
LUND UNIVERSITY ⏐⏐⏐⏐⏐ LUND INSTITUTE   OF  TECHNOLOGY
Division of Structural Mechanics   ⏐  ⏐  ⏐  ⏐  ⏐       Sweden 1996             ⏐ ⏐ ⏐ ⏐ ⏐   Report TVSM-3018

SUSANNE  HEYDEN

A  NETWORK  MODEL  APPLIED  TO
CELLULOSE  FIBRE  MATERIALS



Denna sida skall vara tom!



LUND UNIVERSITY ⏐⏐⏐⏐⏐ LUND INSTITUTE    OF   TECHNOLOGY
Division of Structural Mechanics   ⏐   ⏐   ⏐   ⏐   ⏐       Sweden  1996    ⏐  ⏐  ⏐  ⏐  ⏐   Report TVSM-3018
CODEN:      LUTVDG / (TVSM-3018) / 1-155 / (1996)                     ⏐⏐⏐⏐⏐         I SSN 0281-6679

SUSANNE  HEYDEN

A  NETWORK  MODEL  APPLIED  TO
CELLULOSE  FIBRE  MATERIALS



Denna sida skall vara tom!



AcknowledgementsThe research presented in this licentiate thesis was performed at the Division ofStructural Mechanics, Lund Institute of Technology. The �nancial support fromBo Rydins Stiftelse f�or Vetenskaplig Forskning and the Swedish National Board forIndustrial and Technical development, NUTEK, is greatfully acknowledged.I would like to thank my supervisor, Dr. Per Johan Gustafsson, for his excellentguidance and support during the course of this work. He has supplied numerousideas, has a remarkable scienti�c intuition and is always enthusiastic. I also wantto thank Prof. Hans Petersson and Dr. Christer Nilsson for interesting discussionsand comments on the manuscript, as well as my other colleagues for their support.The industrial partners in this project have been SCA Research AB and M�oln-lycke AB, and I am grateful for the ideas, information and comments which theirrepresentatives have supplied.Thanks is also due to Per-Anders Hansson and Kent Persson for helping meout with the computer system, and to Bo Zadig for skilfully drawing the morecomplicated �gures.Finally, I want to express my gratitude to Anders for his support.Lund in March 1996Susanne Heyden





AbstractA network mechanics model for analysis of materials made of dry-shaped cellulose�bres is proposed. In terms of the model, the network is composed of �bres ofarbitrary distribution in length, curvature, cross-section, sti�ness and strength. The�bres are arranged in a random structure according to an arbitrary orientationdistribution. Where �bres meet there may be �bre-to-�bre interaction, modelledby a linear or non-linear spring coupling representing stick-slip performance. Theconnection is of arbitrary distribution in sti�ness and strength.The network geometry is periodic, any cell under observation being regarded asone of many identical cells that make up a global structure. A set of cyclic boundaryand loading conditions facilitates obtaining relevant results even in the case of smallnetwork cells.A two-dimensional implementation of the model was carried out, and severalexamples of simulation results are provided. The results concern geometrical prop-erties of the network, and the e�ects on network sti�ness and fracture behaviourdue to variations of sample size, boundary conditions and the various micro-levelparameters mentioned above.key words: network mechanics, �bre network, cellulose �bres, fracture, sti�ness,computer simulation
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1. Introduction1.1. General remarksCellulose �bres are obtained by de�bration of wood, by either chemical or mechanicalprocessing. A major part of the pulp is used for making paper, which is manufac-tured by forming the wet �bres into sheets. Another important product made frompulp is dry-shaped cellulose �bre u�, see Figures 1.1 and 1.2. This kind of materialis produced by blowing the �bres, in a dry condition, into the desired shape. Theresult is a material used mainly in diapers and health care products. It is also pos-sible to blow the �bres together with an adhesive aerosol present. In this case thebonds between the �bres are stronger, and �elds of application include insulationboards and various moulded products, the latter being of higher density.Some of the products mentioned have other main functions like absorbing liquidor preventing heat transfer, but it is of course also necessary that they can withstandthe mechanical impact that they are subjected to when in use. This study dealswith the mechanical properties of dry-shaped cellulose �bre materials, and

Figure 1.1: Cellulose �bre u� seen in a microscope.1
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Wood is defibered and
pressed into thick sheets in a 
wet condition...

...the sheets are then 
defibered again and 
blown into a dry 
fluff...

...used for making diapers, heat 
insulation and moulded products, 
products representing different 
degrees of compactness and 
addition of adhesives.

Figure 1.2: Dry-shaped cellulose �bre u� is made from wood, and is used for diapers,insulation and moulded products.



1.2. AIM AND LIMITATIONS OF PRESENT INVESTIGATION 3examines what factors are of importance for mechanical properties such as sti�ness,strength, strain localization and fracture process of a cellulose �bre u�.A network model approach is used. Network mechanics can be very usefulin modelling various heterogeneous materials such as concrete, where the networkstructure does not have an obvious physical interpretation. In the case of a cellulose�bre material, however, the material is indeed of a real network character, and themodelling becomes comparatively straightforward.It is the increasing capacity of computers that makes it possible to apply thiskind of model, but computer capacity also sets a limit to what can be achieved fromthe calculations.1.2. Aim and limitations of present investigationDue to strong market competition, the absorbent product industry is very researchintensive. The need within this industry for methods for rationally analysing themechanical behaviour of �bre materials has been emphasized. The aim of the presentstudy is to develop such a model for the rational mechanical and geometrical analysisof materials made of cellulose �bres.One established concept within structural mechanics is to make assumptionsas to the properties and behaviour of the components of a material on a lowerstructural level, and thereby calculate the expected behaviour of the material on ahigher structural level. In this study, assumptions are made on the network level,see Figure 1.3, from [28], and the properties on the continuum level are obtained bycomputer simulations.A theoretical model of the �bre material is introduced in terms of �bres, �bre-to-�bre connections and the structure into which these are assembled. In order toreduce the computational e�ort, the numerical implementation of the model is atpresent restricted to two dimensions. The implementation involves two separatesteps. First a network structure is generated according to prescribed statistical dis-tributions of the various properties that de�ne the micro-structure of the material.The resulting structure is then assumed to be subjected to strain, and the �nite ele-ment method is used to obtain the global sti�ness properties. Through introducingfracture criteria for �bres and �bre-to-�bre connections, a non-linear simulation ofthe fracture process can be carried out.Computer simulations allow relations between parameters on the microlevel andthe global level to be obtained. The pertinent microlevel parameters include thoseof the length distribution, the orientation distribution, the geometrical and the con-stitutive properties of the �bres, the constitutive properties of the �bre-to-�breconnections, the rate of heterogeneity of the network and also the network density.The corresponding global characteristics can be divided into purely geometricaland mechanical properties. Interesting geometrical properties include the number of�bre-to-�bre connections and the percentage of the network that is active. By non-active parts are meant parts that are in a state of zero stress regardless of loadingat the boundary of the network. Concerning the mechanics, practical interest is



4 CHAPTER 1. INTRODUCTION
STRUCTURE

CONTINUUM

NETWORK

FIBRE

FIBRIL

CELLOBIOSE

ZD

CD

MD

S1

S2

S3

OH

OH

OH OH

OH
OH

Figure 1.3: Modelling and analysis can take place at di�erent structural levels. Thisstudy deals with the transition from network to continuum. [28].



1.3. ORGANISATION OF THE REPORT 5focused on the initial sti�ness properties and on the fracture process, the latterinvolving strength, strain localization and softening. From the application point ofview, strain localization is of particular interest, since it may initiate crumbling incase of cyclic loading.Particular attention is paid to the network size needed to obtain relevant com-putational results. The choice of boundary conditions is an important parameter inthis context, and a concept of periodic geometry and boundary conditions is used inan e�ort to minimize the required network size, and thereby minimize the numberof degrees of freedom.Viscous e�ects and dynamic behaviour of the material are not treated in thisstudy.1.3. Organisation of the reportIn Chapter 2 some earlier work on cellulose �bre network mechanics is summarized.This includes both theoretical network modelling and computer simulations.In Chapter 3 the proposed theoretical model of the �bre network is presented.The parameters that de�ne a network are listed and discussed.Chapter 4 describes how a network is generated and prepared for the analysis ofmechanical performance.Chapter 5 contains results concerning purely geometrical properties of a network,such as number of �bre-to-�bre connections and the mechanically active part of anetwork.In Chapter 6, methods for obtaining the global initial sti�ness properties of anetwork are thoroughly discussed. Di�erent boundary conditions are considered.In Chapter 7, simulation results of global initial sti�ness properties are presented,in terms of Young's modulus and Poisson's ratio of networks. These results illustratehow sti�ness properties are a�ected by boundary conditions, network size, networkdensity, sti�ness properties of �bres and connections, as well as curl and length andorientation distribution of �bres.Chapter 8 deals with the fracture process. Output parameters of interest arede�ned and discussed, and the methods used for obtaining them are presented.Chapter 9 presents results from the analysis of the fracture process. It showshow global parameters such as strength, fracture energy, and localization dependon sample size, network density, properties of connections and other micro-levelparameters.Chapter 10 contains a discussion of numerical aspects of the study, what problemshave arisen and how they have been solved.Conclusions are given and future plans are outlined in Chapter 11.Finally, in Appendix A to E, some algorithms and calculations are indicated.



6 CHAPTER 1. INTRODUCTION1.4. NotationsNotations are explained in the text when they �rst occur. In addition, a list of mainnotations is given below together with the corresponding SI-units. A barred letterdenotes arithmetic mean value of the parameter in question.Af cross-sectional area of �bre [m2]bf width of rectangular �bre cross-section [m]c curl index, see Figure 3.1 [-]D 3x3 constitutive matrix [N/m]Dij element in row i, column j of D [N/m]d(x; y) network density probability function [-]E Young's modulus of 2-d isotropic network [N/m]Ef Young's modulus of �bre [Pa]F (Fx; Fy;M), spring forces in connection [N],[Nm]Fult ultimate resultant force in connection [N]G shear modulus of 2-d isotropic network [N/m]Gf fracture energy of network, see Section 8.3 [Nm/m]hf depth of rectangular �bre cross-section [m]If moment of inertia of �bre [m4]Ke element sti�ness matrix [Nm],[N],[N/m]K system sti�ness matrix [Nm],[N],[N/m]ki sti�ness of spring in direction i, i = x; y; � [N/m],[Nm/rad]L side-length of network [m]lch characteristic length [m]lf length of �bre [m]ls free �bre segment length [m]Mult ultimate moment in connection [Nm]m degree of utilization for �bre or connection [-]N probability distribution function [-]nc number of �bre crossings [-]nf number of �bres [-]ns number of slips before complete connection failure [-]p approximate active part of network [-]s probability of interaction at a �bre crossing [-]u (ux; uy; �), in-plane displacements and rotations in anode, element or structure [m],[rad]we external work [Nm]wi internal elastic strain energy [Nm]x (x; y), rectangular Cartesian coordinates [m]� angle of the �bre relative to the x-axis, ccw positive [rad]�1 reduction of connection sti�ness at slip [-]�2 reduction of connection strength at slip [-]�u (�ux;�uy;��) in-plane deformations in element [m],[rad]



1.4. NOTATIONS 7� (�x; �y; xy), strain vector [-]�lim strain in network at maximum stress [-]�ult ultimate strain in network [-]� �bre curvature [m�1]� Poisson's ratio of 2-d isotropic network [-]� network density in 2-d; total �bre length per unit area [m�1]� (�x; �y; �xy), stress vector [N/m]�max maximum stress in network [N/m]�ult ultimate normal stress in �bre [Pa]�ult ultimate shear stress in �bre [Pa]
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9
2. Earlier work on cellulose fibrenetwork mechanicsThe development of models for understanding the mechanical behaviour of �brenetworks closely reects the development of computers. The earliest models useanalytical methods and are thus con�ned to rather simple and uniform networks.Nevertheless, they produce results of great interest and value. During the 70s and80s the arrival of computers of considerable computation capacity resulted in the�rst computer simulations of network behaviour. This evolution has continued,and in the 90s several new models have appeared, taking more and more variablesinto account. The variables included in the models are naturally those which arebelieved to be of importance. Experimental progress, the possibility of measuringnew properties in a network, has also been an important factor in choosing whatparameters to study.Most references given in this chapter deal with paper, and this reects the factthat there is not much literature on the geometry and mechanics of dry-shapedcellulose �bre materials. There are however obvious similarities between the twomaterial types, the main di�erences being the density, the more three-dimensionalcharacter and weaker �bre-to-�bre bonding of a �bre u�.2.1. Analytical network modelsA very often cited paper treating the geometry of �bre networks was presentedby Kallmes and Corte in 1960, see [15]. They state that the structure of paper(the geometric arrangement of �bres and inter-�bre spaces) is an e�ect of the paper-making process, as well as the cause of the paper's properties. In the article, relationsare obtained between various geometrical properties of the network such as numberof �bre crossings and average segment length between crossings, and basic propertiesof the �bres and the sheet such as mean �bre length and number of �bres.They are dealing with a two-dimensional sheet, which is de�ned as a sheet wherethe area which is covered by more than two �bres is negligible. Probability theoryis used, and the �bres are assumed to be deposited independently of each other.Further, it is assumed that the �bres are randomly distributed over the area andhave a random orientation. Among the results, the following equations are cited for�nc, average number of �bre crossings in a square of side-length L, occupied by nf�bres of average length �lf , and �ls, average free segment length on a �bre. �c denotesaverage curl index, that is distance between �bre end points divided by �bre length,



10 CHAPTER 2. EARLIER WORK ON CELLULOSE FIBRE NETWORK...see Figure 3.1. �nc = (nf�lf )2�c2L2� (2:1)�ls = �lfnf�c2�nc (2:2)In addition to average values of geometrical and topological properties of the modelnetwork, distributions of various properties are also given, and the analytical resultsare compared to experimental results.Komori and Makishima presented in 1977, [17], the equations corresponding to(2.1) and (2.2) for a three-dimensional �bre assembly where the �bres have an arbi-trary orientation distribution. If the �bres are not straight, however, the orientationdistribution function must be interpreted as the orientation distribution of the in-�nitesimal �bre segments. For the case of a two-dimensional network and uniformorientation distribution, the equations as expected reduce to those of [15].[7] is a book presented by Deng and Dodson in 1994, in which various aspects ofthe stochastic geometry of paper are compiled.An early �bre network model dealing with mechanical properties was presentedby Cox in 1952, see [6]. He treats both two- and three-dimensional networks, butthe results cited here apply to the former case. He assumes a perfectly homogeneousnetwork of long straight thin �bres oriented according to a law of statistical distri-bution. Each �bre is assumed to extend from one edge of the network to the other,see Figure 2.1; its bending sti�ness is negligible and there is no interaction betweenthe �bres. This means that the strain �eld is homogeneous throughout the network,

x

y

Figure 2.1: Cox' homogeneous network.and if the network is subjected to a strain� = (�x; �y; xy);



