis. Comparing figure 14 and 15 with figure 12 and 13, it is seen that the residual
thermal stresses will lower the dynamic stiffness by roughly 20% and increase the damping with
the same percentage, thus explaining much of the deviation seen in the finite element models.
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Figure 14: Simulated dynamic stiffness for the rubber bushing using the equivalent frequency
domain viscoelastic FE-model, taking account for the temperature drop after vulcanization.

A parameter which was shown not to influence the result is the number of different viscoelastic
material models used in the equivalent viscoelastic finite element model. A general approach
would be to use one material model for each element. However by using the same viscoelastic
model for several elements with approximately the same strain amplitudes the number of material
models needed can be greatly reduced. For the finite element model in this paper, containing
1620 elements, using 20 material models only altered the resulting stiffness with less than 0.1%
in comparison to using one material model for each element.

Comparing the results of the two equivalent finite element models with the results of the
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Figure 15: Simulated damping for the rubber bushing using the equivalent frequency domain
viscoelastic FE-model, taking account for the temperaturedrop after vulcanization.

viscoelastoplastic model presented in (Austrell & Olsson 2001) it can be seen that the results
are very similar. The major difference seem to be that derivative of the dynamic modulus with
respect to frequency is slightly exaggerated in the time domain viscoelastic model and slightly
underestimated in the viscoelastoplastic model, whereas the complex viscoelastic model is the
most accurate in this respect. The reasons for this is believed to be that complex model do not
use any analytical mathematic expression to describe the frequency and amplitude dependence.
It simply interpolates in the measured material data.

7 Conclusions

The time domain and the frequency domain equivalent viscoelastic models yield almost iden-
tical results. It is also noted that the two models yield verysimilar results as the viscoelastic-
elastoplastic model studied in (Olsson & Austrell 2003). All three models overestimates the
stiffness and underestimates the damping. This deviation can be explained by the fact that the
initial temperature loads were left out and that a rather rough finite element mesh was chosen.
Identical finite element meshes were used in all three models.

The frequency domain model will fit exactly to experimental data and will be very compu-
tationally efficient since it will linearize the system of equations. In linearizing the system, the
model will be restricted to smaller amplitudes and sinusoidal load cases.

The time domain model will not be as computationally efficient as the frequency domain
model but more efficient than the viscoelastic-elastoplastic model studied in (Olsson & Austrell
2003). Compared to the frequency domain model the time domain viscoelastic model is better
suited for larger deformations also including contact. Although it will only handle cyclic loads it
is not restricted to purely sinusoidal loads.
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It is thus concluded that the two equivalent viscoelastic models was shown to have different
advantages and restrictions. Both models were shown to workwell when modelling the harmon-
ically loaded cylindrical bushing in this paper.
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Appendix: Material Parameters

Table 1: Material parameters for the time domain viscoelastic model.

κ0 G∞ [MPa] G
ve [MPa] tr [s]

0.0125 0.8239 0.0882 1.20
0.0772 0.115
0.0400 0.029
0.1067 0.011
0.3587 0.0010

0.0254 0.6688 0.1043 1.20
0.0790 0.115
0.0436 0.029
0.1042 0.011
0.3774 0.0010

0.0635 0.5826 0.0886 1.20
0.0832 0.115
0.0312 0.029
0.0960 0.011
0.3314 0.0010

0.126 0.5547 0.0755 1.20
0.0672 0.115
0.0261 0.029
0.0807 0.011
0.2750 0.0010

0.250 0.5334 0.0609 1.20
0.0527 0.115
0.0198 0.029
0.0686 0.011
0.2182 0.0010

0.625 0.4804 0.0448 1.20
0.0400 0.115
0.0115 0.029
0.0603 0.011
0.1466 0.0010

106



Paper V

Modelling the Dynamic

Properties of Rubber in Rolling

Contact

Yet to be submitted

107



Detta är en tom sida!



Modelling the Dynamic Properties of
Rubber in Rolling Contact

Anders K Olsson, Per-Erik Austrell
Division of Structural Mechanics, Lund University, Sweden

ABSTRACT: For rubber in rolling contact many different aspects of rubber properties come into
play. The dynamic response of rubber is dependent of both amplitude and frequency. Modelling
the amplitude and frequency dependent effects is an important step in understanding how load,
rolling speed and geometry will affect the rolling behaviour. This paper studies two different finite
element procedures to include amplitude and frequency dependent effects in conjunction with
rolling contact. It is shown how the non-linear dynamic characteristics of the rubber material
influences the rolling contact. Analyzed examples include rolling on a flat surface and rolling
over a groove.

