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Abstract
In this thesis, user friendly and efficient methods for the design of glass structures are
developed. The glass structures comprise various boundary conditions. Several types of
glass are considered: single layered glass as well as laminated and insulated glass units.
Typical load cases for strength design of glass are applied.
A recently developed finite element is suggested to be suitable for the modeling of lami-
nated glass structures. It is shown that the new finite element is superior to standard solid
elements for modeling of laminated glass. The results show that the element provides ex-
cellent capabilities for modeling of complex laminated glass structures with several bolted
or adhesive joints.
The new element is utilized in the development of a method to compute stress concentra-
tion factors for laminated glass balustrades with two horizontal rows with two bolt fixings.
The stress concentration factors are represented graphically in design charts. The use of
the design charts allow the maximum principal stresses of the balustrade to be determined
without using finite element analysis or advanced mathematics.
The shear-capacity of adhesive glass-joints is tested in a short-term load-case. Commonly
used stiff and soft adhesives are considered. Finite element models of the test are devel-
oped to determine the material models of the adhesives. The material models are verified
through large-scale tests. For the stiff adhesives and the main part of the soft adhesives, the
material models are experimentally validated for both small-scale and large-scale tests.
For a group of the soft adhesives, further research is necessary to validate the material
models for a large-scale joint.
A reduced model for determining the maximum principal stresses of a glass subjected
to dynamic impact load is developed and validated. The developed model is general in
the sense that it is applicable to arbitrary location of the impact as well as to structures
of arbitrary boundary condition. The validation is made for a four-sided supported glass
pane and centric applied impact as well as excentric applied impact. It is shown that the
model is applicable to small and medium sized structures. Finally it is proven that the
model performs very well for a laminated glass balustrade of standard dimensions and
with clamped fixings.
Finally, insulated glass subjected to soft body impact is analyzed be means of structure-
acoustic analysis. A parametric study is made with respect to in-plane dimensions, glass
thickness and thickness of the gas layer. For quadratic panes, a larger glass has a larger
center displacement but lower stresses than a smaller glass. A single layered glass is
proven to have only marginally greater stresses than the corresponding double glass. The
air layer thickness has almost no influence on the stresses of the insulated glass but the
thickness of the glass has a large influence. Finally, there is almost nothing to be gained
to add a third glass pane to the insulated unit.

Keywords: finite element, computational techniques, laminated glass, stress concentra-
tion factor, design chart, bolt fixing, adhesive joint, balustrade, shear-capacity, dynamic
impulse load, insulated glass.
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Populärvetenskaplig sammanfattning
Glas som konstruktionsmaterial är relativt nytt och har blivit mer utbrett på grund av
tekniska framsteg inom produktion av planglas, för vidarebearbetning av det tillverkade
glaset och utvecklingen inom datorbaserade analysmetoder som finita elementmetoden.
Jämfört med andra konstruktionsmaterial, till exempel betong, är kunskapen om glasets
mekaniska egenskaper och strukturmekaniska beteende mindre.
Standarddimensioneringsmetoden inom konstruktion går ut på att dimensionerna hos en
struktur bestäms genom att se till att de högsta spänningarna inte är större än materi-
alets hållfasthet någonstans i strukturen. Den här typen av dimensionering är vanlig vid
glaskonstruktion. Vid användning av den här metoden är det viktigt att de maximala
spänningarna bestäms med tillförlitlighet.
Glas är ett sprött material som inte deformeras plastiskt innan brott. Spänningskoncentra-
tioner som uppstår vid exempelvis ett borrhål reduceras därför inte. Det finns ett stort in-
tresse för att bygga med glas i bärande delar av konstruktioner och att i glaskonstruktioner
använda så lite annat material som möjligt. För att uppnå detta används infästningstyper
som bultförband och limfogar. Tyvärr saknas det enkla och säkra dimensioneringskriterier
och verktyg för att konstruera med glas utom för fall med enkla geometrier, infästning-
typer och laster. Att utföra experiment är möjligt men det blir dyrt och inte så effektivt att
utföra dimensionering på det sättet.
Syftet med det här arbetet är att utveckla metoder för att utföra effektiv dimensionering
av avancerade glasstrukturer med olika infästningstyper och som utsätts för olika lastfall.
En ny metod baserad på finita elementmetoden implementeras för att beräkna spännings-
fördelningarna i avancerade strukturer av laminerat glas korrekt och effektivt. Den här
metoden utgör en bas för utvecklingen av en analytisk dimensioneringsmetod för bultin-
fästa balustrader av laminerat glas. Metoden utgör ett komplement för att dimensionera
den här typen av struktur och är lättare att använda än finita elementmetoden. Med hjälp
av metoden kan spänningarna i balustraden bestämmas med hjälp av enkla formler och
diagram.
En del av avhandlingen fokuserar på limfogar. Limfogar belastas ofta i skjuvning. Därför
analyseras vanligt använda limmers skjuvkapacitet och finita elementmodeller tas fram så
att limfogarna ska kunna analyseras med hjälp av beräkningar.
Glasstrukturer kan behöva dimensioneras för så kallad tung stöt. Det innebär att en vikt
släpps i en pendelrörelse mot glaset. Inom ramen för detta arbete utvecklas en förenklad
metod för att dimensionera glas för tung stöt. Förenklingarna går mestadels ut på att skapa
mindre modeller. Fördelen med metoden är att den är flexibel och kan användas för olika
glastyper och för olika typer av infästningar.
I bland annat fönster och fasader är det vanlig att använda isolerglas. Ett isolerglas består
av två eller flera glas med mellanliggande gasspalt(er). I den här avhandlingen används
strukturakustisk analys för att modellera isolerglas utsatt för tung stöt. Förutom att visa
att den föreslagna metoden utgör ett hjälpmedel vid dimensionering, så används metoden
för att utöka kunskapen om det strukturmekaniska beteendet hos isolerglas när det utsätts
för stöt.
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1 Introduction

1.1 Background
During the past decades mass production of flat glass, development of new techniques
to post-process the manufactured glass and the use of computational structural analyses
by means of the finite element method have allowed for an increased use of glass as a
structural material, [24]. Compared to other structural materials, for instance concrete,
there is a lack in knowledge about mechanical properties and structural behaviour that
has led to failure of several glass structures during the last years, [21].
Glass is a brittle material which means that it is not deformed plastically before failure.
The stress concentrations that occur at for instance a bore hole edge are therefore not re-
duced. There is an increased interest in constructing with glass as a load bearing material
and then the brittleness of the material must be accounted for in the design process. There
is also an increased interest in constructing with glass using as little other materials as
possible. This can be accomplished using joints of bolt fixed type or adhesive joints.
The design of innovative glass structures requires careful strength design due to the brit-
tle characteristics of the material. However, there is a lack of simple design guidelines
and tools for performing strength design of glass structures apart from when standard ge-
ometries, boundary condition and loading are used. There is always the opportunity to
perform experimental tests. Full-scale testing is however time consuming and expensive
and is not well suited for strength design when different design alternatives must be eval-
uated fast. Another possibility is to use finite element computations. The drawbacks are
that it is time consuming and requires advanced skills in finite element modeling as well
as access to commercial finite element software.
There is an apparent lack of knowledge when it comes to simple and reliable design tools
for the design of advanced glass structures. This thesis deals with the development of
efficient and user-friendly tools for the design of glass and laminated glass. The support
conditions can be advanced, for instance bolt fixings, and the load conditions are different
types of common static and dynamic loads.

1.2 Aim
The aim of this thesis is to provide means of efficiently designing advanced glass struc-
tures subjected to various loads and boundary conditions. More specifically, the aim is to
develop simple numerical and analytical design tools for the design of those glass struc-
tures.

1.3 Limitations
In the studies performed in this thesis, some limitations are necessary. In the development
of simpler design tools for structural design of glass, the effect of geometric nonlinearities
are left out for the sake of increasing the computational efficiency. When the accurate
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modeling of nonlinear geometry is of significant importance it is recommended to account
for this feature in the modeling.
It is known, [29], that the PVB material often used in the intermediate layer of laminated
glass is highly viscoelastic and strongly temperature dependent. However, if both the
temperature and the loading rate are constant, the properties of PVB may be linearized.
For the structures considered in this thesis the temperature is constant and the loads are
short-term loads. Thus, the PVB can be modeled as a linear elastic material.
For the cases when bolt fixings are considered, only one type of bolt is considered, namely
a bolt for a cylindrical bore hole.
The analytical design tool developed in this thesis is limited in applicability to indoor bolt
fixed laminated glass balustrades subjected to a line load. The tool is further restricted
in application to balustrades with fixed values of the thickness of the intermediate PVB
layer, the bore hole diameter, thickness of the bush between bolt and glass and the material
parameters. The tool is only developed for one bush material.
For the part of the thesis when adhesive joints are investigated, the thermal expansion of
the adhesives is disregarded.
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2 Glass in the Structural Design Process

2.1 General Remarks
In the design of structural glass, Eurocodes EN 1991-1-1: 2002, [19], prescibe the loads
that act on glass structures and prEN 16612: 2013, [41], the maximum allowed stress
of the glass in terms of the maximum positive principal stress. When prescribed, the
structure should withstand dynamic impact load.
To increase safety in a glass structure, laminated glass may be used instead of single
layered glass. Laminated glass consists of two or more glass layers bonded with plastic
interlayers. The most common material used for the interlayer is polyvinylbutyral, PVB.
The use of laminated glass should allow for the glass panes to break while the remaining
layers can continue to carry the design loads, and the scattered glass pieces can stick onto
the plastic interlayers, and thereby prevent injury.
However, laminated glass displays a complicated mechanical behavior due to the combi-
nation of a very stiff material (glass) and a very soft material (PVB), [4]. A laminated
glass-PVB plate is less stiff than a monolithic glass structure of corresponding dimen-
sions, which leads to larger displacements. Furthermore, under certain loads and bound-
ary conditions, discontinuous stress distributions develop in laminated glass structures,
([10], [33]).
Regions close to supports and connections are often subjected to concentrated forces.
Since glass is a brittle material that not shows plastic deformations before failure, the
ability to distribute stresses at load is limited and thus stress concentrations easily de-
velops. Glass fails under tension and in reality the tensile strength is much less than its
theoretical counterpart. This is due to the impact of defects on the surface. The defects
are created during manufacturing, treatment (such as hole drilling and cutting) and the
use of the glass, [10].
The discontinuities of the stress distributions of laminated glass structures are most pro-
nounced around holes and edges, that is, in the regions where the largest stress concentra-
tions often occur, since these regions often are subjected to concentrated forces and may
have larger amounts of defects. In order to illustrate the discontinuous stress distributions
that may arise in a laminated glass structure, a simple example is provided. In Figure 1
below a cantilever laminated glass beam subjected to bending by a point load at its free
end is displayed. The thickness direction of the laminated glass beam is in the z-direction.

z
P

x

Figure 1: A cantilever laminated glass beam subjected to a point load.
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The structure in Figure 1 is modeled by means of the finite element method using two
dimensional plane stress elements. Both glass and PVB are modeled as linear elastic
materials, since it is assumed that the beam is subjected to a short term load and that the
temperature is constant. The material parameters E = 78 GPa, ν = 0.23 (glass) and E = 6
MPa, ν = 0.43 (PVB) are used, where E denotes modulus of elasticity and ν denotes
Poisson’s ratio. The distribution of normal stress along the thickness direction at a cross
section located at the center of the beam is shown in Figure 2.
As one can see from the figure, the normal stress distributions of the two glass layers
are linear as expected. At the glass/PVB interfaces there are discontinuities in the stress
distribution and the normal stress in the PVB layer is almost zero. The large difference in
stiffness between glass and PVB leads to a shear deformation of the PVB layer and thus
to a partial shear force transfer between the glass layers.
It is important for the purpose of safe and cost efficient strength design, that the structural
behavior in terms of displacements and stress distributions are accurately determined.
Classical design methods, such as simple analytical formulas, do not provide sufficient
information in order to determine the stress distributions around bolt connections and
determine the load bearing capacity of glass, [24], especially laminated glass. Instead,
a finite element model may be used for stress predictions. In order to sufficiently well
describe the stress distributions around the bolt connections, a very fine mesh around the
bolt holes is required. In comparison to bolted connections, adhesive connections may
distribute the load over a greater surface of the glass, leading to a reduction in stress
concentrations. Despite this advantage, there are few examples of load bearing adhesive
connections used in glass structures and appropriate design guidelines are lacking, [50].
For load bearing adhesive connections, the maximum stresses occur in edge regions of
the adhesive layer and for accurate design of the connection it is important to achieve
accurate enough stress predictions in these critical regions. Finite element analysis is
recommended as a tool for stress prediction, [1].
Accurate predictions of laminated glass strength can be obtained through finite element
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Figure 2: Distribution of normal stress along thickness.

4



analyses using three dimensional solid elements. However, to make precise prediction
of the stress distribution several elements must be employed in the thickness direction of
each layer resulting in that standard computational resources limit the scope of the anal-
yses that can be made. Large real world structures with several bolt connections are thus
practically impossible to analyze, since it easily needs millions of degrees of freedom for
a correct result. Furthermore, the use of the finite element method in general is advanced,
time consuming and may require access to commerical finite element software.
In many cases, companies have been using experimental tests to perform strength de-
sign of glass structures. This method is not desirable in the glass design process when
engineers and architects cooperate to evaluate different design alternatives. It is also an
expensive method.
Common for the methods developed in this thesis is that they are aimed at being used
as design tools in the glass design process. The methods developed are both accurate
and efficient to use when evaluating different design alternatives. One example of such a
design tool is the glass design program ClearSight.
In [33] a first version of the finite element based glass design program ClearSight was
developed. Originally, ClearSight was developed to calculate deformations and stresses
in laminated glass with bolt fixings subjected to a uniformly distributed load or a uniform
line load along the top edge. Recently a large number of capabilities have been added
to the program including some of the results of this thesis. The program is very time
efficient which means that the solve time is a few seconds. There is a strong demand
that the numerical procedures used are very time efficient. In the next subsections it is
described how results from this thesis are used in ClearSight and a brief description of
how ClearSight is used is provided as an illustration. The example aims to show that tools
such as ClearSight are practical to use when evaluating different design alternatives in
glass design.

2.2 New Features of the Glass Design Program ClearSight
In this thesis, a recently developed finite element is proven to be accurate and efficient
in the modeling of glass and especially laminated glass. The computational efficiency is
increased through the use of a special reduced integration scheme so that only one element
layer per material layer in thickness is required. The finite element is implemented in
ClearSight and has made the program even more time efficient and the solution is obtained
almost instantly. The time saving is especially prominent for the case of laminated glass
which consists of several material layers.
In the parts of the thesis where the modeling of bolt fixings is treated, a modeling tech-
nique is implemented. The bolts used consist of a steel part and a rubber ring. Only the
rubber ring is modeled and a spring model is used to model the rubber. Results from
simulations of a baseline example show that the results obtained in terms of stresses are
in good agreement with results from the commercial FE-software ABAQUS.
A part of the thesis deals with developing a reduced model for glass structures subjected
to dynamic impact load. Several simplifications are made in the modeling. First of all,
the model is reduced by means of a model reduction technique so that the reduced model
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is much smaller than the full model. Further, simplifications are made when modeling
material and geometric nonlinearities and when modeling contact. The simplifications
cater for a computationally efficient model. The model developed is to be integrated into
ClearSight for the program to handle dynamic impact load.
For a quick check of the results and to provide an alternative solution method for compar-
ison of results, an analytical method for determining stresses for a glass balustrade with
two horizontal rows with two or three bolt fixings in each row subjected to a line load is
developed in the thesis. The method uses simple formulas and diagrams to compute the
maximum stress of the structure.
The most recent version of ClearSight is intended for determination of strength of glass
due to various loads and boundary conditions. The program consists of a user interface, a
simulation module, a result viewer and a result report window. The user interface consists
of a form with six pages (tabs) that should be filled in. The simulation module computes
the displacements and stresses of the structure. The result viewer could be used to graph-
ically examine the resulting stresses and displacements. In the result report window the
maximum principal stress is compared with the allowed stresses.

2.3 Example of the Use of ClearSight
To demonstrate the practical use of ClearSight, an example is adopted. The example
concerns a balustrade glass with four bolt fixings according to Figure 3.
It is intended for use in a common room in a residential building The glass should be
laminated with two glass panes and an intermediate PVB layer of thickness 0.76 mm.
The bolt type is cylindrical with an outer diameter of 60 mm and the glass bore hole has

200 800 200

200

300

1300

Figure 3: Geometry of glass balustrade.
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the diameter 22 mm. The bolt is made of steel and has an EPDM (Ethylene-Propylene
Rubber) ring that is in direct contact with the glass. The EPDM has shore hardness 70.
The task is to determine the necessary glass thickness at a certain load.
The use of ClearSight starts with filling in each of the six input tabs. An example of an
input tab is displayed in Figure 4.
For instance, the following input is given

• Number of glasses: 2

• Type of support: Bolt fixing

• Height: 1800 mm, Width: 1200 mm

• Interlayer material: PVB, Interlayer thickness: 0.76 mm

• Bolt diameter: 60 mm, Hole diameter: 22 mm

• Bolt rubber thickness: 3 mm, Shore hardness: 70

The glass thickness is to be determined. A first a computation is made with a glass thick-
ness of 8 mm.

Figure 4: Example of input tab in ClearSight.
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With all six tabs filled in the analysis can be run and the result file can be opened. In the
report the yield stresses for different types of glass are displayed. For toughened glass,
maximum allowed stresses are 84.75 MPa. Below the yield stresses, analysis results are
shown. The inner glass has maximum stresses of 92.44 MPa which means that the stresses
are greater than the maximum allowed stresses. Visualisation can be chosen in order to
visualize the results. The visualized results are shown in Figure 5.
It is apparent from the visualization that the greatest stresses are located at the bolt holes
of the inner glass.
The task was to determine the glass thickness. Since the current value of the glass thick-
ness yields too large stresses in the glass, a glass thickness of 10 mm is tried. This glass
thickness gives a value of the maximum stress which is smaller than the allowed one, as
desired.
This example has demonstrated how ClearSight can be used as a helpful tool in glass
design and that the program is user friendly. It does not require a lot of extra effort to run
the analysis a second time with a greater glass pane thickness so that the maximum stress
does not exceed the allowed one.

Figure 5: Visualization of results from ClearSight.
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3 Structural Glass

3.1 General Remarks
In this chapter theory and properties of the material glass is presented.

3.2 The Material Glass
Generally, glass forms when a liquid is cooled down in such a way that "freezing" happens
instead of crystallization, [31]. Glasses do not consist of a geometrically regular network
of crystals, but of an irregular network of silicon and oxygen atoms with alkaline parts in
between, [24]. The most common oxide glass, silica-soda-lime glass, is used to produce
glazing, [31]. Table 1 shows the chemical composition of silica-soda-lime glass according
to European construction standards, [24].
When manufacturing glass, four primary operations can be identified: batching, melting,
fining and forming, [31]. While the three first operations are used in all glass manufactur-
ing processes, the forming and the subsequent post-process depend on which end product
that is manufactured. During the batching process, the correct mix of raw materials is
selected based on chemistry, purity, uniformity and particle size, [31]. When melting the
raw materials, glass furnaces are used. Different furnaces are used for producing different
end products. The aim of the glass fining process is to produce a molten glass that is
uniform in terms of composition and temperature and also bubble free.
Flat glass (which could be used for architectural glazing) is produced by the float process,
which was introduced by Pilkington Brothers Ltd in the 1950s, [31]. It is noteworthy that
this mass production process, together with continuously improved post-processes, have
made glass cheap enough to allow it to be used extensively in the construction industry and
to grow in importance as construction material during the past 50 years. Within the last
two decades, further development within the field of post-processing operations, together
with numerical analyses of structures (finite element analyses) have enabled glass to be
used as structural elements in architectural glazing, [24]. In the start of the float process,
the raw materials are melted in a furnace. Then, a fining process is used to eliminate
bubbles. Later, the melt is poured onto a pool of molten tin, float, under a nitrogen
atmosphere in order to prevent corrosion of the tin bath. Tin has higher specific weight
(weight per unit volume) than glass, so that the glass floats on the tin. The glass spreads

Table 1: Chemical composition of silica-soda-lime glass (mass %).
Component Chemical formula Content (mass %)
Silica sand SiO2 69-74

Lime (calcium oxide) CaO 5-14
Soda Na2O 10-16

Magnesia MgO 0-6
Alumina Al2O3 0-3
Others 0-5
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out and forms a smooth flat sheet at an equilibrium thickness of 6-7 mm. In order to
produce various glass thicknesses, rollers working from the top of the glass are used. The
speed of the rollers controls the glass thickness. The range of commercial glass thickness
is 2-19 mm, [31]. During this phase, the glass is gradually cooled. The next step of the
process is the annealing lehr, which slowly cools the glass in order to prevent that residual
stresses are induced within the glass. After the lehr, the glass is inspected and it is ensured
that visual defects and imperfections are removed. The glass is cut to a typical size of 3.21
× 6.00 m, [24], and then stored.
The standard flat glass produced through the float process is called annealed glass, [24].
Often further post-processing of the glass is required in order to produce glass products
with different properties. For instance lamination of the glass and hole drilling are made
at this stage.

3.3 Types of Glass
During the post-processing phase, glass types and products with different properties can
be manufactured. Below, the most common glass types are described.

3.3.1 Annealed Glass

Annealed glass is standard float glass that is produced by slowly cooling glass to avoid
internal stresses. At breakage, annealed glass splits into large fragments, [24].

3.3.2 Fully Tempered Glass

Another commonly used term for fully tempered glass is toughened glass. During tem-
pering, float glass is heated and then cooled rapidly (quenched) by cold air jets. The aim
of the tempering process is to create a parabolic residual stress field in the thickness di-
rection that has tensile stresses in the core and compressive stresses at the surfaces of the
glass. The residual stress field in tempered glass in shown in Figure 6.
The surface of the glass always contains some cracks. Under a tensile stress field, the
cracks are allowed to grow. If the glass is subjected to loads, cracks will not grow unless
there is a net tensile stress field at the surface of the glass. Fully tempered glass usually
breaks into small harmless pieces and therefore fully tempered glass is also termed safety
glass, [24].

3.3.3 Heat Strengthened Glass

Heat strengthened glass is produced similarly as fully tempered glass, but the cooling rate
is lower. The resulting residual stress is lower, and thus the tensile strength is lower than
for fully tempered glass. At fracture, the fragments are larger than for fully tempered
glass. On the other hand, the larger glass fragments can allow for a greater post-breakage
load capacity in compression than for fully tempered glass, [24].
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Figure 6: The residual stress profile in a tempered glass, [33].

3.3.4 Laminated Glass

Laminated glass consists of two or more glass panes bonded by a plastic interlayer. A
laminated glass unit is displayed in Figure 7.
The glass panes can have different thicknesses and heat treatments. Most common among
the lamination processes is autoclaving, [24]. The use of laminated glass in architectural
glazing is of great advantage for two reasons. Firstly, if one glass pane breaks, the re-
maining panes can continue to carry the applied loads given that the structure is properly
designed. Secondly, the scattered glass pieces can stick to the interlayer and thereby serve
to prevent people from getting injured. The interlayer is most often made of polyvinylbu-
tyral, PVB. The nominal thickness of a single foil of PVB is 0.38 mm. It is common that

Figure 7: A single glass pane and a laminated glass unit, [39].
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two (0.76 mm) or four (1.52 mm) foils form one PVB interlayer, [24]. PVB is a viscoelas-
tic material whose physical properties depend on the temperature and the load duration.
PVB behaves nonlinearily when subjected to large deformations, but can be treated as
a linear elastic material when subjected to small deformations. Other interlayer materi-
als are for instance Ethylene Vinyl Acetate (EVA) and resins, [37], as well as ionoplast
interlayers as SentryGlas.