2.1. ANALYTICAL NETWORK MODELS 11the axial strain in a �bre inclined an angle � to the x-axis is� = �x cos2 � + �y sin2 � + xy cos� sin�: (2:3)Cox shows analytically that if the orientation distribution function is of the formf(�) = 1� (1+a1 cos 2�+a2 cos 4�+a3 cos 6�+ :::+ b1 sin 2�+ b2 sin 4�+ :::); (2:4)where Z �0 f(�)d� = 1; (2:5)the elements of the constitutive matrixD, which relates � and stress �=(�x; �y; �xy)in � = D� (2:6)are: D11 = K16(6 + 4a1 + a2)D22 = K16(6� 4a1 + a2)D13 = K16(2b1 + b2)D23 = K16(2b1 � b2)D12 = D33 = K16(2� a2)
(2:7)

where K = AfEf�:Af denotes cross-sectional area of the �bres, Ef Young's modulus of the �bres and� the network density, that is total �bre length per unit area. Note that the higherorder terms in the expansion of f(�) disappear in the integration. For an isotropicmaterial, where f(�) = 1=�, this reduces toE = K3 (2.8)G = K8 (2.9)� = 13 ; (2.10)E, G and � denoting Young's modulus, shear modulus and Poisson's ratio of thenetwork. The sti�ness values predicted by this homogeneous �eld model are notreached in real cellulose �bre networks, but they could be viewed as an upper limit.To approach the homogeneous strain �eld situation in a network where the �bres donot extend from edge to edge, an alternative mechanism of transferring forces across
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Figure 2.2: Example of base element, [29].the network must be provided. This could be completely rigid connections betweenthe �bres and su�ciently high network density to suppress the e�ect of bending ofthe �bres.Since the mid-seventies, it seems that most of the work carried out in the areaof geometrical and mechanical properties of random �bre networks has been basedon computer simulations.2.2. Computer simulationsAn early example of computer simulation of cellulose �bre structures was presentedby Yang in 1975, see [29]. He models paper by a two-dimensional network of ran-domly distributed �bres with prescribed distribution of length and orientation. Hegenerates network geometries and compares e.g. number of �bre crossings and av-erage free �bre segment length with the values predicted by Kallmes and Corte in[15]. The �bres are ribbon-like with non-zero width, and the part of the �bre areawhich is in contact with other �bres, the relative bonded area, is computed. Amongthe geometrical output is also `percentage of free �bre ends', which is closely relatedto what in this work is denoted by `approximate active part', see Section 5.3.The linear elastic sti�ness is calculated by means of the �nite element method.The �bres are represented by orthotropic quadrilateral elements, and the areas where�bres overlap are treated as a composite consisting of two layers of orthotropic ma-terial. The concept of sub-structuring is used to overcome the problem of poorcomputer capacity. That is, several small base elements, see e.g. Figure 2.2, areanalysed. These elements are then condensed into quadrilateral elements with twodegrees of freedom in every corner. The condensed base elements, which have statis-tical variations in properties, are then used to model the paper sheet. The simulationresults show good agreement with experiments performed on kraft paper.



2.2. COMPUTER SIMULATIONS 13
fibre length

ε

Figure 2.3: a) Symbolic sketch of network geometry. b) Strain as a function ofposition in a �bre, revised from [25].In 1984 Rigdahl et al., see [25], investigate the axial stress distribution in the�bres of a network by means of �nite element simulations. Figure 2.3a shows asimpli�ed sketch of the network geometry considered. It consists of parallel �bres of�nite length bonded together through �bres crossing at right angles. The �bres aremodelled by linearly elastic straight beam elements, and the �bre-to-�bre bonds arerigid. It is observed that the axial strain in the �bres is smaller than the global strainof the network. The strain in a �bre is zero at the �bre end, rises quite quickly toa plateau value, and, moreover, where the neighboring �bre ends, there is a peak inthe strain, see Figure 2.3b. This is because the force transmitted in the neighboring�bre row has to �nd another way when there is suddenly a discontinuity in the path.The inuence of the sti�ness of the �bre-to-�bre bond is also investigated. This isdone by considering two parallel �bres connected by crossing �bres, �bre-to-�brebonding not being rigid. One of the �bres is subjected to strain corresponding tothe result of one of the previously mentioned analyses, and the transfer of strain tothe other �bre as a function of bond sti�ness is studied. The result is that the bondsti�ness is of small importance unless it is below a certain critical value, in whichcase the transfer of strain deteriorates rapidly.In his 1991 thesis, [12], Hamlen treats mechanical properties as well as per-meability of paper by means of network modelling. He examines the propertiesof several regular (triangular, square, hexagonal) and perturbed regular networks,and concludes that the regular networks needed to give satisfactory results whenmodelling paper are not less computationally expensive than random networks. Hetherefore chooses to study random networks, in two and three dimensions. Thetwo-dimensional model is composed of linearly elastic straight beams of randomdistribution and orientation, connected rigidly at crossings. The network geometryis periodic, but the loading conditions are not. The �bres are assigned a breakingstress in simple tension, adjusted in size to reect breaking of bonds. Simulationresults indicate that tensile extension of �bres is the dominant mechanism of forcetransfer in a �bre network. He also studies the inuence of �bre curl by assign-ing a non-linear Young's modulus to the �bres. Young's modulus is initially set tozero, and when the network has been strained enough to completely straighten out



14 CHAPTER 2. EARLIER WORK ON CELLULOSE FIBRE NETWORK...a �bre, its modulus is reset to a value representative of a straight �bre. Hamlenalso proposes a three-dimensional network model for paper, called the sequentialdeposition model. A network is generated by letting the projection of a �bre inthe xy-plane fall down on the already deposited �bres. To begin with, it lands ontwo points where it �rst meets previously deposited �bres. Then the �bre contin-ues to descend between the supports to an extent determined by the �bre sti�nessthrough a 'limit angle', possibly making contact with more �bres. In this modelthe �bre-to-�bre connections are represented by beam elements. The computationsprove to be extremely numerically demanding, in spite of the use of a CRAY-2/512.It is concluded that here too the dominant mode of deformation is tension in �bres,followed by shear in connections. To facilitate further 3-d simulations, it is proposedthat the modes of deformation of less importance be neglected, and that alternativenumerical methods to treat the non-linearity due to the breaking of elements beconsidered.In [1], 1991, and [2], 1993, �Astr�om and Niskanen report simulations of fracture inrandom �bre networks. They examine 2-d random �bre networks of uniform spatialand orientation distribution; the �bres are straight and the �bre-to-�bre bonds arerigid. The mechanical properties of the networks are evaluated as functions of width-to-length ratio of a �bre segment and ratio of network density to percolation networkdensity. They suggest that the speci�c modulus of elasticity (E of network relativeto E of �bre) at low densities is a linear function of network density, and that athigh densities it deviates from Cox's homogeneous �eld value by an amount inverselyproportional to network density. Fracture calculations are performed by introducingfracture criteria of �bres and bonds, in terms of axial strain, and performing succes-sive linear calculations where the fractured elements are removed from the structure.The simulations indicate that the strength, in the case of bond breaking, is equalto the product of the elastic modulus of the network and the maximum shear strainthat a bond can carry. The character of the stress-strain-curve is discussed in termsof comparisons with predictions from the homogeneous �eld approximation. Niska-nen also provides a review of the knowledge about strength and fracture of paper in[21].Jangmalm and �Ostlund in [14], 1995, model paper by a two-dimensional net-work composed of curled �bres. The circle arc �bres are randomly distributed, andlength, width, curl and orientation are described by statistical distributions. The�bre-to-�bre bonds, which occur at a prescribed percentage of the crossings, arerigid. Although the �bres are curled, they are modelled by straight linearly elasticbeam elements, but if the free �bre segments are considered to be too long theyare divided into several straight elements. The main objective is to investigate theinuence of �bre curl on the linear elastic sti�ness of a network. This is due to therecently developed possibilities of measuring �bre curl in a pulp with the instrumentSTFI FiberMaster, referred to in [14]. The inuence of �bre length and percentageof bonds in the crossings on the elastic sti�ness is also investigated, and some cal-culations are made using large-strain theory. Those show that the non-linear e�ectof large strain is rather small. Comparisons of the simulation results are made with



2.2. COMPUTER SIMULATIONS 15experiments performed on laboratory sheets made of commercial pulps. It turns outthat the e�ect of curl is stronger in the laboratory sheets than is predicted by themodel. Several possible reasons for the discrepancies are discussed, among whichare the two-dimensional character of the model and that out-of-plane curl is nottaken into account.The Division of Structural Mechanics in Lund has a tradition of studying thefracture of heterogeneous materials. This has led to computer simulation studies innetwork mechanics, so far reported in [3], [26], [10] and [13].
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3. ModelThe de�nition of the model is divided into three parts; �bres, Section 3.1, �bre-to-�bre connections, Section 3.2, and network geometry, Section 3.3. The networkgeometry parameters describe the way in which the components of the networkare assembled into a structure. Assumptions and modelling regarding boundaryconditions and loading are discussed in Chapter 6.3.1. FibreA cellulose �bre is complex and strongly a�ected by the de�bration process fromwood to single �bre. It is often kinked, curled and with branches of �brils, and mayalso have remains of lignin.In this work the �bre is modelled as a plane beam of circle-arc shape, that is, acurved member that possesses sti�ness in the axial and in-plane bending deformationmodes. An important special case is zero �bre curvature, that is, straight �bres.The cross section is arbitrary, although the implementation of the fracture cri-terion used in the subsequent analyses of network failure is based on a rectangularcross section.The �bres are assumed to be made of a homogeneous isotropic linearly elasticmaterial, the failure of a �bre occurring whenf(�) = 0: (3:1)f is set to f(�) = max8>>>><>>>>: j�nj�ult � 1j� j�ult � 1 ; (3:2)where for a rectangular cross section�n = � NAf � MIf s3IfAf ; (3:3)� = 1:5VAf : (3:4)Here j�nj is the maximum absolute value of normal stress in the �bre due to axialforceN and bending momentM , �ult is the ultimate normal stress, j� j is the absolute17



18 CHAPTER 3. MODELvalue of shear stress in the �bre due to shear force V and �ult is the ultimate shearstress. Af and If denote area and moment of inertia of the beam cross section.Second order e�ects are not taken into account; that is, decrease in sti�ness dueto compressive normal force in a �bre, and possible buckling, are disregarded.The following parameters de�ne a �bre:� length, lf 2 Nlf� curvature, � 2 N�� area of cross section, Af 2 NAf� moment of inertia of cross section, If 2 NIf� modulus of elasticity, Ef 2 NEf� ultimate normal stress, �ult 2 N�ult� ultimate shear stress, �ult 2 N�ultN represents a distribution of the parameter in question. If the parameter is assumedto be of constant value, N is the Dirac delta distribution.A value of � = 0 corresponds to the case of straight �bres. In experimentalsituations �bre curl is often quanti�ed by the curl index, c, de�ned as the distancebetween the end-points of a �bre divided by �bre length, see Figure 3.1. On assuming
l

a

f

1/κ c=a / lfFigure 3.1: De�nition of curl index, c, and curvature, �.constant curvature, the relation between curl index and curvature is:c = 2�lf sin(�lf2 ) (3:5)Since it is not possible to solve analytically for � in this equation, a graphicalrepresentation of (3.5) is given in Figure 3.2.
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Figure 3.2: Curl index, c, versus normalized curvature, �lf=2.3.2. Fibre-to-�bre connectionThe mechanisms of �bre-to-�bre interaction in u�ed dry-shaped cellulose �bre ma-terials are not completely known; probably several mechanisms are acting together.One mechanism is that kinked �bres hook on to each other, another is �bre-to-�bre friction. Chemical attractions may also play a role. When an adhesive aerosolis added during the dry-forming process a di�erent type of material is achieved.The adhesive provides a very strong �bre-to-�bre connection compared to the othersuggested mechanisms.One way of describing this complex reality is to model the interaction in termsof an assemblage of springs. In this work a �bre-to-�bre connection is modelledas three uncoupled springs, one that resists relative motion between the �bres inthe x-direction, one in the perpendicular y-direction and one in a rotational mode,�. The springs making up a �bre-to-�bre connection are illustrated symbolically inFigure 3.3. It should be noted that points A and B, which are shown as separate,are really coincident in a model network, and also that the interaction between two�bres occurs where the centroid lines of the two �bres cross. When a �bre-to-�breconnection fails, it does so either completely and in a brittle manner or accordingto some rule for stick-slip performance or �bre-to-�bre friction, wheng(F ) = 0; (3:6)where F is the vector of spring forces. In the present implementation the connections
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B
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Figure 3.3: A �bre crossing is modelled with an assemblage of springs.are assumed to fail according to a stick-slip performance, and g is set tog(F ) = jF jFult + jM jMult � 1; (3:7)where jF j is the absolute value of the vector sum of the forces in the x- and y-springs,Fult is the ultimate force of the connection, jM j is the absolute value of the momentin the �-spring and Mult is the ultimate moment of the connection.Figure 3.4 shows the fracture behaviour of a connection, in this case an x-spring,but the same parameters apply to all springs in a connection. Initially the spring isde�ned by sti�ness k1 and strength Fult1. When the situation g(F ) = 0 occurs thesti�ness is reduced by the factor �1 and the strength is reduced by the factor �2.This is repeated ns � 1 times, and when g(F ) = 0 the ns:th time the connectionfails completely. A special case is ns = 1, completely brittle failure.The following parameters de�ne a �bre-to-�bre connection:� initial spring sti�ness values in the x-, y- and �-directions, kx1 = ky1 2 Nkx1and k�1 2 Nk�1� initial ultimate force in connection, Fult1 2 NFult1� initial ultimate moment in connection, Mult1 2 NMult1� reduction of sti�ness at slip, �1 2 N�1
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Figure 3.4: Stick-slip fracture performance of connection.� reduction of strength at slip, �2 2 N�2� number of slips before complete failure, ns 2 Nns3.3. Network geometryThe network structure is obtained by successively placing �bres in the studied area,which is a rectangle of side-lengths Lx and Ly. The �bres are arranged in a randomstructure according to a speci�ed orientation distribution and rate of heterogeneity.The rate of heterogeneity can be controlled either by prescribing density vari-ations or restrictions directly or by imposing restrictions on how close to existing�bres a new one is allowed to be placed or must be placed. At least by the lattermethod, a fairly uniform network can be obtained, even at low density.In the present implementation the center of the �bre is positioned according toa rectangular distribution, that is with equal probability over the entire area. Theheterogeneity parameter d(x) is de�ned as the part of the entire area for which thedensity is prescribed. Since in this study the �bres are positioned at random, withequal probability over the entire area, d(x)=1. This means that the network density� is prescribed to a certain value in an area of size LxLy. That is, if the studiedarea is divided into smaller parts there is a variation in density between the di�erentparts. This issue is further discussed in Section 4.2.Where two �bres cross each other there is a possibility of interaction between the�bres. At each crossing, the probability of a �bre-to-�bre connection is s. s can beused to symbolically model a three-dimensional network, in which a �bre crossingin the xy-plane does not automatically imply a connection.
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Figure 3.5: Unit cell of periodic network geometry.The number of �bres in the square is determined by the network density, that istotal �bre length per unit area.The network geometry is periodic, such that opposite sides of the area or thevolume studied match, as shown in Figure 3.5. This allows the cell under observationto be regarded as one of many identical cells making up a global structure. Italso allows periodic boundary conditions to be speci�ed. Those are discussed inChapter 6.The following parameters de�ne the network geometry:� side-lengths of the rectangle that is studied, Lx, Ly� network density, �� orientation of �bre, � 2 N�� probability of interaction at a �bre crossing, s� rate of heterogeneity, d(x)
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4. Generation and analysis of networkgeometryThe analysis of a �bre network can be divided into two main parts: generation andanalysis of the network geometry, and analysis of the mechanical properties of thenetwork structure. The �rst main part, which is described in this chapter, consistsof reading input, generating a network, processing it as is described in the followingand preparing input data for the subsequent analysis of mechanical properties. Itis also desired to have an image of the network, and input data are prepared for agraphic computer code.A Fortran 90 code has been developed to deal with these tasks; the main structureof the program is illustrated by Figure 4.1.