1 Introduction

Rubber in rolling contact is found in many different applications and is not only of interest to the
tire industry, but also to the processing industry. In papermanufacturing and similar processes,
understanding rubber covered rollers is vital to improve quality and production capacity. The
ability to analyze the rolling contact of rubber offers a powerful tool for a better understanding
of how material characteristics in combination with rollerdesign variables influence the contact
properties such as pressure gradient and contact width. Traditionally, analyzes treat the rubber
cover as elastic, however most rubber materials also exhibit amplitude and frequency dependent
properties that contribute to the above contact properties.

The purpose of this paper is twofold. The first is to examine two different methods of incor-
porating amplitude dependent effects into finite element models of rubber in rolling contact. The
second purpose is to highlight some important aspects of non-linear material characteristics in
general and amplitude dependence in particular when rolling contact is studied.

For a harmonic load, the amplitude dependence can be seen as adecrease in dynamic modulus
for increasing amplitude. For an increasing amplitude the damping will at first increase until a
maximum is reached after which further increased amplitudewill result in decreased damping.
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Partly depending on the application and partly on the specific rubber properties, the amplitude
dependent effects are in many cases far more pronounced thanthe rate or frequency dependence
(Olsson & Austrell 2001). This is especially obvious for applications with moderate amplitudes
and low to moderate frequencies, as well as for rubber with a high proportion of filler particles.
For very low or very high strain amplitudes these effects areusually of less interest.

Various finite element models for dealing with the non-elastic effects of rubber in rolling
contact have previously been presented. A model introducing Mullins effect in terms of a damage
formulation have been treated by (Kaliske & Domscheit 2001)and showed important influence
on the shape of the contact surface after the initial revolutions. A non-linear viscoelastic approach
(Akutagawa et al. 2003) was used to determine rolling resistance caused by amplitude dependent
effects.

This paper studies two different methods to account for combined amplitude and frequency
dependence in a rolling contact finite element analysis. Thefirst method uses an elastoplastic-
viscoelastic model previously presented in (Austrell & Olsson 2001) and the second is based on
an approximate time-domain viscoelastic model presented in (Olsson et al. 2006). Both methods
are based on simple engineering approaches and utilize commercially available finite element
codes, keeping the added complexity to a minimum.

1.1 Material data

The material models of this paper have been fitted to measurements obtained from a double shear
test specimen of a78 ShoreAHNBR (hydrogenated acrylonitrile butadiene) rubber from Trelle-
borg. For the measured amplitude and frequency range, the HNBR rubber exhibit equally pro-
nounced amplitude and frequency dependence. The material tests have previously been presented
in (Olsson & Austrell 2001). The test specimen was subjectedto a sinusoidal load and dynamic
shear modulus and damping were measured. The frequency ranged from 5 to 180Hz and the
shear strain amplitude ranged from 1 to 12%. The measured range should ideally cover the loads
experienced in the roller in terms of frequencies and strainamplitudes. This is further studied in
later sections.

2 Rubber covered rollers

From an industrial point of view, rubber covered rollers areof great importance in many industrial
applications. From a scientific perspective the simple geometry and loading of rubber covered
rollers make them ideal to study the dynamic effects of rubber material during rolling.

Depending on what industrial application or process the roller is found in, different contact
parameters are important. Contact parameters such as contact width, maximum pressure, pressure
gradient and surface strains are all governed by material properties and design variables such as
rubber thickness, roller radius, applied load and rolling velocity, as seen in figure 1. In general
the design variables are simple to control but are hard to correlate to what is happening in the the
contact region. The contact parameters on the other hand areeasier to correlate to the process but
harder to control. Hence, a good model describing the relationship between contact parameters
and design variables is the key to control the process.
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Figure 1: Rubber covered roller, design variables and contact parameters.

