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Abstract

The population is growing, and an increasing proportion of the population lives in urban areas.
As a consequence, human exposure to noise and vibrations is increasing; two major sources
being railway and road traffic. Larger and denser cities lead to a higher amount of traffic close to
where people work and live. Land close to railways and heavily trafficked roads, previously left
unexploited, are now being used for dwellings and offices. Vibrations are often accompanied by
noise, to which longterm exposure is known to have serious health effects. Furthermore, some
buildings such as hospitals and research facilities contain instruments that are highly sensitive
to vibrations, and require proper vibration isolation to ensure safe operation. To address the
problems of noise and vibrations, their generation and propagation need to be understood.

The vibrations next to a railway track are caused by the forces exerted on the track by the passing
train. These forces are the sum of a quasistatic part due to the deadweight of the train, and a
dynamic part. The dynamic part is caused by various phenomena resulting in timedependent
train–track interaction forces. The vibrations generated at the track propagate through the
underlying and surrounding soil as elastic waves of various types. The mechanical properties
of the soil strongly influence the wave propagation and the resulting vibrations registered by a
receiver at some distance from the track. For a building structure next to the track, the vibra
tions inside the building furthermore depend on the mechanical and geometrical properties of
the building’s structural elements.

In the thesis, numerical models andmodeling strategies for predicting groundborne vibrations
from railway tracks have been developed. Various techniques to calculate the wave propagation
in the soil have been implemented and used for studying different phenomena, such as the
vibrations at the soil surface and in a building next to the track, caused by a train running
over an uneven rail. Furthermore, the mitigation of traininduced ground vibrations and so
called “critical velocity” effects, i.e. highspeed trains moving faster than the wave speed in the
underlying soil, were studied. In addition, models developed in the the thesis were utilized to
compare the dynamic responses of a heavyweight concrete building and a lightweight wooden
building, when excited by ground vibrations induced by a train moving over an uneven rail.





Populärvetenskaplig sammanfattning

En ökande andel av befolkningen bor i urbana miljöer, där störande ljud och vibrationer är
vanligt förekommande. Två huvudsakliga källor till dessa störningar är tung trafik från väg och
järnväg. Större och tätare städer leder till ökad trafik där människor bor och arbetar. Mark nära
järnväg och tungt trafikerad väg, som tidigare lämnats oexploaterad, används för både bostäder
och kontorsbyggnader. Vibrationer ackompanjeras ofta av buller som har kända negativa häl
soeffekter. Vidare innehåller somliga byggnader, såsom sjukhus och forskningsanläggningar,
vibrationskänslig utrustning som behöver skyddas för att dess funktion ska upprätthållas. För
att kunna angripa problemen med störande buller och vibrationer krävs förståelse för deras
uppkomst och utbredning.

Vibrationerna bredvid ett järnvägsspår orsakas av krafterna som genereras av tåget på spåret.
Dessa krafter består av en kvasistatisk del orsakad av tågets egenvikt, och en dynamisk del. De
dynamiska krafterna orsakas av olika fenomen, t.ex. att rälsen inte är helt jämn och att markens
styvhet varierar längs spåret. Vibrationerna som genereras vid spåret sprids genom den under
och omkringliggande marken som elastiska vågor av olika typer. Markens egenskaper påverkar
vågutbredningen och har stor betydelse för vilka vibrationsnivåer som registreras bredvid spå
ret. För en byggnad bredvid spåret beror vibrationsnivåerna vidare på byggnadens utformning
och material.

I avhandlingen utvecklas beräkningsmodeller och modelleringsstrategier för att prediktera
markvibrationer orsakade av spårbunden trafik. Olika numeriska tekniker för att beräkna våg
utbredningen i marken har implementerats i datormodeller och använts för att studera olika
fenomen, såsom vibrationerna på markytan och i en byggnad, till följd av ett förbipasserande
tåg körandes på en ojämn räls. För höghastighetståg kan ett fenomen uppstå då tågets hastig
het närmar sig vågutbredningshastigheten i den underliggande marken, som yttrar sig i kraftigt
förhöjda vibrationsnivåer både i och jämte spåret. I avhandlingen används de utvecklade nu
meriska modellerna för att studera höghastighetsfenomenet ochmöjliga vibrationsreducerande
åtgärder i form av jordförstärkningar.
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Part I

Introduction and Overview





1 Introduction

1.1 BACKGROUND

The population is growing. Currently (year 2022), 89% of the Swedish population live in
urban areas. For the population worldwide, the figure is 56%. These numbers are increasing
[1].

As a consequence of the urban densification, human exposure to noise and vibrations is in
creasing, two major sources being railway and road traffic. Larger and denser cities lead to a
higher amount of traffic close to where people work and live. Land close to railways and heav
ily trafficked roads, previously left unexploited, are now being used for dwellings and offices.
Vibrations are often accompanied by noise, which is known to cause serious health effects. Fur
thermore, some buildings such as hospitals and research facilities contain instruments that are
highly sensitive to vibrations, and require proper vibration isolation to ensure safe operation.

To address the problems of noise and vibrations, their generation and propagation need to be
known. When the physics behind the observed phenomena is understood, appropriate mit
igation measures may be undertaken. To describe the physics in detail, mathematical models
are required. These models are generally so complex that they need to be solved using com
puters. Such models can then be used to evaluate the efficacy of different design alternatives,
by numerically predicting the outcome of different scenarios. They can therefore be helpful in
making better decisions during the early stages of design of, for example, a new building close
to a railway track.

1.2 AIMS AND OBJECTIVES

The longterm aim of the work presented in this thesis is to reduce noise and vibrations for
residents close to railways and heavily trafficked roads, and to enable safe operation of sensitive
equipment and instruments in such areas. To accomplish the longterm aim, tools are needed
to understand and predict the generation and propagation of such vibrations.

The objective of the work is to investigate and develop efficient numerical techniques andmod
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els that can be used in engineering practice for predicting groundborne vibrations emanating
from railway traffic. Apart from being able to properly represent the transmission of the vi
brations through the ground, and into a building structure, such models need to include the
source of the vibrations.

In this thesis, various numerical techniques are employed to predict the freefield ground vi
brations caused by a train running on a railway track. The influence of different modeling
strategies regarding the railway track is investigated, and the change in response due to a mit
igation measure under the track is studied. The effect of high speed trains moving on soft soils
and possible response mitigation through soil stiffening is investigated using numerical simu
lations. Furthermore, the developed models are utilized to compare the dynamic responses of
a heavyweight concrete building and a lightweight wooden building, when excited by ground
vibrations induced by a train moving over an uneven rail.

1.3 LIMITATIONS

Vibrations from a train running at constant speed along a straight railway track with constant
geometry is considered. Vibrations due to rail curvature, rail joints/switches, transition zones,
varying subgrade stiffness, etc. are not accounted for. However, vertical unevenness of the rail
is considered as a source of dynamic excitation. Furthermore, the highspeed phenomenon that
is encountered when the train speed approaches the speed of the elastic waves in the ground
is studied. A linearelastic material behaviour is assumed for all components (track, soil and
buildings) throughout this work.

1.4 OUTLINE

This thesis is divided into two parts:

Part I is divided into seven chapters and contains an overview of the work and an introduction
to the research area of environmental vibrations, with particular emphasis on the physics and
the numerical modeling of groundborne vibrations. In Chapter 2, some general concepts re
garding the generation and propagation of ground vibrations are introduced, together with a
brief summary of vibration mitigation measures. Chapter 3 provides the basics of the physics
that govern the dynamics of structural systems, and different wave types in structural elements
and an elastic continuum are derived. Two numerical methods used extensively in the present
work are described in Chapter 4, namely the Finite Element Method and the Layer Transfer
Matrix method. How these methods can be used for efficiently evaluating the response of mov
ing loads is given special attention. In Chapter 5 the numerical prediction of traininduced
vibrations is discussed. The excitation mechanisms behind ground vibrations generated by rail
way traffic are introduced, with a short review of different computational modeling strategies
aiming to simulate some of these mechanisms and the resulting wavefield in the ground. Three
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different computational models that have been implemented and presented in the appended
papers are described along with a small example case. A summary of the appended papers
are given in Chapter 6, and finally some concluding remarks are given in Chapter 7. Part II
contains the appended papers.





2 Environmental Vibrations

2.1 GENERAL REMARKS

In the urban environment, there is a vast number of sources producing vibrations. Heavily
trafficked roads, railways, and construction work (e.g. pile driving), are a few examples of
external sources that can generate vibrations perceptible inside a building. Rotating machinery,
ventilation systems, walking people, closing doors, are examples of internal vibration sources.

The current work is focused on models for predicting vibrations generated by external sources,
where the vibrations are generated in one location and transmitted to a second location through
the ground. The process of vibration transmission is often described in terms of a source, a
medium and a receiver. The receiver can be a building, a part of a building structure, equipment
or a person inside the building. The medium, or transmission path, where the vibrations are
transferred as elastic waves, includes the ground but could also, depending on the receiver,
include the building; see Figure 2.1.

PP

Figure 2.1: Vibration transmission from the source, via the transmission path, to the receiver.
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2.2 EFFECTS OF GROUND-BORNE VIBRATIONS

Groundborne vibrations may cause annoyance to humans, through perceptible motion of
building floors and radiated noise. Groundborne vibrations from pile driving and blasting
during construction may also lead to structural damage of buildings, however such effects
from road and railway traffic are very rare [2]. Furthermore, the operation of sensitive equip
ment in for example hospitals or research facilities may be adversely affected by groundborne
vibrations.

Vibration is an oscillatory motion around a static equilibrium, and such a motion may be
described or quantified in many different ways using different descriptors. The amplitude of
the vibration may be described in terms of the maximum displacement, velocity or accelera
tion during the event, or in terms of an “effective value” calculated as the rootmeansquare
(RMS). Further, a vibrationmay consist of a single harmonic motion or have a broad frequency
content.

In the frequency range 20−250Hz, vibrations inside buildings may lead to acoustic radiation
heard as a rumbling noise. Furthermore, the vibrations may excite resonance frequencies of
structural members and furniture inside the building, producing a rattling noise [3]. At low
frequencies (< 80Hz), humans are sensitive to wholebody vibrations, but how the vibrations
are perceived also depends on the amplitude and the duration of the vibration [2]. There
are studies suggesting that environmental noise contributes to cardiovascular risk of coronary
artery disease, hypertension, stroke and heart failure [4].

The international standard ISO 2631 [5] specifies vibration criteria guidelines for different ap
plications in terms of allowable RMS values of vibration velocity in 1/3 octave bands. These
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Figure 2.2: Vibration requirements. ISO guidelines and VC curves.
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are shown in Figure 2.2, together with so called Vibration Criterion (VC) curves, that are fre
quently used by manufacturers of sensitive equipment to specify maximum allowable vibration
levels.

2.3 GROUND VIBRATIONS

2.3.1 Wave propagation

Ground vibrations propagate as elastic waves. In an infinite, homogeneous, elastic medium (a
so called fullspace), only two different types of waves exist; the Pwave and the Swave, which
propagate independently of each other. The Pwaves are also called pressure, dilational, longit
udinal, irrotational or primary waves. Pwaves are the fastest moving waves, and the particle
movement is parallel with the wave propagation direction. The Swaves are also called shear,
rotational, equivoluminal or secondary waves, and are characterized by a particle movement
that is perpendicular to the wave propagation direction. However, in a homogeneous, elastic
semiinfinite medium involving a free surface (a so called halfspace), the P and Swaves in
teract at the surface, resulting in a surface wave called the Rayleigh wave, propagating with a
slightly lower velocity than the Swave. The particle motion is elliptical, and the amplitude
decreases with depth. At the surface, the particle motion is retrograde. At depths larger than
about 1.5 wavelengths, the particle displacement amplitude is only a few percents of the max
imum value, see further Section 3.3.2. The P, S and Rayleigh waves are shown schematically
in Figure 2.3.

For a harmonic excitation, the wavelength λ of the resulting waves are λ = c/f , where c is
the wave propagation speed (the so called phase velocity) of the respective wave type and f is
the frequency, in Hz, of the harmonic load. The wavenumber is defined as k = 2π/λ and is

Figure 2.3: P, S and Rayleigh waves.
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the space domain equivalent of the angular frequency ω in time domain (ω = 2πf = 2π/T ).

Disregarding any energy dissipation due to material damping, the total energy within a trav
eling wave remains constant. However, since the wavefront increases in size with increasing
distance from the source, the energy density decreases, causing an attenuation of the particle
displacement amplitude. Contrary to the P and Swaves, that propagate away from a point
source with spherical wavefronts, the Rayleigh wave propagates only along the surface with a
circular wavefront. Therefore, the attenuation is weaker for the Rayleigh wave than for the P
and Swaves. The Rayleigh wave carries about 2/3 of the energy transmitted into the ground
from a vertical oscillatory load on the surface of an elastic halfspace [6]. Furthermore, due
to the lower attenuation of the Rayleigh wave, the particle displacement on the soil surface is
often primarily due to the Rayleigh wave, especially at longer distances.

The earth is not a homogeneous halfspace. All soils are layered to some extent, with different
material properties within and between the different layers. Hence, waves propagate with
different velocities in the different layers. When a wave arrives at an interface between two
layers with different elastic properties, the wave is partially reflected and partially refracted.
Similarly to the case of P and Swaves interacting at the free surface of a homogeneous half
space, interaction between the two waves takes place along an interface between two different
materials. The layering also introduces surface waves other than the fundamental Rayleigh
wave. These are often called PSV waves, indicating that they stem from interacting P and
vertically polarized Swaves. In fact, the depth and material properties of the different soil
layers have a huge impact on the vibration response. Some typical wave speeds of P and
Swaves in different soil materials are shown in Figure 2.4.

As will be shown in Section 3.3.2, the speeds with which the P, S and Rayleigh waves propag
ate (cp, cs and cR) within a homogeneous material are independent of frequency. Such waves
are called nondispersive. In a layered soil, with homogeneous layers, the surface waves become
dispersive due to the fact that the wavefronts potentially span several soil layers with different
mechanical properties. For very low frequencies, i.e. long wavelengths, the velocity of the sur

0 500045004000500 1000 1500 2000 2500 3000 3500

Granite, gneiss

Sandstone, slate

Brittle rock

Morain (below water table)
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Clay, silt

Sand, gravel (below water table)
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Figure 2.4: Phase velocities of P and Swaves in some typical ground materials [7].



2.3 Ground vibrations 9

face wave is generally governed by the phase velocity in the lower soil layers. On the contrary,
for higher frequencies, i.e. short wavelengths, when most of the surface wave is contained in
the upper layer(s), the phase velocity of the Rayleigh wave in the upper layer(s) governs the
velocity of the surface wave. This is illustrated in Figure 2.5, showing the so called dispersion
diagrams of the P, S and Rayleigh waves for the two materials of a layered ground consist
ing of a 4 m deep clay shale layer, overlaying a halfspace. The dispersion curves of the stiffer
halfspace material are shown in blue, whereas the corresponding curves for the soil layer are
shown in red. The curves are shown in a wavenumber–frequency diagram, so that the phase
velocity of each wavetype is given by the inverse of the slope in the diagram (c = ω/k). The
lines have a constant slope, i.e. the same phase velocity regardless of frequency. The curves
are displayed over a contour plot showing the amplitude of vertical response due to a vertical
harmonic excitation of the soil surface, where black indicates high response and white indicates
low response. For excitation frequencies over about 15Hz, the response for a given frequency
is dominated by wavenumbers around the Rayleigh wave of the top soil material, meaning that
the fundamental surface wave is practically unaffected by the higher phase velocities in the un
derlying halfspace. An increasing number of higher order waves, faster than the fundamental
surface wave, emerge for increasing frequencies. For frequencies below 5 Hz, the response on
the soil surface is dominated by lower wavenumbers pertaining to the phase velocity in the
underlying halfspace, and in the range of about 5–15Hz the velocity of the wave dominating
the response is affected by both the top soil layer and the halfspace.

Figure 2.5: Dispersion curves for a layered halfspace. Straight lines represent Pwaves (dot
ted), Swaves (solid) and Rayleighwaves (dashed) of the top soil (red) and the
halfspace material (blue).
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In reality soil is not a homogeneous, linearly elastic medium. Soil is a granular material that
typically displays a highly nonlinear behavior. However, for the frequencies of interest in en
vironmental vibrations, the wavelengths are much longer than the typical particle size, which
makes a continuum model reasonable. For most problems relating to environmental vibra
tions, the strain levels remain relatively low, especially at some distance from the source, jus
tifying a linear elastic approach. In all forthcoming sections and chapters, a linear elastic con
tinuum approach is assumed for the soil in the numerical predictions of ground vibrations.
Further, it is assumed that the soil is horizontally stratified, i.e. that it consists of horizontal
layers.

2.3.2 Ground response to stationary and moving loads

The response of the ground to a dynamic load depends, apart from the site conditions (i.e. soil
stratification and elastic properties), on the load distribution in space and time. The distribu
tion in time, i.e. the load timehistory signal, can be decomposed into its spectral components
through a Fourier transform. The analysis of single harmonic excitation components, in con
trast to a transient timehistory analysis, is sometimes preferred both due to computational
efficiency and physical insight.

When a harmonic load with frequency f is stationary, i.e. remains in the same position on the
soil surface, the response in a stationary receiver anywhere on the soil surface is also harmonic
with the same frequency. If the load is moving with a constant velocity on the soil surface, the
response in a receiver moving with the same velocity is also harmonic with the frequency of
the load. However, if the receiver position remains fixed and the load is moving (or vice versa),
the response in the receiver becomes transient. The response amplitude increases as the load
approaches the receiver, and decreases as the load recedes away from the receiver. Furthermore,
the response in the stationary receiver contains more frequencies than the excitation frequency
f of the moving load. When the load is approaching the receiver, the wavelengths of the waves
reaching the receiver are compressed, and instead elongated as the load moves away from the
receiver. This is known as the Doppler effect. This phenomenon is illustrated in Figure 2.6,
for a unit harmonic load at f = 40 Hz distributed over a circular area (r = 0.5 m) on the
soil surface. Figure 2.6 (a) shows the wavefield on the soil surface when the load is stationary,
whereas in (b) the load is moving with a velocity of v = 0.38cR = 100m/s along the positive
xaxis. The timehistory response of a stationary point, located at (x, y) = (0, 15), is shown
in Figure 2.7, for the case of a stationary load (a), and for the case of the moving load (b).
In figure (b), for the moving load, the time t = 0 corresponds to when the load is located at
(x, y) = (0, 0). The difference in time periods for one cycle of vibration in the beginning and
the end of the event is clearly seen.

A moving load generates vibrations in a stationary receiver even when the load is constant.
This is because the constant load causes a deflection of the soil surface that follows the moving
load, and as the deflected soil surface passes the receiver a transient movement is registered.
The response of the soil surface when the constant load moves at a velocity of v = 0.38cR,
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Figure 2.6: Wavefield generated by a harmonic unit load at f = 40 Hz that is stationary (a),
and moving along the xaxis at the speed v = 0.38cR = 100 m/s (b) .

well below the Rayleigh wave speed in the soil material, is shown in Figure 2.8 (a). When the
load velocity approaches the Rayleigh wave speed, the soil displacement increases as shown in
Figure 2.8 (b). When the load velocity exceeds the Rayleigh wave speed, a number of waves
are generated behind the load, as shown in Figure 2.8 (c). Highspeed trains on poor soil
conditions, moving at critical speed, close to or faster than the wave speed of the soil material,
generating high vibration amplitudes in the track and the surrounding soil, is a wellknown
phenomenon and has been studied by several researchers. A famous example from Sweden
is that of Ledsgård, where the passenger train X2000 generated very high ground vibrations
due to poor soil conditions [8]. A numerical study concerning critical speed and its mitigation
through soil stiffening is presented in appended Paper D.
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Figure 2.7: Timehistory of the displacements in a stationary point 15 m from a harmonic unit
load at f = 40Hz that is stationary (a), and moving along the xaxis at the speed
v = 0.38cR = 100 m/s (b) .
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Figure 2.8: Constant unit load moving along the xaxis at the speeds v = 0.38cR (a), v =
1.0cR (b) and v = 1.15cR (c).

2.3.3 Vibration reduction methods

With reference to Figure 2.1, measures to reduce the groundborne vibrations experienced by
a receiver may be directed to the source, the transmission path or the receiver.

When vibration mitigation measures are directed to the source, the general idea is to reduce
the forces transmitted from the source to the ground. This may be achieved by introducing
a resilient element under the source that modifies the transmissibility, i.e. the ratio of the
transmitted force to the applied force. This concept is illustrated in Figure 2.9, showing the
transmissibility of a singledegreeoffreedom (SDoF) system subjected to a harmonic load.
Depending on the relation between the frequency of the applied load, ω, and the resonance
frequency of the SDoF system, ωn, different amounts of the applied load P0 are transferred
to the support. Hence, when a resilient element is introduced under the source, the resonance
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Figure 2.9: Transmissibility for harmonic excitation, for different factors of critical damping
ξ. After [9].

frequency of the system decreases, increasing the ratio ω/ωn. For loading frequencies higher
than the new resonance frequency of the system, the transmissibility decreases, thereby dy
namically isolating the mass. This comes at the cost, however, of an increased transmissibility
around the new resonance frequency. Apart from the elastic properties of the resilient element,
the transmissibility is governed also by the damping properties, as indicated by the difference
between the curves in the diagram.

For railway tracks an example of a resilient element is an elastic mat placed under the ballast, a
so called underballast mat, in the case of a conventional ballasted track, or underneath the slab
in the case of a slab track resulting in a so called floating slab. Resilient elements may also be
introduced higher up in the track structure, e.g. in the rail fasteners. However, to dynamically
isolate the track for frequencies relevant to ground vibration (< 80 Hz), a large portion of
the track mass should be located over the resilient element [10]. The resilient element should,
with reference to Figure 2.9, provide a resonance frequency as low as possible for the track
structure. A lower limit exists due to limitations in the maximum allowable static deflection.
Another way of addressing traininduced ground vibrations at the source, is to improve the
soil conditions under the track.

Groundborne vibrationsmay also be reduced bymodifications in the transmission path between
the source and the receiver. Typical examples include trenches and solid barriers, where the
idea is to shield an area containing the receiver(s) from incoming waves; see Figure 2.10.
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Figure 2.10: A trench between the source and receiver may be an effective means of reducing
vibrations.

Similarly to the case of introducing a resilient layer underneath the source, the receiver may
be dynamically isolated through the use of a resilient support. It can be shown that the curves
presented in Figure 2.9 for the force transmissibility are identical to those for acceleration trans
missibility. In the latter case, the input to the SDOF system is a harmonic acceleration at the
support, and the measured response is the acceleration of the mass. In regions prone to earth
quakes, seismic base isolation of entire buildings is often based on this principle. However, in
the case of environmental vibrations, a more common use of the principle is to dynamically
isolate sensitive equipment. Great reductions in the response of the receiver can be achieved
by introducing a resilient element at its support. Again, the drawback is the increased trans
missibility for excitation frequencies close to the resonance frequency of the isolated receiver.

When evaluating mitigation efforts, the concept of insertion loss (IL) is often used for quan
tifying the vibration reduction. The insertion loss is expressed in decibels and signifies the
difference in power of two signals. The kinetic energy, and hence power p, of a vibrating
mechanical system, is proportional to the squared displacement u, i.e.

IL = 10log
(pref
piso

)
= 10log

(u2ref
u2iso

)
= 20log

(uref
uiso

)
, (2.1)

where uref denotes the displacement obtained for the reference case, without any installed
mitigation measure, and uiso denotes the displacement obtained after the installation of a mit
igation measure.



3 StructuralDynamics and ElasticWaves

3.1 EQUATIONS OF MOTION

By studying the forces acting on an infinitesimal cube within a continuum and applying New
ton’s second law, it can be shown that independently of the stress–strain behavior of the con
tinuum, equilibrium requires that

∂σij
∂xj

+ bi = ρ
∂2ui
∂t2

, (3.1)

which is the Cauchy equation of motion. Here σij = σij(x1, x2, x3, t) is the Cauchy stress
tensor, ui = ui(x1, x2, x3, t) is the displacement in direction i, bi = bi(x1, x2, x3, t) is
the body forces per unit volume in direction i. Further, ρ = ρ(x1, x2, x3) is the material
density, t denotes time and xj is the coordinate in direction j of the Cartesian space. Note
that Eq. (3.1) actually contains three equations, one for each coordinatedirection i = 1, 2, 3.
As will be shown in Section 4.1, these equations are the starting point when formulating the
FE equations for a solid continuum.

Assuming small strains and a linear elastic material behavior, the stressstrain relationship fol
lows Hooke’s law,

σij(x1, x2, x3, t) = Eijklϵkl, (3.2)

where Eijkl is the elasticity tensor and the smallstrain tensor is

ϵij = ϵij(x1, x2, x3, t) =
1

2

(∂ui
∂xj

+
∂uj
∂xi

)
. (3.3)

For a homogeneous material with linear elastic properties, the stress tensor can be written as

σij(x1, x2, x3, t) = λ∆δij + 2µϵij , (3.4)

where λ and µ are the Lame’ parameters defined as functions of Young’s modulus E and
Poisson’s ratio v, as

λ = νE
(1+ν)(1−2ν) , µ = E

2(1+ν) . (3.5)
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Further, δij is the Kronecker delta function, and ∆ is the dilation defined as

∆ = ∆(x1, x2, x3, t) = ϵ11 + ϵ22 + ϵ33 =
∂uk
∂xk

. (3.6)

It can be shown that these definitions together with Eq. (3.1) lead to the Navier equations

(λ+ µ)
∂2uj
∂xi∂xj

+ µ
∂2ui
∂xj∂xj

+ bi = ρ
∂2ui
∂t2

, (3.7)

which can also be written as

(λ+ µ)
∂∆

∂xi
+ µ∇2ui + bi = ρ

∂2ui
∂t2

, (3.8)

with the Laplacian operator∇2 defined as

∇2 =
∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
=

∂2

∂xj∂xj
. (3.9)

3.2 STRUCTURAL DYNAMICS

A linearly elastic mechanical system can be described by its mass, elastic and damping proper
ties. The simplest possible system having all these three properties is the so called singledegree
offreedom (SDoF) system shown in Figure 3.1, consisting of a mass, a (weightless) spring and
a (weightless) viscous damper (dashpot). The degreeoffreedom (DoF) refers to the possible
movement of the mass, which in this example is constrained to the horizontal axis. The elastic
force in the spring is proportional to the displacement u of the mass and the spring stiffness
k, i.e. fe = ku, whereas the force in the dashpot is proportional to the velocity u̇ of the mass
and the damping coefficient c, i.e. fd = cu̇. Using d’Alemberts principle, the inertia force
of the mass m is proportional to the acceleration ü, i.e. fi = mü and acting in the opposite
direction of the acceleration. When a time dependent external load p(t) is applied to the mass,

Figure 3.1: Singledegreeoffreedom system subjected to a timedependent force p(t). After
[11].
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the equation of motion for the mass is obtained by expressing the equilibrium of the forces
acting on it, as

fi(t) + fd(t) + fe(t) = p(t), (3.10)

which, by using the previous expressions for the individual components, can be written as

mü(t) + cu̇(t) + ku(t) = p(t). (3.11)

For a multidegreeoffreedom (MDoF) system involving several components, the equation of
motion for that system can be written as

Mü(t) +Cu̇(t) +Ku(t) = p(t), (3.12)

whereM,C andK are the systemsmass, damping and stiffness matrices, respectively. Further,
ü(t), u̇(t), u(t), and p(t) denote vectors containing the acceleration, velocity, displacement
and external loading, respectively, for each DoF. In fact, this is also the system of equations
that is solved when applying the FE method as described in Section 4.1.

3.2.1 Free vibration

When no external loading acts on the SDoF system, the solution u(t) to the homogeneous
equation

mü(t) + cu̇(t) + ku(t) = 0, (3.13)

is found on the form
u(t) = Gest, (3.14)

where G is an arbitrary complex constant. By noting that u̇(t) = sGest and ü(t) = s2Gest,
insertion into Eq. (3.13) yields

(ms2 + cs+ k)Gest = 0. (3.15)

Nontrivial solutions require thatms2 + cs+ k = 0, which can be written as

s2 +
c

m
s+ ω2

n = 0, (3.16)

where the variable

ωn =

√
k

m
, (3.17)

has been introduced. The solutions s to Eq. (3.16) are found as

s1,2 = − c

2m
±
√( c

2m

)2
− ω2

n. (3.18)

If no damping is present, i.e. c = 0, then

s1,2 = ±
√
−ω2

n = ±iωn, (3.19)
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where i is the imaginary unit, i =
√
−1, and it can be shown [11] that the resulting motion

u(t) may be written as
u(t) = Acos(ωnt+ ϕ), (3.20)

where the real constant A and the phase angle ϕ depend on the initial conditions. Further, it
is seen that ωn is the frequency of vibration, i.e. the natural frequency of the undamped SDoF
system.

When damping is present, the nature of the solution depends on the relation of the damping
coefficient c to the massm and stiffness k. When the expression under the square root sign in
Eq. (3.18) becomes zero, i.e.

c = cc = 2mωn, (3.21)

the system is said to be critically damped, and the resulting free vibration does not contain any
oscillations, but returns asymptotically to rest as

u(t) = (A+Bt)e−ωnt, (3.22)

where A and B are real constants determined from the initial conditions [11].

The damping ratio ξ is defined as
ξ =

c

cc
. (3.23)

When ξ < 1, the system is said to be underdamped and the free vibration is obtained as

u(t) = Acos(ωDt+ ϕ)e−ξωnt, (3.24)

where ωD = ωn

√
1− ξ2 is the damped frequency of vibration, and the real constant A and

phase angle ϕ are determined from the initial conditions.

For the undamped case of the MDoF system, the homogeneous differential equation

Mü(t) +Ku(t) = 0, (3.25)

is solved by assuming a harmonic solution of the form u(t) = ΦÛeiωt, whereΦ is a constant
vector, Û is a complex amplitude and ω is the angular frequency of vibration. Inserting the
assumed solution into Eq. (3.25) yields

(−ω2M+K)ΦÛeiωt = 0, (3.26)

and nontrivial solutions require that

det(−ω2M+K) = 0. (3.27)

If the system has N DoFs, then N solutions to Eq. (3.27) exist, with the eigenvalues (natural
frequencies) ωi = ω1, .., ωN and corresponding eigenvectors (natural modes, eigenmodes)
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Φi = Φ1, ..,ΦN . The modes can be used as base vectors for describing any displacement of
the system as

u(t) =
i=N∑
i=1

qi(t)Φi, (3.28)

where qi(t) is the modal coordinate. Further, the modes are mass and stiffness orthogonal,
and can be used for diagonalizing the mass and stiffness matrices, providing a set of N un
coupled equations. Hence, the response of each mode can solved separately, analogously to a
SDoF system and the total system response is obtained by Eq. (3.28). This is also true for a
damped MDoF system, if so called classical damping is utilized, meaning that the modes also
diagonalize the damping matrix.

3.2.2 Steady-state response to harmonic loading

When a SDoF system is subjected to a harmonic load, i.e. p(t) = p̂eiωt, the steadystate solu
tion to Eq. (3.11) is found by assuming that the response is also harmonic with the excitation
frequency, i.e. u(t) = ûeiωt. Insertion into Eq. (3.11) yields

(−ω2m+ iωc+ k)û = p̂, (3.29)

or equivalently

û =
p̂

(−ω2m+ iωc+ k)
. (3.30)

Using Eq. (3.21) and Eq. (3.23), this can be written as

û =
p̂

k(1− ω2

ω2
n
+ 2i ω

ωn
ξ)
. (3.31)

The steadystate forces in the spring and dashpot are fe = ku = kûeiωt and fd = cu̇ =
iωcûeiωt, respectively, and hence the total reaction force becomes

fr = fe + fd =
(k + iωc)p̂

k(1− ω2

ω2
n
+ 2i ω

ωn
ξ)

=
(1 + 2iξ ω

ωn
)p̂

(1− ω2

ω2
n
+ 2i ω

ωn
ξ)
. (3.32)

When divided by p̂, this provides the transmissibility of the SDoF system, i.e. the ratio of the
reaction force to the applied force. In Figure 2.9 this expression is plotted for different values
of ω/ωn and ξ .

The transfer function H(ω), or frequency response function (FRF), of the SDoF system is
obtained by dividing Eq. (3.31) by p̂,

H(ω) =
û

p̂
=

1

k(1− ω2

ω2
n
+ 2i ω

ωn
ξ)
, (3.33)
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giving the complex displacement response of the SDoF system due to a unit load of frequency
ω. Clearly, for zero damping, ξ = 0, the response goes to infinity for ω = ωn.

For the MDoF system, governed by Eq. (3.12), subjected to harmonic loading, p(t) = p̂eiωt,
harmonic response is assumed as u(t) = ûeiωt. Here, each element of the vectors p̂ and û
are complex numbers. Similarly to the SDoF system, the following equation is obtained by
insertion of the assumed solution into Eq. (3.12),

(−ω2M+ iωC+K)û = D(ω)û = p̂, (3.34)

where the dynamic stiffness matrix,D(ω) = (−ω2M+ iωC+K) has been introduced. The
solution û is obtained as

û = D−1(ω)p̂. (3.35)

The inverse of the dynamic stiffness matrix,D−1(ω), contains transfer functions between the
different DoFs; i.e. element (i, j) of D−1(ω) contains the response in DoF i, due to a unit
harmonic load applied at DoF j.

3.2.3 Frequency-independent damping

Damping generally refers to a mechanism in which mechanical energy is being dissipated,
causing a reduction of the vibration response. Material damping, more specifically, refers to
the dissipation of mechanical energy within the material due to internal mechanisms. To
model such energy dissipation mathematically, the stress in the material is assumed to consist
of an elastic part depending on the strain level, and a viscous part depending on the strainrate.
Using the analogy of a SDoF system, the elastic part refers to the force in the spring and the
viscous part refers to force in the dashpot. With harmonic displacement loading, i.e.

u = u0e
iωt, (3.36)

the sum of the elastic and viscous force can be written as

fr =
(
ku0 + iωcu0

)
eiωt. (3.37)

One cycle of vibration generates an ellipse in the force–displacement diagram, the hysteresis
loop, as indicated in Figure 3.2. The area within the hysteresis loop signifies the energy dissip
ated over the cycle. The dissipated energy over one cycle of vibration is calculated as

∆W =

∫ 2π
ω

0
fr
∂u

∂t
dt = πcωu20. (3.38)

The maximum strain energy stored during one cycle isWs =
1
2ku

2
0, and it can be shown [12]

that the dissipated energy∆W is related to the damping factor ξ through the maximum strain
energyWs as

ξ =
1

4π

∆W

Ws
=
cω

2k
. (3.39)
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Figure 3.2: Hysteresis loop showing the dissipated energy ∆W during one cycle of vibration
and the maximum strain energyWs.

Here it is seen that the damping factor is proportional to the frequency of the loading ω. To
obtain a frequencyindependent damping, the damping coefficient c is expressed using Eq.
(3.39), as

c =
2kξ

ω
. (3.40)

Insertion of this expression for c into Eq. (3.37) yields

fr =
(
ku0 + iωcu0

)
eiωt = k

(
1 + 2iξ

)
u0e

iωt = k∗u0e
iωt. (3.41)

Here, k∗ = k
(
1 + 2iξ

)
= k

(
1 + iη

)
is the complex stiffness, and η = 2ξ is known as the

loss factor. Now, Eq.(3.40) can be written as

c =
kη

ω
. (3.42)

Generalizing Eq. (3.42) to a MDoF system gives

C = K
η

ω
, (3.43)

which inserted into Eq. (3.34) provides(
− ω2M+ iωC+K

)
û =

(
− ω2M+K(1 + iη)

)
û = D(ω)û = p̂, (3.44)

with the dynamic stiffness defined asD(ω) = −ω2M+K(1 + iη). This type of frequency
independent damping is sometimes referred to as structural damping.
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3.3 ELASTIC WAVES

3.3.1 Wave propagation in structural elements

A disturbance of the static equilibrium of a structural element causes a stress field to propagate
through the member as elastic waves. Different wave types propagate with different phase
velocities that may or may not depend on the frequency. When the phase velocity depends
on the frequency, the waves are called dispersive. When waves are dispersive, a pulse of waves
with different frequencies will spread, or disperse, due to the different propagation velocities.

Longitudinal waves in an infinite rod

First, a simple case of an infinite rod with constant Young’s modulus E, section area A and
density ρ is considered. The equation for the rod can be written as

EA
∂2u(x, t)

∂x2
+ p(x, t) = ρA

∂2u(x, t)

∂t2
, (3.45)

where u = u(x, t) is the displacement of the rod at position x and time t, and p(x, t) denotes
an external force. The homogeneous equation, i.e. without external force, can then be written
as

EA
∂2u(x, t)

∂x2
− ρA

∂2u(x, t)

∂t2
= 0, (3.46)

or equivalently
∂2u(x, t)

∂x2
− 1

c2
∂2u(x, t)

∂t2
= 0. (3.47)

Here, the variable c =
√

E
ρ has been introduced. This is the onedimensional wave equation.

It is easily checked that both the functions ϕ(x− ct) and ψ(x+ ct) satisfy the equation. The
shape of the functions ϕ(x− ct) and ψ(x+ ct) do not change. They represent a displacement
field that propagates as a wave along the xaxis in the positive and negative direction, respect
ively, with the speed c [13]. Hence, for the rod, waves propagate with the so called phase
velocity c =

√
E
ρ . Now, it is assumed that the solution is harmonic in time, i.e. a complex

solution is prescribed as u(x, t) = ũ(x)eiωt. Here, ω is the circular frequency of vibration.
Insertion into Eq. (3.46) and rearranging yields

∂2ũ(x)

∂x2
+
ρ

E
ω2ũ(x) = 0. (3.48)

This is a secondorder differential equation, and solutions are of the form ũ(x) = Ceikx.
Using this expression in Eq. (3.48) yields the dispersion relation,

k2 − ρ

E
ω2 = 0, (3.49)
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which has two roots. Both roots are real, k1,2 = ±ω
√

ρ
E = ±kL. The general solution to

Eq. (3.46) is therefore

u(x, t) = C1e
(iωt+ikLx) + C2e

(iωt−ikLx), (3.50)

where the two terms represent harmonic waves propagating in the negative and positive dir
ections, respectively, of the xaxis. This becomes clear if the phase of the first exponential is
studied. For a certain time t0 and position along the rod x0, the phase is

ξ = ωt0 + kLx0. (3.51)

At a later instant in time, t1 = t0 +∆t, this phase is found at x1 = x0 +∆x, i.e

ξ = ω(t0 +∆t) + kL(x0 +∆x). (3.52)

Subtracting Eq. (3.51) from Eq. (3.52) yields

∆x = − ω

kL
∆t. (3.53)

Since kL is positive and real, ∆x is negative, i.e. the wave has propagated in the negative
xdirection, and it has done so with the phase velocity cL = ω/kL =

√
E/ρ. The term kL

is called the longitudinal wavenumber and it is related to the wavelength λL as kL = 2π/λL.

The fact that the phase velocity does not depend on the frequency ω, means that the longit
udinal waves are nondispersive. As shown in the next section, the situation is different for
flexural waves.

Transversal waves in an infinite Bernoulli beam

For a uniform Bernoulli–Euler beam, the homogeneous equation can be written as

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
= 0, (3.54)

whereEI is the bending stiffness, ρ is the mass density,A is the crosssection area andw is the
vertical displacement. As for the rod in the previous section, a harmonic solution is assumed
as w(x, t) = w̃(x)eiωt. Insertion into Eq. (3.54) yields

∂4w̃(x)

∂x4
+
ρA

EI
ω2w̃(x) = 0, (3.55)

to which solutions are of the form w̃(x) = Ceikx. Using this expression in Eq. (3.55) yields
the dispersion relation,

k4 − ρA

EI
ω2 = 0. (3.56)
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This equation has two real and two imaginary roots; k1,2 = ±kB and k3,4 = ±ikB where

kB =
√
ω
(
ρA
EI

)1/4
is the flexural wavenumber. The general solution to Eq. (3.54) is therefore

w(x, t) = C1e
(iωt+ikBx) + C2e

(iωt−ikBx) + C3e
(iωt−kBx) + C4e

(iωt+kBx). (3.57)

Here, the terms involving C1 and C2 represent propagating waves, whereas the two remaining

terms represent evanescent waves. The phase velocity is cB = ω
kB

=
√
ω
(
EI
ρA

)1/4
. The phase

velocity is frequencydependent, i.e. the flexural waves are dispersive.

3.3.2 Wave propagation in an elastic continuum

In Section 3.1 the Navier equations, expressing the equation of motion for a homogeneous,
linearly elastic continuum, was presented. Disregarding body forces, the Navier equations
become

(λ+ µ)
∂2uj
∂xi∂xj

+ µ
∂2ui
∂xj∂xj

= ρ
∂2ui
∂t2

. (3.58)

For a homogeneous infinite domain, i.e. a so called fullspace, there are two different solutions
to this equation: the dilational Pwave and the equivoluminal Swave. These are called body
waves. However, for a homogeneous domain with a free surface, i.e. a so called halfspace, a
coupling occurs between the Pwave and the Swave. This coupling results in a surface wave,
the Rayleigh wave, propagating in a direction parallel with the surface.

The P-wave

It can be shown [6] that by taking the divergence of Eq. (3.58), a scalar wave equation is
obtained in terms of the previously defined dilation∆(x1, x2, x3, t), as

∂2∆

∂xk∂xk
=

1

c2p

∂2∆

∂t2
, (3.59)

with

cp =

√
λ+ 2µ

ρ
. (3.60)

This means that the solution to Eq. (3.59) represents a wave where the dilation ∆ propagates
with the velocity cp. This wave is frequently called the Pwave, pressure wave, or primary wave,
where primary refers to the fact that it is the fastest traveling wave and hence the first wave to
arrive at a receiver.
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The S-wave

Taking the rotation of Eq. (3.58), leads to the following threedimensional wave equation [6]

∂2wi

∂xj∂xj
=

1

c2s

∂2wi

∂t2
, (3.61)

where wi = wi(x1, x2, x3, t) denotes the rotation of the displacement field, defined as

w1 =
1
2(

∂u3
∂x2

− ∂u2
∂x3

), w2 =
1
2(

∂u1
∂x3

− ∂u3
∂x1

), w3 =
1
2(

∂u2
∂x1

− ∂u1
∂x2

), (3.62)

and
cs =

√
µ

ρ
. (3.63)

The solution to Eq. (3.61) describes the propagation of a pure rotational wave, with the phase
speed cs. This wave is usually called the Swave, shear wave or secondary wave. The particle
motion is perpendicular to the propagation direction. Often the Swave is divided into two
components of horizontal and vertical motion, referred to as SH and SVwaves.

The Rayleigh wave

Here, a plane surface wave propagating in the positive x1direction of a homogeneous half
space is considered. The depth coordinate, x3, is pointing into the interior of the halfspace.
The particle displacement is independent of the x2coordinate. The displacements in the x1
and x3directions are now expressed in terms of two potential functions Φ and Ψ:

u1 =
∂Φ

∂x1
+
∂Ψ

∂x3
, u3 =

∂Φ

∂x3
− ∂Ψ

∂x1
, (3.64)

which inserted into Eq. (3.58) yields the two equations [6]

∇2Φ =
1

c2p

∂2Φ

∂t2
, ∇2Ψ =

1

c2s

∂2Ψ

∂t2
. (3.65)

The wavefield is allowed to propagate along the x1axis only. Harmonic solutions to Eqs.
(3.65) are therefore sought in the form

Φ = F (x3)e
i(ωt−kRx1), Ψ = G(x3)e

i(ωt−kRx1), (3.66)

where F (x3) and G(x3) are amplitude functions, and kR is the wavenumber of the Rayleigh
wave, kR = 2π/λR. Insertion of these expressions into Eq. (3.65) leads to the following
ordinary differential equations for F and G,

d2F (x3)
dx23

− γ2pF (x3) = 0,
d2G(x3)
dx23

− γ2sG(x3) = 0, (3.67)
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where γ2p = k2R − k2p and γ2s = k2R − k2s . The solution to Eqs. (3.67) are sought on the form

F (x3) = A1e
(−γpx3) +B1e

(γpx3), G(x3) = A2e
(−γsx3) +B2e

(γsx3). (3.68)

The constantsB1 = B2 = 0, since an amplitude increasing to infinity with the depth coordin
ate x3 is physically invalid. Hence, from Eqs. (3.66) and (3.68), the following expressions are
obtained for the potential functions

Φ = A1e
(−γpx3)ei(ωt−kRx1), Ψ = A2e

(−γsx3)ei(ωt−kRx1). (3.69)

The free surface is traction free, i.e. σ33 = σ13 = 0. Using these boundary conditions, with
the expression for the stress tensor in Eq. (3.4), the displacements in Eq. (3.64), and the
potentials in Eq. (3.69), the following relations are obtained

A1

A2

(λ+ 2µ)γ2p − λk2R
2iµkRγS

− 1 = 0,

A1

A2

2γpikR
γ2s + k2R

+ 1 = 0.

(3.70)

It can be shown [6] that from these relations, the following expression may be obtained relating
the Rayleigh wave velocity cR and the Swave velocity cs,

K6 − 8K4 + (24− 16α2)K2 + 16(α2 − 1) = 0, (3.71)

whereK = cR
cs

and α = cs
cp
. The relation between the Poisson’s ratio, and the phase velocities

of the P, S and Rayleigh waves are shown in Figure 3.3 (left). The phase velocity of the
Rayleigh wave is frequency independent, i.e. the Rayleigh wave is nondispersive.

Inserting the potential functions in Eq. (3.69) into Eq. (3.64) yields the following expressions
for the displacements,

u1 = −A1ikRe(−γpx3)ei(ωt−kRx1) −A2γse
(−γsx3)ei(ωt−kRx1),

u3 = −A1γpe
(−γpx3)ei(ωt−kRx1) +A2ikRe(−γsx3)ei(ωt−kRx1).

(3.72)

Using the relation between A1 and A2 established in Eq. (3.70), these displacements may be
written as

u1 = A1ikR
(
− e(−γpx3) +

2γsγp
γ2s + k2R

e(−γsx3)
)
ei(ωt−kRx1),

u3 = A1kR

(
− γp
kR
e(−γpx3) +

2γpkR
γ2s + k2R

e(−γsx3)
)
ei(ωt−kRx1).

(3.73)

The terms inside the main brackets signify the difference in amplitudes for the horizontal and
vertical particle motion. The presence of i in u1 means that the horizontal particle motion is
outofphase with the vertical motion by 90◦, indicating that the particle movement follows an
elliptical path. The relative amplitudes of the horizontal and vertical particle motion is shown
in Figure 3.3 (right), for various values of Poisson’s ratio.
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Figure 3.3: Left: Relation between Poisson’s ratio and phase velocities of the P, S and
Rayleigh (R) wave. Right: Relative amplitudes of vertical (solid) and horizontal
(dashed) particle motion in Rayleigh wave for various Poisson’s ratio.

Damping

For soils, material damping effects occur due to friction between particles and structural re
arrangement of the particles. Experimental studies suggests that the damping ratio is rather
insensitive to the frequency of vibration. Hence, in computational models, soil material damp
ing is most often introduced as a loss factor by using complex stiffness values as described in
Section 3.2.3.