READ INPUT

GEOMETRY
GENERATE NETWORK 

ANALYSE NETWORK
GEOMETRY

WRITE OUTPUTFigure 4.1: Main structure of program.4.1. Input dataAll input parameters related to the network are listed in Chapter 3, and in additionto those, the global strain to which the network is to be subjected must be given.



24 CHAPTER 4. GENERATION AND ANALYSIS OF NETWORK GEOM.Many of the input parameters are given in terms of a statistical distribution. Foreach of those a random seed is given. This means that identical networks are repro-duced if the same seeds are given in two simulations. This is an almost necessaryfeature when debugging a program. The statistical distribution is quanti�ed by acumulative distribution function composed of straight line segments. In Figure 4.2an example is given of a hypothetical experimental distribution and an approxi-mation of this curve made up of three straight lines. The input to the programis the two vectors of interval boundaries of probability and value of the variable:(0; p1; p2; p3) and (0; v1; v2; v3). If the variable were constant at value v, the vectorswould be (0; 1) and (v; v). The maximum number of intervals allowed in the pro-gram is twenty. If the random number p is received from the Fortran rectangularpseudo-random number function, the variable is given the value v, as indicated bythe dotted line in Figure 4.2.
p31

cum. part

p2

p1

p

v1 v v2 v3
variable

cum. part

variableFigure 4.2: Experimental statistical distribution and approximation made of straightlines.
4.2. Generation of network geometryA �bre network is generated by sequentially placing �bres in a rectangle of side-lengths Lx; Ly, until the desired network density is reached. That is, since the num-ber of �bres is an integer, the network density will not be exactly as speci�ed. Thesteps through which one �bre is added to the network are illustrated in Figure 4.3.
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Figure 4.3: Steps through which one �bre is added to the network.A �bre is generated by assigning to it values of all parameters given in Section 3.1as well as an angle of orientation. This is done according to the principles describedin Section 4.1.The �bre is deposited by placing its mid-point inside the square; for a curled �brethe mid-point is (x4; y4) in Figure 4.4. The distribution of �bre mid-points in thesquare is controlled by the rate-of-heterogeneity parameter, which in the presentimplementation is such that there is equal probability of a �bre mid-point to beplaced everywhere in the square, and the placement of one �bre is independent of theposition of the other �bres. This means that a network becomes more heterogeneousas the ratio side-length of square relative to �bre length increases, in the sense thatthe mass distribution of the network becomes more varied. In a network whereL = lf , the network density of the square of area l2f is equal to the prescribed �,
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Figure 4.4: Di�erent ways of de�ning a circle arc.while if L = 2lf , there is variation in network density between the four squares ofarea l2f . The average network density of the squares is however still �. This variationin density has a weakening e�ect on the network, as is discussed in Chapters 7 and 9.The geometry and location of a �bre, in the case of straight �bres is de�nedby the coordinates of the end-points of the �bre in a coordinate system with theorigin in the lower left corner of the square. The geometry and location of a curled�bre could e.g. be de�ned by center point, radius of curvature and angles betweenwhich the �bre extends, or by end-points of �bre and curvature, including a signconvention, see Figure 4.4. The two representations of a circle arc mentioned areoptimal in di�erent situations, and in an e�ort to minimize computer time at thecost of more stored data all parameters mentioned (except radius of curvature) arestored.The numerical implementation requires thatlf� � �; (4:1)implying that the circle arc may at most be a semi-circle.Since the geometry is supposed to be periodic, the �bre has to be modi�ed if itextends outside the studied square; this modi�cation is illustrated in Figure 4.5. Inorder to limit the complexity of the program it is required that the �bre length doesnot exceed twice the side-length of the square.The modi�cation and detection of crossings for curled �bres and the special caseof straight �bres must be treated in separate program units, since the algorithmsused for curled �bres degenerate when the radius of curvature approaches in�nity.Thus, at the moment, it is not possible to mix curled and entirely straight �bres inthe same network, although this is a straightforward generalization to implement.When a �bre has been deposited, it is checked for crossings against all previous�bres. For the case of straight �bres, this is a matter of solving a linear system ofequations in two unknowns. If the �bres are curled, the two �bres might even cross



4.3. ANALYSIS OF NETWORK GEOMETRY 27twice, and the solution algorithm is given in Appendix A . If a crossing is found, aconnection is created with the probability s. A connection is created by assigningto it the properties listed in 3.2 and assigning the coordinates of the connection tothe �bres involved. Topological information concerning the connection must also bestored, that is, a node number is assigned to the crossing points on each of the two�bres, and it is noted that the connection connects the two nodes.

Figure 4.5: Modi�cation of �bre that extends outside square.
4.3. Analysis of network geometryIn order to analyse the mechanical properties of the network by means of the �niteelement method (FEM) the �bres must be divided into beam elements. Each �bresegment between two connections, between a boundary and a connection or betweentwo boundaries of the network is made into one beam element. To be able to do this,the coordinates of the connections on a certain �bre must be sorted in their orderalong the �bre, since these points are also the end-points of the beam elements.The �bre segments which are free ends of �bres with only one, or possibly no, endbeing on the boundary or in a connection are not made into beam elements. This isbecause they would be zero-stress elements that have no inuence on the network'sbehaviour.Before the network's structure can be analysed in a FEM code it must be es-tablished that the network is indeed a connected structure, and not composed ofseveral separate clusters of �bres, since this results in a degenerate system of equa-tions. Usually, this is only a real question in the case of network densities closeto the percolation threshold. The algorithm used for this purpose is discussed andpresented in Appendix B.An interesting geometrical property is the active part of a network. By non-activeparts, those parts are meant which are in a state of zero stress regardless of loadingat the boundary of the network. Most of the zero-stress �bres are removed from thenetwork by not making free �bre ends into beam elements, but there may still be
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Figure 4.6: Analysis of network geometry.small clusters of �bres not in contact with the rest of the network. These have tobe removed as well in order to provide a positive de�nite system sti�ness matrix. Inaddition to isolated clusters of �bres, there may be clusters of �bres in contact withthe rest of the network by only one �bre. Those are zero-stress elements too, andcould be removed in order to save degrees of freedom, and to yield the percentageof the �bres that take an active part in the load-carrying structure. If the aim isto obtain a network's sti�ness, it is however doubtful if it is worthwhile to removeclusters connected to the rest of the structure by only one �bre, since they are notcommon in fairly dense networks and detecting them is an extremely time-consumingtask. Detection of zero-stress �bres is carried out in connection with the veri�cationof the connectedness of the network, and is also discussed in Appendix B . In Figure4.7 the non-active parts of a network are shown by dashed lines.4.4. Output from geometry unitA number of output parameters are obtained from the analysis of the network geo-metry. These are� number of beam elements and total beam length,� number of connection elements,� whether the structure is connected or not,� active part of the network,
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Figure 4.7: Network with non-active parts dashed.� number of active beam elements,� number of active connection elements,� number of degrees of freedom in the FEM model.When the �nal network structure has been obtained, all necessary data de�ning theFEM model are written on a �le, formatted according to the standards of the FEMcode used for the analysis of mechanical properties.To get an image of the network, data are also written in CAEDOS neutral �leformat to a �le which is used as input �le to the Moviestar pre- and post- processingpackage.
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5. Results from analysis of geometry5.1. Basic example networkFigure 5.3 shows an example of a network structure. When not indicated otherwisethe results cited in Chapters 5 and 7 refer to a network having the properties foundin the basic example network of Figure 5.3 and Table 5.1. The values in Table 5.1correspond roughly to mean values of what is known and believed about dry-shapedcellulose �bre materials, although some simpli�cations have been made to facilitatethe simulations.An example of a �bre length distribution, from [27], of a CTMP u� (preparedby a chemic-thermo-mechanical process) is given in Figure 5.1. The two curves arecumulative population distribution of �bre length (the percentage of the number of�bres that is shorter than a certain length) and cumulative weighted distribution of�bre length (the percentage of the total �bre length that consists of �bres shorterthan a certain length). The arithmetic mean �bre length is �laf = 1:34 mm and theweighted mean �bre length is �lwf = 2:18 mm, where�laf = Pnfi=1 lfinf (5:1)and �lwf = Pnfi=1 l2fiPnfi=1 lfi : (5:2)The mean �bre lengths given above are calculated without taking �bers shorterthan 0.11 mm into account; the extremely short �bers are, however, included in thegraph. The arithmetic mean �bre length of all �bers is approximately 1.0 mm; theweighted mean �bre length is less a�ected. For the basic example network we chooseto use the arithmetic mean value for �bre length, which means 1.0 mm.The cross section of a cellulose �bre varies between di�erent tree species as wellas between early-wood and late-wood �bres. Figure 5.2 shows a typical �bre crosssection and the simpli�ed cross section used in the calculations. When we havedecided upon a suitable cross section, the problem remains of deciding in whatdirection the bending occurs. We choose to study a spiral shaped �bre which hasthe e�ective bending sti�ness, Ief ,Ief = b3fh3f6(b2f + h2f ) ; (5:3)31
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CollapsedFibre cross-sectionFigure 5.2: Idealization of �bre cross section.The properties of the �bre-to-�bre connections are less known due to experimen-tal di�culties. For the basic example network we take the sti�ness kx to be EA=Lfor a 1 mm �bre, and k� to be 4EI=L for a 1 mm �bre. Those values correspondto the axial and bending sti�ness of a 1 mm �bre. We also assume a connectionin every crossing and uniform orientation distribution. � is set to 60 mm�1. Thismeans that the mean number of crossings per �bre, obtained as total number ofcrossings from (2.1) divided by number of �bres and multiplied by two, is 37. Thisvalue is probably rather high for a dry-shaped cellulose �bre u�. The side-lengthof the studied square is 1.2 mm.The input parameters of the basic example network are listed in Table 5.1. InTable 5.2 are given some geometry output parameters for the basic example networkas well as the mean values from ten di�erent networks that have the same nominalproperties as the basic example network. For the de�nition of active part, seeSection 5.3.



34 CHAPTER 5. RESULTS FROM ANALYSIS OF GEOMETRY

Figure 5.3: a) Basic example network geometry. b) Basic example network withnon-active parts removed.



5.1. BASIC EXAMPLE NETWORK 35Table 5.1: Input parameters of basic example network.Parameter Value and unitlf 1 mm� 0 mm�1Af 2:5 � 10�10 m2If 2:0 � 10�21 m4Ef 35 � 109 Pakx1 = ky1 8750 N/mk�1 2:8 � 10�7 Nm/radL 1:2 mm� 60 mm�1N� 1� ; 0 < � < �s 1.0d(x; y) 1:0
Table 5.2: Geometry output for the basic example network and for ten other nomi-nally equal networks generated by other random number seeds.Result for ten nominallyResult for equal networksParameter basic example Average Standardnetwork value deviationNumber of �bres 86 86 0Total �bre length 86 mm 86 mm 0 mmNumber of beam elements 3213 3228 25Number of connection elements 1603 1612 14Mean no. of connections/�bre 37 37 0.3Structure connected yes yes, allActive part 95.3% 94.8% 0.6%Number of active beam elements 3211 3223 25Number of active connection elements 1603 1611 13Number of degrees of freedom inFEM model 10164 10181 64