3 Elastoplastic-viscoelastic model

This section offers a brief introduction of the elastoplastic-viscoelastic model. A more thorough
presentation is found in (Austrell & Olsson 2001). The elastoplastic-viscoelastic model is based
on the assumption that the amplitude dependence and the frequency dependence can be treated
as independent of each other. This approximation makes it possible to model the combined mate-
rial behaviour with two parallel constitutive branches; one viscoelastic branch to account for the
frequency dependence and one elastoplastic to account for the amplitude dependence. The total
stress tensor is thus given as the sum of the elastoplastic and viscoelastic stress tensors:

σtot = σplast + σvisco (1)

This summation of stress tensors can be achieved by overlaying a viscoelastic finite element
mesh with an elastoplastic finite element mesh.

The rubber was modelled with 4-node quad elements with reduced integration. Due to the
history dependent nature of the plastic part of the model, the steady state rolling analysis was car-
ried out by time stepping. Since the size of the time step is restricted by the contact simulation an
explicit time-stepping scheme was chosen. The analysis wascarried out inAbaqus/Explicitusing
a large strain viscoelastic material model in combination with a kinematic hardening elastoplastic
model. SinceAbaqus/Explicitdoes not contain kinematic hardening a piece wise linear hardening
elastoplastic model was created by overlaying several ideally elastoplastic models.

The viscoelastic part was modelled with a large strain viscoelastic model based on Neo-
Hookean hyperelasticity and a viscous behaviour defined in terms of a Prony series. The ma-
terial parameters for the HNBR rubber are found in (Olsson & Austrell 2001). In figure 2 and 3
the elastoplastic-viscoelastic model is compared to measured data. The presented dynamic shear
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modulusGdyn and dampingd are defined according to:

Gdyn =
τ0
κ0

(2)

and

d = sin(δ) =
Uc

πκ0τ0
(3)

whereτ0 is the shear stress amplitude,κ0 is the shear strain amplitude andUc is the energy loss
per unit volume for one load cycle.
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Figure 2: Dynamic shear modulus of HNBR rubber. Solid line: elastoplastic-viscoelastic model.
Dotted line: experimental data.© : κ0 = 1%; � : κ0 = 3%; ♦ : κ0 = 7%; ▽ : κ0 = 12%.

4 Equivalent viscoelastic model

The equivalent viscoelastic model is limited to model periodic loads. The requirement for the
load to be be periodic is due to the need to in advance estimatethe maximum load level during
a load cycle. The model is based on the approximation that fora known strain amplitude it is
possible to model the rubber as purely viscoelastic. Although the rolling contact will not give rise
to a harmonic load it will result in a periodic load when rolling over a smooth surface. Hence,
when modelling rolling contact the equivalent viscoelastic model is restricted to constant speed
and a smooth surface.

Considering steady state rolling, a material point will experience the same maximum strain
amplitude at every revolution. I.e. for a given roller and a given compression, the strain amplitude
at the material level is only related to the distance to the rubber surface of the individual material
point. This means that for every amplitude a corresponding set of viscoelastic material parameters
has to be created. Since the strain amplitude for the rubber coated roller is only dependent on the
radial coordinate, each tangential layer of elements will have an individual viscoelastic material
model. The analysis is carried out in two steps.
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Figure 3: Damping of HNBR rubber. Solid line: elastoplastic-viscoelastic model. Dotted line:
experimental data.© : κ0 = 1%; � : κ0 = 3%; ♦ : κ0 = 7%; ▽ : κ0 = 12%.

• First an equivalent shear strain amplitude for each elementlayer is calculated from an initial
elastic analysis.

• Based on the equivalent shear strain amplitude each elementlayer is given an individual
viscoelastic model in the following analysis.

A more detailed presentation of the equivalent viscoelastic model can be found in (Olsson et.
al 2006).

Since rolling contact results in a non-harmonic load, it is not possible to use a frequency
domain viscoelastic model. Instead a time-domain viscoelastic model must be used. This was
done with a large strain viscoelastic model based on Neo-Hookean hyperelasticity and with the
viscous part given in terms of a Prony series. InAbaqus the steady state rolling was modelled with
a mixed Lagrangian/Eulerian formulation. In this formulation the rubber material flows through
the static deformed finite element mesh. This approach makesthe time-domain viscoelastic model
very efficient for steady state rolling. The rubber was modelled with 4-node quad elements with
a hybrid formulation suitable for incompressible or almostincompressible materials.