3.3.5 Insulated Glass

An insulated glass consists of two or more glass panes with intermediate gas space(s). An
insulated glass unit is shown in Figure 8.
Insulated glasses are often used due to their thermal insulation properties. The gas space
is sealed so that it is considered air tight and is filled with dehydrated air or another gas
e.g. argon, krypton or xenon, [24]. The glass panes are connected using a spacer and a
sealant. It is possible to use all types of monolithic glasses, for instance annealed glass,
and laminated glasses in insulated glass, [24].

3.4 Linear-elastic Materials
Glass is regarded as a linear elastic isotropic material. The mechanical relations of a linear
elastic material are described in [36]. Here, a brief description of the derivations therein
is presented.
In one dimension, linear elasticity is expressed by Hooke’s law

σ = Eε, (1)

where σ is the normal stress, ε is the strain of the material and E is the modulus of
elasticity. The shear-stress, τ, and the shear-strain, γ, are related through

Figure 8: An insulated glass unit, [39].
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τ = Gγ, (2)

where G is the shear modulus given by

G =
E

2(1+ν)
. (3)

ν is the Poisson’s ratio.
In three dimensions, the stresses and strains of an isotropic material are related by the
generalized Hooke’s law

σ = Dε, (4)

where

σ =


σxx
σyy
σzz
τxy
τxz
τyz

 , (5)

ε =


εxx
εyy
εzz
εxy
εxz
εyz

 , (6)

and

D =
D

(1+ν)(1−2ν)



1−ν ν ν 0 0 0
ν 1−ν ν 0 0 0
ν ν 1−ν 0 0 0
0 0 0 1

2(1−2ν) 0 0
0 0 0 0 1

2(1−2ν) 0
0 0 0 0 0 1

2(1−2ν)

 . (7)

3.5 Mechanical Properties of Glass
Glass is an elastic, isotropic material and exhibits brittle fracture. In contrast to other
construction materials, no plastic deformation occurs prior to failure. Therefore, local
stress concentrations, occurring for instance close to bolt holes, are not reduced. The
brittle characteristic of glass is of concern when constructing with glass as a load bearing
element.
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Glass has a very high theoretical tensile strength, up to 32 GPa is possible, [24]. How-
ever, the actual tensile strength depends on the influence of mechanical surface flaws. The
compressive strength of glass is considerably higher than the tensile strength, since there
is no surface flaw growth or failure under compression, [24]. In Table 2, relevant ma-
terial properties of silica-soda-lime glass are summarized, [20], and Table 3 summarizes
strength values that could be used for structural design, [22].

Table 2: Material properties of silica-soda-lime glass.
Density 2500 kg/m3

Young’s modulus 70 GPa
Poisson’s ratio 0.23

Table 3: Strength values for glass design.
Compressive strength 880-930 MPa

Tensile strength 30-90 MPa
Bending strength 30-100 MPa

The standard prEN 16612: 2013, [41], prescribes a characteristic value of the bending
strength of annealed glass to 45 MPa. For prestressed glass, the characteristic bending
strength value is 70 MPa for heat strengthened glass and 120 MPa for fully tempered
glass.

3.6 Fracture Criterion
Linear elastic fracture mechanics (LEFM) could be applied to describe the fracture strength
behavior of glass, [24]. Using this theory, cracks are included in the material behavior
modeling. The crack can be localized at the surface (surface crack) or within the material
(volume crack). For structural glass, only surface cracks are considered.
In a previous section, it was stated that the theoretical tensile strength of glass is much less
than the practical one. This difference was explained already in year 1920 by [23]. The
main argument was that fracture starts from existing flaws, Griffith flaws, on a surface.
Such flaws sevearly weaken brittle materials because of very high stress concentrations at
the crack tip. According to the Griffith theory, based on [27] and expanded by [28], the
practical tensile stress of glass, σ f , can be written as

σ f =

√
2Eγ
πac

, (8)

where E is the Young’s modulus, γ is the fracture surface energy and ac is the critical
crack length.
Irwin’s version of the fracture criterion is

K1 = Y σn
√

πa ≥ K1c, (9)
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where K1 is the stress intensity factor for mode 1 loading (an opening mode where the
crack walls are separated due to tensile stresses), Y is a correction factor, σn is the nominal
tensile stress normal to the crack’s plane, a represents the size of the crack and K1c is
the fracture toughness or the critical stress intensity factor. Y depends on the depth and
geometry of the crack, the geometry of the structure, the stress field and the proximity of
the crack to the boundary of the structure, [24]. As an example, a long, straight plane edge
crack in a semi-infinite specimen has a value of Y equal to 1.12, [24]. K1c is a material
constant and its value ranges between 0.72 and 0.82 for silica-soda-lime glass at room
temperature, but the value 0.75 can be used in practise, [24].
In construction, the standard (elastic) design method that is mostly utilized is the max-
imum stress approach, [24]. In the maximum stress approach, the engineer determines
the dimensions of a structure through ensuring that the maximum stresses do not exceed
the strength of the material at any position of the structure. The elastic design method is
frequently used in glass structure design. Glass fails due to too high tensile stresses on the
surface of the glass, i.e. the maximum positive principal stress exceeds the permissable
tensile strength.
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4 Review on Laminated Glass Subjected to Static Loads

4.1 Introduction
Past research on glass has focused mainly on monolithic (single-layered) glass, whereas
the properties of laminated glass remain less well understood. The aim of this section is
to review past research on the properties and structural behavior of laminated glass for
architectural glazing. The survey is limited to static loading and standard support con-
ditions. Research dealing with glass subjected to dynamic impact load is partly reported
in this thesis. For brief reviews of glass structures with point supports, the reader is re-
ferred to the first parts of this thesis. Research on the strength properties of laminated
glass is largely omitted. Similarly, studies on failure behavior and post-failure behavior
are not included to a great extent. The results are presented as summaries of the authors’
main findings and a critical assessment is not made. Suggested recommendations and
directions for future work are those of respective author. The review is subdivided into
sections, where the first section deals with experimental testing, the second with analytical
methods and the last section reviews numerical testing results. In the last section, empha-
sis is on Finite Element Method (FEM) analyses. It is shown that a clear cut division of
previous research findings into these distinct categories is difficult, but the subdivision is
rather a means of providing a structured presentation of the available knowledge.

4.2 Experimental Results
Most analyses on laminated glass units are experimental. This is particularly the case for
plates, since the behavior is very complex, [3]. In this review we consider test results
for both beams and plates. Studies on glass beams are often used to approximate the
behavior of glass plates. According to Aşik (2003), [3], this methodology is (generally)
not acceptable, since the two structures have different stress and displacement fields.
One of the first studies on the behavior of architectural laminated glass subjected to struc-
tural loading is conducted by Hooper (1973), [26]. In that study, the fundamental behavior
of architectural laminates in bending is assessed. This is done by means of studies of lam-
inated glass beams subjected to four-point bending. First, analytical formulas are derived
for the shear force at the interface between glass and the interlayer and the central de-
flection respectively. These expressions are then used in combination with experimental
bending tests in order to provide general understanding about the behavior of laminated
glass beams subjected to bending as well as to produce data on interlayer shear stiffnesses
(shear moduli) for various loading and temperature conditions. The experimentally in-
vestigated beams have a length of 0.559 m and a width of 0.051 m. Short-term load tests
are performed at a temperature of 21◦C. Various glass pane thicknesses ranging between
3 and 12 mm and PVB layer thicknesses of 0.38, 0.76 or 1.02 mm are utilized. Creep
tests are performed for beams of the same dimensions as for the short-term tests and for
various temperatures: 1.4, 25.0 and 49.0◦C. Results show that the bending resistance of
the laminated glass is dependent on the thickness and shear modulus of the interlayer. The
physical properties of the interlayer are dependent on the temperature and the duration of
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the loading. From an architectural designer’s perspective, laminated glass which is sub-
jected to sustained loads should be treated as consisting of two independent glass layers.
For short-term loading, the bending stresses of the glass could be determined on the basis
of an interlayer shear modulus corresponding to the maximum temperature at which such
loading is likely to occur. When the glass is subjected to both sustained and short-term
loading, the combined bending stress values in the glass layers may be calculated using
the principle of superposition.
Behr et al. (1985), [6], reports on studies on the behavior of laminated glass units consist-
ing of two glass plates with an interlayer of PVB. The glass units are subjected to lateral
pressure (wind loads). Compared to the work of [26], larger scale laminated glass units
are used. The units have a width of 1.524 m, a length of 2.438 m and a glass pane thick-
ness of 3.2 mm. The PVB interlayer thickness is 0.76 mm. Experiments are conducted
in order to find out whether the behavior of a laminated glass unit is similar to that of a
monolithic glass unit of the same thickness or to that of a layered glass unit consisting of
two glass units and no interlayer. The experiments are performed at temperatures ranging
between 0 and 77◦C. Results show that the glass unit behaves more like a monolithic glass
unit at room temperature. When temperatures are high, the behavior approaches that of
two glass units without interlayer. It is stated that care should be taken not to generalize
the results obtained to other geometries than the ones analysed.
Laminated glass units (two glass plates with a PVB interlayer) under uniform lateral loads
and simply supported boundary conditions are investigated experimentally in Behr et al.
(1986), [7]. Compared to previous work in [26] and [6] a different shape and size of the
laminated glass unit is used. The unit has almost square shape and in-plane dimensions
are 1.397 × 1.448 mm. The glass plate thickness is 4.8 mm and the interlayer thicknesses
are 0.76 and 1.52 mm. According to the results, interlayer thickness effects on the struc-
tural behavior (in terms of corner stresses and center deflections) of laminated glass units
are not large. Further, long-duration (one hour) load tests at different temperatures are
performed. Here, the specimen dimensions are 1.524 × 2.438 × 7.1 mm. The pressure
load was of magnitude 1.4 kPa. Test temperatures are 22◦C, 49◦C and 77◦C. For this
case, the response in structural behavior is increasing as a function of time at load. Rates
of increase in response in structural behavior decrease with time at load. In overview, the
experimental data gathered during the tests are within theoretically derived monolithic
and layered bounds on stresses and deflections.
Minor and Reznik (1990), [34], study the failure behavior of laminated glass units in con-
strast to the nondestructive testing used in previous work, for instance [6] and [7]. Three
specimen sizes are used in the tests, namely 1.524 × 2.438 × 6 mm, 0.965 × 1.93 × 6
mm and 1.676 × 1.676 × 6 mm. The load is uniformly distributed lateral load applied as
a short-term load. Annealed monolithic glass samples are used as reference specimens.
Laminated glass samples of the same dimensions and thicknesses as the reference speci-
mens are tested to failure using the same loading rates as for the failure analysis of the ref-
erence specimens. Failure strengths are evaluated as functions of several variables: glass
type (heat treatment), temperature and surface condition (subjected to surface damage or
not). The temperatures are room temperature, 49◦C and 77◦C. The most interesting result
is that annealed laminated glass strengths are equal to annealed monolithic glass strengths
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at room temperature. This result is valid for all three sample sizes. Another interesting
result is that when temperatures are increased, laminated glass strengths decrease.
Behr et al. (1991), [8], makes a reliability analysis of the glass strength data presented
in [34]. The results of this analysis support the conclusions made in [34]. However,
the reliability analyses suggest that the issue of the relative strength between monolithic
glass units versus laminated glass units is complex at elevated temperatures. Whereas a
clear strength reduction occurs in laminated glass at 77◦C, little strength reduction occurs
at 49◦C. This indicates the possible existence of a break point in the relation between
temperature and lateral pressure strength for laminated glass at around 49◦C. Thus, for
temperatures above this threshold it is suggested that the structural behavior of laminated
glass is not longer similar to that of monolithic glass.

4.3 Analytical Results
Analytical work on laminated glass properties is scarce. In addition, most results are
derived under various simplificating assumptions, [21].
In early work by for instance Vallabhan et al. (1987), [47], a previously developed com-
puter model based on non-linear plate theory is used in order to analyze layered and
monolithic rectangular glass plates subjected to uniform lateral pressure. The plates are
simply supported. The layered and monolithic plates have the same in-plane geometry
and total thickness. So-called strength-factors are developed for a variety of glass plate
geometries and load magnitudes. The strength-factor is defined as the ratio between max-
imum stresses in a monolithic plate and those in a layered plate. It is noteworthy that for
certain geometries and loads, layered glass plates can possess larger maximum stresses
than an equivalent monolithic glass plate. This result has an implication for the behavior
of laminated glass plates, since a laminated glass plate is considered to display structural
mechanical behaviour in between the limiting cases of monolithic and layered plates. It
is implied that the maximum stresses in a laminated glass plate can be close to (and even
exceed) the maximum stresses in an equivalent monolithic glass plate under certain con-
ditions.
Vallabhan et al. (1993), [48], use the principle of minimum potential energy and varia-
tional calculus, [25], in order to develop a mathematical model for the nonlinear analysis
of (thin) laminated glass units. The final model consists of five nonlinear differential
equations which are solved numerically and validated through full-scale experiments. For
validation, units of dimensions 1.524 × 1.524 m2, glass thickness 4.763 mm and PVB
layer thickness 1.52 mm are used. The experiments are conducted at room temperature.
The plates are simply supported and subjected to lateral pressure in increments. Stresses
and corresponding principal stresses are calculated as a function of the lateral pressure.
The results of the mathematical model compare very well with the experimental results.
It is suggested that further research focuses on testing the mathematical model for various
thicknesses of the laminated glass plates.
Norville et al. (1998), [35], set up an analytical beam model that explains data on de-
flection and stress for simply supported laminated glass beams under uniform load. The
experimental data are presented in [9]. The experiment specimens are of length 0.508 m

18



and glass thickness 2.69 mm. The PVB layer thickness is 0.76 mm. The test temperatures
are 0, 23 and 49◦C. The load duration of the experiments is long (> 60 s). In the model, the
PVB interlayer performs the functions of maintaining spacing between the glass sheets
and transferring a fraction of the horizontal shear force between those sheets. The PVB
interlayer increases the section modulus, i.e. the ratio between the bending moment at a
cross section and the stress on the outer glass fiber at that cross section, of a laminated
glass beam, and the magnitude of the flexural (bending) stresses in the outer glass fibers
is therefore reduced. Thus, the strength of a laminated glass beam is higher than that of
a monolithic glass beam with the same nominal thickness. This observation sheds light
on observed fracture strengths from experiments on laminated glass plates. Other pre-
dictions of the model are that laminated glass strength increases with interlayer thickness
and decreases as temperature increases, results which also find support in the glass plate
experiments.
The analytical model of [48] is used, and a numerical procedure is utilized to avoid com-
putational efficiency problems related to matrix storage, memory and computational time,
in [3] in order to provide a set of graphs that shed light on the nonlinear behavior of sim-
ply supported, laminated glass plates typically used for architectural glazing. It is argued
that such plates have very thin glass plies, which results in that they may undergo large
deflections solely due to their own weights. This results in complex stress fields, which
the author studies extensively. The example problem used has the in-plane size 1.6×1.6
m2. Each glass plate has a thickness of 5 mm. The thickness of the PVB layer is 1.52 mm.
The load is applied using increments of 0.1 kPa and the maximum load is 10 kPa. The
result of the study is that the laminated glass plate that is studied undergoes very complex
and nonlinear behavior when uniformly distributed load is applied. It is shown that linear
theory only gives results comparable to nonlinear theory up to a load of around 1 kPa
and that the error of the linear theory increases rapidly with the magnitude of the load. A
conclusion is that nonlinear analysis is the only acceptable type of analysis for laminated
glass plates of similar support conditions and dimensions as in the studied example.
In [4], a theoretical model for the behavior of laminated glass beams is presented. It is
assumed that the glass beams are very thin such that large deflection behavior is used in
the model building. According to the authors, no previous model exist for laminated glass
beams undergoing nonlinear behavior. The beam is subjected to a uniformly distributed
load and a point load applied at the center of the beam. The minimum potential energy
and variational principles are used in the derivations. Three coupled nonlinear differen-
tial equations are obtained and closed form solutions are presented for simply supported
laminated glass beams. The model is verified for the simply supported laminated glass
beam through use of experimental data and for a fixed supported laminated glass beam by
means of finite element modeling. For the simply supported beam, three-point bending
tests are used for verification. The beam dimensions are 1.0 m length, 0.1 m width, a 5
mm glass pane thickness and a 0.38 mm PVB interlayer thickness. The experiments are
performed at room temperature. For the fixed supported beam, a beam length of 1.5 m,
a width of 0.05 m, a glass pane thickness of 2.12 mm and a interlayer thickness of 0.76
mm is used. The commercial finite element code ANSYS 5.6 is used in the finite element
analysis. Four node plane stress elements are used. Two versions of the model are made,
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one has thickness discretization 4 + 2 + 4 elements and the other has 3 + 1 + 3 elements in
the thickness direction. A point load at the center of the beam is applied. For the simply
supported beam example, the behavior of laminated glass is presented in comparison with
the behaviors of monolithic and layered glass beams. The behavior of the laminated glass
beam is bounded by the limiting cases of the monolithic and layered glass beams, and is
close to the behavior of the monolithic beam. Displacement, moment and stress functions
for a simply supported laminated glass beam are given for the use in design to determine
the strength of a laminated glass beam. A further test example is used where the beam has
dimensions 1 m × 0.1 m, glass pane thickness 5 mm and PVB layer thickness 0.76 mm.
A point load of 5 kN is applied at the midpoint of the beam. The fixed beam has behavior
which is limited between layered and monolithic results, but its behavior is closer to the
layered beam. It is proven analytically that the behavior of a simply supported laminated
glass beam is linear even under large deflection. On the other hand, for the case of the
fixed supported laminated glass beam, effects of membrane stresses are substantial and
nonlinearities arise from geometric constraints. This is proven by the last test example.
A discussion about the behavior of laminated glass beams versus laminated glass plates
is conducted. It is concluded that as earlier work on laminated glass plates show that
simply supported glass plates undergo nonlinear behavior, simply supported laminated
glass beams may not be used to draw conclusions about the behavior of laminated glass
plates. In contrast, it is concluded that a study of nonlinear behavior of laminated glass
beams makes sense concerning the behavior of laminated glass plates due to considerable
similarities between these two cases.
Foraboschi (2007), [21], sets up an analytical model for simply supported laminated glass
beams under uniaxial bending. The model predicts stress developments and strength of
laminated glass beams with given geometries, glass moduli of elasticity and PVB moduli
of elasticity in shear. The ultimate load is determined using a design value of the glass ten-
sile strength. The model is valid under the following assumptions: (i) plane cross sections
in the whole beam, as well as in the PVB interlayer, do not remain plane and normal to the
longitudinal axis (ii) glass is modeled in a linear elastic manner (iii) PVB is modeled in a
linear elastic manner by means of the modulus of elasticity in shear, given that the value
of this parameter is related to temperature and duration of loading. The latter assumptions
allows a closed-form solution to the problem, contrary to the case when PVB is modeled
in a viscoelastic manner. Since no particular simplifications are made when formulating
the model, the model predictions are in excellent agreement with test results. For the
verification, two-sided supported laminated glass plates with length 0.508 m and width
0.508 m are used. The thickness of each glass ply is 2.69 mm. The PVB layer thickness
is 0.76 mm. The tests are performed at the temperatures 0, 23 and 49◦C. In particular,
no presumed strength-factor, [47], has been used in order to account for the contribution
of the PVB layer to the bending capacity through its capacity to transfer horizontal shear
force between the glass layers. An analysis of three cases of commercial-scale laminated
glass beams is made in order to gain information regarding the rational design of lami-
nated glass beams. The first test case is a two-sided supported laminated glass plate with
length 3 m and width 1.5 m. The glass ply thickness is 12 mm. The second test case is a
simply supported laminated glass beam that has length 5.2 m, width 0.61 m and glass ply
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thickness 8 mm. For the third test case the laminated glass structure is that of a simply
supported beam of length 1.8 m, width 0.25 m and glass ply thickness 4 mm. Differ-
ent values of the PVB layer thickness ranging between 0.38 and 1.52 mm are used. The
modulus of elasticity in shear is also variable within the range 0.07 to 105 MPa. Failure
strengths and loads are determined for these cases. A comparison is made between the
laminated glass model and monolithic and layered equivalency models respectively with
respect to failure strengths and loads. Some of the major results are: 1) The greater the
value of the shear modulus of elasticity of PVB and the thinner the PVB layer, the closer
the prediction of the stress values are to those of the monolithic equivalency model and
the greater is the tensile strength of the beam. 2) Irrespective of parameter values, the
layered model is not suitable for analyzing laminated glass beams with the actual loads
and boundary conditions. The conditions of the layered model is only approached as the
temperature is reaching a value that prevails during fire explosure or similar conditions.
3) When the thickness of the beam is designed appropriately, the strength of the beam is
raised by up to 70-80 %. 4) The historical assumption that the strength of laminated glass
is equal to 60 % of the strength of monolithic glass of the same thickness is sufficiently
preservative, but it doesn’t represent a lower bound. The benefit of using the above rela-
tion is that it provides a simplification, but at the cost of the risk of underestimating the
actual load-bearing capacity. 5) The behavior of the monolithic equivalency model is far
away from that of a laminated glass beam, and the implementation of the model for design
purposes is not recommended.