Another form of “damping” relevant for ground vibrations, is the attenuation of the vibration
response at an increasing distance from the source, which is due to the spreading of the energy
over a successively larger domain. This is usually called geometrical damping or geometrical
attenuation. P and Swaves originating from a point source on the soil surface spread radially
with hemispherical wavefronts. At the time t the distance to the wave front, i.e. the radius of
the halfsphere, is r = c × t and the surface area of the halfsphere is 2πr2. The amount of
energy contained in the wavefront does not change, meaning that the energy density is inversely
proportional to the wavefront surface area. Hence, the energy of body waves spreads as 1/r2.
Since the mechanical energy (strain energy + kinetic energy) is proportional to the squared
displacements, the displacement amplitude of body waves decreases as 1/r. However, when
the source is a line load, the body waves spread radially with cylindrical wavefronts, and by the
same reasoning the energy and displacement amplitude can be shown to decrease as 1/r and
1/
√
r, respectively. Surface waves that originate from a point source on the soil surface, spread

radially along the surface with circular wavefronts, with the energy density being proportional
to the wavefront circumference. Hence, the energy of Rayleigh waves decreases as 1/r, and the
displacement amplitude decreases as 1/

√
r. In the case of a line load, there is no geometrical

attenuation at all of the surface waves [14].
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3.4 SOIL–STRUCTURE INTERACTION

3.4.1 General remarks

Amodeling approach to calculate the vibrations inside a building excited by an external source,
located on the ground surface or inside the soil volume, is to include everything, i.e. the
source, the soil and the building structure, in one large numerical model analyzed in time
domain. However, in many cases this approach is impractical and computationally expensive.
Kausel [15,16] showed that, if the source is unaffected by the presence of the building structure,
the excitation of the building is fully defined by the freefield ground motion calculated or
measured at the location of the building. The freefield ground motion can then be used
for exciting the building, and obtaining the building response, in a calculation model of the
building where the surrounding soil is included only as a dynamic stiffness at the soil–structure
interface. This is referred to as the “substructure theorem”, presented in the following section.

3.4.2 Substructure theorem

The building response to the incoming wave field may be determined by applying a frequency
domain formulation in which the building is excited by a set of fictitious forces at the soil–
structure interface. These fictitious forces are calculated from the freefield response at the soil–
structure interface. Kausel et al [15, 16] refer to this as the substructure theorem which can be
motivated in the following manner. Figure 3.4 (a) shows a building structure, with an external
source exciting the ground. The excitation by the external source causes a displacement ui

and a traction pi along the soil–structure interface, where a subindex i refers to the interface.
In Figure 3.4 (b) the building is extracted from the ground, viewed as a free body in space.
Equilibrium requires that the displacements ui are identical at the soilstructure boundaries of
both subsystems, and that the tractions pi are equal in size but in opposite direction.

In Figure 3.4 (c) the same source is present, but without the building structure; however the soil
prism that were to be removed in order to erect the building is highlighted. The displacements
and tractions along the soil prism boundary are denoted by u∗

i and p∗
i respectively. In Figure

3.4 (d) the soil prism is extracted, and again equilibrium requires that the displacements are
equal at the boundaries of both subsystems, and that the tractions are equal in size but in
opposite direction. If the forces and displacements of the outer region in Figure 3.4 (d) are
subtracted from Figure 3.4 (b), the external source cancels out, and the displacements and
tractions on the open soilstructure interface become ∆ui = ui − u∗

i and ∆pi = −pi −
(−p∗

i ) = p∗
i −pi respectively. Since the external source has cancelled out, the displacements

∆ui can only be the result of the tractions∆pi, and these two fields are related via the dynamic
stiffness of the soil along the soil–structure boundary Z = Z(ω) as

Z∆ui = ∆pi → Z(ui − u∗
i ) = p∗

i − pi. (3.74)
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Figure 3.4: Dynamic excitation of the soil surface by the source F(ω) for the cases with (a and
b) and without (c and d) an adjacent building structure.

Referring to the building structure subsystem in Figure 3.4 (b) the forces acting on the build
ing along the soil–structure interface, pi, can be obtained from Eq. (3.74) as

pi = −Zui + Zu∗
i + p∗

i . (3.75)

Letting a subscript b refer to all the degrees of freedom of the structure except those at the
soil–structure interface, the dynamic equilibrium of the structure can be written as[

Dbb Dbi

Dib Dii

] [
ub

ui

]
=

[
0
pi

]
=

[
0

−Zui + Zu∗
i + p∗

i

]
, (3.76)

where D = D(ω) is the dynamic stiffness of the building. Moving the first load term to the
lefthand side, results in

[
Dbb Dbi

Dib Dii + Z

] [
ub

ui

]
=

[
0

Zu∗
i + p∗

i

]
. (3.77)

It is now clear that the building response, due to the external source loading, can be calculated
using the freefield displacements and tractions at the soil–structure interface obtained from a
calculation model where the presence of the building structure is disregarded. This approach is
very convenient as it allows the separation of source and receiver into different models. This is
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particularly useful when dealing with building responses due to moving loads. Computational
models operating in frequency domain in a moving frame of reference following the moving
load can be very efficient, compared to conventional 3D timedomain models, for calculating
the freefield ground motion caused by the moving load but such models do not allow for the
inclusion of stationary structures, at least not in a straight forward manner. The substructure
theorem enables the calculation of the building response in a separate conventional structural
model using the freefield response, obtained from a different model, as excitation input. The
formulation makes no approximations and is therefore exact, however the necessary assump
tions are that the soil response is linear and that the source loading is unaffected by the presence
of the building structure. Since the formulation is in frequency domain, Eq. (3.77) is solved
for a range of frequencies and if the timedomain response is required, it can be obtained from
an inverse discrete Fourier transform.

The dynamic stiffness of the soil along the soil–structure interface, Z(ω), can be obtained in
several ways. For homogeneous halfspaces and circular footings, analytical expressions exist.
For more complex soil profiles and footing geometries, numerical methods such as FEM or
semianalytical techniques can be used. In Paper E, Z(ω) was calculated using the Green’s
function of a layered halfspace, obtained using the semianalytical technique discussed in
Chapter 4.



4 Numerical Solution Methods

In the current work, several numerical solution methods have been used for calculating the
ground vibrations from loads on a railway track. Various formulations of the finite element
method, described in Section 4.1, has been used for modeling the railway track. To model the
wave propagation in the ground, a time efficient semianalytical method described in Section
4.2 has been used as well as finite element modeling of the soil domain. The coupling of the
methods used for the track and soil is described in Chapter 5.

4.1 THE FINITE ELEMENT METHOD

4.1.1 General remarks

In physics and engineering, many phenomena are mathematically described by partial differ
ential equations (PDEs). Analytical solutions to such PDEs can usually only be found for
very simple geometries, domain properties, boundary conditions and loads. For more com
plex cases, numerical methods are employed to find approximations to the true solution. One
commonly used method is the finite element method (FEM), in which the computational
domain is divided into smaller elements forming an element mesh. Each element is geomet
rically defined by its nodes, and in the general case also by some function defining the element
boundary between the nodes. The physical field is discretized onto the nodes, and inside each
element the field is assumed to vary according to some predefined function which is usually a
simple polynomial function. The method is very versatile and can be formulated to account
for very complex behavior such as geometric and material nonlinearities etc.

The FE formulation leads to a system of equations where the values of the physical field in
the nodes are the unknowns. Smaller elements in general lead to a more accurate solution,
since the error due to the assumed variation within each element decreases. At the same time
the computational cost increases, because the size of the system of equations increases with
increasing number of nodes. For problems where the physical field is a scalar function, e.g.
temperature, each node has only one degreeoffreedom (DoF). However, for problems where
the physical field is a vector function, such as structural mechanics problems, each node is gen
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erally associated with a number of DoFs, e.g. the displacements in the (x1, x2, x3)directions.
As mentioned in Section 3.2, the system of equations obtained when applying the FE method
can be written as

Mü(t) +Cu̇(t) +Ku(t) = f(t). (4.1)

Here,M,C andK are the mass, damping and stiffness matrices, respectively. These matrices
are (N × N), where N is the number of DoFs. Further, ü(t), u̇(t), u(t), and f(t) are
(N ×1) column vectors containing the acceleration, velocity, displacement and external load
ing, respectively, for each DoF. Often, the steadystate response due to harmonic excitation,
f(t) = f̂eiωt, is of interest. As mentioned in Section 3.2, this steadystate response is solved
by assuming a harmonic response with the same frequency, u(t) = ûeiωt, resulting in

(−ω2M+ iωC+K)û = D(ω)û = f̂ . (4.2)

In Section 4.1.2 below, the standard FE equations for a 3D linear elastic continuum are presen
ted. These equations are also used in Sections 4.1.3–4.1.4 where FE formulations are presented
for a moving frame of reference, and for so called 2.5D FEM, respectively. Although presented
here only for solid continuum elements, the concepts presented in Sections 4.1.3–4.1.4 apply
analogously also to structural elements such as beam and shell elements, whose derivations
in the fixed frame of reference can be found in standard textbooks on FEM, e.g. [17]. Sec
tion 4.1.5 contains a brief description of perfectly matched layers (PMLs), that are used for
artificially attenuating waves at the truncated ends of a FE model.

4.1.2 Finite element equations for 3D elasticity

The Cauchy equation of motion, governing the dynamic equilibrium of a continuum, was
presented in Section 3.1 and is repeated here for clarity,

∂σij
∂xj

+ bi = ρ
∂2ui
∂t2

. (4.3)

Defining the matrix differential operator ∇̃, the stress vector σ, the body force vector b and
the displacement vector u as

∇̃T
=

 ∂
∂x1

0 0 ∂
∂x2

∂
∂x3

0

0 ∂
∂x2

0 ∂
∂x1

0 ∂
∂x3

0 0 ∂
∂x3

0 ∂
∂x1

∂
∂x2

 , (4.4)

σT =
[
σ11 σ22 σ33 σ12 σ13 σ23

]
, (4.5)

bT =
[
b1 b2 b3

]
, (4.6)

uT =
[
u1 u2 u3

]
, (4.7)
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Eq. (4.3) is written as

∇̃T
σ + b = ρ

∂2u

∂t2
. (4.8)

The weak form is obtained by multiplying Eq. (4.8) by an arbitrary weight function vector
g = g(x1, x2, x3) and integrating it over the region [17]. The resulting weak form, after
partial integration of the first term, becomes∫

V
(∇̃g)Tσ dV + ρ

∫
V
gT∂

2u

∂t2
dV =

∫
S
gTt dS +

∫
V
gTb dV, (4.9)

where t is the traction vector.

To obtain the FE formulation, the displacements u(x1, x2, x3, t) are approximated using the
nodal values a(t) and the shape functions N(x1, x2, x3) as u = Na. The shape function
matrixN is written as

N(x1, x2, x3) =

N1 0 0 N2 0 0 ... Nn 0 0
0 N1 0 0 N2 0 ... 0 Nn 0
0 0 N1 0 0 N2 ... 0 0 Nn

 , (4.10)

where n is the number of nodes and Ni = Ni(x1, x2, x3). Further, the stress vector is
expressed as σ = Dϵ = D∇̃u = D∇̃Na. Here, D is the constitutive matrix for isotropic
elasticity,

D =
E

(1 + v)(1− 2v)



1− v v v 0 0 0
v 1− v v 0 0 0
v v 1− v 0 0 0
0 0 0 1

2(1− 2v) 0 0
0 0 0 0 1

2(1− 2v) 0
0 0 0 0 0 1

2(1− 2v)

 .
(4.11)

Adopting the Galerkin method, the weight function g(x1, x2, x3) is approximated using the
same shape functions as for the displacement field, i.e. g = Nc. Here, c is an arbitrary vector.
Inserting these approximations for u and g into Eq. (4.9) and noting that c is arbitrary, the
mass and stiffness matrices and the load vector, are identified as

K =

∫
V
(∇̃N)TD(∇̃N) dV,

M = ρ

∫
V
NTN dV,

fl =

∫
S
NTt dS +

∫
V
NTb dV.

(4.12)

Although the expressions of thematrices in Eqs. (4.12) are for the entire computational domain
V with the boundary surfaceS, they are equally valid, and generally evaluated, for each element
separately. This is done by exchanging the integration limits from those of the entire domain (V
and S) to those of the individual element (V e and Se) and further by changingN, describing
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the shape functions of all the elements, to Ne, describing the shape functions solely for the
individual element. The so obtained element matrices (Ke, Me, f el ) are then assembled into
their position of the respective global matrices (K,M, fl), determined by the global numbering
of the element DoFs.

4.1.3 Formulation in a moving frame of reference

When analyzing moving loads, such as a train moving along a railway track, a traditional
3D FE approach can lead to a very large system of equations. Because the load is moving,
it will eventually leave the computational domain. Hence, it may be necessary to use a very
large model. If the geometry and the material properties are invariant in the direction of the
moving load, a computationally more efficient model may be obtained, by formulating the
governing equations in a reference frame that follows the moving load at a fixed velocity. In
such a formulation, the moving load remains fixed in the same position of the model, enabling
the use of a smaller computational domain. Furthermore, the problem can be analyzed using
frequencydomain methods instead of timestepping procedures, which may be beneficial both
in terms of computational cost and understanding of physical phenomena.

Here, the load is assumed to move at a fixed speed v along the positive x1axis. A coordinate
transformation is introduced as

(x̃1, x̃2, x̃3) = (x1 − vt, x2, x3), (4.13)

where x̃1, x̃2, x̃3 denotes the coordinates in the moving frame of reference. Partial derivatives
in the two reference frames are related as [14]

∂

∂x1
=

∂

∂x̃1
,

∂

∂t

∣∣∣
x1

=
∂

∂t

∣∣∣
x̃1

− v
∂

∂x̃1
. (4.14)

Applying this coordinate transformation to the Cauchy equation of motion, Eq. (4.3), yields

∂σ̃ij
∂x̃j

+ b̃i = ρ
(∂2ũi
∂t2

− 2v
∂2ũi
∂t∂x̃1

+ v2
∂2ũi
∂2x̃1

)
, (4.15)

where˜denotes that a variable is expressed in the moving frame of reference. With a notation
analogous to Eq. (4.8), this equation can be written as

∇̃T
σ̃ + b̃ = ρ

(∂2ũ
∂t2

− 2v
∂2ũ

∂t∂x̃1
+ v2

∂2ũ

∂2x̃1

)
. (4.16)

Now the ordinary procedure is followed to reach the FE formulation. The weak form is ob
tained by multiplying with an arbitrary weight function g = g(x̃1, x̃2, x̃3) and integrating
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over the region, resulting in∫
V
(∇̃g)Tσ̃ dV + ρ

∫
V
gT∂

2ũ

∂t2
dV − 2ρ v

∫
V
gT ∂2ũ

∂t∂x̃1
dV +

ρ v2
∫
S
gT ∂ũ

∂x̃1
nx dS − ρ v2

∫
V

∂g̃

∂x̃1

T ∂ũ

∂x̃1
dV =∫

S
gTt̃ dS +

∫
V
gTb̃ dV,

(4.17)

after partial integration of the first term. The displacements ũ(x̃1, x̃2, x̃3, t) are approximated
using the nodal values ã(t) and the shape functionsN(x̃1, x̃2, x̃3) as ũ = Nã. It is emphas
ized that the nodal values now represent displacements in the moving frame of reference. The
weight function g(x̃1, x̃2, x̃3) is approximated using the same shape functions, i.e. g = Nc̃,
where c̃ is an arbitrary vector. Inserting these approximations into Eq. (4.17) yields the mass,
damping and stiffness matrices, as well as the load vector, as

K =

∫
V
(∇̃N)TD(∇̃N) dV − ρv2

∫
V

∂N

∂x̃1

T ∂N

∂x̃1
dV + ρv2

∫
S
NT ∂N

∂x̃1
nx dS,

C = −2ρv

∫
V
NT ∂N

∂x̃1
dV,

M = ρ

∫
V
NTN dV,

fl =

∫
S
NTt̃ dS +

∫
V
NTb̃ dV.

(4.18)

Comparing Eqs. (4.18) with Eqs. (4.12) it is seen that due to the coordinate transformation,
some velocity dependent terms have arised in the stiffness matrix and the damping matrix.
These terms are called convective terms. It is also emphasized that if the load speed is set to
v = 0, the expressions in Eqs. (4.18) are identical to Eqs. (4.12). As pointed out in [14],
convection may lead to unstable numerical solutions in time domain analyses if the standard
Galerkin approach is used, and there are different ways to stabilize the solution. However,
in the present work the formulation above is used merely for frequency domain analyses, see
Chapter 5 and the appended papers.

4.1.4 FE formulation in 2.5D

When the problem geometry is invariant in one direction, an efficient solution method can
be established by Fourier transforming the governing equations with respect to the invariant
coordinate axis [18–20]. This is often called 2.5D FEM or wavenumber FEM.

Theweak form for 3D elasticity was established in Eq. 4.9 and is repeated here for convenience.∫
V
(∇̃g)Tσ dV + ρ

∫
V
gT∂

2u

∂t2
dV =

∫
S
gTt dS +

∫
V
gTb dV. (4.19)
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The volume V is now assumed to be limited in the (x2, x3) directions by the area A, and to
have infinite length in the x1direction. This means that the equation can be written as∫ ∞

∞

∫
A
(∇̃g)Tσ dA dx1 +

∫ ∞

∞

∫
A
gT∂

2u

∂t2
dA dx1−∫ ∞

∞

∫
A
gTb dA dx1 −

∫ ∞

∞

∮
ΓA

gTt dΓA dx1 = 0,

(4.20)

where ΓA denotes the circumference of the areaA. Now, the FEmesh is defined on the surface
A in the (x2, x3)plane. The shape function matrix is written as

N(x2, x3) =

N1 0 0 N2 0 0 ... Nn 0 0
0 N1 0 0 N2 0 ... 0 Nn 0
0 0 N1 0 0 N2 ... 0 0 Nn

 , (4.21)

where n is the number of nodes and Ni = Ni(x2, x3). Further, the displacement vector u,

u(x1, x2, x3) =
[
u1(x1, x2, x3) u2(x1, x2, x3) u3(x1, x2, x3)

]T
, (4.22)

is now approximated using the shape functions and the nodal displacement vector as
u(x1, x2, x3) = N(x2, x3)a(x1), where

a(x1) =
[
a1x1 (x1) a1x2 (x1) a1x3 (x1) a2x1 (x1) ... anx3

(x1)
]T
. (4.23)

With theGalerkin approach, the weight function vector g is also approximated using the shape
functionmatrix and an arbitrary nodal displacement vector asg(x1, x2, x3) = N(x2, x3)c(x1).
As usual, the stress vector is expressed as σ = Dϵ = D∇̃u = D∇̃Na where D is the
constitutive matrix for isotropic elasticity defined in Eq. (4.11). With the matrix differential

x
3

x
2x

1

Figure 4.1: A longitudinally invariant structure with a 2D mesh defined in the (x2, x3)plane.
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operator ∇̃ defined by Eq. (4.4),

∇̃u = ∇̃(Na) = L1N(x2, x3)a(x1) + L2N(x2, x3)
∂a(x1)

∂x1
= B1a(x1) +B2

∂a(x1)

∂x1
,

∇̃g = ∇̃(Nc) = L1N(x2, x3)a(x1) + L2N(x2, x3)
∂c(x1)

∂x1
= B1a(x1) +B2

∂c(x1)

∂x1
,

(4.24)
where

LT
1 =

0 0 0 ∂
∂x2

∂
∂x3

0

0 ∂
∂x2

0 0 0 ∂
∂x3

0 0 ∂
∂x3

0 0 ∂
∂x2

 , (4.25)

and

LT
2 =

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (4.26)

Equation 4.20 can now be written as∫ ∞

∞

∫
A

(
B1c+B2

∂c

∂x1

)T
D
(
B1a+B2

∂a

∂x1

)
dA dx1+∫ ∞

∞

∫
A

(
Nc

)T
ρ
(
N
∂2a

∂t2

)
dA dx1 −

∫ ∞

∞

∫
A

(
Nc

)T
b dA dx1−∫ ∞

∞

∮
ΓA

(
Nc

)T
t dΓA dx1 = 0,

(4.27)

which, by noting that a(x1) and c(x1) are independent of (x2, x3) and can therefore be
placed outside the inner integral, can be written as∫ ∞

∞
cT

∫
A
BT

1DB1 dAa dx1 +
∫ ∞

∞
cT

∫
A
BT

1DB2 dA
∂a

∂x1
dx1+∫ ∞

∞

∂c

∂x1

T ∫
A
BT

2DB1 dAa dx1 +
∫ ∞

∞

∂c

∂x1

T ∫
A
BT

2DB2 dA
∂a

∂x1
dx1+∫ ∞

∞
cT

∫
A
NTρN dA

∂2a

∂t2
dx1 −

∫ ∞

∞
cT

∫
A
NTb dA dx1−∫ ∞

∞
cT

∮
ΓA

NTt dΓA dx1 = 0.

(4.28)

Now, a Fourier transform from the x1coordinate to the wavenumber k1 is performed, and
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the following notation is used

â(k1) =

∫ ∞

∞
a(x1)e

−ik1x1 dx1,

ĉ(k1) =

∫ ∞

∞
c(x1)e

−ik1x1 dx1,

b̂(k1, x2, x3) =

∫ ∞

∞
b(x1, x2, x3)e

−ik1x1 dx1,

t̂(k1, x2, x3) =

∫ ∞

∞
t(x1, x2, x3)e

−ik1x1 dx1.

(4.29)

The derivatives of a and c with respect to x1, become

F
(∂a(x1)

∂x1

)
= ik1â(k1),

F
(∂c(x1)

∂x1

)
= ik1ĉ(k1).

(4.30)

To transform Eq. (4.27), from spatial x1 to wavenumber k1domain, Parseval’s formula is
used: ∫ ∞

∞
g(x1)m(x1) dx1 =

∫ ∞

∞
ĝ(k1)m̂(k1) d

k1
2π
. (4.31)

Equation (4.31) is now applied on Eq. (4.27), yielding∫ ∞

∞
ĉT

∫
A
BT

1DB1 dA â d
k1
2π

+

∫ ∞

∞
ik1ĉT

∫
A
BT

1DB2 dA â d
k1
2π

+∫ ∞

∞
−ik1ĉT

∫
A
BT

2DB1 dA â d
k1
2π

+

∫ ∞

∞
k21 ĉ

T
∫
A
BT

2DB2 dA â d
k1
2π

+∫ ∞

∞
ĉT

∫
A
NTρN dA

∂2â

∂t2
d
k1
2π

−
∫ ∞

∞
ĉT

∫
A
NTb̂ dA d

k1
2π

−∫ ∞

∞
ĉT

∮
ΓA

NTt̂ dΓA d
k1
2π

= 0.

(4.32)

Since ĉ(k1) is arbitrary, it can be concluded that the following equation must apply for each
wavenumber k1,

M¨̂a(k1) +
(
K0 + ik1K1 + k21K2

)
â(k1) = f̂l(k1), (4.33)
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where ¨̂a(k1) =
∂2â(k1)

∂t2
and

M =

∫
A
NTρN dA,

K0 =

∫
A
BT

1DB1 dA,

K1 =

∫
A
BT

1DB2 dA −
∫
A
BT

2DB1 dA,

K2 =

∫
A
BT

2DB2 dA,

f̂l =

∫
A
NTb̂ dA+

∮
ΓA

NTt̂ dΓA .

(4.34)

The terms M, K0, K1 and K2 are independent of the wavenumber k1 and only need to be
evaluated once. The load vector f̂l is in general, however, wavenumber dependent.

For a harmonic load f̂l(k1, t) = f̌l(k1)e
iωt, the response is also harmonic, â(k1, t) = ǎ(k1)e

iωt

leading to, (
− ω2M+K0 + ik1K1 + k21K2

)
ǎ(k1) = f̌l(k1). (4.35)

The system of equations given by Eq. (4.35) is solved for a set of discrete values of the wavenum
ber k1, and the nodal displacements in spatial domain a(x1) are then obtained by a discrete
inverse Fourier transform of ǎ(k1). When solved for N uniformly spaced wavenumbers ran
ging from k1 = −(N2 − 1)∆k1 to k1 = (N2 )∆k1, the displacements a(x1) are obtained for
N uniformly spaced points on the x1axis, spanning the length 2π/∆k1.

Formulation in a moving frame of reference

Contrary to the full 3D case discussed in Section 4.1.3, no additional integrals are introduced
in the FE matrices in the case of 2.5D FE, when the fixed frame of reference is replaced by
one moving at velocity v along the x1axis. In wavenumber domain, this change of reference
frames becomes particularly simple. Actually, the response is obtained in the moving frame of
reference following the load at velocity v, by replacing ω in Eq. (4.35) by ω̃ = ω − k1v. This
is shown in Section 4.2.3 for the semianalytical ground model and, by analogy, applies also
to the case of FE in the wavenumber domain.

4.1.5 Perfectly matched layers

Special attention needs to be given to the fictitious boundaries of a truncated FE model in
order to avoid spurious reflections of elastic waves. One efficient technique is to truncate the
FE model by the use of Perfectly Matched Layers (PMLs) that absorb propagating waves with
any angle of incidence. The idea behind PMLs is the introduction of a so called stretched
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coordinate. Consider an elastic domain extending from s = 0 to s = s0, and a PML region
extending from s = s0 to s = st, see Figure 4.2.

The stretched coordinate is defined as [20, 21]

s̃ =

∫ s

0
λs(s)ds = s0 +

∫ st

s0

λs(s)ds, (4.36)

where λs(s) is a complex valued stretch function. Partial derivatives with respect to s̃ are
written as

∂

∂s̃
=

1

λs(s)

∂

∂s
. (4.37)

Here, a formulation for PMLs in a 2.5D context [20] is considered. Stretching is applied to
the x2 and x3coordinates by introducing the partial derivatives of the stretched coordinates
x̃2 and x̃3 into the equilibrium equation; see Eq. (4.8). Disregarding body forces and as
suming steadystate response with angular frequency ω, this leads to the modified equilibrium
equations

ˆ̃∇
T
σ + ω2ρu = 0, (4.38)

where

ˆ̃∇
T
=

 ∂
∂x1

0 0 1
λ2

∂
∂x2

1
λ3

∂
∂x3

0

0 1
λ2

∂
∂x2

0 ∂
∂x1

0 1
λ3

∂
∂x3

0 0 1
λ3

∂
∂x3

0 ∂
∂x1

1
λ2

∂
∂x2

 . (4.39)

It is shown in [20] that by applying a Galerkin procedure and FE discretization, Eq. (4.35)

Figure 4.2: An incident wave being attenuated inside the PML.
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applies with the following FE matrices for the PML region:

M =

∫
A
λ2λ3N

TρN dA,

K0 =

∫
A
λ2λ3B

T
1DB1 dA,

K1 =

∫
A
λ2λ3

(
BT

1DB2 −BT
2DB1

)
dA,

K2 =

∫
A
λ2λ3B

T
2DB2 dA,

f̂l =

∮
ΓA

λ2λ3N
Tt̂ dΓA .

(4.40)

where B1 = L1N and B2 = L2N with

LT
1 =

0 0 0 1
λ2

∂
∂x2

1
λ3

∂
∂x3

0

0 1
λ2

∂
∂x2

0 0 0 1
λ3

∂
∂x3

0 0 1
λ3

∂
∂x3

0 0 1
λ2

∂
∂x2

 , (4.41)

and

LT
2 =

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 . (4.42)

The stretching functions may be selected according to [20, 21] as

λj(xj) = 1 + f e
j (xj)− i

f p
j (xj)

a0
, (4.43)

where a0 = ωLPML/cs is a dimensionless frequency, with LPML being a characteristic length
chosen as the thickness of the PML and cs is the shear wave velocity in the medium. The func
tions f e

j (xj) and f
p
j (xj) are attenuation functions, attenuating evanescent (e) and propagat

ing (p) waves, respectively. For λ2 = λ3 = 1, it is seen that the matrices in Eq. (4.40) for the
PML region equal those in Eq. (4.34) for the regular domain. This should hold at the interface
between the regular domain and the PML to avoid an impedance mismatch, i.e. the atten
uation functions f e

j (xj) and f
p
j (xj) should equal zero at the interface. It is shown in [20]

that using a nonzero attenuation function for the evanescent waves shortens the wavelength
of propagating waves inside the PML, necessitating a denser FE mesh.
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4.2 THE LAYER TRANSFER MATRIX METHOD

4.2.1 General remarks

Using FEM to analyze wave propagation problems in (semi)infinite media such as a layered
halfspace poses a number of potential problems. One issue is that, depending on the problem
at hand, often a large computational domain is required. The required number of elements
in the computational domain depends on the wavelengths. Typically 6–10 nodes are needed
per wavelength to properly resolve a propagating wave. With increasing loading frequency the
wavelengths decrease, and hence the number of required elements increases.

However, if viscoelastic properties and a horizontal stratification is assumed, see Figure 4.3,
a so called Green’s function (a fundamental solution) can be found analytically in frequency–
wavenumber domain by the layer transfer matrix (LTM) method. When the solution has been
established for a set of wavenumbers, it is brought back to frequency–space domain through a
2D discrete inverse Fourier transform.

The method briefly outlined below, was derived in [22, 23] and is further detailed in [24]
and [14].

x1

x2

x3

l1 m1 r1 h1

l2 m2 r2 h2

l3 m3 r3 h3

Figure 4.3: Horizontally layered halfspace with viscoelastic properties.
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4.2.2 Flexibility matrix of a horizontally layered half-space

First, a single soil layer with the Lame’ parameters λ and µ and density ρ, is considered. Neg
lecting body forces, the equilibrium of the soil layer is governed by Navier equations

(λ+ µ)
∂2uj
∂xi∂xj

+ µ
∂2ui
∂xj∂xj

= ρ
∂2ui
∂t2

, (4.44)

and some boundary conditions on the top and bottom of the layer. Here, ui = ui(x1, x2, x3, t)
is the displacement in direction i.

Fourier transforming the Navier equations with respect to the horizontal coordinates and time,
(x1, x2, t), i.e.

Ui(k1, k2, x3, ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
uie

−i(k1x1+k2x2+ωt)dx1dx2dt, (4.45)

yields the Navier equations in frequency–wavenumber domain as

(λ+ µ)∆̌ik1 + µ(
d2

dx23
− k21 − k22)U1 = −ρω2U1, (4.46a)

(λ+ µ)∆̌ik2 + µ(
d2

dx23
− k21 − k22)U2 = −ρω2U2, (4.46b)

(λ+ µ)
d∆̌
dx3

+ µ(
d2

dx23
− k21 − k22)U3 = −ρω2U3, (4.46c)

where k1 and k2 are the wavenumbers in the direction of x1 and x2, respectively, and ω is the
frequency of vibration. Further, ∆̌ = ∆̌(k1, k2, x3, ω) is the Fourier transform, with respect
to the horizontal coordinates and time, of the dilation ∆(x1, x2, x3, t) defined in Eq. (3.6),
i.e.

∆̌(k1, k2, x3, ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
∆e−i(k1x1+k2x2+ωt)dx1dx2dt = ik1U1+ik2U2+

dU3

dx3
.

(4.47)

Equation (4.46a) and Eq. (4.46b) are nowmultiplied by ik1 and ik2 respectively, and Eq (4.46c)
is differentiated with respect to x3. The sum of the three equations lead to the ordinary ho
mogeneous differential equation for the dilation

(
d2

dx23
− k21 − k22 +

ω2

c2p
)∆̌ = (

d2

dx23
− k21 − k22 + k2p)∆̌ = (

d2

dx23
− α2

p)∆̌ = 0, (4.48)

where cp and kp is the phase speed and wavenumber, respectively, of the Pwave and the
following definitions have been made

α2
p = k21 + k22 − k2p, (4.49a)

α2
s = k21 + k22 − k2s . (4.49b)
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Equation (4.48) has the solution

∆̌(k1, k2, x3, ω) = a1e
αpx3 + a2e

−αpx3 , (4.50)

where a1 and a2 are integration constants. The solution for the dilation is inserted into
Eqs. (4.46a–c), leading to three equations for the displacement amplitudes,

d2U1

dx23
− α2

sU1 = −(
λ

µ
+ 1)ik1(a1eαpx3 + a2e

−αpx3), (4.51a)

d2U2

dx23
− α2

sU2 = −(
λ

µ
+ 1)ik2(a1eαpx3 + a2e

−αpx3), (4.51b)

d2U3

dx23
− α2

sU3 = −(
λ

µ
+ 1)αp(a1e

αpx3 − a2e
−αpx3). (4.51c)

The solutions to Eqs.( 4.51) can be written as

U1 = b1e
αsx3 + b2e

−αsx3 + b3e
αpx3 + b4e

−αpx3 , (4.52a)
U2 = c1e

αsx3 + c2e
−αsx3 + c3e

αpx3 + c4e
−αpx3 , (4.52b)

U3 = d1e
αsx3 + d2e

−αsx3 + d3e
αpx3 + d4e

−αpx3 . (4.52c)

It can be shown that only six of the integration constants (a1, a2, b1, b2, c1, c2) are independent
[14], and that the remaining constants are

b3 = − ik1
k2p
a1, b4 = − ik1

k2p
a2, c3 = − ik2

k2p
a1, c4 = − ik2

k2p
a2,

d1 = −
(
ik1
αs
b1 +

ik2
αs
c1

)
, d2 =

ik1
αs
b2 +

ik2
αs
c2, d3 = −αp

k2p
a1, d4 =

αp

k2p
a2.

(4.53)

Fourier transforming the stress tensor, σjk(x1, x2, x3, t) defined in Eq. (3.4), with respect to
the horizontal coordinates and time yields

σ̌jk(k1, k2, x3, ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
σjke

−i(k1x1+k2x2+ωt)dx1dx2dt. (4.54)

For a known displacement field (U1, U2, U3), the corresponding traction stresses (σ̌13, σ̌23, σ̌33)
are calculated as

σ̌13 = µ(
dU1

dx3
+ ik1U3), (4.55a)

σ̌23 = µ(
dU2

dx3
+ ik2U3), (4.55b)

σ̌33 = λ(ik1U1 + ik2U2 +
dU3

dx3
) + 2µ

dU3

dx3
. (4.55c)

The displacements and the traction stresses are collected in a vector S

S(k1, k2, x3, ω) =
[
U P

]T
=

[
U1 U2 U3 σ̌13 σ̌23 σ̌33

]T
. (4.56)
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For any layer j, the vector Sj can be written as

Sj(k1, k2, x3, ω) = Aj(k1, k2, ω)E
j(k1, k2, x3, ω)b

j . (4.57)

The vector bj contains the integration constants governed by the boundary conditions at the
top and the bottom of the layer,

bj =
[
a1 b1 c1 a2 b2 c2

]T
. (4.58)

The matrix Ej is defined as

Ej(k1, k2, x3, ω) =



eαpx3 0 0 0 0 0
0 eαsx3 0 0 0 0
0 0 eαsx3 0 0 0
0 0 0 e−αpx3 0 0
0 0 0 0 e−αsx3 0
0 0 0 0 0 e−αsx3

 . (4.59)

Aj(k1, k2, ω) is a (6×6)matrix, where the entries follow fromEqs. (4.52–4.53) and Eq. (4.55).
At the top of the j:th layer Ej is the identity matrix. Now, using the superscript 0 and 1 to
refer to the top (x3 = 0) or bottom (x3 = h) of the layer, the vector Sj is, respectively

Sj,0 = Aj Ej,0 bj = Aj bj , (4.60a)
Sj,1 = Aj Ej,1 bj . (4.60b)

The vector bj of integration constants can be eliminated by expressing the vector Sj on either
side of the layer in terms of the vector Sj on the other side, e.g.

Sj,1 = Aj Ej,1 bj = Aj Ej,1 (Aj)−1 Sj,0 = TjSj,0, (4.61)

where
Tj = Aj Ej1 (Aj)−1, (4.62)

is a propagator matrix for layer j. Due to continuity of displacements and tractions over inter
faces between layers, several layers can be assembled in the samemanner, forming a relationship
between the displacement and stresses at the top of the stratum (layer 1) and at the bottom of
the stratum (layer J ) as

SJ,1 = TJTJ−1TJ−2...T1S1,0. (4.63)

This is the layer transfer matrix approach by Thomson and Haskell [25, 26]. For certain fre
quencies and stratifications, this method suffers from lossofprecision. To circumvent these
problems, in the current work, the different soil layers are assembled in an orthonormalization
procedure [27]. The details are left out, and the interested reader is instead referred to [27].
With known boundary conditions at the lowest interface, a relationship between the traction
and the displacement at the surface can be obtained,

U0(k1, k2, ω) = G(k1, k2, ω)P
0(k1, k2, ω), (4.64)
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where

G = G(k1, k2, ω) =

G11 G12 G13

G21 G22 G23

G31 G32 G33

 , (4.65)

is the Green’s function for the layered halfspace. The Green’s function G(k1, k2, ω), when
multiplied by a traction vector for the surface P0(k1, k2, ω), gives the displacement vector
U0(k1, k2, ω) on the surface. The displacement vector is obtained in Cartesian space through
a double inverse Fourier transform

ui(x1, x2, x3 = 0, ω) =
1

4π2

∫ ∞

−∞

∫ ∞

−∞
Uie

i(k1x1+k2x2)dk1dk2. (4.66)

In practice, Eq. (4.64) is evaluated for a set of discrete values of k1 and k2, and Eq. (4.66) is
evaluated using an inverse Fast Fourier Transform (iFFT) algorithm. The Green’s function is
calculated for N × N uniformly spaced wavenumbers (k1, k2) ranging from ki = −(N2 −
1)∆k to ki = (N2 )∆k, The displacements are then obtained in N × N uniformly spaced
points in Cartesian space (x1, x2), spanning the area 2π

∆k × 2π
∆k . Hence, the spacing between

the points where the results are obtained is governed by the wavenumber increment and the
number of points used to calculate the Green’s function. To obtain accurate results, max(k)
must be high enough to ensure that either G ≈ 0 or P ≈ 0 for k > max(k), whereas ∆k
must be small enough to ensure that high gradients in eitherG or P are resolved.

There are other formulations to obtain the Green’s function of a horizontally layered elastic
halfspace than the LTM approach discussed above. In the Stiffness Matrix Method (SMM)
by Kausel and Roesset [28], the ThomsonHaskell layer transfer matrices are used to derive a
stiffness matrix for each soil layer, and the stiffness matrices for all layers are assembled into
a global stiffness matrix for the whole soil profile. The layer stiffness matrices are formulated
in wavenumber domain for the horizontal coordinates, while the depth coordinate is kept in
spatial domain, like in the original LTM method. The SMM was first formulated for 2D
problems but has since been expanded to cover 3D problems [29]. A variant of the SMM is
presented in detail in appended Paper F.

Anothermethod is theThin LayerMethod (TLM) [28,30], which is a stiffness matrix approach
where a linear variation of the displacements is assumed in the depth direction. Hence, each
soil layer is split into a number of thin layers to make the assumption of linear displacement
variations in the depth direction acceptable.

4.2.3 Formulation in a moving frame of reference

In the same manner as for the FE formulation in a moving frame of reference, the coordinate
transformation

(x̃1, x̃2, x̃3) = (x1 − vt, x2, x3), (4.67)
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is introduced, where v is the vehicle speed. Applying the transformation to the Navier equa
tions Eq. (4.44) yields

(λ+ µ)
∂2ũj
∂x̃i∂x̃j

+ µ
∂2ũi
∂x̃j∂x̃j

= ρ(
∂2ũi
∂t2

− 2v
∂2ũi
∂t∂x̃1

+ v2
∂2ũi
∂2x̃1

), (4.68)

where ũi = ũi(x̃1, x̃2, x̃3, t) is the displacement in the moving frame of reference. Fourier
transforming these equations with respect to the horizontal coordinates and time, (x̃1, x̃2, t),
yields the Navier equations in frequency–wavenumber domain as [14]

(λ+ µ)∆̃ik̃1 + µ(
∂2

∂x̃23
− k̃21 − k̃22)Ũ1 = ρ(−ω2 + 2vωk̃1 − v2k̃21)Ũ1, (4.69a)

(λ+ µ)∆̃ik̃2 + µ(
∂2

∂x̃23
− k̃21 − k̃22)Ũ2 = ρ(−ω2 + 2vωk̃1 − v2k̃21)Ũ2, (4.69b)

(λ+ µ)
∂∆̃

∂x̃3
+ µ(

∂2

∂x̃23
− k̃21 − k̃22)Ũ3 = ρ(−ω2 + 2vωk̃1 − v2k̃21)Ũ3. (4.69c)

Here, a tilde is used to emphasize that a variable is expressed in terms of themoving (x̃1, x̃2, x̃3)
coordinate system, i.e.

Ũi(k̃1, k̃2, x̃3, ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
ũie

−i(k̃1x̃1+k̃2x̃2+ωt)dx̃1dx̃2dt, (4.70)

where k̃1 and k̃2 are the wavenumbers in the direction of x̃1 and x̃1, respectively. Now, with

ω̃ = ω − k̃1v, (4.71)

Eq. (4.69) is written as

(λ+ µ)∆̃ik̃1 + µ(
d2

dx̃23
− k̃21 − k̃22)Ũ1 = −ρω̃2Ũ1, (4.72a)

(λ+ µ)∆̃ik̃2 + µ(
d2

dx̃23
− k̃21 − k̃22)Ũ2 = −ρω̃2Ũ2, (4.72b)

(λ+ µ)
d∆̃
dx̃3

+ µ(
d2

dx̃23
− k̃21 − k̃22)Ũ3 = −ρω̃2Ũ3. (4.72c)

These are the same equations as in Eq. (4.46). Hence, the solution procedure outlined in the
previous subsection is applicable also in the moving frame of reference, with the difference
being that the frequency is wavenumber dependent as given by Eq. (4.71). The frequency ω̃
is the frequency of vibration of a material point.

4.2.4 Dispersion curves

Figure 2.5 in Section 2.3.1 shows the dispersion relation for the P, S and Rayleigh waves of
the two materials of a layered soil profile, displayed over a contour plot showing the amplitude
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of vertical response due to a vertical harmonic excitation of the soil surface. This contour plot
was created by plotting the (absolute) value of the Green’s function matrix element G33, see
Eq. (4.65). High values indicate combinations of frequency and wavenumber where a vertical
excitation of the soil surface leads to a high vertical response, which indicate the presence of
propagating waves. Hence, such a contour plot gives an indication of the dispersion curves of
the full soil profile.

The dispersion curves of a layered soil profile can be calulated from an eigenvalue problem for
mulated using the layer transfer matrices. The problem comes down to finding the wavenum
bers and frequencies for which the determinant of a matrixD(k1, k2 = 0, ω), being a function
of the layer transfer matrices (see [31] for details), becomes zero, i.e.

det(D(k1, 0, ω)) = 0. (4.73)

The roots to this equation can only be found through search techniques. Starting at a given
(low) frequency, the determinant is calculated for a range of wavenumbers. When the determ
inant is close to zero or changes signs for two consecutive wavenumbers, a refinement of the
wavenumber spacing is made and the determinant is calculated again. When the determinant
is sufficiently close to zero, this indicates the presence of a propagating wave. The process is
repeated for the next frequency increment, and when a propagating wave is found it can either
be the continuation of a wave found in the previous frequency increment or it can mark the
“cuton” of a higher order mode. Figure 4.4, from appended Paper D, shows the dispersion
curves of a layered ground consisting of a very soft clay layer over a stiffer halfspace, obtained
in this manner. The dispersion curve of a simplified track model is also indicated in the figure,
and from the intersection point of the track and ground dispersion curves an estimation of the
socalled critical velocity can be inferred.

There are other more refined methods that can be employed to find the roots to Eq. (4.73)
and to trace the continuation of identified dispersion curves for increasing frequencies. Such
a method is discussed in appended Paper F.
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Figure 4.4: Dispersion curves of a layered halfspace (Figure 7 in appended Paper D).





5 Predicting Vibrations from Railway
Traffic

5.1 GENERAL REMARKS

A prediction model should, based on given input conditions, provide as output an estimation
of some sought quantity. Such a model can be empirical, e.g. by using some statistical method
of analyzing data, the model predicts the response quantity for given input conditions based
on a large set of previously collected data (conditions and response quantities). Generally, such
empirical models do not explain the underlying physics of the predicted response, but rely on
that the previously collected data covers all the conditions for the situation to be predicted.
Nonetheless, such models can be useful and provide satisfactory results in several situations.

Here, however, focus will be on computational methods with the aim of simulating the gen
eration and propagation of groundborne vibrations, specifically those generated by railway
traffic. For a computational model to provide accurate predictions, it needs detailed descrip
tions of the source (i.e. the train and the excitation mechanisms), the transmission path, and
the receiver. The excitation mechanisms are briefly discussed in Section 5.2, and a brief over
view of various calculation methods and strategies are given in Section 5.3. In Section 5.4 the
track models developed and used in the appended papers are described.

5.2 EXCITATION MECHANISMS

The vibrations generated by a train moving along a railway track can be divided into a quasi
static contribution and a dynamic contribution. The quasistatic contribution refers to the
effect of the moving constant dead load of the train that causes a deflection of the soil surface.
As described in Section 2.3, this moving static deflection of the soil surface is experienced as
a transient vibration by a stationary observer next to the track. The dynamic contribution,
however, is much more complex and originates from several different mechanisms.

Since the rail is not perfectly smooth, dynamic contact forces arise in the wheel–rail interfaces as
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Figure 5.1: Planar vehicle model consisting of lumped masses, springs and dashpots.

the vehicle moves over the rough rail surface. The frequency content of these dynamic contact
forces depends on the vehicle speed. A specific rail unevenness component of wavelength λ,
generates a dynamic load at frequency f = v/λ where v is the vehicle speed. For example, for
a vehicle moving at v = 30 m/s, dynamic excitation in the frequency range 1–80 Hz result
from unevenness wavelengths in the range 0.375–30 m.

Similarly, the wheels are not perfectly round. Outofroundness and uneven tear causes peri
odic dynamic wheel–rail contact forces. These can be severe in the presence of so called wheel
flats. A wheelflat occurs when the wheel locks during breaking or due to slippery conditions,
causing a flat spot on the wheel that generates large impact forces for each revolution.

Further, dynamic wheel–rail forces are generated by changes in the conditions under the rail
along the track, e.g. varying soil or ballast stiffness. In addition, in most track systems the rail
is discretely supported by sleepers, causing a variation of the rail stiffness over the span of one
sleeper bay which in turn generates a dynamic excitation at the sleeperpassing frequency f =
v/d, where d is the sleeper spacing. Other excitation mechanisms include impact excitation
due to switches, crossings, joints, etc.

5.3 NUMERICAL MODELING

The calculation of the train–track interaction forces are often carried out using simple 2D
multibody vehicle models where the features most important for the dynamic behavior, such
as unsprung/sprung masses and primary/secondary suspensions, are included, see Figure 5.1.
The vehicle model is connected to a model of the railway track that should provide an accurate
stiffness of the rail, since this stiffness strongly influences the wheel–rail contact forces. Con
ventional ballasted tracks usually consist of rails supported by rail pads, sleepers and ballast.
In slab tracks, the rail can either be continuously or discretely supported. Track models are of
ten 2D finite element models, comprising Bernoulli–Euler or Timoshenko beams representing
the rail. In the case of conventional ballasted tracks, the rail is connected to a series of discrete
springs, dashpots and masses, representing rail pads, sleepers, ballast and subsoil [32–35]. In
models of slab tracks, the rail is usually connected to beam representations of the slab and
support layer, with spring and dashpot connections between the layers [36–38].

Analyses of such track models are typically performed in time domain, in a fixed Cartesian
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coordinate system. Timedomain analyses allow for inclusion of nonlinear behavior, for ex
ample in the contact condition between the vehicle and the rail. Such models have been used
by many different authors to study different mechanisms such as rail unevenness, wheel flats,
transition zones, etc. These analyses may be used for studying effects on the track or riding
comfort in the vehicle, but the forces obtained in any of the interfaces (e.g. wheel–rail or
track–subsoil) may also be used in a subsequent model to study the groundvibrations gener
ated by these forces, see e.g. [35, 39, 40]. Some authors [36, 41–43] have used similar track
models formulated in a moving frame of reference following the vehicle at a fixed speed, by
applying a Galilean coordinate transformation to the governing equations. A benefit of such
an approach is that the vehicle never leaves the computational domain, enabling the use of
a smaller model. Also, the wheel–rail contact formulation becomes less complicated because
the wheels interact with the same rail elements throughout the analysis. The coordinate trans
formation implies that the track is invariant in the track direction, so for example discrete rail
supports are modeled as being continuously distributed and track stiffness variation cannot be
treated in a straightforward manner. However, it has been shown [44] that the contribution
to the interaction forces, and the resulting freefield vibrations, by the track stiffness variation is
much smaller than the contribution from track unevenness. From the excitation mechanisms
described in Section 5.2, track unevenness is the one most often accounted for in predictions
of groundborne vibrations.