36 CHAPTER 5. RESULTS FROM ANALYSIS OF GEOMETRY5.2. Number of �bre crossingsAccording to Kallmes and Corte, [15], the average number of �bre crossings, nc, ina 2D random assembly of �bres of uniform orientation distribution, as given in (2.1)is �nc = (nf�lf)2�c2L2� : (5:4)For the basic example network, (5.4) gives 1635 crossings, and this agrees well withthe value of 1612 crossings obtained as the mean value for ten simulated networks,see Table 5.2. The standard deviation, as obtained by the numerical simulations,was equal to 14 crossings.According to (5.4) the number of �bre crossings in a network of straight �bresand uniform orientation distribution depends only on the total �bre length, nf�lf ,and this agrees well with results from simulations, see Figure 5.4. This diagramshows the number of crossings relative to the number of crossings predicted by (5.4).The network density is 20 mm�1, and the orientation distribution is uniform. Thevariable on the x-axis is �bre length lf , that is all networks have the same networkdensity but the networks to the left are made up of many short �bres and the ones tothe right are made of fewer but longer �bres. The L=lf ratio is 1.2, except for �brelengths 10 and 12mm where it is only 1.0 and 0.8 respectively. This is to avoid anunreasonably large number of crossings. Ten simulations were made for each �brelength considered; the mean value of those is shown as a dashed line. The valuesare slightly more scattered for the smallest values of lf , and for lf = 12 mm there isa drop down to nc=nceq:(5:4) = 0:97.This is probably because there are so few �bres that the orientation distributionis not uniform any longer, the latter being an assumption used in the derivation of(5.4).The length of the �bres does not a�ect the number of crossings, but if theorientation distribution is not uniform, the number of �bre crossings is a�ected, andin the extreme case when all �bres are parallel there are no crossings at all.The average curl index, �c, appears in (5.4), but this equation is not believed tobe good to use for estimating number of �bre-to-�bre connections in an assembly ofcurled �bres, since in the derivation of [15], it is disregarded that two curled �bresmay cross each other twice (or more). For the case of circle-arc shaped �bres ofconstant length, a derivation is given here for the number of crossings in a network,and it turns out that in this case the curvature has no inuence.Consider an area A on which nf circle arcs of constant length lf and radius ofcurvature r are placed independently of each other, with equal probability of everyposition and orientation. A is large compared to the �bre length, and nf is large.Firstly, we study two �bres F1 and F2, see Figure 5.5. What is the averagenumber of crossings between those two �bres? If the distance between the centerpoints of the circle arcs exceeds 2r, the average number of crossings is zero. If, onthe other hand, the distance is shorter than 2r the circles of which the �bres are
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Figure 5.4: Normalized nc against �bre length, lf .parts cross. In this case the average number of crossings between the �bres is2 �2� �2� = �22�2 : (5:5)Thus, the average number of crossings between two �bres in the area A is theprobability that the center points are within a distance of 2r from each other, timesthe average number of crossings when they are within this distance:�nc(F1�F2) = �(2r)2A �22�2 (5:6)Fibre F1 may cross nf � 1 other �bres. This applies to all the nf �bres, but onmultiplying by (nf � 1)nf we have counted every crossing twice. To obtain theaverage total number of crossings in A we therefore multiply nc(F1�F2) by12(nf � 1)nf � n2f2 ;which gives �nc = n2f2 �(2r)2A �22�2 = (nfr�)2A� = (nf lf )2A� : (5:7)As indicated before we have arrived at the result that in this case the degree of curlof the �bres has no inuence on the number of crossings.
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Figure 5.5: a) Circles not intersecting. b) Circles intersecting.A comparison between the two equations (5.4) and (5.7) as well as results fromnumerical simulations are shown in Figure 5.6. The simulations have the basicexample network as starting point, and the curvature and the size of the square, L,are varied.Four di�erent values of curvature are simulated, 0, 1000, 2000 and 3000 mm�1,0 mm�1 representing a straight �bre and 3000 mm�1 being close to a semi-circle.The transition from curvature to curl index can be seen in Figure 3.2.Three di�erent values of L are considered, representing L=lf ratios of 0.6, 1.2and 2.4 respectively. The variation of L means that the assumptions of A and nfbeing large are violated to di�erent degrees.In the diagram the number of crossings relative to the number of crossings pre-dicted by (5.7) is plotted against curl index. The relative standard deviation of thesimulation results, which are averages from ten simulations, is 4-9% for L=lf=0.6and 1-2% for L=lf=1.2 and 2.4. (5.4) predicts a pronounced decrease in the num-ber of crossings as the �bres get more curled, while (5.7) proposes the number ofcrossings to be independent of curl index.The simulations agree well with (5.7), but as the L=lf ratio decreases, the resultsdeviate more from the prediction of (5.7), especially for low curl indices. As forFigure 5.4, this is probably because a lower L=lf ratio means fewer �bres, andfewer �bres means that the orientation distribution tends to be more non-uniform.Another assumption which is not ful�lled when the L=lf ratio decreases is that of Abeing large. In the derivation of nc, a large A is assumed. We can say that A in thesimulations is also large by considering many cells, but then we have a periodicityin position and orientation of the �bres which does not agree with the assumptions.
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Figure 5.6: Normalized nc against curl index, c.5.3. Percolation and active part of networkNon-active parts are those parts of a network which are in a state of zero stressregardless of loading at the boundary of the network. In Figure 5.3a the basicexample network is shown as it appears when �rst generated, and Figure 5.3b showsthe active part of the network.As seen in Section 5.2, for a reasonably large network the mean number of �brecrossings in an area depends on the total �bre length only. The active part of thenetwork, however, depends on the length distribution of the �bres as well.Figure 5.7 shows the active percentage of the network as a function of �brelength for network densities of 2 and 4 mm�1. The values for � = 2 mm�1 areaverages from three simulations and the values for � = 4 mm�1 represent one singlesimulation. The straight �bres have a uniform orientation distribution and interactat all crossings. In each simulation all �bres are of the same length. As the diagramshows, for a given network density a small number of long �bres yields a higheractive percentage than does a large number of short �bres.The marks on the horizontal axis of Figure 5.7 refer to � = 2 mm�1; and representnon-continuous networks, that is networks that are not connected and hence haveno load-bearing function. The �bre length at which a network of given densitytheoretically reaches the percolation threshold, that is, becomes unconnected, isgiven in [2] as being lf � 5:7=�; (5:8)
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Figure 5.7: Active part of network against �bre length, lf .which yields lf = 2:85 mm in the case of � = 2 mm�1, Figure 5.7. Despite this thesimulated networks are not connected until lf = 5 mm. This is probably becausethe results are very scattered as the percolation threshold is approached. Figure 5.7shows both the active part and the part of the network that is left when only the free�bre ends have been removed. It should be noted that a �bre that is not in contactwith any other �bre, as well as clusters composed of only two �bres, are included infree �bre ends in this case, although they can also be viewed as `isolated clusters'.Even at this low density there is little di�erence between the two parameters. Thisindicates that an approximate expression for the active part of a network is �brelength minus length of the two free end segments, divided by �bre length. On using(2.2), this yields the approximate active part, pp = �lf � 2�ls�lf = 1� nf�nc = 1� ���lf : (5:9)This approximate value is shown as a solid line in Figure 5.7, and is supposed to �tto the `o'-marks, indicating the corresponding numerical results.When the probability of interaction s 6= 0 this equation is modi�ed top = 1� nfs�nc = 1� �s��lf : (5:10)In Figure 5.8 the approximate active part, p, as of (5.9) is given for di�erentnetwork densities. From (5.8), at the percolation threshold �bre length �lf = 5:7,
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6. FEM model and analysis of stiffnessFor describing the pre-fracture global constitutive properties of a network, whichis a heterogeneous structure, the terminology of elasticity of continuous media isemployed. In linear elasticity of continuous materials, the constitutive propertiesare contained in the coe�cients describing stress as a linear function of strain, i.e.the matrix D in Hooke's law, [19]: � = D� (6:1)D is symmetric when a strain-energy function exists, [19], and this is assumed tobe the case.The sti�ness properties of a �bre network are here characterized by the D-matrixof a continuous medium which yields the same resultant forces on the boundaries asthe network when subjected to the same boundary displacements.The �nite element method (FEM), see [22], [30], is used to obtain the sti�nessproperties. This is done by dividing the network into beam and connection elements(�bre segments and �bre-to-�bre connections), computing the element sti�ness ma-trix for each element, and assembling all element sti�ness matrices into a globalsystem sti�ness matrix. The element sti�ness matrices for straight and curved beamelements and for the connection element are given in the next section. The nextstep is to prescribe the load on the structure. In this case the network is loaded byprescribing a global strain, that is boundary displacements. This is done accordingto the principles in Section 6.2. The system of equations is then solved, Section 6.3,and the resultant forces and D are evaluated as shown in Section 6.4.D obtained from a simulation contains nine constants, of which only six areindependent due to symmetry of D. To reduce the number of independent con-stants to that of an isotropic material, that is two, a method of approximation isgiven in Section 6.6. The corresponding method for orthotropic material is given inSection 6.7.The computer code used for the FEM calculations is CALFEM, [5], which worksin a Matlab, [20], environment, supplemented with some special functions.6.1. Element sti�ness matricesThe element sti�ness matrix Ke gives the reaction forces f when the element issubjected to displacements u, that isKeu = f ; (6:2)43



44 CHAPTER 6. FEM MODEL AND ANALYSIS OF STIFFNESSwhere u is the vector of displacements in the directions of the degrees of freedom ofthe element, see Figures 6.1-6.3, and f is the corresponding force vector.The sti�ness matrix for a plane straight beam element, Figure 6.1, can e.g. befound in [22]. On assuming small strain, neglecting shear deformation and assuming
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Figure 6.1: Straight beam element with degrees of freedom u1 : : : u6.that plane sections perpendicular to the beam axis remain plane during deformation,the sti�ness matrix for a straight beam element is
Ke =

2666666666666666666666664
EAL 0 0 �EAL 0 00 12EIL3 6EIL2 0 �12EIL3 6EIL20 6EIL2 4EIL 0 �6EIL2 2EIL�EAL 0 0 EAL 0 00 �12EIL3 �6EIL2 0 12EIL3 �6EIL20 6EIL2 2EIL 0 �6EIL2 4EIL

3777777777777777777777775
: (6:3)

Here E denotes Young's modulus of the beam material, A and I denote area andmoment of inertia of the cross section respectively, and L denotes length of the beamelement.The sti�ness matrix for a curved beam element of constant curvature is derivedin [18], from where (6.6) - (6.9) are cited. For a curved beam a modi�ed bendingsti�ness, J , is used instead of moment of inertia, I.J = ZA (r � R)2r=R dA; (6:4)where r denotes radius of the circle through an arbitrary point on the cross sectionand R is the radius of the centroid line. For the case of rectangular cross section, Jis, see [8],J = R3b ln 2R + h2R� h!� R2bh = I 0@1 + 35  h2R!2 + 37  h2R!4 + � � �1A ; (6:5)



6.1. ELEMENT STIFFNESS MATRICES 45where I is moment of inertia of the cross section and b and h denote width anddepth of the cross section. For common values of the ratio h=R, the serial expansionconverges fast, and only the �rst few terms need to be considered.To form the sti�ness matrix Ke matrices G and D are evaluated as follows,where R, � and a are de�ned in Figure 6.2, and E and A denote Young's modulusof material and area of cross section.G = 264 �1 0 0 1 0 00 0 �a 0 0 a0 1 a 0 �1 a 375 ; (6:6)
D = 264 H22=H �H12=H 0�H12=H H11=H 00 0 1=H33 375 ; (6:7)where H11 = 2 REA + R3EJ! � cos2� + R3EJ (� � 3 sin� cos�)H22 = 2 REA + R3EJ! � sin2�H12 = 2 REA + R3EJ! � sin� cos� � 2 R3EJ sin2�H33 = R3EJ (� � sin� cos�)H = H11H22 �H212:

(6:8)
This �nally gives Ke, in local coordinates:Ke = GTDG (6:9)A �bre-to-�bre connection is modelled by three uncoupled springs and with thespring sti�nesses kx; ky; k� according to Figure 6.3, the sti�ness matrix for the con-nection element is

Ke = 2666666664 kx 0 0 �kx 0 00 ky 0 0 �ky 00 0 k� 0 0 �k��kx 0 0 kx 0 00 �ky 0 0 ky 00 0 �k� 0 0 k�
3777777775 : (6:10)In Figure 6.3 the connection element has been separated into three �gures, to makethe illustration clearer.
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Figure 6.2: Curved beam element.All the element sti�ness matrices given above are referred to a coordinate systemwith axes parallel to the element's degrees of freedom, e.g. (u1; u2). In the �brenetwork the beams may have an orientation that di�ers from the global coordinateaxes. When this is the case, the element sti�ness matrix has to be transformed, see[22]: Kge = ATK leA; (6:11)where superscript g denotes global, superscript l denotes local,A = 2666666664 cos� sin� 0 0 0 0� sin� cos� 0 0 0 00 0 1 0 0 00 0 0 cos� sin� 00 0 0 � sin� cos� 00 0 0 0 0 1
3777777775 (6:12)and � denotes the counter-clockwise angle from the global to the local x-axis.The sti�ness matrix of the connection element always refers to the global coor-dinate axes, that is, the directions of the kx- and ky-spring are independent of thedirections of the crossing beam elements. When all the beam elements have beentransformed into the global coordinate directions, each element sti�ness matrix isassembled into the global sti�ness matrix.6.2. Methods of applying strainTo obtain the response of a network, it is subjected to deformations correspondingto various modes of strain, and the resulting forces on the boundaries of the networkare registered.
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φFigure 6.3: Connection element.A deformation to which the network is subjected, reects a certain global meanstrain, �, of the cell. There are several di�erent methods of applying such a meanstrain. A natural concept would be to imitate the situation when testing a �brematerial in the laboratory. This could be a strip of material clamped at the endsand otherwise free, see Figure 6.4. This method would facilitate direct comparison
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

Figure 6.4: Fibre network in simple tension test.between the results obtained from tests and simulations respectively. One problemis, however, that with today's computer performance it is not feasible to carry outsimulations on a piece of material as large as a test specimen. It is also complicatedto evaluate the sti�ness parameters in this deformation mode: for example, howlarge is the contraction in this case when contraction is prevented at the edges andbecomes gradually more free towards the centre?To avoid these problems a concept of cyclic geometry and boundary conditions isemployed. The essence of those is that the network cell under observation is regardedas one of many identical cells making up a global network structure of in�nite size.This leads to certain continuity requirements, namely that the cells are to matchalso in a deformed condition. Two di�erent sets of cyclic boundary conditions areconsidered, both of which ful�ll the necessary continuity requirements. In the �rst



48 CHAPTER 6. FEM MODEL AND ANALYSIS OF STIFFNESSset of boundary conditions, denoted below by S for straight, the boundaries areforced to remain straight during deformation, and in the second set, denoted belowby C for curved, the boundaries are allowed to deform. In Figure 6.5, a cell subjectedto strain � = (�0; 0; 0) is shown for the cases of boundary conditions S and C.
b)a)

Figure 6.5: Cell subjected to � = (�0; 0; 0) for a) boundary conditions S, b) boundaryconditions C.For boundary conditions S, strain � = (�x; �y; xy) is applied by prescribing thefollowing displacements and rotation to every node i at the boundary:264 uivi�i 375 = 264 xi 0 yi0 yi 00 0 � sin2 �i 375 264 �x�yxy 375 (6:13)Here (xi; yi) are the coordinates of the boundary node, when the origin is in the lowerleft corner of the network and �i is the inclination of the �bre. The considerationsthat lead to the factor � sin2 �i are presented in Appendix C.For the case of boundary conditions C, displacements are speci�ed in the mannergiven by the following equation:2666666664 u2 � u1v2 � v1�2 � �1u4 � u3v4 � v3�4 � �3
3777777775 =

2666666664 Lx 0 00 0 00 0 00 0 Ly0 Ly 00 0 0
3777777775 264 �x�yxy 375 (6:14)

The subscript 1 denotes nodes at the left boundary of the network and subscripts2, 3 and 4 denote nodes at the right, lower and upper boundaries of the networkrespectively; see also Figure 6.6. Lx and Ly are side-lengths of the rectangle in thex- and y-directions.The consequences of the di�erent kinds of boundary conditions are further dis-cussed in Section 6.4.