4.4 Numerical Results
A study of stress development and first cracking of glass-PVB (Butacite) laminates is
performed in [11]. Fracture behavior is studied during loading in biaxial bending (ring
loading on three-point support). Initially, experiments are made using glass disks with
diameter of 0.1 m and thickness 2.246 mm. Laminates are formed by using two glass
disks with an intermediate PVB layer of thickness 0.76 mm. The temperature during the
tests is either room temperature, -60◦C or 50◦C. For the room temperature tests, loading
rates vary between 10−3 and 102 mm/s. For the tests at a low temperature, the loading
rate is 10−2 mm/s and for the tests at a high temperature, the loading rate is 100 mm/s.
Both monoliths and laminates are tested. A three dimensional finite element model which
incorporates the role of PVB thickness and the viscoelastic character of the PVB layer
in stress development in the laminate is developed and tested. The finite element model
is combined with a Weibull-description of glass strength in order to provide a failure
prediction framework for the present set up. The glass is modeled using eight-node brick
elements with incompatible modes for accurate capture of bending modes. The PVB layer
is modeled using eight-node brick elements with incompatible modes using a hybrid for-
mulation. The commercial finite element code ABAQUS is used in the investigations.
Comparisons to experimental test data using a load rate of 10−3 mm/s and at a tempera-
ture of 23◦C show that the finite element model is in good agreement. Stress development
in the laminate is determined for a set of experimental loading rates. At a slower loading
rate, each glass plate deforms nearly independently. At a faster loading rate, the over-
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all stresses are higher for a certain deflection which indicates a higher overall stiffness.
There is also a shift in the location and magnitude of the peak tensile stress of the lam-
inate. This shift is expected to change the initiation of the first cracking, which is also
shown in subsequent investigations. It is shown, both experimentally and through finite
element modeling, that the peak stress changes locations with the loading rate. Two pri-
mary modes for the initiation of failure associated with changes in maximum stress are
identified: (i) first crack located in the upper ply at the glass/PVB-surface and (ii) first
crack located in the lower glass sheet at the outer glass surface. Regarding a compari-
son to the behavior of the corresponding monolithic and layered models, it is observed
that at moderate loading rates, the stress in the laminate is higher than in the equivalent
monolith. For the highest loading rates, the laminate demonstrates stress behavior simi-
lar to the monolith. Furthermore, it is shown that the peak stress locations is a complex
function of loading rate, polymer thickness and load uniformity. The first-cracking se-
quence is affected by interlayer thickness and loading distribution: concentrated loading
and thicker/softer interlayer gives first cracking in the upper ply and distributed loading
and stiffer/thinner interlayer promote initial cracking in the lower glass sheet. The failure
sequence is a function of loading rate and temperature: high temperatures and/or slow
loading rates promotes first cracking in the upper ply whereas low temperatures and/or
high loading rates lead to lower ply first cracking. The probability of first cracking can
be computed by combining the finite element model with a Weibull statistical description
of glass fracture. The approach used in this paper can form a foundation for laboratory
tests for laminates and can be extended to encompass laminate plates used in commercial
applications.
Van Duser et al. (1999), [49], present a model for stress analysis of glass/PVB laminates
used as architectural glazing. The model consists of a three dimensional finite element
model incorporating PVB viscoelasticity and large deformations. Studies are performed
on a square, simply supported glass/PVB laminate subjected to uniform loading. The
question of load-bearing capacity for first glass fracture of the plate is addressed through
combinating the finite element model with a statistical (Weibull) model for glass fracture.
The approach used in this paper extends the work of Bennison et al., [11], to apply to
commercial-scale architectural laminated glass plates, rather than laboratory scale disks.
Results from the modeling exercise are compared to experimental results from [48]. For
the experiments, the plate length is equal to 1.524 m. The glass thickness is equal to 4.76
mm and the interlayer thickness is 1.52 mm. The validation is best for simulations at tem-
peratures between 40 and 50◦C. The pressure load is applied at a constant rate with a peak
value of 6912 Pa. Regarding the finite element model, the glass sheets are modeled using
8-node solid elements with incompatible modes to avoid locking in bending. The PVB
interlayer is modeled using eight-node solid elements with incompatible modes using a
hybrid formulation in order to account for nearly incompressible deformations. The com-
mercial program ABAQUS is used for the analysis. Accuracy of the finite element model
is obtained through successively refining the mesh until mesh-independent results are ob-
tained. One of the main findings of the study is that for most of the range of pressure used
in the study, the probability of failure is lower than the monolithic limit, except at low
pressures. At those pressures and stresses that would be used in design, laminate strength
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for this case would be predicted to be higher than for the equivalent monolithic glass
plate. Since the concept of layered and monolithic limits is defined based on small strain
analysis of beams, and does not take into account the membrane-dominated stress state
that develops in large deflection of plates close to glass first cracking, a stress analysis that
involves comparison to these limiting states could be misleading. In fact, if the derivation
of these limits are based on transition to membrane-like behavior (large deflections), the
stresses and deflections for a layered system in the membrane limit are exactly the same
as for the equivalent monolithic plate. Since the monolithic limit ignores the thickness
of the interlayer, the first cracking strength of the laminate may be larger than that of the
monolith. Further, it is shown that stress development in the laminate is temperature (or
loading rate) dependent. The influence of temperature can be diminished at large deflec-
tions as membrane stresses dominate and the coupling between the glass sheets play a
lesser role in the stress development. Somewhat surprisingly, for typical glass Weibull
moduli (m ∼ 5-10) the probability of first cracking is only weakly dependent on temper-
ature. The framework developed for stress analysis and failure prediction may be applied
to laminates of arbitrary shape and size under specified loading conditions. Validated
against more extensive data the method may be used to develop new design standards for
laminated glass.
The model of van Duser et al. (1999), [49], is based on a three dimensional finite ele-
ment formulation. Thus, the resulting model becomes very large and the computations
are expensive. This is noted by Ivanov (2006), [29], who aims at investigating the effect
of design parameters on the strength and stiffness of glass laminates. Another aim is to
perform structural optimization of glass laminates. It is emphasized that also complicated
analytical models that require numerical methods and have solutions that are computa-
tionally expensive are inappropriate for such analyses. The paper treats the case of a
simply supported glass/PVB beam. The following simplifications are used: (i) only a
plane beam is considered and (ii) the problem is confined to small strains and displace-
ments. The representation of the laminated glass as a plane multilayer beam leads to a
plane problem of theory of elasticity, which requires less equations although the same
degree of discretization through the thickness of the beam and makes the corresponding
finite element analysis more computationally efficient. The materials (glass and PVB) are
both represented by linearly elastic material models. At the first stage of the analysis, a
finite element model is developed. The model is used for the analysis of the case bending
of a laminated glass beam under transverse forces (four point bending). The length of the
beam is 1.6 m and the width is 1 mm. The glass layers have different glass thicknesses.
The upper glass layer has thickness 3 mm and the lower glass has thickness 5 mm. The
PVB interlayer has thickness 1 mm. The beam is analysed by means of the finite ele-
ment analysis software ANSYS 6.1. A linear finite element analysis is performed and
yields data on nodal deflections, strains and stresses. The analysis shows that the bend-
ing stress in the glass layers is determinant for the load-bearing capability of laminated
glasses, but the shear in the PVB layer is important for glass-layer interaction. Based on
this first analysis step an analytical model of a laminated glass beam is developed. The
model is based on Bernoulli-Euler beam theory for each glass layer, with an additional
differential equation for the PVB interlayer shear interaction. The obtained differential
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equations are easily solved analytically for the case of a simply supported beam under
uniform transverse load. The mathematical model is validated using two test cases. For
the first case, the beam length is 1.6 m, the width is 0.8 m and the glass layer thickness is
4.5 mm (the same for both glass layers). The PVB has thickness 10−5 mm, which means
that the first test case is a monolith. Validation against analytical models (Bernoulli beam
theory and Kirchhoff’s plate theory) and against the 2D finite element model give errors
that are almost zero for both maximum lateral displacement and for maximum and min-
imum stresses. The second test case is a laminated glass beam of the same dimensions
as for the first validation problem but with PVB layer thickness 1 mm, upper glass layer
thickness 3 mm and lower glass layer thickness 5 mm. The results in terms of maximum
lateral displacement and maximum and minimum stresses are compared to those obtained
with the 2D finite element model. The obtained errors are very small. The model is used
to perform a parametric study of the influence of layer thicknesses on deflections and
stresses of a beam under transverse uniform load. For the study, a length of 1.6 m and a
width of 0.8 m is used. The ranges of variation of the variable parameters are reasonable
and correspond to architectural glazing application of laminated glasses. The influence
of the PVB layer thickness on the maximum lateral displacement is weak and negligible
for the maximum and minimum stresses. The maximum deflection is strongly dependent
on the upper glass layer thickness and also the stresses of both glass layers are strongly
dependent on this parameter. The effect of the thickness of the lower glass layer is largely
similar to that of the upper glass layer. Later, the model is utilized for lightweight struc-
ture optimization of layer thicknesses when applied to a structure of same dimensions as
for the parametric study. The results show that the inner layer of laminated glasses could
be thinner than the external glass layer and that the optimally designed laminated glasses
could be superior to monolithic glasses in all criteria.

4.5 Discussion
To summarize the review above, one can conclude that most of the investigations done
consider beams and plates of regular geometries subjected to standard point loads or uni-
formly distributed loads. These load conditions represent the primary structural require-
ments that architectural glass is supposed to withstand. Some attention is directed towards
the physical properties of the interlayer. A main issue is to place laminated glass struc-
tural behavior correctly in relation to the behavior of layered and monolithic equivalency
models for different geometries and loading cases. The influence of the temperature is in-
cluded in some contributions. Most work deal with short-term loads but some studies also
take sustained loads into account. Some investigations deal with the fracture behaviour of
simple structures. Analytical models of various complexity have been developed in order
to describe the structural mechanic behaviour of laminated glass beams. Finite element
models are mainly three dimensional and are developed for the purpose of investigat-
ing failure behaviour or for optimization purposes. In all cases the structures are simple
(beams and plates) and the boundary conditions are standard. One author mentions that
model size constitutes a limitation when it comes to analyzing laminated glass beams sub-
jected to uniaxial bending for optimization purposes. The remedy is to use a plane (two
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dimensional) finite element model rather than a full (three dimensional) model.
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5 Theory and Methods
In this section the theory and methods used throughout the thesis are presented.

5.1 Stress Prediction of Laminated Glass Structures Subjected to
Static Short-term Loads

The first part of this thesis deals with stress prediction of laminated glass structures sub-
jected to static short-term loads. When predicting stresses in laminated glass structures
subjected to static short-term load, there are two main options for stress predictions. The
first possibility is to use formulas, tables or design charts. The other method consists of
finite element analyses of the structure. The former method has the advantage that it is
easy to use, but its use is limited to some general cases of geometry and boundary con-
ditions, [24]. In the first part of this work, mainly bolt fixed connections are considered.
For the case of bolt fixed laminated glass structures, finite element analyses must be used
in most cases. In [24], an example of a design chart for a more advanced bolt fixed lami-
nated glass structure is presented. A further review on simplified design methods for glass
structures is provided by the research presented in this thesis.
When making analyses using three dimensional solid elements, analysis results become
sufficiently accurate given that the discretization of the model is fine enough. When ana-
lyzing the type of structures that are relevant in this work, finite element models become
too large and the demand on computational resources too heavy. There is a scope for in-
vestigating alternative methods for performing finite element analyses of those structures.
According to the classification of [42], laminated glass is a so-called laminated composite,
which is made up of layers of different materials. For this category, there are several the-
ories developed including corresponding numerical treatments. One means of reducing
the model size is to use two dimensional models for composite plates, so-called Equiva-
lent Single-layer Theories, (ESL), [42]. The two dimensional models are derived through
making assumptions regarding the kinematics or the stress field in the thickness direc-
tion of the laminate in a fashion such that the three dimensional model is reduced to a
two dimensional one. The simplest ESL theory is the Classical Laminated Plate Theory,
(CLPT). It is an extension of the classical Kirchhoff plate theory to laminated composite
plates. In the CLPT theory, the assumptions regarding the displacement field are such
that straight lines normal to the midsurface remain straight and normal to the midsurface
after deformation. Thus, the transverse shear and transverse normal effects are neglected
(plane stress). The First Order Shear Deformation Theory, (FSDT), extends the ESL the-
ory through including a transverse shear deformation in the kinematic assumptions such
that the transverse shear strain is assumed to be constant with respect to the thickness
coordinate. In terms of kinematic assumptions this means that straight lines normal to the
midsurface do not remain perpendicular to the midsurface after deformation. There are
also higher order theories for laminated composite plates. The higher order theories may
be able to more accurately describing the interlaminar stress distributions. On the other
hand, they also require considerably more computational effort. In the Third Order Shear
Deformation Theory, the assumption on straightness and normality of straight lines nor-
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mal to the midsurface after deformation is relaxed. The result is a quadratic variation of
the transverse stresses through each layer. Even higher order shear deformation theories
are available, but the theories are complicated algebraically and expensive numerically,
and yield a comparatively little gain in computational accuracy. The simple ESL laminate
theories are often not capable of accurately determining the three dimensional stress field
at ply level, which may be required for an accurate description of the stress distribution in
a complex laminated glass structure.
An alternative is to use Layerwise Theories, [42]. The Layerwise Theories contain full
three dimensional kinematics and constitutive relations. They also fulfill requirements on
C0

z continuity, ([42], [14]). These requirements should necessarily be fulfilled in order to
correctly describe the stress field in the thickness direction that characterizes laminated
glass. Even if there are some computational advantages compared to full three dimen-
sional element models, for instance that two dimensional finite elements could be used in
the analysis, in the modeling of advanced structures the models may be computationally
inefficient and difficult to implement, [42].
There exist several other layerwise models for laminated plates, see [42] and references
therein. It is not the intention to provide a full review of various Layerwise Theories, so
the interested reader is referred to the references provided in the reference cited above.
Another possible method, which is adopted in this work, is to use solid-shell elements. A
solid-shell element is a three dimensional solid element which is modified so that shell
like structures could be modeled in an appropriate manner. The basis for the solid-shell
element used in this work, [13], is a conventional eight node three dimensional solid ele-
ment. Since low-order three dimensional solid elements are used in order to model shell
like structures, locking phenomena occur. In the solid-shell formulation, certain methods
are incorporated such that locking is prevented. Through maintaining three dimensional
constitutive relations and kinematic assumptions, the stress distribution of laminated glass
can be accurately determined. The computational efficiency is increased due to the use of
a special reduced integration scheme that only requires one integration point per material
layer.

5.2 The M-RESS Solid-shell Element
M-RESS stands for Modified Reduced (in-plane) integration, Enhanced strain field, Solid-
Shell element. This element is used in the major part of the analysis of laminated glass
in this thesis. In this section, an overview of the theory of this element is provided. The
element was originally presented in [13] for linear applications. Linear theory is used
throughout this thesis and it is thus the linear version of the element that is presented.
The element has the geometry of a three-dimensional hexahadral solid element that has
eight nodes and three degrees of freedom per node. The element geometry together with
the involved coordinate systems and the integration point locations are displayed in Figure
9.
In the formulation of the element, the computational efficiency is increased through the
use of a reduced integration scheme that has multiple integration points along the local
ζ-axis only. As a downside, volumetric and Poisson locking problems as well as spurious
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Figure 9: Element geometry.

zero-energy modes may occur. As a remedy, the element applies the Enhanced Assumed
Strain (EAS) approach, [45].

5.2.1 The EAS-method

The crucial point of the EAS method is to enlarge the strain field, ε, through adding a
new field of enhanced strain parameters, α. It can be shown, [2], that only one enhancing
parameter, α1, is enough in order to reduce the locking problems. This means that the
locking problems can be reduced considerably, while maintaining high computational
efficiency of the element formulation which is achieved through the reduced integration
scheme. To overcome the hourglass modes that then may develop, hourglass stabilization
is made by the Assumed Natural Strain (ANS) method, [18], for the transverse shear
components whereas the membrane field were stabilized based on the stabilization vectors
of [32].
In the local frame, the enhanced strain field is added to the ordinary strain field:

ε̃ = ε+ εα = [B̂u B̂α]

[
u
α

]
= B̃ũ. (10)

B̂u is the standard Finite Element Method (FEM) strain-displacement matrix, εα is the en-
hanced part of the strain field and u is the displacement field. In the convective coordinate
system, the enhanced strain field is chosen:

εα
ζζ = ζα1, (11)

which leads to the following enhanced strain-displacement matrix in the local coordinate
system:

B̂α = Q0[0 0 0 ζ 0 0]T . (12)

Q0 is a transformation matrix, see [13] and references therein. The application of the EAS
method leads to the following system of equations, [45]:
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[
K̂uu K̂uα

K̂αu K̂αα

](
u
α

)
=

(
fext

0

)
. (13)

Static condensation of α can be performed on Equation (13) that leads to:

K̂u+α = K̂uu − K̂uα(K̂αα)−1K̂αu. (14)

The physical stabilization procedure adds an extra part, K̂H , to the stiffness matrix as
follows:

K̂ = K̂u+α + K̂H . (15)

The displacement field can now be obtained as:

u = (K̂)−1fext . (16)

5.2.2 Treatment of the Strain Field to Account for Stabilization

In order to apply the physical stabilization method, a division of the strain tensor into
membrane, normal and transverse shear components is necessary. In the convective coor-
dinate system the strain tensor can be written as:

ε = [εm...εn...εs]
T = [εξξ εηη εξη...εζζ...εξζ εηζ]

T , (17)

where the strain components are defined as:

εab =
1
2
(J,au,b +J,bu,a), (a,b = ξ,η,ζ), (18)

where J,a are the lines of the Jacobian matrix J.
The strain tensor in the local coordinate system is given by

ε̂ = Q0ε. (19)

It can be shown, [13], that the total strain field can be expanded to constant, linear and
bilinear terms in the coordinates ξ, η and ζ. The constant membrane strain field is com-
posed of a component evaluated at the center of the element and a component that depends
only on the ζ coordinate:

εC
mI = ε0

m +ζεζ
m. (20)

The constant membrane strain tensor must be transformed to the local coordinate system
through the transformation of Equation (19). For a detailed description of the correspond-
ing strain-displacement matrices, see [13].
The reduced integration scheme with integration points only along the ζ-axis will lead to
the cancellation of the contributions to the strain-displacement matrix that are correspond-
ing to the non-constant terms of the strain field. Physical stabilization strain-displacement
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relations are therefore required for those terms. The membrane part of the stabilization
strain tensor is given by:

εH
mI = ξεξ

m +ηεη
m +ξηεξη

m +ξζεξζ
m +ηζεηζ

m . (21)

The strain tensor is transformed to the local coordinate system through the application
of Equation (19). Explicit descriptions of the corresponding strain-displacement matrices
are given in [13].
For the construction of strain-displacement stabilization matrices for the normal strain
component, εζζ, and for the transverse shear strains εξζ and εηζ, the ANS-method is used.
For a description of the application of the ANS-method, we refer to [13].
A second stabilization method is applied to the membrane strain components as well as
a method to remedy the volumetric locking that may occur to the stabilization. Details
regarding these methods are out of scope of this presentation. More information is given
in the first part of the thesis and in the references therein. To summarize, the resulting
membrane strain tensor for the hourglass field is defined as

ε̂H
m =

 ε̂x̂x̂
ε̂ŷŷ
ε̂x̂ŷ

= (ξ · B̂ξ
mI +η · B̂η

mI +ξη · B̂ξη
mI +ξζ · B̂ξζ

mI +ηζ · B̂ηζ
mI) · R̂0 ·dI, (22)

where the nodal degrees of freedom, dI , are specified in the local coordinate system. The
following transformation from global coordinates to local coordinates is used:

d̂I = R̂0 ·dI. (23)

R̂0 is defined in [13].

5.2.3 Stress Evaluation

The displacements obtained from Equation (16) are used together with Equation (10) in
order to compute the strain field, ε̃. Once the strain distribution has been determined, the
stress distribution, σ, is given by:

σ = Dε̃ = D · [B̂u B̂α]

[
u
α

]
. (24)

D is the constitutive matrix. The stresses are evaluated at the integration points. A stress
smoothing procedure based on a quadratic least squares fit is used in order to extrapolate
and average the stresses at the nodes, [16].

5.3 An Analytical Model for Structural Analysis of Laminated Glass
in Bending

In strength design of glass there is a need for analytical methods that provide rapid so-
lutions to certain glass structures. In this thesis, such a method is developed. The solid-
shell element presented in the previous section and an analytical model used to evaluate
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the structural performance of a simply supported laminated glass beam provide the basis
for this method. The analytical model is presented in [15]. The model is intended to
be applied to a glass balustrade and the equations are adjusted for this case. The glass
balustrade consists of a plate of two laminated glass panes which can be regarded as a
beam when subjected to bending around one axis. In this section, the original model is
presented that deals with analytical laminated beam modeling.
Below it is derived how the stresses are determined for a laminated simply supported glass
beam subjected to a point load. The beam consists of two glass layers with an intermediate
PVB layer. The geometry of the beam problem is displayed in Figure 10.
In the modeling, some assumptions are made. First of all, the beam is only subjected to a
bending moment due to the point load. Linear theory of elasticity is applied. For a short-
term load, both glass and PVB are modeled as linear elastic materials. Small deformation
theory applies. The glass plies are assumed to have equal deflections and the radiuses of
curvature are approximately equal for the two plies. It is assumed that the glass plies are
not subject to shear deformation, but the PVB layer is. The stiffness of the PVB is large
enough so that the PVB layer acts as a connector between the glass plies without normal
deformation of the PVB or separation of the plies.
The reaction forces R1 and R2 as well as the moment distribution M(x) can be derived by
equilibrium equations as

R1 = P(
1

(1+ lb
la
)
), (25)

R2 = P(
1

(1+ la
lb
)
) (26)

and

M(x) = R1x, (27)

where the moment equation is valid on the interval 0 ≤ x ≤ lb.

P

Glass

Glass

R1 R2

PVB

lb la

x

Figure 10: Geometry of beam problem.
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In the course of the model development, a differential equation that governs the behavior
of the laminated beam problem is derived. A full derivation is provided in [15]. The
starting point of the derivation is the consideration of an infinitesimal beam element in
equilibrium. The forces and displacements of the beam element are displayed in Figures
11 and 12.
It is assumed that the shear deformation, us, of the PVB layer is given by

us(x) = γtPV B =
HtPV B

GPV Bb
=

H
kPV B

, (28)

where γ is the shear strain, kPV B = GPV Bb
tPV B

is the spring stiffness, GPV B is the shear modulus,
b is the width and tPV B the thickness of the PVB layer.
From horizontal equilibrium of a single beam cross section, N1(x) = −N2(x) ≡ N(x)
holds.
A moment equilibrium computation about the laft part of the beam cross section at the
center of gravity of the second glass pane gives, given that the thickness of the PVB layer
is disregarded in the computation

M = M1 +M2 −Nht , (29)
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Figure 11: Forces acting on an infinitesimal laminated beam element.
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Figure 12: Displacements of a laminated beam element.
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where ht =
h1
2 + h2

2 .
The derivation of the differential equation is based on well known structural mechanical
relations and the definitions, assumptions and figures above. For brevity, the details are
not given here, but the final equation is given as

d2

dx2 N(x)− c2N(x) = c1M(x), (30)

where the following constants are defined

c1 = kPV B
ht

EI1 +EI2
, (31)

and

c2 = kPV B(
1

EA1
+

1
EA2

+
h2

t
EI1 +EI2

), (32)

where E is the modulus of elasticity of glass, I1 and I2 are the moments of inertia of glass
panes 1 and 2 respectively and A1 and A2 are the cross section areas of respective pane.
The total solution to this differential equation is

N(x) = Bsinh(
√

c2x)+Ccosh(
√

c2x)− c1R1

c2
x, (33)

where B and C are constants. The last term is the particular solution to the equation
and this solution has been dervied based on the ansatz that a linear M(x) corresponds to a
linear particular solution. The boundary conditions N(0) = 0 and (dN

dx )x=lb = 0 are applied
to determine B and C and the final solution is obtained as

N(x) =
c1R1

c2
√

c2cosh(
√

c2lb)
sinh(

√
c2x)− c1R1

c2
x. (34)

For equal cross sectional areas of the glass beams, A1 = A2 ≡ A, h1 = h2 ≡ h and I1 =
I2 ≡ I. Under these conditions, it can be shown that M1(x) = M2(x). Then, Equation (29)
could be written as

M1(x) = M2(x) =
1
2
(M(x)+htN(x)). (35)

For glass design, it is the value of the maximum tensile stress in glass parts of the beam
that is of interest. Basic structural mechanic relations, [40], provides the well-known
formula for the total normal stress in the x-direction, σ, for one glass pane. For the current
load case, the maximum tensile tensile stress occurs at the lower surface of the laminate.
Let the maximum tensile stress (evaluated at x = lb) be denoted σlow. At the lower surface
of the laminate, M1(x) = M2(x), I2 = I and N2(x) =−N1(x) =−N(x). Thus,

σlow =
M2(lb)

bh2

6

− (Nlb)
bh

. (36)

Note that Equation (36) is valid for beams with rectangular cross sections only.
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The shear stresses are zero at the surfaces of the laminate, which means that the tensile
stress in the x-direction at the lower surface of the laminate is equal to the maximum
(positive) principal stress.