The wave propagation in the ground resulting from the dynamic loads on the track can be cal
culated using numerous numerical techniques. FEM offers a large flexibility regarding model
ing capabilities in terms of geometrical conditions and material properties. However, the need
for discretizing a large soil volume, under and between the source and the receiver, can generate
very large systems of equations that are timeconsuming or practically impossible to solve. The
maximum element size is governed by the wavelengths of the propagating waves, and for mov
ing loads these wavelengths decrease in front of the load, requiring a finer mesh. Furthermore,
special techniques need to be employed at the fictitious boundaries of the truncated soil volume
to avoid spurious reflections of waves. So called impedance boundary conditions [45], which
are basically tuned dashpot dampers, can be used to cancel out P and Swaves impinging or
thogonally to the boundary—however, surface waves and P and Swaves impinging with an
angle are partially reflected, compromising the solution, especially close to the truncated ends
of the domain. A more recent technique to avoid reflecting waves is the use of a so called per
fectly matched layer (PML), which uses a complex coordinate stretching to artificially dampen
the incoming waves over a few elements [21].

The boundary element method (BEM) overcomes some of the shortcomings of FEM. For
instance, nonreflecting boundaries are inherent to the governing boundary integrals. Fur
thermore, the soil interior domain does not need to be modeled explicitly, if only the response
of the soil surface is required. BEM uses a Green’s function (fundamental solution) as a weight
function. In the simplest case, the Green’s function of a homogeneous fullspace is used, re
quiring discretization of (introduction of elements to) every soil layer interface. Assembling
the system matrices is a much more complex and timeconsuming procedure than in FEM.
For every node of the model, the Green’s function for displacement and traction are integ
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rated over the entire boundary. Due to singularities of the Green’s functions, this matter is
not straightforward. Furthermore, the system matrices become fully populated. 3D models
employing FE or/and BE have been used by a number of researchers to study traininduced
vibrations [46–49], and can be used for both time domain and frequency domain analysis.

By assuming constant geometry in the load travel direction, computational savings can bemade
by applying a so called 2.5D technique, where only a cross section of the soil and railway track
is discretized. By means of a Fourier transform with respect to time and the track direction
coordinate, a sequence of 2D problems are solved for a number of discrete wavenumbers,
and the 3D response is recovered by an inverse Fourier transform of the wavenumber domain
response. Such a methodology has been applied to both FE and BE formulations, and mixed
BE–FE models, by several authors, see e.g. [18, 19, 50–53].

If the soil is assumed to consist of horizontally oriented viscoelastic layers, a (semi)analytical
approach can be used to obtain the response for a given load in frequency–wavenumber do
main, by applying a Fourier transform on the governing equations with respect to the ho
rizontal coordinates and time, as described in Section 4.2. The response is then obtained in
spatial coordinates by an inverse Fourier transform of the wavenumber domain solution. Gen
erally, the solution can be obtained at rather large distances from the load, at a much lower
computational effort than with FEM or BEM. Figures 2.5–2.8 were produced using this tech
nique. A track model can be incorporated into such a semianalytical model [22, 23, 31, 54],
and the effect of a vehicle running over an uneven rail can be analyzed in frequency domain
by describing the uneveness in terms of its wavenumber content and summing the responses
from the excitation from a number of discrete wavenumbers, in the moving frame of reference.

While 2.5D models allow for fast computation of the 3D ground response, the necessary
assumption of geometrical invariance in the track direction makes it impossible to include a
regular building in the model. Therefore, a common approach to calculate building responses
to traininduced ground vibrations is to first calculate the freefield ground response at the
location of the building and then use this freefield response to excite the building in a separate
model [55–61]. This is also the approach followed in appended Paper E.

Regardless of the choice of numerical method, large uncertainties are generally associated with
predicted groundborne vibration levels, due to the limited knowledge of the values of the
governing parameters. In addition, simplifications are necessary to produce practically feas
ible models. However, if the most important characteristics of the vibration excitation and
transmission path can be identified and modeled, numerical predictions can nevertheless be
meaningful for evaluating different designs and mitigation measures.
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5.4 TRACK MODELS IN APPENDED PAPERS

As discussed in Section 5.3, several numerical techniques can be employed to predict the
ground vibrations next to a railway track. In the appended Papers A–C a 3D model that
combines the FE method and the LTM method, in a moving frame of reference following the
vehicle, is utilized. In appended Paper D a 2.5D FE–PML model is used for modeling both
the track and the surrounding soil. Further, a model employing 2.5D FE for the railway track
and the LTM method for the soil is presented in appended Paper E. The computational code
for these models were implemented in FORTRAN by the author, utilizing Intel Math Kernel
Library [62] for some of the mathematical operations. Below follows a thorough description
and a comparison of these models for a specific case.

For the following presentation of the different models, a slab track consisting of a concrete
slab, rails and rail pads, is considered. The slab width and thickness is w = 3.0m and t = 0.2
m, respectively. The track is assumed to rest on a 14 m deep stiff clay till layer overlaying a half
space. The soil conditions corresponds to a site near the research facilityMAX IV Laboratory in
Lund, Sweden. The track, however, is hypothetical. All models are established in the moving
reference frame following the load, implying that the track and soil are assumed invariant in
the running direction. Hence, the discrete rail supports are considered as distributed. The
track and soil properties are given in Tables 5.1 and 5.2, respectively.

Here, the rail displacements and the ground surface response 10 m from the track center line
is studied, as a harmonic point load runs on the track with a velocity of v = 30 m/s (= 108
km/h). Two frequencies of excitation are considered, f = 40 Hz and f = 80 Hz.

The 3D model used in the appended Papers A–C is briefly recapitulated in Section 5.4.1. The
coupled 2.5D model, used in Paper E, is described in Section 5.4.2. The 2.5D FE–PML
model, used in Paper D, is described in Section 5.4.3. Finally, the response obtained with the
three different models for the particular case studied here is presented and discussed in Section
5.4.4.
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Table 5.1: Track properties.

Parameter Value
Rail Mass (kg/m) 60

Young’s modulus (GPa) 210
Second moment of inertia (m4) 3.217×10−5

Loss factor () 0.01
Track gauge (m) 1.435

Rail Stiffness (MN/m2) 250
pads Damping (kNs/m2) 22.5
Slab Density (kg/m3) 2500

Young’s modulus (GPa) 30
Poisson’s ratio 0.2
Width (m) 3.0
Thickness (m) 0.2
Loss factor () 0.04

Table 5.2: Ground properties.

Layer Parameter Value
Soil Depth (m) 14

Young’s modulus (MPa) 475
Poisson’s ratio 0.48
Density (kg/m3) 2125
Loss factor () 0.14

Bedrock Depth (m) ∞
(halfspace) Young’s modulus (MPa) 8800

Poisson’s ratio 0.40
Density (kg/m3) 2600
Loss factor () 0.04
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5.4.1 A coupled 3D track–soil model

In this specific example, the track slab is modeled using 3D solid elements, following the
formulation in themoving frame of reference as described in Section 4.1.3. The soil is described
by a dynamic stiffness matrix for a set of nodes where the slab interacts with the ground. These
nodes are referred to as soilstructure interaction (SSI) nodes.

The soil dynamic stiffness matrix is derived from the Green’s function of the layered soil in
the moving reference frame, as described in Section 4.2.3, and can be interpreted as a super
element to which the track structure is coupled. The total system of equations is then solved
and the forces in the slab–soil interface, i.e. the SSI nodes, are obtained. Finally, the Green’s
function is used for establishing the total displacement response in the freefield as a summation
of contributions from each individual SSI node.

FE model of track

The track slab is modeled using 3D solid continuum elements, for which the formulation in
a moving frame of reference was given in Section 4.1.3. Fully integrated linear brick elements
with 8 nodes and 3 translational DoFs per node are used. Six elements are used in the thickness
direction of the slab, and an element length of 0.15 m ×0.15 m in the (x1, x2)plane is used.
The rails are represented by Bernoulli–Euler beam elements with two nodes, each node hav
ing a rotational DoF and a vertical translational DoF. The beam elements are coupled to the
solid elements through viscoelastic interface elements, composed of continuously distributed
springs and dashpots, representing the rail pads. The formulation of these elements are presen
ted in both Paper A and Paper C. Damping is introduced into the slab and the rails by the use
of complex Young’s moduli,E∗ = E(1+ iη), where η is the loss factor, leading to a frequency
independent damping as described in Section 3.2.3. Assuming a harmonic excitation with the

x2

x3

x1

Figure 5.2: Illustration of 3D FE mesh of a railway track coupled to a horizontally layered
halfspace.
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angular frequency ω = 2πf , the governing equations for the track can be written as

(−ω2Mt + iωCt +Kt)ût = Dt(ω)ût = f̂t, (5.1)

where Mt, Ct and Kt is the mass, damping and (complex) stiffness matrix, respectively, for
the total track system (excluding the underlying soil). Further, Dt(ω) is the corresponding
dynamic stiffness matrix. The vector ût contains the displacements in the track DoFs, and the
vector f̂t contains the externally applied loads.

Soil dynamic stiffness matrix

Assuming that the track structure contains m nodes on the soil interface, each with three
translational DoFs, a (3m× 3m) dynamic stiffness matrix Ds(f) for the soil superelement,
i.e. them SSI nodes, is to be determined. Here, advantage is taken of the assumed invariability
of the soil in the horizontal directions.

The first step involves calculating the soil response due to a unit harmonic load, with frequency
f , moving along the x1axis on the soil surface with velocity v. The unit load is evenly dis
tributed over a rectangular area, the size of which is chosen as equal to the element size of the
connecting track. Hence, with reference to Sections 4.1.3 and 4.2.3, the traction is distributed
over a rectangular area centered in the origin of the moving coordinate system (x̃1, x̃2, x̃3), as

pj(x̃1, x̃2, ω) =

{
1/(4ab), −a < x̃1 < a, −b < x̃2 < b

0, otherwise ,
(5.2)

where 2a and 2b is the width in the x̃1 and x̃2 directions, respectively. In the current example,
2a = 2b = 0.15. In wavenumber domain the traction becomes

p̂j(k̃1, k̃2, ω) =
sin(k̃1a)

k̃1a

sin(k̃2b)

k̃2b
. (5.3)

The soil surface displacement response is calculated in frequency–wavenumber domain
(k̃1, k̃2, ω), for N × N wavenumbers, using the LTM method in accordance with Section
4.2. After a discrete inverse Fourier transform the soil surface response, in terms of complex
displacements (ũ1, ũ2, ũ3), is obtained in N × N points in the moving coordinate system
(x̃1, x̃2, x̃3). In the moving frame of reference, the response in each point of the soil surface
is harmonic with the frequency of the excitation. The area spanned by the response surface
depend on the wavenumber increment, and the spacing between the response points depend
on the number of points N , as described in Section 4.2.2. In the current example N = 4096
and max(k̃1) = max(k̃2) = 2π/0.15 rad/m, which has been found to be sufficient in the
case studied here. Figure 5.3 shows a response surface of the vertical displacement due to a
vertical unit harmonic load.

The soil surface displacements are calculated separately for a unit load in each of the three
(x̃1, x̃2, x̃3) directions, i.e. nine response surfaces are obtained, here denoted U(i, j, x̃1, x̃2)
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Figure 5.3: Response surface showing the real part of the vertical displacement due to a rect
angular vertical unit load with f = 40 Hz and v = 30 m/s.

where i(= 1, 2, 3) is the load direction and j(= 1, 2, 3) is the displacement direction. A
(3m×3m) flexibility matrix for them SSI nodes,Hs(ω), is established by interpolating from
the nine response surfaces.

Let DoF qj denote the displacement in direction j of node q. Similarly, let DoF ri denote the
displacement in direction i of node r. Element (qj , ri) of the flexibility matrix contains the
complex displacements in DoF qj due to a unit load in DoF ri. Letting∆x̃1 and∆x̃2 denote
the distance between nodes q and r in the x̃1 and x̃2directions, then the flexibility matrix
element (qj , ri) is obtained as

Hqjri = U(i, j,∆x̃1,∆x̃2). (5.4)

Finally, the dynamic stiffness matrix of the soil is obtained as the inverse of the flexibility
matrix, i.e. Ds(ω) = H−1

s (ω), and the following equation applies for the soil superelement,

Ds(ω)ûs = f̂s, (5.5)

where the vector ûs contains the displacements in the SSI DoFs, and the vector f̂s contains the
externally applied loads.

Solution of global equations

When the dynamic stiffness matrices of the track and the soil,Dt andDs, have been determ
ined, they are assembled in a standard FE manner forming a total dynamic stiffness for the
track and soil system,Dg.
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The following equation applies to the coupled track and soil system,

Dg(ω)ût = f̂t. (5.6)

The load vector f̂t is zero except for the rows corresponding to the rail loading points DoFs.
The SSI DoFs ûs are a subset of the track DoFs ût. Hence, when Eq. (5.6) has been solved,
the corresponding forces in the SSI DoFs are obtained as

f̂s = Ds(ω)ûs. (5.7)

Now, a second flexibility matrix Hs,f(ω) is defined, again by using the response surfaces
U(i, j, x̃1, x̃2) in a procedure similar to the one described above, to express the displacements
in a number of points in the freefield due to loading of the SSI DoFs. The freefield displace
ments are then obtained as uf = Hs,f(ω)fs.

5.4.2 A coupled 2.5D track–soil model

By combining the 2.5D FE method with the semianalytical soil representation a very time
efficient model is obtained. Here, the track crosssection in the (x2, x3)plane is represented by
a 2D mesh comprising 2.5D elements. For each discrete wavenumber k1 in the x1direction,
a dynamic stiffness matrix for the track is calculated, which is coupled to a dynamic stiffness
matrix representing the soil, calculated from the Green’s function of the layered halfspace
using the LTM method.

FE model of track

The track slab crosssection is modeled using 2.5D solid elements in the (x2, x3)plane. The
governing FE equations for such elements were presented in Section 4.1.4. Here, fully integ
rated 4node isoparametric quadrilateral elements with linear shape functions are used. Six
elements are used in the thickness direction of the slab, and an element length of 0.15 m is

x2

x3

Figure 5.4: Illustration of a 2D FE mesh coupled to a horizontally layered halfspace.
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used in the x2direction. As described in Section 4.1.4, the calculations are performed in the
moving frame of reference following the load at velocity v, by evaluating the stiffness matrices
for the frequency ω̃ = ω − k1v, where ω is the actual frequency of excitation by the mov
ing harmonic load. A dynamic stiffness matrix for the track slab, Dp(k̃1, ω̃), is established in
accordance with Eq. (4.35). The rail and rail pads, for which the dynamic stiffness is derived
below, is coupled to the slab.

Each rail is represented by a Bernoulli–Euler beam of infinite length, with bending stiffness
(EI)r and massmr, continuously supported by distributed springs and dashpots representing
the rail pads, with stiffness kP and damping cP . The rail is subjected to a harmonic load
P0 with circular frequency ω, moving in the positive x1direction with the velocity v. The
governing equation for the rail can be written as

(EI)r
∂4ur
∂x4

+mr
∂2ur
∂t2

+ kP

(
ur − us

)
+ cP

(∂ur
∂t

− ∂us
∂t

)
= δ(x− vt)P0eiωt. (5.8)

Here, ur = ur(x1, t) is the vertical displacement of the rail and us = us(x1, t) is the vertical
displacement of the slab directly under the rail. The equation is obtained in the frame of
reference following the load by applying the coordinate transformation in Eq. (4.13),

(EI)r
∂4ũr
∂x̃4

+mr

(∂2ũr
∂t2

− 2v
∂2ũr
∂x̃∂t

+ v2
∂2ũr
∂x̃2

)
+ kP

(
ũr − ũs

)
+

cP

(
(
∂ũr
∂t

− v
∂ũr
∂x̃

)− (
∂ũs
∂t

− v
∂ũs
∂x̃

)
)
= δ(x̃)P0eiωt,

(5.9)

where, again, ˜ denotes that a variable is expressed in the moving frame of reference. Fourier
transforming Eq. (5.9) with respect to x̃ yields

(EI)rk̃
4
1ūr +mr

(∂2ūr
∂t2

− 2ivk̃1
∂ūr
∂t

− v2k̃21ūr

)
+ kP

(
ūr − ūs

)
+

cP

(
(
∂ūr
∂t

− ivūr)− (
∂ūs
∂t

− ivūs)
)
= P0eiωt,

(5.10)

with ū = ū(k̃1, t) =
∫∞
−∞ ũ(x̃, t)e−ik̃1x̃dx̃, and k̃1 denotes the wavenumber in the direction

of x̃.

Further, assuming steadystate vibration with circular frequency ω, i.e. ū(k̃1, t) = ǔ(k̃1)eiωt

and setting ω̃ = ω − k̃1v yields

(EI)rk̃
4
1ǔr − ω̃2mrǔr + kP

(
ǔr − ǔs

)
+ iωcP

(
ǔr − ǔs

)
= P0. (5.11)

Based on the above equation, a onedimensional element similar to a simple KelvinVoight
element can be formulated for the rail and rail pad in k̃1domain, governed by[

(EI)rk̃
4
1 − ω̃2mr + kP + iω̃cP −(kP + iω̃cP )
−(kP + iω̃cP ) kP + iω̃cP

] [
ǔr
ǔs

]
=

[
P0

fs

]
, (5.12)
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Figure 5.5: Coupling of rail and rail pad element to underlying slab element.

which can be written asDrǔr = f̌r.

In the general case, the rail element is not located directly over a node of the track slab mesh.
Hence, the vertical displacement at the contact point between the rail and the slab, ǔs, is
expressed in terms of the shape functions and vertical displacements of the two nodes spanning
the edge of the connecting slab element, as

ǔs = N1ǔ1 +N2ǔ2, (5.13)

where the shape functions N1 and N2 are evaluated at the coordinate of the slab–rail contact
point. It can be shown that this leads to the following dynamic stiffness matrix for the rail
element,

Dr =

(EI)rk̃41 − ω̃2mr + kP + iω̃cP −N1(kP + iω̃cP ) −N2(kP + iω̃cP )
−N1(kP + iω̃cP ) N2

1 (kP + iω̃cP ) N1N2(kP + iω̃cP )
−N2(kP + iω̃cP ) N1N2(kP + iω̃cP ) N2

2 (kP + iω̃cP )

 ,
(5.14)

with the corresponding DoFs (ǔr, ǔ1, ǔ2). The dynamic stiffness matrices for slab and the
two rails can now be assembled into one for the whole track structure, Dt, pertaining to the
displacements of all the track DoFs ǔt. Damping is introduced into the slab and the rails by
the use of complex Young’s moduli, E∗ = E(1 + i sgn(ω̃)η), where sgn is the sign function
and η is the loss factor, leading to a frequency independent damping as described in Section
3.2.3.

Soil dynamic stiffness matrix

To derive the dynamic stiffness matrix of the soil, the slab–soil interface is discretized into n
strips with a uniform width, where n is the number of elements in the slab. Hence, the width
of a single strip is ∆ = w/n, where w is the slab width.

First, a single strip centered around the x̃2axis, with a unit harmonic force in direction j is
considered. In this section, the argument ω̃ has been dropped for brevity; it is understood that
a harmonic response with the angular frequency ω̃ = ω − k̃1v is considered. The strip stress
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is

pj(x̃1, x̃2) =

{
1
∆ , −∆/2 < x̃2 < ∆/2

0, otherwise .
(5.15)

In wavenumber domain the interface stress becomes

p̂j(k̃1, k̃2) =
sin(k̃2∆/2)

k̃2∆/2
. (5.16)

The soil surface displacement in direction i due to the soil surface stress in direction j is denoted
ûij . From Eq. (4.64) this displacement is obtained as ûij(k̃1, k̃2) = Gij(k̃1, k̃2)p̂j(k̃1, k̃2)
(no summation on repeated indices).

By performing an inverse Fourier transform with respect to wavenumber k̃2, the soil displace
ment at an arbitrary x̃2coordinate is obtained as

ˇ̃uij(k̃1, x̃2) =
1

2π

∫ ∞

−∞
ûij(k̃1, k̃2)eik̃2x̃2dk̃2 =

1

2π

∫ ∞

−∞
Gij(k̃1, k̃2)p̂j(k̃1, k̃2)eik̃2x̃2dk̃2

=
1

2π

∫ ∞

−∞
Gij(k̃1, k̃2)

sin(k̃2∆/2)

k̃2∆/2
eik̃2x̃2dk̃2 = Ȟij(k̃1, x̃2).

(5.17)
Ȟij(k̃1, x̃2) is a transfer function, expressing the displacements at x̃2 due to a unit load at the
strip centered around x̃2 = 0. Due to the translational invariability of the soil, Ȟij(k̃1, x̃2)
can be used for calculating the soil displacement at any distance along the x̃2axis from any
loaded strip, by replacing the coordinate x̃2 with the distance between the midpoints of the
“source strip” and the “receiver strip”. Hence, for each wavenumber k̃1, a flexibility matrix,
linking the displacements and forces in all the n strips, is established as



Ȟ11(0) Ȟ12(0) ... Ȟ13(−(n− 1)∆)

Ȟ21(0) Ȟ22(0) ... Ȟ23(−(n− 1)∆)

Ȟ31(0) Ȟ32(0) ... Ȟ33(−(n− 1)∆)

Ȟ11(∆) Ȟ12(∆) ... Ȟ13(−(n− 2)∆)
: : ... :

Ȟ31((n− 1)∆) Ȟ32((n− 1)∆) ... Ȟ33(0)



f̌1x
f̌1y
:

f̌nz

 =


ǔ1x
ǔ1y
:
ǔnz

 , (5.18)

where the argument k̃1 has been dropped for brevity. Equation (5.18) can be written as Ȟsf̌s =
ǔs, where ǔs and f̌s are vectors containing displacements and forces respectively. Hence, the
dynamic stiffness matrix is obtained as Ds = Ȟ−1

s . For the discretized soil interface, the
following equation relates the total forces on each strip to the displacements in the midpoint
of each strip,

Dsǔs = f̌s. (5.19)

It is emphasized that Eq. (5.19) applies for a given wavenumber k̃1 and frequency ω̃, i.e.
Ds = Ds(k̃1, ω̃), ǔs = ǔs(k̃1, ω̃), and f̌s = f̌s(k̃1, ω̃). For each k̃1, however, a loop over a set
of wavenumbers k̃2 in the x̃2direction is necessary for the evaluation of the Green’s function
and Eq. (5.17).
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Figure 5.6: Strips of uniform traction on the soil. The nodes and edges of the connecting track
elements are also shown.

Coupling of track and soil

The “interaction points” of the discretized soil interface are located at the midpoint of each
strip, whereas the nodes of the track elements at the interface are located in the strip endpoints.
The two domains are initially uncoupled. To couple the two domains, a transformation matrix
is used to enforce displacement compatibility between the midpoint of each soil strip and the
corresponding point of the FE mesh. A similar procedure was followed in [51] to couple 2.5D
boundary elements to a FE mesh. The displacements in the soil strip midpoints, ǔs, are
expressed in terms of the displacements of the track nodes at the interface, ǔst as

ǔs = Tǔst, (5.20)

where the transformation matrix T depends on the element shape functions in the track ele
ments. Because linear elements are used for the track, and the soil strip midpoints are located
in the center of each corresponding track element, Eq. (5.20) states that the displacements of
each soil strip midpoint equal the average displacements in the two nodes spanning the edge
of the connecting element. The same transformation matrix is used to relate the forces from
the soil strips to the actual track nodes,

f̌st = TTf̌s, (5.21)

Hence, in terms of the track DoFs of the track–soil interface, the dynamic equilibrium for the
soil can be written as

Dstǔst = f̌st, (5.22)

withDst = TTDsT.

Solution of global equations

The dynamic stiffness matrices for the soil, Dst, and the track, Dt can now be assembled in
a standard manner leading to a global dynamic stiffness matrix for the coupled soil and track
system,Dg = Dg(k̃1). The displacements of the track DoFs, ǔt = ǔt(k̃1) are solved from

Dgǔt = f̌t, (5.23)
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Figure 5.7: Contour plot showing the vertical displacement of the soil surface as obtained with
the coupled 2.5D model for the excitation frequency f = 80 Hz.

where f̌t = f̌t(k̃1) is a force vector containing the external loads. The only external loads
are the harmonic point loads P0 on each rail, moving with velocity v in the positive x1
direction, i.e. f(x1, t) = P0δ(x1 − vt)eiωt. In the moving coordinate system this becomes
f̃(x̃1, t) = P0δ(x̃1)e

iωt, and after a Fourier transform with respect to x̃1 and t the load is
described by f̌(k̃1, ω) = P0. This means that the same load, P0, is applied to the rail DoF
for each wavenumber k1. The displacements ǔs(k̃1) in the midpoints of the element edges,
corresponding to the midpoints of the soil strips, are then obtained from Eq. (5.20), from
which the soil strip forces, f̌s(k̃1), can be obtained from Eq. (5.19). When the magnitude of
the strip forces are known the total traction on the soil surface for the current wavenumber, k̃1,
is obtained by superposition of the contributions from each individual strip. The traction in
(k̃1, k̃2)domain due to a single strip centered around the x̃2axis was given in Eq. (5.16). The
traction due to a strip centered around the coordinate x̃2 = d is then given by the translation
operation, i.e.

p̂j(k̃1, k̃2) =
sin(k̃2∆/2)

k̃2∆/2
eidk̃2 . (5.24)

Each such (unit force) strip traction is scaled by the corresponding strip force in the vector
f̌s(k̃1).

The calculations described here are carried out for N discrete wavenumbers k̃1 corresponding
to the x̃1direction. That is, for each wavenumber k̃1, the dynamic stiffness matrix of the 2D
FE mesh is established, and coupled to a dynamic stiffness matrix for the soil. The establish
ment of the Green’s function and the soil dynamic stiffness matrix, for each wavenumber k̃1,
requires a loop over M discrete wavenumbers k̃2 corresponding to the x̃2direction. In the
current example, N = M = 4096 was chosen, with max(k̃1) = max(k̃2) = 2π/0.15
rad/m, i.e. the same wavenumber discretization that was used in the 3D model.

The global displacements of the soil surface are calculated in (k̃1, k̃2)domain using Eq. (4.64).
These displacements are obtained in (x̃1, x̃2)space by a double inverse Fourier transform. The
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complex nodal displacements of the track structure, ût(x̃1), are obtained in N points along
the (x̃1)axis after an inverse Fourier transform of ǔt(k̃1), see Figure 5.7.

5.4.3 A 2.5D FE–PML model

In this model, both the track slab and the soil is represented by 2.5D solid elements in the
(x2, x3)plane. The governing FE equations for such elements were presented in Section 4.1.4.
Here, fully integrated isoparametric 8node elements with quadratic shape functions are used.
The modeling of the rails and rail pads is identical to the description in Section 5.4.2, i.e. by a
onedimensional element the rail and rail pad in k1domain governed by Eq. (5.12). The only
difference is that the coupling of the rail to the slab now accounts for the fact that the slab is
described by quadratic elements.

FE model of track and soil

Six elements are used in the thickness direction of the slab, and an element length of 0.3
m is used in the x2direction. For the soil, the element length is approximately 0.3 m in
both directions. Only half of the track and the surrounding soil is modeled, with symmetry
conditions applied to the boundary in x2 = 0. PMLs, as described in Section 4.1.5, are used to
artificially attenuate the waves at the truncated sides of the model. The attenuation function
for evanescent waves, f e

j (xj) is set to zero. A linear attenuation function for propagating
waves is used, as f p

j (xj) = 20(xj − xj0)/LPML [20] where xj0 is the xjcoordinate at the
interface between the regular and the PML domain. Material damping is introduced into the

Figure 5.8: Mesh used in 2.5D FE–PML model. Blue colored elements are PML elements.
Brown colored elements belong to the halfspace material. A magnification of the
slab (green colored elements) is shown inside the red box.
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Figure 5.9: Contour plot showing the vertical displacement of the soil for the excitation fre
quency f = 80 Hz. The waves are effectively attenuated inside the PML.

whole model by the use of complex Young’s moduli, E∗ = E(1 + i sgn(ω̃)η), where η is the
loss factor and sgn is the sign function. The FE mesh is shown in Figure 5.8.

Solution of global equations

As described in Section 4.1.4, the calculations are performed in the moving frame of reference
following the load at velocity v, by evaluating the stiffness matrices for the frequency ω̃ =
ω− k̃1v, where ω is the actual frequency of excitation by the moving harmonic load. A global
dynamic stiffness matrix for the entire computational domain,Dg(k̃1), is established for each
of the N discrete wavenumbers k̃1 in the x̃1direction. The nodal displacement vector ǔ(k̃1)
is solved from Dgǔ = f̌ . The only external load is the point load (P0) on the rail, which are
constant for all wavenumbers as discussed in Section 5.4.2. In the current exampleN = 4096
withmax(k̃1) = 5 rad/m. The complex nodal displacements û(x̃1) are obtained inN points
along the (x̃1)axis after an inverse Fourier transform of ǔ(k̃1), see Figure 5.9.

5.4.4 Discussion

All three models described above are formulated in a moving frame of reference, following the
load at the velocity v = 30 m/s. The results are therefore obtained in this moving reference
frame. Since the loading is harmonic with frequency ω, the response is also harmonic with
the same frequency. To compare the response from the three models, the absolute value of
the vertical displacement is extracted along a line located 10 m from the track center line, see
Figure 5.10, as well as along the rail, see Figure 5.11. The displacements are plotted against
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the track direction coordinate x̃1, where x̃1 = 0 corresponds to a point perpendicular to the
moving load, and positive values of x̃1 correspond to points in front of the load.

All three models yield very similar response, both regarding the rail displacements and the
freefield displacements. The maximum difference of the peak values is obtained for the higher
frequency, where it is still less than 3%. The small differences that do exist are believed to be
caused mainly by the different track–soil interface stress conditions. The traction on the soil
surface from the two models employing a soil dynamic stiffness based on the semianalytic
approach, is composed of patches or strips of uniform stress. In the 3D model, these patches
are applied centered around each SSI node, whereas in the 2.5D case the strips of uniform
stress are applied centered around the element edge midpoint. In the 3D model, the contact
pressure therefore extends slightly (by half an element width) outside the slab width. However,
as seen from the response, these effects are negligible for the freefield response in the case
studied here.

In terms of computational cost, it is difficult to make a completely fair comparison. For the
two models using the LTM method to establish the soil impedance and response, the Green’s
function evaluation requires a loop over N ×M wavenumbers in (k1, k2)domain. In the
3D model, a large system of equations is established that is solved once for each excitation
frequency. The dynamic stiffness matrix of the soil becomes fully populated. In the coupled
2.5D model a very small system of equations (corresponding to the DoFs of the 2D mesh)
is solved, but on the other hand it is solved N times (once for every wavenumber k1 in the
x1direction). In the 2.5D FE–PML model, the system of equations is also solved N times,
once for every wavenumber k1. Here, the system of equations is considerably larger due to
the discretization of the soil, and the computational time depends heavily on the size of the
computational domain. To evaluate the response at large distances becomes costly because of
the large soil domain requiring discretization. In all models, large savings in computational
time can be gained by utilizing that the calculations are independent for each wavenumber k1,
i.e. parallelization can be employed.
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Figure 5.10: Maximum vertical displacement along a line 10m from the track for the excitation
frequencies f = 40 Hz (left) and f = 80 Hz (right).
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Figure 5.11: Maximum vertical displacement along the rail for a unit harmonic load with the
excitation frequencies f = 40 Hz (left) and f = 80 Hz (right).

It can be argued that the 3D model does not have any advantages over the other two models in
the case studied here, i.e. when considering a moving load. However, the model can of course
also be used in a fixed frame of reference by setting the velocity v = 0. Then it is possible
to introduce additional structures (e.g. a building with a surface footing) next to the track,
e.g. to numerically predict transfer functions from the track to the building. This would not
be possible in the two other models utilizing the 2.5D approach, where only longstretched
invariant structures could be included. In a 2.5D FE–PML model, as opposed to the other
two models, it is straightforward to model e.g a longstretched trench parallel with the track,
or other discontinuities of the soil.

In the present example, the analysis of a unit harmonic load on the track was described. How
ever, the results from such analyses can be utilized for studying the effect of a vehicle running
over an uneven rail. For a given unevenness wavelength λ, the frequency of excitation by a
wheel running at v is f = v/λ. The rail receptance (displacement per unit force) for a given
frequency f and velocity v, can be used for establishing a submodel where the vehicle response
and the wheel–rail contact forces are calculated. The freefield response due to these contact
forces are then obtained by scaling, phaseshifting and translating the freefield response cal
culated for the unit harmonic load. This is further detailed in appended Paper E. The total
response from the dynamic excitation by a vehicle running over an uneven rail is obtained as
the sum of contributions from discrete unevenness wavelengths. If measurements of the rail
unevenness for a certain stretch are not available, rail unevenness defined in a statistical sense
by a power spectral density (PSD) function can be used. Such a PSD function was used in
appended Papers B and E for calculating the freefield response due to a train running on an
uneven rail.





6 Summary of Appended Papers

6.1 PAPER A

Modeling traininduced groundborne vibrations using FEM in a moving frame of reference

J. Malmborg, K. Persson, P. Persson.

In proceedings of COMPDYN 2019, 7th International Conference on Computational Meth
ods in Structural Dynamics and Earthquake Engineering, Crete, Greece, June 2019.

Summary

A numerical model for calculating the freefield ground vibrations from surface trains is presen
ted in the paper. A finite element formulation in a frame of reference following the moving
load at a fixed velocity, was used for modeling a railway slab track. The underlying soil was
represented through a dynamic stiffness matrix, obtained from the Green’s function for a ho
rizontally layered viscoelastic halfspace, in a moving frame of reference. Three different track
models were established and compared. In two of the track models, the slab was represented by
beam elements with different assumptions regarding the pressure distribution of the slab–soil
interface. The third track model utilized plate elements for representing the slab, accounting
for the crosssection flexibility and hence a more general slab–soil pressure distribution. The
three track models were used for evaluating the freefield response due to a harmonic load in
the frequency range 0–80 Hz moving along the track. One of the beam models, assuming
a constant vertical displacement of the soil under the slab crosssection, showed good agree
ment with the plate model. The response obtained with the simplest beam model, assuming a
constant contact pressure under the slab crosssection, was significantly underestimated.

Contributions by Jens Malmborg

Jens Malmborg was the main author of the paper, planned the research tasks, implemented
the methods, carried out the investigations and drew conclusions that were presented.
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6.2 PAPER B

Evaluating the effect of vibration isolation mats on traininduced ground vibrations

J. Malmborg, K. Persson, P. Persson.

In proceedings of SEMC2019, 7th International Conference on Structural Engineering,Mech
anics and Computation, Cape Town, South Africa, September 2019.

Summary

The numerical modeling technique established in Paper A was applied to evaluate the effect of
a vibration isolation mat, placed under a railway slab track, on the freefield ground vibrations.
The slab and the underlying supporting plate were modeled using Kirchhoff plate elements,
and the vibration isolation mat was modeled as a continuous viscoelastic layer between the
two plates. First, the freefield response and the insertion loss obtained with the vibration
isolation mat was calculated for a harmonic point load moving along the track. Secondly,
bandaveraged vibration levels and the insertion loss for a fixed point next to the track were
calculated for a train cart, represented by a 10DoF multibody system, running at different
speeds on an uneven track. The rail unevenness was described by a PSD function. It was
found that the isolation mat changes the vibration response significantly in two ways. The
introduction of a resilient element changes the transmissibility of the system, hence changing
the vibration response due to a specific load acting on the track. Further, the resilient element
modifies the track receptance, implying different dynamic wheel–rail interaction forces as the
vehicle runs over the uneven rail. Negative insertion loss, i.e. a higher vibration response, were
obtained for frequencies near the resonance frequency of the isolated slab, whereas a significant
reduction of the response was obtained for higher frequencies.

Contributions by Jens Malmborg

Jens Malmborg was the main author of the paper, planned the research tasks, implemented
the methods, carried out the investigations and drew conclusions that were presented.
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6.3 PAPER C

Effects of modeling strategies for a slab track on predicted ground vibrations

J. Malmborg, P. Persson, K. Persson.

Soil Dynamics and Earthquake Engineering 136: 106254, 2020.

Summary

In the paper, the effect of modeling strategies regarding the dynamic behavior of a railway
slab track on a layered halfspace is studied. If the track is modeled as a layered beam, the
freefield vibration response due to a moving harmonic load on the track can be evaluated effi
ciently using a semianalytical procedure in frequency–wavenumber domain. However, such
a beam representation of the track does not account for the crosssection flexibility, and some
assumptions regarding the displacements or the stressdistribution in the track–soil interface
have to be made. In the paper, a constant displacement and a constant stressdistribution, re
spectively, were tested. The freefield response obtained with the beam models were compared
to that obtained using a solid finite element and a shell finite element representation of the
slab, using the technique established in Paper A. First, only the vertical displacements of the
slab–soil interface were coupled. Secondly, the effect of coupling the inplane displacements
on the freefield vibrations were studied. Furthermore, a substructuring technique was em
ployed to calculate and compare the wheel–rail interaction forces with the different models,
for a singleaxle vehicle. It was found that for a thin slab, the vertical pressure distribution
under the slab is highly influenced by the crosssection flexibility, which in turn significantly
affects the predicted freefield vibrations. The two beam models yielded an underestimated
response for the studied cases. For a thick slab, however, the beam model with a constant
displacement under the slab yielded accurate freefield response, compared to the solid and
shell models. It was also found that when the inplane shear forces of the slab–soil interface
was accounted for, increased vibration response levels in the freefield were generally obtained.
A beam model, enforcing zero inplane displacements in the lateral direction of the slab–soil
interface, provided good accuracy for a thick slab. All models provided similar rail receptances
and subsequently wheel–rail interaction forces.

Contributions by Jens Malmborg

Jens Malmborg was the main author of the paper, planned the research tasks, implemented
the methods, carried out the investigations and drew conclusions that were presented.
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6.4 PAPER D

Numerical investigation of railway subgrade stiffening: Critical speed and freefield vibrations

J. Malmborg, P. Persson, K. Persson.

Transportation Geotechnics 34: 100748, 2022.

Summary

For a train speed close to the speed of elastic waves in the soil, often referred to as “critical
speed”, largely elevated vibration responses occur. This can be a practical problem for soft soil
sites, where the phenomenon may cause excessive vibrations in the track and also at distances
far from the track. To ensure the running safety of the train, the longterm quality of the track
and to reduce the vibrations in the surroundings, such effects must be avoided. An effective
countermeasure is to increase the stiffness of the soil underneath the track, thereby increasing
the critical velocity.

In this paper, a 2.5D finite elementmodel is used for studying the critical velocity phenomenon
and its mitigation through soil stiffening, for a ballasted track on a layered halfspace with very
soft soil. Soil improvement under the track, in the shape of a solid block or as various number
of panels, with varying depth and stiffness is considered. The effect of the soil improvement is
evaluated both in terms of the maximum rail and freefield displacements. It is shown that a
shallow soil stiffening increases the critical velocity and reduces the rail and freefield response
for load speeds near the shear wave velocity of the soft top soil layer. It is also demonstrated that
a deep soil stiffening, by use of panels along the track direction, increases the critical velocity
further, and may also be efficient in reducing the response for load speeds near the shear wave
speed of the underlying halfspace.

Contributions by Jens Malmborg

Jens Malmborg was the main author of the paper, planned the research tasks, implemented
the methods, carried out the investigations and drew conclusions that were presented.
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6.5 PAPER E

A numerical study of traininduced vibrations in light and heavy building systems

J. Malmborg, O. Flodén, P. Persson, K. Persson.

Submitted for publication.

Summary

This paper deals with the numerical prediction of building vibrations induced by a passing
train on an adjacent railway track. The calculations are based on a substructure approach,
where a sequence of different models are used to predict the train–track interaction forces,
the freefield ground vibrations due to these forces, and the buildingonsoil response when
subjected to the incident wave field. The freefield ground vibrations and the track receptance
are calculated using a so called 2.5D technique where the railway track is represented by finite
elements that couple to a dynamic stiffness of the underlying soil which in turn is obtained
from the Green’s function of a horizontally layered halfspace using a layer transfer matrix ap
proach. A planar multibody model of the train, coupled to the track receptance, is used for
calculating the train–track interaction forces as the train runs over an uneven rail. Finally,
the building response to the incident wavefield is calculated using a 3D finite element model,
accounting for the soil–structure interaction. This sequence of models and calculations are ap
plied to evaluate the vibrations in two buildings with identical layout, one lightweight timber
building and one heavyweight concrete building, due to a passenger train passing by at two
different speeds. It was found that the difference in response between the two buildings was
small, with only slightly higher response in terms of RMS velocity in the lightweight build
ing. An amplification of the response inside the building, compared to the incident wavefield,
was found in frequency bands around the fundamental frequencies of the slab; however in
terms of the running RMS velocity, the building response was reduced. Further, it was found
that accounting for soilstructureinteraction, as opposed to simply enforcing the freefield dis
placements at the building foundations, significantly reduced the building response in terms
of RMS velocity.

Contributions by Jens Malmborg

Jens Malmborg was the main author of the paper, planned the research tasks, implemented
the methods, carried out the investigations and drew conclusions that were presented
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6.6 PAPER F

Numerical modelling applied to wavepropagation analysis for arbitrary frequency and layer depths
within infinite elastic media

A. Peplow, J. Malmborg, P. Persson

Submitted for publication.

Summary

An efficient computational procedure for harmonic wavepropagation analysis of layered elastic
media is presented. The main advantages of the procedure include arbitrary frequency, depth
and number of layer strata over an elastic halfspace. For a general study of free or forced
vibration the methodology is straightforward to implement for computing relevant response
output. Computation of wavenumber dispersion diagrams, phase velocity plots and response
data in the frequency and time domains are presented to highlight the methodology for two
example cases for plane strain and axisymmetry, respectively. Themethodology is based upon a
wellconditioned dynamic stiffness approach that is especially developed for this purpose; this
allows a deeplayered strata to be studied. Since the size of the system of equations remains low
the computations are fast on a regular desktop/laptop computer, being of the order of tenths
of a second for a forced response analysis. Numerical evidence of a layer resonance due to
the presence of a ZGV (zero group velocity) modephenomena via a casestudy for a ground
profile where layers are hundreds of meters in depth, with solutions both in the frequency and
timedomains illuminating this special case.

Contributions by Jens Malmborg

JensMalmborg performed parts of the data collection, implemented the 3D numerical method
used for verification, and wrote the corresponding parts of the paper.



7 Concluding Remarks

7.1 CONCLUSIONS AND CONTRIBUTIONS

In the thesis, numerical modeling strategies for predicting groundborne vibrations from a
surface railway track have been studied and developed. Such strategies are highly relevant in
a practical civil engineering context to enable accurate predictions and informed design de
cisions. Focus have been on the vibration transmission from the track to the freefield, but the
work also include the actual load generation due to a train running over an uneven rail as well
as the vibration propagation into an adjacent building, and a study regarding critical velocity
effects for a highspeed trains running on soft soil. An efficient semianalytical approach for
modeling the soil behavior, based on the Green’s function for a horizontally layered halfspace,
has been combined with finite element modeling of the railway track, both in 3D and 2.5D.
All computational code for the models was written in FORTRAN by the author. The main
contributions of the work presented in the thesis and the appended papers include:

• A novel combination of the Green’s function for a layered viscoelastic halfspace with a
3D FE representation of a railway track, in the moving frame of reference (Papers A–C).

• A study of insertion loss by the introduction of a resilient mat under the track slab,
obtained in a fixed point next to the track due to a passing train on an uneven track
(Paper B).

• A study of the importance of the track modeling strategy, regarding the crosssection
flexibility and the track–soil inplane shear forces, on the freefield vibrations (Paper C).

• A novel study of critical velocity effects and their mitigation through stiffening of the
soil under the track, using a 2.5D FE model with PML (Paper D).

• An efficient combination of a 2.5D FE representation of a railway track with a semi
analytical soil impedance for predicting the freefield ground vibrations (Paper E).

• A novel comparison of the performance of a lightweight timber building vs a heavy
weight concrete building when subjected to traininduced groundborne vibrations (Pa
per E).
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The numerical modeling capabilities developed and presented in the thesis can be used for
studying a large range of vibration problems in an efficient manner. Many parameters, ranging
from material parameters of the track and the surrounding soil to the smoothness of the rail
and train wheels, are involved in the prediction of traininduced ground vibrations. Careful
estimations of all such parameters are needed for a prediction model to yield accurate results,
and it may not always be feasible to perform the measurements required to establish reliable
estimates of all the relevant parameters. However, the developed models may also be used for
studying how varying an input parameter influences the vibration response, for comparing the
performance of different design options, and for evaluating the efficacy of various vibration
mitigation measures, both regarding the railway track, the ground or a nearby building.

7.2 SUGGESTIONS FOR FUTURE WORK

In the thesis, only the unevenness of the rail has been considered as the dynamic excitation
mechanism. For some dynamic excitation mechanisms, such as rail switches, a nonlinear
contact algorithm capable of simulating the loss of contact between the wheel and the rail must
be adopted to provide accurate contact forces. Such nonlinear analyses must be carried out
in timedomain. The models presented herein operate in frequency domain and can therefore
not be used directly in such a case. However, if nonlinear wheelrail contact forces have been
obtained in some other way, e.g. using a planar trackmodel in timedomain, these forces can be
applied in the linear 2.5D models to provide the freefield response. It would be interesting to
investigate the possibilities of using the frequency dependent rail receptance calculated from the
2.5D model to establish a lumped parameter model (LPM), containing all wheel–rail contact
points in the moving frame of reference, that could be used in timedomain with a nonlinear
contact algorithm.

An interesting subject of research is the quantification of uncertainties of model output that
are afflicting numerical predictions due to limited knowledge or natural variations regarding
the governing input parameters. It would be useful if the statistical variations regarding some
input parameter could be specified and propagated through the prediction models, to establish
predictions in a statistical sense, e.g. by means of confidence intervals.

For highspeed trains on poor soils, i.e. for trains running close to “critical velocity”, the
strains that develop in the track and/or the subsoil due to the moving dead load of the train
may be large and the assumption of a linearelastic material behavior may be inappropriate.
Other researchers have proven that using an “equivalent linear elastic” approach can provide
accurate predictions of the track and soil vibrations in such cases. In such an approach, the
linearized soil stiffness and damping properties are related to the maximum strain level, and an
iterative scheme is followed where these properties are updated in themodel until the calculated
maximum strain matches the strain on which the stiffness and damping values were based.
Adding such an iterative scheme, e.g. to the 2.5D FE model presented in appended Paper D,
would only require a small programming effort but would increase the reliability of calculated
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critical velocities and mitigation effects from various soil stiffening designs.

Furthermore, it would be interesting to evaluate the use of optimization algorithms for estab
lishing effective and cost efficient soil stiffening designs, e.g. to find an optimal number, depth
and position of lime–cement panels underneath the track to increase the critical velocity and
to reduce the vibrations in the track and in the freefield.
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Abstract. To predict ground-borne vibration levels caused by railway traffic, models for
estimating the load from the vibration source, as well as the vibration transmission through the
ground, are needed. In the present paper, a finite element formulation in a frame of reference
following the moving load, is used for modeling a railway slab track. The response of the
underlying soil is represented through a dynamic stiffness matrix, obtained via the Green’s
function for a horizontally layered visco-elastic half-space in a moving frame of reference in the
frequency–wavenumber domain. The track can be modeled as continuously connected beams,
but the use of plate elements allows for more general stress and displacement distributions in the
transverse direction of the slab to be resolved. Here, the free-field response due to a harmonic
load moving along a slab track, is evaluated and compared using different modeling strategies
for the slab.
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1 INTRODUCTION

To predict the level of ground-borne vibration caused by railway traffic, models are needed
to estimate the load from the vibration source as well as the vibration transmission through the
ground. A number of techniques have been developed in the past decades to study ground vi-
brations caused by a passing train, ranging from empirical methods to analytical and numerical
schemes.