6.3. SOLUTION OF THE SYSTEM OF EQUATIONS 496.3. Solution of the system of equationsThe system of equations for boundary conditions S is straightforward to solve. Allboundary nodes have prescribed values of displacement, and thus there are reactionforces on all the boundary nodes and no reaction forces occur on any interior node.For boundary conditions C the prescribed displacements are speci�ed in terms ofrelations between di�erent degrees of freedom, that is constraints. The constraineddegrees of freedom are removed from the system of equations, see [26]. The originalsystem of equations is: Ku = f (6:15)The constraints can be formulated as relations between a full and a reduced dis-placement vector u and ured, u = Bured + C: (6:16)For the nodes located along the boundaries, equation (6.14) rewritten in the formof (6.16) is 2666666666666666666666664
u1u2v1v2�1�2u3u4v3v4�3�4

3777777777777777777777775
=
2666666666666666666666664
1 0 0 0 0 01 0 0 0 0 00 1 0 0 0 00 1 0 0 0 00 0 1 0 0 00 0 1 0 0 00 0 0 1 0 00 0 0 1 0 00 0 0 0 1 00 0 0 0 1 00 0 0 0 0 10 0 0 0 0 1

3777777777777777777777775
2666666664 u1v1�1u3v3�3

3777777775 +
2666666666666666666666664

0Lx�x00000Lyxy0Ly�y00

3777777777777777777777775
: (6:17)

Insertion of (6.16) in (6.15) givesKBured +KC = f : (6:18)In order to obtain a symmetric sti�ness matrix, all terms are multiplied by BT :BTKBured = BTf �BTKC (6:19)De�ning Kred = BTKB (6:20)fred = BTf �BTKC; (6:21)we now have Kredured = fred: (6:22)



50 CHAPTER 6. FEM MODEL AND ANALYSIS OF STIFFNESSThis system of equations is solved for ured, u is obtained from (6.16) and the reactionforces are obtained from (6.15).In (6.22) rigid body translation must be prevented, by e.g. prescribing zerodisplacement in x- and y-directions in an interior node. Rigid body rotation isprevented automatically by the constraints; since e.g. v1 and v2 must always be thesame, the cell is not able to rotate.As in the case of boundary conditions S, there are reaction forces on all boundarynodes, and none on the interior nodes. Moreover, the reaction forces in two oppositenodes are always equal in magnitude and opposite in direction. Should reactionforces occur in the interior node prescribed to zero translation, this indicates lackof equilibrium due to numerical reasons or some other error.6.4. Evaluation of resultant forces and D-matrixTo obtain the D-matrix of the equivalent continuous material, the network is suc-cessively subjected to three modes of deformation, corresponding to the three com-ponents of in-plane strain. First the strain � = (1; 0; 0) is applied, representingextension in the x-direction, without either strain in the y-direction or shear strain.The resultant forces on the network are registered and are divided by side-lengthto obtain stress. This means that the unit of stress for a network is N/m. Theprocedure is illustrated in Figure 6.6 . Note that moments in the boundary nodesare omitted in the �gure.
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Figure 6.6: Evaluation of stresses.From (6.1) it follows that264 �x�y�xy 375 = 264 D11 D12 D13D12 D22 D23D13 D23 D33 375 264 100 375 = 264 D11D12D13 375 : (6:23)



6.5. ANISOTROPIC, ORTHOTROPIC AND ISOTROPIC MATERIALS 51Thus, the �rst column ofD is equal to the registered stress vector. The two remain-ing columns ofD are obtained analogously through applying � = (0; 1; 0) (extensionin the y-direction) and � = (0; 0; 1) (pure shear).For the case of boundary conditions C the reaction forces in two opposite bound-ary nodes are equal in magnitude, and opposite in direction. This means that thesums of normal forces on opposite boundaries are equal, and the resultants are sit-uated exactly opposite each other. In Figure 6.6 this means that Fx1 and Fx2 aswell as Fy3 and Fy4 are collinear. Since the moments in the boundary nodes arealso equal in size and opposite in direction, two by two, the total moment on thenetwork from moments in boundary nodes is zero. For the global moment equilib-rium to be satis�ed it is then necessary that the forces Fy1; Fy2 and Fx3, Fx4 areof equal magnitude. The D obtained from boundary conditions C is automaticallysymmetric.When boundary conditions S are used the forces in opposite nodes are not equal,and thus Fx1 and Fx2 are not collinear, and Fy1; Fy2; Fx3 and Fx4 need not be thesame. Despite this, the global equilibrium of the cell is of course satis�ed. Whenrequiring that the boundaries remain straight, the network is not allowed to deformin the way that is most natural to it. One could imagine a rigid frame being attachedonto the network, which transfers the forces needed for the prescribed deformationto be possible. Intuitively this sti�ens up the structure. A somewhat absurd con-sequence of forces in opposite nodes not being equal, is that if one imagines twonearby cells, the forces are not the same in the two �bre ends that are supposed tobe attached to each other in the global network. D obtained from boundary con-ditions S is not symmetric. Since we want a symmetric D, the mean values acrossthe diagonal are taken as D.6.5. Anisotropic, orthotropic and isotropic materialsA linear elastic continuous material can be classi�ed into di�erent categories withrespect to symmetries in the material. If there are no preferred directions the mate-rial is isotropic, otherwise it is anisotropic and D contains in the most general casesix independent constants: D = 264 D11 D12 D13D12 D22 D23D13 D23 D33 375 (6:24)In case of symmetry with respect to two perpendicular axes, the material is or-thotropic and the number of independent constants is reduced to four. On assumingplane stress this givesD = 11� �xy�yx 264 Ex Ex�yx 0Ey�xy Ey 00 0 Gxy(1� �xy�yx) 375 ; Ex�yx = Ey�xy: (6:25)



52 CHAPTER 6. FEM MODEL AND ANALYSIS OF STIFFNESSThe simplest possible material is isotropic, and has the same properties in everydirection. In this case D contains only two independent constants, namely modulusof elasticity E and Poisson's ratio �:D = E1� �2 26664 1 � 0� 1 00 0 1� �2 37775 (6:26)For an isotropic material,D is the same for every material orientation, while foranisotropic materialsD depends on the orientation of the material. The orthotropicD given above refers to the case when the coordinate axes coincide with the principaldirections of the material.For a three-dimensional isotropic material, it is known that certain restrictionscan be imposed on the elastic moduli. Assuming positive de�niteness of the strainenergy, [19] leads to the conditionsE > 0 and � 1 < � < 12 : (6:27)Even if a two-dimensional network is approximately isotropic in its own plane, thereis no reason to believe that it has the same properties in the out-of-plane direction.Because of this, the restrictions given above are not generally applicable to themoduli of two-dimensional networks.Although a network is in general anisotropic, one would expect nearly trans-versely isotropic behaviour for fairly dense two-dimensional networks, if the �breshave a uniform orientation distribution. If the orientation distribution N� is sym-metric with respect to two perpendicular axes, nearly orthotropic network propertiescan be expected.If the network is to be represented as an anisotropic material, the D obtainedfrom the simulations needs no further processing, except for symmetrization forboundary conditions S. For boundary conditions C, the anisotropic representationdescribes exactly how the simulated network responds when subjected to strain, butit has the drawback of an intuitive physical interpretation of the constants beingdi�cult and requires as many as six constants to characterize the material.In the cases where the network is nearly isotropic it would be advantageous tocharacterize the material with the two well-known parameters E and � instead.6.6. Approximation of nearly isotropic D-matrixIt is desired to have a method of �nding the parameters that describe an isotropicmaterial that is, in some sense, as close as possible to the simulated material, and toquantify the closeness in some way. A least squares procedure is applied to obtainan isotropic approximation of the anisotropic simulated D.A material is imagined subjected to simple tensile strain �= (�0; 0; 0) for everydirection. This results in stresses that are in general functions of material orientation



6.6. APPROXIMATION OF NEARLY ISOTROPIC D-MATRIX 53angle �. For an isotropic material, D is however independent of �. From (6.1) and(6.26) we have, for an exactly isotropic material26664 �ex(�)�ey(�)� exy(�) 37775 = E1� �2 26664 1 � 0� 1 00 0 1� �2 37775 26664 �000 37775 = 26666664 E1� �2 �0�E1� �2 �00
37777775 ; (6:28)where superscript e denotes exactly isotropic material. That is, �x and �y areconstant with respect to material orientation angle �, and �xy is identically zero forevery value of �.For an anisotropic material all stress components vary with �. Since it is notpractically possible to simulate tension of a network in all directions, �sx, �sy and � sxyare obtained by transforming D from one simulation to all material orientations.Superscript s here denotes simulated material. If the coordinate frame is rotated anangle �, D is transformed as, see [30]D0(�) = TDT T ; (6:29)where T = 264 cos2 � sin2 � 2 sin � cos �sin2 � cos2 � �2 sin � cos �� sin � cos � sin � cos � cos2 � � sin2 � 375 : (6:30)This gives 264 �sx(�)�sy(�)� sxy(�) 375 = D0(�) 264 �000 375 = 264 D011(�)�0D021(�)�0D031(�)�0 375 : (6:31)On denoting cos � by c and sin � by s this yields:�sx(�) = (c4D11 + 2c2s2D12 + 4sc3D13 + s4D22 + 4s3cD23 + 4s2c2D33)�0�sy(�) = (s2c2D11 + (s4 + c4)D12 + 2sc(s2 � c2)D13 + s2c2D22+2sc(c2 � s2)D23 � 4s2c2D33)�0� sxy(�) = (�sc3D11 + sc(c2 � s2)D12 + ((c2 � s2)c2 � 2s2c2)D13 + s3cD22+((c2 � s2)s2 + 2s2c2)D23 + 2sc(c2 � s2)D33)�0 (6:32)In Figure 7.23 stresses �s and �e are plotted as functions of �. The componentsof �s plotted are those of the basic example network. We are looking for the valueof �e that will best approximate �s, and in the �gure the components of �e areplotted in the position that the calculations will �nally give.We choose to minimize the square of the area between the curves for exactlyisotropic and simulated material. Thus, we want to �nd the values of E and � thatminimize the functional Q:
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Figure 6.7: Stresses as function of angle �.Q = Z �0 (�sx � �ex)2 + (�sy � �ey)2 + (� sxy � � exy)2d� (6:33)On inserting ( 6.28) we haveQ = Z �0 (�sx � E1� �2 �0)2 + (�sy � �E1� �2 �0)2 + � s2xyd�: (6:34)Minimize Q with respect to E1� �2 and �E1� �2 :@Q@ E1� �2 = Z �0 �2�0(�sx � E1� �2 �0)d� = 0@Q@ �E1� �2 = Z �0 �2�0(�sy � �E1� �2 �0)d� = 0 (6:35)



6.6. APPROXIMATION OF NEARLY ISOTROPIC D-MATRIX 55Integrating the last term and rearranging the equations giveZ �0 �sxd� = E1� �2 �0�Z �0 �syd� = E�1� �2 �0�: (6:36)These equations imply that the areas under the curves for exactly isotropic andsimulated material should be the same. Now it remains to evaluate the area underthe stress curves for a simulated material.Integrating (6.32) givesZ �0 �sxd� = �8 (3D11 + 2D12 + 3D22 + 4D33)Z �0 �syd� = �8 (D11 + 6D12 +D22 � 4D33)Z �0 � sxyd� = 0: (6:37)
From (6.36) and (6.37) we can now calculate the values of � and E that minimizeQ: � = Z �0 �syd�Z �0 �sxd� = (D11 + 6D12 +D22 � 4D33)(3D11 + 2D12 + 3D22 + 4D33)E = 1� �2�0� Z �0 �sxd� = 1� �28�0 (3D11 + 2D12 + 3D22 + 4D33)An invariant, with respect to rotation of coordinate frame, of the D-matrix istaken as a measure of the error caused by classifying the material as isotropic. Thefourth rank constitutive tensor has the following four independent invariants, see[11], given in terms of the elements of the D-matrix.ID = D11 +D22 + 2D33IID = D11D22 + 2D33(D11 +D22)�D212 � 2D213 � 2D223IIID = (�D11 +D22)2 + 4(D13 + 4D23)2IVD = D11 +D22 + 2D12 (6:38)



56 CHAPTER 6. FEM MODEL AND ANALYSIS OF STIFFNESSFor an isotropic material this reduces toID = E1� �2 (3� �)IID = E2(1� �2)2 (3� 2� � �2)IIID = 0IVD = E1� �2 (2 + 2�): (6:39)
IIID is equal to zero for an isotropic material, but not for the simulated anisotropicmaterial. IIID is chosen as a measure of the error caused by classifying the materialas isotropic, and to achieve a scale-indi�erent measure it is normalized by dividingwith the square of the estimated Young's modulus:err = (�D11 +D22)2 + 4(D13 + 4D23)2E2 (6:40)Equations (6.38) and (6.39) provide an alternative possibility to estimate E and �.For the isotropic material there are three non-trivial equations and two unknowns, Eand �. This implies that there is a dependence between the equations and thereforethe two linear equations can be used to solve for E and �. Thus, if ID and IVD arecalculated from (6.38) for the simulated D, E and � can be solved for in (6.39).After some calculations it is concluded that this procedure gives exactly the sameE and � as the least-squares approach.6.7. Approximation of near orthotropic D-matrixIf the orientation distribution of the �bres is not uniform, but still symmetric withrespect to two perpendicular axes, there is no longer any reason to believe that thematerial is transversely isotropic, but rather orthotropic. Thus, we want to knowwhat is the best estimation of orthotropic material parameters.One problem that arises is that of �nding the principal directions of the simulatedmaterial. The simplest solution would be to assume that the principal directionsare coincident with the symmetry axes of the orientation distribution, which theyshould be on taking the average of many networks. A second way would be totransform the D obtained from simulations to di�erent material orientations andcheck where a principal direction criterion is best ful�lled. This criterion could bemaximum value of D11 or D22 and close to zero value of D31 and D32. We chooseto use the �rst approach since this seems to be a reasonable approximation in thecases where it is used, see Section 7.5.Thus we assume that the principal directions are known to coincide with thecoordinate axes. We use the same approach as for isotropic material, that is minimizeQ = Z �0 [(�sx � �ex)2 + (�sy � �ey)2 + (� sxy � � exy)2]d� (6:41)



6.7. APPROXIMATION OF NEAR ORTHOTROPIC D-MATRIX 57with respect to the four independent components of the orthotropic D, see (6.25).�s is the same as in the preceding section, that isZ �0 �sxd� = �8 (3Ds11 + 2Ds12 + 3Ds22 + 4Ds33)Z �0 �syd� = �8 (Ds11 + 6Ds12 +Ds22 � 4Ds33)Z �0 � sxyd� = 0; (6:42)where superscript s has been added to emphasize that we refer to the componentsof D obtained from simulations. �e is not as simple as in the isotropic case, super-script e here denoting exactly orthotropic material, since it is dependent on materialorientation angle �. That is264 �ex(�)�ey(�)� exy(�) 375 = De0(�) 264 �000 375 = 264 De011(�)�0De021(�)�0De031(�)�0 375 : (6:43)In analogy with �s, this yieldsZ �0 �exd� = �8 (3De11 + 2De12 + 3De22 + 4De33)Z �0 �eyd� = �8 (De11 + 6De12 +De22 � 4De33)Z �0 � exyd� = 0: (6:44)
On inserting the expressions for �e and �s in (6.41), it appears that the best esti-mation is to take the coe�cients directly from the simulated D, that isDe11 = Ds11De12 = Ds12De22 = Ds22De33 = Ds33: (6:45)
The components Ds31 and Ds32 provide a measure of the correctness of the approx-imation to orthotropic material, since they should be identically zero in a trulyorthotropic material. We could for example takeerr = 4(Ds13 + 4Ds23)2E2 (6:46)as an error measure, although this quantity is not invariant under rotation of coor-dinate frame, as is that of (6.40).



58 CHAPTER 6. FEM MODEL AND ANALYSIS OF STIFFNESSThe step from components ofDe to the individual physical constants Ex; Ey; Gxy; �xyand �yx consists of solving the non-linear system of equations8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
Ex1� �xy�yx = De11Ey1� �xy�yx = De22Ex�yx1� �xy�yx = De12Ey�xy1� �xy�yx = De12Gxy = De33

: (6:47)
The solution to this is 8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

Ex = De11(1� (De12)2De11De22 )Ey = De22(1� (De12)2De11De22 )�yx = De12De11�xy = De12De22Gxy = De33
; (6:48)

providing the parameters used for describing an orthotropic network in the nextchapter.