5.4 Modeling of Hyperelastic Materials
A brief description of hyperelastic materials is given below. The derivations are originally
presented in [5] and [30]. Hyperelastic models are normally used for modeling rubber
materials.
The hyperelastic material models are derived using a strain energy function to describe the
characteristics of the materials. Below, the concept of strain energy function is described
by the example of a non-linear elastic bar. The symbols used in the example are defined
in Figure 13.
When analysing a hyperelastic material the traditional strain (ε = u

L ) is replaced by the so
called stretch (λ) defined as

λ =
L+u

L
= 1+ ε. (37)

The strain energy is defined as a function W (λ), which describes the strain energy density
per undeformed volume of the bar.
The total strain energy (U), is thus expressed by multiplying W (λ) with the undeformed
volume

U = ALW (λ). (38)

The increments of work done by the external force is equal to the increment of internal
work giving the energy balance equation

dU = Pdu. (39)

The increment of internal work can be expressed by using W (λ) as follows

dU = ALdW = AL
dW
dλ

dλ. (40)

The definition of λ can be rewritten as

P P

A

L u

Figure 13: An elastic bar loaded in tension.
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λ =
L+u

L
↔ u = (λ−1)L. (41)

Differentiation of u gives

du = Ldλ. (42)

Inserting Equations (40) and (42) into Equation (39) gives

PLdλ = AL
dW
dλ

dλ → P
A
=

dW
dλ

. (43)

An expression of the stress (P
A) in the elastic bar has been derived from the strain energy

function.

5.4.1 Strain Energy Function, the Neo-Hooke Model and the Mooney-Rivlin Model

The strain energy density function can be regarded as a potential function for the stresses.
The measure of strains used is the left Cauchy-Green deformation tensor B. Thus, W can
be written

W =W (B). (44)

The state of deformation is fully determined by the principal stretches (λ1,λ2,λ3) and the
principal directions. In an isotropic material the three principal stretches are independent
of the principal directions and consequently the strain energy density function can be
written

W =W (λ1,λ2,λ3). (45)

The principal stretches can be obtained from the characteristic polynomial of B, but not
very easily. The strain invariants are easier to obtain and thus the strain energy function
is expressed in an easier way as a function of the three invariants,

W =W (I1, I2, I3). (46)

The three strain invariants can be expressed by the principal stretches

I1 = λ2
1 +λ2

2 +λ2
3

I2 = λ2
1λ2

2 +λ2
1λ2

3 +λ2
2λ2

3
I3 = λ2

1λ2
2λ2

3

(47)

The third invariant expresses the change in volume and as rubber materials generally are
more or less incompressible, it is assumed that no change in volume occur and thus I3 = 1,
giving

W =W (I1, I2). (48)
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The constitutive law for a hyperelastic, isotropic and incompressible material is derived
from the strain energy density function using the energy principle in an energy balance
equation in the same way as in the initial example of the elastic bar. In finite element
analysis programs the most common expression used to describe the strain energy density
function is the series expansion

W =
∞

∑
i=0, j=0

Ci j(I1 −3)i(I2 −3) j. (49)

Most hyperelastic materials are based on this sum. They are separated by how many and
which of the constants (Ci j) being used. For example, the Neo-Hooke material model uses
the first term, C10, of Equation (49) and the strain energy density function is described by

W =C10(I1 −3). (50)

As another example, for the Mooney-Rivlin model, the two first terms C10 and C01 are
used to describe the strain energy density function. The expression for this function is
given by

W =C10(I1 −3)+C01(I2 −3)2. (51)

These are two often used material models in analysis of rubber materials.

5.5 Dynamic Analysis
In dynamic analysis of a structure, the structure is subjected to dynamic (time-varying)
loads. This section gives a brief introduction to dynamic analysis. The notation is
taken from [17]. The simplest structural dynamic system is a so-called single-degree-
of-freedom (SDF) system. An SDF system can be idealized as a mass-spring-damper
system, which is illustrated in Figure 14.
In Figure 15 the forces acting on the mass are shown.
These forces are the elastic force, fS = ku, the damping force, fD = cu̇, and the external
force, p(t). In the vertical direction, the gravity force mg is balanced by an equal normal
force. Application of Newton’s second law and rearrangement of terms gives for the
horizontal direction

c
u

m

k

p(t)

Figure 14: Mass-spring-damper system.
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m p(t)

mg

.
cu

ku

Figure 15: Free-body diagram for the mass of a mass-spring-damper system.

mü+ fD + fS = p(t). (52)

When substituting the relations for fD and fS into Equation (52), the final equation of
motion of the system is obtained as

mü+ cu̇+ ku = p(t). (53)

The initial displacement u(0) and the initial velocity u̇(0) must be specified for a complete
definition of the problem.
In order to describe a more complex structure, more degrees of freedom are included
in the model and a multi-degree-of-freedom (MDF) model is obtained. The equation of
motion for this type of system is given as

mü+ cu̇+ku = p(t), (54)

where m is the mass matrix, c is the damping matrix, k is the stiffness matrix, u is the
displacement vector and p is the load vector. For N degrees of freedom the matrices have
dimensions N ×N and the vectors N × 1. The system can be solved for u(t) for given
initial conditions u = u(0) and u̇ = u̇(0).
When a structure is disturbed from its equilibrium position by initial displacement(s)
and/or initial velocities, the structure undergoes free vibration at certain natural frequen-
cies, ωn. Observe that the structure vibrates at zero external force, p(t) = 0. The number
of natural frequencies are as many as the number of degrees of freedom of the system.
Each natural frequency corresponds to a characteristic deflected shape of the structure
called natural mode of vibration, ϕn. For an undamped (c = 0) MDF-system, the free
vibration in one of the natural vibration modes can be written

u(t) = qn(t)ϕn, (55)

where qn(t) is the time variation of the displacements which is described by
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qn(t) = Ancosωnt +Bnsinωnt, (56)

where An and Bn are constants that can be determined from the inital conditions of the
problem. A combination of Equation (54) adjusted to the case of free vibration and with-
out damping, Equations (55) and (56) and the exclusion of the trivial solution correspond-
ing to qn(t) = 0 yields the matrix eigenvalue problem

kϕn = ω2
nmϕn. (57)

Solving the eigenvalue problem gives the eigenfrequencies and the natural modes (eigen-
modes). The natural modes form a set of N independent vectors and can thus be used as a
basis for representing any displacement vector u. The complete solution to Equation (54)
for the case of undamped free vibration is then given as

u(t) =
N

∑
n=1

ϕn(Ancosωnt +Bnsinωnt). (58)

An and Bn are obtained by utilizing the initial conditions of the problem, see [17].

5.6 The Rayleigh-Ritz Procedure
For some applications it is desirable to reduce the size of the MDF model with as little
loss of information about the dynamic behavior of the system as possible. For these cases,
model reduction techniques may be employed. Glass structures subjected to dynamic
impact load may be analyzed by employing model reduction techniques. In this thesis,
the Rayleigh-Ritz method is employed for model reduction. The purpose of the current
section is to give a short description of the Rayleigh-Ritz method. The notation is adopted
from [17].
Consider the equations of motion of an undamped system in free vibration with N degrees
of freedom

mü+ku = 0. (59)

The displacement field can be expressed as a linear combination of shape vectors ψ j

u(t) =
J

∑
j=1

z j(t)ψ j = Ψz(t), (60)

where z j(t) are so-called generalized coordinates and the Ritz vectors ψ j, j = 1,2, ...,J
are linearly independent vectors that satisfy the geometric boundary conditions.
The Ritz vectors are selected based on what is appropriate for the system to be analysed.
Substituting Equation (60) into Equation (59) yields

mΨz̈+kΨz = 0. (61)

Premultiplying each term by ΨT gives
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m̃z̈+ k̃z = 0, (62)

where m̃ = ΨT mΨ and k̃ = ΨT kΨ.
The system described by Equation (62) has J degrees of freedom (z1,z2, ...,zJ)

T compared
to the full system which has N degrees of freedom. In general, the purpose of the method
is to find approximations to the lowest eigenfrequencies and eigenmodes of the system
and to represent the dynamic behavior of the system by a combination of only a few of
those.

5.7 Structure-acoustic Analysis
Structure-acoustic analysis can be used to model the gas filled insulated glass units. In this
section, is described the theory and assumptions behind the formulation and the derivation
of the finite element formulation is presented. The entire formulation is found in [43] and
the notation used here stems from that work.
The structure-acoustic formulation concerns systems that consist of a flexible structure
that is in contact with an enclosed acoustic cavity. The structure part is described by
the differential equation of motion for a continuum body assuming small deformations
and the fluid part by the acoustic wave equation. Coupling conditions at the boundary
between the structure and fluid domains are applied to ensure that there is continuity in
displacements and pressure between the domains.
For the structural domain, the equation of motion for a continuum body can be written

∇̃T σs +bs = qs, (63)

where bs is the body force, qs is the inertia force and the differential operator ∇̃ is defined
in [43]. The quantities bs and qs are defined as

bs =

 bs
1

bs
2

bs
3

 (64)

and

qs = ρs
∂2us

∂t2 . (65)

us is the displacement vector defined as

us =

 us
1

us
2

us
3

 (66)

and ρs is the density of the material. The stresses, σs, are written as

39



σs =


σs

11
σs

22
σs

33
σs

12
σs

13
σs

23

 . (67)

By means of the appropriate kinematic and constitutive relations and standard finite ele-
ment derivations, the finite element formulation for the structural domain is obtained

Msd̈s +Ksds = f f + fb, (68)

where Ms is the mass matrix, Ks is the stiffness matrix, f f is the surface force vector, fb
is the body force vector and ds are the nodal displacements.
The governing equations for the acoustic fluid are derived using the assumptions that the
fluid is inviscid, only undergoes small translations and is irrotational. Thus, the governing
equations are the equation of motion,

ρ0
∂2u f (t)

∂t2 +∇p(t) = 0, (69)

the continuity equation,

∂ρ f (t)
∂t

+ρ0∇
∂u f (t)

∂t
= q f (t), (70)

and the constitutive equation,

p(t) = c2
0ρ f (t). (71)

u f (t) are the displacements, p(t) is the dynamic pressure, ρ f (t) is the dynamic density
and q f (t) is the added mass per unit volume. ρ0 is the static density and c0 is the speed of
sound. ∇ denotes the gradient of a variable.
Differentiating Equation (70) with respect to time and substituting Equations (71) and
(69) into the resulting equation gives the nonhomogeneous wave equation expressed in
acoustic pressure p as

∂2 p
∂t2 − c2

0∇2 p = c2
0

∂q f

∂t
. (72)

The derivation of the finite element formulation for the fluid starts from Equation (72) and
standard finite element derivations lead to

M f p̈ f +K f p f = fq + fs, (73)

where M f is the mass matrix, K f is the stiffness matrix, fs and fq are force vectors and p f
denotes the nodal pressures.
The kinematic coupling between the structure and fluid domains are made in the normal
direction by
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usn = u f n (74)

and through the continuity in pressure by

σs|n =−p, (75)

where n is a normal vector. Given that ns and n f are the boundary normal vectors pointing
outwards from the structural and fluid domains respectively, it is defined that n = n f =
−ns.
Equation (75) can be rewritten and inserted into the term f f of Equation (68). This term
is then rewritten further and discretized using finite element approximations. The final
format of this equation is

f f = Hp f , (76)

where H is the coupling matrix, see [43].
Using Equations (69) and (74), the force term fs of Equation (73) can also be rewritten.
Finite element discretization and substitution of the coupling matrix H into the obtained
expression gives the final version of the term fs as

fs =−ρ0c2
0HT d̈s. (77)

To summarize, the structure-acoustic system is described by the following unsymmetrical
system of equations[

Ms 0
ρ0c2

0HT M f

][
d̈s
p̈ f

]
+

[
Ks −H
0 K f

][
ds
p f

]
=

[
fb
fq

]
, (78)

which is the standard form of the structure-acoustic formulation.
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6 Application of Developed Design Methods

6.1 General
In this section an example of a glass structure with bolted joints is used in order to demon-
strate the use of the two stress prediction methods applicable to bolt fixed balustrades
subjected to a line load presented in the first parts of this thesis. The example comprises
a laminated glass balustrade of the type presented in the part of the thesis that deals with
design charts. Since the balustrade in this example has three horizontal rows with two
bolts each, it is simultaneously shown how the concept of design charts can be expanded
to balustrades with the increased number of bolts. The results in terms of accuracy are
compared to results that are obtained when a standard finite element method is used.

6.2 Description of Test Example
The structure is a balustrade of laminated glass consisting of two glass layers with an
intermediate PVB layer. The structure contains 3+3 bolt connections, which means that
this example is also used to illustrate how design charts was developed for the case of
3+3 bolt connections. In Figure 16, the two dimensional geometry of the structure is
displayed.
Cylindrical bolts with bolt head diameter, db, of 60 mm were used. The bolts are made
of steel and have bushes of EPDM at the contact surfaces with the glass. The bore hole
diameter, dh, was set to 22 mm. A list of the geometry parameters with corresponding

w

lb

lc

la

aw

Figure 16: Two dimensional geometry of balustrade.
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design values is included in Table 4. tPV B is the thickness of the PVB layer, tEPDM is the
thickness of the EPDM layer and tg is the glass thickness.
As an example, a horizontal (uniform) line load was applied at the upper edge of the glass
balustrade. The load had the magnitude 3 kN/m. Alla materials were modeled as isotropic
and linear elastic materials. In Table 5, the material parameter values are presented. E
denotes modulus of elasticity and ν denotes Poisson’s ratio for glass, PVB, EPDM and
steel respectively.
In the coming subsections, it is described how the test example was analysed using three
different methods. First, three dimensional solid elements were used in ABAQUS in order
to provide a benchmark solution to which the two other methods were compared. Then,
M-RESS elements were used in ABAQUS in order to illustrate the applicability of the
method presented in the first part of the thesis to this test problem. Finally, design charts
for balustrades with 3+3 bolt connections are introduced and it is shown how the charts
were used in order to analyze the balustrade. Design charts for balustrades with 2+2 bolt
connections is the topic of the second part of the thesis.

6.3 Finite Element Analysis Using Three Dimensional Solid Elements
In this subsection, second order three dimensional solid elements were used in ABAQUS
in order to provide a benchmark solution to the problem presented in the former subsec-

Table 4: Design parameters for test example.
la 1.275 m
lb 0.48 m
lc 0.24 m
aw 0.18 m
w 1.23 m

tPV B 0.76 mm
tEPDM 3 mm

dh 22 mm
db 60 mm
tg 12 mm

Table 5: Material parameters for test example.
Eg 70 GPa
νg 0.25

EPVB 6.3 MPa
νPV B 0.4

EEPDM 20 MPa
νEPDM 0.45

Es 210 GPa
νs 0.3
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tion. For each bolt, the entire bolt head consisting of a steel part and an EPDM layer
was explicitly modeled. Only those bolts located at positions where equilibrium reaction
forces acting on the glass occur, were included in the model. Constraints of the type tie
were used between the glass pane and the EPDM layers. As boundary condition it was
used that displacements are prohibited in all directions at the opposite side of the bolts.
Second order three dimensional solid elements (C3D20R) were used for the glass and
PVB layers. Standard linear three dimensional solid elements (C3D8R) were used for the
other parts of the model. A total of about 270000 elements were used. The line load was
converted to a pressure load acting on a surface of infinitely small width, since it is not
possible to apply line loads in ABAQUS. The maximum principal stress occurred at the
middle bolt of the upper bolt row, as is indicated in Figure 17, and took on the value 119.4
MPa.

6.4 Finite Element Analysis Using M-RESS Elements
In this subsection, the model of the previous subsection was used, but the element type
of the laminated glass was selected to be M-RESS, see Section 5.2 and the first part of
the thesis. A modification of the model of the former subsection was necessary. The line
load was distributed to nine equidistant points and applied as concentrated forces using
manual lumping. In this model, two element layers per glass layer and one element layer
for the PVB layer were used. In total, around 160000 elements were used. The maximum
principal stress of the glass balustrade reached 125.5 MPa.

(Avg: 75%)
S, Max. Principal

−1.195e+07
−1.003e+06
+9.944e+06
+2.089e+07
+3.184e+07
+4.278e+07
+5.373e+07
+6.468e+07
+7.563e+07
+8.657e+07
+9.752e+07
+1.085e+08
+1.194e+08

Figure 17: Maximum principal stresses for balustrade using three dimensional solid ele-
ments.

44



6.5 Stress Prediction Using Design Charts
In the course of writing this section, design charts for balustrades with 3+3 bolt connec-
tions were developed. The in-plane geometry of the balustrade is that of Figure 16. When
comparing to the case of a balustrade with 2+2 bolt connections, the set of unknown pa-
rameters is the same. The development of the new design charts is thus a simple extension
of the already developed charts. Table 6 displays the design parameters and the ranges of
variation for each parameter.
Next, it is illustrated how the maximum principal stress of a glass balustrade with geom-
etry parameters according to Table 6 and material parameters according to Table 5 was
computed. First, the nominal stress value, σNom, was computed. Analogous derivations
are made in Section 5.3 and in the second part of the thesis. Here, the equations that were
used are merely stated and the final answer to each equation is written out.

R2 = PTot(1+
la
lb
) (79)

gives R2 ≈ 1.3492 ·104 N.

M(x) =
R2lax

(la + lb)
(80)

gives M(0.48)≈ 4.7049 ·103 Nm.

N(x) =
c1R2la

c2
√

c2(la + lb)cosh(
√

c2lb)
sinh(

√
c2x)− c1R2lax

c2(la + lb)
(81)

gives N(0.48)≈−1.7426 ·105 N.

M2(x) =
1
2
(M(x)+(ht + tPV B)N(x)) (82)

yields M2(0.48)≈ 1.2406 ·103 Nm.

Table 6: List of geometry parameters.
Parameter Value

la 1.25 m
lc 0.24 m

tPV B 0.76 mm
tEPDM 3 mm

lb 0.2, 0.4, 0.8 m
aw 0.1-(w

2 -0.15) m in step of 0.025 m
w 0.9-2.7 m in step of 0.3 m
dh 15-40 mm in step of 5 mm
tg 6, 8, 10, 12 mm
db 60 mm
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σNom =
M2(lb)

wt2
g

6

− N(lb)
wtg

(83)

leads to σNom ≈ 53.8 MPa.
In Figure 18, the applicable design chart for this case is displayed. The chart was selected
as the one which has parameter values closest to the actual design example.
In the diagram, aw = 0.18 m was chosen on the x-axis, whereas in the case of lb one
had to interpolate between the isolines corresponding to lb = 0.4 m and lb = 0.8 m. The
value of α which corresponded to the actual combination of parameters aw and lb, was
read off from the diagram, which yielded α ≈ 2.31. The maximum principal stress of the
balustrade was determined according to σ = α ·σNom ≈ 124.3 MPa.

6.6 Results and Comparison
This subsection is devoted to a discussion and comparison of the results obtained using
the various design methods discussed in this section. In Table 7, the values of maximum
principal stress are presented. From the table one can conclude that the results of all three
methods are sufficiently close to each other in order to classify the methods as yielding
equivalent results. More rigorous comparisons of the two first methods are provided in the
first part of the thesis. The result using the third method carries some uncertainties related
to mesh density when constructing the chart, the selection of the design chart to match the

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
2

2.1
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2.8

a
w

 (m)

α

 

 
l
b
 = 0.2 m

l
b
 = 0.4 m

l
b
 = 0.8 m

Figure 18: Design chart for tg = 12 mm, w = 1.2 m, db = 60 mm and dh = 20 mm.
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Table 7: Comparison of different methods for stress prediction.
Method Maximum principal stress (MPa)

FEM, solid elements 119.4
FEM, M-RESS 125.5

Design chart 124.3

actual set of parameters, parameter interpolation and reading off the chart. These effects
do not seem to be significant given that the results are very close to those obtained using
other methods.
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7 Overview of Present Work

7.1 The Application of the M-RESS Element for Stress Evaluation of
Advanced Laminated Glass Structures

In Paper 1, the M-RESS element was applied to typical examples of laminated glass struc-
tures and the performance regarding accuracy and computational efficiency was evaluated.
The first example was a thin square plate subjected to biaxial bending through a uniformly
distributed lateral load. The performance of the element was compared to standard three
dimensional solid elements contained in the finite element program ABAQUS. Those ele-
ments were a linear 8-node and a quadratic 20-node element, both quadrilateral elements
with reduced integration. Convergence tests were performed in terms of the vertical dis-
placement at the center point of the bottom glass surface, w, and the in-plane stress in
one direction, σ. The results were normalized to the results using the 20-node element
in ABAQUS and 2 millions degrees of freedom. Defining the acceptable error to be less
than or equal to 5 %, both for the displacements and the stresses, Table 8 shows the num-
ber of degrees of freedom required to reach acceptable levels of error for the elements
investigated.
Apparently the 8-node solid element was not capable to represent the behavior of the
structural problem. The computational advantage of using the M-RESS element instead
of the 20-node solid element is well illustrated.
Further tests were dealing with real structures comprising commonly used types of joints
in glass construction. The first example was adopted from [10], and comprised a square
laminated glass plate with a bolted joint placed in the middle of the plate. A compressive
force was applied to the joint. As an illustration of the structure, the geometry of the glass
plate is shown in Figure 19.
The glass plate rested on a supporting steel frame and a rubber gasket protected the glass
from direct contact with the steel. In [10], the fracture stress was evaluated experimentally
for this structural problem. In Paper 1, finite element analyses of the structure were made
using the M-RESS element for the modeling of the laminated glass part. As a comparison,
a similar model was made using 20-node solid finite elements for the corresponding parts.
The model size of the model with M-RESS elements was around 10 % of that of the
model with solid elements. The maximum principal stresses were located in the upper
glass layer close to the bore hole as expected. In Table 9, the maximum principal stress
for the different methods is shown. For the experiments, the results presented are not the
maximum principal stresses occurring in the structure since it was not possible to make
experimental measurements at the correct location.

Table 8: Convergence properties of different finite elements.
Finite element Min. number of DOFs for w Min. number of DOFs for σ

M-RESS 300 700
8-node solid 200000 -
20-node solid 3000 3000
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Figure 19: Geometry of glass plate.

Both of the numerical models had an error less than 15 % compared to the experimental
results, and the M-RESS element predicted results that are closer to the experimental
ones. With the difference in model size between the two elements, the M-RESS element
is clearly a more efficient element for this kind of modeling. The 10 % error that the
M-RESS element predicted is accurate enough to be used in practical design of glass
structures. In Paper 1, there is a discussion relating to error sources that are related to the
numerical modeling, but not to the properties of the finite elements. It is possible that the
error could be further reduced without increasing the size of the model.
The second real glass structure dealt with a large glass beam that was made up by smaller
glass beams through the use of adhesive joints. The structure was created and analysed
experimentally and numerically in [30] and Paper 3. The aim of that work was to de-
termine the shear capacity of an adhesive joint in a large dimension glass beam. The
experimental test arrangement is displayed in Figure 20.
The test was a four-point bending test where the arrangement had been made so that
pure shear stresses were obtained in the joints. In the original study, several adhesives
were studied. For the demonstration of the applicability of the M-RESS element, an
epoxy adhesive was used. As a comparison, a model was made using 20-node solid finite
elements. The model size of the model using M-RESS elements was only 20 % of the
model size of the model with solid elements. The variable used in the comparison was the
ultimate displacement in the load direction at point 4 of Figure 20. The results are shown
in Table 10.
Both the M-RESS element and the 20-node solid element yielded very accurate results
for the present test case, but the model used for the M-RESS element was significantly
more computationally efficient.

Table 9: Maximum principal stress close to bore hole.
Method Maximum principal stress (MPa)

Experimental (mean value) 177.1
M-RESS 159.2

20-node solid 153.4
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Figure 20: Test setup of four-point bending test of glass beam with adhesive joint.