Numerical schemes are often based on either the finite element (FE) or the boundary ele-
ment (BE) method or a combination thereof. The strength of these methods lies in their ability
to model arbitrary geometries and discontinuities. The downside is the high computational cost.
The computational cost can be reduced if the soil and track system is assumed to be invariant
in the track direction, leading to so called 2.5D models [1, 2, 3, 4]. Further, if the soil stratifi-
cation is assumed to consist of horizontally layered visco-elastic layers, a fundamental solution
(Green’s function) for the soil response can be found efficiently in frequency–wavenumber do-
main. Sheng et al [5, 6] proposed a semi-analytical model, with the track represented by an
infinite layered beam resting on a layered ground, where both the ground and the beam is de-
scribed in the frequency–wavenumber domain. Kaynia et al [7] coupled a series of FE beams,
representing the railway track, to a dynamic stiffness matrix of the ground calculated from the
Green’s function of a layered half-space.

Modeling the track as a beam on a layered half-space is a common approach in the field
of ground-borne vibrations due to railway traffic. This approach, however, constricts the track–
soil interface stress distribution. Steenbergen et al [8] studied the influence of different interface
conditions between a beam on a half-space, subjected to a dynamic moving load, on the free-
field response, using a semi-analytical model in the frequency–wavenumber domain. Galvin et
al [4] compared the free-field response of a high-speed train passage on a ballasted track on an
embankment, calculated using a 2.5D continuum model, to a model with a beam representation
of the track, finding large differences attributed to the rigid cross-section of the embankment in
the beam model.

In the present paper, a FE model is used for representing a railway slab track. The response of
the underlying soil is represented by a dynamic stiffness matrix obtained via the Green’s func-
tion for a horizontally layered visco-elastic half-space. The model is formulated in a frame of
reference following the moving load. The slab and rails can either be modeled as continuously
connected beams or by using Kirchhoff plate elements for representing the track slab. Plate
elements allow for more general stress and displacement distributions in the track transveral
direction to be resolved. Here, the free-field response due to a harmonic load moving along the
track at constant velocity, is calculated and compared using different modeling strategies for the
track.

In Section 2 an overview of the model is given and the studied case is presented in Section
3. Finally, conclusions are given in Section 4.

2 CALCULATION MODEL

2.1 Overview

The slab track is shown principally in Figure 1. It consists of a supporting layer, a concrete
slab, rails and rail pads. Full interaction is assumed between the slab and the supporting layer,
so that a homogeneous section with equivalent mass and bending stiffness may be utilized in
the calculations. This homogeneous section is simply referred to as the slab in the following.

Three models, model a)–c), with different assumptions regarding the slab and the slab–soil
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interface conditions, are established:

a) The slab is modeled with Bernoulli-Euler beam elements. Displacement continuity of
the beam and the soil is enforced only along the beam center line. A uniform stress
distribution between the beam and the soil is assumed in the transverse direction of the
slab.

b) The slab is modeled with Bernoulli-Euler beam elements. The slab–soil interface is as-
sumed rigid in the transverse direction. This is enforced by coupling the beam kinemati-
cally to a number of soil DoFs in the transverse direction over the width of the slab.

c) The slab is modeled with Kirchhoff plate elements, allowing for a more general slab–soil
interface stress and displacement distribution in the transverse direction of the slab than
by the two other models.

In all three models, the rails are modeled as Bernoulli-Euler beams, connected to the slab
via a continuous visco-elastic interface layer representing the rail pads. The loading is assumed
identical on both rails, hence in model a) and b) the two rails are modeled as one. In model
c) symmetry around the track center line is utilized so that only half the track is modeled. The
track is coupled to a ground model, represented by a dynamic stiffness matrix. The dynamic
stiffness matrix of the ground is derived from the Green’s function for a horizontally layered
visco-elastic half-space. Both the ground model and the FE model are expressed in a moving
frame of reference, following the vehicle at a given speed v. The models a)–c) are shown
schematically in Figure 2.

Figure 1: Section of slab track.

Figure 2: Finite element models of the slab track. From the left: Models a), b) and c). Blue points represent soil
nodes at the slab–soil interface.

The soil model is described in Section 2.2. In Section 2.3 the governing equations for the
beam, plate and interface finite elements are derived. The coupling between the finite elements
and the soil is described in Section 2.4.
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2.2 Soil model

The ground is assumed to be composed of horizontal visco-elastic layers. Neglecting body
forces, the Navier equations for a single soil layer can be written as

(λ+ µ)
∂2uj
∂xi∂xj

+ µ
∂2ui
∂xj∂xj

= ρ
∂2ui
∂t2

(1)

where ui = ui(x1, x2, x3, t) is the displacement in direction i. λ and µ are the Lame’ parameters.
Introducing a coordinate transformation as

(x̃1, x̃2, x̃3) = (x1 − vt, x2, x3), (2)

where x̃1, x̃2, x̃3 denotes the coordinates in the moving frame of reference, and v is the vehicle
speed, transforms the Navier equations to

(λ+ µ)
∂2ũj
∂x̃i∂x̃j

+ µ
∂2ũi
∂x̃j∂x̃j

= ρ
(∂2ũi
∂t2
− 2v

∂2ũi
∂t∂x̃1

+ v2
∂2ũi
∂2x̃1

)
, (3)

where ũi = ũi(x̃, ỹ, z̃, t) is the displacement in the moving frame of reference [9].
Fourier transforming the Navier equations with respect to the horizontal coordinates and

time, (x̃1, x̃2, t), yields the Navier equations in frequency–wavenumber domain as

(λ+ µ)∆̃ik̃1 + µ(
d2

dx̃23
− k̃21 − k̃22)Ũ1 = −ρω̃2Ũ1 (4a)

(λ+ µ)∆̃ik̃2 + µ(
d2

dx̃23
− k̃21 − k̃22)Ũ2 = −ρω̃2Ũ2 (4b)

(λ+ µ)
d∆̃

dx̃3
+ µ(

d2

dx̃23
− k̃21 − k̃22)Ũ3 = −ρω̃2Ũ3 (4c)

where ∆̃ = ∆̃(k̃1, k̃2, x̃3, ω) is the Fourier transform, with respect to the horizontal coordinates
and time, of the dilation ∆(x̃1, x̃2, x̃3, t). The vibration frequency of a material point is
ω̃ = ω − k̃1v and ω is the frequency of the moving load. The horizontal wavenumbers in the
direction of x̃1 and x̃2 are k̃1 and k̃2, respecitvely.

As showed by Sheng [5, 6], the solution to Eq. 4 for an individual layer can be found
analytically, and due to continuity of displacements and tractions over interfaces between layers,
several layers can be assembled using the Thomson [10] and Haskell [11] layer transfer matrix
approach, forming a relationship between the displacement and stresses at the top of the stratum
and at the bottom of the stratum. With known boundary conditions at the lowest interface, a
relationship between the traction and the displacement at the surface can be obtained as

û = Ĝ p̂, (5)

where û = û(k̃1, k̃2, ω) and p̂ = p̂(k̃1, k̃2, ω) are vectors containing the displacements and
tractions respectively on the soil surface, Ĝ = Ĝ(k̃1, k̃2, ω) is the Green’s function tensor, k̃1
and k̃2 are the horizontal wavenumbers. For certain frequencies and stratifications, the original
Thomson and Haskell method suffers from loss-of-precision. To avoid these problems in the
present work, the different soil layers are assembled in an orthonormalization procedure as
proposed by Wang [12].
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Equation 5 is evaluated for a set of discrete values of k̃1 and k̃2, and the displacement vec-
tor ũ(x̃1, x̃2, ω) is obtained in Cartesian space through a double inverse Fourier transform of
û(k̃1, k̃2, ω).

The procedure described above is used for calculating the response on the soil surface, due to
a unit load with a rectangular spatial distribution, the size of which is determined by the element
size in the connecting superstructure. From this single load case, a dynamic flexibility matrix
Fg(ω, v) is established for a set of DoFs where the superstructure interacts with the soil surface.
These DoFs will be referred to as soil–structure interaction (SSI) DoFs. Fg is formed, column
by column, by interpolating from ũ. The flexibility matrix is then inverted to form the dynamic
stiffness matrix of the soil, Dg(ω, v) = F−1

g (ω, v), which gives a relation between the steady-
state displacements ũg and forces f̃g for the SSI DoFs, at a certain load circular frequency ω and
velocity v, as

Dg ũg = f̃g. (6)

2.3 Finite element model of railway structure

The coordinate transformation used for expressing the governing FE equations in a moving
frame of reference introduces convective terms in the damping and stiffness matrices. In Sec-
tions 2.3.1–2.3.3 below, the FE equations are derived for the beams, plates and visco-elastic
interface elements, respectively.

2.3.1 Beam elements

The equilibrium equation for a Bernoulli-Euler beam reads

∂2M

∂x2
+ q −mb

∂2w

∂t2
= 0, (7)

where M = M(x, t) is the bending moment. q(x, t) is a loading force per unit length. mb

is the mass per unit length of the beam. w = w(x, t) is the deflection. With the coordinate
transformation described by Eq. 2, Eq. 7 can be written as

∂2M̃

∂x̃2
+ q̃ −mb(

∂2w̃

∂t2
− 2v

∂2w̃

∂x̃∂t
+ v2

∂2w̃

∂x̃2
) = 0, (8)

where ·̃ denotes that a variable is expressed in the moving frame of reference. The weak form
is obtained by multiplying Eq. 8 by an arbitrary weight function g = g(x̃) and integrating it
over the region. It can be shown that the resulting weak form for the Bernoulli-Euler beam in a
moving frame of reference is∫ b

a
∂2g
∂x̃2M̃ dx− [ ∂g

∂x̃
M̃ ]ba + [gṼ ]ba +

∫ b

a
gq̃ dx−mb

∫ b

a
g(∂

2w̃
∂t2
− 2v ∂2w̃

∂x̃∂t
+ v2 ∂

2w̃
∂x̃2 ) dx = 0. (9)

With the kinematic and constitutive assumptions for a Bernoulli-Euler beam, M̃ can be written
as

M̃ = −EI ∂
2w̃

∂x̃2
, (10)

where EI is the bending stiffness. To obtain the FE formulation, the deflection w̃(x̃, t) is
approximated using the element nodal values a(t) and the shape functions N(x̃), as w̃ = Na.
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Adopting the Galerking method, the mass, damping and stiffness matrices, as well as the load
and boundary vectors, are identified as

K = EI

∫ b

a

(d2N(x̃)

dx̃2

)T d2N(x̃)

dx̃2
dx+mb v

2

∫ b

a

NT d
2N

dx̃2
dx, (11)

C = −2mbv

∫ b

a

NT dN

dx̃
dx, (12)

M = mb

∫ b

a

NTN dx, (13)

fl =

∫ b

a

NT q̃ dx, (14)

fb = [NT Ṽ ]ba − [
∂NT

∂x̃
M̃ ]ba. (15)

A 2-node beam element with two DoFs per node (vertical displacement and one rotation), based
on the above formulation, is implemented and used in the present work. Similar derivations for
the convective Bernoulli-Euler beams can be found in e.g. [13, 14].

2.3.2 Plate elements

The equilibrium equation for a Kirchhoff plate reads, see e.g. [15],

∂2Mxx

∂x2
+ 2

∂2Mxy

∂x∂y
+
∂2Myy

∂y2
+ q − ρh∂

2w

∂t2
= 0, (16)

where Mxx = Mxx(x, y, t), Myy = Myy(x, y, t) and Mxy = Mxy(x, y, t) are the bending
moments in the x- and y-directions. q(x, y, t) is a loading force per unit area. h and ρ is the
plate thickness and the mass density respectively. w = w(x, y, t) is the deflection of the mid-
section. With the coordinate transformation described by Eq. 2, Eq. 16 can be written as

∂2M̃xx

∂x̃2
+ 2

∂2M̃xy

∂x̃∂ỹ
+
∂2M̃yy

∂ỹ2
+ q̃ − ρh(

∂2w̃

∂t2
− 2v

∂2w̃

∂x̃∂t
+ v2

∂2w̃

∂x̃2
) = 0. (17)

The weak form is obtained by multiplying Eq. 17 by an arbitrary weight function g = g(x̃, ỹ)
and integrating it over the region. It can be shown that the resulting weak form for the Kirchhoff
plate in a moving frame of reference is∫

A
(∇̃g)TM̃ dA−

∮
L

dg
dn
M̃nn dL +

∮
L
g(Ṽnz + dM̃nm

dm
) dL +

∫
A
gq̃ dA

−ρh
∫
A

(g ∂2w̃
∂t2
− 2vg ∂2w̃

∂x̃∂t
+ v2g ∂2w̃

∂x̃2 ) dA = 0,
(18)

where the matrix differential operator ∇̃ is defined as

∇̃ =
[

∂2

dx̃2
∂2

dỹ2
2 ∂2

dx̃dỹ

]T
, (19)

and the moment vector M̃ as

M̃ = M̃(x̃, ỹ, t) =
[
M̃xx(x, y, t) M̃yy(x, y, t) M̃xy(x, y, t)

]T
. (20)
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The constitutive equation for the cross-section of a Kirchhoff plate can be written as
M̃ = − (h3/12)D∇̃w̃ where D is the plane stress constitutive matrix for isotropic elasticity.
To obtain the FE formulation, the deflection w̃(x̃, ỹ, t) is approximated using the element nodal
values a(t) and the shape functions N(x̃, ỹ), as w̃ = Na.

Adopting the Galerking method, the mass, damping and stiffness matrices, as well as the
load and boundary vectors, are identified as

K =
h3

12

∫
A

(∇̃N)TD(∇̃N) dA + ρhv2
∫
A

NT ∂
2N

∂x̃2
dA , (21)

C = −2ρhv

∫
A

NT ∂N

∂x̃
dA, (22)

M = ρh

∫
A

NTN dA, (23)

fl =

∫
A

NT q̃ dA, (24)

fb =

∮
L

NT (Ṽnz +
dM̃nm

dm
) dL −

∮
L

(∇N)TnM̃nn dL . (25)

A 4-node rectangular element with three DoFs per node (vertical displacement and two rota-
tions), based on the above formulation, is implemented and used in the present work.

2.3.3 Visco-elastic interface elements

The rail pads are modeled by visco-elastic interface elements, representing continuous springs
and dashpots. In the following derivation of the equations for the interface elements, an inter-
face element is assumed to be located between two beam elements parallel with the x-axis. The
loads on the upper and lower beams due to the visco-elastic interface are written

qu(x, y, t) = −k(wu − wl)− c(
∂wu

∂t
− ∂wl

∂t
) = 0, (26)

ql(x, y, t) = −k(wl − wu)− c(∂wl

∂t
− ∂wu

∂t
) = 0, (27)

where wu = wu(x, t) and wl = wl(x, t) is the deflection in the upper and lower beam respec-
tively, k is the spring stiffness and c is the damping coefficient. With the coordinate transforma-
tion described by Eq. 2,

q̃u(x̃, t) = −k(w̃u − w̃l)− c
{

(
∂w̃u

∂t
− ∂w̃l

∂t
)− v(

∂w̃u

∂x̃
− ∂w̃l

∂x̃
)
}
, (28)

q̃l(x̃, t) = −k(w̃l − w̃u)− c
{

(
∂w̃l

∂t
− ∂w̃u

∂t
)− v(

∂w̃l

∂x̃
− ∂w̃u

∂x̃
)
}
. (29)

The displacements of the upper and lower beam, wu and wl, are approximated using the shape
functions Nu and Nl and element nodal displacements au(t) and al(t) for the upper and lower
beams, respectively. With Eq. 14 the load vectors for the respective beams can be written

flu =
∫ b

a
NT

u q̃u dx = −k
{∫ b

a
NT

uNu dx au −
∫ b

a
NT

uNl dx al

}
−

c
{∫ b

a
NT

uNu dx ȧu +
∫ b

a
NT

uNl dx ȧl

}
+ c v

{∫ b

a
NT

u
∂Nu

∂x̃
dx au −

∫ b

a
NT

u
∂Nl

∂x̃
dx al

}
,

(30)
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fll =
∫ b

a
NT

l q̃l dx = −k
{∫ b

a
NT

l Nl dx al −
∫ b

a
NT

l Nu dx au

}
−

c
{∫ b

a
NT

l Nl dx ȧl +
∫ b

a
NT

l Nu dx ȧu

}
+ c v

{∫ b

a
NT

l
∂Nl

∂x̃
dx al −

∫ b

a
NT

l
∂Nu

∂x̃
dx au

}
.

(31)

With the shape function vectors Ñu and Ñl and the displacement vector a defined as

Ñu(x̃, ỹ) =
[
Nu 0Nl

]
, Ñl(x̃, ỹ) =

[
0Nu Nl

]
f̃lu(t) =

[
flu 0fll

]
, f̃ll(t) =

[
0flu fll

]
, fL(t) =

[
flu fll

]T
ãu(t) =

[
au 0al

]
, ãl(t) =

[
0au al

]
, a(t) =

[
au al

]T (32)

it is possible to write the load vector as

fL(t) = f̃lu(t) + f̃ll(t) =

−k
{∫ b

a
ÑT

u Ñu dx +
∫ b

a
ÑT

l Ñl dx −
∫ b

a
ÑT

u Ñl dx −
∫ b

a
ÑT

l Ñu dx
}
a

−c
{∫ b

a
ÑT

u Ñu dx +
∫ b

a
ÑT

l Ñl dx +
∫ b

a
ÑT

u Ñl dx +
∫ b

a
ÑT

l Ñu dx
}
ȧ

+c v
{∫ b

a
ÑT

u
∂Ñu

∂x̃
dx +

∫ b

a
ÑT

l
∂Ñl

∂x̃
dx −

∫ b

a
ÑT

u
∂Ñl

∂x̃
dx −

∫ b

a
ÑT

l
∂Ñu

∂x̃
dx
}
a.

(33)

The vector fL(t) collects the forces on the upper and lower beam, caused by the interface ele-
ment. The forces on the interface element are therefore fi(t) = −fL(t), and the stiffness and
damping matrices of the interface element can be identified from Eq. 33 as

K = k
{∫ b

a
ÑT

u Ñu dx +
∫ b

a
ÑT

l Ñl dx −
∫ b

a
ÑT

u Ñl dx −
∫ b

a
ÑT

l Ñu dx
}

−cv
{∫ b

a
ÑT

u
∂Ñu

∂x̃
dx +

∫ b

a
ÑT

l
∂Ñl

∂x̃
dx −

∫ b

a
ÑT

u
∂Ñl

∂x̃
dx −

∫ b

a
ÑT

l
∂Ñu

∂x̃
dx
}
,

(34)

C = c
{∫ b

a

ÑT
u Ñu dx +

∫ b

a

ÑT
l Ñl dx −

∫ b

a

ÑT
u Ñl dx −

∫ b

a

ÑT
l Ñu dx

}
. (35)

The above expressions are also valid for an interface element between a beam element overlying
a plate element in the xy-plane, such as in model c), with the shape functions for the plate
evaluated at the y-coordinate of the beam.

2.4 Coupling to soil

Assuming steady-state conditions, the governing equation for the railway track structure can
be written as

(−ω2Mr + iωCr + Kr)ũr = f̃r, (36)

or
Drũr = f̃r, (37)

where Mr, Cr and Kr is the mass, damping and stiffness matrix respectively. Dr = (−ω2Mr+
iωCr + Kr) is the dynamic stiffness matrix, and ũr and f̃r is the displacement and force vector
for the track structure, respectively.

The track and soil is coupled in a standard FE manner. Only the vertical DoFs of the track
structure and the soil are coupled. A global system of equations for the soil and the railway
structure is formed by combining Eqs. 6 and 37, yielding

Dtũr = f̃r, (38)
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where Dt represents the total dynamic stiffness matrix for the track structure and soil.
Once the track displacements ũr, and thereby also the displacement in the soil DoFs ũg, have

been obtained by solving Eq. 38, the corresponding forces on the soil surface, f̃g are calculated
by Eq. 6. A second flexibility matrix Fgf (ω, v) is established, in the same manner as Fg(ω, v)
as described in Section 2.2, expressing the displacements in free-field due to forces on the soil–
structure interface. The free-field displacements, ũf , are then calculated as

ũf = Fgf f̃g. (39)

3 MODEL COMPARISON

To compare the effect of the three different modeling strategies for the track on the free-field
response, each model is used for evaluating the response to a moving unit harmonic point load
acting on the rail. The track properties are given in Table 1. The track rests on a 14 m deep
layer of clay overlaying a half-space, with properties according to Table 2. An element length
of 0.3 m is used, meaning that 12 elements are used in the transverse direction of the slab in
model c). For model b) the slab is rigidly connected to 13 soil DoFs in the transverse direction.
In all three models, the number of elements in the track direction is 500, yielding a total track
length of 150 meters, which has been found to be sufficient to avoid problems with reflecting
waves at the boundaries of the FE model in the studied case. The track gauge is 1.435 m.

Figure 3 shows the wavefield and the track deformation due to a harmonic point load with
frequency f = 50 Hz traveling at v = 60 m/s, as obtained with the three different models.
The difference in the slab deformation in the transverse direction due to the different modeling
approaches is clearly visible. The displacements shown in Figure 3 are in the moving frame of
reference, following the load at speed v = 60 m/s. In this frame of reference, the displacements
are in steady state with the loading frequency f = 50 Hz. For a fixed point in the free-field,
however, the response is transient and contains a broad band of frequencies due to the Doppler
effect. A higher load speed results in a broader frequency content of the response in a fixed
point. This can be seen in Figure 4 that shows the displacement spectrum for a fixed point 10 m
and 25 m from the track, due to a harmonic 50 Hz load travelling at v = 30 m/s and v = 60 m/s.
All three models yield similar results, however, the response obtained with model c) using plate
elements is slightly higher than obtained with the other two models, for this particular load
frequency.

To compare the three models for a range of excitation frequencies, a moving rms-value of
the vibration velocity in a fixed point is calculated for each excitation frequency f , as

vrms(t) =

√
1

T

∫ t+T

t

u̇(t)2dt, (40)

where u̇(t) is the velocity time history response for a fixed point. T is the window length and is
here set to T = 1 s. In Figure 5 the maximum of vrms(t) is shown for each excitation frequency
for the three models, for a fixed point located 10 and 25 m from the track respectively and the
load speeds v = 30 and v = 60 m/s. For both load speeds, and both distances, the free-field
response is very similar for all three models up to about f = 50 Hz. At higher frequencies, both
models a) and b) underestimate the response. However, the underestimation with model b) is
modest. For model a) the maximum underestimation is almost 10 dB at 70 Hz.
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Figure 3: Soil and slab displacements in models a)–c), from top to bottom, when subjected to a harmonic load with
frequency f = 50 Hz moving along the track at speed v = 60 m/s. The size of the displayed area is 60 m× 30 m.
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Figure 4: Response of a fixed point in the free-field due to a 50 Hz load traveling on the track. a) and b) show the
results for a fixed point 10 meters from the track, with a load speed of v = 30 and v = 60 m/s, respectively. c) and
d) are for a point 25 meters from the track.
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Figure 5: Velocity rms-value of a fixed point in the free-field due to a harmonic load traveling on the track. a)
and b) show the results for a fixed point 10 meters from the track, with a load speed of v = 30 and v = 60 m/s,
respectively. c) and d) are for a point 25 meters from the track.
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Parameter Value
Rail Mass (kg/m) 60

Young’s modulus (GPa) 210
Second moment of inertia (m4) 3.217×10−5

Loss factor (-) 0.01
Rail Stiffness (MN/m2) 92
pads Damping (kNs/m2) 73
Slab Density (kg/m3) 2310
+ Young’s modulus (GPa) 26.7
support Poisson’s ratio 0.2
layer Width (m) 3.6

Thickness (m) 0.55
Loss factor (-) 0.04

Table 1: Track properties.

4 CONCLUSIONS

In the paper a numerical prediction model for train-induced ground-vibration has been pre-
sented. The model is formulated in a frame of reference following the moving load, which offers
some advantages over conventional FE models using a fixed frame of reference. Using a fixed
frame of reference, the computational domain must be large for the moving load to stay within
the model during the time of analysis. In the moving frame of reference following the load, on
the other hand, the load stays at the same location in the model throughout the analysis, allow-
ing a smaller model. Furthermore, frequency domain methods can be used for analyzing the
moving load. A drawback of the model is that it is not suitable for analyzing load cases where
the resulting wavelengths are very short, such as moving loads approaching the soil shear wave
velocity. Short wavelengths, making the current approach inappropriate, may also result from
non-moving loads, depending on the soil and track stiffness and the frequency of the load.

Three different models of a railway slab track have been established and compared. In the
first two models, the railway track is modeled as a Bernoulli-Euler beam on a layered half-
space, with different assumptions regarding the displacement and stress distribution at the track–
soil interface. In the third model, the track slab is modeled using Kirchhoff plate elements,
enabling a more general displacement and stress distribution in the track transverse direction
to be resolved. It is shown that in the case studied here, the beam model where the track–
soil interface is considered rigid over the width of the slab, only slightly underestimates the
response, at higher frequencies. The beam model where a uniform traction is assumed at the
track–soil interface, on the other hand, underestimates the response significantly at frequencies
above 50 Hz.
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Layer Parameter Value
Soil Depth (m) 14.0

Young’s modulus (MPa) 475
Poisson’s ratio 0.48
Density (kg/m3) 2125
Loss factor (-) 0.14

Bedrock Depth (m) ∞
(half-space) Young’s modulus (MPa) 8800

Poisson’s ratio 0.40
Density (kg/m3) 2600
Loss factor (-) 0.04

Table 2: Soil properties.
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Abstract

In the present paper, the effectiveness of a vibration isolation mat for a railway slab track system is studied using
a finite element model of the railway track. The finite elements are formulated in a moving frame of reference
following the moving load at a particular speed. The rails are modeled using Bernoulli beams, whereas the track
slab and an underlying supporting plate are modeled using Kirchhoff plate elements. The vibration isolation mat
is modeled as a continuous visco-elastic layer between the track slab and the supporting plate. The response
of the underlying soil is represented through a dynamic stiffness matrix, obtained via the Green’s function for a
horizontally layered visco-elastic strata in a moving frame of reference in the frequency–wavenumber domain.
The model accounts for the quasi-static excitation caused by the static axle loads of a vehicle, as well as the
dynamic excitation caused by the vehicle running over an uneven rail. The free-field response and the insertion
loss obtained with the vibration isolation mat is first evaluated for a harmonic load moving along the track. Band-
averaged vibration levels and the insertion loss for a fixed point next to the track are then calculated for a train cart,
represented by a 10 degree-of-freedom multi-body system, running at different speeds.

1. INTRODUCTION

Due to an increasing population, many cities experience urban densification where previously unexploited
land areas close to railways are now being used for new residential and office buildings. Furthermore, increasing
demands on infrastructure results in heavily trafficked roads and railways close to residential areas. Annoyance
from traffic-induced vibrations and noise is therefore a growing problem. To predict vibration levels arrising from
traffic, and to evaluate vibration mitigation measures, models are needed for estimating the load from the vibration
source as well as the vibration transmission through the ground.

One technique for reducing the vibrations from railways is to introduce an elastic mat underneath the ballast, or
underneath the slab in the case of ballastless slab tracks. The performance of such elastic mats have been studied
by other authors using various 2.5D and 3D models, e.g. [1–3] where boundary elements are used to account for
the soil response.

In the present paper, the effectiveness of a vibration isolation mat for a railway slab track system is studied.
A 3D finite element (FE) formulation in a moving frame of reference following the load is used for describing
the railway track. The underlying soil response is included through a dynamic stiffness matrix obtained via the
Green’s function for a horizontally layered visco-elastic strata in a moving frame of reference, in the frequency–
wavenumber domain. The free-field response and the insertion loss obtained with the vibration isolation mat is
first evaluated for a harmonic load moving along the track. Band-averaged vibration levels and insertion loss for a
fixed point next to the track are then calculated for a train cart, represented by a 10 degree-of-freedom multi-body
system, running on an uneven track.

In Section 2 an overview of the model is given and the studied case is presented in Section 3. Finally, conclu-
sions are given in Section 4.

2. MODEL OVERVIEW

In the present work the Green’s function of a horizontally layered stratum, in a moving frame of reference, is
calculated in the frequency–wavenumber domain and transformed to frequency–spatial domain through a double
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Figure 1: Section of slab track with resilient mat between the slab and the support layer.

inverse Fourier transform. It is then used to derive a dynamic stiffness matrix of the ground. The ground model
is coupled to an FE representation of the railway structure, including the supporting layer, slab and rails. The
supporting layer and the slab are modeled as two overlaying Kirchhoff plates. A continuous visco-elastic interface
layer is introduced between the supporting layer and the slab to represent mortar or, in the case of a floating slab
track, a vibration isolation mat. The rails are modeled as Bernoulli-Euler beams, connected to the slab via a
continuous visco-elastic interface layer representing the rail pads. Both the ground model and the FE model are
expressed in a moving frame of reference, following the vehicle at a given speed v, by introducing a coordinate
transformation as

(x̃, ỹ, z̃) = (x− vt, y, z), (1)

where x̃, ỹ, z̃ denotes the coordinates in the moving frame of reference.

2.1. Soil model

Introducing the coordinate transformation into the Navier’s equations yields

(λ+ µ)
∂2ũj
∂x̃i∂x̃j

+ µ
∂2ũi
∂x̃j∂x̃j

=

= ρ
(∂2ũi
∂t2

− 2v
∂2ũi
∂t∂x̃1

+ v2
∂2ũi
∂2x̃1

)
, (2)

where ũi = ũi(x̃, ỹ, z̃, t) is the displacement in the moving frame of reference. Fourier transforming Eq. 2 with
respect to the horizontal coordinates and time, (x̃, ỹ, t), yields the convective Navier equations in frequency–
wavenumber domain. As showed by Sheng [4], the solution for an individual layer can be found analytically, and
due to continuity of displacements and tractions over interfaces between layers, several layers can be assembled
using the Thomson [5] and Haskell [6] layer transfer matrix approach, forming a relationship between the dis-
placement and stresses at the top of the stratum and at the bottom of the stratum. With known boundary conditions
at the lowest interface, a relationship between the traction and the displacement at the surface can be obtained as

û = Ĝ p̂, (3)

where û = û(k̃x, k̃y, ω) and p̂ = p̂(k̃x, k̃y, ω) are vectors containing the displacements and tractions respectively
on the soil surface, Ĝ = Ĝ(k̃x, k̃y, ω) is the Green’s function tensor, k̃x and k̃y are the horizontal wavenumbers,
and ω is the circular frequency of the moving harmonic load. For certain frequencies and stratifications, the original
Thomson and Haskell method suffers from loss-of-precision. To avoid these problems in the present work, the
different soil layers are assembled in an orthonormalisation procedure as proposed by Wang [7].

Equation 3 is evaluated for a set of discrete values of k̃x and k̃y , and the displacement vector ũ(x̃, ỹ, ω) is
obtained in Cartesian space through a double inverse Fourier transform of û(k̃x, k̃y, ω).

The procedure described above is used for calculating the response on the soil surface, due to a unit load with
a rectangular spatial distribution. From this single load case, a dynamic flexibility matrix Fg(ω, v) is established
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for a set of DoFs where the superstructure interacts with the soil surface. These DoFs will be referred to as soil-
structure interaction (SSI) DoFs. Fg is formed, column by column, by interpolating from ũ. The flexibility matrix
is then inverted to form the dynamic stiffness matrix of the soil, Dg(ω, v) = F−1

g (ω, v), which gives a relation
between the steady-state displacements ũg and forces f̃g for the SSI DoFs, at a certain circular frequency ω and
velocity v, as

Dg ũg = f̃g. (4)

2.2. Railway structure
Assuming steady-state conditions, the governing equation for the railway structure can be written as

(−ω2Ms + iωCs +Ks)ũs = f̃s, (5)

or
Dsũs = f̃s, (6)

where Ms, Cs and Ks is the mass, damping and stiffness matrix respectively. Ds = (−ω2Ms + iωCs + Ks)
is the dynamic stiffness matrix, and ũs and f̃s is the displacement and force vector respectively. The coordinate
transformation used to express the governing FE equations in a moving frame of reference introduces convective
terms in the damping and stiffness matrices, see e.g. [8–10]. The track slab and the supporting layer are described
using four-node rectangular Kirchhoff plate elements with three DoFs per node (vertical displacement + two rota-
tions). The rail is decribed by two-node Bernoulli-Euler beam elements. The visco-elastic layer between the slab
and the supporting layer, as well as the rail pads, are described by continuously distributed springs and dashpots.
In both cases, the shear transfer between the two plates is disregarded.

2.3. Coupling between soil and FE
The track is coupled to the SSI DoFs in a standard FE manner. Here, only the vertical DoFs of the supporting

plate are coupled to the soil. For the finite elements, displacements and stress distributions are governed by the
element shape functions. However, for the soil, the displacements and interface tractions are governed by the load
distribution chosen for calculating the soil response fundamental solution. Thus, continuity of displacements and
stresses is not guaranteed along the superstructure–soil surfaces, but force and displacement continuity is enforced
at the exact location of the nodes.

A global system of equations for the ground and the railway structure is formed by combining Eqs. 4 and 5,
yielding

Dtũs = f̃s, (7)

where Dt represents the total dynamic stiffness matrix for the structure assembled onto the ground DoFs.

2.4. Free-field response
Once the displacements ũs, and thereby also the subset ũg , have been obtained by solving Eq. 7, the corre-

sponding forces on the soil surface, f̃g are calculated by Eq. 4. A second flexibility matrix Fgf (ω, v) is established,
in the same manner as Fg(ω, v), as described in Section 2.1. The free-field displacements, ũf , are then calculated
as

ũf = Fgf f̃g. (8)

These displacements are in the moving frame of reference, following the load at speed v. In this frame of reference,
the displacements are in steady state with the loading frequency f . For a fixed point in the free-field, however,
the response is transient. Due to the Doppler effect, the response will contain frequencies other than the excitation
frequency. The fixed point response time history, u(t), is obtained by moving with the train speed, along a line
parallell with the track, in the opposite travel direction of the train.

3. STUDIED CASE

The model described above is used for evaluating the effect of a resilient mat placed under the track slab. The
track rests on a 14 m deep layer of clay overlaying a half-space. The properties of the track and the soil layers are
shown in Table 1 and Table 2, respectively. Due to symmetry, only half the track is modeled. The element length
is 0.3 m in both the plates and the beams.
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Table 1: Track properties.

Parameter Value
Rail Mass (kg/m) 60

Youngs modulus (GPa) 210
Second moment of inertia (m4) 3.217×10−5

Loss factor (-) 0.01
Rail Stiffness (MN/m2) 92.3
pads Damping (kNs/m2) 73.4
Concrete Density (kg/m3) 2500
slab Youngs modulus (GPa) 34

Poisson’s ratio 0.2
Width (m) 3.0
Thickness (m) 0.3
Loss factor (-) 0.04

HSL Density (kg/m3) 2200
Youngs modulus (GPa) 25
Poisson’s ratio 0.2
Width (m) 3.0
Thickness (m) 0.4
Loss factor (-) 0.04

Slab Stiffness (MN/m3) 10
mat Damping (kNs/m3) 20
Mortar Stiffness (MN/m3) 1000

Damping (kNs/m3) 250

Table 2: Soil properties.

Layer Parameter Value
Soil Depth (m) 14.0

Youngs modulus (MPa) 475
Poisson’s ratio 0.48
Density (kg/m3) 2125
Loss factor (-) 0.14

Bedrock Depth (m) ∞
(half-space) Youngs modulus (MPa) 8800

Poisson’s ratio 0.40
Density (kg/m3) 2600
Loss factor (-) 0.04

First, the track receptance and the free-field response is calculated for a simple harmonic unit load moving
along the track at speeds v = 30 m/s and v = 60 m/s, for both the unisolated and the isolated track. Then, the
free-field response due to a train cart running over an uneven track at those same velocities is calculated for both
models.

3.1. Track receptance
The receptance, i.e. the displacement of the loading point, when subjecting the track to a moving harmonic

unit load, is calculated for the velocities v = 0 m/s, v = 30 m/s and v = 60 m/s. The load is applied symmetrically
on both rails, i.e. half a unit load is applied on each rail. For the floating slab, the receptance decreases noticeably
with increasing load velocity and the resonance peak is shifted to a lower frequency, as shown in Figure 2. Figure
3 shows the free-field displacements for v = 60 m/s and f = 40 Hz, for the floating slab.
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Figure 2: Track receptance.

Figure 3: Free-field displacements due a harmonic point load at f = 40 Hz moving at a speed v = 60 m/s on the floating slab. The Doppler
effect is clearly visible.

3.2. Insertion loss

The insertion loss quantifies the change in response due to a modification of the system. Here, it relates the
displacement in the free-field obtained with the resilient mat, to the displacement obtained without the resilient
mat. The insertion loss is defined as

IL = 20 log10
uo
ur
, (9)

where uo and ur is the displacement in the original (unisolated) configuration and the modified (isolated) configu-
ration, respectively.

As described in Section 2.4, the response in a fixed point in the free-field u(t), due to harmonic load moving
along the track, is transient. The root-mean-square (rms) value of u(t) is

urms =

√
1

T

∫ T

0

u(t)2 dt. (10)
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The rms-value of the displacement is used for calculating an insertion loss for a fixed point, due to the moving
load.

Figures 4a–b show the insertion loss for points in the free-field 5 m and 25 m from the track, respectively,
when the load velocity is v = 30 m/s. The insertion loss is shown for three points following the moving load.
These points are located perpendicular to (0 m), ahead of (+10/+25 m) and behind (–10/–25 m) the moving load.
Furthermore, the insertion loss calculated from the rms-value of the displacement in a fixed point is also shown.
Figures 4c–d show the corresponding results for the load velocity v = 60 m/s.

The insertion loss is considerably higher for the point perpendicular to the moving load, than for the other two
points following the load. Naturally, the insertion loss is therefore also lower for a fixed point as the load passes.
The insertion loss is slighly lower for the higher load velocity, and slightly higher further from the track. Negative
insertion loss is observed near the resonance frequency of the floating slab.

3.3. Train passage

Here, a 10 DoF vehicle, modeled as a multi-body system, is introduced into the model. The contact between
the vehicle wheels and the rail is accounted for by means of a linearized Hertzian contact spring, i.e. the wheel
is assumed to be in contact with the rail at all times. Since the track is described in a moving frame of reference
following the vehicle, each wheel is connected to the same rail element throughout the analysis.

The rail unevenness is often described by a power spectral density (PSD) function, allowing the rail irregulari-
ties to be decomposed into spectral components of different wavelengths. For a single harmonic component of the
track irregularity, with wavelength λ, the frequency of excitation is f = v/λ where v is the vehicle speed. Here,
the German track PSD is used to describe the rail irregularities,

Pz(β) =
Apβ

2
c

(β2 + β2
r )(β

2 + β2
c )

[ m2

rad/m

]
, (11)

where β = 2π/λ, the constants βr = 0.0206 rad/m and βc = 0.8246 rad/m. Ap is a parameter defining the track
quality, ranging from Ap = 4.032×10−7 m2/(rad/m) to Ap = 10.8×10−7 m2/(rad/m). Here, a poor track quality
is assumed and hence the higher value is used in this example.

An expression for the total response power spectrum in a fixed point, when the rail irregularities are described
by a PSD, was derived by Sheng [11]. The total response from the dynamic excitation of the rail irregularities, is
obtained by combining the contributions from a number of discrete irregularity wavelengths. The vertical velocity
levels, as well as the insertion loss based on these velocity levels, are calculated for points located 5 m and 25 m
from the track, for the train speeds v = 30 m/s and v = 60 m/s. The results are presented in 1/3 octave bands, see
Figure 5. As for the harmonic point load, the response in the free-field generally increases with increasing velocity.

The insertion loss is slightly higher for points further from the track, in the frequency bands above 20 Hz.
The response in low frequency bands are dominated by the quasi-static load, which is significant for the free-field
response close to the track. Again, negative insertion loss is obtained close to the resonance frequency of the
floating slab. Close to the track, positive insertion loss is observed for the low frequencies where the response is
dominated by the quasi-static response.

Table 3: Vehicle properties (from [10]).

Parameter Value
Primary suspension stiffness kp (MN/m) 1.18
Primary suspension damping cp (kNs/m) 39.2
Secondary suspension stiffness ks (MN/m) 0.53
Secondary suspension damping cs (kNs/m) 90.2
Wheel mass mw (kg) 1.78×103

Bogie mass mb (kg) 3.04×103

Bogie inertia Ib (kgm2) 3.93×103

Body mass mc (kg) 41.75×103

Body inertia Ic (kgm2) 2.08×106
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4. Conclusions

In this paper a numerical model of a railway track has been applied to study the effect of a vibration isolation
mat. The model is formulated in a frame of reference following the load moving along the track at a fixed velocity.
This formulation is efficient, allowing smaller models compared to traditional 3D FE formulations. Furthermore,
the moving load can be analyzed in frequency domain.

It is shown that, when a simple harmonic load moves along the track, the effect of the resilient mat on the
free-field response is reduced with increasing velocity of the load. For points that are following the moving load,
the insertion loss is considerably higher for a point perpendicular to the load than for other points equidistant from
the track. A fixed point experiences the wave field from the moving load from all different angles as the load
approaches and departs, and naturally the insertion loss is therefore lower than the maximum. Furthermore, the
insertion loss is slightly higher 25 m from the track than 5 m from the track.

Introducing a resilient mat under the track slab modifies the free-field response arising from a specific load
on the track, and furthermore, the modified track stiffness changes the dynamic wheel-rail interaction forces due
to track unevenness. Here, the vehicle is modeled as a multi-body system, and the track uneveness is treated as
a stationary stochastic process described by a PSD function. The response in the free-field generally increases
with increasing velocity of the train. The insertion loss is slightly higher in the frequency bands above 20 Hz, for
points further from the track. The response in low frequency bands are dominated by the quasi-static load, which is
significant for the free-field response close to the track. Here, a positive insertion loss is observed, whereas again,
as in the case with the moving point load, a negative insertion loss is obtained close to the resonance frequency of
the floating slab.
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A B S T R A C T

In the paper, the effect of modeling strategies regarding the dynamic behavior of a railway slab track on
a layered half-space is studied. The track is modeled with various degrees of accuracy through the use of
either beam theory, shell finite elements or solid finite elements. The underlying soil response is included
through a dynamic stiffness, obtained via the Green’s function for a horizontally layered visco-elastic half-space
in the frequency–wavenumber domain. The effect of different assumptions regarding the track cross-section
behavior and the track–soil interface conditions on the resulting free-field vibrations are studied for a harmonic
load moving along the track. First, only the out-of-plane displacements of the slab–soil interface are coupled,
i.e. only the vertical contact pressure is accounted for. Secondly, the effect of coupling the slab–soil in-
plane displacements on the free-field vibrations is studied. It is found that the in-plane slab–soil coupling
significantly affects the vertical vibration in the free-field. It is also found that a beam model of the track
yields accurate response levels compared to a solid continuum model in the case of a thick slab, whereas
considerable differences are obtained for a thin slab.

1. Introduction

Due to an increasing population, many cities experience urban
densification. Previously unexploited areas, close to railways and heav-
ily trafficked roads, are now being developed for residential and of-
fice buildings. Annoyance from traffic-induced vibrations and noise is
therefore a growing problem.

To estimate the load from the vibration source and to predict the
vibration transmission through the ground, models are needed. Ground
vibrations caused by passing trains have been studied using a wide
range of different techniques in the past decades, ranging from empiri-
cal methods to analytical and numerical calculation models. Numerical
prediction models often employ either the finite element (FE) method
or the boundary element (BE) method, or a combination thereof. The FE
method enables arbitrary geometries and discontinuities to be modeled,
but the need to discretize a large computational domain may lead
to long computation times. Furthermore, when modeling wave prop-
agation, the truncation of the model geometry may lead to spurious
reflections of elastic waves unless the artificial boundaries are properly
modeled. The BE method inherently includes non-reflecting boundaries,
but depending on the model size, the computational cost may still be
high. If the soil and track are assumed to be invariant in the track
direction, the computational cost may be reduced through the use of
so called 2.5D models [1–6], where a Fourier transform with respect to
the coordinates in the track direction is performed and a 2D problem

∗ Corresponding author.
E-mail address: jens.malmborg@construction.lth.se (J. Malmborg).

is solved for a sequence of wavenumbers, using either the FE method,
the BE method, analytical methods, or a combination of these.

Apart from the FE and BE methods, some models utilize that a
fundamental solution (Green’s function) for the soil response can be
found analytically in frequency–wavenumber domain for a horizon-
tally layered visco-elastic half-space. Several authors have used such
a soil model coupled to a railway track. Sheng et al. [7,8] derived
a semi-analytical model, with the track represented by an infinite
layered beam resting on a layered ground, where both the ground
and the beam are described in the frequency–wavenumber domain,
in the reference frame of the moving load. Kaynia et al. [9] coupled
a series of FE beams, representing the railway track, to a dynamic
stiffness matrix of the ground calculated from the Green’s function
of a layered half-space. Triepaischajonsak et al. [10] calculated the
track/ground interaction forces in time domain using a beam on elastic
foundation, and introduced the calculated forces into a ground model
in frequency–wavenumber domain to predict the free-field vibrations.
Koroma et al. [11] used a time-domain FE model of the track, with the
soil stiffness described by lumped parameter models, to calculate the
track–soil interaction forces that were subsequently used for calculating
the free-field vibrations in frequency–wavenumber domain using a
layered half-space model.

Modeling the track as a beam is a common approach in both
track/vehicle dynamics analyses and predictions of ground-borne

https://doi.org/10.1016/j.soildyn.2020.106254
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Fig. 1. Schematic cross-section of slab track on a layered soil.

vibrations. However, when the track is modeled as a beam, some
assumptions regarding the displacements or the stress distribution in
the track–soil interface have to be made, which may affect the resulting
ground vibrations. Steenbergen et al. [12] used a semi-analytical model
for studying the influence of different vertical interface conditions
between a beam on a half-space, on the free-field response. Galvín
et al. [4] compared the free-field response of a high-speed train pas-
sage on a ballasted track on an embankment, obtained with different
modeling approaches. The results obtained with a beam model of
the track showed large differences when compared to those obtained
with a continuum model. The differences were attributed to the rigid
cross-section of the embankment in the beam model.

State-of-the-art models for train-induced ground vibrations, utilizing
continuum representations of the railway track, account for both the
track cross-section flexibility and the in-plane shear forces of the track–
soil interface. To the authors knowledge, it has previously not been
demonstrated what the implications are of using a simplified approach
concerning the track and track–soil coupling, when predicting the
ground vibrations caused by a load moving over a slab track. The
subject was touched upon in a conference paper by the authors [13].
For use in early design stages, prediction tools need to be fast to enable
swift evaluation of different design alternatives or response sensitivity
to model parameters, while maintaining sufficient accuracy to provide
meaningful results. In the present paper, the free-field ground vibra-
tions due to a harmonic load moving at constant velocity along a
railway slab track are calculated using different assumptions of the slab
cross-section behavior and the track–soil interface conditions.