59
7. Results from analysis of initialglobal stiffness propertiesThe initial global sti�ness properties are given in terms of the parameters de�ned inthe preceding chapter, in the case of an isotropic network Young's modulus E andPoisson's ratio �. Those values are obtained from the results of three simulations,pure tension in the x- and y-directions respectively and pure shear, which are com-bined by means of a least squares procedure. In Section 7.1, however, sti�ness isgiven in terms of the reaction force in the x-direction when the sample is subjectedto strain in the x-direction. It is thus based on the result of only one simulation. Inthis section change in sti�ness due to change in sample size rather than the absolutevalue of the sti�ness is the primary concern. Because of this the simpler method ofevaluating sti�ness is considered to be su�cient. In addition, normalized quantitiesare used in Section 7.1. Young's modulus, which is here Fx=L�x, is divided by Ef lfto obtain a normalized sti�ness measure.7.1. E�ect of sample size and boundary conditionsAn interesting issue is what size as compared with �bre length a network unit musthave. Since computer resources are limited, it is important to know how small asquare can be analyzed without the relevance of the results being lost.Numerical simulations were carried out to examine the dependence of sti�nesson sample size and boundary conditions. The networks that were simulated hadmaterial properties like those speci�ed for the basic example network, Section 5.1.In Figures 7.1-7.3 and 7.6, the relationship between normalized sti�nessFxEfLlf �xand ratio L=lf is plotted. In the normalized sti�ness, Fx is the resultant force in thex-direction when the quadratic network of side L is subjected to strain �=(�x,0,0).Figures 7.1 and 7.2 show the results from simulation of networks in which�lf = 40. For every L=lf considered, ten di�erent geometries were simulated, eachgeometry being subjected to the two sets of boundary conditions discussed in Sec-tion 6.2: S in Figure 7.1 and C in Figure 7.2 .



60 CHAPTER 7. RESULTS FROM ANALYSIS OF INITIAL GLOBAL...

0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

x 10
−3

f

f

Boundary conditions S
x

L/ l

ρ
x

l  =40

f
F 

 / 
(E

  L
l  

   
 )

f
ε

Figure 7.1: Normalized sti�ness against L=lf : Boundary conditions S.
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Figure 7.2: Normalized sti�ness against L=lf : Boundary conditions C.



7.1. EFFECT OF SAMPLE SIZE AND BOUNDARY CONDITIONS 61By using normalized quantities the sti�ness can be extracted for all networkshaving the same normalized density �lf and ratio L=lf , provided that the ratiosbflf ; bfhf ; Efbfhflf =kx and Efbfh3flf =k'are also the same.It can be seen from the diagrams that the scatter of the points is considerablefor low values of L=lf , and that it gradually decreases as L=lf increases. It is alsonoted that the scatter is larger for boundary conditions S. The solid line is theaverage from the ten simulations, and the dashed lines denote standard deviation.For boundary conditions S the average sti�ness varies up and down to begin with,but from L=lf = 1:2 it is steadily decreasing. Boundary conditions C, on the otherhand, show a rather constant sti�ness from L=lf = 1:0 and forward. This indicatesthat the sti�ness is sample size-dependent for boundary conditions S at these valuesof L=lf and �lf , while boundary conditions C seem to give an almost constant valueof the sti�ness already from L=lf = 1:0.Figure 7.3 shows normalized sti�ness, average from ten calculations, againstL=lf for three di�erent densities, �lf = 30, 40 and 50. Both boundary conditionsare shown for each density. The tendency from �lf = 40 is also found for the otherdensities.That is, when using the set of boundary conditions S, one must analyse a muchlarger network in order to obtain a correct sti�ness value than is the case for bound-ary conditions C. It is concluded that for boundary conditions C, L=lf � 1 is aminimum requirement for obtaining relevant sti�ness values.For the conventional boundary conditions S, the corresponding minimum re-quirement can be estimated as being approximately L=lf � 3.A larger L=lf ratio means more degrees of freedom and requires much more com-puter time and memory. Thus it is concluded that use of boundary conditions C isby far the more economic alternative. The gain is not quite as large, however, asone might at �rst anticipate. This is because conditions C involve the use of con-straints, which makes the solution of the system of equations more time-consumingand requires more memory. If nothing else is said, boundary conditions C are usedin all the simulations cited in the following.The results from Figure 7.3 are repeated in another form in Figure 7.4. InFigure 7.4 normalized sti�ness for boundary conditions S relative to normalizedsti�ness for boundary conditions C is plotted against L=lf . The relative di�erencebetween the two boundary conditions decreases as �lf increases, but for �lf = 50and L=lf = 2 there is still close to 25% overestimation of the sti�ness when usingboundary conditions C.The results above suggest that the initial sti�ness is approximately indepen-dent of sample size for squares of L=lf � 1:2, for boundary conditions C, at theinvestigated levels of network densities. This conclusion may, however, not be gen-eral for all network densities. This is due to the e�ects of statistical distributionof sti�ness properties in di�erent areas of a heterogeneous material. The case of
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Figure 7.3: Normalized sti�ness against L=lf .a growing square lies somewhere between the extreme cases of coupling more andmore material cells in series or in parallel. In a parallel coupling the total sti�nessis not a�ected by scatter in properties of the components, while a structure coupledin series is weakened by scatter. This e�ect is illustrated by a simple example ofsprings coupled in series and parallel in Figure 7.5. The average spring sti�ness isthe same in all four cases. As a growing square could be viewed as a combination ofserial and parallel coupling, the weakening e�ect of scatter on global sti�ness maybe of signi�cance if the scatter is large enough. As the scatter in sti�ness resultsincreases for decreasing network density this would be an issue in particular for lownetwork densities. In Figure 7.6 results are shown from simulations of �lf = 15 and20, boundary conditions C. The solid lines denote averages of ten calculations andthe dotted lines denote standard deviation. There is a weak tendency of increasingslope of the curves as �lf decreases, but the large standard deviation makes de�niteconclusions di�cult. This issue is further discussed in Section 9.1.In the simulations cited here, all �bres are of the same length. For the case of astatistical distribution of �bre length, the requirement L=lf � 1:2 must be modi�edaccording to the distribution.The standard deviation decreases moderately with increasing L=lf , which meansthat the number of simulations can be decreased for larger L=lf . Since the compu-tational time increases dramatically, however, as L=lf increases, it is from the
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Figure 7.6: Normalized sti�ness against L=lf : Boundary conditions C.computational point of view best to select a minimal value of L=lf .7.2. Global elastic sti�ness vs sti�ness of componentsThe global elastic sti�ness of a network depends on the sti�ness properties of thecomponents, and on how these are geometrically arranged. To examine the depen-dence on the components' sti�ness, simulations were made on the basic examplenetwork geometry. Each sti�ness parameter was varied, one at a time, over a widerange. The parameters considered were sti�ness of connections, kx = ky and k�, andmoment of inertia, If , cross-sectional area, Af , and Young's modulus, Ef , of �bres.Each point in the diagrams is an average from three calculations, and the relativestandard deviation for E is < 1%, except for the If -curve in Figure 7.8 where it is1 � 5%. For � the relative standard deviation is 1 � 5% except for a few values inthe lower ranges of If , Figure 7.8, where it rises to at most 11%.In Figure 7.7 the inuence of the sti�ness of the connections is plotted. Thevariable on the x-axis is log(kx=k0x), where k0x denotes kx for the basic examplenetwork. Analogous notation is used in Figures 7.8 and 7.9. Since it turns out thatthe rotational sti�ness has very little inuence on E, two curves for the variationof kx and ky are plotted, one with an extremely high and one with an extremelylow value of k�. When kx = ky approaches zero, global sti�ness obviously alsoapproaches zero. When the value of kx = ky increases, a plateau is reached when the



7.2. GLOBAL ELASTIC STIFFNESS VS STIFFNESS OF COMPONENTS 65connections are approximately rigid. One can compare this plateau value with thevalue predicted by a homogeneous �eld approximation. As discussed in Section 2.1,Cox, in [6], shows that in an isotropic �bre network experiencing a homogeneousstrain �eld, that is where every �bre is strained exactly to the extent of the globalstrain in the network, E = K=3G = K=8� = 1=3; (7:1)where K = AfEf�: (7:2)For the basic example network (7.1) gives E = 17:5 � 104 N/m and the plateauvalue from the simulations is E = 13:2 � 104 N/m. Accordingly the homogeneous�eld assumption predicts a signi�cantly sti�er network even when assuming theconnections to be rigid. This is probably due to bending of the �bres, as discussedin Section 2.1.Poisson's ratio, in contrast to Young's modulus, is a�ected by k�, as can beseen in Figure 7.7. For a weak �-spring � is approximately constant, whereas � isstrongly dependent on kx and ky in the case of sti�er �-springs. For the sti�er x- andy-springs � is close to the value of 1/3 predicted by (7.1) for a network experiencinghomogeneous strain.E and � as a function of log(If=I0f ), log(Af=A0f) and log(Ef=E0f ) are shown inFigure 7.8. It is seen that Af is the most important variable and that If has not somuch inuence on E, when varying the parameters around the values of the basicexample network. To change the ratio Af=If means primarily to distort the crosssection, and this is not very realistic over the wide ranges shown here. However,second order e�ects resulting from �bres not being straight can be approximatelytaken into account by modifying Af . In Figure 7.8 it is also seen that � showsmoderate variations, except for very small values of Af . Here � suddenly drops, andeven reaches negative values. Negative values of � are also found experimentally inpaper, see [23], which can be regarded as a dense cellulose �bre network.G, obtained from the above results as E=(2(1+ �)), shows a similar dependenceon kx and ky as E, as is seen in Figure 7.9. One would expect G to depend more onk�, since � does so, but the variation of � only starts at such low values of kx andky that E is already close to zero.From Figure 7.9 it is seen that also when �bre properties are varied, G shows avariation similar to that of E.



66 CHAPTER 7. RESULTS FROM ANALYSIS OF INITIAL GLOBAL...

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

14

16
x 10

4

Basic example network

φ
φ

4k   =2.8  10   Nm/ rad
k   =2.8  10     Nm/ rad

-23

E
 [

N
/ m

]

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x x
0

k  =2.8  10    Nm/rad

log  (k  / k    )

ν

4

Basic example network

k  =2.8  10      Nm/radφ

k  =2.8  10    Nm/radφ

φ

-23

-7

Figure 7.7: E and � against log(kx=k0x).



7.2. GLOBAL ELASTIC STIFFNESS VS STIFFNESS OF COMPONENTS 67

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

I

E

A

I

E
 [

N
/ m

]

f
f

f

f

Basic example network

−6 −4 −2 0 2 4 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

A

A

E I
f

f

f

f
Ef

I

0

fν

Basic example network

log ( I  / I   ), log(E  / E   ), log(A  / A   )
f f

0
f f

0

f fFigure 7.8: E and � against log(If=I0f ), log(Ef=E0f), log(Af=A0f).



68 CHAPTER 7. RESULTS FROM ANALYSIS OF INITIAL GLOBAL...

−6 −4 −2 0 2 4 6
0

1

2

3

4

5

6
x 10

4

0
x xlog (k  / k   )

Basic example network

G
  [

N
/ m

]

k  =2.8 10      Nm/ rad

k  =2.8 10    Nm/ radφ

φ
-23

4

−6 −4 −2 0 2 4 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

E

I

A

I

f

f

ff

Basic example network

flog(I  / I   ), log(A  / A   ), log(E  / E   )f f f
0

G
 [

N
/ m

]

f
0

f
0Figure 7.9: G against log(kx=k0x) and log(If=I0f ), log(Ef=E0f), log(Af=A0f).



7.3. GLOBAL ELASTIC STIFFNESS VS NETWORK DENSITY AND... 697.3. Global elastic sti�ness vs network density and degreeof �bre-to-�bre interactionThe network density is found to have a strong inuence on the elastic sti�ness of thenetwork structure. Simulations were made for six di�erent densities. In Figure 7.10and 7.11 E and � are plotted against network density �. The �ve curves representdi�erent probabilities for interaction at a �bre crossing, s=1.0, s=0.8, s=0.6, s=0.4and s=0.2. For densities �=30-60 mm�1 ten simulations were made for each value of�, but for �=70 and 80 mm�1 it was su�cient to make seven and three simulationsrespectively to reach the same level of standard deviation. Vertical lines indicatestandard deviation for E in Figure 7.10. The lower densities are omitted for s=0.4and s=0.2, since the simulation results show too much scatter to be relevant. Thelines in Figure 7.10 are almost parallel, indicating s to be of greater importance forlower values of �. This is further emphasized in Figure 7.12, in which E=Es=1:0 isplotted against �. Here Es=1:0 denotes E for the case when s = 1.The value of Poisson's ratio � is rather stable at around 0.34; it is only due tothe scale of the diagram that one can detect any di�erences, irrespective of changesin � and s, except for s = 0:2 which yields a somewhat higher value of �.
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7.4. GLOBAL ELASTIC STIFFNESS VS FIBRE CURL 717.4. Global elastic sti�ness vs �bre curlFibre curl is found to have a strong inuence on the global elastic sti�ness of anetwork. This is because curled �bres have lower values of axial sti�ness, and alsobecause the geometry structure of the network becomes di�erent. The load-bearinglines no longer extend as straight lines, but take a curved path.Simulations have been made, for two di�erent network densities, to evaluate thedependence of E and � on the degree of curl of the �bres. The curl indices consideredwere 0.7, which is close to a semi-circle, 0.8, 0.9 and 1.0, which is a straight �bre.The results are shown in Figures 7.13 and 7.14. Each point is the average fromtwo or three simulations; standard deviations are indicated by vertical lines. It canbe seen that E increases with increasing curl index for both � = 40 mm�1 and� = 60mm�1, but c has as expected more inuence on the less dense network. Herethe ratio between E for straight �bres and E for c = 0:7 is equal to 3.6, while thesame ratio for � = 60 mm�1 is only 1.9. � does not di�er much between the twodensities, but has a clear tendency to increase as the �bres become more curled, ascan be seen in Figure 7.14. It does even increase above 0.5, a fact that is commentedin Section 6.5.
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Figure 7.14: � against curl index, c.neighboring connections is curved, and thus is weaker in the axial direction. Therelative importance of those two e�ects has been investigated. In addition to thesimulations with curled �bres mentioned earlier, simulations have been made inwhich the beam elements have been substituted by straight ones in the curled globalgeometry. A network of straight �bres has also been generated, with the samenominal properties as the curled one, but the beam elements have been substitutedby curly ones with the curl indices that were considered before. A symbolical sketchof the networks and notations used is given in Figure 7.15.Figure 7.16 shows E against curl index for the di�erent types of networks. E fora network of curled �bres, Figure 7.13, is repeated here by solid lines. The dottedlines marked CS and SC represent networks according to Figure 7.15, and on topa dash-dotted line indicates the value of E for a network of straight �bres. It isconcluded that the e�ect of the �bres not extending straight across the network ismore important than that of the axial sti�ness being lower. Moreover, in the casesshown in the diagram the two e�ects seem to be fairly additive.Figure 7.17 shows the corresponding curves for �. It can be seen that a networkof type SC gives a value of � that is practically identical to that of a network ofstraight �bres. Somewhat surprisingly, a network of type CS gives even higher valuesof � than the network made of curled �bres. Obviously, � is not very dependent onthe axial sti�ness of the �bres, which is also consistent with the results of Figure 7.8,in the range close to the basic example network. A geometry structure made up of
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SSFigure 7.15: Di�erent combinations of straight and curled properties.curled �bres, on the other hand, has a rather strong increasing e�ect on �.As mentioned earlier, an approximate method of accounting for curled �bresmight be to reduce the axial sti�ness of the beam elements. The results presentedhere indicate, however, that this approach would not give satisfactory results.
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7.5. GLOBAL ELASTIC STIFFNESS VS ORIENTATION DISTRIBUTION 757.5. Global elastic sti�ness vs orientation distributionIn the preceding sections the results have been presented by giving Young's modu-lus and Poisson's ratio for the isotropic material which most closely resembles thesimulated material in mechanical behaviour. This has been done because when the�bres have a uniform orientation distribution the network is expected to be close toisotropic, at least at su�ciently high network densities.Now, we also want to investigate the inuence on the elastic sti�ness of non-uniform orientation distribution of the �bres. Then there is no longer any reasonto believe that the network's performance will be the same in every direction. If,however, the orientation distribution is symmetric with respect to two perpendiculardirections, we can expect nearly orthotropic behaviour. Some orientation distribu-tions satisfying this condition are examined, and the results are given as orthotropicmaterial parameters according to the principles presented in Section 6.7.One possible way to de�ne an orientation distribution is, see [29],f(�) = 1� � a cos 2�: (7:3)This distribution function satis�es the criterionZ �0 f(�)d� = 1; (7:4)for all values of the constant a, but to avoid negative probabilities it should only beused for 0 � a � 1=�. Simulations have been made for the cases of a = 0, 1=(2�)and 1=�, which give the distribution functions shown in Figure 7.18. In the diagramthe curves have been approximated by ten straight line segments, and this is alsothe input given to the program which generates the network. As a comparison,Figure 7.19 shows an example of a �bre orientation distribution of a commercialkraft paper, taken from [29]. The network with a = 0 is the basic example network,and for the other values of a all properties except the orientation distribution arethe same as for the basic example network. Figure 7.20 shows examples of networkgeometries for the three di�erent values of a. For each value of a, 10 simulationswere made of nominally equal networks.The simulations for a = 0 are the same as those made for the basic examplenetwork, but they are now evaluated as for an orthotropic material. Ideally, Exand Ey as well as �yx and �xy should be identical. That they are not, impliesthat the networks which have nominally uniform orientation distribution are notexactly isotropic, but still they are quite close. As a increases there is a strongertendency for the �bres to be oriented vertically, as can be seen from Figures 7.18and 7.20. This results in an increasing modulus Ey and decreasing Ex, as can beseen in Figure 7.21, where the mean values and standard deviation of the Ex, Eyand Gxy obtained are indicated. The shear modulus Gxy decreases only slightly as aincreases. In Figure 7.22 Poisson's ratios �yx and �xy are shown against a. At a=0they are almost the same, but as a increases, �yx increases a considerable amountwhile �xy decreases moderately.
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Figure 7.19: Fibre orientation distribution of commercial kraft paper, [29].