Table 10: Ultimate deformations at the mid-point of the beam.
Test Displacement (mm)

Experimental 10.00
M-RESS 10.20

20-node solid 10.24

In summary, three test cases that are relevant in the discussion regarding laminated glass
structures of various support conditions have been analysed and the results consistently
showed that the use of the suggested M-RESS element lead to more computationally
efficient modeling at a given level of accuracy. Note that the M-RESS element is not a
standard element of a commercial software package, which means that the contribution
extends the abilities available in commercial finite element modeling to deal with strengh
design of complex glass structure in a computationally efficient manner.

7.2 Development of Design Charts for Stress Evaluation of Lami-
nated Glass Balustrades with Bolted Joints Subjected to a Line
Load

In Paper 2, a method for evaluating the stresses in a bolt fixed laminated glass balustrade
was developed. The balustrade had two rows of two bolt fixings each and was subjected to
a line load. This problem could be analysed by means of finite element analysis using the
M-RESS element as in Paper 1. The method developed in Paper 2 combines design charts
and analytical formulas to determine the stresses. The method serves as an alternative for
users that may not be so familiar with the finite element method.
The method is partly based on the analytical beam model presented in Section 5.3. By
noting that the laminated glass balustrade without holes can be perceived as a beam sub-
jected to three point bending since the loads and boundary conditions are symmetric, a
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nominal stress, σnom, can be calculated. The geometry of the beam model applied to a
balustrade is shown in Figure 21.
PTot is the line load, P, multiplied by the width of the balustrade, w. R1 and R2 are the
reaction forces that represent the bolt loctions.
A finite element computation using the M-RESS element was used for the structure with
holes and the maximum principal stress of the whole structure, σ, was computed. The
maximum stress and the nominal stress are related through the stress concentration fac-
tors, α, by the expression σ = ασNom. The stress concentration factors were represented
graphically in so-called design charts. For stress determination, σNom is determined by
means of derived formulas that are analogous to those derived for the analytical beam
model of Section 5.3. The complete derivation is found in Paper 2. It is emphasized that
an extension of the original analytical model was made to include the thickness of the
PVB layer in the moment equilibrium calculations, Equation (29). In Section 6, the meth-
ods of Paper 1 and Paper 2 were compared and the method of Paper 2 was extended to the
case of a balustrade with two rows of three bolt fixings each. For stress determination, it
is σ that is of interest. α can be determined from the corresponding design chart, and σ
is obtained through the relation between σNom and σ. In Section 6, a sample design chart
for the case of 3+3 bolts is also displayed. Thus, for further explanation, demonstration
of the method and evaluation of the results it is referred to Section 6.

7.3 Evaluation of the Shear-capacity in Adhesive Glass Joints and
Development of Material Models for the Adhesives

In Paper 3 adhesive glass joints were studied. In the first part of the study, which de-
scribes the work of [30], the shear-capacity of various adhesives for connecting glass
was determined experimentally. The tests were performed on small specimens and the
shear-capacity was evaluated for a short-term load.
The test equipment was designed to obtain a state of pure shear in the joint. The test
equipment consisted of two steel-parts that transmit the forces from the testing machine
to the specimen.
The specimens in the tests consisted of two pieces of glass with dimensions 20 × 20 mm2

joined together with an adhesive layer.
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R1 PTot
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Figure 21: Beam model applied to a balustrade without holes.
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The tested adhesives can be grouped into softer and stiffer adhesives. The softer adhe-
sives contained four types of silicone based adhesives, three types of SMP (Silyl Modi-
fied Polymer) based adhesives and Bostik Multifog 2640. The stiff adhesives consisted
of polyurethane adhesive, HBM Rapid Adhesive X 60, strong epoxy adhesive and UV-
hardening glass-glue. The adhesive products were chosen so that a wide span of different
adhesive characteristics was obtained.
Test specimens had different thickness of the adhesive layer. For the silicone glues, the
thickness was 6 mm, for the SMP based adhesives and Bostik Multifog 2640, the thick-
nesses were 2 and 0.3 mm. The polyurethane glue and HBM Rapid adhesive X 60 had an
adhesive thickness of 0.2 mm, whereas the strong epoxy and the UV-hardening glue had
0.3 mm as thickness of the adhesive.
In the tests, data on force versus displacements were collected. The shear-capacity was
obtained through dividing the ultimate measured shear force by the initial surface area of
the adhesive.
The results for one softer adhesive and one stiffer adhesive are presented. For the softer
adhesive, one SMP based adhesive, the obtained shear-capacity was 2.3 MPa. For the
stiffer adhesive, polyurethane glue, the shear-capacity was determined to 3.8 MPa.
Later, as a part of this work and the work of [30], a finite element model of the test arrange-
ment was developed to determine the material models of the adhesives. The evaluation of
the results consisted of plotting the measured data of the shear-force versus the deforma-
tion of the test series. The data was fitted to a polynomial curve and compared with the
data extracted from the finite element simulations. For each adhesive, different material
models were tested until a satisfying agreement was obtained. For the softer adhesives,
the hyperelastic material models Neo-Hooke and Mooney-Rivlin were tested whereas the
stiffer adhesives were modeled as linear elastic. For an overview of the resulting material
models it is referred to Paper 3. From the respective matching material model, data on the
shear-deformation was extracted and relationships between shear-stress and shear-strain
were established. An initial shear modulus, G, was calculated from the shear-stress versus
shear-strain diagrams and an ultimate shear-stress was determined.
Results showing the mechanical characteristics of two groups of adhesives (softer, 2 mm
specimens and stiffer) are shown in Table 11. In general, the stiffer adhesives had greater
stiffness (G) and ultimate shear-strength (τavg,u) than the softer adhesives.
Finally, the work of [30] is described, in which a large-scale experimental test was made
to determine the shear-capacity of an adhesive joint in a large dimension glass beam.
Five adhesives from the small-scale tests were chosen to be tested in the large-scale tests.
The five adhesives were chosen considering the results from the finite element simula-
tions of the corresponding test set-up. The two strongest SMP based adhesives and the

Table 11: Mechanical characteristics of adhesives.
Quantity Softer adhesives Stiffer adhesives
G (MPa) 0.5-1.2 83-500

τavg,u (MPa) 1.3-2.3 4-20
γu (%) 200-300 4-10
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stiffer adhesives polyurethane glue, UV-hardening glass-glue and the strong epoxy adhe-
sive were chosen.
The test performed was a four-point bending test of a beam that consisted of three beams
made of flat-glass joined together by two adhesive joints. The test arrangement is shown
in Figure 20 and creates a symmetrical beam in order to obtain pure shear- stresses in the
joint. The beam had a span of three meters and every flat-glass element had dimensions
250 × 2000 mm and a width of 12 mm. The adhesive joints had dimensions 250 × 250
mm.
During the measurements, data on load and deformation of the mid-point of the beam
were collected.
To investigate whether the derived material models are valid for larger joints, a finite
element model was made of the large-scale test set-up. The adhesives were modeled ac-
cording to the material models from the tests with the small specimens. Load-deformation
graphs were determined for the tested adhesives and maximum load values were deter-
mined.
For the third SMP based adhesive, the measured data showed a less stiff behavior than the
data from the simulations. After an initial deviation, the stiffness of the measured data for
the polyurethane adhesive compared well with experiments. It is referred to Paper 3 for
result graphs.
Looking at the principal pattern of shear-stresses in the joints, in the stiffer adhesives
stress-concentrations occurred at the corners of the joints. In the softer adhesives, the
stresses were more evenly distributed. This result is presented in Paper 3.
Table 12 summarizes the ultimate loads and deformations for a selection of the softer ad-
hesives. The results were obtained from the finite element simulations. The corresponding
results for the stiffer adhesives are shown in Table 13.
Overall, the softer adhesives had ultimate loads ranging between 28 and 50 kN and the
stiffer adhesives had ultimate loads in the interval 10-30 kN.

Table 12: Ultimate loads and deformations at the mid-point of the beam for softer adhe-
sives.

Adhesive Ultimate load (kN) Ultimate deformation (mm)
Bostik Multifog 2640 28.8 53

SMP Based Adhesive 1 49.3 51
SMP Based Adhesive 2 38.2 43
SMP Based Adhesive 3 48.8 50

Table 13: Ultimate loads and deformations at the mid-point of the beam for stiffer adhe-
sives.

Adhesive Ultimate load (kN) Ultimate deformation (mm)
Strong Epoxy 30.3 10.0

Polyurethane Glue 10.3 3.5
UV-hardening Glue 22.3 7.5

HBM Rapid Adhesive X 60 20.3 7.0
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7.4 Development of a Reduced Model for Evaluation of Stresses in
Glass Structures Subjected to Dynamic Impact Load

The topic of Paper 4 is the development of a reduced method for evaluating stresses in
glass structures subjected to dynamic impact load. The load conditions are partly pre-
scribed in the standard SS-EN-12600, [46]. The standard describes a test to evaluate the
impact strength of glass. The corresponding test arrangement is shown in Figure 22.
The arrangement consists of a glass pane held within a steel frame and an impactor con-
sisting of a weight encased in a tire. During the test, the tire is swung in a pendulum
motion into the glass pane. The dimensions of the frame are standardized to 1.95 ×
0.887 m2 and the weight of the impactor is prescribed to 50 kg according to the standard.
When performing strength design of an arbitrary glass structure, the pendulum load as
prescribed in the standard is applied.
As a starting point, a full dynamic finite element model for the case of an undamped
multi-degree-of-freedom system undergoing free vibration was made for the glass part
including the boundary conditions. The finite element formulation for this case is de-
scribed in Section 5.5. The Rayleigh-Ritz method presented in Section 5.6 was used to
reduce the number of degrees of freedom of the glass structure. Compared to existing
reduced models for this load case, the inclusion of the boundary condition makes the
model more flexible in applicability. Earlier contributions, for instance [44], are limited
to two-sided and four-sided support conditions.
The impactor was represented by a single-degree-of-freedom system, see Section 5.5. The
out-of-plane degree of freedom at the midpoint of impact of the glass pane was chosen
as the reference degree of freedom, ure f , to which the impactor was connected. To cor-
rectly represent the complete system, it was suggested that the degree of freedom ui of
the impactor is tied to the first generalized coordinate, z1, of the reduced model which
corresponds to the point of impact.
When connecting the impactor to the reduced model of the glass, ure f = z1 must be ful-

Main frame

Impactor

Clamping frame

Figure 22: Test arrangement for pendulum impact test.
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filled. This means that the corresponding displacement vector, ψ1, must be normalized so
that the absolute value of the out-of-plane displacement is equal to one at ure f and that any
other Ritz vector, ψ j , must fulfill the condition that ure f = 0. This can be realized from
Equation (60) of Section 5.6. These conditions must always be fulfilled when creating a
reduced model for the glass.
The advantages of using the Rayleigh-Ritz method to reduce the model are that for the
considered design cases the Ritz vectors can be chosen based on physical intuition which
might decrease the necessary amount of Ritz vectors and that excentric impact can easily
be represented since the location of ure f can be chosen arbitrarily.
In Paper 4, two Ritz-vectors were selected to represent the glass structure. Assembling of
the subsystems representing the glass and the impactor respectively, leads to the following
multi-degree-of-freedom system for the complete system

 mi 0 0
0 m̃11 m̃12
0 m̃21 m̃22

 üi
z̈1
z̈2

+

 ki −ki 0
−ki ki + k̃11 −k̃12
0 −k̃21 k̃22

 ui
z1
z2

=

 0
0
0

 , (84)

where ki and mi represent the stiffness and mass of the impactor. m̃ and k̃ are the gener-
alized mass and stiffness matrices for the glass.
For the case of central impact, the first Ritz vector corresponds to the static deformation
mode of the glass. The deformed shape was constructed through applying a uniformly
distributed load corresponding to the weight of the glass, Qg, to the entire glass pane
area. It is referred to Paper 4 for an explanation of how this Ritz vector was obtained for
excentric load.
The second Ritz vector was constructed by means of applying a distributed force on the
entire surface of the glass corresponding to the glass weight on one side of the pane and
simultaneously a uniformly distributed load corresponding to the weight of the impactor,
Qi, was applied at the contact surface between the impactor and the glass but in the op-
posite direction. A schematic sketch of the construction of the Ritz vectors is shown in
Figure 23 for the case of centrally applied impact.
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Figure 23: Construction of Ritz vectors.
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Standard numerical procedures were used to solve the system of Equation (84). The
corresponding stresses can be evaluated once the system has beem solved, see Papers 1, 4
and Section 5.2.3.
The model was validated using a test example corresponding to the standard SS-EN-
12600, [46], which has been numerically modeled in [38]. The model in [38] is a full
dynamic finite element model which is verified against experiments. The structure was
four-sided supported. The impactor was dropped from a fall height of 450 mm. The
lateral displacement at the middle of the glass as well at the maximum principal stress of
the structure were evaluated. The most interesting results were related to the maximum
principal stress. Four different models were compared. Those were the finite element
model of [38] with geometrically nonlinear and linear formulations and the reduced model
of Paper 4 with one and two Ritz vectors respectively. It was apparent that the reduced
model based on only one Ritz vector is not appropriate to use since the stresses were
around 50 % of those of the full model. The full model results were more or less the same
for the geometrically linear and nonlinear formulations which means that the effect of the
geometric nonlinearity was small. The reduced model developed in this paper has two
Ritz vectors, and for that model the error was between 7 and 10 % compared to the full
models and the stresses were smaller than for the full models.
Another test example dealt with validation of the method for the case of excentrically
applied impact. Three different positions of excentric impact were investigated for four-
sided supported glass. The error in terms of the maximum principal stress, σmax, com-
pared to the corresponding model from [38] was less than or equal to 10 %. For all cases
considered, the error was so that it is on the safe side in strength design.
It is expected that the model behavior changes when the in-plane glass dimensions in-
crease, see for instance [38]. Thus, a similar study was made for larger glass panes of
dimensions 2×2 m2. The results in terms of σmax are displayed in Table 14.
Even for this example, the stresses for the reduced model with only one Ritz vector were
much smaller than for the full model. The reduced model with two Ritz vectors had
stresses that were very similar to those of the full model with linear geometry. It is implied
that the included number of Ritz vectors is sufficient. The model error was almost 20 %
when compared to the full model with nonlinear geometry. Since the stress was greater
for this model, the model was considered sufficiently accurate, but a greater error does
not make sense from the perspective of efficient material use. The geometric nonlinearity
effect was significant for this case. It is likely that this effect becomes even greater with
increased in-plane dimensions, so it is suggested that the reduced model applicability is
limited to dimensions less than or equal to 2×2 m2 if not nonlinear geometric effects are
accounted for in the model.
The limits of the reduced model were investigated more thoroughly in Paper 4 through

Table 14: Maximum principal stress for impact load applied to a larger glass pane.
Only Ritz vector 1 Current model

σmax/σmax,linear 0.42 0.95
σmax/σmax,nonlinear 0.52 1.18
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a parametric study concerning in plane dimensions and glass thickness. The fall heights
200, 300 and 450 mm were considered. Briefly, the use of the reduced model was more
critical for small glass thicknesses and large glass panes. For more detailed results, refer
to Paper 4.
A final test example investigated the model applicability to a balustrade type often en-
countered. It was a clamped fixed laminated glass balustrade of standard dimensions and
thicknesses. The fall height of the pendulum was again 450 mm. Results in terms of σmax
showed that the error compared to the full finite element model with nonlinear geometry
was only around 3.5 %.
In summary, it was shown that the reduced model is applicable to small and medium sized
glass structures when four-sided supported glass with central impact is concerned. The
model performed excellently when a standard laminated glass balustrade with clamped
supports was considered. The model validity for four-sided supported glass with excentric
impact was also validated.

7.5 Structural Analysis of Insulated Glass Subjected to Dynamic Im-
pact Load

Paper 5 concerns the computational modeling and analysis of insulated glass units sub-
jected to dynamic impact load. The analyses were performed by means of the commer-
cial finite element software ABAQUS. Structure-acoustic analysis described in Section
5.7 was used for the modeling. The load conditions and test arrangement for the pendu-
lum impact test are described in Section 7.4 and are thus not described here. As a test of
the modeling approach, the experimental results of [12] were used as a comparison. The
insulated glass unit consisted of two glass panes and an intermediate air layer. Due to
several differences in for instance the frame of the test rig, a more qualitative similarity
of the results could be expected.
A comparison regarding the time development of the midpoint lateral displacements of
the surface facing the impactor (inner) and the surface on the opposite side of the impactor
(outer) showed that the model results and experimental results were in good accordance
until the maximum displacements were reached. Regarding the maximum displacement,
for both panes the simulation error was less than 5 % which is acceptable.
A parametric study was made regarding the in-plane dimensions of the glass, the air cavity
thickness and the glass pane thickness. For the case of the in-plane dimensions, six cases
were studied according to Table 15.
The glass thickness of both panes was 6 mm and the air cavity thickness was set to 12 mm.
For these cases, also a structure with one glass was analyzed for comparison purposes.
In the parametric study of the influence of the air cavity thickness, the cases with cavity
thicknesses 6, 12 and 18 mm were studied. The in-plane dimensions were set to 800 ×
1600 mm2 and the glass thickness was 6 mm.
In the parametric study of the influence of the glass thickness four cases were made com-
prising of glass thicknesses of 6, 8, 10 and 12 mm. In this study, the in-plane dimensions
were 800 × 1600 mm2 and the air cavity thickness was 12 mm.
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Table 15: In-plane dimensions for the parametric study.
Case In-plane dimensions (mm2)
d1 800 × 800
d2 800 × 1200
d3 800 × 1600
d4 1200 × 1200
d5 1200 ×1600
d6 1600 × 1600

In terms of the center out-of-plane displacement, there was an almost 50 % increase when
quadratic glass dimensions changed from the smallest to the largest. In terms of the
maximum principal stress, there was a reduction of around 20 %. This can be seen from
Table 16 where the maximum principal stress, σmax, is displayed for various dimensions.
Further it was shown that the outer pane had maximum displacements that were 70-80 %
of those of the inner pane for quadratic glasses and maximum stresses that were 20-30 %
of those of the inner pane for all combinations of dimensions studied.
For the cases of Table 15 an analysis was made using insulated glass versus single layered
glass. The analysis was made in terms of σmax and the results are displayed in Table 17
together with the results for the double glass.
In general there was only a small increase in the maximum stress when a single glass
was used instead of an insulated glass. The largest increase was for the largest glass of
dimensions 1600 × 1600 mm2 where the maximum stress increased with around 15 %.

Table 16: Maximum principal stress for various glass pane dimensions.
Dimensions (mm2) σmax (MPa)

800 × 800 192.3
800 × 1200 199.8
800 × 1600 206.3

1200 × 1200 187.6
1200 × 1600 182.3
1600 × 1600 156.8

Table 17: Maximum principal stress for single glass and double insulated glass for various
glass pane dimensions.

Dimensions (mm2) σmax (MPa), double glass σmax (MPa), single glass
800 × 800 192.3 196.8

800 × 1200 199.8 204.2
800 × 1600 206.3 213.8

1200 × 1200 187.6 188.6
1200 × 1600 182.3 197.3
1600 × 1600 156.8 182.2
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For the parametric study with respect to the air layer thickness, results of Paper 5 indicate
that the influence of the air layer is almost negligible. This also holds for the stresses of
the outer pane.
For the parametric study with respect to the glass thickness, there was a clear tendency
that the center displacement increased with decreasing pane thickness. The fraction of
outer maximum displacement to inner maximum displacement increased when the glass
pane thickness decreased. The maximum stresses also increased with decreasing pane
thickness. There was a small tendency that the fraction of outer maximum stress to inner
maximum stress increased as the pane thickness decreased.
In analysing a triple glass insulated unit, the decrease in maximum stress compared to the
double glass unit was less than 5 %.
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8 Discussion
In this section, the most important conclusions from the thesis work are presented and
directions for future work are provided.

8.1 Conclusions
8.1.1 Application of the M-RESS Element for Stress Prediction in Laminated Glass

A recently developed finite element, [13], is implemented and it is proven that the per-
formance is accurate when it comes to the modeling of thin laminated glass structures
subjected to bending as well as for laminated glass with bolted and adhesive joints. The
computational performance is strongly improved compared to when a standard three di-
mensional solid element is used. One can conclude that this element could be used in
finite element analyses of complex laminated glass structures with many bolt fixings or
adhesive joints.

8.1.2 Design Charts for Stress Evaluation in Laminated Glass Balustrades

A method is developed such that the maximum principal stress of a laminated glass
balustrade with 2+2 bolt fixings could be determined using simple formulas and design
charts. This leads to great time savings for the designer, since an investigation of the
stresses of balustrades with different design parameters could be performed without finite
element analyses. It is also not necessary for the designer to possess the advanced knowl-
edge of the finite element method which is required in order to analyse advanced glass
structures.

8.1.3 Shear-capacity in Adhesive Glass Joints

A test method for evaluating the shear-capacity of small-scale adhesive joints is suggested
and it is concluded that the method is appropriate for the purpose. The method creates
a state close to pure shear. Material models used for finite element simulations of adhe-
sive joints subjected to short-term load can be determined with close accuracy between
experiments and simulations for a group of stiff adhesives. For a group of softer SMP
based adhesives, corresponding hyperelastic material models are developed and proven
to be consistent with experiments for small-scale joints, whereas further research is nec-
essary to validate the material models for large-scale joints. For small-scale joints, stiff
adhesives give a stronger joint than softer adhesives. For a large joint, more soft nonlinear
adhesives may give a stronger joint. With further validation, the methodology presented
may be used to predict the mechanical behavior of any joint size through the combination
of small specimen tests and finite element modeling.
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8.1.4 Reduced Modeling for Glass Subjected to Dynamic Impact Load

A reduced finite element model for determining the maximum principal stress of a glass
subjected to dynamic impact load is developed. The method is flexible because it is ap-
plicable to different support conditions as well as to both centric and excentric applied
impact. The model is validated against a full finite element model and the model applica-
bility is proven for the case of four-sided supported glass with centric impact and mono-
lithic glass. It is shown that the model performance is improved when two Ritz vectors
are used instead of one in model reduction. When the in-plane dimensions increase, the
effect of geometric nonlinearity of the glass is strongly influencing the result. It is proven
that the method applies to structures with excentric load positions. Further, the reduced
model is very well suited for strength design of standard laminated glass balustrades with
clamped fixings.

8.1.5 Analysis of Insulated Glass Subjected to Dynamic Impact Load

Structure-acoustic analysis is shown to be a useful method to analyze insulated glass
subjected to dynamic impact load. For quadratic glasses, a large glass unit has a signifi-
cantly larger center displacement but lower stresses than a smaller unit. For the cases of
quadratic units considered in the study, the outer glass has a maximum central displace-
ment that is 70-80 % of that of the inner glass. For all cases considered in the study, the
outer glass has a maximum stress level that is 20-30 % of that of the inner glass. Further,
when using a single glass instead of a double insulated glass, there is almost no difference
in the maximum stress level. For a standard double insulated glass unit the air cavity
thickness has only a minor influence on the stresses of the unit. The glass thickness, on
the other hand, has a large influence. Both displacements and stresses increase with de-
creasing pane thickness. The ratio between outer and inner values of both displacements
and stresses increases as the pane thickness decreases. Finally, the maximum stresses in
a triple insulated glass unit are almost not reduced at all compared to the stresses of a
corresponding double glass unit.