2. Study overview

The influence of various modeling strategies on the predicted
ground vibrations was studied for a slab track that is shown principally
in Fig. 1. It consists of a concrete slab, rails and rail pads. The track
cross-section flexibility affects the distribution of the resulting track–
soil contact forces in both the longitudinal and the lateral directions.
The deformation of the slab cross-section is expected to be very small
for a thick slab, justifying a beam representation of the slab. For a thin
slab however, the deformation of the slab cross-section may become
significant, making a beam representation of the slab less appropriate.
To reveal these differences relating to the cross-section flexibility, the
study was performed for two different slab thicknesses, 𝑡 = 0.2 m and
𝑡 = 0.5 m. The slab width is 3.0 m for both thicknesses. The track
properties used are given in Table 1.

The track is assumed to rest on a 14 m deep layer of clay overlaying
a half-space. The analyses are performed for two different values of
the clay layer’s Young’s modulus, presented in Table 2. The stiffer
soil properties are that of a stiff clay till, where the parameters were
obtained through geotechnical and geophysical measurements at a site
in the city of Lund, Sweden, close to a research facility housing highly
vibration-sensitive equipment. The Rayleigh wave speed for this soil is
𝑐𝑅 = 261 m∕s. The Young’s modulus for the softer soil is chosen to give

a Rayleigh wave speed approximately equal to half of that for the stiffer
soil, 𝑐𝑅 = 131 m∕s.

Four computational models, Models (a)–(d), with different assump-
tions regarding the slab and the slab–soil interface conditions, are
established as:

(a) The slab is modeled as a Bernoulli–Euler beam. Vertical displace-
ment continuity of the beam and the soil is enforced along the
beam center line. A uniform normal stress distribution between
the beam and the soil is assumed in the lateral direction of the
slab. In-plane coupling of the slab–soil is disregarded.

(b) The slab is modeled as a Bernoulli–Euler beam. The slab–soil
interface is assumed rigid vertically and laterally, enforcing
displacement continuity of the beam and the soil under the full
with of the slab. The axial rigidity of the slab is modeled using
the bar equation.

(c) The slab is modeled with Kirchhoff shell elements, allowing a
more general slab–soil interface stress and displacement distri-
bution in the lateral direction of the slab than by the aforemen-
tioned models. Displacement and force continuity is enforced in
the nodes of the slab–soil interface.

(d) The slab is modeled with 3D solid elements, allowing the most
general stress and displacement field of the four models. Dis-
placement and force continuity is enforced in the nodes of the
slab–soil interface.

Models (a)–(b) are semi-analytical, not requiring the introduction
of finite elements as for Models (c)–(d). The rails are modeled as
Bernoulli–Euler beams in all four models. The loading is assumed
identical on both rails and in Models (a) and (b) the two rails are
accordingly modeled as one single rail with properties equivalent to
two rails. In Models (c) and (d), only half of the track is modeled,
due to assumed symmetry around the track center line. The models
are formulated in a moving frame of reference following the load at
a specific speed, requiring that the track is assumed invariant in the
load travel direction. Hence, the discrete rail supports are modeled as
a continuous visco-elastic interface layer between the rail and the slab.
The underlying soil response is included through a dynamic stiffness,
obtained via the Green’s function for a horizontally layered visco-elastic
stratum in the frequency–wavenumber domain, as further described in
Section 3. The track models and their coupling to the soil is further
detailed in Section 4. The Models (a)–(d) are shown schematically in
Fig. 2.

Fig. 3 shows a contour plot of the soil surface vertical response
amplitude due to a vertical harmonic point load excitation of the soil
surface, against frequency and radial wavenumber. The right subplot
is for the stiffer soil. Also indicated in the subfigures are the disper-
sion curves of the Rayleigh wave for the upper layer and half-space
materials. For low frequencies, the response is low and dominated by
the characteristics of the half-space material. For increasing frequencies
the wave that dominates the response propagates in the upper layer
with decreasing influence of the half-space material. This effect is seen
in the contour plots at around 5 Hz (left) and 10 Hz (right), where the
yellow colored area (high response), tends to the dispersion curve of the
Rayleigh wave of the upper layer material for increasing frequencies.

To compare the effect of the various modeling strategies for the
track, each of Model (a)–(d) was used for evaluating the vertical free-
field response to a moving unit harmonic point load acting on the
rail. Humans are sensitive to whole-body vibrations for frequencies
below 80 Hz. As seen from Fig. 3, the response for the studied ground
conditions is low below 5 Hz. The current study is therefore limited to
the frequency range 5 to 80 Hz. The velocity of the moving load, set
to 𝑣 = 30 m∕s, was chosen since it is a common train velocity in urban
areas. First, only vertical coupling of the slab to the soil was accounted
for, i.e. the shear transfer between the track and soil was disregarded.
Then, the in-plane slab–soil displacements were also coupled, assuming
a full transfer of shear stresses between the track and soil.



Soil Dynamics and Earthquake Engineering 136 (2020) 106254

3

J. Malmborg et al.

Fig. 2. Schematic view of computational models. In Models (a) and (b) the slab is modeled as Bernoulli–Euler beams with different slab–soil interface conditions. In Models (c)
and (d) the slab is modeled by Kirchhoff shell and 3D solid continuum finite elements, respectively.

Table 1
Track properties.

Parameter Value

Rail Mass (kg/m) 60
Young’s modulus (GPa) 210
Second moment of inertia (m4) 3.217 × 10−5

Loss factor (−) 0.01
Track gauge (m) 1.435

Rail Stiffness (MN/m2) 250
pads Damping (kNs/m2) 22.5

Slab Density (kg/m3) 2500
Young’s modulus (GPa) 30
Poisson’s ratio 0.2
Width (m) 3.0
Thickness (m) 0.2 / 0.5
Loss factor (−) 0.04

In the semi-analytical models, i.e. Models (a)–(b), the track has
infinite length. These models are formulated in frequency–wavenumber
domain with a maximum wavenumber of 42 rad/m in each direction,
normal and parallel to the track. The number of wavenumber points
is set to 4096 × 4096. In Model (b) the slab–soil interface is laterally
discretized into 21 strips.

In the FE models, i.e. Models (c)–(d), the total track length is 90 m.
The displacement boundary conditions are free at the truncated ends
of the track. The length 90 m has been found to be sufficient to avoid
problems with reflecting waves at the free boundaries. An element
length of 0.15 m is used in both 𝑥1- and 𝑥2-directions. In Model (d),
six elements are used in the thickness direction of the slab.

Damping is introduced in all models through the use of complex
Young’s moduli for the ground, the slab and the rails. All calculations
presented herein are carried out using an in-house code. The numerical
implementations have been validated by running and comparing the
results obtained for various cases presented in the literature (e.g. [14–
16]), as well as by comparative calculations using the commercial FE
software Abaqus.

3. Soil model

The ground is assumed to be composed of horizontal visco-elastic
layers. Neglecting body forces, the Navier equations for a single soil
layer can be written as

(𝜆 + 𝜇)
𝜕2𝑢𝑗
𝜕𝑥𝑖𝜕𝑥𝑗

+ 𝜇
𝜕2𝑢𝑖

𝜕𝑥𝑗𝜕𝑥𝑗
= 𝜌

𝜕2𝑢𝑖
𝜕𝑡2

, (1)

where 𝑢𝑖 = 𝑢𝑖(𝑥1, 𝑥2, 𝑥3, 𝑡) is the displacement in direction i. The Lamé
parameters are 𝜆 and 𝜇.

The equations are obtained in the frame of reference following
the load moving at a fixed speed 𝑣 along the 𝑥1-axis by applying the
coordinate transformation,

(�̃�1, �̃�2, �̃�3) = (𝑥1 − 𝑣𝑡, 𝑥2, 𝑥3), (2)

Table 2
Ground properties.

Layer Parameter Value

Soil Depth (m) 14
Young’s modulus (MPa) 475 / 120
Poisson’s ratio 0.48
Density (kg/m3) 2125
Loss factor (−) 0.14

Bedrock Depth (m) ∞
(half-space) Young’s modulus (MPa) 8800

Poisson’s ratio 0.40
Density (kg/m3) 2600
Loss factor (−) 0.04

where �̃�1, �̃�2, �̃�3 denotes the coordinates in the moving frame of refer-
ence. Partial derivatives in the two reference frames are related as [17]

𝜕
𝜕𝑥1

= 𝜕
𝜕�̃�1

, 𝜕
𝜕𝑡
|

|

|𝑥1
= 𝜕

𝜕𝑡
|

|

|�̃�1
− 𝑣 𝜕

𝜕�̃�1
, (3)

which applied to Eq. (1) yields

(𝜆 + 𝜇)
𝜕2�̃�𝑗
𝜕�̃�𝑖𝜕�̃�𝑗

+ 𝜇
𝜕2�̃�𝑖

𝜕�̃�𝑗𝜕�̃�𝑗
= 𝜌

( 𝜕2�̃�𝑖
𝜕𝑡2

− 2𝑣
𝜕2�̃�𝑖
𝜕𝑡𝜕�̃�1

+ 𝑣2
𝜕2�̃�𝑖
𝜕2�̃�1

)

, (4)

where �̃�𝑖 = �̃�𝑖(�̃�1, �̃�2, �̃�3, 𝑡) is the displacement in the moving frame of
reference.

Fourier transforming the Navier equations with respect to the hor-
izontal coordinates and time, (�̃�1, �̃�2, 𝑡), yields the Navier equations in
frequency–wavenumber domain as

(𝜆 + 𝜇)𝛥i�̃�1 + 𝜇
( d2

d�̃�23
− �̃�21 − �̃�22

)

�̃�1 = −𝜌�̃�2�̃�1, (5a)

(𝜆 + 𝜇)𝛥i�̃�2 + 𝜇
( d2

d�̃�23
− �̃�21 − �̃�22

)

�̃�2 = −𝜌�̃�2�̃�2, (5b)

(𝜆 + 𝜇) d𝛥
d�̃�3

+ 𝜇
( d2

d�̃�23
− �̃�21 − �̃�22

)

�̃�3 = −𝜌�̃�2�̃�3, (5c)

where 𝛥 = 𝛥(�̃�1, �̃�2, �̃�3, 𝜔) and �̃�𝑖 = �̃�𝑖(�̃�1, �̃�2, �̃�3, 𝜔) are the Fourier
transforms, with respect to the horizontal coordinates and time, of the
dilation 𝛥(�̃�1, �̃�2, �̃�3, 𝑡) and the displacement �̃�𝑖(�̃�1, �̃�2, �̃�3, 𝑡), respectively.
The imaginary unit is denoted i. The vibration frequency of a material
point is �̃� = 𝜔− �̃�1𝑣 and 𝜔 is the circular frequency of the moving load.
The horizontal wavenumbers in the direction of �̃�1 and �̃�2 are �̃�1 and
�̃�2, respectively.

The solution to Eq. (5) for an individual layer can be found analyt-
ically, as showed by Sheng et al. [7,8]. Due to continuity of displace-
ments and tractions over interfaces between layers, the Thomson [18]
and Haskell [19] layer transfer matrix approach can be used to assem-
ble several layers, forming a relationship between the displacement and
stresses at the top of the stratum and at the bottom of the stratum.
A relationship between the traction and the displacements at the soil
surface can be obtained as

�̂� = �̂� �̂�, (6)
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Fig. 3. Contour plot of the soil surface vertical displacement, due to a point load on the soil surface, in frequency–wavenumber domain. Dashed and dotted lines represent the
dispersion curves of the Rayleigh wave for the soil and half-space material, respectively. Left: Softer soil. Right: Stiffer soil. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

where

�̂� = �̂�(�̃�1, �̃�2, 𝜔) =
⎡

⎢

⎢

⎣

�̂�1
�̂�2
�̂�3

⎤

⎥

⎥

⎦

, �̂� = �̂�(�̃�1, �̃�2, 𝜔) =
⎡

⎢

⎢

⎣

�̂�1
�̂�2
�̂�3

⎤

⎥

⎥

⎦

, (7)

are vectors containing the displacements and tractions, respectively, on
the soil surface, and

�̂� = �̂�(�̃�1, �̃�2, 𝜔) =
⎡

⎢

⎢

⎣

�̂�11 �̂�12 �̂�13
�̂�21 �̂�22 �̂�23
�̂�31 �̂�32 �̂�33

⎤

⎥

⎥

⎦

, (8)

is the Green’s function tensor for the layered half-space.
For certain frequencies and stratifications, the original Thomson and

Haskell method suffers from loss-of-precision. To avoid these problems
in the present work, the different soil layers are assembled in an
orthonormalization procedure as proposed by Wang [20].

Eq. (6) is evaluated for a set of discrete values of �̃�1 and �̃�2, and the
displacement vector �̃�(�̃�1, �̃�2, 𝜔) in Cartesian space is obtained through
a double inverse Fourier transform of �̂�(�̃�1, �̃�2, 𝜔).

4. Track models

4.1. Semi-analytical beam models: Models (a) and (b)

Here, due to the assumed symmetry, both rails are represented as
one infinite beam with the total bending stiffness (𝐸𝐼)r and mass 𝑚r .
The rail is supported by continuously distributed springs and dashpots
representing the rail pads, with stiffness 𝑘p and damping 𝑐p. The rail
pads are connected to the slab, represented by an infinite beam with
bending stiffness (𝐸𝐼)s and mass 𝑚s. To account for the shear force
in the axial direction of the soil–slab interface, an infinite bar with
axial stiffness (𝐸𝐴)s represents the axial rigidity of the slab. The rail
is subjected to a harmonic load 𝑃0 with circular frequency 𝛺, moving
in the positive 𝑥1-direction with the velocity 𝑣. The system is described
by three equations:

(𝐸𝐼)r
𝜕4𝑢r
𝜕𝑥41

+ 𝑚r
𝜕2𝑢r
𝜕𝑡2

+ 𝑘p
(

𝑢r − 𝑢s
)

+ 𝑐p
( 𝜕𝑢r
𝜕𝑡

−
𝜕𝑢s
𝜕𝑡

)

= 𝛿(𝑥1 − 𝑣𝑡)𝑃0ei𝛺𝑡,

(𝐸𝐼)s
𝜕4𝑢s
𝜕𝑥41

+ 𝑚s
𝜕2𝑢s
𝜕𝑡2

+ 𝑘p
(

𝑢s − 𝑢r
)

+ 𝑐p
( 𝜕𝑢s
𝜕𝑡

−
𝜕𝑢r
𝜕𝑡

)

= −𝐹3,

(𝐸𝐴)s
𝜕2𝑤s

𝜕𝑥21
− 𝑚s

𝜕2𝑤s

𝜕𝑡2
= 𝐹1,

(9)

where 𝑢r = 𝑢r (𝑥1, 𝑡) and 𝑢s = 𝑢s(𝑥1, 𝑡) is the vertical displacement of the
rail and slab, respectively and 𝑤s = 𝑤s(𝑥1, 𝑡) is the axial displacement
of the slab. Further, 𝐹3 = 𝐹3(𝑥1, 𝑡) is the vertical force in the slab–soil
interface and 𝐹1 = 𝐹1(𝑥1, 𝑡) is the shear force in the axial direction of the
slab–soil interface. The interface force terms couple the third equation
to the first two in Eq. (9), through the soil dynamic stiffness as shown

below in Eq. (17). The equations are obtained in the frame of reference
following the load by applying the coordinate transformation in Eq. (2),

(𝐸𝐼)r
𝜕4�̃�r
𝜕�̃�41

+ 𝑚r

( 𝜕2�̃�r
𝜕𝑡2

− 2𝑣
𝜕2�̃�r
𝜕�̃�1𝜕𝑡

+ 𝑣2
𝜕2�̃�r
𝜕�̃�21

)

+ 𝑘p
(

�̃�r − �̃�s
)

+ 𝑐p
(

( 𝜕�̃�r
𝜕𝑡

− 𝑣
𝜕�̃�r
𝜕�̃�1

)

−
( 𝜕�̃�s
𝜕𝑡

− 𝑣
𝜕�̃�s
𝜕�̃�1

)

)

= 𝛿(�̃�1)𝑃0ei𝛺𝑡,

(𝐸𝐼)s
𝜕4�̃�s
𝜕�̃�41

+ 𝑚s

( 𝜕2�̃�s
𝜕𝑡2

− 2𝑣
𝜕2�̃�s
𝜕�̃�1𝜕𝑡

+ 𝑣2
𝜕2�̃�s
𝜕�̃�21

)

+ 𝑘p
(

�̃�s − �̃�r
)

+ 𝑐p
(

( 𝜕�̃�s
𝜕𝑡

− 𝑣
𝜕�̃�s
𝜕�̃�1

)

−
( 𝜕�̃�r
𝜕𝑡

− 𝑣
𝜕�̃�r
𝜕�̃�1

)

)

= −𝐹3,

(𝐸𝐴)s
𝜕2�̃�s

𝜕�̃�21
− 𝑚s

( 𝜕2�̃�s

𝜕𝑡2
− 2𝑣

𝜕2�̃�s
𝜕�̃�1𝜕𝑡

+ 𝑣2
𝜕2�̃�s

𝜕�̃�21

)

= 𝐹1,

(10)

where, again, ̃ denotes that a variable is expressed in the moving
frame of reference. Fourier transforming Eq. (10) with respect to �̃�
yields

(𝐸𝐼)r �̃�41�̄�r + 𝑚r

( 𝜕2�̄�r
𝜕𝑡2

− 2i𝑣�̃�1
𝜕�̄�r
𝜕𝑡

− 𝑣2�̃�21�̄�r
)

+ 𝑘p
(

�̄�r − �̄�s
)

+ 𝑐p
(

( 𝜕�̄�r
𝜕𝑡

− i𝑣�̄�r
)

−
( 𝜕�̄�s
𝜕𝑡

− i𝑣�̄�s
)

)

= 𝑃0ei𝛺𝑡,

(𝐸𝐼)s�̃�41�̄�s + 𝑚s

( 𝜕2�̄�s
𝜕𝑡2

− 2i𝑣�̃�1
𝜕�̄�s
𝜕𝑡

− 𝑣2�̃�21�̄�s
)

+ 𝑘p
(

�̄�s − �̄�r
)

+ 𝑐p
(

( 𝜕�̄�s
𝜕𝑡

− i𝑣�̄�s
)

−
( 𝜕�̄�r
𝜕𝑡

− i𝑣�̄�r
)

)

= −𝐹3,

(𝐸𝐴)s�̃�21�̄�s + 𝑚s

( 𝜕2�̄�s

𝜕𝑡2
− 2i𝑣�̃�1

𝜕�̄�s
𝜕𝑡

− 𝑣2�̃�21�̄�s

)

= −𝐹1,

(11)

with �̄� = �̄�(�̃�1, 𝑡) = ∫ ∞
−∞ �̃�(�̃�1, 𝑡)e−i�̃�1 �̃�1d�̃�1, �̄� = �̄�(�̃�1, 𝑡) =

∫ ∞
−∞ �̃�(�̃�1, 𝑡)e−i�̃�1 �̃�1d�̃�1, 𝐹𝑖 = 𝐹𝑖(�̃�1, 𝑡) = ∫ ∞

−∞ 𝐹𝑖(�̃�1, 𝑡)e−i�̃�1 �̃�1d�̃�1, and �̃�1
denotes the wavenumber in the direction of �̃�1.

Further, assuming steady-state vibration with circular frequency 𝛺,
i.e. �̄�(�̃�1, 𝑡) = �̂�(�̃�1)ei𝛺𝑡 and �̄�(�̃�1, 𝑡) = �̂�(�̃�1)ei𝛺𝑡, and setting 𝜔 = 𝛺 − �̃�1𝑣
yields

(𝐸𝐼)r �̃�41�̂�r − 𝜔2𝑚r �̂�r + 𝑘p
(

�̂�r − �̂�s
)

+ i𝜔𝑐p
(

�̂�r − �̂�s
)

= 𝑃0,

(𝐸𝐼)s�̃�41�̂�s − 𝜔2𝑚s�̂�s + 𝑘p
(

�̂�s − �̂�r
)

+ i𝜔𝑐p
(

�̂�s − �̂�r
)

= −𝐹3,

(𝐸𝐴)s�̃�21�̂�s − 𝜔2𝑚s�̂�s = −𝐹1.

(12)

Sheng et al. [7,8] assumed a uniform contact pressure in the lateral
direction of the track–soil interface and disregarded any horizontal cou-
pling. This is also the assumption made here for Model (a). Steenbergen
et al. [12] and Ntotsios et al. [15] accounted for a varying contact
pressure in the track–soil interface by discretizing the interface laterally
into a number of strips, assuming a constant pressure within each
strip. The same principle is adopted here for Model (b), not only the
vertical contact pressure, but also for the interface shear stress in the
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longitudinal and lateral directions. The interface is discretized into 𝑁
strips with a uniform width, i.e. the width of a single strip is 𝛥 = 𝑏∕𝑁 ,
where 𝑏 is the slab width.

A strip centered around the �̃�2-axis, with a force 𝑓𝑗 (�̃�1) per unit
length in the �̃�1-direction is considered. The force acts in direction 𝑗.
The strip stress is

𝑝𝑗 (�̃�1, �̃�2) =

⎧

⎪

⎨

⎪

⎩

𝑓𝑗 (�̃�1)
𝛥

, −𝛥∕2 < �̃�2 < 𝛥∕2

0, otherwise .
(13)

In wavenumber domain the interface stress becomes

�̂�𝑗 (�̃�1, �̃�2) = 𝑓𝑗 (�̃�1)
sin(�̃�2𝛥∕2)
�̃�2𝛥∕2

, (14)

where 𝑓𝑗 (�̃�1) denotes the Fourier transform of 𝑓𝑗 (�̃�1). Denote the soil
displacement in direction 𝑖 due to the soil surface stress in direction
𝑗 by �̂�𝑖𝑗 . From Eq. (6) this displacement is obtained as �̂�𝑖𝑗 (�̃�1, �̃�2) =
�̂�𝑖𝑗 (�̃�1, �̃�2)�̂�𝑗 (�̃�1, �̃�2) (no summation on repeated indices).

Letting 𝑓𝑗 (�̃�1) = 1, the soil displacement at an arbitrary �̃�2-
coordinate, due to the loaded strip becomes

̂̃𝑢𝑖𝑗 (�̃�1, �̃�2) = 1
2𝜋 ∫

∞

−∞
�̂�𝑖𝑗 (�̃�1, �̃�2)ei�̃�2 �̃�2d�̃�2

= 1
2𝜋 ∫

∞

−∞
�̂�𝑖𝑗 (�̃�1, �̃�2)�̂�𝑗 (�̃�1, �̃�2)ei�̃�2 �̃�2d�̃�2 = (15)

1
2𝜋 ∫

∞

−∞
�̂�𝑖𝑗 (�̃�1, �̃�2)

sin(�̃�2𝛥∕2)
�̃�2𝛥∕2

ei�̃�2 �̃�2d�̃�2 = ̂̃𝐻𝑖𝑗 (�̃�1, �̃�2).

̂̃𝐻𝑖𝑗 (�̃�1, �̃�2) is a transfer function, expressing the displacements at �̃�2
due to a unit load 𝑓𝑗 (�̃�1) = 1 uniformly distributed over the strip
centered around �̃�2 = 0. Due to the translational invariability of the
soil, ̂̃𝐻𝑖𝑗 (�̃�1, �̃�2) can be used for calculating the soil displacement at
any distance along the �̃�2-axis from any loaded strip, by replacing the
coordinate �̃�2 with the distance. Hence, for each wavenumber �̃�1, a
matrix expression can be established linking the displacements and
forces in all the strips,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

̂̃𝐻11(0) ̂̃𝐻12(0) ... ̂̃𝐻13(−(𝑁 − 1)𝛥)
̂̃𝐻21(0) ̂̃𝐻22(0) ... ̂̃𝐻23(−(𝑁 − 1)𝛥)
̂̃𝐻31(0) ̂̃𝐻32(0) ... ̂̃𝐻33(−(𝑁 − 1)𝛥)
̂̃𝐻11(𝛥) ̂̃𝐻12(𝛥) ... ̂̃𝐻13(−(𝑁 − 2)𝛥)
∶ ∶ ... ∶

̂̃𝐻31((𝑁 − 1)𝛥) ̂̃𝐻32((𝑁 − 1)𝛥) ... ̂̃𝐻33(0)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑓 1
1

𝑓 1
2
∶
𝑓𝑁
3

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

�̂�11
�̂�12
∶
�̂�𝑁3

⎤

⎥

⎥

⎥

⎥

⎦

,

(16)

where the argument �̃�1 has been dropped for brevity. Further, 𝑓 𝑖
𝑗 and �̂�𝑖𝑗

denote the force and displacement, respectively, in direction 𝑗 of strip
𝑖. Eq. (16) can be written as ̂̃𝐇�̂� = �̂�. For known displacements, the
strip forces are �̂� = ̂̃𝐇−1�̂�. Enforcing equal displacements in all strips, a
(3 × 3) system is obtained from ̂̃𝐇−1,

⎡

⎢

⎢

⎣

𝑘11 𝑘12 𝑘13
𝑘21 𝑘22 𝑘23
𝑘31 𝑘32 𝑘33

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̂�1
�̂�2
�̂�3

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐹1
𝐹2
𝐹3

⎤

⎥

⎥

⎦

, (17)

where 𝐹𝑖 = 𝐹𝑖(�̃�1) is the total force in the 𝑖-direction from all strips,
i.e. the same force acting on the slab in Eq. (12). It is assumed that the
slab is rigid in the lateral direction. Further, continuity of vertical and
axial displacements between the slab and the soil are assumed. Hence,
�̂�2(�̃�1) = 0, �̂�3(�̃�1) = �̂�s(�̃�1) and �̂�1(�̃�1) = �̂�s(�̃�1). These relationships
are inserted into Eq. (12) that now constitutes a solvable system of
equations. When the track displacements have been calculated, the
individual strip forces can be obtained from �̂� = ̂̃𝐇−1�̂� and used for
calculating the free-field soil surface response.

4.2. Finite element models: Models (c) and (d)

To account for the deformation of the slab in the lateral, finite
elements are used for modeling the track in Models (c) and (d). The
coordinate transformation in Eq. (2), when applied to the equations
governing the FE formulations, introduces convective terms in the
damping and stiffness matrices. The finite elements used for the track
are described in Section 4.2.1. In Section 4.2.2, the coupling of the FE
track to the soil is described.

4.2.1. Element equations for railway track
With the coordinate transformation in Eq. (2) and the partial deriva-

tive relations in Eq. (3), the Cauchy equation of motion can be written
as

�̃�𝑇 �̃� = 𝜌
( 𝜕2�̃�
𝜕𝑡2

− 2𝑣 𝜕2�̃�
𝜕𝑡𝜕�̃�1

+ 𝑣2 𝜕2�̃�
𝜕2�̃�1

)

, (18)

where the matrix differential operator �̃�, the stress vector �̃� and the
displacement vector �̃� are defined as

�̃�𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕
𝜕�̃�1

0 0 𝜕
𝜕�̃�2

𝜕
𝜕�̃�3

0

0 𝜕
𝜕�̃�2

0 𝜕
𝜕�̃�1

0 𝜕
𝜕�̃�3

0 0 𝜕
𝜕�̃�3

0 𝜕
𝜕�̃�1

𝜕
𝜕�̃�2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (19)

�̃�𝑇 =
[

�̃�11 �̃�22 �̃�33 �̃�12 �̃�13 �̃�23
]

, (20)

�̃�𝑇 =
[

�̃�1 �̃�2 �̃�3
]

, (21)

The weak form is obtained by multiplying Eq. (18) by an arbitrary
weight function vector 𝐠 = 𝐠(�̃�1, �̃�2, �̃�3) and integrating it over the
region. The resulting weak form, after partial integration, becomes

∫𝑉
(�̃�𝐠)𝑇 �̃� d𝑉 + 𝜌∫𝑉

𝐠𝑇 𝜕2�̃�
𝜕𝑡2

d𝑉 − 2𝜌 𝑣∫𝑉
𝐠𝑇 𝜕2�̃�

𝜕𝑡𝜕�̃�1
d𝑉

+ 𝜌 𝑣2 ∫𝑆
𝐠𝑇 𝜕�̃�

𝜕�̃�1
𝑛𝑥 d𝑆 − 𝜌 𝑣2 ∫𝑉

𝜕�̃�
𝜕�̃�1

𝑇 𝜕�̃�
𝜕�̃�1

d𝑉 = ∫𝑆
𝐠𝑇 𝐭 d𝑆, (22)

where 𝐭 is the traction vector.
To obtain the FE formulation, the displacements �̃�(�̃�1, �̃�2, �̃�3, 𝑡) are

approximated using the element nodal values 𝐚(𝑡) and the shape func-
tions 𝐍(�̃�1, �̃�2, �̃�3) as �̃� = 𝐍𝐚. Adopting the Galerkin method, the mass,
damping and stiffness matrices, and the load vector, are identified as

𝐊 = ∫𝑉
(�̃�𝐍)𝑇𝐃(�̃�𝐍)d𝑉 − 𝜌𝑣2 ∫𝑉

𝜕𝐍
𝜕�̃�1

𝑇 𝜕𝐍
𝜕�̃�1

d𝑉 + 𝜌𝑣2 ∫𝑆
𝐍𝑇 𝜕𝐍

𝜕�̃�1
𝑛𝑥 d𝑆,

(23)

𝐂 = −2𝜌𝑣∫𝑉
𝐍𝑇 𝜕𝐍

𝜕�̃�1
d𝑉 , (24)

𝐌 = 𝜌∫𝑉
𝐍𝑇𝐍d𝑉 , (25)

𝐟𝑙 = ∫𝑆
𝐍𝑇 𝐭 d𝑆, (26)

where 𝐃 is the constitutive matrix for isotropic elasticity. Similar
derivations for the convective solid finite elements can be found in
e.g. [17]. Analogously, convective terms in the stiffness and damping
matrices are also obtained for the other element types. When the
velocity 𝑣 is set to zero, the equations reduce to the standard FE
equations, whose derivations can be found in for example [21].

In Model (c), the track slab is modeled using 4-node rectangular
Kirchhoff shell elements with five degrees-of-freedom (DoFs) per node
(three displacements and two rotations). In Model (d), standard 8-node
isoparametric brick elements with three displacement DoFs per node
are used. In Models (c) and (d), 2-node Bernoulli–Euler beam elements
with two DoFs per node (vertical displacement and one rotation), are
used for modeling the rails. The rail pads, i.e. the coupling between
the rails and the slab, are modeled by visco-elastic interface elements
representing continuous springs and dashpots. Here, the equations are
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derived for an interface element when the rail is parallel to the 𝑥-
axis. Denoting the spring stiffness and dashpot coefficient by 𝑘 and
𝑐, respectively, the loads on the rail and slab from the visco-elastic
interface are written

𝑞r (𝑥1, 𝑡) = −𝑘(𝑤r −𝑤s) − 𝑐
( 𝜕𝑤r

𝜕𝑡
−

𝜕𝑤s
𝜕𝑡

)

, (27)

𝑞s(𝑥1, 𝑥2𝑟, 𝑡) = −𝑘(𝑤s −𝑤r ) − 𝑐
( 𝜕𝑤s

𝜕𝑡
−

𝜕𝑤r
𝜕𝑡

)

, (28)

where 𝑤r = 𝑤r (𝑥1, 𝑡) is the deflection in the rail, and 𝑤s = 𝑤s(𝑥1, 𝑥2𝑟, 𝑡)
is the deflection of the slab at the 𝑥2-coordinate of the rail 𝑥2 = 𝑥2𝑟.
With the coordinate transformation in Eq. (2) and the partial derivative
relations in Eq. (3), these loads are obtained in the moving frame of
reference as

𝑞r (�̃�1, 𝑡) = −𝑘(�̃�r − �̃�s) − 𝑐
{( 𝜕�̃�r

𝜕𝑡
−

𝜕�̃�s
𝜕𝑡

)

− 𝑣
( 𝜕�̃�r
𝜕�̃�1

−
𝜕�̃�s
𝜕�̃�1

)}

, (29)

𝑞s(�̃�1, 𝑡) = −𝑘(�̃�s − �̃�r ) − 𝑐
{( 𝜕�̃�s

𝜕𝑡
−

𝜕�̃�r
𝜕𝑡

)

− 𝑣
( 𝜕�̃�s
𝜕�̃�1

−
𝜕�̃�r
𝜕�̃�1

)}

. (30)

The displacements of the rail, 𝑤r (�̃�1) are approximated using the beam
element shape functions 𝐍r (�̃�1) and the element nodal displacements
𝐚r (𝑡). Likewise, the slab displacements 𝑤s(�̃�1, �̃�2𝑟) are approximated
using the shell or solid element shape functions 𝐍s(�̃�1, �̃�2) evaluated
at �̃�2 = �̃�2𝑟, and the element nodal displacements 𝐚s(𝑡). By equating the
forces acting on the rail and slab to the internal forces of the inter-
face element, the following expressions are obtained for the interface
element stiffness and damping matrices:

𝐊 = 𝑘
{

∫ 𝐿∕2
−𝐿∕2 �̃�

𝑇
𝑢 �̃�𝑢 d�̃�1 + ∫ 𝐿∕2

−𝐿∕2 �̃�
𝑇
𝑙 �̃�𝑙 d�̃�1

− ∫ 𝐿∕2
−𝐿∕2 �̃�

𝑇
𝑢 �̃�𝑙 d�̃�1 − ∫ 𝐿∕2

−𝐿∕2 �̃�
𝑇
𝑙 �̃�𝑢 d�̃�1

}

−𝑐𝑣
{

∫ 𝐿∕2
−𝐿∕2 �̃�

𝑇
𝑢

d�̃�𝑢
d�̃�1

d�̃�1 + ∫ 𝐿∕2
−𝐿∕2 �̃�

𝑇
𝑙

d�̃�𝑙
d�̃�1

d�̃�1

− ∫ 𝐿∕2
−𝐿∕2 �̃�

𝑇
𝑢

d�̃�𝑙
d�̃�1

d�̃�1 − ∫ 𝐿∕2
−𝐿∕2 �̃�

𝑇
𝑙

d�̃�𝑢
d�̃�1

d�̃�1
}

,

(31)

𝐂 = 𝑐
{

∫

𝐿∕2

−𝐿∕2
�̃�𝑇
𝑢 �̃�𝑢 d�̃�1 + ∫

𝐿∕2

−𝐿∕2
�̃�𝑇
𝑙 �̃�𝑙 d�̃�1

− ∫

𝐿∕2

−𝐿∕2
�̃�𝑇
𝑢 �̃�𝑙 d�̃�1 − ∫

𝐿∕2

−𝐿∕2
�̃�𝑇
𝑙 �̃�𝑢 d�̃�1

}

, (32)

where 𝐿 is the element length and the vectors �̃�𝑢 and �̃�𝑙 collect the
shape functions for both the rail and the slab as

�̃�𝑢(�̃�1) =
[

𝐍r (�̃�1) 0 × 𝐍s(�̃�1, �̃�2 = �̃�2r )
]

,

�̃�𝑙(�̃�1) =
[

0 × 𝐍r (�̃�1) 𝐍s(�̃�1, �̃�2 = �̃�2r )
] (33)

Following standard FE assembly, the equations of motion for the
track structure can be written as

𝐌t ̈̃𝐮t + 𝐂t ̇̃𝐮t +𝐊t �̃�t = 𝐟t , (34)

where 𝐌t , 𝐂t and 𝐊t is the total mass, damping and stiffness matrix,
respectively, of the complete track structure. Further, �̃�t and 𝐟t is
the displacement and force vector for the complete track structure,
respectively, in the moving frame of reference.

4.2.2. Coupling of finite element track to soil
Assuming steady-state conditions, the governing equation for the

railway track structure can be written as

(−𝜔2𝐌t + i𝜔𝐂t +𝐊t )�̃�t = 𝐃t �̃�t = 𝐟t , (35)

where 𝜔 is the circular frequency of vibration in the moving frame
of reference and the dynamic stiffness matrix of the track is 𝐃t =
(−𝜔2𝐌t + i𝜔𝐂t +𝐊t ).

The track is coupled to a dynamic stiffness matrix representing
the soil. This dynamic stiffness matrix is derived from the previously
described Green’s function for a horizontally layered visco-elastic half-
space. The soil response is calculated for a unit load on the soil surface.
The unit load is applied with uniform traction over a rectangular

area, the size of which equals the element size in the connecting
superstructure. Considering an element size of 2𝑎 × 2𝑏, in the �̃�1- and
�̃�2-direction, respectively, the traction 𝑝𝑗 for a load in direction 𝑗 is

𝑝𝑗 (�̃�1, �̃�2, 𝜔) =

{

1∕(4𝑎𝑏), −𝑎 < �̃�1 < 𝑎,−𝑏 < �̃�2 < 𝑏
0, otherwise .

(36)

In wavenumber domain the traction becomes

�̂�𝑗 (�̃�1, �̃�2, 𝜔) =
sin(�̃�1𝑎)
�̃�1𝑎

sin(�̃�2𝑏)
�̃�2𝑏

. (37)

The soil response is calculated for three load cases, with the unit
load acting in the �̃�1-, �̃�2- and �̃�3-directions, respectively. From these
three load cases, a dynamic flexibility matrix 𝐂s(𝜔, 𝑣) is established for
a set of DoFs where the superstructure interacts with the soil surface.
These DoFs will be referred to as soil–structure interaction (SSI) DoFs.
The flexibility matrix is then inverted to form the dynamic stiffness
matrix of the soil, 𝐃s(𝜔, 𝑣) = 𝐂−1

s (𝜔, 𝑣), which gives a relation between
the steady-state displacements �̃�s and forces 𝐟s for the SSI DoFs, at a
certain load circular frequency 𝜔 and velocity 𝑣, as

𝐃s �̃�s = 𝐟s. (38)

The track and soil are coupled in a standard FE manner, and a global
system of equations for the soil and the railway structure is formed by
combining Eqs. (35) and (38), yielding

𝐃g�̃�t = 𝐟t , (39)

where 𝐃g represents the global dynamic stiffness matrix for the track
structure and the soil.

The free-field response is calculated in a two-step procedure. The
first step involves calculating the displacements in the slab–soil in-
terface due to the moving load on the track by solving Eq. (39).
The corresponding forces on the soil surface, 𝐟s, are calculated by
Eq. (38). In the second step, the free-field response due to these forces
is calculated. A flexibility matrix 𝐂s,f (𝜔, 𝑣) is established expressing the
displacements in free-field due to forces on the soil–structure interface,
i.e. the SSI DoFs, again using the previously described unit loadcases.
The free-field displacements, �̃�f , are then calculated as

�̃�f = 𝐂s,f 𝐟s. (40)

These free-field displacements are obtained in the frame of reference of
the moving load. The response is in steady-state with the frequency of
the harmonic load.

5. Results from numerical studies

In Section 5.1 the free-field vertical response, due to a moving
harmonic unit load on the track, as obtained from the different models
when disregarding any in-plane interaction between the slab and the
soil is presented. Section 5.2 contains the corresponding results when
in-plane slab–soil interaction is accounted for. Finally, in Section 5.3, a
vehicle model is introduced to calculate the wheel–rail contact forces
as the vehicle runs over an uneven rail.

5.1. Free-field displacements assuming only vertical slab–soil interaction

To compare the free-field response obtained from the different
models, the vertical displacement is extracted for points along a line
parallel with the track, as illustrated in Fig. 4. The displacements
are calculated in the coordinate system following the moving load,
meaning that �̃�1 = 0 corresponds to a point perpendicular to the moving
load. Positive �̃�1-values correspond to points ahead of the load. In this
coordinate system the responses are harmonic with the frequency of
the harmonic moving load.

The response magnitude along a line located 10 m from the track
center line, as obtained with the different models when only accounting
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Fig. 4. Illustration of the result line in relation to the moving load. The response is
calculated in the moving frame of reference, along a line located 10 m from the track
centerline.

for the vertical interaction between the slab and the soil, for a harmonic
unit load (0.5 N per rail) moving along the track at 𝑣 = 30 m∕s are
shown in Figs. 5–7 for the excitation frequencies 𝑓 = 40 Hz, 𝑓 =
60 Hz and 𝑓 = 80 Hz, respectively. For these frequencies, the Rayleigh
wavelength for the stiffer soil is 𝜆 = 6.5 m (∼ twice the slab width),
𝜆 = 4.3 m and 𝜆 = 3.3 m (similar to the slab width), respectively. For
the softer soil, these frequencies correspond to Rayleigh wavelengths
𝜆 = 3.3 m (similar to the slab width), 𝜆 = 2.2 m and 𝜆 = 1.6 m (∼ half the
slab width), respectively. These frequencies are selected to demonstrate
the features of the different modeling strategies. Condensed results for
the frequency range (5–80 Hz) are shown in the next subsection. Sub-
figures (a) and (b) show the response of the softer soil for the thin and
thick slab, respectively, whereas (c) and (d) show the corresponding
results for the stiffer soil. The response along a line located at a greater
distance (25 m) from the track has also been studied, but these results
are not presented here because they show the same general differences
as obtained for the shorter distance.

As expected, Models (c) and (d) yield almost indistinguishable
results for both slab thicknesses and both soil types in the entire
frequency range. In the following discussion, these responses are con-
sidered accurate. For low frequencies, the different vertical contact
pressure distributions implied by the different modeling strategies have
virtually no effect on the free-field response. This is because, for low
frequencies, the wavelength of the fundamental Rayleigh wave that
dominates the response is long compared to the width of the slab.

At 40 Hz (see Fig. 5), the response obtained assuming a laterally
constant slab–soil pressure, Model (a), is significantly underestimated
for both slabs on soft soil, as seen in subfigures (a) and (b). The response
is close to zero perpendicular to the load, i.e. at �̃�1 = 0. This is because
the Rayleigh wavelength is similar to the slab width at this frequency,
and a uniform pressure exerted over one wavelength does not excite
such a wave. This can be explained by the wavenumber content of
a uniform load, �̂� = sin(�̃�2𝑎)∕(�̃�2𝑎), where 2𝑎 is the load width. This
expression becomes zero for �̃�2 = 𝜋∕𝑎, i.e. when 2𝑎 = 𝜆. Hence,
excitation of the Rayleigh wave perpendicular to the track is very small
in Model (a) for frequencies where the wavelength is similar to the slab
width.

In the case of a thick slab, the response obtained assuming a laterally
constant displacement under the slab, Model (b), is almost indistin-
guishable from that obtained with Models (c) and (d), see subfigure
(b). However, this is not the case for the thinner slab, see subfigure
(a), where also Model (b) produces a slightly underestimated response.
The absolute value of the slab–soil pressure distributions directly under
the load for 𝑓 = 40 Hz are shown in Fig. 8 for the different models. For
the thin slab, the presence of the rails is visible as local peaks in the
contact pressure obtained using Models (c) and (d). In addition, the
high contact pressures around the slab edges, obtained by enforcing
rigidity in the �̃�2-direction using Model (b), are not present for the thin
slab when the cross-section flexibility is accounted for, as in Models
(c) and (d). For the thick slab, however, the true pressure distribution

approaches that of a rigid slab and hence the free-field response levels
are also almost identical. For the stiffer soil, the Rayleigh wavelength is
approximately twice the slab width at 40 Hz. For such a wavelength to
slab width ratio, the uniform pressure produces higher vibrations than
the pressure distribution obtained with a rigid surface, c.f. Fig. 5(c) and
(d). The soil is even slightly more responsive to the ‘‘true’’ pressure
distribution obtained for the thin slab, with lower edge pressures and
instead having a higher overall pressure in the center of the slab, see
Figs. 5(c) and 8(c).

At higher frequencies, Model (a) yield an underestimated response
for both slab thicknesses and soil types, see Figs. 6–7. For the thin slab
and soft soil, the response obtained from Model (b) is overestimated
for frequencies with a fundamental Rayleigh wavelength shorter than
the slab width. For the stiff soil, the wavelength of the fundamental
Rayleigh wave is longer than the slab width in the entire studied
frequency range, and assuming a rigid slab in the cross direction yields
an underestimated response for the thin slab, but an accurate response
for the thick slab. The differences in the slab–soil contact pressures,
obtained with the Models (a)–(d), are similar to those discussed above
for 𝑓 = 40 Hz, and are therefore not shown here for the higher
frequencies.

5.2. Free-field displacements including in-plane slab–soil interaction

When the in-plane slab–soil displacements are coupled, shear forces
arise in the interface. These shear forces also affect the vertical vibra-
tion levels in the free field. The maximum vertical displacement along
a line located 10 m from the track center line, for a unit load moving
along the track at 𝑣 = 30 m∕s, are shown in Figs. 9–11 for the Models
(b)–(d) when in-plane interaction between the slab and soil is enforced.
The excitation frequencies for which the response is shown are again
𝑓 = 40 Hz, 𝑓 = 60 Hz and 𝑓 = 80 Hz, respectively.

The effects of in-plane slab–soil interaction on the vertical response
levels are most noticeable around the frequencies for which the wave-
length of the Rayleigh wave in the soil is similar to the slab width, see
Fig. 9(a)–(b) (c.f. Fig. 5) and Fig. 11(c)–(d) (c.f. Fig. 7). The influence
of the in-plane slab–soil interaction is complex, as it introduces shear
forces on the soil surface that also change the vertical interaction forces,
both of which effects influence the free-field response.

As all models are established in the moving frame of reference,
following the load at the given velocity 𝑣 = 30 m∕s, the results are
also obtained in this reference frame. Hence, to obtain the displacement
response of a fixed point, the receiver is moved through the model
in the opposite travel direction of the load, yielding a transient time–
history of the displacement response. This is done by traversing through
the steady-state responses along the result line with 𝑣 = 30 m∕s,
accounting for the phase of the response at each point along the line.
The transient response contains a wide range of frequencies due to
the Doppler effect. The time derivative of the fixed point displacement
time–history yields the fixed point particle velocity. To efficiently com-
pare the free-field responses for a range of excitation frequencies, two
measures are used here. The first measure is the fixed point maximum
vertical particle velocity. The second measure is the energy of the
velocity time–history signal, calculated as

𝐸�̇�𝑓 = ∫

∞

−∞
|�̇�𝑓 (𝑡)|

2d𝑡 (41)

where �̇�𝑓 (𝑡) is the vertical velocity time–history response for a fixed
point, due to the moving unit load with frequency 𝑓 .

The maximum vertical particle velocities and the signal energies 𝐸�̇�𝑓
obtained from the different models are shown in Fig. 12 and Fig. 14,
respectively, for a fixed point 10 m from the track. The results in
Figs. 12 and 14 are normalized to the response obtained with Model
(d), and shown in Fig. 13 and Fig. 15, respectively. In these figures,
the response from the different models when the in-plane slab–soil
interaction was disregarded, is also shown for reference.
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Fig. 5. Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at 𝑓 = 40 Hz moving along the track at 𝑣 = 30 m∕s, as obtained with
Models (a)–(d), accounting only for vertical interaction between slab and soil. Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and
(d) are the corresponding results for the stiffer soil.

Fig. 6. Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at 𝑓 = 60 Hz moving along the track at 𝑣 = 30 m∕s, as obtained with
Models (a)–(d), accounting only for vertical interaction between slab and soil. Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and
(d) are the corresponding results for the stiffer soil.

It can be seen in Figs. 13 and 15 that for the cases studied here, the
predicted vertical free-field response is in general significantly higher
when in-plane slab–soil interaction is accounted for and that its effects
are equally significant for both the thick and the thin slab on both

soil types. Disregarding the in-plane slab–soil interaction yields an
underestimation of the peak particle vertical velocity and the vertical
velocity signal energy, of as much as 30% and 50% respectively, c.f.
the gray/blue solid lines in Figs. 13 and 15. Model (c) (shell elements)
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Fig. 7. Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at 𝑓 = 80 Hz moving along the track at 𝑣 = 30 m∕s, as obtained with
Models (a)–(d), accounting only for vertical interaction between slab and soil. Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and
(d) are the corresponding results for the stiffer soil.