The behaviour of the equivalent time-domain viscoelastic model with respect to dynamic
shear modulus and damping is shown in figure 4 and 5 respectively. Each curve represents one
amplitude.

5 Rolling over a smooth surface

In the this section a rubber coated roller is studied when rolling over a flat surface. First the load
conditions at material level is studied using an elastic finite element model. Secondly, using the
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Figure 4: Dynamic shear modulus of HNBR rubber. Solid line: equivalent viscoelastic model.
Dotted line: experimental data.© : κ0 = 1%; ▽ : κ0 = 3%; � : κ0 = 7%; △ : κ0 = 12%.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

Frequency [Hz]

D
am

pi
ng

Figure 5: Damping of HNBR rubber. Solid line: Equivalent viscoelastic model. Dotted line:
experimental data.© : κ0 = 1%; ▽ : κ0 = 3%; � : κ0 = 7%; △ : κ0 = 12%.

example, the two previously discussed material models are used to analyze the influence of the
dynamic material properties.

The geometry of the roller is given in figure 6. The rolling velocity is 10m/s and the com-
pressive displacement of the roller is0.8mm. The roller is modelled as a long rigid cylinder
coated with a thin layer of rubber. For the initial elastic analysis the velocity can be neglected as
the rubber is elastic and the speed is not high enough to result in any sizeable inertia forces.
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Figure 6: Analyzed rubber coated roller.

5.1 Load conditions at material level

A simple elastic static finite element model of the previously described roller was analyzed in
order to study the loads experienced by the rubber material during rolling. The aim is to serve
as a verification of the chosen load range for the material tests as well as to gain an initial under-
standing of the basic mechanics involved.

Since the roller is long in the axial direction, two-dimensional constant strain conditions are
applicable. As the rubber coating is much softer than the inner steel cylinder and flat surface, both
cylinder and surface is treated as rigid. Hence only the rubber is treated as a flexible body. The
friction between the roller and flat surface is neglected. Itis however easy to include friction if
needed.

As the material parameters are derived from a harmonic material test it is important to choose
frequency and strain amplitude ranges for the test that corresponds well to the load of the roller.
In order to analyze the frequencies experienced by the rubber in the contact region during rolling,
a purely elastic analysis was made and the equivalent shear strain according to equation 4 was
derived from the strain energy amplitudeW0 and the hyperelastic Neo-Hooke parameterC10.

κeq =

√

W0

C10

(4)

The strain pulse during one revolution for an element at the surface of the rubber coating
is shown in figure 7. For the example analyzed in this paper themaximum strain amplitude
experienced by the rubber is not reached at the surface as expected. Instead the maximum occurs
at approximately one third of the rubber thickness measuredfrom the surface and in. The two dips
in the curve at either side of the largest pulse marks the outline of the contact surface. Outside the
contact area the rubber will bulge outward due to its incompressive nature.

The corresponding fast Fourier transform of the time signalis shown in figure 8. As seen in
this frequency plot there are two major frequency contributions at10Hz and140Hz respectively.
These frequencies are important for deciding the frequencies for the material tests.
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Figure 7: Equivalent shear strain pulse for one element at the surface during one revolution.
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Figure 8: Frequency spectrum for an element at the rubber surface.

A simple approximation of the dominant frequency of the pulse can be made by approximating
the pressure distribution with half a sine wave. Thus, for a rolling speedv and a contact widthd
the dominant frequency of the pulse can be obtained according to:

f =
v

2d
(5)

For the roller analyzed in figure 7 and 8 the approximate dominant frequency is167Hz which is
in fairly good agreement with the second peak of the corresponding Fourier transform. The first
peak is related to the revolution speed and can be described with:

f =
v

2πR
(6)
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which for this example yields8Hz, also in fairly good agreement with the Fourier transform
analysis.

As mentioned earlier the material test covered a frequency range from 5 to180Hz and am-
plitudes from 1 to 12%. From the calculated loads in figure 7 and 8, it is seen that the measured
range correspond well to the loads experienced by the roller.

5.2 Comparison of material models

For comparison both the viscoelastic-elastoplastic and the equivalent viscoelastic as described
earlier were used to analyze the a rubber covered roller in rolling contact with a flat smooth
surface. The geometry and the load is identical to the example of section 5.1. As mentioned
previously the viscoelastic-elastoplastic model was analyzed through an explicit time integration
and the equivalent viscoelastic-elastoplastic model was analyzed by an implicit solver using the
steady state transport formulation.