8.2 Future Work
For future work, a number of extensions can be made to the development of the design
charts. The must obvious extension is to develop similar charts for balustrades with 3+3
bolt fixings. The development of these charts is to a great deal finished, which has been
demonstrated in this thesis. There are possibilities for developing charts for parameter
combinations that have not been taken into account, for instance considering different
thicknesses of the PVB layer. Other materials for the interlayer could also be considered.
It could also be interesting to consider other types of bolts and bolts for countersunk
holes. An extension to include outdoor balustrades with other loading situations can also
be made. Less obvious is to consider other types of connections, see [24] for an overview
of different types of connections. Especially adhesive connections are of interest, since
the larger contact area between the connection and the glass leads to a redistribution of the
stress concentrations that glass may be subjected to. The use of glued connections also
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leads to greater transparency of the structure. Furthermore, one may consider to develop
similar charts for other types of structures, for instance facades.
Regarding adhesive glass joints, a number of suggestions for future work can be made.
The shear-capacity of, and material models for a complementary set of adhesives may be
determined. The studies may be extended to comprise long-term loads. Finally, the effect
of thermal influence of the adhesive could be considered.
The model performance of the reduced model may be improved by including the effect
of the geometric nonlinearity of the glass into the model. Another possible extension is
to add additional Ritz vectors for representing the glass pane. Further improvement of
the model could be made through including a nonlinear representation of the impactor
stiffness. The model performance could be investigated for glass with other support con-
ditions, for instance bolt fixings. Finally, further experimental investigations of glass
subjected to dynamic impact load would be of interest. The influence of various types of
supports, positions of impact and glass types could be investigated.
For the case of insulated glass, it could be interesting to consider different glass pane
thicknesses of the inner and outer panes of the unit. The influence of different boundary
conditions could also be interesting to study. Further, the effect of having another gas
than air in the cavity could be analyzed. Finally, it could be of gain to perform more
experimental tests of insulated glass subjected to dynamic impact load, both to increase
understanding and for better model validation.
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9 Summary of the Papers

9.1 Paper 1
M. Fröling and K. Persson. Computational Methods for Laminated Glass. Published in:
Journal of Engineering Mechanics, 139, 7, 780-790, (2013).

Summary: An existing, recently developed, solid-shell finite element is proposed for the
purpose of efficient and accurate modeling of laminated glass structures. The element is
applied to one test example treating a thin laminated glass structure subjected to biaxial
bending and the performance concerning accuracy and efficiency is compared to standard
three dimensional solid elements. Further examples illustrate how the element could be
applied in the modeling of laminated glass structures with bolted and adhesive joints. For
these examples, experimental data for relevant quantities are provided as a comparison.
It is concluded that the element is an excellent candidate for the modeling of laminated
glass.

Contributions by M. Fröling
M. Fröling was the main author of the paper and wrote the manuscript. She performed the
main part of the implementation work as well as the work concerning the finite element
verification examples.

9.2 Paper 2
M. Fröling and K. Persson. Designing Bolt Fixed Laminated Glass with Stress Concen-
tration Factors. Published in: Structural Engineering International, 23, 1, 55-60, (2013).

Summary: A general method for determining stress concentration factors for laminated
glass balustrades with two plus two bolt fixings with variable positions is developed. It is
demonstrated how the stress concentration factors can be presented graphically in design
charts and representative charts are displayed for the case of a more specific bolt fixed
balustrade type. In general, the use of simple formulas and the design charts allows the
maximum principal stresses of the balustrade to be determined for any relevant combina-
tion of the variable geometry parameters involved.

Contributions by M. Fröling
M. Fröling was the main author of the paper and wrote the manuscript. She performed
the main part of the implementation and contributed in developing the design method
presented in the paper.

9.3 Paper 3
M. Fröling, K. Persson and O. Larsson. Shear-Capacity in Adhesive Glass Joints. Pub-
lished in: Proceedings of Challenging Glass 3, Delft, The Netherlands, 2012.
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Summary: The shear-capacity of adhesive glass-joints was investigated. Various stiff and
soft adhesives were tested in a short-term load-case. The tests were conducted with small
specimens in order to achieve a homogenous state of stress. The results of the tests were
used in order to determine the material models of the adhesives. Finite element analysis
of the test set-up was used for the determination of the material models. Large-scale tests
were conducted to verify the material models from the tests of the small specimens. It
could be concluded that with further validation, a combination of small-specimen tests
and finite element simulations may allow for the determination of joint behavior for any
joint size.

Contributions by M. Fröling
M. Fröling was the main author of the paper and wrote the manuscript. She performed a
major part of the computational simulations and presented the paper at a conference.

9.4 Paper 4
M. Fröling, K. Persson and Per-Erik Austrell. A Reduced Model for the Design of Glass
Structures Subjected to Dynamic Impulse Load. Submitted.

Summary: A reduced finite element model for determining the maximum principal stress
of a glass pane subjected to dynamic impact load is developed and compared to a full dy-
namic finite element model. The reduced model is based on the Rayleigh-Ritz method.
The Ritz vectors used are determined by simple static load-cases. The model is applicable
to centrally and excentrically applied impact and to glass of various support conditions. It
is demonstrated that the model performs well for various types of supported glass panes
and impact applied at different locations on the glass pane. The applicability to small or
medium sized glass panes is shown through a parametric investigation. For large glass
panes, especially at smaller glass thicknesses, it is suggested that geometrically nonlinear
behavior of the glass pane is integrated into the model to reduce the model error. Finally,
it is shown that the reduced model performs excellently in the modeling of a standard
laminated glass balustrade with clamp fixings. Apparently, the model is very well suited
for strength design of commonly used glass structures.

Contributions by M. Fröling
M. Fröling was the main author of the paper and wrote the manuscript. She contributed
in the development of the reduced model, implemented the model and performed the
simulations.

9.5 Paper 5
M. Fröling and K. Persson. Numerical Analysis of Insulated Glass Subjected to Soft Body
Impact. To be submitted.
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Summary: Structure-acoustic analysis is performed to analyse insulated glass subjected
to dynamic impact load. A parametric study is made with respect to in-plane dimensions,
glass thickness and thickness of the gas layer. For quadratic panes, a larger glass has a
significantly larger center displacement but lower stresses than a smaller glass. For all
studied combinations of in-plane dimensions the outer glass has a maximum stress level
that is between 20 and 30 % of that of the inner glass. A single layered glass unit is proven
to have only marginally greater stresses than the corresponding double glass unit. The air
layer thickness has almost no influence on the stresses of the insulated glass subjected
to a soft body impact. It is revealed that the thickness of the glass, however, has a large
influence. Both displacements and stresses increase with decreasing pane thickness. The
outer glass has a maximum stress level which is between 20 and 30 % of that of the inner
glass. Further, an analysis is made of a triple insulated glass unit. Apparently, the addition
of a third glass pane does not impact the structural mechanical capacity of an insulated
glass unit to a great extent.

Contributions by M. Fröling
M. Fröling was the main author of the paper and wrote the manuscript. She contributed
with ideas regarding studies made in the paper, developed the finite element models and
performed the major parts of the finite element studies.
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Paper 1





Computational Methods for Laminated Glass

Maria Fröling and Kent Persson

Abstract

An existing, recently developed, solid-shell finite element is proposed for the purpose of efficient

and accurate modeling of laminated glass structures. The element is applied to one test example

treating a thin laminated glass structure subjected to biaxial bending and the performance con-

cerning accuracy and efficiency is compared to standard three dimensional solid elements. Further

examples illustrate how the element could be applied in the modeling of laminated glass structures

with bolted and adhesive joints. For these examples, experimental data for relevant quantities are

provided as a comparison. It is concluded that the element is an excellent candidate for the mod-

eling of laminated glass.

Full article available in: Journal of Engineering Mechanics, 139, 7, 780-
790, (2013).





Paper 2





Designing Bolt Fixed Laminated Glass with Stress
Concentration Factors

Maria Fröling and Kent Persson

Abstract

A general method for determining stress concentration factors for laminated glass balustrades with

two plus two bolt fixings with variable positions is developed. It is demonstrated how the stress

concentration factors can be presented graphically in design charts and representative charts are

displayed for the case of a more specific bolt fixed balustrade type. In general, the use of simple

formulas and the design charts allows the maximum principal stresses of the balustrade to be de-

termined for any relevant combination of the variable geometry parameters involved.

Full article available in: Structural Engineering International, 23, 1, 55-
60, (2013).
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Shear-Capacity in Adhesive Glass Joints 
Maria Fröling, Kent Persson and Oskar Larsson 

Lund University, Sweden, maria.froling@construction.lth.se  

The shear-capacity of adhesive glass-joints was investigated. Various stiff and soft 
adhesives were tested in a short-term load-case. The tests were conducted with 
small specimens in order to achieve a homogenous state of stress. The results of the 
tests were used in order to determine the material models of the adhesives. Finite 
element analysis of the test set-up was used for the determination of the material 
models. Large-scale tests were conducted to verify the material models from the 
tests of the small specimens. It could be concluded that with further validation, a 
combination of small-specimen tests and finite element simulations may allow for 
the determination of joint behavior for any joint size.   

Keywords: Glass, Adhesive Joint, FEM, Shear-capacity 

1.  Introduction 
Recently, there has been an increasing interest in using glass as a structural material. 
When constructing with glass, it is often necessary to connect different structural 
elements. The most common technique used for joining glass elements is to use bolted 
joints. The use of bolted joints leads to stress concentrations in the glass. Glass is a 
brittle material, which makes it sensitive to stress concentrations.  
 
An alternative is to use adhesive joints to connect the glass elements. In general, 
adhesive joints are capable of distributing the stress over the surface of the joint so that 
stress concentrations are avoided. With many adhesives it is also possible to keep the 
transparency of the glass at the joint. 
 
Adhesive joints are normally designed to be loaded in a state of shear rather than in a 
state of tension. This paper investigates the shear-capacity of a set of common adhesives 
in a short-term load-case. The adhesive products are chosen so that a wide span of 
different adhesive characteristics is obtained. The shear-capacity of the adhesives is 
tested in pure shear. From the experimental data, material models for the adhesives are 
determined. The material models are valid for a short-term load-case. The material 
models are determined through a finite element analysis of the complete test set-up. 
Later, the material models are verified through large-scale tests. Further information 
about the work could be found in [1].       

2.  Shear-Capacity Tests of Small Specimens 
The main purpose of the tests was to determine the shear-capacity of various adhesives 
for connecting glass. For this reason, it is important that the tests create a situation as 
close as possible to a state of pure shear. In the tests, small specimens were used. Small 
specimens ensure a relatively homogenous state of stress and it is easier to ensure 
fracture in the adhesive and not in the glass. The shear-capacity was evaluated for a 



short-term load, i.e. a load that was applied with a fairly high rate with the aim of 
causing failure in the adhesive. A constant shear strain rate at approximately 3 % per 
second was chosen for the tests.  

2.1. Testing Equipment 
To obtain a situation of pure shear in the adhesive, the test equipment was designed 
with the following characteristics. Firstly, all loads were applied centrically to avoid 
eccentricity that may cause tensile and compressive stresses to arise in the adhesive. 
Secondly, the adhesive had to be be able to freely expand/shrink in the direction 
perpendicular to the direction of the shear forces to avoid stresses caused by 
constraining the material strains. 
 
A schematic drawing of the testing equipment is displayed in Figure 1. It consisted of 
two steel-parts that transmit the forces from the testing machine to the specimen. For 
stiff glues, the test equipment was loaded by compressing the steel-parts. For the softer 
adhesives the test equipment was loaded with tensile forces in order to allow the large 
deformations in the joints.  
 
The specimens in the tests consisted of two pieces of glass with dimensions 20 × 20 
mm2 joined together with an adhesive layer. Two different specimens were used in the 
tests. Specimen 1 had an adhesive layer that fully covered the surface of the glass-parts 
and this specimen type was used for the softer adhesives. Specimen 2 had an adhesive 
layer of dimensions 5 × 20 mm2. It was used to test the stiffer glues in order to reduce 
the applied force needed to conduct the test. The geometries of the two specimens are 
shown in Figure 2. 

2.2. Measurements 
A MTS testing machine was used to apply force to the steel-parts. Data regarding the 
applied force and displacements were collected every 0.5 s. In order to obtain the shear-
capacity for the adhesives, τavg,u, the ultimate shear force obtained from the 
measurements were divided by the initial surface area of the adhesive. 

3. Tested Adhesives 
The tested adhesives can be grouped into softer adhesives and stiffer adhesives. The 
softer adhesives contained four types of silicone based adhesives, three types of SMP 
(Silyl Modified Polymer) based adhesives and Bostik Multifog 2640. The stiff 
adhesives consisted of polyurethane adhesive, HBM Rapid Adhesive X 60, strong 
epoxy adhesive and UV-hardening glass-glue. Information about the adhesives above 
can be found in [2]-[5].  
 
Test specimens had different thickness of the adhesive layer. For the silicone glues, the 
thickness was 6 mm, for the SMP based adhesives and Bostik Multifog 2640, the 
thickness was 2 and 0.3 mm. The polyurethane glue and HBM Rapid adhesive X 60 had  
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Figure 1: The test equipment used in the shear-capacity tests, tensile load. 

 

 
Figure 2: Drawing of the two different types of specimens. 

 
an adhesive thickness of 0.2 mm, whereas the strong epoxy and the UV-hardening glue 
had 0.3 mm as thickness of the adhesive.    

4. Finite Element Modeling of the Small-scale Tests 
A finite element model of the entire test arrangement was developed, Figure 3, where 
the geometry of each of the joints was modeled. The steel-parts were modeled as linear 
elastic materials with the material parameters E = 210 GPa and ν = 0.3, where E denotes 
the modulus of elasticity and ν denotes the Poisson’s ratio. Glass was modeled as linear 
elastic with the material parameters E = 70 GPa and ν = 0.23.  
 
 
 



 

Figure 3: Finite element model of the test arrangement. 
 
The evaluation of the results consisted of plotting the measured data of the shear-force 
versus the deformation of the test series. The data was fitted to a polynomial curve using 
the least-squares’ method and compared with the data extracted from the finite element 
simulations. For each adhesive, different material models were tested until a satisfying 
agreement was obtained. For the softer adhesives, the hyperelastic material models Neo-
Hooke and Mooney-Rivlin were tested whereas the stiffer adhesives were modeled as 
linear elastic, all with ν = 0.25. From the respective matching material model, data on 
the shear-deformation were extracted and relationships between shear-stress and shear-
strain were established.  
 
An initial shear modulus, G, was calculated from the shear-stress versus shear-strain 
diagrams and an ultimate shear-stress, τavg,u, was determined as the maximum value of 
the shear-stress for the increment closest to the average of the maximum load capacity 
of each adhesive. 

5. Results from the Small-scale Tests 
For brevity, results for one softer adhesive and one stiffer adhesive are presented. In 
Figure 4, experimental results and simulation results on force versus deformation for 
one SMP based adhesive is displayed (top). In the same figure, results from finite 
element simulations on average shear-stress versus shear-strain for the same adhesive 
are shown (bottom). The finite element results and the experimental curves coincide 
initially and overall the numerical and experimental results show close agreement. The 
material model for the adhesive was determined with good accuracy. The lower graph 
has a value of the maximum average shear-stress close to the experimentally obtained 
value of around 2.3 MPa.  
 
In Figure 5, the corresponding graphs are shown for the polyurethane glue. There was a 
perfect agreement between simulations and measurements for this case. The 
experimental maximum value for the average shear-stress of the polyurethane adhesive 
was 3.8 MPa.  
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Figure 4: Results from the FE-evaluation of SMP based adhesive 3, 2 mm specimens. Top: experimental 

results (circles) and FE-results (line). Bottom: Average shear-stress versus shear-strain extracted from 
the FE-model. 

 
 

As a summary of further results, diagrams showing average shear-stress versus shear-
strain are displayed in Figures 6 and 7 for softer adhesives of a certain layer thickness 
and for stiffer adhesives respectively. From the graphs it is clear that there were 
differences in mechanical behavior between the adhesives within each group. 
 
From Figure 6 it could be observed that Bostik Multifog 2640 was the softest adhesive 
and also had the lowest ultimate shear-strength of this group of adhesives. Among the 
three other adhesives of this group, Figure 6 shows that different adhesives could have 
similar stiffness but different ultimate strengths and vice versa.  
 

 



 

 
Figure 5: Results from the FE-evaluation of the polyurethane glue. Top: experimental results (circles) and 

FE-results (line). Bottom: average shear-stress versus shear-strain extracted from the FE-model. 
 

From Figure 7, it could be seen that the epoxy adhesive was the stiffest adhesive and 
had the highest ultimate load. For the other stiff adhesives, the stiffness was quite equal 
but there were differences in ultimate shear-strength.  

 
Results showing the mechanical characteristics of the two groups of adhesives (softer, 2 
mm specimens and stiffer) are shown in Table 1. In general, the stiffer adhesives had 
greater stiffness (G) and ultimate shear-strength (τavg,u) than the softer adhesives.   

 
The parameters of the material models for the softer adhesives are shown in Table 2. C10, 
C01 and D1 are parameters of the material models. For the stiffer adhesives, the material 
model parameters are displayed in Table 3. 
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Figure 6: Shear-stress versus shear-strain for the 2 mm specimens of the softer adhesives. Bostik Multifog 

2640: (x), SMP based adhesive 1: (+), 2: (o), 3: (triangle). 
 
 

 
Figure 7: Shear-stress versus shear-strain for the stiffer adhesives, 0.2-0.3 mm specimens. Polyurethan glue: 

(x), HBM Rapid Adhesive X 60: (+), strong epoxy: (o), UV-hardening glass-glue: (triangle). 
 
 
 

Table 1: Mechanical characteristics of adhesives. 
Quantity Softer Adhesives (2  mm 

Specimens) 
Stiffer Adhesives 

G [MPa] 0.5 - 1.2 83 - 500 

τavg,u [MPa] 1.3 – 2.3 4 - 20 

γu [%] 200 - 300 4 - 10 

 
 
 



 
Table 2: Parameters of material models for softer adhesives. 

Adhesive Material Model C10 C01 D1 

Silicone Based 1 Mooney-Rivlin 51·103 77·103 - 
Silicone Based 2 Neo-Hooke 93·103 - - 
Silicone Based 3 Neo-Hooke 247·103 - - 
Silicone Based 4 Mooney-Rivlin 10·103 190·103 - 

SMP Based 1 Mooney-Rivlin 200·103 330·103 - 
SMP Based 2 Mooney-Rivlin 100·103 400·103 - 
SMP Based 3 Mooney-Rivlin 100·103 500·103 - 

Bostik Multifog 
2640 

Mooney-Rivlin 100·103 150·103 - 

 
 

Table 3: Parameters of material models for stiffer adhesives. 
Adhesive Material Model E [MPa] ν 

Polyurethane Glue Linear Elastic 200 0.25 
HBM Rapid 

Adhesive X 60 
Linear Elastic 320 0.25 

Strong Epoxy Linear Elastic 1500 0.25 
UV-hardening Glue Linear Elastic 300 0.25 

 
 
6. Large-scale Testing  
A large-scale experimental test was made with the aim of determining the shear-
capacity of an adhesive joint in a large dimension glass beam. 
  
Five adhesives from the small-scale tests were chosen to be tested in the large-scale 
tests. The five adhesives were chosen considering the results from the finite element 
simulations of the corresponding test set-up, see below. The two strongest SMP based 
adhesives and the stiffer adhesives polyurethane glue, UV-hardening glass-glue and the 
strong epoxy adhesive were chosen. When performing the tests, the deformation speed 
was kept constant at 10 mm/min. 
 
6.1. Testing Equipment 
The test performed was a four-point bending test of a beam that consisted of three 
beams made of flat-glass joined together by two adhesive joints. The test arrangement is 
shown in Figure 8 and creates a symmetrical beam in order to obtain pure shear- 
stresses in the joint. The beam had a span of three meters and every flat-glass element 
had dimensions 250×2000 mm and a width of 12 mm. The adhesive joints had 
dimensions 250×250 mm. 
 
 6.2. Measurements 
Data on load and deformation of the mid-point of the beam were collected. 
 
7. Finite Element Modeling of the Large-scale Tests 
A finite element model was made of the large-scale test set-up. In the tests, the stiffer 
adhesives were simulated with a thickness of 0.2 mm and the softer adhesives with a 
thickness of 2 mm. The glass elements were modeled with a modulus of elasticity of 70  
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Figure 8: Test arrangement for large-scale tests. 

 
GPa and a Poisson’s ratio of 0.23. The adhesives were modeled according to the 
material models from the tests with the small specimens. Load-deformation graphs were 
determined for the tested adhesives, and maximum load values were determined and 
were set equal to the load that corresponded to the maximum shear-stress, τmax, of each 
adhesive.  
 
8. Results from the Large-scale Tests 
Figure 9 displays the principal pattern of shear-stresses in the joints of the large-scale 
tests. In the stiffer adhesives stress-concentrations occurred at the corners of the joints.  
In the softer adhesives, the stresses were more evenly distributed. 
 
In Figure 10, a graph showing load versus deformation for the third SMP based 
adhesive is shown. The measured data show a less stiff behavior than the data from the 
simulations. The measured data end at a lower load because of failure of the glass beam 
before the ultimate load was reached.  
 
A load versus deformation diagram for the polyurethane adhesive is displayed in Figure 
11. After an initial deviation, the stiffness of the measured data compares well with the 
stiffness of the results from the finite element simulations. 
 
Table 4 summarizes the ultimate loads and deformations for a selection of the softer 
adhesives. The results are obtained from the finite element simulations. The 
corresponding results for the stiffer adhesives are shown in Table 5.     
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Figure 9: Principal pattern of the shear-stresses in the joints of the large-scale tests. Left: softer adhesives. 

Right: stiffer adhesives. 
 
 
 

 
Figure 10: Comparison of load versus deformation diagrams for FE-simulations and experimental tests 
for the third SMP based adhesive. Top: FE-simulations. Bottom: experiments. The different points of 

measurements are marked: 4 (o), 5 (+). See Figure 8. 
 
 
 

Table 4: Ultimate loads (P = P/2 + P/2) and deformations at the mid-point of the beam (4) for softer 
adhesives. 

Adhesive Ultimate Load [kN] Ultimate Deformation [mm] 
Bostik Multifog 2640 28.8 53 

SMP Based Adhesive 1 49.3 51 
SMP Based Adhesive 2 38.2 43 
SMP Based Adhesive 3 48.8 50 
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Figure 11: Comparison of load versus deformation diagrams for FE-simulations and experimental tests 

for the polyurethane adhesive. Top: experiments. Bottom: FE-simulations. The different points of 
measurements are marked: 4 (o), 5 (+). See Figure 8. 

 
 
 

Table 5: Ultimate loads (P = P/2 + P/2) and deformations at the mid-point of the beam (4) for stiffer 
adhesives. 

Adhesive Ultimate Load [kN] Ultimate Deformation [mm] 
Strong Epoxy 30.3 10.0 

Polyurethane Glue 10.3 3.5 
UV-hardening Glue 22.3 7.5 

HBM Rapid Adhesive X 60 20.3 7.0 

 
 
Overall, the softer adhesives had ultimate loads ranging between 28 and 50 kN and the 
stiffer adhesives had ultimate loads in the interval 10-30 kN. 
 
From the finite element simulations it was apparent that all the beams of the large-scale 
tests would suffer failure in the glass of the beam. Thus, no ultimate load of the joints 
could be measured by means of experimental testing. Comparing Figure 9 and the 
results of tables 4 and 5, the apparent stress concentrations of the stiffer adhesives 
reduced their ultimate load compared to the softer adhesives. 
 

9. Conclusions 
It can be concluded that the test method suggested for the small-scale tests is a 
functioning method for evaluating the shear-capacity of the adhesives. The method 
creates a state close to pure shear. 
 