Fig. 8. Vertical slab–soil contact pressure directly under the unit harmonic load at 𝑓 = 40 Hz moving along the track at 𝑣 = 30 m∕s, as obtained with Models (a)–(d). Figures (a)
and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil.

yields similar vibration levels as Model (d) (solid elements) for both

slab thicknesses on both soils, both in terms of maximum particle

velocity and velocity signal energy. When in-plane slab–soil interaction

was disregarded, the two models provided almost indistinguishable

results. When the in-plane interaction is included, the differences in-
crease. In Model (c) the mid-section is located in the plane of the
soil surface, i.e. the membrane and bending behaviors of the shell
elements are decoupled. Furthermore, whereas the model with solid
elements enables the slab lower surface to deform differently than the
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Fig. 9. Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at 𝑓 = 40 Hz moving along the track at 𝑣 = 30 m∕s, as obtained with Models
(b)–(d), accounting for in-plane slab–soil interaction. Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding
results for the stiffer soil.

Fig. 10. Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at 𝑓 = 60 Hz moving along the track at 𝑣 = 30 m∕s, as obtained with Models
(b)–(d), accounting for in-plane slab–soil interaction. Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding
results for the stiffer soil.

upper surface, the shell elements necessarily engage the entire thickness
of the slab. Similarly, the axial and bending behaviors of the beam
representing the slab in Model (b) are also decoupled. For the thick
slab, the response levels obtained with Model (b) are about as accurate

as those from Model (c), and within about ±10% of those obtained with
Model (d).

The maximum vibration levels, both in terms of peak vertical par-
ticle velocity and velocity signal energy, occur around 25–30 Hz for
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Fig. 11. Maximum free-field displacement 10 m from the track center line, due to a unit harmonic load at 𝑓 = 80 Hz moving along the track at 𝑣 = 30 m∕s, as obtained with Models
(b)–(d), accounting for in-plane slab–soil interaction. Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding
results for the stiffer soil.

Fig. 12. Maximum particle vertical velocity in a fixed point 10 m from the track center line, due to a unit harmonic load moving along the track at 𝑣 = 30 m∕s, as obtained with
Models (a)–(d). Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil. Curves in
gray are without accounting for in-plane slab–soil interaction.

the softer soil and around 50–55 Hz for the stiffer soil. For these
frequencies, the Rayleigh wavelength is slightly shorter than twice
the slab width. Further, it can be seen that the thicker slab yields
significantly lower vibration levels.

5.3. Rail receptance and wheel–rail interaction force

In the previous subsections the differences between the different
modeling strategies, regarding the free-field response due to a moving
unit load, have been presented. However, when a vehicle runs over

an uneven rail, the dynamic forces that arise between the wheels
and the rail depend on the rail receptance (displacement per unit
force), as well as the vehicle and wheel–rail contact receptance. Hence,
models providing different rail receptances will also provide different
wheel–rail interaction forces. The absolute values of the loading point
receptance, as obtained with the different models are shown in Fig. 16,
for a load velocity of 𝑣 = 30 m∕s. The receptance is slightly higher
for the cases with a thin slab than with a thick slab, c.f. subfigures (a)
and (b) for the soft soil and subfigures (c) and (d) for the stiff soil.
Further, the softer soil provides a higher rail point receptance than
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Fig. 13. Normalized maximum particle vertical velocity in a fixed point 10 m from the track center line, due to a unit harmonic load moving along the track at 𝑣 = 30 m∕s, as
obtained with Models (a)–(d). The curves are normalized against Model (d). Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and (d)
are the corresponding results for the stiffer soil. Curves in gray are without accounting for in-plane slab–soil interaction.

Fig. 14. Vertical velocity signal energy in a fixed point 10 m from the track center line, due to a unit harmonic load moving along the track at 𝑣 = 30 m∕s, as obtained with
Models (a)–(d). Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil. Curves in
gray are without accounting for in-plane slab–soil interaction.

the stiffer soil. The in-plane slab–soil interaction has a negligible effect
(<2%) on the rail receptance for the cases studied here. In Fig. 16, the
values shown for Models (b)–(d) were calculated with in-plane slab–soil
interaction taken into account.

A maximum of the rail receptance occurs around the cut-on fre-
quency of the upper soil layer. For the stiffer soil conditions this can
be discerned as the peak value at 10 Hz. For the softer soil conditions,
the cut-on frequency is close to 5 Hz which is the lowest frequency
included in the current study. For each studied case, the different
models yield similar values of the receptance, however some differences
can be discerned. Models (c) and (d) provide almost identical rail

receptances, with a maximum difference of less than 2%. Models (a)
and (b) do not account for the slab flexibility in the �̃�2-direction and
overestimate the stiffness in that sense, since the entire track cross-
section is forced to move uniformly. Model (b) is seen to provide a
slight underestimation of the receptance in the entire frequency span,
with a maximum underestimation of about 5%, compared to Model (d),
in the cases involving the thin slab. The differences between Models
(a) and (b) are only due to the different slab–soil interface conditions,
and the receptance obtained with Model (a) deviates by approximately
±10% compared to Model (d).
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Fig. 15. Normalized vertical velocity energy in a fixed point 10 m from the track center line, due to a unit harmonic load moving along the track at 𝑣 = 30 m∕s, as obtained
with Models (a)–(d). The curves are normalized against Model (d). Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the
corresponding results for the stiffer soil. Curves in gray are without accounting for in-plane slab–soil interaction.

Fig. 16. Rail loading point receptance, due to a unit harmonic load moving along the track at 𝑣 = 30 m∕s, as obtained with Models (a)–(d). Figures (a) and (b) are for the thin
and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil.

The rail receptances for a given load speed are used for calculating
the wheel–rail contact forces due to a vehicle running over an uneven
rail. For a real vehicle with multiple axles, the receptances ahead
and behind the loading points are required to set up a compliance
matrix containing all the wheel–rail contact points. Here, however, a
single axle vehicle is considered and thus only the receptance in the
loading point is needed. The vehicle model is shown in Fig. 17, and its
properties, taken from [14], are shown in Table 3. The vehicle model
consists of the sprung/unsprung masses 𝑚𝑠 and 𝑚𝑤, and a suspension
defined by the spring stiffness 𝑘𝑠 and 𝑘′𝑠 and the damper 𝑐𝑠.

For a given circular frequency of excitation 𝜔 = 2𝜋𝑓 the dynamic
stiffness of the vehicle can be written as

𝐃𝐯 =
⎡

⎢

⎢

⎣

−𝜔2𝑚𝑤 + i𝜔𝑐𝑠 + 𝑘𝑠 −𝑘𝑠 −i𝜔𝑐𝑠
−𝑘𝑠 −𝜔2𝑚𝑠 + 𝑘𝑠 + 𝑘′𝑠 −𝑘′𝑠
−i𝜔𝑐𝑠 −𝑘′𝑠 i𝜔𝑐𝑠 + 𝑘′𝑠

⎤

⎥

⎥

⎦

, (42)

with the corresponding displacement vector

𝐮𝐯 =
⎡

⎢

⎢

⎣

𝑢𝑤
𝑢𝑠
𝑢𝑑

⎤

⎥

⎥

⎦

. (43)
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Fig. 17. Single-axle vehicle moving with fixed speed 𝑣 on rail with unevenness
magnitude 𝜏.

In the present study, a unit height of 0.1 mm is used for each studied
unevenness wavelength. The excitation frequency and the unevenness
wavelength are related through the vehicle speed as 𝑓 = 𝑣∕𝜆. A
linearized Hertzian contact spring, with stiffness 𝑘𝑐 , accounts for the
wheel–rail contact. The contact spring is assembled between the wheel
and a contact point on the rail. For a given frequency of excitation, the
displacement of the contact point can be written as 𝑢𝑐 = 𝑢𝑟+𝜏, where 𝑢𝑟
is the rail displacement and 𝜏 describes the unevenness magnitude. The
rail dynamic stiffness 𝑑𝑟 at DoF 𝑢𝑟 is the inverse of the complex valued
point receptance. By eliminating the DoF 𝑢𝑐 , the following system of
equations is obtained,

⎡

⎢

⎢

⎢

⎢

⎣

−𝜔2𝑚𝑤 + i𝜔𝑐𝑠 + 𝑘𝑠 + 𝑘𝑐 −𝑘𝑠 −i𝜔𝑐𝑠 −𝑘𝑐
−𝑘𝑠 −𝜔2𝑚𝑠 + 𝑘𝑠 + 𝑘′𝑠 −𝑘′𝑠 0
−i𝜔𝑐𝑠 −𝑘′𝑠 i𝜔𝑐𝑠 + 𝑘′𝑠 0
−𝑘𝑐 0 0 𝑑𝑟 + 𝑘𝑐

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝑢𝑤
𝑢𝑠
𝑢𝑑
𝑢𝑟

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝑘𝑐𝜏
0
0

−𝑘𝑐𝜏

⎤

⎥

⎥

⎥

⎥

⎦

. (44)

The force in the contact spring is then simply 𝑘𝑐 (𝑢𝑤−𝑢𝑐 ) = 𝑘𝑐 (𝑢𝑤−𝑢𝑟−𝜏).
Fig. 18 shows the absolute value of the wheel–rail contact force, as a

Table 3
Vehicle properties [14].

Parameter Value

𝑚𝑠 (kg) 19 250
𝑚𝑤 (kg) 1750
𝑘𝑠 (N/m) 2.66 × 106

𝑐𝑠 (Ns/m) 3.5 × 104

𝑘′𝑠 (N/m) 3 × 106

𝑘𝑐 (N/m) 2.7 × 109

function of excitation frequency, for the different models. All models
provide similar contact forces, the differences being of the same order
of magnitude as the differences in the loading point receptance.

6. Conclusions

In the paper, four different modeling strategies with respect to
assumptions about the slab track cross-section behavior and the track–
soil interface conditions have been compared by calculating the vertical
free-field response to a unit harmonic load moving along the track
at a fixed speed. In the most general model used here, the slab is
represented by 3D solid elements, and the response from this model
is used as a reference to which the other models are compared. Two
different slab thicknesses have been studied, on two stratifications with
different stiffness of the top soil layer. Although the free-field response
has been presented here only for a point 10 m from the track, the
response further from the track has also been studied, and the same
general conclusions apply also for those cases.

It has been found that for a thin slab, the pressure distribution under
the slab due to load on the rails is highly influenced by the slab cross-
section flexibility, and this in turn has a large effect on the predicted
free-field vibrations. As expected, this pressure distribution and the
resulting free-field vibrations, calculated with a solid continuum model
(Model d), are predicted equally well with a computationally cheaper
shell element model (Model c). However, the two beam models, assum-
ing laterally constant slab–soil contact pressure (Model a) or laterally
constant displacement (Model b), yield significantly different responses
due to the inadequately assumed slab–soil pressure distributions. For
the thicker slab, the cross-section flexibility is very low and the pressure

Fig. 18. Absolute value of wheel–rail contact force at different excitation frequencies, 𝑓 = 𝑣∕𝜆 due to the single-axle vehicle moving along the track at 𝑣 = 30 m∕s over a harmonic
unevenness of 0.1 mm. Figures (a) and (b) are for the thin and thick slab, respectively, on the softer soil. Figures (c) and (d) are the corresponding results for the stiffer soil.
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distribution under the slab due to a load on the rails, approaches that
of a rigid slab. In that case, the beam model assuming laterally constant
displacement (Model b) yields accurate results. It could be argued that
Timoshenko beam theory is generally preferred over Bernoulli–Euler
theory for modeling a thick slab, but the close agreement between
Models (b) and (d) here indicate that the effects of disregarding the
beam shear deformation is negligible in the studied cases.

Further, it has been found that if full shear transfer between the
slab and the soil is assumed, increased vibration levels in the free-
field are generally obtained, especially around the frequencies where
the wavelength of the fundamental Rayleigh wave that dominates the
response, is similar to the slab width. For the thick slab, both the
shell model (Model c) and the beam model with laterally constant
displacement (Model b), yield response levels that are within only a few
percents of that obtained with the solid model (Model d). In the cases
studied here, the rail point receptances and the wheel–rail interaction
forces, as obtained with the different models are very similar, and are
only marginally influenced by the in-plane slab–soil interaction.

Hence it can be concluded that for a thick slab, a beam model
enforcing constant displacements under the slab width, is sufficient
both with regards to the accuracy of the predicted rail receptance and
the wheel–rail interaction forces, as well as the free-field vibrations,
when compared to a solid continuum approach. However, for a thin
slab, the cross-section flexibility has a significant impact on the free-
field vibrations, which may be accounted for by using a shell model. In
any case, the in-plane shear forces in the slab–soil interface need to be
regarded since they significantly affect the predicted free-field vibration
levels.
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Numerical investigation of railway subgrade stiffening: Critical speed and 
free-field vibrations 

J. Malmborg *, P. Persson, K. Persson 
Department of Construction Sciences, Lund University, P.O. Box 118, SE-22100 Lund, Sweden   

A R T I C L E  I N F O   

Keywords: 
Train-induced ground vibration 
Soil stabilization 
Lime–cement columns 
2.5D finite elements 
Perfectly matched layers 

A B S T R A C T   

For a train speed close to the speed of elastic waves in the soil, often referred to as “critical speed”, largely 
elevated vibration responses occur. This can be a practical problem for soft soil sites, where the phenomenon may 
cause excessive vibrations in the track and also at distances far from the track. To ensure the running safety of the 
train, the long-term quality of the track and to reduce the vibrations in the surroundings, such effects must be 
avoided. An effective counter-measure is to increase the stiffness of the soil underneath the track, thereby 
increasing the critical velocity. 

In this paper, a 2.5D finite element model is used for studying the critical velocity phenomenon and its 
mitigation through soil stiffening, for a ballasted track on a layered half-space with very soft soil. Soil 
improvement under the track, in the shape of a solid block or as various number of panels, with varying depth 
and stiffness is considered. The effect of the soil improvement is evaluated both in terms of the maximum rail and 
free-field displacements. It is shown that a shallow soil stiffening increases the critical velocity and reduces the 
rail and free-field response for load speeds near the shear wave velocity of the soft top soil layer. It is also 
demonstrated that a deep soil stiffening, by use of panels along the track direction, increases the critical velocity 
further, and may also be efficient in reducing the response for load speeds near the shear wave speed of the 
underlying half-space.   

Introduction 

When a train moves along a railway track vibrations are generated 
that propagate to the surrounding soil. The vibration levels are highly 
dependent on the soil conditions. If a train runs at a speed close to the 
speed of the elastic waves in the soil, which is possible for soft soils, it 
may lead to a largely elevated vibration response [1–5]. Such critical 
velocity effects must be avoided to ensure the running safety of the train, 
the long-term quality of the track, and to reduce the vibrations in the 
surroundings. 

In order to ensure efficient and accurate design of vibration mitiga-
tion measures, prediction models capable of representing the physical 
behavior and allowing for quantifying the changes to the response given 
a change in input parameters are needed. The numerical prediction of 
train-induced vibrations poses great challenges due to several reasons. 
Many of the governing parameters, such as soil layering and mechanical 
properties of the different soil layers, the track conditions and the dy-
namic properties of the train, are often not fully known. Further, the 
nature of the problem necessitates accounting for a large soil volume 

which may become computationally expensive, e.g. in the case of large 
3D finite element (FE) or boundary element (BE) models. 

Large computational savings can be made if the response is assumed 
linear-elastic and the ground is assumed to be horizontally layered. A 
semi-analytical solution to the wave propagation problem can be found 
in frequency–wavenumber domain, and a railway track model consist-
ing of infinite layered structural elements can be coupled to such a 
ground model as proposed by Sheng et al. [6,7]. An increased modeling 
flexibility compared to such semi-analytical models can be obtained by 
so called 2.5D FE and BE techniques where the assumed geometric 
invariance in the track direction is utilized when formulating the gov-
erning FE/BE equations. Then, only a cross-section of the geometry is 
considered, and a Fourier transformation with respect to the track co-
ordinate is carried out on the governing equations. The solution is found 
by performing an analysis on the 2D geometry for a range of wave-
numbers, and the 3D response is obtained as an inverse Fourier trans-
formation of the wavenumber domain response. In the field of train- 
induced vibration the 2.5D FE technique was first proposed by Yang 
and Hung [8] and has then been used by several researchers to study 
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train-induced vibrations. Similarly, 2.5D BE methods have been pro-
posed, in which the need for geometry discretization is reduced even 
further. A combination of the two methods, 2.5D FE–BE, where the track 
is modeled using FE and the soil by BE, have been formulated and used 
by a number of researchers [9–13]. 

To mitigate the vibrations observed by a receiver next to the track, 
measures may be directed to the source (i.e. train/track), the propaga-
tion path (i.e. the soil) or the receiver. When directed to the propagation 
path between the railway track and the receiver, the idea is generally to 
disturb the approaching waves by introducing a barrier, e.g. open or in- 
filled trenches [14,15], sheet walls [16], local soil improvement 
[17,19,21,20] or so called wave impeding blocks [26,24,25,27]. Vi-
bration mitigation at the source may be accomplished through the use of 
resilient elements, i.e. under sleeper-mats [22] and so called floating 
slab tracks [23], where the upper part of the track structure is dynam-
ically isolated. Furthermore, the geometrical and mechanical properties 
of the track and the embankment/cutting affect the dynamic behavior 
and the resulting wave propagation [28,29]. Here, however, focus will 
be on vibration mitigation by increasing the stiffness of the soil under-
neath the track. Stiffening the subsoil can be carried out practically 
through diverse techniques, e.g. mass stabilization, jet-grouting or 
installation of lime–cement columns. The latter technique enables soil 
stabilization to large depths as well as allowing for a wide range of 
column pattern designs. Panels oriented along the track direction, 
formed by installing over-lapping lime–cement columns, are used in 
Sweden to increase the critical speed of railway tracks on soft soil [18]. 
Soil stabilization may be carried out for several reasons; reducing track 
settlements, avoiding critical velocity effects, and mitigating the envi-
ronmental vibrations next to the track, and may therefore be beneficial 
for track owners, train operators as well as residents near the railway 
track. 

Andersen and Nielsen [14] studied the reduction of train-induced 
ground vibrations obtained with soil improvement and barriers along 
the track, using a coupled FE–BE model, for trains moving at sub-critical 
speed. It was concluded that, for vertical excitation on the track, 
trenches provide more efficient mitigation of the ground surface vibra-
tions than local soil improvement in the embankment. Peplow and 
Kaynia [30] used a 2D BE model to study the reduction of ground vi-
brations by lime–cement stabilization underneath the railway track, and 
compared the obtained results with measurement data. The analyses 
were performed for a stationary, oscillating load for frequencies in the 
interval 10 to 100 Hz, and the stabilization proved efficient in mitigating 
the vibrations in the lower frequency range. Thompson et al. [13] used a 
2.5D FE–BE model to study the insertion loss obtained by stiffening the 
soil underneath a railway track for which the train speed was lower than 
the wave speeds of the ground materials. Blocks with a thickness up to 3 

m with varying stiffness and placement were considered. Such a solution 
was found to be efficient in reducing the free-field vibrations for fre-
quencies above the “cut-on” frequency of the upper soil layer. It was 
found that both an increased thickness and stiffness of the block pro-
vided a higher insertion loss. Dong et al. [31] used a model based on the 
thin-layer FE method to assess the effects of soil stiffening under the 
track. A complete soil replacement, with infinite lateral extent, up to the 
depth 5 m was considered, and the resulting increase in critical speed 
and decrease in rail displacements was studied. In [32] the same authors 
studied the influence of subgrade non-linearity on critical speed and rail 
deflection, by incorporating a “linear equivalent” approach to adapt the 
stiffness and damping parameters to the calculated strain levels. It was 
found that accounting for subgrade non-linearity reduced the critical 
speed and increased the rail deflections, compared to the strictly linear- 
elastic model. Connolly et al. [34] used a variety of different numerical 
modeling approaches to demonstrate effects of subgrade layering, track 
and train types, soil non-linearity and discrete soil stiffening using stone 
columns and jet grouting, on the critical velocity. Noren-Cosgriff et al. 
[19] studied the applicability of 2D models when evaluating the vibra-
tion mitigating effects of lime–cement columns under the track and as 
vibration reducing screen with limited extent next to the track, finding 
that satisfactory results are obtained by representing the ground with 
lime–cement columns as an equivalent effective medium, but that the 
mitigating effects may be overestimated in 2D models. Fernandez-Ruiz 
et al. [20] investigated numerically the effect of stone columns under-
neath a railway track on the rail displacements for a load moving at 
various speeds, using a 3D FE model in time-domain. The stone column 
“critical length”, with regard to rail displacement, rail dynamic ampli-
fication and critical speed, was defined as the column length beyond 
which no improvement regarding said quantities were obtained. It was 
shown that critical speed continued to increase for column lengths 
beyond the length for which no further improvement of rail displace-
ments were obtained. 

In this paper, the critical velocity phenomenon and the mitigating 
effects of soil stiffening, on both rail and free-field displacements, are 
studied numerically using a 2.5D FE model. The large strains that may 
develop at critical speed imply a non-linear response [2,32,33]. How-
ever, because the purpose of the present work is to study trends and 
tendencies regarding the mitigating effects of various soil stiffening 
approaches, rather than to establish absolute vibration levels, a linear- 
elastic model is deemed sufficient. Deep soil stabilization by a massive 
block and by various numbers of panels under the track is analyzed and 
compared. The analysis is carried out with regard to the track and free- 
field displacements for a moving point load on the rail of a ballasted 
track on a very soft layer of clay. Such deep soil stabilization is used in 
practice [18]. However the amount of research papers on the subject is 

Fig. 1. Left: Schematic cross-section of track on a layered soil. Right: Corresponding 2.5D FE model with PML at the truncated soil domains.  
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scarce, especially numerical studies regarding the effect of stabilizing 
panels on the critical velocity. 

The paper is structured as follows. The computational model is 
described in Section 2. In Section 3, the significance of the depth of the 
soft upper soil layer, with regard to the soil displacements, is studied for 
a moving load acting directly on the soil as well as for a load acting on a 
railway track. In Section 4 soil improvement underneath the track is 
considered and its effect on the rail and free-field displacements is 
studied. The depth and the lateral extent of the soil improvement is 
varied. Finally, in Section 5 important findings are discussed. 

Computational model 

2.5D FE model 

In the study, a 2.5D FE model is used for calculating the track and 
free-field vibrations for a moving load. The FE code, developed by the 
first author, is written in Fortran [35] and utilizes Intel MKL [36] for 
mathematical operations such as FFT and solving linear systems of 
equations. The geometry is assumed invariant in the track direction. 
Through a double Fourier transformation of the governing equations, 
with respect to time the track coordinate, the 3D time-domain problem 
is solved via a sequence of frequency-domain analyses of the 2D cross- 
section of the longitudinally invariant geometry. Each such 2D anal-
ysis corresponds to a specific wavenumber in the track direction. Hence, 
only a cross-section of the railway track and the surrounding soil is 
discretized by finite elements. The resulting system of equations can be 
written as: 
(
− ω2M + K0 + ik1K1 + k2

1K2
)
a(k1,ω) = fl(k1,ω), (1)  

where the 2.5D FE stiffness matrices K0,K1,K2 and the mass matrix M 
are independent of the wavenumber k1. Detailed expressions for these 
matrices can be found in e.g. [9,37,38]. The vector a(k1,ω) represents 
the nodal displacements and fl(k1,ω) is the load vector. By an inverse 
Fourier transformation of a(k1,ω) with respect to the wavenumber k1, 
the nodal displacements are obtained in space a(x,ω). 

Here, both the soil and the track embankment are modeled by 8-node 
isoparametric quadrilateral elements with a mesh as shown in Fig. 1. 
The total width and height of the modeled soil domain is 18 m × 18 m, 
including a 1 m thick layer of perfectly matched layer (PML) elements 
described below. The element size is approximately 0.2 m × 0.2 m. As an 
approximate rule-of-thumb, a minimum of 3–4 quadratic elements are 
needed for proper resolution of an elastic wave. With the lowest shear 
wave velocity in the study, the mesh is suitable for frequencies up to 
around 100 Hz. While the case of a moving static load does not have a 
well-defined range of excitation frequencies, it was however shown in 
[3] that the ground response to a static load moving close to critical 
speed is dominated by much lower frequencies (<15 Hz). 

Because the geometry is assumed invariant in the track direction, the 
periodicity of the sleepers cannot be accounted for. Here, the sleeper 
stiffness is disregarded in the track direction, and considered rigid in the 
lateral direction. This is enforced by constraining the displacements in 
the topmost nodes of the embankment located within a distance of 1.3 m 
from the symmetry line (assuming a sleeper width of 2.6 m). In addition, 
the sleeper mass is lumped to these nodes. 

The rail is represented by a Bernoulli–Euler beam of infinite length, 
with bending stiffness (EI)r and mass mr, continuously supported by 
distributed springs with stiffness kP representing the rail pads. The 
governing equation for the rail can be written as 

(EI)r
∂4ur

∂x4 +mr
∂2ur

∂t2 + kP(ur − us) = P(x, t). (2)  

Here, ur = ur(x, t) is the vertical displacement of the rail and us = us(x, t)
is the vertical displacement of the sleeper. Furthermore, P(x, t) is the 
load on the rail. 

In frequency–wavenumber domain this equation becomes 

(EI)rk
4
1ur − ω2mrur + kP(ur − us) = P(k1,ω), (3)  

where ur = ur(k1,ω) and us = us(k1,ω) now represent the displacement 
quantities in (k1,ω)-domain. 

A one-dimensional element, similar to a simple Kelvin–Voight 
element, can be formulated for the rail and rail pad as 
[
(EI)rk

4
1 − ω2mr + kP − kP

− kP kP

][
ur
us

]

=

[
P
fs

]

, (4)  

where fs is the force exerted onto the element from the sleeper node. The 
element is assembled into the global dynamic stiffness matrix for the 
whole soil–track system in a standard manner. 

Furthermore, a harmonic load oscillating with the frequency Ω, 
moving at constant velocity v along the x-axis, is represented in time–-
space domain by p(x, t) = P0 × δ(x − v× t)× eiΩt . In fre-
quency–wavenumber domain the load is given by p(k1,ω) = P0 where 
ω = Ω − k1 × v. Hence, a moving constant (non-oscillating) load, Ω = 0, 
is analyzed by setting the frequency to ω = − k1 × v. 

To reduce spurious reflections at the fictitious boundaries of the FE 
model, the soil domain is truncated by a layer of PML elements. With 
PML, a so called stretched coordinate is introduced. Consider an elastic 
domain extending from s = 0 to s = s0, and a PML region extending from 
s = s0 to s = st, see Fig. 2. 

The stretched coordinate can be written as [39] 

s̃ =
∫ s

0
λ(s)ds = s0 +

∫ st

s0

λ(s)ds, (5)  

where λ(s) is a complex valued stretch function, chosen as [39,37] 

λ(s) = 1+ f e(s) − i
f p(s)

a0
. (6)  

The functions f e(s) and f p(s) are attenuation functions, attenuating 
evanescent (e) and propagating (p) waves, respectively. The “perfectly 
matching” property of the PML is obtained by selecting f e(s0) = f p(s0)

= 0 so that λ(s) = 1 at the interface between the regular domain and the 
PML domain. Further, a0 = ωLp/CS is a dimensionless frequency, with Lp 

chosen as the thickness of the PML and CS is the shear wave velocity of 
the medium. It is demonstrated in [37] that the gradual stretch of the 
coordinate s, implied by the real part of the stretch function, modifies 

Fig. 2. An incident wave being attenuated inside the PML.  
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the apparent wavelength λ′(s) inside the PML as λ′(s) = λ(s)/(1 + f e(s)), 
i.e. an increasing value of f e decreases the apparent wavelength. Here, 
f e is chosen as 

f e(s) =
2π

abs(a0)

(s − s0)

LPML
, (7)  

where LPML is the thickness of the PML, see Fig. 2. This choice yields a 
gradual decrease of the apparent shear wavelength from λ′(s = s0) = λs 

to λ′(s = st) = λs/(1+λs) inside the PML. For example, for a shear 
wavelength of λs = 3 m (implying a frequency of 20 Hz, which is 
considered high in the present study), the apparent shear wavelength is 
gradually decreased to λ′ = 0.75 m at the end of the PML layer. The 
value of the imaginary part of the stretch function, f p(s), is based on 
recommended values in literature [39,37]: 

f p(s) = 20
(

s − s0

LPML

)2

. (8)  

When a0 = 0, i.e. for the case ω = k1 = 0, the stretch functions are set to 
λ = 1, i.e. the PML elements behave like regular 2.5D FE elements. This 
choice of attenuation functions provides satisfactory attenuation as 
demonstrated in the next subsection. The stretched coordinate is 
incorporated into the 2.5D FE equations as described in [37]. 

Model validation 

In order to validate the 2.5D FE model and the effectiveness of the 
PML, an example problem for which a semi-analytical solution can be 
found, is analyzed. In the example problem, the track is disregarded and 
instead a moving, rectangular, uniform traction load is applied directly 
on the soil surface, see Fig. 3. The semi-analytical solution is calculated 
using the Thomson and Haskell layer transfer matrix approach, as pro-
posed by Sheng [6,7], using software developed by the present first 

author [40]. 
The rectangular load distribution is 2.6 m × 2.6 m. The load is 

moving along the x-axis of a layered ground, consisting of a 6 m deep 
soft clay layer with a shear wave velocity of CS ≈ 60 m/s overlaying a 
half-space with a shear wave velocity of CS ≈ 100 m/s. The ground 
properties are shown in Table 1. The soil surface response is studied for 
various load speeds at three different y–coordinates: y = 0, y = 8 and 
y = 16 m, see Fig. 4. In the figure, the load is located centered at x = y =

0. 
Generally, very good agreement is found between the two models. 

There are, however, some deviations, especially at y = 16 m for the load 
speed v = 80 m/s, i.e. for a load speed between the shear wave speeds 
(CS) of the two materials. These deviations between the two models are 
caused by reflections at the fictitious boundaries in the FE model, i.e. 
due to imperfect settings for the PML, which has been confirmed by an 
analysis using a larger FE model with a greater distance to the fictitious 
boundaries. However, the discrepancies are limited and deemed insig-
nificant for the further studies in the paper. Furthermore, it is observed 
that the maximum displacement directly underneath the load (y = 0) is 
obtained for the velocity v = 60 m/s which is close to CS of the clay 
layer. However, at a greater distance (y = 16 m) maximum displace-
ment is obtained for the velocity v = 100 m/s, close to the CS of the 
underlying half-space. This effect is further studied in the next section. 

Effect of soft layer depth 

Load applied directly on the soil surface 

The stiffness and depth of the soil layers largely affect the vibration 
of the soil surface and the load speed at which the maximum response is 
obtained. For a homogeneous half-space, the critical speed corresponds 
to the Rayleigh wave speed CR of the soil material. However, with the 
presence of multiple soil layers with different stiffness values, the critical 
velocity can either tend to the wavespeed in the upper or lower layer(s), 
depending on their depth and stiffness, as demonstrated in the 
following. 

Here, a soil configuration is considered where again a soft clay layer 
overlays a stiffer half-space, with properties as presented in Table 1. In 
this model the depth of the soft top layer is varied. Fig. 5 shows the 
maximum soil surface vertical displacement for a rectangular load (2.6 
m × 2.6 m) moving at varying speeds, for various thickness values of the 
top layer, calculated using the semi-analytical model. Subfigures (a) and 
(b) show the maximum response at y = 0, i.e. under the load path, and at 
y = 16 m, respectively. As can be seen in Fig. 5 (a), the speed for which 
the highest displacement response is obtained corresponds to the Ray-
leigh wave speed of either the soft or the stiff material, when the 
thickness of the top layer is infinite (i.e. a soft homogeneous half-space) 
or non-existing (i.e. a stiff homogeneous half-space), respectively. The 
maximum displacement is considerably higher for the softer homoge-
neous half-space, for all load speeds in the studied range. For a thin soft 
layer, the peak displacement is less pronounced. For increasing values of 
the soft layer thickness, the critical speed approaches that of the soft 
homogeneous half-space. For a layer thickness >4 m the maximum 
response at y = 0 for speeds higher than CS in the layer, is very similar to 
the response of a homogeneous half-space. However, this is not true for 
the response at y = 16 m, as shown in Fig. 5 (b). At this distance, a sharp 
rise in the displacement response when approaching the shear wave 
speed of the clay layer is observed for all layer depths h⩾4 m, but the 
maximum response is observed for speeds closer to the shear wave speed 
of the underlying half-space. 

Load applied on a railway track 

When the load acts on the rail of a railway track, the track properties 
influence the railway response as well as the free-field ground surface 
response. Here, the 2.5D model with the ballasted track shown in Fig. 1 

Fig. 3. Rectangular load moving along the x-axis on the soil surface of a 
layered half-space. 

Table 1 
Ground properties.  

Layer Property Value  

Soil Depth (m) 6   
Young’s modulus (MPa) 16.6   
Poisson’s ratio 0.48   
Density (kg/m3) 1500   
Loss factor η = 2ζ (-) 0.08      

Half-space Depth (m) ∞   
Young’s modulus (MPa) 45.0   
Poisson’s ratio 0.48   
Density (kg/m3) 1500   
Loss factor η = 2ζ (-) 0.10   

J. Malmborg et al.                                                                                                                                                                                                                              



Transportation Geotechnics 34 (2022) 100748

5

is used for calculating the track and free-field vibration. The properties 
of the track are shown in Table 2. The mechanical properties of the 
embankment were adapted from [2]. 

In the following, the load is applied as a concentrated unit load on 
the rail (0.5 N per rail). Fig. 6 (a) shows the rail displacement at different 
speeds, for a half-space underlying a soft soil layer with varying thick-
ness. When the soft clay layer is absent (h = 0), the critical speed is 

approximately corresponding to the Rayleigh wave speed of the half- 
space material. For an increasing soft clay layer depth, the critical 
speed decreases and approaches the Rayleigh wave speed of the soft clay 
material, similarly to the case of a uniform traction acting directly on the 
soil surface. This can be explained by the dispersive properties of P–SV 
waves in the layered half-space, and in particular in relation to the 
dispersive properties of the bending waves in the track. 

Fig. 4. Comparison of the responses obtained with the FE–PML model (blue solid line) and the semi-analytical model (red dotted line). The vertical displacement u of 
the soil surface is plotted against the x–coordinate, with the load being centered around x = 0, for three different y-coordinates. 

J. Malmborg et al.                                                                                                                                                                                                                              



Transportation Geotechnics 34 (2022) 100748

6

Kausel et al. [5] recently presented a methodology to establish the 
dispersion spectrum for a fully coupled system of a railway track on a 
layered half-space, from which the critical speed can be obtained as the 
smallest stationary point. However, a common approach, also used here, 
is to calculate the dispersion spectra of the two separate systems, soil and 
track, and obtain an approximation of the critical speed at the inter-
section point between the two spectra [41–43]. To find the dispersive 
properties of P–SV waves in the layered half-space an eigenvalue 
problem is formulated from the Thomson and Haskell layer flexibility 
matrices. The solution to this eigenvalue problem reveals the wave-
numbers and frequencies of propagating P–SV modes. The details on 
how to formulate this eigenvalue problem from the layer flexibility 
matrices can be found in [41]. To obtain the dispersion spectrum of the 
track, the embankment is modeled as a Bernoulli–Euler beam, with 
bending stiffness (EI)e and mass me. The second moment of inertia Ie =
1.04 m4 and mass me = 15770 kg/m are calculated from the cross- 
section geometry detailed in Table 2, and the Young’s modulus is 
accordingly E  = 189 MPa. Combining the embankment beam with the 
rail and railpad, c.f. Eq. (4), with properties according to Table 2, pro-
vides a system of equations for the unconstrained track as 

Fig. 5. Maximum soil surface displacement for different depths h of the soft clay layer, due to a moving rectangular load. Left: y = 0, right: y = 16 m.  

Table 2 
Track properties.   

Property Value  

Rail Mass (kg/m) 60   
Young’s modulus (GPa) 210   
Second moment of inertia (m4) 3.217× 10− 5   

Loss factor (-) 0.01   
Track gauge (m) 1.435      

Rail Stiffness (MN/m2) 250  
pads Loss factor (-) 0.1      

Sleeper Width (m) 2.6   
Mass (kg/m) 535      

Embankment Density (kg/m3) 1800   
Young’s modulus (MPa) 189   
Poisson’s ratio 0.19   
Loss factor (-) 0.08   
Width, top/bottom (m) 6.0/ 8.6   
Height (m) 1.2   

Fig. 6. Maximum vertical displacement of the rail (left) and soil surface at y = 16 m (right) for different depths of the soft clay layer.  
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[
(EI)rk

4
1 − ω2mr + kP − kP

− kP (EI)ek4
1 − ω2me + kP

][
ur
ue

]

=

[
P
fe

]

. (9)  

The dispersion spectrum is defined by combinations of frequency ω and 
wavenumber k1 yielding a singular system matrix in Eq. (9), for which a 
mode of free vibration exist in the track. The intersection point between 
the dispersion curves of the track and the fundamental P–SV mode de-
fines a point in (ω,k)-space for which waves propagate freely in both the 
ground and the track. The inverse of the slope given by the line from the 
origin to this intersection point, c = ω/k , gives an approximation of the 
critical speed, i.e. a speed for which the track response reaches a 
maximum. 

In Fig. 7, the P–SV dispersion curves are shown in red. The blue curve 
represents the dispersion curve of the unconstrained track. The black 
dashed and dotted lines correspond to the shear wave of the half-space 
material and the Rayleigh wave of the clay material, respectively. The 
left and right subfigures pertain to the ground with a 6 m and 12 m deep 
clay layer, respectively. The track dispersion curve is identical in both 
subfigures, but due to the different clay layer depths, the P–SV modes 
differ. The fundamental P–SV wave is aligned close to the shear wave of 

the half-space material for low frequencies (< 2–4 Hz) and then grad-
ually approaches the Rayleigh wave of the clay material. The reason for 
this is that for low frequencies, the wavelengths are much longer than 
the depth of the clay layer and the properties of the layer has a dimin-
ishing effect on the wave propagation. On the contrary, for increasing 
frequencies the wavelengths become in the order of the clay layer depth 
and instead the half-space properties become less significant. 

For the two cases presented in Fig. 7, the increased clay layer depth 
in the right subfigure causes the so called cut-on frequency, where the 
fundamental P–SV mode approaches the Rayleigh mode of the top ma-
terial, to tend to a lower frequency. In turn, the intersection point with 
the track dispersion curve occurs at a lower frequency which, given the 
dispersion curve for the track, implies that the critical speed is lower. 
From the intersection points in the two subfigures the critical speeds can 
be approximated as v = 65 m/s and v = 59 m/s, respectively, which 
obviously differs from those obtained by the 2.5D FE calculation pre-
sented in Fig. 6 (v = 70 m/s and v = 63 m/s respectively). In the detailed 
calculation, however, effects of cross section deformation and continuity 
of strains in the interface between the embankment and the ground are 
accounted for. Considering the embankment as a beam is a less accurate 

Fig. 7. Dispersion spectrum showing the P–SV modes of the ground (red solid line) and the bending wave dispersion of the track (blue solid line). The shear wave of 
the half-space material and the Rayleigh wave of the top soil material is indicated by a black dashed and dash-dotted line, respectively. In the left figure, the depth of 
the clay layer is h = 6 m. Right figure: h = 12 m. 

Fig. 8. Vertical displacement response in different locations of the model at the load speed v = 70 m/s (left) and v = 96 m/s (right), for the case with a h = 6 m deep 
clay layer. 
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approximation but serves as an efficient mean to estimate the dispersion 
characteristics for the track and explaining the trends regarding the 
maximum rail displacement observed in Fig. 6 (a). 

In Fig. 6 (b) the maximum soil surface displacement 16 m from the 
track is shown for various speeds. These curves share some character-
istics with the corresponding curves for the case with a load acting 
directly on the soil surface, c.f. Fig. 5 (b). When the load speed is well 
below the wave speeds in the underlying ground, no propagating waves 
are generated. A deflection shape, similar to that caused by a non- 
moving static load, moves with the load. However, when the load 
speed is increased towards the Rayleigh wave speed of the ground ma-
terial, propagating waves are generated that cause the displacement 
amplitudes to increase significantly also far away from the load. The 
dispersion diagram analysis (see Fig. 7) indicates that the critical speed 
(i.e. speed of maximum rail displacement) occurs for a load speed cor-
responding to the track–soil intersection point (ω, k1) where both track 
and soil exhibits free propagating waves; i.e. similar to a resonance 
frequency of a coupled system. This explains also why the response in 
the far-field exhibits a sharp increase when the load speed approaches 
critical speed. For h = 12 m, the displacement increases drastically 
when the load speed approaches the shear wave velocity of the top layer, 
reaching a maximum at around v = 70 m/s. Increasing the speed further 
yields a lower response, and no sharp amplification is observed for 
speeds around the shear wave velocity of the half-space. On the other 
hand, for the case with h = 6 m, the maximum displacement 16 m from 
the track is obtained for a load speed close to the shear wave velocity of 
the half-space. However, a sharp rise in the response is obtained already 
at speeds near CS of the top layer. The vertical displacement in different 
points of the model is shown in Fig. 8 for the load speeds v = 70 m/s 
(maximum rail response) and v = 96 m/s (maximum response at y = 16 
m), plotted against the distance along the x-axis. The load is located at 
x = 0. In both cases, the vertical displacement in the embankment is 
almost identical to that of the rail. The vertical displacement at the 
interface between the clay layer and the half-space, at z = − 6 m, is 
considerably higher for the higher load speed. This is also true for deeper 
levels, i.e. at z = − 12 m. At y = 16 m, the displacement at the depths z =

− 6 m and z = − 12 m, respectively, are very similar and of considerable 
magnitude in comparison with the surface response, indicating that the 
free-field response is indeed governed by a mode involving the half- 
space. The corresponding vertical particle velocity time-histories are 
shown in Fig. 9. 

Soil improvement effects 

The effect of soil improvement is first studied by assuming that the 
entire soil volume underneath the track, to a certain depth, is stiffened as 
schematically shown in Fig. 10. The soil improvement block shares 
nodes with the surrounding soil and the embankment along its interface, 
i.e. full interaction is assumed. For the improved soil the assumed me-
chanical properties are given in Table 3. These properties approximately 
correspond to a twentyfold increase of the shear modulus and a fivefold 
increase of the shear wave velocity compared to the unimproved clay. 

In addition, the effect of a soil improvement block having a lower 
stiffness is compared. These lower stiffness properties, specified within 
brackets in Table 3, have been calculated considering a replacement 
ratio within the block of 50% and can therefore be considered as a 
“smeared” approach of simulating an arbitrary column pattern 

Fig. 9. Vertical particle velocity response in different locations of the model at the load speed v = 70 m/s (left) and v = 96 m/s (right), for the case with a h = 6 m 
deep clay layer. 

Fig. 10. Schematic cross-section of a track on a layered soil. Note that sym-
metry is assumed around the leftmost vertical line of the model. 

Table 3 
Improved soil properties. Values in brackets are for partial soil improvement.  

Property Value   

Young’s modulus (MPa) 320 (160)   
Poisson’s ratio 0.33 (0.40)   
Density (kg/m3) 1600 (1550)   
Loss factor (-) 0.08 (0.08)    

J. Malmborg et al.                                                                                                                                                                                                                              



Transportation Geotechnics 34 (2022) 100748

9

occupying half the volume of the block. Despite the approximation of 
using a smeared model, the analyses indicate how the lower stiffness of 
the improvement block affect the rail and free-field response. 

Soil improvement depth 

For the case with a h = 6 m deep soft clay layer, Fig. 11 shows the 
maximum vertical rail displacement (left) and soil surface displacement 
at y = 16 m (right) for different speeds and various depths of the soil 
improvement. It is observed that the maximum response decreases and 
the critical speed increases and approaches the wavespeed in the un-
derlying half-space, for an increasing depth of the soil improvement. The 
change of the maximum rail response and the critical speed are greater 
for shallow improvement depths. An improvement depth of h = 2 m 
provides an increase in the critical speed from v ≈ 70 m/s to v ≈ 90m/s. 
For an increasing improvement depth, the critical speed slowly ap-
proaches CR of the half-space material, and the maximum rail response 
continues to decrease. The peak in the rail displacement in Fig. 11 be-
comes less pronounced as the depth of the improvement increases. It 
should be added that the stabilized soil, having a higher stiffness than 

the underlying half-space, produces an inversely dispersive soil profile. 
Such a soil profile, with a stiffer top layer, implies that the wave speed 
increases with frequency as the wavelengths become of the order of the 
top layer depth. The rail response, when plotted against the load speed, 
may then exhibit two peaks where the first peak occurs when the load 
speed is similar to CR of the half-space material, and the second peak 
occurs when the load speed is similar to CR of the top layer (improve-
ment) material. Which peak is the larger is dependent on the depth of the 
top layer, see e.g. [42]. This implies that the “true” critical speed may 
occur for load speeds near the wavespeeds of the soil improvement 
material, which is outside the studied speed range in the present case. 

The displacement response 16 m from the track is significantly 
reduced in the speed range of about 60 to 85 m/s for a shallow 
improvement of d = 1 m. When increasing the speed further and 
approaching CR of the half-space material, such a shallow improvement 
does not affect the maximum free-field displacement. For an increasing 
improvement depth, a reduction of the maximum free-field displace-
ment is also obtained for load speeds around CR of the half-space ma-
terial. When the entire top layer soil volume is improved (d = 6 m) the 
maximum displacement response, at the load speed around CR of the 

Fig. 11. Maximum vertical displacement of the rail (left) and soil surface at y = 16 m (right) for different depths of the soil improvement. The depth of the soft soil 
layer is h = 6 m. Dashed line corresponds to a partial soil improvement using the smeared material properties. 

Fig. 12. Vertical displacement response in different parts of the model at the load speed v = 70 m/s (left) and v = 96 m/s (right), for the case with a h = 6 m deep 
clay layer and a d = 6 m deep soil improvement block under the track. 
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half-space material, is reduced to about 1/3. For this improvement 
depth, the vertical displacement in different points of the model is 
shown in Fig. 12 for the load speeds v = 70 m/s and v = 96 m/s, plotted 
against the distance along the x-axis. The load is located at x = 0. 
Comparing with the unimproved case (c.f. Fig. 8) it is evident that with 
the stiffer subsoil, a relatively larger part of the total rail displacement 
now occurs in the railpads and the embankment. For the lower speed 
(v = 70 m/s), the displacement pattern along the x-axis has a quasi- 
static appearance and is almost symmetric around the load x = 0. For 
the higher speed (v = 96 m/s) the displacement pattern is clearly 
affected by the speed being higher. Further, the displacements in the 
free-field increases. As in the unimproved soil case, the soil surface 
displacement 16 m from the track is strongly governed by the motion in 
the half-space. The corresponding vertical particle velocity time- 
histories are shown in Fig. 13. The dashed line in Fig. 11 shows that 
the maximum displacements obtained with a d = 6 m deep block of 
partial improvement (smeared stiffness properties assuming 50% sta-
bilized soil) are comparable with those obtained for a d = 4 m deep 
block of fully improved soil, in the entire studied load speed interval. 

For the case with a h = 12 m deep soft clay layer, the maximum 

vertical rail displacement and soil surface displacement at y = 16 m for 
different speeds and various depths of the soil improvement are shown 
in Fig. 14. These curves show trends corresponding to those discussed 
above for the shallower clay layer depth. The free-field response for the 
case with unimproved soil has a global maximum for load speeds near CS 
of the clay material, and a local maximum at CR of the half-space ma-
terial. A shallow improvement of d = 2 m shifts the speed of maximum 
response towards CR of the half-space material. For load speeds around 
CS of the clay material, the reduction of the response is around 50%, 
whereas the maximum response for load speeds around half-space CR 
are unaffected. With an increasing soil improvement depth, the 
maximum free-field response occurs around CR of the half-space, with a 
stronger reduction in maximum response. 