Figure 7.20: Examples of network geometries for the cases a=0, a = 1=(2�) anda = 1=�.
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7.6. Global elastic sti�ness vs length distributionThe length of the �bres has great inuence on the sti�ness properties of a network.Extremely short �bres are like dust and do not constitute a connected structure.As �bres get longer the structure gradually becomes more like a real network andgets sti�er. This e�ect can be seen from Figure 7.24, where E is plotted against�bre length for networks which are all of constant �bre length and network den-sity 40 mm�1. The solid line in the diagram connects points which show averagesfrom ten calculations. Vertical lines denote standard deviation. Young's modulusincreases considerably as the �bre length is increased at constant network density.Poisson's ratio, on the other hand, is stable around 0.33-0.34 for all �bre lengthsinvestigated, which can be seen from Figure 7.25.When all �bres are of the same length the simulations show quite clearly thatlonger �bres give a sti�er network and that Poisson's ratio is not much a�ected. Inorder to investigate the case when �bre length is given by a statistical distribution,networks with the same network density, 40 mm�1, but length distribution similarto that of Figure 5.1 are simulated. The population distribution in length, theweighted length distribution and the cumulative population distribution in lengthof the �bres are given in Figure 7.26. It should be noted that in the last column
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Figure 7.24: Young's modulus against �bre length.of the population distribution there is an overrepresentation of 4 mm �bres, sincefrom the cumulative population distribution 2 % of the �bres are exactly 4 mm. Thearithmetic mean �bre length is 0.85 mm and the weighted mean �bre length 1.77 mm.The mean value of E from ten simulations is 6:48 � 104 N/m; this value is shown bythe dashed line in Figure 7.24. If the network with varying �bre length is going to bedescribed by some characteristic �bre length with regard to initial Young's modulus,the arithmetic mean �bre length does not seem to be the appropriate value. Forthe case investigated the constant �bre length which gives the same value of E isapproximately 1.55 mm, which is closer to the weighted mean �bre length. Moresimulations are needed to con�rm this hypothesis, but it seems probable that thistendency holds, since longer �bres contribute more to the sti�ness of the network.Average Poisson's ratio for the networks of varying �bre length is 0.336, that is,Poisson's ratio does not seem to be a�ected by either mean �bre length or lengthdistribution.
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Figure 7.26: Population distribution, weighted distribution and cumulative popula-tion distribution of �bre length.



8. Analysis of fracture processThe fracture of a heterogeneous structure is a non-linear process, the propertiesof the structure changing as the failure progresses in the material. The non-linearanalysis of fracture can, however, be performed as a series of linear steps, if it isassumed that the behaviour of each component of the structure is step-wise linear.This approach is used, and it is further described in Section 8.2. The fracturecriteria and behaviour of the components of the network are de�ned in Chapter 3,and the numerical values used are given in the next section. The fracture processof a material is more complex to quantify than are the initial sti�ness properties.The output parameters used to characterize fracture in this study are discussed inSection 8.3.8.1. Input parameters to fracture analysisThe input parameters for the fracture analysis are given in the form of an examplenetwork. In the next chapter di�erent parameters from this basic fracture examplenetwork are varied, and their inuence on the fracture behaviour of the network isobtained.The input parameters needed for the basic fracture example network are muchthe same as those of the basic example network of Section 5.1. The �bre length,however, is changed, and the parameters relevant for fracture calculations are added.Since the results from Section 7.6 indicate that the weighted mean �bre length ismore relevant for the mechanical properties of a network than is the arithmetic mean,the fracture simulations are performed with a �bre length of 2 mm. This means thatthe square studied needs to be bigger. If the initial sti�ness is considered, it wasconcluded in Section 7.1 that a side-length of the square of 1.2 times the �bre lengthis su�cient. When fracture localization phenomena are studied, results in the nextchapter indicate that the square needs to be about twice the �bre length. For thebasic fracture example a side-length L=4 mm is thus chosen. Most of the initialsti�ness simulations were made with a value of L=1.2 mm. This means that for thesame density, there is approximately 42=1:22 = 11 times more degrees of freedom forthe fracture example network. This and the fact that each simulation now consists ofmany steps entails numerically very much heavier calculations. On the other hand,it has been decided to assume a lower network density in the basic fracture examplenetwork; �=8.7 mm�1 instead of 60 mm�1. In relation to a typical u� material ofthe kind used in diapers, �=8.7 mm�1 is estimated to be more realistic in terms ofthe corresponding number of �bre-to-�bre connections per unit �bre length.83



84 CHAPTER 8. ANALYSIS OF FRACTURE PROCESSThe ultimate tensile stress of softwoods such as spruce or pine, containing nofaults, is about 100 MPa in the direction of the �bres. The cross section of wood,however, partly consists of pore-space, indicating a higher value of ultimate stress forthe material in a single �bre. Yet the �bre is weakened by the de�bration process,and the ultimate normal stress for a �bre is therefore set to 100 MPa in the basicfracture example network. The ultimate shear stress is set to a lower value, 50 MPa.The strength parameters of the �bre-to-�bre bonds can at present be estimatedonly in a very rough manner. It is known that in a dry-shaped cellulose �bre materialwhere no adhesive have been added, it is the bonds that break, and not the �bres.From this consideration, and the intention that the parts of degree of utilizationoriginating from translation and rotation respectively be of the same order of size,the values have been chosen to Fult=3.5�10�3 N andMult=5.6�10�9 Nm. For the basicfracture example network, completely brittle failure of connections is assumed, andns is thus set to 1.The input parameters of the basic fracture example network are summarizedin Table 8.1, which also indicates in which section a certain parameter is varied.Where nothing else is said, the simulations in Chapter 9 refer to networks havingthe properties of Table 8.1.Table 8.1: Input parameters of the basic fracture example network.Parameter Value and unit Varied in Sectionlf 2 mm 9.5� 0 mm�1 9.5Af 2:5 � 10�10 m2If 0:2 � 10�20 m4Ef 35 � 109 Pa�ult 100 MPa 9.2�ult 50 MPa 9.2kx1 = ky1 8750 N/m 9.3k�1 2:8 � 10�7 Nm/rad 9.3Fult1 3:5 � 10�3 N 9.2, 9.3Mult1 5:6 � 10�9 Nm 9.2, 9.3ns 1 9.3, 9.5�1 1.0 9.3, 9.5�2 1.0Lx; Ly 4 mm 9.1, 9.5� 8:7 mm�1 9.4, 9.5N� 1� ; 0 < � < �s 1.0 9.5d(x; y) 1:0



8.2. METHOD OF ANALYSIS 858.2. Method of analysisA fracture analysis can be performed as a series of linear steps, on assuming that thebehaviour of each component of the structure is step-wise linear. Using this methodfor non-linear analysis, the equilibrium conditions are, apart from e�ects of round-o�errors, ful�lled exactly during the entire course of loading and fracture. The driftfrom the equilibrium path that may occur in conventional incremental analysis isavoided, and there is no need for iterations as in methods of the Newton-Raphsonkind.In the present analysis, in each step a unit strain is �rst applied to the structure.The degree of utilization, see (8.2) and (8.3), is then calculated for each element, andthe element that is utilized the most is detected. The applied strain is proportionedso that the degree of utilization is exactly unity in the most severely stressed element.The reaction forces obtained are proportioned to the same degree, and thus we obtaincorresponding values of stress and strain for the situation when the �rst element isabout to break, or more general, change its properties into new linear characteristics.Next, the global sti�ness matrix is adjusted according to the new properties of thepartly broken element, and a new linear step is performed. This process can go onuntil the structure has collapsed entirely and cannot sustain load any more.Each linear step is performed according to the principles of Chapter 6, usingcyclic boundary and loading conditions. The procedure of �nding and removingthe most severely loaded element between two successive steps is described in thefollowing.The element forces are calculated from (6.2), which is repeated here:Keu = f (8:1)Ke is the element sti�ness matrix, referred to global coordinate directions, and uis the vector of displacements in the directions of the global degrees of freedom ofthe element. f is also referred to global directions, and has to be transformed tothe local element directions before it is used in a fracture criterion. This is valid forthe beam elements, since, in the model used in this study, the connection elementshave the same local and global directions.From the fracture criterion (3.2) we can see that the degree of utilization, m, fora beam element is m = max8>>>><>>>>: j�nj�ultj� j�ult ; (8:2)where, according to (3.3) and (3.4), for a straight beam of rectangular cross section�n = � NAf � MIf s3IfAf ;and � = 1:5VAf :



86 CHAPTER 8. ANALYSIS OF FRACTURE PROCESSN , M and V denote normal force, bending moment and shear force in the moststressed section of the beam. Since there is no load on the beams between theconnection elements, N and V are constant throughout the element, and M varieslinearly and thus reaches its maximum value in one of the element ends.The degree of utilization for a spring element is, from (3.7),m = qF 2x + F 2yFult + jM jMult : (8:3)When an element of the structure reaches a degree of utilization of unity itbreaks, and the properties of the network structure become di�erent. When a beamelement breaks, it does so in a brittle manner. This is taken care of by assemblinginto the system sti�ness matrix the negative of the broken element's sti�ness matrix,that is by removing this element from the system. When the fracture criterion fora connection is ful�lled, the system sti�ness matrix is adjusted in a similar way,except that the spring element is not removed altogether. If we have the reductioncoe�cient for spring sti�ness, �1, see Figure 3.4, the negative element sti�ness matrixmultiplied by (1 � �1) is assembled into the system sti�ness matrix, except whenthe connection reaches �nal failure and is removed altogether.Loading of a network is de�ned in terms of global straining of the network.The strain state is described by the strain vector �=(�x; �y; xy), which has threecomponents. A strain state can thus be viewed as a point in a three- dimensionalstrain space, and the loading of a structure can be represented by a path in strainspace. When using the method outlined above the path must be composed of piece-wise straight lines.The simplest case is to follow a straight line from the origin. This means that theratios between the single strain components are �xed, and only one calculation needsto be performed during each step. All simulations reported on in the next chapterare of this type, and the line followed from the origin is the �x-axis. Typically,the path from original structure to complete failure consists of a `two-steps-forwardone-step-back' walk on the �x-axis. It is equally simple to follow one line from theorigin to a certain extent and thereafter change into another one. An example ofthis is to strain the material in the x-direction until it is partly broken, unloadthe structure and then subject it to pure tension in the y-direction until completefailure. A more complex situation arises if one wants to study a strain path that doesnot pass the origin, for example constant strain in the x-direction under increasingstrain in the y-direction. Under these circumstances three calculations have to beperformed in each step, corresponding to pure tension in the x-direction, in they-direction and pure shear. This is because, since the strain components do notincrease proportionally, the e�ect of each strain component on each element of thestructure must be obtained.It should be noted that all simulations in this study are based on small-strain-theory. Most of the results in the next chapter are within the small-strain range,the few which are not might be unreliable.



8.3. OUTPUT PARAMETERS FROM FRACTURE ANALYSIS 878.3. Output parameters from fracture analysisOne important output from a fracture analysis is the set of points in the �x�x-plane,representing global force in the direction of straining versus global straining. Byde�nition �x = Fx=Ly; (8:4)�x = �ux=Lx: (8:5)Each �x�x-point corresponds to the fracture, partial or complete, of one componentof the structure. Each linear step performed can be represented by a line extendingfrom the origin to the point where the �rst element fails in that step. Since thesti�ness of a structure decreases as more components fail, the chronological orderof the failure points is de�ned by a successively smaller inclination of the lines fromthe origin to the point.A lot of information can be extracted from the points. The inclination of theline from the origin to the �rst point is the initial sti�ness of the network, denoted(�x=�x)0. The highest value of the global mean stress reached is denoted maximumstress, �max, and the corresponding value of strain is denoted limit strain, �lim. Theultimate strain, �ult, that is the strain at which the last component fails and leavesthe network completely separated, is not used to characterize the material in thisstudy, since there is a considerable scatter in this value between di�erent nominallyequal networks. The very last point may also be dubious due to numerical problemsarising when the structure approaches zero sti�ness. An integrated measure ofthe straining capacity which is not so sensitive to the variations in single pointsis preferred. Fracture energy is such a measure. The di�erent output parameters,except fracture energy, obtained from the global �x�x-response are summarized inFigure 8.1, where the points have been joined by straight lines. Fracture energy andits coupling to internal elastic energy is discussed in more detail in the following.
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Figure 8.1: Illustration of some fracture output parameters.