Material models valid for the short-term load-case could be determined with close 
accuracy between experiments and simulations for the group of stiffer adhesives. For 
the SMP based adhesives, the correlation between simulations and experiments is 



shown to be good for the small-scale tests. For the large-scale tests, there are deviations 
between simulated and experimental results. An explanation of this deviation is that 
these adhesives were not fully hardened at the moment of the experiments. Further 
research is necessary to validate the material models for the SMP based adhesives for a 
large-scale joint. 
  
In the small-scale tests stiffer adhesives give a stronger joint than softer adhesives. Thus,  
stiff adhesives may be used for small joints. From the large-scale tests it is concluded 
that for a large joint, a more soft adhesive may give the strongest joint.  
 
With further validation, the methodology presented may be used to predict the 
mechanical behavior of any joint size through a combination of small specimen tests 
and finite element modeling.   

10. Future Work 
Further tests are conducted to investigate the shear-capacity of and to determine 
material models for a complementary set of adhesives. Initially, the tests are made for a 
short-term load-case. Later, the tests will be performed for a long-term load case and the 
creep parameters of the adhesives will be determined. 
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A Reduced Model for the Design of Glass
Structures Subjected to Dynamic Impulse Load

Maria Fröling, Kent Persson and Per-Erik Austrell

Abstract

A reduced finite element model for determining the maximum principal stress of a glass pane sub-
jected to dynamic impact load is developed and compared to a full dynamic finite element model.
The reduced model is based on the Rayleigh-Ritz method. The Ritz vectors used are determined by
simple static load-cases. The model is applicable to centrally and excentrically applied impact and
to glass of various support conditions. It is demonstrated that the model performs well for various
types of supported glass panes and impact applied at different locations on the glass pane. The ap-
plicability to small or medium sized glass panes is shown through a parametric investigation. For
large glass panes, especially at smaller glass thicknesses, it is suggested that geometrically non-
linear behavior of the glass pane is integrated into the model to reduce the model error. Finally,
it is shown that the reduced model performs excellently in the modeling of a standard laminated
glass balustrade with clamp fixings. Apparently, the model is very well suited for strength design
of commonly used glass structures.

1 Introduction
When performing strength design of glass structures, dynamic impact load is one of the
load cases that often need to be included in the analysis. Since glass is a brittle material,
it is sensitive to impact load and it is necessary to accurately determine the stress distri-
bution in the glass due to this load case. Most often strength design of glass structures
subjected to dynamic impact load is performed by means of experimental tests. The Eu-
ropean standard EN-12600, [26], is available to classify glass for impact strength. Other
authors, ([25], [11]), have confirmed that this test yields reproducible results and that the
test is easy to perform. However, when performing strength design of glass structures,
the properties of the structure may be different from those prescribed in the standard. It
is possible to apply the impact load according to the standard to a glass structure. In [19]
several experimental tests of glass panes of various sizes and support conditions subjected
to dynamic impact load are performed and data for calibration and development of analyt-
ical and numerical models are extracted. The process of experimental testing is, however,
time consuming when considering parameter variation in strength design.

An alternative to experimental tests is to use finite element simulations. Several authors
have demonstrated the applicability of full transient finite element simulations in order to



simulate the application of impact load to glass structures, ([21], [22], [20], [23], [24],
[27]). However, finite element modeling of transient impact load is advanced, time con-
suming and may require access to advanced commercial finite element programs.

In the design process it is important that the design tools used are such that alternative
designs may be tested in an interactive fashion. This put on a demand that the methods
applied are very time-efficient.

To make the model more computationally efficient the size of the finite element model
can be reduced by means of model reduction techniques. Several methods that are vari-
ants of the Rayleigh-Ritz procedure, [4], are available. The methods can be subdivided
into the following main categories, [9],: generalised coordinate methods, condensation
methods and component mode synthesis. When generalised coordinates are introduced,
the system is described using only a few deflection shapes of the original system where
for example eigenvectors, [4], Lanczos vectors, [6], and Ritz vectors, [2], may be utilized.
Condensation methods involves removing the degrees of freedom that are not necessary
in order to describe the dynamic behavior of the system. This can be accomplished using
for example static (Guyan) condensation, [14], or dynamic condensation, see for instance
[15]. In component mode synthesis, [8], the domain of the problem is divided into sub-
domains and each subdomain is described by a different set of basis vectors.

Reduced modeling of glass subjected to dynamic impact load was addressed in ([22], [23],
[24], [27]). In [22], a two-degree-of-freedom model, [7], was developed and compared to
numerical and experimental results. The applicability of the model is limited to four-sided
and two-sided supported glass panes. In the above categorization of reduction methods,
the method is using generalized coordinates using Ritz vectors for representation of the
glass pane. One Ritz vector was used in the modeling of the glass, i.e. the static deforma-
tion mode. It was noted that when the glass panes have larger width than two meters, the
use of the static deformation mode of the glass yields an unrealistic representation of the
dynamic behavior of the glass.

The contributions in [23] and [24] develop different formats of the reduced model of [22].
In [23] it was pointed out that the method presented is only applicable to a limited geo-
metric range.

Comparison was made between the simplified approach of [24], a full transient finite el-
ement model and experiments, [27]. For two values of the fall height, and a fixed sized
glass plate, the simplified approach yielded satisfying results. The verification was made
with a panel width less than two meters.

In this work, a reduced finite element model for strength design of glass structures sub-
jected to dynamic impact load is developed. The Rayleigh-Ritz procedure using general-
ized coordinates and Ritz vectors is used for modeling the glass pane. Comparing the use
of Ritz vectors to the use of for instance eigenvectors, there is the possibility to construct



the Ritz vectors to account for the physical behavior of the system such as the position of
the load. Thus, fewer vectors may be used for an accurate representation of the system.
The model is similar to the model of for instance [22], but this model includes an addi-
tional Ritz vector in the representation of the glass pane, which means that the model error
is reduced especially for off-center loading. The second Ritz vector is constructed through
considering knowledge about the physical behavior of the system and the resulting vector
is a key feature of the present model. The developed model is intended for integration into
a glass design computer program, [17], which allows fast and accurate strength design of
glass structures. The entire procedure is finite element based and in the resulting program
the user only has to give input data. The procedure is valid for different fall heights of the
impactor, various support conditions and locations of the impact. Initially, the accuracy
of the model reduction technique is demonstrated for the case of centrally applied impact
and four-sided supported glass. Later, it is demonstrated that the model is applicable to
excentrically applied load cases. A final example illustrates the applicability of the model
to a standard laminated glass balustrade with clamp fixings. It is a subject for future work
to evaluate the model performance for the types of support conditions not covered in this
study and to make further experimental verification.

2 A Pendulum Impact Test for Classifying Glass for Im-
pact Strength

The experimental test method used for classifying glass for impact strength, [26], is shown
in Figure 1 (a). The arrangement consists of a glass pane held within a steel frame and
an impactor consisting of a weight encased in two tires. Between the steel frame and the
glass there are rubber strips. During the test, the tire is swung in a pendulum motion into
the glass pane. The dimensions of the frame are standardized to 1.95 × 0.887 m2 and the
weight of the impactor is 50 kg according to the standard. The test is considered as a soft
impact with a long pulse time, Figure 1 (b).

3 A Reduced Model for Glass Panes Subjected to Dy-
namic Impact Loads

In the reduced dynamic modeling of the glass pane, including the supports, the Rayleigh-
Ritz method, [7], was adopted. Consequently, the displacements, u(t), were expressed as
a linear combination of shape (Ritz) vectors ψ j:

u(t) =
J

∑
j=1

z j(t)ψ j = Ψz(t), (1)

where z j(t) are the generalized coordinates.
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Figure 1: Test arrangement for pendulum impact test (a) and example of result (b).

The glass pane together with the supports can be represented as a multi-degree-of-freedom
system with one degree of freedom for each Ritz vector. The equations of motion for an
undamped multi-degree-of-freedom system in free vibration are given as, [7],

mü+ku = 0, (2)

where m is the mass matrix and k is the stiffness matrix. Substituting (1) into (2) yields

mΨz̈+kΨz = 0. (3)

Premultiplying each term in (4) by ΨT yields

m̃z̈+ k̃z = 0, (4)

where m̃ = ΨT mΨ and k̃ = ΨT kΨ. m̃ and k̃ are the generalized mass and stiffness ma-
trices.

The impactor is suggested to be represented by a single-degree-of-freedom system, [7],

mi =

[
mi 0
0 0

]
, (5)

ki =

[
ki −ki
−ki ki

]
, (6)

and the corresponding degree of freedom ui, where mi and ki are the mass and stiffness of
the impactor.

The out-of-plane degree of freedom of the full finite element model at the point of im-
pact of the glass pane was chosen as the reference degree of freedom, ure f , to which the
impactor was connected. However, the impactor was connected to the reduced model of



the glass and not to the full model in order to create the complete reduced system. This is
not trivial since the generalized coordinates, [z1, ...,zJ]

T , do generally not represent phys-
ical degrees of freedom of the glass. To correctly represent the complete system, it was
suggested that the degree of freedom ui of the impactor is tied to the first generalized
coordinate, z1, which corresponds to the point of impact. The system representing the im-
pactor can be assembled into the system representing the glass to form the total system.
The system variables are z̄ = [ui,z1, ...,zJ]

T .

When connecting the impactor to the reduced model of the glass, ure f = z1 must be ful-
filled. This means that the corresponding displacement vector, ψ1, must be normalized
so that the absolute value of the out-of-plane displacement is equal to one at ure f and that
any other Ritz vector, ψ j , must fulfill the condition that ure f = 0. This can be realized
from equation (1).

When selecting the Ritz vectors several procedures are available, see [7]. In principle
any of the methods for model reduction can be used given that the conditions above are
fulfilled. For the design cases considered, the first Ritz vectors of the glass can easily be
visualized and this information was used when suggesting a novel procedure for choos-
ing the Ritz vectors of the glass. The method is general in the sense that the location of
ure f can be chosen arbitrarily in order to represent excentric impact. For simplicity, the
description of the method is made for central impact. A further advantage of the method
is the option to freely choose the deformed shapes of the Ritz vectors based on physical
intuition. This might decrease the necessary amount of Ritz vectors to obtain a decently
accurate representation of the glass.

In this work, two Ritz-vectors were selected to represent the glass structure. Combining
equations (5)-(6) and making sure that the impactor is connected to z1 in the assembling,
the following multi-degree-of-freedom system is obtained

 mi 0 0
0 m̃11 m̃12
0 m̃21 m̃22

 üi
z̈1
z̈2

+

 ki −ki 0
−ki ki + k̃11 −k̃12
0 −k̃21 k̃22

 ui
z1
z2

=

 0
0
0

 . (7)

For the case of central impact, the first Ritz vector corresponds to the static deformation
mode of the glass. The deformed shape was constructed through applying a uniformly
distributed load corresponding to the weight of the glass, Qg, to the entire glass pane area.
Variations of construction of this mode are shown in Figure 2.

The load Qg can be applied either to the entire glass pane area, or to the contact surface,
A, between the glass and the impactor. The method shown in figure 2 c) is a combination
of these cases.

The second Ritz vector was constructed by means of applying a distributed force on the
entire surface of the glass corresponding to the glass weight on one side of the pane and
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Figure 2: Methods of construction for Ritz vector 1.

simultaneously a uniformly distributed load corresponding to the weight of the impactor,
Qi, was applied at the contact surface between the impactor and the glass but in the op-
posite direction. A schematic sketch of the construction of the Ritz vectors is shown in
Figure 3 for the case of centrally applied impact.

The two Ritz vectors are determined by solving a static finite element model for two load
cases. When adding additional Ritz vectors there is a trade-off between increasing the
accuracy and decreasing the computational efficiency.

A simple contact condition is assumed where the solution is valid only until the contact
force between the glass and the impactor change signs. When the contact force becomes
negative, the impactor is disassembled from the model.

The system is solved using the Newmark procedure, ([4], [7]), as implemented in [3] by
means of Matlab. Initial values for z̄ and ˙̄z are required.

Once u(t) has been determined, the stresses, σ(t), of the glass can be evaluated as, [12],

y
1 

= 1
Q

g Q
g

y
2 

= 0
Q

i

y
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y
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Figure 3: Construction of Ritz vectors.



σ(t) = Dε̃(t) = D · [B̂u B̂α]

[
u(t)

α

]
. (8)

D is the constitutive matrix, B̂u is the standard finite element method strain-displacement
matrix, B̂α is the enhanced strain-displacement matrix and α is the enhanced strain field.

The maximum principal stress, σmax(t), is the quantity normally used in strength design
of glass and the goal is to obtain a decent result in terms of the maximum of this variable,
σmax.

4 Model Validation
The model was validated using a baseline test example corresponding to the standard
SS-EN-12600, [26], and to the example described in [20]. In [20], the case of centrally
applied impact of four-sided supported glass is analysed using a full dynamic finite ele-
ment model that is validated by experiments. Consequently, a full finite element model
of a four-sided supported monolithic glass pane was made in Matlab and the in-plane ge-
ometry of the glass is displayed in Figure 4. The area A is the contact area between the
impactor and the glass. The steel frame was not modeled but the corresponding degrees
of freedom of the rubber strips were fixed in all directions. The rubber was modeled by
means of a spring model, see [18].

The glass was modeled by means of a solid-shell element, ([5], [1]), which has proven
accurate and efficient for modeling of glass and laminated glass, [12]. The solid-shell
element has quadrilateral in-plane geometry and therefore a quadrilateral mesh generator
was employed. In the finite element analysis, the mesh generator and the finite element
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Figure 4: Two-dimensional geometry of glass pane.



program Calfem of Austrell et al. (2004), [3], and Lorentzon (2010), [16], were used
together with Matlab.

Isotropic linear elastic material properties were assumed for both glass and rubber. The
material parameters that are required are the modulus of elasticity, E, the Poisson’s ratio,
ν, and the mass density, ρ. The values of these parameters were adopted from [20]. The
parameter values are displayed in Table 1.

The choice of the geometry parameters shown in Figure 4 is presented in Table 2. The
out-of-plane thickness for the glass, tg, and rubber, tr, were both chosen to be 10 mm.
The initial values of z̄ were zeroes and the initial velocity of the impactor was −2.97 m/s
corresponding to a fall height of 450 mm. 450 mm is the maximum fall height used in
strength design of structures subjected to dynamic impulse load in Sweden, according to a
relation derived in for instance [22]. The impactor stiffness, ki, was determined by means
of the finite element program ABAQUS/CAE through a static compression of the im-
pactor onto a rigid surface and extraction of a load displacement relation for the impactor.
This relation is nonlinear, but a linear approximation of the relation gives a constant value
of the stiffness. The dimensions of the contact area, A, have been determined from the
model of [20] at the moment of maximum lateral displacement of the glass. A summary
of the model scalar parameters is given in Table 2.

For this case of central impact, it has been investigated that the method of construction of
the first Ritz vector does not impact the results. Therefore, for the cases of central impact
in this work, method a) of Figure 2 is chosen. For the cases of excentric impact, method
b) is chosen because there is a small shift of location of the peak value of deformation
which can be better represented by method b).

As a first version of the model only geometrically linear analysis was considered. The
finite element model of the glass contained a total of about 56000 degrees of freedom.
This was determined from a convergence study. Standard parameter values were used for
the Newmark procedure, [4]. The size of the time step used in the Newmark procedure
was determined by means of a convergence analysis and set to 0.625 ms.

Table 1: Material parameters for the finite element model.
Material E [MPa] ν ρ [kg/m3]

Glass 78000 0.2 2700
Rubber 15 0.44 1250

Table 2: Model parameters for baseline case.
h [m] w [m] d [m] c [m] wr [m] tg [m] mi [kg] ki [kN/m] tr [m]
1.95 0.887 0.2 0.18 0.02 0.01 50 400 0.01



For evaluation, the midpoint lateral displacement, ure f (t), and the maximum principal
stress, σmax(t), of the glass were calculated. The same quantities were determined by
using the current reduced model with only the first Ritz vector, and through the model
of [20] using geometrically linear and nonlinear formulations. The simulation results are
presented in Figures 5 and 6.

From Figures 5 and 6 a number of observations can be made. First of all, the effect of
geometric nonlinearity is more or less negligible in this case concerning the stresses. The
model based on only Ritz vector 1 is underestimating the stress by around 50 % and does
not seem to be trustworthy in strength design. The reduced model based on two Ritz
vectors is underestimating the stresses by around 10 % in case of the geometric linear
model and by around 7 % in case of the geometric nonlinear model. The current model
error of between 7 and 10 % in terms of stresses is likely to give accuracy enough in
strength design of glass so that a safe design is ensured and providing optimized material
use.

5 Model Validity for Excentrically Applied Load
In this section, the model developed in this paper is validated for excentrically applied
load cases. The test cases are extensions of the baseline case of section 4, but three dif-
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Figure 5: Lateral displacement of the midpoint of the glass versus time for the baseline
case.
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Figure 6: Maximum principal stress at the center of the glass pane versus time for the
baseline case.

ferent load cases are considered. The load cases are illustrated in Figure 7.

The load cases are numbered 1 to 3. The horizontal and vertical distances between the
midpoint of the glass and the midpoints of the areas A are given in the figure. All other
model features were as for the baseline case. The same load cases were modeled in
ABAQUS using the model in [20]. The ratio between σmax obtained using the reduced
model and σmax,nonlinear obtained using the full FE-model are presented in Table 3.

For all three load cases, σmax was greater than for the corresponding quantity obtained
using ABAQUS. That means that the results are on the safe side in glass design. The
greatest error was around 10 % and was obtained for load case 1. A 10 % error on the
safe side is considered acceptable. For load case 3, the results were identical to the ones
obtained using ABAQUS. Conclusively, the reduced model is well capable of modeling

Table 3: Maximum principal stress for excentric load cases.
Load case σmax/σmax,nonlinear

1 1.10
2 1.03
3 1.00
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Figure 7: Load positions for excentric load cases.

excentric load, at least for the positions considered in this section.

6 Model Validity for Various Glass Pane Dimensions
In, for instance, [20] an observation was made that a different behavior of the full dynamic
finite element solution was obtained when the in-plane glass pane dimensions increase.
Firstly, the deformed shapes of the glass are more complicated when the pane is larger and
secondly, it is well known that the influence of the geometric nonlinearity increases as the
in-plane glass size increases. As an illustration, the baseline case with in-plane glass pane
dimensions 2× 2 m2 was analysed. The model results in terms of σmax were compared
to those from the model of [20] for geometric linear and nonlinear analyses, as well as
to those of the current model by only considering ψ1. The results are presented in Table 4.

The model based on only ψ1 is apparently not valid. The model based on two Ritz vectors
is performing excellent compared to the full geometrically linear model and has an error
slightly under 20 % compared to the full geometrically nonlinear model. The stress is

Table 4: Maximum principal stress for larger glass pane.
Only Ritz vector 1 Current model

σmax/σmax,linear 0.42 0.95
σmax/σmax,nonlinear 0.52 1.18



greater for the current model compared to the full model which means that the current
model results are on the safe side from a strength design perspective. Since the glass di-
mensions are rather large, the geometric nonlinear effect is significant for this case. The
reduced model replicates very well its full linear counterpart, which implies that the use
of two Ritz vectors is sufficient.

In order to test the model validity for different glass pane dimensions, the combinations
of the parameters tg = [6,8,10,12] mm and h×w = [1×1,1.25×1.25,1.5×1.5,1.75×
1.75,2×2] m2 were investigated. The analyses focused on the difference in the value of
σmax between the model used in [20] and the model presented in this paper. The solution
of the current model was considered acceptable when the relative error was less than 15
% for results that were not on the safe side and less than 20 % for results that were on the
safe side. The fall heights 200, 300 and 450 mm were considered. Table 5 presents the
parameter combinations and indicates at which maximum fall height the model is valid for
respective case. In general there is a tendency that for a small glass thickness combined
with a large glass pane size a lower maximum fall height is allowed. For the glass with the
smallest thickness, the maximum possible fall height never exceeds 300 mm. The error
bounds chosen will affect the results and Table 5 more generally illustrates the limitations
that various glass pane dimensions put on the suggested method.

7 Application to a Clamp Fixed Glass Balustrade
To demonstrate the applicability of the suggested method in strength design the method
was applied to a real glass structure. The test example consisted of a laminated glass
balustrade with four clamp fixings. A laminated glass with two glass panes and an in-
termediate polyvinylbutyral (PVB) layer was considered. The two-dimensional geometry
of the balustrade is shown in Figure 8. The dimensions of the contact area A was the
same as for the baseline case. The in-plane dimensions were h = w = 1.2 m. All the
other dimensions of the balustrade have been chosen considering a real glass balustrade
of standard type. The distance e was set to 0.24 m, the clamp fixings were quadratic with
a side length, f , of 0.025 m, the glass thickness, tg, was set to 6 mm and the PVB layer
thickness, tPV B, was equal to 0.76 mm. The clamp fixings consisted of rubber parts and

Table 5: Maximum fall height for which the linear model is valid for different parameter
combinations.

tg [mm] 6 8 10 12
h×w [m2]

1 × 1 200 mm 450 mm 450 mm 450 mm
1.25 × 1.25 200 mm 450 mm 450 mm 450 mm

1.5 × 1.5 300 mm 450 mm 450 mm 450 mm
1.75 × 1.75 200 mm 450 mm 450 mm 450 mm

2 × 2 - - 450 mm 450 mm
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Figure 8: Two-dimensional geometry of glass balustrade.

steel parts. Only the rubber parts were modeled and the thickness of the rubber, tr, was set
to 3 mm. The modeling of the rubber was made as in the case of the rubber frame of the
baseline case. The degrees of freedom on the side of a rubber part that is not in contact
with the glass were set to be fixed.

Alla materials were assumed to be linear elastic and the material parameters for glass and
rubber are given in Table 1. For PVB, the modulus of elasticity was set to 6 MPa that may
be valid for a high strain-rate load case as an impact. The Poisson’s ratio was set to 0.43
as in [13]. The mass density of PVB was 1.1 kg/m3, [10].

In the full finite element model, as a special feature of the solid-shell element ([5], [1]),
only one element layer per material layer was required. Altogether, around 30000 degrees
of freedom were used.

Further modeling features were as in the baseline case above.

A comparison between the reduced model and the full FE-model in terms of σmax resulted
in a model error of only around 3.5 %.

8 Conclusions and Future Work
In this paper, a reduced finite element model for determining the maximum principal
stress of a glass pane subjected to dynamic impact load is developed. The aim is to inte-
grate the model into a glass design program for easy, fast and accurate strength design of
glass structures. In the model development, a method for constructing Ritz vectors for use



in the Rayleigh-Ritz method is suggested and the resulting combination of Ritz vectors is
unique and the choice of the second Ritz vector is a novelty. The method is also flexible
in that it is applicable to different support conditions as well as to both centrally and ex-
centrally applied impact. The model is made so that the support conditions are directly
included.

The model performance is evaluated for four-sided supported glass panes with centrally
applied impact and monolithic glass. It is proven that the model performs well for a base-
line test case compared to a full geometrically nonlinear finite element model. It is shown
how the model performance is improved when two Ritz vectors are used instead of one in
modal reduction.

When in-plane glass dimensions increase and the glass pane thickness decreases, geomet-
rically nonlinear behavior of the glass is having a larger impact on the result. Comparisons
to both nonlinear and linear full finite element model results indicate that the modal re-
duction method is valid, but that the geometric nonlinearity of the glass gives rise to a
relatively large error between the reduced model and the full nonlinear model. A para-
metric study with respect to pane dimensions investigates the limitations of the use of the
reduced model. It is recommended that the reduced model is not used for larger glass
panes than considered in this study and that lower fall heights are used for thin glasses
than for thicker glasses.