Soil improvement pattern 

Instead of stiffening the entire soil volume under the track, it may be 
more economical and practical to stiffen a limited soil volume. A com-
mon technique for accomplishing this is by installing lime–cement col-
umns, by use of techniques such as deep soil mixing. Such columns may 

Fig. 13. Vertical particle velocity response in different parts of the model at the load speed v = 70 m/s (left) and v = 96 m/s (right), for the case with a h = 6 m deep 
clay layer and a d = 6 m deep soil improvement block under the track. 

Fig. 14. Maximum vertical displacement of the rail (left) and soil surface at y = 16 m (right) for different depths of the soil improvement. The depth of the soft soil 
layer is h = 12 m. Dashed lines correspond to a partial soil improvement using the smeared material properties. 
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Fig. 15. Panel configurations with a total of 9, 3 and 2 panels, respectively. Note that symmetry is assumed around the leftmost vertical line of the model.  

Fig. 16. Maximum vertical displacement of the rail (left) and soil surface at y = 16 m (right) for different patterns of the soil improvement. The depth of the soft soil 
layer is h = 6 m. Dashed lines correspond to a partial soil improvement using the smeared material properties. Dotted lines correspond to an improvement to half the 
soil layer depth i.e. d = 3 m. 

Fig. 17. Maximum vertical displacement of the rail (left) and soil surface at y = 16 m (right) for different patterns of the soil improvement. The depth of the soft soil 
layer is h = 12 m. Dashed lines correspond to a partial soil improvement using the smeared material properties. Dotted lines correspond to an improvement to half 
the soil layer depth i.e. d = 6 m. 
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be installed in various patterns resulting in various amounts of soil being 
stiffened. Apart from installing single discrete piles, overlapping piles 
can be installed to form long-stretched panels. 

Here, the effects in terms of the rail and free-field vertical displace-
ments are evaluated for three different panel configurations, for the 
cases with h = 6 m and h = 12 m, respectively, deep soft clay layer on 
top of a half-space. In each configuration, the panels extend either to the 
interface between the clay layer and the half-space (d = 6 m and d = 12 
m, respectively) or halfway through the clay layer (d = 3 m and d = 6 m, 
respectively). The configurations are shown in Fig. 15 and involve 9, 3 
and 2 panels under the track, respectively. The panels are t = 0.6 m thick 
and infinitely long, having the same elastic properties as the improve-
ment block considered in the previous subsection. In addition, panels 
extending to the half-space interface are also evaluated using the 
smeared material properties shown in Table 3. In practice, differential 
settlements may develop between the soft soil and the improvement 
panels, leading to soil arching. This redistribution of stresses is not 
accounted for. The linear-elastic stress distribution due to the different 
stiffness of the unimproved and improved soil, however, is naturally 
accounted for in the model since the track shares nodes with both 

unimproved and improved soil at the interface. 
Fig. 16 and Fig. 17 show the maximum vertical rail displacement 

(left) and soil surface displacement at y = 16 m (right) for various 
speeds for a constant unit load acting on the rail, for the three panel 
configurations and the solid block improvement, for the h = 6 m and h =

12 m deep clay layer, respectively. For load speeds near CS of the clay 
material, a substantial reduction of both the maximum rail and the free- 
field response is obtained with all panel configurations. For load speeds 
around CR of the half-space material the reduction obtained with the 
panels is smaller, and for even higher speeds the soil improvement can 
have an adverse effect, i.e. yielding a higher response than obtained in 
the unimproved case. However, this occurs for speeds past criticality of 
the unimproved case which makes the comparison less relevant for 
practical purposes. 

Fig. 18 shows the critical speed and the corresponding rail 
displacement vs. improvement depth, for the various analyzed 
improvement types, for the case with a h = 6 m deep clay layer. In 
Fig. 19 (left) the maximum free-field displacement at y = 16 m is plotted 
for various soil improvement patterns and depths, for a load speed v =

70 m/s, i.e. at the critical speed of the unimproved soil. In Fig. 19 (right) 

Fig. 18. Critical speed (left) and corresponding rail displacement (right) for various soil improvement patterns and depth. The depth of the upper clay layer is d =

6 m. 

Fig. 19. Maximum free-field displacement 16 m from the track for the load speeds v = 70 m/s (left) and v ≤ 100 m/s (right) for various soil improvement patterns 
and depth. The depth of the upper clay layer is d = 6 m. 

J. Malmborg et al.                                                                                                                                                                                                                              



Transportation Geotechnics 34 (2022) 100748

13

Fig. 20. Critical speed (left) and corresponding rail displacement (right) for various soil improvement patterns and depth. The depth of the upper clay layer is d =

12 m. 

Fig. 21. Maximum free-field displacement 16 m from the track for the load speeds v = 63 m/s (left) and v ≤ 100 m/s (right) for various soil improvement patterns 
and depth. The depth of the upper clay layer is d = 12 m. 

Fig. 22. Contour plot of the vertical displacements of the track and the soil surface at v = 70 m/s and v = 96 m/s for (a): no improvement (b): two panels (c): block 
improvement. The load is applied as a concentrated load on the rails (not shown), in the positive z-direction (upwards). Red color indicates a positive vertical 
displacement amplitude and blue color indicates a negative amplitude. 
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the maximum displacement is shown for any load speed ≤ 100 m/s. The 
corresponding results for the case with a h = 12 m deep clay layer are 
shown in Figs. 20 and 21. In these figures, the upper speed limit has been 
chosen as v = 100 m/s (= 360 km/h), so in fact the critical speed can 
become higher due to the inversely dispersive character of the ground 
with improved soil, as previously discussed. This is, for example, visible 
in Fig. 17 (left) where, for the case with 9 panels of smeared material 
properties, the rail response has a local peak around the half-space 
material CR, but continues to increase at the end of the studied speed 
interval. From Fig. 18 (right) and Fig. 20 (right) it is observed that all 
analyzed soil improvements reduce the rail response by 39–73% at the 
critical load speed. Furthermore, Fig. 19 (left) and Fig. 21 (left) show 
that the maximum free-field ground displacements are significantly 
reduced by 68–86% when the load moves at the critical speed of the 
unimproved case (70 m/s and 63 m/s, respectively). At higher load 
speeds similar to CR of the half-space, see Fig. 19 (right) and Fig. 21 
(right), the effect of the improvement depth and stiffness is stronger with 
larger variations in the free-field response. 

Through Python scripting, the model data and results from the cal-
culations are written to an Abaqus output database, allowing for 
convenient post-processing of the results in Abaqus/Viewer [44]. Fig. 22 
shows a contour plot of the vertical displacements of the track and the 
surrounding soil surface, for the case with h = 6 m, for three configu-
rations: (a) no improvement, (b) improvement by two panels and (c) 
block improvement. The contour plots are shown for the load speeds v =

70 m/s and v = 96 m/s, that for the unimproved case cause maximum 
rail and free field displacements, respectively. For the unimproved case 
(a), the V-shaped mach cone is clearly visible with trailing oscillations 
behind the load. A significant “bow wave” is also seen ahead of the load. 
For the two improved cases, the displacements are significantly lower, 
and the response appears nearly quasi-static for the load speed v = 70 
m/s. For the load speed v = 96 m/s, the high-speed effect is visible also 
for the improved cases, however significantly lower than for the unim-
proved case. 

Conclusions 

In the paper, the mitigation of large rail and free-field displacements 
at high speeds by subsoil stiffening was studied numerically for a railway 
track on soft soil. A very soft clay layer with a shear wave velocity CS =

60 m/s overlaying a homogeneous half-space with a shear wave velocity 
CS = 100 m/s was considered. 

The soil surface response was studied for a uniform traction load 
moving at various speeds on the soil surface, for varying depths of the 
clay layer. It was found that the speed at which the maximum 
displacement response occurs under the load, the critical velocity, is 
clearly dominated by the shear wave velocity of the top layer material 
for depths greater than 4 m, with a speed–response curve similar to that 
of a soft homogeneous half-space. For shallower depths (< 2 m) large 
displacement amplification under the load was found for load speeds 
near the shear wave velocity of the top layer material, but with a less 
pronounced maximum between the shear wave velocities of the top 
layer and the half-space. For such shallow depths, however, the response 
in the free-field (16 m from the load) was shown to be almost unaffected 
by the top layer with a speed–response curve similar to that of a ho-
mogeneous half-space of the stiffer material. With the load acting on the 
rail of a ballasted railway track, similar behavior was found regarding 
the maximum displacement under the load and in the free field. The 
critical velocity, i.e. the velocity at which maximum rail displacement 
occurs, was also estimated using a dispersion diagram approach in good 
agreement with what was found using the 2.5D FE model. 

The reduction of the displacement by subgrade stiffening was studied 
by modeling a stiff block underneath the track, simulating locally 
improved soil conditions. This was found to have an immediate effect on 
both maximum rail response and critical speed already at modest 
improvement depths (1–2 m). The displacements 16 m from the track 

were also found to be significantly reduced for load speeds near CS of the 
clay layer material. However, at load speeds near the CR of the under-
lying half-space material, such shallow improvement was found to yield 
insignificant reduction of the free field response. With deeper soil 
improvement, stronger reduction of both rail and free field response was 
obtained, as well as an increasing critical velocity. Finally, soil 
improvement by panels along the track was considered. It was found 
that efficient mitigation can be obtained both regarding rail displace-
ment and free field response, with a relatively low volume of soil 
improvement, especially for load speeds around the original (unim-
proved) critical velocity. For higher load speeds, close to CR of the half- 
space material, the efficiency of the soil improvement in reducing the 
free-field ground vibrations is more strongly depending on the 
improvement depth and stiffness. 
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Abstract

This paper deals with the numerical prediction of building vibrations induced by a passing train on an adjacent

railway track. The calculations are based on a sub-structure approach, where a sequence of different models are

used to predict the train–track interaction forces, the free-field ground vibrations due to these forces, and the

building-on-soil response when subjected to the incident wave field. The free-field ground vibrations and the track

receptance are calculated using a so called 2.5D technique where the railway track is represented by finite elements

that couple to a dynamic stiffness of the underlying soil, which in turn is obtained from the Green’s function of

a horizontally layered half-space using a layer transfer matrix approach. A planar multi-body model of the train,

coupled to the track receptance, is used for calculating the train–track interaction forces as the train runs over an

uneven rail. Finally, the building response to the incident wavefield is calculated using a 3D finite element model,

accounting for the soil dynamic stiffness. This sequence of models and calculations are applied to evaluate the

vibrations in two buildings with identical layout, one lightweight wooden building and one heavyweight concrete

building, due to a passenger train passing by at two different speeds. It was found that the difference in response

between the two buildings were small, with slightly higher response in terms of root-mean-square (RMS) velocity

in the lightweight building. Compared to the incident wavefield, an amplification of the response inside the build-

ing was found in frequency bands around the fundamental natural frequencies of the slabs; however for higher

frequencies and in terms of the 1s running RMS velocity the building response was reduced. Further, it was found

that accounting for soil-structure-interaction, as opposed to simply enforcing the free-field displacements at the

building foundations, significantly reduced the building response in terms of 1s RMS velocity.

Keywords: Train-induced ground vibration, building vibration, soil-structure interaction, 2.5D finite elements,
Green’s function.



1. Introduction

The trend towards an expanding train infrastructure in the European Union may lead to increasing vibrations

and noise in buildings located in the vicinity of railways. Studies have shown that vibrations from rail transport can

be a significant source of annoyance. In [1], the association between distance to the railway track and annoyance

from vibrations were studied, finding increased annoyance for closer distances, with significant annoyance reported

for distances up to 400 m. Being subjected to environmental noise may lead to negative health effects as pointed

out by the WHO evidence review on annoyance [2].

When new buildings are erected close to existing railway lines, or when new railway lines are constructed,

measures to reduce the noise and vibrations may be required. In order to adequately design such measures, models

are needed that can properly represent the physics of the vibration problem. In numerical modeling of train-

induced vibrations, a large number of simplifications are usually necessary due to the complexity of the problem

and the large quantity of unknown parameters involved. The size of the computational domain, including the

track, surrounding soil and adjacent buildings, involved in the vibration problem poses challenges to reduce the

computational effort. While 3D finite element (FE) and boundary element (BE) models have been used by some

researchers to study both the vibration generation at the track and the wave propagation through the surrounding

soil [3, 4, 5, 6], so called 2.5D models operating in frequency domain have become a popular choice. In 2.5D

models, the track and soil properties are assumed invariant in the track direction but providing the full 3D response,

potentially at a much cheaper computational cost than with 3D models. Such models have been formulated and

developed by a large number of researchers using semi-analytical and/or numerical methods such as FE and BE

methods [8, 13, 11, 17, 21, 26, 27, 22, 19]. A drawback of the 2.5D modeling technique is that it is not possible

to directly include a stationary building next to the track, due to the assumed geometrical invariance in the track

direction. The most common approach to evaluate building vibrations is therefore to assume a weak coupling

between the source and receivers, i.e. to assume that the presence of the building does not affect the vibrations

generated at the source. This allows for calculating the free-field ground vibrations in a separate (e.g. 2.5D-) model

and then apply them in a 3D model to excite the building structure. To the authors knowledge, the first to utilize

such a formulation in the field of traffic induced building vibrations was Pyl et al [15] who used a subdomain

formulation where the free-field vibrations due to road traffic, obtained from a separate 2.5D BE model, were

applied to a 3D FE model of the building where the soil was modeled using BE. This approach was later used

by Fiala et al [16] to study the vibration and noise in a multi-story portal frame building due to the passage of a

high-speed train. Lopes et al [22, 23] used a 2.5D FE model with Perfectly Matched Layers (PML) to calculate

the free-field ground vibration to an underground train. The building response was then obtained in a separate 3D

FE/BE model of the building structure including the soil impedance. Connolly et al [19] calculated the wheel–rail

interaction forces due to a rail defect using a planar FE model of the track in time domain. These forces were then

transformed to frequency domain and applied in a 2.5D FE/BE model of the track and the surrounding soil to obtain

the free-field ground surface response. The ground surface response was then transformed back to time domain, and

the responses of a 4-story and an 8-story, respectively, building was calculated using a modal dynamic procedure,
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accounting for the soil using springs and dampers under the building. Lopez-Mendoza et al [20] proposed a scoping

model to predict train-induced vibrations in buildings using either a measured or a calculated free-field spectrum

as input to a building model. Using a FE model of the building, the building response was then obtained using a

response spectrum calculation. Recently, Colaço et al [29] used a substructure approach to calculate the building

response due to a passing train, where a calculation model based on 2.5D FEM and Method of Fundamental

Solutions (MFS) was used to obtain the free-field ground vibrations which were applied to a 3D FE model of the

building. In the building model, the soil dynamic stiffness was accounted for in a simplified manner by a Lumped

Parameter Model (LPM). Measurements from an experimental campaign was used to validate the models with

satisfactory agreement.

In Sweden, lightweight wooden buildings are becoming increasingly popular, not only for residential buildings

but also for office buildings etc. However, there is a lack of knowledge how lightweight buildings perform, com-

pared to traditional heavyweight concrete buildings, with respect to ground-borne vibrations, e.g. from railway

traffic. The choice of building system has to be dealt with in an early building design stage. Numerically predict-

ing vibration levels in buildings from railway traffic is not easily done using commercially available FE software.

The purpose of this paper is therefore to present a numerical prediction model for train-induced vibrations and

to demonstrate its use to assess the dynamic responses of two buildings with identical layout but with different

materials in the load bearing structure. A lightweight and a heavyweight 3-slab building, supported by surface

footings, excited by ground vibrations caused by a passing train running over an uneven rail, is considered. The

computational chain is based on a substructure approach, where a 2.5D model is first used to obtain the free-field

ground response due to the passing train. This free-field response is then applied in a 3D FE model of the building,

where the soil dynamic stiffness is accounted for.

The paper is structured as follows. In Section 2 the computational approach is presented; the numerical models

developed for calculating the free-field ground motion caused by a passing train and for imposing the wave field

onto the building structure are described. The ground, track, train and building properties assumed for the study

are presented in Section 3 together with the calculated responses. A discussion of the results is provided in Section

4, and the most important findings are highlighted in Section 5.

2. Computational model

In the present paper, a substructuring approach is followed to analyze the building response due to the ground

motion caused by a passing train. The different steps in the calculation scheme are summarized in Figure 1.

In the first step, detailed in Section 2.1, the track receptance and the free-field ground displacements due to a

moving harmonic unit load acting on the rails, is calculated for a range of excitation frequencies and a specific

vehicle speed. For this purpose a 2.5D FE model of the track is coupled to a dynamic stiffness representing the

surrounding soil. In the second step the track receptance, calculated in Step 1, is combined with a 2D multi-body

vehicle model to calculate the dynamic axle loads accounting for rail unevenness, as described in Section 2.2. The

free-field ground displacements due to a unit load, calculated in Step 1, is then scaled with these dynamic axle
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Figure 1: Analysis steps to calculate the building vibrations due to a passing train.

loads to yield the actual dynamic response of the free-field ground surface due to the passing train. In Step 3, the

dynamic stiffness of the building footings on the layered ground is calculated using a semi-analytical approach,

which is added to the FE model of the building structure in Step 4 to calculate the building response due to the

incoming wavefield, see Section 2.3.

The code is developed by the first author. The most computationally demanding parts, Step 1 and Step 3, are

written in Fortran [33] and utilizes Intel MKL [34] for mathematical operations. The remaining parts are written

in MATLAB.

2.1. Track and ground model

To calculate the rail and ground surface response due to a moving load acting on the railway track a 2.5D tech-

nique is employed, where the track is modeled by finite elements and the underlying soil is accounted for through a

dynamic stiffness matrix calculated from the Green’s function of a horizontally layered half-space. The geometry

is assumed invariant in the track direction. The 3D time-domain problem is solved via a sequence of frequency-

domain analyses of the 2D cross-section, through a double Fourier transformation of the governing equations with

respect to time and the track coordinate. Each such 2D analysis corresponds to a specific wavenumber k1 in the

track direction.

For each wavenumber k1, the resulting system of equations can be written as:

(
− ω2M + K0 + ik1K1 + k2

1K2 + Dg(k1, ω)
)
a(k1, ω) = fl(k1, ω), (1)

where the 2.5D FE stiffness matrices K0, K1, K2 and the mass matrix M are independent of the wavenumber

k1. Detailed expressions for these matrices can be found in e.g. [11, 18, 25]. Further, the matrix Dg(k1, ω) is

the dynamic stiffness matrix of the ground, as further discussed below. The vector a(k1, ω) represents the nodal

displacements and fl(k1, ω) is the load vector.

The soil dynamic stiffness matrix Dg(k1, ω) is calculated using the Green’s function of a horizontally layered
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half-space. The Green’s function, Gij(k1, k2, ω) is obtained with a layer transfer matrix approach [7, 8, 10]. The

soil–track interface is discretized into n strips, with n being the number of finite elements of the track at the

interface. Within each strip, a constant traction is assumed. For a strip, having a width ∆, centered around y = 0,

the traction is described in wave number domain as

p(k1, k2) =
sin(k2

∆
2 )

k2
∆
2

. (2)

The displacement u in direction i at an arbitrary position y, due to a unit load in direction j of the strip centered

around y = 0, is expressed by an inverse Fourier transform from wavenumber k2 to coordinate y as

uij(k1, y, ω) =
1

2π

∫ ∞
−∞

Gij(k1, k2, ω)p(k1, k2)eik2ydk2. (3)

This expression is used for establishing a flexibility matrix H(k1, ω) involving the center points of all the strips,

and its inversion leads to a dynamic stiffness matrix for these points, D̃(k1, ω) = H−1(k1, ω) . Hence, the strips

can be regarded as 2.5D boundary elements, with one node and three DoFs, having constant traction field and its

displacement evaluated at the element center point. This approach has previously been suggested by Alves Costa

et al [21]. The soil dynamic stiffness matrix D̃(k1, ω) cannot readily be attached to the FE system matrix, due to

the differing node positions. Applying the linear transformation [21, 24]

Dg(k1, ω) = TqD̃(k1, ω)T, (4)

yields a dynamic stiffness matrix Dg(k1, ω) defined at the nodes of the FE mesh, which is the one used in Eq. (1).

The matrix T relates the displacements in the boundary element nodes to the displacements in the adjacent FE

nodes, and Tq describes the transfer of forces on the boundary elements to the FE nodes, through integration of

the FE shape functions. The details of these matrices can be found in [24]. In the case considered here, with linear

FE shape functions and an assumed constant traction field over the boundary element, Tq = TT.

The rail is represented by a Bernoulli–Euler beam of infinite length, with bending stiffness (EI)r and massmr,

continuously supported by distributed springs with stiffness kP representing the rail pads. The governing equation

for the rail can be written as

(EI)r
∂4ur
∂x4

+mr
∂2ur
∂t2

+ kP

(
ur − us

)
= P (x, t). (5)

Here, ur = ur(x, t) is the vertical displacement of the rail and us = us(x, t) is the vertical displacement of the

sleeper. Furthermore, P (x, t) is the load on the rail.

In frequency–wavenumber domain this equation becomes

(EI)rk
4
1ur − ω2mrur + kP

(
ur − us

)
= P (k1, ω), (6)

where ur = ur(k1, ω) and us = us(k1, ω) now represent the displacement quantities in (k1, ω)-domain.

A one-dimensional element, similar to a simple Kelvin–Voight element, can be formulated for the rail and rail
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pad as (EI)rk
4
1 − ω2mr + kP −kP
−kP kP

 ur
us

 =

P
fs

 , (7)

where fs is the force exerted onto the element from the sleeper node. The element is assembled into the global

dynamic stiffness matrix for the whole soil–track system in a standard manner.

Solving Eq. (1) yields the displacements in all the nodes of the FE mesh, which allows for calculating the

individual soil–strip tractions. The displacement response at an arbitrary y-coordinate of the soil surface is then

obtained by summing the responses from each individual strip traction (c.f. Eq (3)):

ui(k1, y, ω) =
1

2π

N∑
n=1

∫ ∞
−∞

Gij(k1, k2, ω)pnj (k2)eik2(y−yn)dk2, (8)

where pnj represents the traction in direction j of strip n, whose midpoint is located at y = yn.

Furthermore, a harmonic load P0 oscillating with the frequency Ω, moving at constant velocity v along the

x-axis, is represented in time–space domain by p(x, t) = P0 × δ(x − v × t) × eiΩt. In frequency–wavenumber

domain the load is given by p(k1, ω) = P0 where

ω = Ω− k1 × v. (9)

For a given load speed v and excitation frequency Ω, Eq. (1) is solved for a range of wavenumbers k1 with the

corresponding material point frequency ω from Eq. (9) and this then corresponds to a change of reference frames,

to one following the load at speed v [8]. The inverse Fourier transform of the displacement ui(k1, y, ω) w.r.t.

wavenumber k1, then yields the displacement in spatial domain:

ui(x̃, y,Ω) =
1

2π

∫ ∞
−∞

ui(k1, y, ω)eik1x̃dk1, (10)

where a tilde on x̃ is used to emphasize that the response is in the moving frame of reference. In the moving

reference frame the response is harmonic with the excitation frequency Ω. A fixed point next to the track, however,

experiences a transient response as the harmonic load on the track passes by. It is shown in [8] that the displacement

spectrum of a fixed point can be expressed as

Sui
(x, y, f) =

1

v
eik1xui(k1, y, ω), (11)

where the frequency ordinate f = ω/2π. Hence, different points along the x-axis located at equal distance y from

the track have the same spectrum magnitude.

2.2. Train–track interaction

The forces exerted on the rail from the train wheels are static and dynamic. The static part simply corresponds

to the dead weight of the train whereas the dynamic part is much more complex and come from various phenomena

such as spatially varying track stiffness, wheel out-of-roundness and rail unevenness [12]. The dynamic excitation

by the moving train is here assumed to result exclusively from rail unevenness.
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Assuming that the wheel is in constant contact with the rail, the condition between the displacements of the

wheel contact point uw and rail ur can be written as

uw(x) = ur(x) + ∆u(x) +
P

kH
, (12)

where ∆u(x) denotes the rail unevenness amplitude at position x along the rail, P the wheel–rail contact force and

kH a Hertzian contact spring stiffness. The solution procedure, used by many authors, combines a two-dimensional

multi-body vehicle model with the track compliance in frequency domain, in a frame of reference following the ve-

hicle moving at constant speed. The rail unevenness is decomposed into a finite number of harmonic components,

and the contact forces are calculated separately for each such component. In [9] it is shown that the wheel–rail

contact forces for a train ofM wheelsets, moving over a sinusoidal rail profile with wavelength λ, can be calculated

as

P(Ω) = −(F + FH + A)−1∆u(Ω), (13)

where P(Ω) is a vector of length M containing complex valued contact forces at the frequency Ω = 2πv/λ. The

vector ∆u(Ω) contains the complex valued rail unevenness for each of the M contact points. The magnitude

of the unevenness, A, is the same for each contact point, but the fact that different wheels are in different phase

is accounted for by ∆uj(Ω) = Aei(2π/λ)aj , where aj denotes the coordinate of wheel j. Furthermore, F(Ω) is

the receptance matrix of the train at the contact points with the rail, and FH is a diagonal matrix containing the

flexibility of the contact springs at the wheel–rail contact points, 1/kH . The matrix A(Ω) is the rail receptance

matrix, with Aij containing the displacement at wheel–rail contact point i due to a unit load at point j. The details

regarding this formulation can be found in e.g. [9, 13, 21]

Hence, the time-varying dynamic contact forces between the wheels and the rail are decomposed into a dis-

crete number of harmonic force components, each associated with a single rail unevenness wavelength component.

Since the complete system (train–track–soil–building) is assumed linear, the total response is obtained from a sum-

mation of the partial responses due to each unevenness component. In the present paper, a number of artificial rail

unevenness profiles are generated from a power spectral density (PSD) function, as further described in Section 3.1.

2.3. Soil–structure interaction

In the approach followed here a so-called weak coupling to the soil–structure interaction (SSI) problem is

considered, i.e. it is assumed that the presence of the building does not affect the wheel–rail contact forces and the

resulting wave-field generated in the ground around the track. Hence, the building response to the incoming wave

field may be determined by applying a formulation in which the building is excited by a set of fictitious forces at

the soil–structure interface. These fictitious forces are calculated from the free-field response at the soil–structure

interface. Kausel et al [30, 31] refer to this as the substructure theorem,

Dbb Dbi

Dib Dii + Z

 ub

ui

 =

 0

Zu∗i + p∗i

 , (14)

7



where D = D(ω) refers to the dynamic stiffness matrix of the building structure, partitioned so that the sub-

script i refers to DoFs along the soil–structure interface and b refers to all other DoFs of the building. Furthermore

Z = Z(ω) refers to the dynamic stiffness matrix of the soil along the soil–structure boundary, and vectors u∗i

and p∗i refer to the free-field displacements and tractions, respectively, at the soil–structure boundary. Here, the

structure foundation is composed of surface footings, assumed to be placed on top of the soil surface. Hence, in

Eq. (14) the term p∗i = 0 because a free surface is traction free.

The dynamic stiffness of the foundation, Z(ω), is calculated using the Green’s function of the layered half-

space previously discussed in Section 2.2. Each soil–footing interface is discretized by a number of elements,

each in which constant traction is assumed. The displacements are evaluated at the mid-point of each element.

This technique was previously used by Lopes et al [22, 23]. The soil–footing interface, of each of the N footings,

is discretized into m × n elements. Each element has three translational DoFs (x,y,z), resulting in a total of

s = (3 × N × m × n) DoFs. A flexibility matrix H(ω) (s × s) is established using the Green’s function of

the layered half-space, where element Hij is the displacement in DoF j due to a unit load in DoF i, applied as a

constant traction over the element associated to DoF i. The inverse of this flexibility matrix provides a dynamic

stiffness matrix of the discretized soil–structure interface, Z(ω) = H−1(ω). Now, each footing is assumed rigid

and its motion may therefore be fully described by three translational and three rotational DoFs, i.e. a total of

6 × N DoFs. A linear transformation matrix T (s × 6N ) that kinematically relates the original footing DoFs to

the reduced system DoFs is applied to the dynamic stiffness matrix so that

Z̃(ω) = TTZ(ω)T. (15)

The set of fictitious forces, fi = Zu∗i , acting on the original DoFs of the soil–footing interface is likewise

transformed to the reduced system DoFs by f̃i = TTfi = TTZu∗i . In the present case, the footings are not actually

modeled by finite elements, and the columns attached to the footings are modeled by beam elements. Hence, for

the current case Eq. (14) can be written asDbb Dbi

Dib Dii + Z̃

 ub

ui

 =

0

f̃i

 , (16)

where a subscript i now refers to the (6×N ) DoFs at the bottom of the columns. It is emphasized that although each

footing is regarded rigid and modeled solely by a single node with six DoFs, the excitation due to the incoming

wave field is calculated with respect to the actual footing surface area, accounting for the free–field motion in

the (3 × m × n) original footing DoFs. The free–field motion of each such DoF is obtained by Eq. (11). It is

also emphasized that the matrix Z̃(ω) is full, accounting for through-soil interaction between different individual

footings.
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3. A comparative study of vibrations in a light and a heavy building

A study that compares the resulting vibrations in a heavyweight concrete building and a lightweight wooden

building from a passing train is presented here. The building models are adapted from [32], and although the

buildings are fictitious, the structural members were chosen to fulfill the static design criteria in accordance with

Eurocode. In Section 3.1 the track, ground and train properties are presented together with the calculated free-field

response. The properties of the buildings and their vibration response are presented in Section 3.2.

3.1. Track, ground and train

The track considered here is a ballasted track with properties according to Table 1. Since the geometry is

assumed invariant in the track direction with the 2.5D approach, discrete sleepers and rail pads are modeled with

distributed properties by dividing the discrete properties with the assumed sleeper spacing, 0.66 m. The sleepers

are regarded rigid in the plane of the track cross-section, enforced by constraining all the nodes on top of the ballast

layer within the sleeper width (see Figure 2). Furthermore, the (distributed) sleeper mass is lumped to these nodes.

The ground consists of a h = 4 m deep sand layer, with a shear wave velocity Cs = 173 m/s, overlying a stiffer

half-space. The soil material properties are shown in Table 2.

Figure 2: Track 2.5D analysis model.

Alves Costa et al [28] studied the effect of modeling approaches regarding the train, on the calculated wheel–

rail contact forces and the resulting free-field vibrations, concluding that a multi-body vehicle model involving

the unsprung and semi-sprung masses, i.e. the wheelsets and the bogies, are sufficient and that the sprung mass

(car body) can be disregarded. Therefore, such a model is adopted here to simulate the passage of a high-speed

train. The train properties, representing a Portugese Alfa-Pendular high-speed train, are taken from [29] where a

detailed description of the model properties can be found. The train consists of 6 carts, each cart having a bogie-

to-bogie center distance of 19.0 m, and a bogie width of 2.7 m. The bogie-to-bogie center distance between two

neighbouring carts is 6.9 m. The distance between the first and last wheelsets of the train is 151.2 m. Each bogie

has a mass and a rotational inertia in the range mb = 4712− 4932 kg and Ib = 5000− 5150 kg·m2, respectively.

The primary suspension stiffness and damping values are kp = 3200 kN/m and cp = 35 kN·s/m, respectively.
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Table 1: Track properties.

Property Value
Rail Mass (kg/m) 60

Young’s modulus (GPa) 210
Second moment of inertia (m4) 3.217×10−5

Loss factor (-) 0.01
Rail Stiffness (MN/m2) 250
pads Loss factor (-) 0.1
Sleeper Width (m) 2.6

Mass (kg/m) 540
Ballast Density (kg/m3) 2000

Young’s modulus (MPa) 200
Poisson’s ratio 0.33
Loss factor (-) 0.04
Width, top/bottom (m) 3.6 / 5.6
Height (m) 0.5

Table 2: Ground properties.

Layer Property Value
Soil Depth (m) 4

Young’s modulus (MPa) 160
Poisson’s ratio 0.33
Density (kg/m3) 2000
Loss factor η = 2ζ (-) 0.06

Half-space Depth (m) ∞
Young’s modulus (MPa) 800
Poisson’s ratio 0.33
Density (kg/m3) 2000
Loss factor η = 2ζ (-) 0.06

Each wheelset has a mass in the range mw = 1538− 1884 kg. The static axle loads are in the range 128.8− 136.6

kN.

In the present study, a number of artificial rail profiles were generated from a power spectral density (PSD)

function S(k1) for the track unevenness as given by:

S(k1) = S(k1,0)
( k1

k1,0

)−w
, (17)

where k1,0 = 1 rad/m, w = 3.5 and S(k1,0) = 1×10−8 m2/(rad/m) [14, 23]. The PSD function describes how the

unevenness amplitude is distributed over different wavelengths. An artificial rail profile (sample) is generated by

selecting a discrete number of wavelengths, with the corresponding unevenness amplitudes from the PSD function,

and assigning a random phase angle to each discrete wavelength. Figure 3 shows the PSD function and a number

of rail profile samples.

For a moving vehicle on the rail, each discrete unevenness wavelength corresponds to a harmonic excitation

frequency f = v/λ, and the corresponding dynamic axle loads between the wheels and the rail are calculated
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Figure 3: Left: One-sided PSD of rail unevenness. Right: Three realizations (samples) of rail unevenness.

as described in Section 2.2. The rail receptance, calculated as the rail response due to a harmonic unit load on

the rails (0.5 N per rail), is shown in Figure 4 (left) for different speeds of the load. The load speed affects the

rail receptance only to a small extent. Most notably, it can be observed that the peak around 15 Hz is shifted to

slightly lower frequencies for increasing speeds, which is due to the Doppler effect [13]. Figure 4 (right) shows the

dynamic wheel–rail contact forces in 1/3 octave bands, for the first axle of the train, for train speeds v = 30 m/s

and v = 60 m/s. These spectra are dependent on the PSD function (Figure 3) but not the actual sample. Although

the spectra appear to be increasing monotonously in the higher frequency bands, there is a maximum at around 90

Hz corresponding to the “resonance” frequency of the vehicle and track on the layered ground, which however is

outside the studied frequency range. The peak around 6 Hz corresponds to the resonance frequency of the bogie

on the primary suspension.
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Figure 4: Left: Rail receptance for different load speeds. Right: 1/3 octave band spectra of wheel–rail contact force for speeds v = 30 m/s
(red) and v = 60 m/s (black).

Figure 5 shows the time-history response and the frequency content of the vertical vibration velocity in the

free-field, at distances y = 10 m and y = 18 m from the track, due to a train passing at v = 30 m/s, for one

rail profile sample. The x-axis in the left figure is set so that t = 0 corresponds to the time instant when the

middle of the train is passing the receiver point. Figure 6 shows the corresponding results for the train speed

v = 60 m/s. In both cases, the maximum frequency of excitation is f = 80 Hz, corresponding to a minimum rail
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unevenness wavelength of λ = v/f . Due to the Doppler effect, the moving load at frequency f excites a range of

frequencies in the free-field, governed by the slowest moving wave in the soil as [f/(1+v/C), f/(1−v/C)]. This

explains why the spectra in Figures 5 and 6 show frequency content beyond the maximum excitation frequency 80

Hz. The jagged shape of the frequency spectra is a result of modulation due to the superposition of several axle

loads with similar values with a time-delay corresponding to v/L where L is the distance between axles within

or between bogies/carriages [13]. Although the complex response magnitude for a fixed point in the free-field,

due to the train running over one particular rail unevenness wavelength, is independent of its coordinate along the

track, c.f. Eq. (11), this is no longer the case when the response spectrum from several unevenness wavelengths

are superimposed, i.e. when considering a full rail profile sample. The summed response for a fixed point in the

free-field is strongly affected by the phase angles of the individual unevenness wavelengths. Figure 7 (left) shows

the running RMS, calculated over a 1 s window, of the vertical velocity in points located 10 m and 18 m from the

track due to a train passing at v = 30 m/s, for 100 different rail profile samples. The average value, calculated as

the mean value from the 100 simulations at each time instant, are indicated by thick black lines. Figure 7 (right)

shows the max/min envelopes of velocity spectra in 1/3 octave band, calculated over the time it takes for the train

to pass a fix point, T = L/v where L is the total train length. The corresponding results for a train speed v = 60

m/s are shown in Figure 8. Figure 9 shows the ensemble average of the running RMS and the 1/3 octave band

spectra, for both train speeds. It can be observed from the spectra that the vibration levels increase significantly in

the frequency bands around 15 Hz, associated with the cut-on frequency of the upper soil layer, i.e. the frequency

above which the dominant P-SV wave propagates in the upper soil layer with little influence of the underlying half-

space. For the frequency bands below about 5 Hz the quasi-static response, i.e. the response due to the moving

dead load of the train, dominates the total response and the difference between the two vehicle speeds is mainly

due to the modulation resulting from the superposition of the static axle loads with different time-delays.
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Figure 5: Left: Vertical free-field response 10 m and 18 m from the track for one rail profile sample, for a train speed v = 30 m/s. Right:
Corresponding frequency spectra.
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Figure 6: Left: Vertical free-field response 10 m and 18 m from the track for one rail profile sample, for a train speed v = 60 m/s. Right:
Corresponding frequency spectra.

Figure 7: Left: Running RMS of the free-field velocity at 10 m and 18 m from the track for 100 rail profile samples, for a train speed v = 30
m/s. Thick lines indicate ensemble average. Right: Max/min envelopes of velocity spectra in 1/3 octave bands at 10 m (blue) and 18 m (red).

Figure 8: Left: Running RMS of the free-field velocity at 10 m and 18 m from the track for 100 rail profile samples, for a train speed v = 60
m/s. Thick black lines indicate ensemble average. Right: Max/min envelopes of velocity spectra in 1/3 octave bands at 10 m (blue) and 18 m
(red).
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3.2. Building model

The previously described calculation procedure is applied here to calculate the train-induced vibrations in two

different buildings; a heavyweight concrete building and lightweight wooden building. The building models are

adapted from [32]. Although the buildings are fictitious, the structural members were chosen to fulfill the static

design criteria in accordance with the European structural design codes (Eurocode) to provide realistic resonance

frequencies. The geometry and FE mesh of both buildings are identical and shown in Figure 10. The building,

founded on surface footings, consists of two frames with slabs. In the heavyweight building, both frames and

slabs are of concrete, whereas for the lightweight building, the frames are composed of glued laminated timber

(glulam) beams and columns and the slabs are of cross-laminated timber (CLT). The wood material was modeled as

orthotropic, with stiffness parameters Young’s moduliEi and shear moduliGij , and Poisson’s ratios vij , where the

subindices refer to the longitudinal (1), transverse (2) and radial (3) directions. Material properties and structural

member dimensions are specified for both buildings in Table 3 and Table 4, respectively.

Figure 10: FE mesh used for both building types.

The FE models of the buildings were created in Abaqus [35], assuming linear-elastic material models. For

the CLT slabs, a composite layup of 7 layers in a cross-wise pattern was assumed, with the two outermost layers

on both sides of the slab positioned to provide a high stiffness in the Y -direction. The frames are modeled using

2-node linear beam elements, denoted B31 in Abaqus, whereas the slabs are modeled by 4-node shell elements

with reduced integration, denoted S4R. An element size of 0.25 m is used throughout the model. The total mass

of the lightweight and heavyweight buildings are 42 500 kg and 235 700 kg respectively. In Figure 11 and Figure

12 a selection of eigen-mode shapes are presented for the two buildings. The presented mode shapes include the

fundamental slab modes. The fundamental sway/torsion modes of both buildings are in the frequency range 1–5

Hz, but are not presented due to their diminishing contribution to the the vertical vibration of the slabs.
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Table 3: Building material properties [32].

Concrete Density (kg/m3) 2500
Young’s modulus E (GPa) 32
Poisson ratio v 0.2
Loss factor η = 2ζ (-) 0.04

Wood Density (kg/m3) 500
E1 (MPa) 8500
E2 (MPa) 350
E3 (MPa) 350
v12 0.2
v13 0.2
v23 0.3
G12 (MPa) 700
G13 (MPa) 700
G23 (MPa) 50
Loss factor η = 2ζ (-) 0.06

Table 4: Structural member dimensions.

Member Heavyweight building Lightweight building
Column 0.2× 0.2 m2 0.16× 0.16 m2

Beam 0.2× 0.4 m2 0.115× 0.36 m2

Slab t = 0.3 m t = 0.28 m (7 layers)

Figure 11: Mode shapes for the isotropic heavyweight building.
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Figure 12: Mode shapes for the orthotropic lightweight building.
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The mass and stiffness matrices of the buildings, Mb and Kb, respectively, were exported from Abaqus and

imported into Matlab for integration in the computational model. For a given frequency ω, the dynamic stiffness

of the building is calculated as

Db(ω) = −ω2Mb + (1 + iη)Kb. (18)

In the present case, footings with a surface area 2.0 × 2.0 m2 were assumed. The dynamic stiffness of the

footings, Z̃(ω), calculated as described in Section 2.3 using a discretization of 8×8 elements per footing, was then

added to the building dynamic stiffness in accordance with Eq. (16). As discussed in Section 3.1, for a moving

vehicle a single excitation frequency due to a discrete rail unevenness wavelength excites a range of frequencies

for a fixed point on the ground. For each discrete rail unevenness wavelength, i.e. for each excitation frequency,

the building response due to a unit load on the rail is calculated by applying Eq. (16) for each response frequency.

The total building response due to a passing train is then obtained by superposition to account for 1) all the train

axle loads calculated from Eq. (13) and 2) all the rail unevenness wavelengths included in the artificial rail profile.

This allows for efficient evaluation of many different rail profiles and potentially various train configurations. If

only one or a few rail profiles were to be evaluated, it would be more efficient to first calculate the total ground

response from all the discrete rail unevenness wavelengths and dynamic axle loads, and then apply Eq. (16).

The building is oriented along the track such that the footings are located at y = 10 m and y = 18 m from the

track. The building response is calculated for each of the 100 rail profile samples for which the free-field response

was presented in the previous sub-section. The response, in terms of vertical vibration, is calculated in 5×5 evenly

distributed points per floor, as indicated in Figure 13.

Figure 13: Output points for the roof marked by red dots. The naming convention is illustrated for a few points. The super-index indicates floor
level, and the sub-index indicates row (along X) and column (along Y).

The building response varies strongly between different rail profile samples, much like the free-field response.

Furthermore, a comparison between the vertical response levels in different locations within a floor for a particular

rail profile sample also shows significant variation, because of the buildings’ eigen-mode shapes, as can be seen in

Figure 14 where the time-history response of three different points of the roof of the lightweight building is shown

for one rail profile sample.
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Figure 14: Vertical velocity in three points of the roof of the lightweight building, due to a train passing at v = 30 m/s.

To compare the vibration levels between floors and between the two buildings, a floor vibration value is calcu-

lated. For each output point on a floor, an ensemble mean spectrum is calculated by averaging the spectra from the

different rail profiles, and an average floor spectrum is then calculated by averaging these ensemble mean spectra

over the output points.

Figure 15 shows the floor average of the vertical RMS velocity, and the floor average velocity spectrum in 1/3

octave bands, for a train speed of v = 30 m/s. The corresponding results for the train speed v = 60 m/s are shown

in Figure 16.
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Figure 15: Average floor RMS velocity (left) and 1/3 octave band spectra (right) for the lightweight building, for a train speed v = 30 m/s.
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Figure 16: Average floor RMS velocity (left) and 1/3 octave band spectra (right) for the lightweight building, for a train speed v = 60 m/s.

Figure 19 shows a comparison between the average floor responses between the lightweight and the heavy-

weight building for a train passage at v = 60 m/s. The responses are very similar, with a slightly higher RMS

observed for the lightweight building. In terms of the 1/3 octave band spectra, the heavyweight building displays

a higher response around the frequencies of its fundamental slab modes (6–8 Hz) and also in the frequency bands

11-18 Hz. Although not presented here, the same trends are seen for the lower train velocity.

For both building types, analyses have shown that the soil has a strong attenuating effect on the building
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Figure 17: Average floor RMS velocity (left) and 1/3 octave band spectra (right) for the heavyweight building, for a train speed v = 30 m/s.
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Figure 18: Average floor RMS velocity (left) and 1/3 octave band spectra (right) for the heavyweight building, for a train speed v = 60 m/s.
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Figure 19: Average floor RMS velocity (left) and 1/3 octave band spectra (right) for a train speed v = 60 m/s. Solid lines: Lightweight
building. Dotted lines: Heavyweight building.

response. This has previously been concluded by Lopes et al [23] who studied building response due to an under-

ground train. Figure 20 shows a comparison of the response for the lightweight building, when disregarding the

soil dynamic stiffness, and instead exciting the building supports directly with a prescribed motion identical to the

incident wave field, for the case with v = 30 m/s. Including the soil effects significantly reduces the slab response

for frequencies over 20 Hz.

-4 -3 -2 -1 0 1 2 3 4 5 6

Time (s)

0

0.5

1

R
M

S
 v

el
o
ci

ty
 (

m
/s

)

×10-4

Roof

Floor 2

Floor 1

100 101 102

Frequency (Hz)

10-8

10-6

10-4

V
el

o
ci

ty
 (

m
/s

)

Roof

Floor 2

Floor 1

Figure 20: Average floor RMS velocity (left) and 1/3 octave band spectra (right) for the lightweight building, for a train speed v = 30 m/s.
Solid lines: With SSI. Dotted lines: Without SSI.
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4. Discussion

In the paper, the slab vertical vibration levels due to a passing train, were calculated for a lightweight (wooden)

and a heavyweight (concrete) building using numerical simulations. The simulation strategy, based on a sub-

structuring technique, involves calculating the dynamic contact forces between the train wheels and the rail due to

an uneven rail profile, and applying these forces to a 2.5D track–ground model to establish the free-field ground

motion. This free-field ground motion, i.e. the so-called incident wave field, is applied to the base of a FE building

model accounting for the soil dynamic stiffness and through-soil coupling between individual footings. Referring

to Figure 1, the most computationally demanding parts are Step 1 (to calculate the free-field displacements and

track receptance using the 2.5D model), and Step 3 (to calculate the soil dynamic stiffness of the footings). How-

ever, since both these steps involve looping over a range of (uncoupled) wavenumbers, using parallel computing

and exploiting the multi-core CPUs of standard desktop computers significantly reduces the computational time so

that for both Step 1 and Step 3 the computational times for a single frequency are measured in seconds instead of

minutes.

It was demonstrated that an increased train speed generally increased the vibrations levels in the free-field

ground surface, and hence also in the buildings. The running RMS of the vertical velocity for the building slabs

were found to be lower than in the free-field, i.e. the buildings were found to reduce the overall RMS vibration

values. However, comparing the frequency spectra between the slabs and the free-field, a significant amplification

of the response were found for the slabs in the frequency range around the fundamental slab bending modes.

Furthermore, it was found that the soil–structure interaction had a reducing effect on the slab vibration levels for

both the concrete building and the wooden building.

Noise levels were not evaluated in this paper. However, an acoustic evaluation could be appended to the cal-

culation procedure presented herein. In many cases a weak coupling between the structural parts and the acoustic

volume inside the building can be assumed [36, 37], i.e. it can be assumed that the structural vibrations are not

affected by the acoustic pressure variations. The acoustic pressure would then be calculated with a (e.g. FE-)

model of the acoustic medium, excited by the vibrations of the surrounding structural parts as calculated using the

methodology presented in the paper. However, in early design stages the use of such detailed models may not be

necessary or even meaningful. In [38], a velocity based structural vibration metric was suggested for predicting

structure-borne noise in timber buildings. The vibration metric represented a spatial average of the normal-to-

surface-direction velocities in the receiver room, which was found to have a high degree of correlation with a

noise metric representing the spatial average of the sound pressure. Adopting such a vibration metric does not

produce results of absolute noise levels in the building, but may be useful to qualitatively compare different design

alternatives, with very low computational effort.

5. Conclusions

The following conclusions can be drawn for the studied case:

• Increased train speed increased the vibration in the free-field and in the adjacent building.
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• The building slab vertical response, in terms of 1s running RMS velocity, was lower than the free-field

ground response.