The contact pressures from both the equivalent viscoelastic and the viscoelastic-elastoplastic
finite element model are shown in figure 9. Both models show good agreement with each other.
Unfortunately it was not possible to obtain any experimental data to compare with, but the agree-
ment between the two separate models suggests that the result is reliable.
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Figure 9: Contact pressure when rolling over a flat surface. Dotted line: Overlay method; Solid
line: Equivalent viscoelastic method.

The asymmetric shape of the pressure distribution can be explained by the non-elastic proper-
ties of the rubber material. At the first phase of the contact surface the rubber material is loaded
until it reaches the maximum contact pressure after which itis unloaded. Similar to a cyclic ma-
terial test, the contact pressure response when unloading will deviate from the load curve. This
behaviour is caused by damping and will result in a loss of strain energy. Thus, the asymmetric
shape of the contact pressure is a result of the material damping. The asymmetric pressure re-
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sults in an increased initial pressure gradient which can bebeneficial for some applications where
fluids need to be driven away from the contact area.

In this case the deformation is mainly controlled by the prescribed displacement. I.e. the
contact width is governed by the prescribed displacement and is hardly influenced by the dynamic
modulus. Hence, decreasing the rolling speed and thus also decreasing the dynamic modulus will
not alter the contact width. Instead the softer response of the rubber will give a lower maximum
pressure and thus a lower contact force. Decreasing the rolling speed for a load controlled roller on
the other hand would result in an increased contact width andthus also a lower maximum pressure.
Understanding and controlling these phenomenons is vital to many industrial applications.

6 Rolling over a non-smooth surface

In this section a rubber covered roller is studied to see how different material properties will
influence the contact prpoerties. The radius of the roller is175mm,the thickness of the rubber
layer is 9mmand the compressive load is 30kN/m.

6.1 Fictive materials

As was seen in figure 9 both the equivalent viscoelastic and elastoplastic-viscoelastic model will
give the same pressure distribution rolling over a flat surface. Trying different material models
indicated that the pressure distribution was not affected by the material characteristics. The pres-
sure distribution over the contact area was the same irrespective if the rubber were modelled as
elastoplastic or viscoelastic.

0 0.005 0.01 0.015 0.02 0.025
0

2

4

6

8

10

12

14

16
x 10

5

Contact surface [m]

C
on

ta
ct

 p
re

ss
ur

e 
[P

a]

Figure 10: Contact pressure when rolling over a flat surface using fictive material models.©:
Elastic model;▽: Elastoplastic model;△: Viscoelastic model.
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To further prove this point two fictive materials were derived; one purely viscoelastic and one
purely elastoplastic. Both material models were fitted to exhibit a constant damping ofd = 0.35
for a frequency range of 5 to 180Hz and a shear strain amplitude range of 1 to 12%. This re-
sulted in an amplitude dependent modulus for the elastoplastic model and a frequency dependent
modulus for the viscoelastic model with the same damping.

When rolled over a flat surface both models gave the same shapeof the contact pressure dis-
tribution, only differing in the maximum pressure. Throughsome trial and error simulations the
modulus of both material models were chosen so both models gave the same maximum pressure
when running over a flat surface. When fitting the material parameters this way the elastoplastic
and the viscoelastic model will yield the same result in terms of contact width and maximum
contact pressure for the chosen roller geometry and load.

Figure 10 show the contact pressure as both models are rolling at a speed of 10m/sover the
flat surface. A purely hyperelastic model is also shown as a reference. For a given geometry and
load, the maximum contact pressure and contact width is mainly given by the dynamic modulus.

In figure 10 it can also be noted that the two models exhibit thesame asymmetric pressure
distribution. The asymmetric shape is caused by the material damping. The material damping
can be regarded as a dimensionless measure of the differencebetween loading and unloading. In
this case, the equal plastic and viscous damping will give the same asymmetric distortion. I.e. the
asymmetry of the contact pressure is governed by the amount of damping regardless of what phe-
nomenon is causing the damping. Both material damping and asymmetric pressure distribution
is a result of the difference between the loading and unloading curve of the material. Compared
to the contact pressure in figure 9 the contact pressure in figure 10 show less asymmetry. This
is explained by the thinner rubber coat of the latter roller which will result in a more volumetric
load.