The applicability of the model to glass structures with excentric load positions is demon-
strated.

It is shown that the reduced model is very well suited for strength design of standard
laminated glass balustrades with clamped fixings, even without compensating for the ge-
ometric nonlinearity effect. Most likely, the structures used in strength design are of
dimensions and support conditions such that the reduced model is well applicable.

It is a subject for future work to include the effect of the geometric nonlinearity of the
glass pane into the current model. For instance, [1] provides an extension to nonlinear
behavior for the finite element formulation used. Another possible extension is to add ad-
ditional Ritz vectors for representing the glass pane. The constant value of the impactor
stiffness is a simplification. For further improvement of the results of the reduced model,
a nonlinear representation of the impactor stiffness could be included.

In future development, it could be evaluated by means of test examples how well the re-
duced model represents the application to glass with other support conditions, for instance
bolt fixed glass. As was shown for the case of glass with clamped fixings, it is expected
that the effect of nonlinear behavior of the glass would be smaller for these other support
conditions and for these cases our model may be directly applicable for all pane sizes
without including the effect of nonlinear geometry.



Finally, it could be interesting to make an experimental investigation of glass structures
subjected to dynamic impact load. For this investigation, different types of supports,
different positions of the impact and both single layered and laminated glasses could be
used.
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Numerical Analysis of Insulated Glass Subjected
to Soft Body Impact

Maria Fröling and Kent Persson

Abstract

Structure-acoustic analysis is performed to analyse insulated glass subjected to dynamic impact
load. A parametric study is made with respect to in-plane dimensions, glass thickness and thick-
ness of the gas layer. For quadratic panes, a larger glass has a significantly larger center displace-
ment but lower stresses than a smaller glass. For all studied combinations of in-plane dimensions
the outer glass has a maximum stress level that is between 20 and 30 % of that of the inner glass. A
single layered glass unit is proven to have only marginally greater stresses than the corresponding
double glass unit. The air layer thickness has almost no influence on the stresses of the insulated
glass subjected to a soft body impact. It is revealed that the thickness of the glass, however, has
a large influence. Both displacements and stresses increase with decreasing pane thickness. The
outer glass has a maximum stress level which is between 20 and 30 % of that of the inner glass.
Further, an analysis is made of a triple insulated glass unit. Apparently, the addition of a third
glass pane does not impact the structural mechanical capacity of an insulated glass unit to a great
extent.

1 Introduction
Insulating glass consists of two or more glass panes with air or gas filled space(s) in be-
tween. Insulating glass units are favorable for use in buildings due to for instance the
thermal insulating properties that the insulating glass possesses.

Studies of the structural mechanical behavior of insulated glass are scarce in the literature.
Vallabhan and Chou (1986), [14], present a theoretical model of an insulating glass unit
subjected to lateral (wind) load. An analysis was made of the load sharing between the
inner and the outer glass and it was studied how the load sharing is affected by varying
the temperature of the gas layer. Wörner et al. (1993), [17], made a simpler theoretical
method for the load sharing analysis of a double insulated glass unit subjected to lateral
load. The model is more suitable for design than the model in [14]. Vallabhan et al.
(1990), [15], included the modeling of the silicone sealants that are used as connections
between the glass plates of an insulating glass unit and between the glass unit and the sup-
porting mullion. The insulated glass unit was subjected to lateral load. Both the stresses
in the glass plates and the forces in the sealants were studied.



All of the previously mentioned studies deal with lateral (wind) load. Also important in
the strength design of glass structures is dynamic impact load. The conditions for dealing
with dynamic impact load in strength design are partly prescribed in the European and
Swedish standard SS-EN-12600, [13]. Experimental and numerical studies of glass sub-
jected to dynamic impact load were described in for instance ([12], [2], [7], [9], [5],[10],
[11], [16], [3]). Experimental and numerical studies with special focus on insulated glass
subjected to dynamic impact load are provided in [6] and [1].

In [1], the air filled tires of the pendulum and the air layer between the glass panes were
modeled by means of the so-called uniform pressure approach. The parts of the pendu-
lum were modeled with shell elements. The control volume concept with an equation of
state for ideal gases was used for the simulation of the internal pressure of the tires and
for simulating the behavior of the air space of the glass unit. The clamping framework,
which was supported with diagonals, was included in the model. The study described the
time development of the middle lateral displacement of the inner and outer surfaces of the
insulated glass unit and comparisons with experiments were made. The model seemed to
well replicate experimental data.

In this work, structure-acoustic analysis, [8], is used in the finite element modeling of
insulated glass subjected to dynamic impact load. In this approach, the gas filled space
is modeled by means of the acoustic wave equation and the interaction between the glass
and the gas filled space is taken into account. A numerical example is made that sim-
ulates the pendulum impact test of the European and Swedish standard SS-EN-12600,
[13], available to classify glass for impact strength. The test arrangement of this test is
displayed in Figure 1.

A glass unit is held within a steel frame and an impactor consisting of a steel weight en-
cased in tires is dropped from a fall height in a pendulum motion towards the glass. In
order to protect the glass, there are rubber strips between the steel frame and the glass.
The weight of the impactor is prescribed to 50 kg.

The commercial finite element software ABAQUS is adopted for the simulations. One
of the purposes is to demonstrate the applicability of structure-acoustic analysis to this
test problem. The supporting frame, and the modeling of the frame, are different from
that in [1]. The approach presented serves as a useful alternative to analyse the structural
problem. Further analyses are made than in [1]. Parametric studies are made with respect
to the in-plane glass dimensions, the glass thickness and the air layer thickness. The
studied variables are the out-of-plane displacement in the middle of the glass pane and
the maximum principal stress. To conclude, a triple insulated glass unit is studied in
terms of stresses.



Figure 1: Test arrangement for pendulum impact test.

2 Structure-acoustic Analysis
Structure-acoustic analysis as formulated in [8] investigates the analysis of structure-
acoustic systems consisting of a flexible structure that is in contact with an enclosed cav-
ity.

The structure is described by the differential equation of motion for a continuum body un-
der the assumption of small deformations and the fluid behavior is captured by the acous-
tic wave equation. The latter equation has been derived using the following conditions
for a compressible fluid: the fluid is inviscid, irrotational and undergoes small transla-
tions. The formulation enforces continuity in displacements and pressure at the boundary
between the structure and fluid domains. The governing equations can be written as

∇̃T σs +bs = ρs
∂2us

∂t2 , (1)

∂2 p
∂t2 − c2

0∇2 p = c2
0

∂q f

∂t
, (2)

us|n = u f |n, (3)

σs|n =−p, (4)

where equations (1) and (2) govern the structure and fluid behavior respectively and equa-
tions (3) and (4) state the coupling conditions through the kinematic and static boundary



conditions. us are the displacements and bs is the body force. It is defined that

us =

 us
1

us
2

us
3

 , (5)

and

bs =

 bs
1

bs
2

bs
3

 . (6)

qs is the inertia force given as

qs = ρs
∂2us

∂t2 , (7)

where ρs is the density of the material. The differential operator ∇̃ is defined in [8]. For
the fluid, p is the dynamic pressure, c0 is the speed of sound and q f is the added fluid
mass per unit volume. The operator ∇ is defined in [8].

Standard finite element derivations lead to the following finite element formulation for
the structural domain

Msd̈s +Ksds = f f + fb, (8)

where Ms is the mass matrix, Ks is the stiffness matrix, f f is the surface force vector, fb
is the body force vector and ds are the nodal displacements.

Similar finite element derivations as for the structure part yields the finite element formu-
lation for the fluid domain as follows:

M f p̈ f +K f p f = fq + fs, (9)

where M f is the mass matrix, K f is the stiffness matrix, fs and fq are force vectors and p f
denotes the nodal pressures.

To obtain the finite element formulation of the coupled structure-acoustic system, a few
operations are needed. Equation (4) can be rewritten and inserted into the surface force
term of equation (8). This term is then rewritten and the final format is given as follows

f f = Hp f , (10)

where H is the coupling matrix, see [8]. The term fs of equation (9) is also rewritten. The
relation

∇p =−ρ0
∂2u f (t)

∂t2 , (11)

and the boundary condition in equation (3) are used. Finite element discretization and
introduction of the coupling matrix H leads to the final version of the term fs as

fs =−ρ0c2
0HT d̈s. (12)



The final structure-acoustic problem is described by the following unsymmetrical system
of equations [

Ms 0
ρ0c2

0HT M f

][
d̈s
p̈ f

]
+

[
Ks −H
0 K f

][
ds
p f

]
=

[
fb
fq

]
, (13)

which is the standard form of the FSI formulation.

Note that this implementation does not take into account the static pressure of the air.
Moreover, in ABAQUS the fluid layer is not remeshed automatically to account for large
deformations of the structure.

3 Model Validation
Two slightly different versions of the same model are developed in this paper. In this sec-
tion it is described how the model adopted in Section 4 compares to the experimental data
of [1] when the same in-plane dimensions and thicknesses of the material layers as in [1]
are adopted. The comparison is presented in Figure 2. The result variables are the center
out-of-plane displacements of the inner (closest to the impactor) and the outer panes. In
the figure the inner pane is termed front and the outer is termed back.

From the figure it appears as the model results and experimental results are in good accor-
dance until the maximum displacements are reached. The experimental maximum values
are greater than the simulated ones, but for both panes the simulation error is less than 5
% which is acceptable. The peak values are occurring earlier in the simulations, but the
time difference is maximum around 3 ms for the outer pane. In the experiments the whole
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Figure 2: Comparison between model data and experimental data.



movement lasts longer than in the simulations. In [1], the support frame is different than
for the current model and in [1] it is emphasized that the modeling of the frame contains
all details for accurate simulation results to be obtained. In [1], close accuracy between
experiments and simulations is obtained. There are further modeling differences between
the model in this paper and the model in [1]. This can explain some of the discrepancies
between the model results of this model and the experiments. In strength design, the max-
imum values of the design variables are of primary importance. For the case of maximum
values, the model developed here has good accuracy, albeit the difference between the
structures. Finally, the model in this paper stems from an experimentally validated model
for single layered glass subjected to soft body impact, [5].

4 Parametric Study

4.1 General
In this section, parameter studies with respect to several relevant parameters were carried
out for insulated glass consisting of two glass panes and a sealed cavity subjected to dy-
namic impact load. A case was constructed based on the model for single glass subjected
to dynamic impact load by Persson and Doepker (2009), [5]. That model was extended
to comprise double insulated glass. In the parametric study, the in-plane dimensions, the
glass thickness and the air layer thickness were varied.

The test arrangement was modeled in ABAQUS. All parts were explicitly modeled apart
from the clamping frame. The displacements of the sides of the rubber strips facing the
frame were prescribed to zero in all directions. The material properties of the structure
were adopted from [5] and the properties of the air were taken from [4]. A summary
of the material parameters is given in Table 1. E denotes modulus of elasticity, ν is the
Poisson’s ratio, ρ denotes density and D is the bulk modulus.

The pendulum was swung from a fall height of 450 mm. The modeling of the parts,
except for the air layer and the spacer, is described in [5]. For the air part, an 8-node
linear acoustic brick element was used. Three element layers were used in the thickness
direction of the air part. Totally around 100000 elements were contained in the model.

Table 1: Material parameters for pendulum impact test.
Material E (MPa) ν ρ (kg/m3) D (MPa)

Glass 78000 0.2 2700 -
Air - - 1.2 0.142

Spacer 50 0.2 1000 -
Pendulum rubber 2 0.3 900 -
Pendulum steel 210000 0.3 7800 -
Frame rubber 15 0.44 1250 -



The coupling condition between the air and the glass was set through a surface based tie
constraint.

The parametric study was investigating the influence of the in-plane dimensions of the
insulated glass unit, the air layer thickness and the glass pane thickness. In the parametric
study of the influence of the in-plane dimensions, six cases were analyzed as shown in
Table 2.

The glass thickness of both panes was 6 mm and the air cavity thickness was set to 12 mm.
For these cases, also a structure with one glass was analyzed for comparison purposes.

In the parametric study of the influence of the air cavity thickness, the cases with cavity
thicknesses 6, 12 and 18 mm were studied. The in-plane dimensions were set to 800 ×
1600 mm2 and the glass thickness was 6 mm. In the parametric study of the influence of
the glass thickness four cases were made comprising of glass thicknesses of 6, 8, 10 and
12 mm. In this study, the in-plane dimensions were 800 × 1600 mm2 and the air cavity
thickness was 12 mm.

For all studies, the result variables of interest were the out-of-plane displacement at the
center of the glass and the maximum principal stress. The main interest was to compare
displacements and stresses between the outer and inner glass panes.

4.2 Influence of the In-plane Dimensions of the Insulated Glass Unit
In this subsection, the results from the parametric study with respect to the in-plane di-
mensions are reported. Figure 3 shows the time history of the center out-of-plane dis-
placement of the inner and outer panes for quadratic shaped insulated glass units of vari-
ous dimensions.

There is a significant increase in the maximum displacement when the dimensions change
from the smallest to the largest. The increase is almost 50 %. The results in terms of the
maximum principal stress of the whole unit, σmax, are displayed in Table 3. The values
are reported for all combinations of dimensions in Table 2.

Table 2: In-plane dimensions for the parametric study.
Case In-plane dimensions (mm2)
d1 800 × 800
d2 800 × 1200
d3 800 × 1600
d4 1200 × 1200
d5 1200 ×1600
d6 1600 × 1600
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Figure 3: Time history of center displacement for quadratic insulated glasses. Inner glass
to the left (a) and outer glass to the right (b).

Table 3: Maximum principal stress for various glass pane dimensions.
Dimensions (mm2) σmax (MPa)

800 × 800 192.3
800 × 1200 199.8
800 × 1600 206.3

1200 × 1200 187.6
1200 × 1600 182.3
1600 × 1600 156.8

The time history of the maximum principal stress is shown in Figure 4 for the inner and
outer panes of quadratic insulated glass of various dimensions.

From the Table 3 and Figure 4 it can be realized that there is a reduction in σmax by almost
20 % when the dimensions increase from the smallest to the largest. There is a change
in the behavior of the solution when the largest pane is considered. There are two subse-
quent stress peaks instead of one and the maximum is occurring later than for the smaller
glasses. This is due to the different eigenfrequencies of the impactor and the glass panes.

For rectangular insulated glass units, the effect of increasing the length of one of the sides
of the pane can be extracted by fixing the length of the other side of the pane. In Figure
5, the length of one of the sides is fixed to 800 mm and the time history of the center
out-of-plane displacement of the inner pane is shown for various lengths of the variable
side.

When the length of the variable side is increased from 800 to 1600 mm there is an increase
in maximum displacement of around 25 %.



From the results in Table 3 it can be noted that when the length of one side of the pane is
fixed to 800 mm there is a maximum increase in σmax of only around 7 % if the length of
the other side of the pane is varied from 800 to 1600 mm. From Table 3 it is apparent that
if the length of the fixed side of the pane is 1600 mm, σmax decreases with around 25 %
when the length of the variable side increases from 800 mm to 1600 mm.

In Figure 3 (b) the time history of the center out-of-plane displacement of the outer pane
is shown for quadratic insulated glasses of various dimensions. The maximum displace-
ment is more than doubled when the pane size increases from the smallest to the largest
and the solutions for the different pane sizes display different behaviors. The difference
in behavior can partly be explained by the fact that the pressure is transferred by means of
a pressure wave that travels through the unit. Compared to the maximum displacements
of the inner pane, the outer displacements are 70-80 % of the inner displacements and the
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Figure 4: Time history of maximum principal stress for quadratic insulated glasses. Inner
glass to the left (a) and outer glass to the right (b).
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ratio between outer and inner displacement is greatest for the largest dimensions.

In Table 4 the maximum principal stress for the outer glass is displayed for the various
dimensions of the glass pane.

The time history of the maximum principal stress for the outer pane of quadratic insulated
glass units of various dimensions is shown in Figure 4 (b). The maximum stress of the
outer glass is 20 to 30 % of maximum stress of the inner glass as presented in Table 2.
When rectangular glasses with one of the side lengths set to 800 mm are considered, the
maximum stress of the outer glass is around 30 % of the maximum stresses of the inner
glass irrespective of the length of the other side. For the largest glasses, the maximum
stress of the outer glass is rather around 25 % of the maximum stresses of the inner glass.

A comparison of insulated glass and single glass in terms of σmax is made in Table 5 for
various dimensions of the glass.

In general there is only a small increase in the maximum stress when a single glass is used
instead of an insulated glass. The largest increase is for the largest glass of dimensions
1600 × 1600 mm2 where the maximum stress increases with around 15 %.

4.3 Influence of the Air Layer Thickness
In this subsection, the results from the parametric study with respect to the air cavity
thickness are reported. The time history of the center out-of-plane displacement is shown
in Figure 6 for varying air cavity thickness.

The corresponding results for the maximum principal stress are displayed in Figure 7 for
both the inner and the outer panes.

In terms of both displacements and stresses, and for both the inner and outer panes in
terms of the stresses, the influence of the air layer thickness is almost negligible.

Table 4: Maximum principal stress for outer glass for various glass pane dimensions.
Dimensions (mm2) Maximum principal stress (MPa)

800 × 800 56.8
800 × 1200 57.4
800 × 1600 63.0

1200 × 1200 42.4
1200 × 1600 42.6
1600 × 1600 42.7



Table 5: Maximum principal stress for single glass and double insulated glass for various
glass pane dimensions.

Dimensions (mm2) σmax (MPa), double glass σmax (MPa), single glass
800 × 800 192.3 196.8

800 × 1200 199.8 204.2
800 × 1600 206.3 213.8

1200 × 1200 187.6 188.6
1200 × 1600 182.3 197.3
1600 × 1600 156.8 182.2
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Figure 6: Time history of center displacement for insulated glasses of varied cavity thick-
ness.

0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

2

2.5
x 10

8

Time, s

P
rin

c.
 s

tr
es

s,
 P

a

 

 

6 mm space
12 mm space
18 mm space

0 0.01 0.02 0.03 0.04
0

0.5

1

1.5

2

2.5
x 10

8

Time, s

P
rin

c.
 s

tr
es

s,
 P

a

 

 

6 mm space
12 mm space
18 mm space

Figure 7: Time history of maximum principal stress for insulated glasses of varied cavity
thickness. Inner glass to the left (a) and outer glass to the right (b).

4.4 Influence of the Glass Thickness
This subsection reports the results of the parametric study with respect to the glass thick-
ness. Figure 8 shows the time history of the center out-of-plane displacement for the inner
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Figure 8: Time history of center displacement for insulated glasses of varied glass thick-
ness. Inner glass to the left (a) and outer glass to the right (b).

and outer panes of insulated glasses of various glass thicknesses.

The displacements increase with decreasing pane thickness. When the pane thickness is
12 mm, the maximum displacement is around 40 % of the maximum displacement for
the case with glass pane thickness of 6 mm. For the thinnest glass, the outer pane has a
maximum displacement that is around 65 % of the maximum displacement of the inner
pane. For the thickest glass, this relation is around 40 %. Apparently the fraction of outer
maximum displacement to inner maximum displacement increases when the glass pane
thickness decreases.

The time history of the maximum principal stresses for the inner and outer panes of insu-
lated glasses of various glass thickness is shown in Figure 9.

The maximum stresses increase with decreasing pane thickness. For a pane thickness
of 12 mm, the maximum stress is around 60 % of the maximum stress when the pane
thickness is 6 mm. The outer pane has maximum stresses between 20 and 30 % of the
maximum stresses of the inner pane. There is a small tendency that the value of this
fraction increases as the glass pane thickness decreases.

5 Analysis of Insulated Glass with Three Glass Layers
In some applications, triple insulated glass is used. In this section, the aim was to evaluate
the structural performance of a triple insulated glass unit. The performance was evaluated
in terms of the maximum principal stress. For this examination, a slightly different model
was adopted. The in-plane dimensions were the same as in [1], namely a height of 2056
mm and a width of 1050 mm. The thickness of the glass was set to 7.75 mm and the
thickness of the air layer was set to 16 mm in line with [1]. Some material parameters
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Figure 9: Time history of maximum principal stress for insulated glasses of varied glass
thickness. Inner glass to the left (a) and outer glass to the right (b).

were changed compared to in Table 1. To the extent possible, the material parameters
were set as in [1]. The values of the material parameters that were changed are E = 70000
MPa, ν = 0.23 and ρ = 2500 kg/m3 for the glass and ν = 0.23 for the frame rubber. The
spacer was not explicitly modeled, but the air parts were set to be rigidly supported on the
sides facing the frame.

The results in terms of σmax are displayed in Table 6.

The inner glass pane has a stress level that is less than 5 % lower than that of the inner
glass pane of that which arises in a double glass unit modeled in a similar fashion. This
value is 154.8 MPa. It is noteworthy that the middle glass has a very low value of the
maximum stress. For this case, the maximum stress is not located in the middle of the
glass pane. The outer glass has a stress level which is slightly greater than the outer glass
of the corresponding double glass unit, 56.7 MPa. When it comes to strength design, it
seems like there is little to be gained to add a third glass pane to the insulating unit.

6 Conclusions and Future Work
In this paper, structural-acoustic analysis is used to develop a finite element model of an
insulated glass unit subjected to dynamic impact load. The method is suggested as a use-

Table 6: Maximum principal stress (MPa) of glass panes for triple glass.
Pane σmax
Inner 150.7

Middle 8.6
Outer 58.3



ful means to analyze this type of problem.

A parametric study is made in terms of the in-plane dimensions of the unit. For quadratic
glasses, a larger glass unit has significantly larger center displacement but lower stresses
than a smaller unit. The outer glass has maximum center displacement that is 70-80 % of
the maximum center displacement of the inner glass. For all combinations of dimensions
the outer glass has a maximum stress level that is between 20 and 30 % of the maximum
stress level of the inner glass. When a single layer glass is used instead of a double insu-
lated glass unit, there is only a small increase in the stress level. It appears as the structural
mechanical gain of using insulated glass instead of single layered glass is almost negligi-
ble.

For a standard double insulated glass unit, a parametric study with respect to the air layer
thickness is made. Apparently, the air layer thickness has a minor influence on the struc-
tural mechanical behavior of the studied glass unit.

Further, a parametric study that investigates the influence of the glass thickness on the
structural behavior of the insulated glass is made. The glass thickness seems to be a rele-
vant design variable in strength design of insulated glass. Both displacements and stresses
increase with decreasing pane thickness. In terms of maximum stresses, the difference be-
tween using the thickest and thinnest glass in the study is around 40 %. The ratio between
outer and inner values of both displacements and stresses increases as the pane thickness
decreases and for the stresses the value of this ratio ranges between 20 and 30 %.

Finally, a triple insulated glass unit is analysed in terms of stresses. The maximum stresses
of the unit are almost not reduced at all compared to the maximum stresses of a corre-
sponding double glass unit. The outer glass pane has a stress level which largely is com-
parable to that of the outer glass of the corresponding double glass unit. An interesting
result is that the middle pane has very low stresses and the maximum stress of that pane
is not located in the middle of the pane. From a strength design perspective a triple glass
unit does not seem to give an added value compared to a two glass unit, but may instead
increase the cost.

The present analysis can be extended in several ways. It could be interesting to consider
different glass pane thicknesses of the inner and outer panes of one unit. The influence
of different boundary conditions can also be interesting to study. A further extension is
to have another gas than air in the insulated unit. It would also be of interest to vary the
impactor fall height.

The current framework of modeling may also be used to investigate other types of re-
search questions relating to for instance sound insulation properties.

Experimental results on insulated glass units are scarce. Further experimental tests would
shed light on the structural mechanical properties of insulated glass and serve as an aid in



validating the numerical results.
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