• Significant amplification of the slab response was observed, compared to the free-field response, in the

frequency ranges around the fundamental slab bending modes. The amplification was higher for the heavy-

weight concrete building.

• Similar vibration response, in terms of 1s running RMS velocity, for the lightweight wooden building and

the heavyweight concrete building.

• Accounting for SSI effects lead to significantly reduced vibration response in the buildings for frequency

bands over 20 Hz.

In terms of 1s running RMS velocity, a slightly higher response was observed for the lightweight building,

whereas the heavyweight building provided higher response in the frequency bands between 6 and 20 Hz of the

1/3 octave band spectra. Hence, the results presented here suggests that a lightweight building does not necessarily

perform worse than a heavyweight building in terms of vibration response when subjected to train-induced ground

vibrations.
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Appendix

To show that the 2.5D model presented in Sections 2.1 and 3.1 provides reasonable results, comparisons are

here made with a 3D FE model created with the commercial FE software Abaqus [35], for a stationary harmonic

load on the track. The 3D FE model, shown in Figure 21, comprises a part of the track and the surrounding soil. The

radius of the model is 30 m, and the soil is modeled to a depth of 10 m. The track and the soil was modeled using

twenty node brick elements with reduced integration, denoted C3D20R, with an approximate maximum element

length of 0.5 m. Symmetry boundary conditions were used around the XZ- and YZ-planes. At the fictitious

boundaries, at the bottom and along the curved boundary of the model, so-called “infinite” elements denoted

CIN3D12R were used, which for dynamic analyses implies that impedance boundary conditions with “tuned”

dashpots [39], are inserted. The sleepers were not explicitly modeled, but were assumed rigid in the YZ-plane

using kinematic couplings to tie the nodes on the top of the track. The sleeper mass was added using distributed

mass elements. The rail was modeled using Timoshenko beam elements, denoted B31, with an element length of

0.2 m. The rail pads were modeled using springs at each beam node, with the same distributed properties as in

the 2.5D model. Material properties of the soil and the track are presented in Tables 1 and 2. Figure 22 shows

a comparison of the rail point receptance calculated with the 2.5D model and the Abaqus model, showing good

agreement. Figure 23 shows the rail displacement for an excitation frequency of f = 40 Hz, as obtained with both

models. Further, the free-field vertical ground motion along a line 10 m from the track, is shown for both models

in Figure 24. Good agreement between the models are observed both concerning the rail and free-field ground

displacements.

Figure 21: Abaqus model used for verification of 2.5D model response for a stationary load.

26



0 10 20 30 40 50 60 70 80 90

Frequency (Hz)

0

1

2

3

4

5

6

R
ec

ep
ta

n
ce

 (
m

/N
)

×10-9

Abaqus

2.5D

Figure 22: Rail point receptance. Displacement to a unit load on the rails (0.5 N per rail).

0 5 10 15 20 25 30 35 40 45

Distance (m)

-2

0

2

4

D
is

p
la

ce
m

en
t 

(m
/N

)

×10-9

2.5D, real

Abaqus, real

2.5D, imaginary

Abaqus, imaginary

Figure 23: Displacement along rail for a loading frequency f = 40 Hz.
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Abstract

There are well-known methods for deriving natural frequencies and mode shapes of displacement

for layered elastic media of finite depth which have classical stress–free or rigid boundary condi-

tions. There are also methods for the more complex problem with particular boundary conditions,

such as several finite layers resting on a halfspace. However, these expressions permit the evalua-

tion of only the first few modes. Surprisingly, then, there is not a method which has determined

the natural frequencies and mode shapes for all frequencies and layer depths. This paper de-

scribes a new method to achieve this, by writing the dynamic stiffness matrices of attached layers

strategically. The main advantages of this strategy to the modeller include arbitrary frequency,

depth and number of layer strata over an elastic halfspace. Naturally, there are limitations with

computational accuracy and capacity but for a general study of free or forced vibration this

methodology is straightforward to program and to compute relevant response outputs. Computa-

tion of wavenumber dispersion diagrams, phase velocity plots and response data in the frequency

and time–domains are presented here to highlight the methodology for two case–studies in earth-

quake assessments for plane–strain and axisymmetry. Numerical evidence of a layer resonance due

to the presence of a ZGV (zero group velocity) mode phenomena via a case–study for a ground

profile where layers are hundreds of metres in depth, with solutions both in the frequency and

time–domains illuminating this special case. The framework is especially favorable for engineers

and modellers solving problems with application to ground vibration and seismic problems under

small strains.
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1. Introduction

The main aim in the paper is the study of elastic waveguide propagation from a rigid strip–

load or rigid disk–load at the surface of a two–dimensional or axisymmetric three–dimensional

layered semi–infinite space without the need to perform necessary subdivisions of layers due to

their increased depth.

The ground is modelled as a soil profile which consists of multiple elastic, homogeneous,

isotropic layers. This problem has seen much activity in the past but this formulation contains a

novel approach to determine a dynamic stiffness matrix. What is new, but comparable to previous

studies in this area, is the computation of natural modes of free vibration for very deep strata

which may be computed easily and used for further physical analysis. These are usually used to

help explain a forced response calculation due to harmonic or seismic loads in the body of the

ground whereas an example related to a harmonic rigid surface disk–load is presented. Since the

formulation is related primarily to P–SV wavetypes we will drop most references pertaining to

either the plane–strain or axisymmetric problems, where it is understood the formulations can be

applied to both cases. At the end of the paper, a forced vibration result presented in terms of the

time and frequency domains are presented for an axisymmetric problem.

Ground vibration literature contains a wealth of publications with much work on the natural

propagating modes in a layer over a half–space. The case of a fluid layer over a higher–velocity

fluid half–space is less complicated than the elastic wave problem, and was first investigated

by Pekeris (1948), and is well–known as one of the first attempts into the study of wave prop-

agation through layers which overly infinite domains. Although the domains lack shear wave

coupling his thorough analysis showed that unattenuated propagation of sound would occur in a

slower fluid–layer characterised by the minimisation of something called the group velocity. The

group velocity basically indicates the speed at which the amplitude or envelope wave “groups”

progresses in a medium. Importantly, if the group velocity is constant then the wave propagation

is commonly called non–dispersive which means that all waves progress at the same speed. In

layered media, where wave speeds vary between layers, group velocity is clearly non–constant and

wave propagation analysis, although linear in nature is complicated to analyse.

Currently, elastic wave propagation analysis is usually performed via the Kausel and Roesset

(1981) stiffness matrix method (SMM). This approach was devised based on the earlier trans-

fer matrix method (TMM) proposed originally over 70 years ago by Thomson (1950) and later

corrected and elaborated by Haskell (1953) and iterated further by Wang (1999) relatively re-

4



cently. Dunkin (1965) has also obtained the modal solutions by using the TMM. As was pointed

out by Kausel and Roesset, the SMM has several advantages over the TMM approach: (i) the

global stiffness matrix becomes symmetric in the SMM and as a result lesser storage is required

and also fewer operations are required for executing the analysis, (ii) various loading profiles can

be easily treated, and (iii) sub-structuring techniques become readily applicable. In these exact

approaches, while forming the global stiffness matrix, the contribution of each layer is duly in-

corporated without making any approximation. However, while obtaining the solution, since the

exact approach contains a number of hyperbolic and transcendental functions, the solution can

be obtained only by trial and iterative procedure. In this work, we shall also employ the SMM

approach for horizontal wavenumber searching.

This model considered here demonstrates the effect of a harmonic finite load over layered

strata, Ewing (1957). The results derived by Fourier transform are valid for any frequency and

importantly any depth of layer. In principle, following traditional methods, Jones and Petyt

(1991), we could use displacement and stress–continuity boundary conditions at the bottom of

the layer with equations at the ground surface to generate equations for four subsequent unknowns

of stress and displacement. However, this direct approach leads to formidable numerical prob-

lems. The reason for this work is in part due to fundamental expressions for the characteristic

wave functions, such as cosh or sinh, which, when employed, can have a dramatic effect on the

numerical evaluation of solutions. Moreover problems can arise due to the cancellation or division

of either very small or very large numbers, Kausel (2006). To overcome this Karasalo (1994) also

derived a well–conditioned propagator matrix (TMM) for radially symmetric problems. In this

work, though, we construct a single stiffness matrix (SMM) for the physical layer for plane–strain

problems which conveniently avoids these difficulties. We therefore proceed in the establishment

of an original global dynamic stiffness matrix using expressions that do not cause numerical prob-

lems. This approach has been successfully applied to Euler and Timoshenko beams, Gonçalves

et al. (2018), Khasawneh and Segalman (2019) and Gonçalves et al. (2019).

Hence, a scaled dynamic stiffness matrix for an arbitrary thick layer is derived. To achieve this

the vibration components in the wavenumber domain for the layer depths and the half–space are

considered and arranged into a single matrix formulation. For a forced response calculation, where

a load is modelled as an infinite rigid strip on the ground surface, so that the problem is plane-

strain, the response may be calculated by an inverse Fourier transform. For an axisymmetric

case where a rigid uniform disk loading is applied the vertical and radial responses can also
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be calculated by an inverse double Fourier transform noting that for numerical purposes a single

Hankel transfom is computed in the axisymmetric case. Except for some small differences in a few

entries in the matrices the 2D plane-strain and the 3D axisymmetric problems are almost identical.

Nevertheless, the overall purpose of the present study is to present a computational method

which does not suffer numerical evaluation difficulties when predicting vibration transmission, in

particular its attenuation on the surface of a deep layer. The usefulness of the method is illustrated

by presenting numerical results from potentially computationally intensive application examples.

This paper, which determines the free and forced solutions for wave–propagation problems, is

organised as follows: in Section 2 we establish the scaled formulation of the problem for plane–

strain and axisymmetric coordinates in the wavenumber domain which includes a brief reminder

of the root finding methodology. This is then followed by a numerical example which establishes

a verification of the free vibration formulation derived by previous researchers and in a second

example we also determine the existence of zero group velocity modes related to a well–known

example on an earthquake study. Section 3 includes frequency and time–domain simulations for

a stationary rigid–disk load and Section 4 draws the article to a conclusion with some discussion.
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2. Computational model

In this section the methodology related to free and forced vibration are formulated for plane–

strain or axisymmetric cases.

2.1. Two–dimensional models

A generic model considered is shown in Figure 1. A strip–load has width 2b, and is aligned

with respect to the z-axis. It rests on an homogeneous, isotropic, elastic layer, with material

properties E (Young’s modulus), ρ (mass density) and ν (Poisson’s ratio). An harmonic vertical

rigidly supported load acts uniformly over a strip situated above elastic layers. The elastic layers

of finite depth consist of homogeneous and isotropic material, overlying an infinite halfspace of

flexible material. The model is two–dimensional, and the co–ordinate system and parameters

are shown in Figure 1. Although two–dimensional, the methods used here cover plane–strain and

axisymmetric cases. This figure shows a generalized example of a semi–infinite stratified soil profile

with the linear elastic layers. For computation of theoretical dispersion curves corresponding to

the assumed layer structure the problem is assumed plane–strain in the (x, z) plane. The x-

axis is taken parallel to the layers, with the x-axis in the horizontal direction to surface wave

propagation. The positive z-axis is directed downwards. To develop the axisymmetric model, we

refer the reader to the book by Verruijt (2010) for inspiration.

z1 = 0

Cs1 Cp1 ρ1

z2
Cs2 Cp2 ρ2

z3

...

zn

Csn Cpn ρn

zn+1

Csn+1 Cpn+1 ρn+1Halfspace

?

6
H1

?
6H2

?

6
Hn

Rigid strip load

? ?-

?

x, u

z, w

Figure 1: A layered halfspace model geometry. The parameters of the model are shear and pressure wave velocities
Cs, Cp respectively, mass density ρ and layer thickness, hi.
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For plane–strain conditions much of the analysis necessary for the derivation of the dynamic

stiffness matrix has been presented before in references Ewing (1957), Jones and Petyt (1991) and

Jones and Petyt (1993), so this will only be briefly summarized. For small strains the behaviour of

the elastic material is described by Navier’s elastodynamic equations, Ewing (1957) and without

loss of generality, in the absence of body forces, these equations apply to any layer and are written

in vector form as follows:

(λ+ µ)∇(∇.u) + µ∇2u = ρü, (1)

where (u) = (u,w) represent the components of the displacement in the x and z directions and λ,

µ are the Lamé constants. For the free-vibration problem the boundary conditions for the layered

problem are as follows; zero stresses at the surface, so on z = 0,

σzz = 0, σxz = 0. (2)

and continuity of displacement and stress at internal interfaces, with displacements decaying in

the far–field, u&w → 0 as z → ∞. The quantities Cp and Cs are respectively the pressure (P )

and shear (S) wave speeds respectively, given by:

C2
p =

λ+ 2µ

ρ
=

E(1− ν)

ρ(1 + ν)(1− 2ν)
, C2

s =
µ

ρ
=

E

2ρ(1 + ν)
. (3)

Note that the conditions are almost identical for an axisymmetric problem in (r, z), but on the

surface σzz = −
(
P/πb2

)
over a disk of radius b. For each layer, the displacement field can be

obtained from potentials as:

u = u(x, z, t) =
∂Φ

∂x
+
∂Ψ

∂z
,

w = w(x, z, t) =
∂Φ

∂z
− ∂Ψ

∂x
, (4)

where the potentials Φ = Φ(x, z, t) and Ψ = Ψ(x, z, t) are the solutions of two–dimensional wave

equations for each elastic layer,

C2
P∇2Φ = Φ̈, and C2

S∇2Ψ = Ψ̈. (5)

For the sake of argument we assume a single–layer has depth H > 0 and the z-coordinate for the

layer is locally specified, 0 ≤ z ≤ H. In this region the corresponding stress fields σ = [σxz, σzz]
T
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are subsequently obtained as:

σxz = τ = µ

(
2
∂2Φ

∂x∂z
+
∂2Ψ

∂z2
− ∂2Ψ

∂x2

)
,

and (6)

σzz = σ = µ

(
C2
p

C2
s

∂2Φ

∂z2
+

(
C2
p

C2
s

− 2

)
∂2Ψ

∂x2
− 2

∂2Ψ

∂x∂z

)
.

The pair of equations (5) are transformed into the Fourier domain, with respect to x, via the

transform pair

f(k) =
1

2π

∫ +∞

−∞
f(x)e−ikxdx, f(x) =

∫ +∞

−∞
f(k)eikxdk. (7)

For the sake of completeness the Fourier transform pair in the case of radial symmetry are

f(k) =

∫ +∞

0

f(r)rJ0(kr)dr, f(r) =

∫ +∞

0

f(r)kJ0(kr)dk. (8)

This introduces the Fourier component k which is also commonly known as the wavenumber in the

horizontal direction. Upon the transformation we obtain differential equations in the z− direction

which now includes frequency ω and the wavenumber k as parameters. Much of the analysis of

this problem is identical to the solution of similar problems, Jones and Petyt (1991, 1992) where

a dynamic stiffness matrix [T] is dervied, such that

{τ} = [T] {u} , (9)

where {τ} are the transforms of the stress functions, u are the transforms of the displacements.

Note that it is common practice to write solutions to the subsequent homogeneous ordinary

differential equations in terms of cosh and sinh functions. However, this choice of characteristic

functions is not convenient for problems involving a spatial domain of arbitrary size. Hence, the

general solutions in the Fourier domain may be written in the scaled formulation, after introducing

wavenumber pairs kp = ω/cp and ks = ω/cs.

Φ(r, z, t) =
(
Ae−α1z + Beα1(z−H)

)
, α1 =

√
k2 − k2

p

0 < z < H (10)

Ψ(r, z, t) =
(
Ce−α2z + Deα2(z−H)

)
, α2 =

√
k2 − k2

s
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where the branch-cuts are chosen so that Re(α1,2) ≥ 0. The reason for choosing the scaled expo-

nential characteristic functions over hyperbolic functions is clear if you attempt to evaluate and

manipulate these functions on a personal computer, as commented by Kausel in his compendium

Kausel (2006), section 10.2.2. Basically, this choice of basis ensures the characteristic functions

do not grow unbounded with layer depth, as z → H, which would occur with unscaled elemen-

tary functions. Subsequently, it is evident the displacements (u,w) also will not grow unbounded

with depth. Now, by inserting the scaled ansatz into the equations (4) this yields the element

displacements on the upper and lower interfaces respectively for layer (e, i)

{
u(e,i)

}
= [C] {A} . (11)

where u(e,i) = [iwi, ui, iwi+1, ui+1]
T

and the 4× 4 complex-valued matrix [C] is given by

[C] =



−iα1 iα1e
−α1H −k −ke−α2H

ik ike−α1H α2 −α2e
−α2H

−iα1e
−α1H iα1 −ke−α2H −k

ike−α1H ik α2e
−α2H −α2


. (12)

To derive a dynamic stiffness matrix for element (e, i) we need the transformed stress equations

which can be developed by equation (6),

{σ}(e,i) = [S] {A} , (13)

where σ(e,i) = [−iσi, −τ i, iσi+1, τ i+1]
T

and

[S] =



−iα2
1 (λ+ 2µ) + iλk2

(
−iα2

1 (λ+ 2µ) + iλk2
)
g1 −2µkα2 2µkα2k g2

2iµkα1 −2iµkα1k g1 µ
(
α2

2 + k2
)

µ
(
α2

2 + k2
)
g2

i
(
α2

1 (λ+ 2µ)− λk2
)
g1 i

(
α2

1 (λ+ 2µ)− λk2
)

2µkα2 g2 −2µkα2

−2iµkα1 g1 2iµkα1 −µ
(
α2

2 + k2
)
g2 −µ

(
α2

2 + k2
)


(14)

with the decaying functions gi = e−αiH , i = 1, 2. We are now in a position to combine equations

(11) and (13), to obtain at a single matrix formulation which expresses the displacements and

stresses at the interfaces. The general dynamic stiffness matrix, for any global domain thus
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becomes a 4× 4 complex valued matrix:

[K](e,i) {u}(e,i) = {σ}(e,i) . (15)

where [K](e,i) = [S][C]−1. The algebraically complicated and non–symmetric matrix [K](e,i) is

given in Appendix II. Specifically [K](e,i) is the dynamic stiffness matrix for a single elastic layer

which is valid for any depth H > 0. To include the half–space into the formulation, we consider

the 2× 2 complex element stiffness matrix, [K](e,n+1)

[K](e,n+1) =
1

D

 (λ+ 2µ)α2k
2
p 2µk(α1α2 − k2) + (λ+ 2µ)kk2

p

2µk(α1α2 − k2) + µkk2
s µα1k

2
s

 (16)

such that

[K](e,n+1) {u}(e,n+1) = {σ}(e,n+1) , (17)

where D = 1/(k2−α1α2) and at the lowest interface, u(e,n+1) = [iwn+1, un+1]
T

and σ(e,n+1) =

[−iσn+1, −τn+1]
T

. Due to the way in which the ordering of the stresses σ(e,i) and displacements

u(e,i) are conveniently organized the stresses and tractions at any interface cancel so that the

load-vector on the right–hand side is zero except for a stress which accounts for a surface load.

The element matrix equations (15) obtained for each layer of the soil model are subsequently

assembled at the common layer interfaces to form the global layered system. Equations (15) and

(17) can now be combined to give a single matrix equation for an elastic layer over an elastic

half–space, involving the scaled stiffness matrix for the elastic layers [K(e,i)], i = 1..n and the

matrix for the half–space [K(n+1)].

[K]G =



K11,1 K12,1

K21,1 K22,1 + K11,2 K12,2

K21,2
. . .

. . .

. . .
. . . K12,n

K21,n K22,n + Kn+1


. (18)

Hence, it is quite straightforward to generalise this technique to n elastic layers supported by an

elastic half–space where the size of the dynamic stiffness matrix becomes a single complex–valued
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2n×2n matrix, but remembering the matrix is transcendental in wavenumber, k. The right–hand

side now only involves transformed stresses at the ground surface, since the neighbouring interface

values have cancelled each other as discussed earlier,

[K]G {u}G = {τ}G . (19)

Kausel and Roesset previously presented the alternative formulation from a transfer–matrix

approach using stiffness matrices which are similar to those frequently used in dsicrete structural

dynamics multi–dimensional models. An element stiffness matrix, [Ki] is obtained for each layer

in the geodynamic model. This matrix, for a distinct layer, relates the stresses at the upper

and lower interfaces of the layer to the corresponding displacements. For a multi–layered model,

the system stiffness matrices could then be used, with the prescribed load vectors, to solve for

the displacements with techniques analogous to the standard finite element method. Given a

prescribed load on the surface – Equation (2) is no longer zero – the transformed stress {τ}G is

non–zero hence the matrix equation (19) may be solved for each wavenumber k relevant quadrature

for either equations (7) or (8).

Apart from a slight change in the transformed values for the displacements, identical ex-

pressions are obtained in the axisymmetric P–SV case. Hence it is straightforward to compute

plane–strain propagating and axisymmetric P–SV propagating modes in the free–vibration case.

2.2. Free vibration

To consider free vibration for the layered halfspace problem the right–hand side of equation

(19) is zero, and hence we have the following expression,

[K]G {u}G = 0 (20)

where the matrix has been defined above, see equation (18) and the unknowns are the displace-

ments on interfaces. Non–trivial solutions of equation (20) are found by equating the determinant

of the matrix to zero. The non–zero solutions or eigenvectors of this solution give, indirectly

through equations (4) and (10), the actual (real–valued) u and w displacements representing the

propagating modes through a vertical cross–section.

For calculations where the response of a layered half–space to a surface loading, the transformed

loads in the plane-strain and axisymmetric P–SV are not identical nor are the inverse transforms
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which need to be evaluated.

2.3. Forced vibration

In the plane–strain case, the transformed load on the surface is represented as a traction. In

both cases of plane–strain and axisymmetry, responses at points on the surface of the ground

can be recovered by employing suitable quadrature to the products of the displacements in the

wavenumber domain and the transform kernel. The solution of the sytem of equations (19) yields

the transformed displacements u(k, z, ω) at the surface and hence by suitable inverse transforma-

tions solutions can be obtained. The response in the space–frequency domain is obtained by an

inverse transformation from the wavenumber to the spatial domain as outlined in Verruijt (2010),

where

σzz =

 −
P
πb2 e

iωt, |r| < b,

0, elsewhere.
(21)

σrz = 0. (22)
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2.4. Numerical evaluation of the dynamic stiffness matrix

Generally, for non–dimensional wavenumbers ksh ≥ 36, where ks is the shear wavenumber,

the conventional approach ”breaks down”. That is, for depths greater than around six shear

wavelengths, h ≥ 6λs a numerical bottleneck problem arises when solving the linear system of

algebraic equations. Equally for high frequency computations can become ill–conditioned. Note

that we cannot show results where ”bottleneck” occurs, or is about to occur, as matrix entries

become unbounded so solutions are not presentable.

As an alternative to the global coordinate system, a set of local coordinate systems are intro-

duced to characterize the vibration within the layered media with the intention of avoiding the

bottleneck problems, Kausel (2006). This choice of projected method permits a stable numerical

evaluation for entries in the stiffness matrix. This avoids numerical round–off errors especially di-

vision of large numbers by small numbers and the subtraction of very large numbers. For example

due to round–off errors it can be shown that the relative error for the evaluation of the difference

between functions, such as |cosh(s1)− cosh(s2)| can grow like exp(|s|), s1 < s < s2 where the

difference |s1 − s2| is small. In themselves the numerical evaluation of hyperbolic functions cosh

and sinh can also be problematic for large values of their arguments.

Now, each of the entries in the stiffness matrix [KG] are nonlinear functions with respect to

the spatial wavenumber k, and hence the overall problem is a multi–dimensional nonlinear root

finding exercise. We shall not study any deeper into the function itself but focus on finding the

roots. So, on this basis the method described below is used to find the singular eigenvalues or

equivalently the roots of the determinant, det[KG]. This is a standard method which provides the

solution for the natural frequencies of the system which correspond to a given real wavenumber

and also as a consequence the phase–velocity for any propagating mode.
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2.5. Root finding

A root finding routine has been implemented using the complex–plane winding number integral

to check for the number of real roots. Using the roots of the characteristic equations the wave

propagation wavenumbers and the modes - which carry the energy - can be determined easily

from.

Many methods exist which are capable of finding roots or zeroes of nonlinear functions in one

or many variables. The root–finding algorithm presented in this work is based on the procedure

developed by Ivansson and Karasalo (1992). These routines for root–finding in the complex plane

are based upon the use of the complex argument principle. Consider a function f(z) that is

analytic, without any poles, within a simple, closed, positively oriented contour Γ that lies on

the complex plane. Let N be the number of complex roots of f(z) within Γ. Then, the winding

number argument principle states that

1

2πi

∫
Γ

f ′(z)

f(z)
dz = N.

With this arrangement the winding integral gives the number of complex roots (which of course

can include the real roots we seek in our case) within a closed contour. This is an important

stepping stone towards finding all the real wavenumber (roots) for a given frequency. The first

step in the numerical root finding routine is to define the contour, Γ. Any simple closed contour

can be chosen, where circular disks are the most common, and these were used in the current

work. Since we are interested in determining only the real–valued roots (for zero damping) of the

function we divided the wavenumber real–axis into a number of intervals and ensured each disk

did not overlap but enveloped the integration path adequately. Due to parameterization it is a

straightforward task to modify the contour in the complex–plane to an integration over (0, 2π).

In this work a Gauss-Quadrature scheme was used in evaluating the integrals numercially. Any

scheme could be employed but this scheme provided adequate accuracy against speed. Once the

number of roots and the disks, which included a root, were determined, a numerical nonlinear

solver (Secant method) was employed to further isolate the roots to a desired accuracy. The

strategy employed is similar to the approach by Ivansson and Karasalo (1993), by which large

disks are chosen in a coarse division.

Although it is possible to find the roots of the dispersion equation at each frequency separately,

we found it more effective and robust to trace any dispersion curves by a parametric continuation
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approach. This is only effective where each frequency corresponds to a single root. As we shall

see later any folds in a branch encountered can lead to non–uniqueness of solutions. A forward

approach, then is the only suitable procedure where folds in dispersion curves may be encountered.

This method simply used extrapolation from previous roots, in frequency, as starting values for

new solutions of the set of equations. Convergence and speed-time improved dramatically using

this approach. But clearly an initial set of solutions was necessary to initiate the continuation

scheme. The number of wavenumbers were determined for the highest frequency of interest, then

frequency was reduced by a suitable frequency-step using previous root as initial estimates and

seeking a root along a tangent or quadratic arc. However, this approach, although extremely fast,

does have it’s own shortcomings, which we will see in a later section.
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3. Numerical examples

All surface waves, except Rayleigh waves on an isotropic half-space, exhibit dispersion, with

the apparent velocity along the surface depending on frequency. Almost any seismic source ex-

cites waves that comprise a continuous spectrum of frequencies, each harmonic component having

a velocity, c(ω), that is called the phase velocity. If a monochromatic wave were somehow ex-

cited, only the phase velocity for that frequency would be needed to characterize the disturbance

fully. However, when a spectrum of frequencies exists, the wave disturbances interfere, producing

constructive and destructive patterns that influence the total ground motion. Constructive inter-

ference patterns behave as wave packets, which themselves propagate as disturbances along the

surface with well-defined group velocities, U(ω). Thus, the phase velocity is directly controlled by

the medium parameters (scale lengths of layering, intrinsic P and/or S velocities, rigidity, etc.)

and the geometric “fit” of a particular harmonic component into the associated boundary condi-

tions, as seen in the last section. The group velocity depends on the medium parameters through

their influence on the phase velocity, but it also depends on the variation of phase velocity with

frequency, which controls the interference between different harmonics. The group velocity is very

important in that energy propagates mainly in the constructively interfering wave packets, which

move with the group velocity rather than the individual phase velocities. The backward waves

are guided waves with opposite phase and group velocities, in which the phase moves to the wave

source. The history of their study, which spans more than a hundred years, starting with the

pioneering work of Lamb in 1904, Lamb (1904). A backward–wave mode is indicated by a typical

bend of the dispersion curve with a negative slope resulting in the negative group velocity of the

corresponding guided wave. The physics of the problem where a negative group velocity is shown

will not be discussed in detail but will be exemplified through the results of an example in both

time and frequency domains taken from the literature.

The accuracy of the method through the examples is demonstrated via comparisons for a

couple of scenarios. These are not benchmarks solutions, as none such exist to the best of the

author’s knowledge, but highlight the formulation with respect to increased computational speed.

Soil characteristics values used are presented for two examples.

3.1. Free vibration - Dispersion relations

An application of the free vibration, Section 2.2, is to aid understanding of characteristics that

show up for a forced response case. In this respect Figs. 2 & 3 show the principal results for the
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Soil Layer 1 Layer 2 Layer 3 Layer 4 Halfspace
Depth (km) 1.0 1.0 1.0 1.0 ∞
E (Pa) 1.04× 1011 0.81× 1011 1.60× 1011 1.30× 1011 1.94× 1011

ρ (kgm−3) 2700 2500 3100 2900 3300
ν 0.33 0.33 0.33 0.33 0.33
Cr (ms−1) 3542 3262 4100 3821 4380
Cs (ms−1) 3800 3500 4400 4100 4700
Cp (ms−1) 7544 6948 8735 8140 9331

Table 1: Material properties for Example 1 referenced in Kumar and Naskar (2017).

ground–profiles, Tables 1 & 2. Verification of the method in the first and demonstration in the

second figure of “unusual” ZGV behaviour mentioned above is presented. To show the accuracy

and effectiveness of the proposed technique, we proceed to evaluate the phase velocity spectra

and for the two ground profiles.

3.1.1. Verification of model, Strobbia (2003): Example 1.

A ground profile was chosen in the thesis by Strobbia (2003) which has been further evaluated

by Kumar and Naskar (2017), Table 1 using various popular approaches. The ground profile is

made up from four different layers each 1.0 km depth and a semi–infinite space, with the second

and fourth softer layers sandwiched by stiffer layers. Generally the stiffness of the layer and

mass density vary non–uniformly with depth and shear wavespeeds vary from Cs = 2700 m/s to

Cs = 4700m/s for the halfspace.

There is little physical information included in this referred example but the computations

are quite extensive due to the depths of layers involved, the present method requiring inversions

of a 10 × 10 matrices, hence this example was chosen for computational reasons. Figure 2 was

produced by the root solver described in Section 2.5 and by digitilization of the curves presented

in Kumar & Naskar it was possible to reproduce the phase velocity curves presented.

To compare accuracy or computation times between Kumar & Naskar with Kausel methods is

not available for this single example but working on an i5 processor 32MB RAM machine running

MATLAB 2020A calculation software the tasks were clocked. Here wavespeed variation with

frequencies, at 140 frequency steps, between 0 and 9 Hz, for the first nine natural modes were

computed. Adopting the root finding method beginning at 9 Hz and ending at 0.1 Hz, the method

adopted here took approximately 12.0 seconds to complete the 140 frequency step analysis. The

half–space shear wavespeed is shown as a line across the graph, to show the limit of the solution.

It is clear that all three methods agree well.
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Figure 2: A comparison between the dispersion phase velcity curves claculated by the present method, solid colored
lines, with Kumar and Naskar (2017), (◦) and Kausel and Roesset (1981), (�). The ground profile comprises four
layers of depth 4.0 km each situated over an elastic halfspace, Table 1, referenced as Profile C in Kumar & Naskar,
Kumar and Naskar (2017).

3.1.2. Verification against orthonormalisation technique, Latur earthquake: Example 2.

A ground model site, Table 2 used for synthetic seismograms observed as aftershocks of the

Latur earthquake, 1993 has been evaluated in the paper Wang (1999). It consists, simply, of two

layers overlying an elastic halfspace. Although Fig. 3 is a more conventional dispersion diagram

for wavenumbers and phase velocities and suitable for physical interpretation, such as cut–on

frequencies and Leaky modes, etc. Fig. 3(a) however does not feature characteristics which allow

straightforward interpretation. Two modes have real wavespeeds or wavenumbers at all frequen-

Soil Layer 1 Layer 2 Halfspace
Depth (m) 5 300 ∞
E (Pa) 1.55× 108 4.22× 1010 8.22× 1010

ρ (kgm−3) 1300 2500 2700
ν 0.486 0.250 0.240
Cr (ms−1) 190 2392 3216
Cs (ms−1) 200 2600 3500
Cp (ms−1) 1200 4500 6000

Table 2: Material properties for Example 2, referenced in Wang (1999).
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cies, but only one of which, we shall call the second mode, tends toward the Rayleigh wavespeed

for the upper layer at low frequencies (190 m/s). At low frequencies or large wavelengths, the

layer depth should become negligible and wavespeeds should tend towards the half–space Rayleigh

wavespeed (which would exist without the two layers). At higher frequencies the modes do tend

toward the upper–layer wavespeed as expected.

(a) Phase velocity plotted against frequency for ground profile, Table
2. Zero Group velocity detected at 28.4 Hz and 38.7 Hz.

(b) Propagating wavenumber plotted against frequency for ground
profile, Table 2. Zero Group velocity detected at 28.4 Hz and 38.7
Hz.

Figure 3: Dispersion curves of the present method for ground profile, Table 2 in Wang (1999) where → indicates a
ZGV (zero group velocity) location and the circles, , indicate frequencies (28.5 Hz and 38.8 Hz) and wavenumbers
where modal shapes are displayed for each, see Fig.4.

It is well-known in the non–destructive inspection community that Lamb modes can possess

backward–wave phenomena for certain values of Poisson’s ratio or combinations of layer and

substrate. A backward-wave mode is indicated by a typical bend of the dispersion curve with
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a negative slope resulting in the negative group velocity of the corresponding guided wave. At

the minimum frequency of the backward-wave range, the group velocity becomes zero while the

wavenumber remains nonzero; the corresponding wave is referred to as a ZGV mode, which occurs

twice in the frequency range used here, Fig. 3(b). Besides the opposite phase movement, which

detection is a rather challenging task, the backward wave is considered to manifest itself by a

surface displacement resonance at the ZGV frequency. The red dots in Fig. 3 depict the positions

at which the propagation modes are computed in the next section.

3.2. Modal evaluation, Latur earthquake: Example 2.

Figure 4 shows the variation of amplitude (to within an arbitrary amplitude factor) of the

vertical and horizontal motion components of the first few modes, plotted against depth up to 1000

m into the ground at frequencies in the vicinity of the appearance of the zero group velocity (ZGV)

mode. The depth scale is logarithmic which highlights the modal behaviour nearer the surface.

The legends in this figure show the phase velocity and the wavenumber related to individual

mode shapes. In Fig. 4(a) the variation of the radial mode (U) with depth, adjacent to the

first ZGV frequency f = 28.5 Hz, shifts from maximum to minimum within the top 5 m layer

then attenuates quickly to zero through the lower strata in the ground. At the surface it appears

each modal wavetype can equally contribute to a surface vibration response, except at the second

mode cW = 2302 m/s, k = 0.078 rad/m where it appears contrary this second mode dominates in

carrying the vertical surface wave energy for vertical mode shapes (W). At this frequency mode

shapes in the vicinity of the ZGV turning point were not remarkably different to other modes

corresponding to other waves. At the second ZGV turning point mode shapes were evaluated at

an adjacent frequency, 38.8 Hz, Fig. 4(b). Contributors to potential surface waves are evenly

distributed through the lowest phase velocity modes across all seven mode shapes displayed here.

Interestingly the mode which relates to the halfspace shear wave dispersion curve shows a potential

significant contribution in the lower depths of the strata, up to around 600 m below the surface.

3.3. Forced vibration - frequency domain, Latur earthquake, Example 2.

In this section the results displayed in Fig. 5 were obtained with the proposed solution strategy

determined by the axisymmetric model, Section 2.3 and are compared with those of obtained

with a methodology proposed in Wang (1999), a method which has been adopted widely by many

researchers in ground vibration and seismic scientific communities. This approach evolves from

the Thomson–Haskell layer transfer matrix methods with an orthonormalization procedure to
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(a) Six mode shapes plotted against depth on a logarithmic scale at frequency, f = 28.5 Hz,
see Fig. 3.

(b) Six mode shapesplotted against depth on a logarithmic scale at frequency, f = 38.8 Hz,
see Fig. 3

Figure 4: Modes evaluated two frequency related to Latur earthquake ground–profile, Table 2. All modes are
real–valued evaluated at (a) f = 28.5 Hz (b) 38.8 Hz., see Fig. 3.

overcome numerical stability issues with the original propagation algorithm. The basic steps of

this approach are discussed in Appendix II. In the following, responses to a harmonic surface load
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Figure 5: Radial and vertical displacement amplitude at five receiver postions 5, 10, 20, 40 and 60 m from centre of
disk–load. Ground profile represented in Table 2.

were calculated using hysteretic damping values established in Wang (1999). To conduct this a

circular uniform traction load with radius b = 1 m, equation (21) was applied on the surface of a

layered soil deposit. The deposit consists of a h = 5 m soft soil layer on top of a 300 m deep stiffer

layer which overlays a homogeneous halfspace. The soil layer properties are shown in Table 2.

Figure 5 shows the vertical and horizontal displacement magnitude at five response points located

on the soil surface at distances d = 5, 10, 20, 40, 60 m from the disk centre, as obtained with the

proposed solution strategy and the flexibility approach using the stabilizing scheme from Wang

Wang (1999). The two solution procedures provide virtually identical responses for the studied

case. Relative differences at furthest distance and highest frequency, where quadrature errors

are expected to be highest, were around 1.0 %. Attenuation of radial and vertical displacement

with distance is evident throughout the frequency range. At 10 m and beyond it is clear that the

greatest response features close to frequencies 18 and 38 Hz for radial component and 20 and 40
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Hz for vertical component beyond 10 m. Although this is not strong evidence of resonance due

to the existence of a ZGV mode, increased amplitude is clear and verifies conclusions in Wang

(1999).

Comparing solution times between the two methods directly is not justified since we are

comparing essentially a 2D method against a 3D solution technique. For interest, the axisymmetric

solution using the present scheme involved a one–dimensional numerical inverse transform, which

to a relative error 1E-13 by a Gauss-Kronrod quadrature at the highest frequency (involves most

oscillatory integrals) took approximately 2.0 seconds per frequency on the i5 processor on a desktop

computer. The size of the dynamic stiffness matrix was fixed at 6 × 6 for all frequencies. Using

the Wang orthonormalisaton method (Appendix II), the 3D solution was obtained from a two-

dimensional inverse FFT of 2048× 2048 wavenumbers. The code, implemented in Fortran 95 and

utilizing the OpenMP API for parallelizing the computations, took approximately 12.0 seconds

per frequency on the i7 processor with 4 cores on a desktop computer. Although not exploited

here, the 3D solution for rotationally symmetric loads may be obtained in a more efficient manner

by transforming the wavenumber solution of the Green’s function to polar coordinates, effectively

reducing the required integration to one dimension, as shown e.g. by Andersen and Clausen

(2008). The significant difference in computational cost demonstrated above suggests essential

savings if axisymmetry can be exploited.

3.4. Forced vibration - time domain, Latur earthquake, Example 2.

To study the behaviour of a time–dependent force located on the surface of the layered half–

space we used the numerical fast Fourier transform (FFT) to convert solutions from the frequency

domain to the time–domain. This technique gives the displacements in the space-time domain,

taking a source whose temporal variation is provided by a Ricker wavelet, as defined below.

To reduce the computational time we used quadrature in space to calculate responses at a few

selected receiver points and also since the Ricker wavelet decays rapidly, in both time and fre-

quency, this also allows a computed time–domain solution to be calculated in a reasonable time

for interpretation.

The Ricker wavelet function is given by,

w(τ) = W0

(
1− 1

2
τ2

)
exp(−1

4
τ2)

where W0 is the amplitude, τ = (t− td)/t0; td is the time delay at which maximum occurs and
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Figure 6: A Ricker-wavelet time-profile, which applies to a uniform pressure over a rigid disk in Example 2.

t0 is related to the “natural frequency” of the Ricker wavelet 1/t0 = 2πf0, see Fig. 6. In our

calculations we have chosen the width of the input pulse as f0 = 14 Hz, somewhat arbitrarily

but to allow at least the cut–on of a few propagating modes. By applying exponential windowing

with damping terms equivalent to the frequency domain, time domain responses were calculated

using a FFT with 512 frequency steps up to the Nyquist frequency around 250 Hz.
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(a) Ground profile represented in Table 2, without the top 5 m layer.

(b) Ground profile represented in Table 2.

Figure 7: For a Ricker-wavelet load over a rigid disk, responses at 5, 10, 20, 40 and 60 m from centre of disk–load.
Upper (a) and lower (b) solutions compared for two ground–profiles.

The two sets of results highlight the difference between a model including a soft top layer,

see Fig. 7b. Both sets of solutions naturally exhibit a strong dispersive nature as the envelope

of the solution wave–packet propagates along the surface. This is especially evident for the soft

5 m layer result: there appears a second wave–packet in the vertical response at distances that
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develops from 40 m, which is due to the soft layer response. As reported in Wang (1999) the

“slow” speed of two wave–packets are clearly evident which are effected by ZGV dispersion.

4. Conclusions

A uniformly valid model has been developed for investigating the propagation of surface vi-

bration over arbitrary depth elastic–layers. The model consists of an elastic, isotropic and ho-

mogeneous layer which overlies a half–space. A well-conditioned dynamic stiffness matrix has

been developed for this model, which is derived by projecting the characteristic functions onto

the end–points in the depth dimension. To study the behaviour of the natural propagating modes

in the layers, for zero surface stress, singular values of the dynamic stiffness were computed. The

characteristic equation was then also used to find the solution shapes of these propagating modes.

For an example a ground profile with a high Poisson’s ratio in the top layer over a deep strata, a

zero group velocity mode was found, where it has been observed previously that a layer resonance

exists. Vibration responses due to a fixed disk load in the frequency were obtained suggesting reso-

nances at cut–on frequencies. Time–domain results were determined which establish the existence

of non–dispersive wave packets suggested by earlier researchers.

Given the general validity of this formulation for dynamic stiffness matrices many new problems

may be modelled, where plane–strain conditions apply, are within easy reach. This method may

also be easily developed to take into account sub–layers of different material within the strata and

extended to three-dimensional problems where entries to an exact 6× 6 dynamic stiffness matrix

could be established.

The following conclusions have been drawn:

� A well-conditioned dynamic stiffness matrix has been developed for arbitrary layer depths.

� Determination of a characteristic equation has been found by expressing unknowns only at

material layer nodal points: so that no subdivision of strata is necessary.

� A known ground profile which has been used to investigate large amplitude deflections has

been shown to reveal the existence of zero group velocity modes. Examples producing time

histories and frequency domain response have also been provided.

� Future development to 3D dynamic stiffness, which involves analytic determination of 36

entries could lead to dramatic reductions in full model computational costs.
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Appendix I

We follow the notation that the element in the ith row and jth column is denoted Kij . The

matrix [K] is, however, not symmetric but we have K31 = K13, K32 = −K14, K33 = K11,K34 =

−K12,K41 = −K23,K42 = K24, K43 = −K21 and K44 = K22. The remaining elements of the

matrices are as follows:

K11 = −α2 (λ+ 2µ) k2
p

((
k2 − α1α2

)2 (
e−2(α1+α2)H − 1

)
+ (23)(

k2 + α1α2

)2 (
e−2α1H + e−2α2H

))
/D,

K12 = k
{(
k2 − α1α2

) (
(λ+ 2µ)α2

1 − 2µα1α2 − λk2
) (
e−(α1+α2)2H + 1

)
+

4α1α2

(
(λ+ 2µ)α2

1 − (λ− 2µ) k2
)
e−(α1+α2)H −(

k2 + α1α2

) (
(λ+ 2µ)α2

1 + 2α1α2 − λk2
) (
e−2α12H + e−2α2H

)}
/D, (24)

K21 = −µk
{(
k2 − α1α2

) (
k2 + α2

2 − 2α1α2

) (
e−2(α1+α2)H + 1

)
+

4α1α2

(
α2

2 + 3k2
)
e−(α1+α2)H +(

k2 + α1α2

) (
k2 + 2α1α2 + α2

2

) (
e−2α1H + e−2α2H

)}
/D, (25)

K22 = µα1k
2
s

{(
k2 + α1α2

) (
e−2α1H − e−2α2H

)
−
(
k2 − α1α2

) (
e−2(α1+α2)H − 1

)}
/D,(26)

K13 = 2α2k
2
p (λ+ 2µ)

{
k2e−α2H

(
e−2α1H − 1

)
+ α1α2e

−α1H
(
1− e−2α2H

)}
/D, (27)

K14 = −2α1α2kk
2
p (λ+ 2µ)

{
e−α1H

(
e−2α2H + 1

)
− e−α2H

(
e−2α1H + 1

)}
/D, (28)

K23 = 2µkα1α2k
2
s

{
e−α1H

(
e−2α2H + 1

)
− e−α2H

(
e−2α1H + 1

)}
/D, (29)

K24 = −2µα1k
2
s

{
k2e−α1H

(
1− e−2α2H

)
− α1α2e

−α2H
(
1− e−2α1H

)}
/D. (30)
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Here

D =
(
k2 − α1α2

)2
(exp(−2(α1 + α2)H) + 1)−(

k2 + α1α2

)2
(exp(−2α1H) + exp(−2α2H)) +

8k2α1α2 exp(−(α1 + α2)H) (31)
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Appendix II

In Section 3.3 displacement magnitudes were compared by two methods, the present approach

and the method devised in Wang (1999). The latter approach uses the Thomson-Haskell layer

transfer matrices, with an orthonormalization procedure to overcome numerical stability issues

with the original propagation algorithm. In the Thomson-Haskell transfer matrix algorithm, the

displacements and tractions are placed in a vector:

S =

[
U1 U2 U3 P1 P2 P3

]T
. (32)

For a homogeneous layer j of depth h, the solution S at any coordinate z of the layer can be

written in the form

Sj = Aj Ej bj (33)

where A is a 6× 6 layer matrix (for its entries, see e.g. Sheng et al. (1999)), E is a 6× 6 diagonal

matrix with the terms

E11 = eαpz, E22 = E33 = eαsz, E44 = e−αpz, E55 = E66 = e−αsz, (34)

and b is a 6× 1 vector of integration constants

bj =

[
a1 b1 c1 a2 b2 c2

]T
. (35)

With the notation Ej,0 = Ej(z = 0) = I and Ej,1 = Ej(z = h), the solution at the top (z=0)

and at the bottom (z=h) of layer j can be written as

Sj,0 = Aj Ej,0 bj = Aj bj (36a)

Sj,1 = Aj Ej,1 bj (36b)

By combining the above expressions, the integration constants bj can be eliminated so that

Sj,1 = Aj Ej,1 (Aj)−1 Sj,0 = TjSj,0 (37)

expresses a relationship between the solution at the top and at the bottom of the layer through

the Thomson-Haskell propagator matrix Tj = Aj Ej,1 (Aj)−1. Continuity of displacements and
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traction requires that the solution at the top of layer j equals the solution at the bottom of layer

j − 1, i.e.

Sj,0 = Sj−1,0. (38)

Hence, the solution at the bottom of layer j may be related to the solution at the surface (top of

layer 1), as

Sj,1 = TjTj−1Tj−2...T1S1,0. (39)

However, due to the limited precision of computers, this approach often leads to stability

issues for deep layers and/or high frequencies caused by operations between different increasing

exponentials. Wang (1999) proposed a scheme where the propagation is carried out layer by layer

for a set of base solution vectors. For each layer and solution base vector, the corresponding

vector of integration constants is explicitly calculated. Before the propagation to the next layer

is carried out for the current solution base vectors, an additional procedure is followed. In short,

this additional procedure makes the solution base vectors orthonormal, so as to avoid propagation

or pollution of the solution accuracy due to coupling of P- and SV-waves at the layer interfaces.

The solution for an arbitrary load is then obtained by superposition of the fundamental solutions

so as to satisfy the source condition. For full details of the scheme, the reader is referred to Wang

(1999).
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