6.2 Shallow groove

Using the previously derived fictive material the same roller was studied when rolling over a
shallow groove. The groove is 5mmwide and 0.8mmdeep with the same length as the roller and
situated in the axial direction of the roller.

As seen from figure 11 to 13, the elastic and viscoelastic model show similar deformations
whereas the elastoplastic model better adapts to the shape of the groove. Unlike the other two
models the elastoplastic model incorporates amplitude dependence. Since the dynamic modu-
lus of the amplitude dependent material will decrease for anincreasing in amplitude, the highly
strained areas of the roller close to the hole will behave in soft manner if modelled by the elasto-
plastic model. Although the viscoelastic and elastoplastic models give the same result when rolled
over a flat surface, it can be concluded that including the amplitude dependence, as done in the
elastoplastic model, will result in a softer and more deformable contact region. Hence, a correct
model of the amplitude dependence is important when modelling the rolling contact of a rough
surface. Another implication of this result is that when a smooth contact between the surface and
the rubber is desirable, it may be wise to choose a rubber withpronounced amplitude dependence.
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Figure 11: Element deformation when running over a small groove using an elastic finite element
model.

Figure 12: Element deformation when running over a small groove using an viscoelastic finite
element model.

7 Summary

The topic of this paper is finite element modelling of rubber covered rollers. Two different meth-
ods to include frequency and amplitude dependence are studied, one viscoelastic-elastoplastic
model and one equivalent viscoelastic model. Both models include both rate and amplitude de-
pendent properties. It was shown that both models gave the same results, suggesting that the
contact pressure when rolling over a flat surface is mainly governed by dynamic modulus and
damping and is not dependent on how the damping is modelled.

For the equivalent viscoelastic model the mixed Eulerian/Lagrangian formulation as supplied
by Abaqusin combination with the equivalent viscoelastic model eliminates the need for time
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Figure 13: Element deformation when running over a small groove using an elastoplastic finite
element model.

stepping during steady state rolling and is a very efficient solution. This model is however re-
stricted to periodic loads, which for rolling contact translates to constant velocity and smooth
surfaces.

The viscoelastic-elastoplastic model was used in combination with Abaqus/Explicitas the
small time steps needed for the contact simulation, fits the small time steps needed for conver-
gence in an explicit scheme. This model differs from the equivalent viscoelastic in the ability to
model rolling over a arbitrary surface and at varying velocities.

The model was used to analyze a roller rolling over a small groove in a flat surface. For this
load case the steady state rolling approach is not valid as the groove will not come into contact
with the same material point at every revolution. When comparing viscous and plastic damping
mechanics, it was seen that amplitude dependent rubber resulted in much softer behaviour of the
high strain regions of the rubber surface. This local softening effect will make the rubber deform
more easily and better adapt to the geometry of the groove.
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Appendix
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A1 Notation

The following symbols are used in this thesis:

G = shear modulus
Gdyn = dynamic shear modulus
Gexp = measured dynamic shear modulus
GR = relaxation shear modulus
G∞ = long term shear modulus
G0 = instant shear modulus
tr = relaxation time
τ = shear stress
τ0 = shear stress amplitude
τy = yielding shear stress
τ = stress tensor
κ = shear strain
κ0 = shear strain amplitude
κy = yield shear strain
d = damping
dexp = measured damping
dbush = component damping
δ = phase angle
Uc = dissipated energy per volume for a closed hysteresis loop
amax = highest strain energy
Whyst = dissipated energy for a closed hysteresis loop
η = viscosity coefficient
u = displacement
α = weight factor
ψ = error function
ω = angular frequency
H = thickness
M = number of elastoplastic components
N = number of viscoelastic components
m = number of measurements
u0 = displacement amplitude
Kdyn = dynamic stiffness
F0 = force amplitude
W0 = elastic strain energy amplitude
κeq = equivalent strain energy amplitude
σtot = total stress tensor
σplast = elastoplastic part of stress tensor
σvisco = viscoelastic part of stress tensor
f = frequency
v = rolling velocity
d = contact width
R = radius of roller
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Superscripts

e = elastic
ep = elastoplastic
ve = viscoelastic
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