88 CHAPTER 8. ANALYSIS OF FRACTURE PROCESSThe amount of energy that has to be supplied to a network to cause its completefailure is an important parameter. Other parameters kept constant, a low fractureenergy implies a sudden, brittle mode of failure, while a higher value means fracturein a more ductile manner.In each linear step, the external energy that has been supplied to the system isequal to the internal energy stored in the structure. Since the work w of a force Fis w = Z Fd(�u); (8:6)the internal elastic strain energy stored in a linear spring, wsi , iswsi = Z k(�u)d(�u) = k(�u)22 : (8:7)Here k denotes spring sti�ness and �u extension of spring. For a connection elementof the type used in this study, made up of three springs, this gives the total elasticstrain energy, wci wci = kx(�ux)22 + ky(�uy)22 + k�(�)22 : (8:8)�ux denotes extension in x-direction of the x-spring, and �uy and �� are thecorresponding quantities for the other two springs.Fracture has in (3.6) been de�ned to occur in a connection element wheng(F ) = 0;where g is de�ned in (3.7). The path from the point where the fracture criterion isreached, down to zero force in the spring, has been de�ned to be a vertical line inFigure 3.4. This means that the fracture of a single connection is assumed to be astable process, without any dynamic e�ects. An alternative assumption could be afracture curve as in Figure 8.2, where the di�erence between the strain energy in thespring at start of fracture and the fracture energy consumed by the spring material,goes into kinetic energy during an unstable fracture resulting in dynamic e�ects.For a �bre segment, which is modelled as a Bernoulli beam, axial extension andbending contributes to the internal elastic strain energy, wfi , cf. [24].wfi = Z N22EfAf dx + Z M22EfIf dx; (8:9)where N and M denote axial force and bending moment in the �bre segment, andthe integration is performed along the axis of the beam.The external energy wne supplied to a network is the integral of force timesdisplacement in the boundary nodes. When cyclic boundary and loading conditionsare used, the reaction forces in two opposite nodes are always equal in magnitude andopposite in direction. This means that if a network is subjected to strain �= (�x; 0; 0)the external energy supplied to the network in a linear step, wne , is simplywne = Fx�xLx2 ; (8:10)
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Figure 8.2: Force-extension diagram for a spring. Alternative where part of theelastic energy gives dynamic e�ects at failure.Fx denoting resultant force in the x-direction on the faces of the network that areperpendicular to the x-axis, Lx being length of studied square in the x-direction.In a linear step, wne , which is equal to the area under the Fx��ux-graph for thenetwork is equal to the sum of the internal strain energies of all the elements of thenetwork, see Figure 8.3, wne = �wci + �wfi : (8:11)
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90 CHAPTER 8. ANALYSIS OF FRACTURE PROCESSin two successive steps. A network is assumed to be loaded to the extent of failure ofthe most severely stressed element; this element fails and the new structure obtainedwhen the failed element is removed is loaded to the same strain. The value of Fxwill now be lower for the same value of �ux since the structure has lost in sti�nessdue to the removal of the fractured element. Thus the internal strain energy is nowsmaller, and the di�erence between the total internal strain energies before and afterthe element failure consists of the fracture energy of the failed element plus energylost because of load redistribution within the network; see Figure 8.4 for a simplesymbolic example. The fracture energy of a network, wn, is thus larger than the
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Figure 8.6: Di�erent ways of calculating the fracture energy.The total fracture energy, wn, is divided into two parts, the part before maxi-mum load is reached, wn1 , and the part after maximum load, wn2 , see Figure 8.7. wn1represents the loss of energy, the dissipation, when a structure is loaded to maximumload and then unloaded. This energy is related to the more or less evenly distributeddamage of the material when the global load is increasing. If the network is reason-ably homogeneous one may, as a �rst approximation, assume wn1 to be proportionalto the size of the network, LxLy.wn2 represents the dissipation when the global load Fx is decreasing, as �ux is



92 CHAPTER 8. ANALYSIS OF FRACTURE PROCESSincreasing. When Fx is decreasing the parts of the structure outside a localizedfracturing region are unloaded and contract elastically without any dissipation. Thedissipation wn2 is instead due to the increasing strain and fracture taking place inthe localized fracture process region. Since the fracture events after peak global loadcan be assumed to be localized to one section, one may, as a �rst approximation,assume wn2 to be proportional to Ly. The ratio wn2 =Ly corresponds directly to thematerial parameter `critical energy release rate, Gc', used in linear elastic fracturemechanics, and to the fracture energy, Gf , used in non-linear fracture mechanics.Here the notation Gf = wn2=Ly (8:14)will be used.From the fracture energy Gf , the strength �max and the sti�ness (�x=�x)0, anabsolute length scale characteristic for the material can be de�ned aslch = (�x=�x)0Gf=�2max: (8:15)Dealing with analysis of fracture, such an intrinsic length is needed due to the sizee�ects during fracture, even for homogeneous materials. lch is also a measure of thebrittleness of the material, a low value indicating a brittle material, and correspond-ing directly to the ratio (Kc=�max)2 used in linear elastic fracture mechanics, Kcbeing the fracture toughness of the material. Empirically it has been found that lchis usually related to the geometrical size of the particles and pores etc. in a mate-rial. In the present calculation of lch, (�x=�x)0 is used as the measure of the elasticsti�ness of the material. For some applications E or �max=�lim can be more relevantalternative measures of the elastic sti�ness. Values of lch for various materials arereported in [9].The �x�x-curves obtained from simulations show a strong saw-tooth behaviour.This kind of fracture behaviour is usually not seen in experimental curves. Thisis because a very fast unloading of the material would be required to be able tofollow a curve that exposes snap-back performance, faster than is possible to obtainin practice. In deformation-controlled experiments the strain is not allowed to de-crease at all, making it impossible to record the snap-back behaviour of the sample,see Figure 8.8. Although di�cult to record experimentally, the saw-tooth kind ofbehaviour may not be unrealistic: if testing a sample as small as those studied bynumerical simulations, each individual fracture event within the micro-structure ofthe material might very well give a noticeable saw-tooth in the global �x�x-curve.In addition to the stress-strain relationship of the network it is also interestingto study localization of the fracture. This is done by plotting the failed connections,the zero-stress beams or the remaining active structure of the network as fractureprogresses.
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9. Results from analysis of fractureprocess9.1. E�ect of sample sizeThe results obtained from a fracture test or simulation of a heterogeneous materialare dependent on the sample size. This e�ect can be seen in a series of simulationswhere the shape and size of the sample have been varied. The cells shown in Fig-ure 9.1 have been subjected to uniaxial tension in the x-direction, � = (�x; 0; 0),and maximum stress, initial sti�ness, fracture energy and localization have beenevaluated. Apart from the cell size, all properties of the networks are accordingto Table 8.1. Only fracture of connections is considered. For each cell size �vesimulations were made, and the averages of those results are given in the following�gures.
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96 CHAPTER 9. RESULTS FROM ANALYSIS OF FRACTURE PROCESSfollowing samples in series 1 are 2, 4, 6 and 8 times as long as the basic cell. Theselonger samples should, however, not be regarded as a number of statistically equalunit cells coupled in series. In general the weakest link will determine the strengthof a serial system. This phenomenon is described by Weibull theory for certain serialsystems, cf. [4]. As the number of cells coupled in series increases, the probabilityof a really weak cell increases, and therefore it is expected that the strength willdecrease as the length of the sample in the loading direction increases. That this isalso the case for the computational results; see Figure 9.2, where maximum stressis plotted against L=lf for series 1.
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Figure 9.2: Maximum stress against L=lf for series 1.The dashed line connects the average of the simulation results with verticallines denoting standard deviation. The solid line shows the size e�ect prediction ofWeibull theory, which is �amax�bmax = ( laslbs )1=m; (9:1)where las and lbs are lengths of two samples a and b, and m is a function of thecoe�cient of variation, cf. [9]. In Figure 9.2, m, which is 1.88, is based on theaverage coe�cient of variation of the di�erent cell sizes, 0.56. The simulation resultsshow a stronger decrease in strength than is predicted by Weibull theory. This isbecause a basic assumption of Weibull theory is not ful�lled in the present case. InWeibull theory the cells coupled in series are assumed to have the same strength



9.1. EFFECT OF SAMPLE SIZE 97distribution as the sample made up of a single cell. This condition would have beenful�lled if the network had been generated in such a way that the density in each ofthe square cells coupled in series had been the same. In the present case, however,the network is generated with a prescribed average network density for the wholesample, and due to the random positioning of the �bres there are variations in theaverage network density from one region of the basic cell to another. Since theweakest link determines the strength, fracture will in general occur in a region oflow density. The average of the network density in the fracture zone, taken as astrip of width equal to the �bre length across the sample, is shown in Figure 9.3,vertical lines denoting standard deviation.
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Figure 9.3: Average network density in fracture zone against L=lf for series 1.While the strength of a sample of length 9:6lf is determined by a zone of density5.7 mm�1, the strength of a sample of length 1:2lf is determined by a fracture zonewhich is almost the whole sample and hence of density 8.7 mm�1. Figure 9.4 showsexamples of the networks of series 1, with fracture zones indicated. Also from this�gure it is obvious that the density in the fracture area decreases as sample lengthincreases.Series 2 can be compared to, though not being, unit cells coupled parallel. In thiscase fracture in the weakest cell does not imply global failure, since the forces canredistribute to new paths where the material is stronger. Because of this, Weibulltheory is no longer applicable. Instead, one may as a �rst approximation expectthat the maximum stress remains at an almost constant level as the sample heightincreases. The computational result is shown in Figure 9.5 and Table 9.1.



98 CHAPTER 9. RESULTS FROM ANALYSIS OF FRACTURE PROCESSSeries 3 is a combination of the former two, and the results should be somewherebetween the extreme cases of series 1 and series 2.
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Figure 9.4: Examples of networks and fracture zones from series 1.
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Figure 9.6: Normalized initial sti�ness against L=lf .The maximum stress against the characteristic L=lf -ratios of the di�erent seriesare shown in Figure 9.5. In series 2 the maximum stress remains rather constant,and in series 3 it decreases, but not as strongly as in series 1. In Table 9.1, meanvalues and coe�cients of variation for the calculated strengths as well as the otherparameters studied with respect to sample size are given.In Figure 9.6 the initial sti�ness is plotted against L=lf for the three series. Theheavy lines are estimations made within the 90% con�dence interval, the limits ofwhich are also indicated in the �gure. As far as strength is concerned, the weakestpart of the material is decisive, and it is then obvious to expect a dependence on het-erogeneity and sample size. The initial sti�ness, on the other hand, is an integratedmeasure of the properties of the whole sample. As discussed in Section 7.1, theresulting global sti�ness in a serial coupling is, despite this, dependent on variationsin sti�ness in a sample, since a weak part weakens the structure more than a sti�part sti�ens it. As expected from this, the serial coupling of Series 1 shows a pro-nounced decrease in initial sti�ness as the sample length increases. For series 2 theinitial sti�ness keeps constant, as is expected in a parallel coupling. Series 3 showsa moderate decrease, though much more obvious than that of Figure 7.6. It seemsthat the density is here low enough to make the e�ect of heterogeneity signi�cant.Another interesting property of a network is the fracture energy, see Section 8.3for de�nition. The fracture energies Gf for the di�erent series are plotted againstL=lf in Figure 9.7. The heavy lines are estimations made within the 90% con�denceinterval, as in Figure 9.6. For series 1, Gf is decreasing as L=lf increases, although



100 CHAPTER 9. RESULTS FROM ANALYSIS OF FRACTURE PROCESSnot as strongly as is the case of the maximum stress. This means that the elon-gation of the fracture zone before complete fracture increases as L=lf increases, ascould be expected when the network density is decreasing. For series 2 both themaximum stress and Gf are approximately constant, which means that the elon-gation of the fracture zone is also approximately constant. The curve of series 3 isas usual situated between the two extreme cases. The fracture energy Gf shown inFigure 9.7 corresponds to the localized fracture dissipation. The part of the fractureenergy corresponding to the pre-fracture distributed dissipation is almost negligiblein this case. This result, though, is not estimated to be general. Instead a verydi�erent result might be obtained if a network with, for instance, other propertiesof connections is analysed.

Figure 9.7: Fracture energy against L=lf .Figure 9.8 shows examples of networks and locations of the fractured connectionsfor the three sample sizes of series 3. As indicated before, it is seen from the �gurethat the fracture process zone is of the same order of size as the �bre length. Hence,in the smallest network in which L=lf = 1:2, one cannot distinguish a localizedfracture zone since the entire area under observation represents a fracture zone. Ifone wishes to study localization phenomena, the dimension of the square studiedshould therefore be well over one �bre length; twice the �bre length will be used inthe following.The �nal conclusion is that the results of a fracture simulation of a heterogeneousmaterial must always be considered in connection with the size and shape of thesample. The phenomenon of sample-size dependence cannot be avoided in eitherexperiments or simulations.
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Figure 9.8: Networks and locations of fractured connections.



102 CHAPTER 9. RESULTS FROM ANALYSIS OF FRACTURE PROCESSTable 9.1: Average and coe�cient of variation, (c.o.v.), of Fx=(EfLylf �x), �max andGf versus sample size.LxLy=l2f (�x=�x)0 [N/m] �max [N/m] Gf [Nm/m]average c.o.v. average c.o.v. average c.o.v.series 11:2� 1:2 1300 0.50 1.70 0.34 0:99 � 10�5 0.462:4� 1:2 630 0.61 0.84 0.58 0:91 � 10�5 0.744:8� 1:2 640 0.72 0.56 0.55 0:63 � 10�5 0.767:2� 1:2 480 0.66 0.30 0.71 0:56 � 10�5 1.559:6� 1:2 340 0.73 0.20 0.64 0:33 � 10�5 0.69series 21:2� 1:2 1300 0.5 1.70 0.34 0:99 � 10�5 0.461:2� 2:4 1500 0.52 1.72 0.19 1:30 � 10�5 0.171:2� 4:8 1400 0.23 1.55 0.30 1:49 � 10�5 0.23series 31:2� 1:2 1300 0.5 1.70 0.34 0:99 � 10�5 0.462:4� 2:4 1100 0.47 1.06 0.13 1:20 � 10�5 0.244:8� 4:8 970 0.47 0.67 0.25 0:72 � 10�5 0.24



9.2. FRACTURE OF AN EXAMPLE NETWORK 1039.2. Fracture of an example networkThe basic fracture example network of Section 8.1, shown in Figure 9.9, will be usedto show the character of di�erent kinds of network failure: only failure of connectionsallowed, only failure of �bre segments, and simultaneous failure of connections and�bres.Figure 9.10 shows the progression of network failure for the case of failure allowedonly in connections. This mode of failure is accomplished either by giving the beamelements a much higher strength, or by only evaluating degree of utilization in theconnection elements. The three columns show active structure, zero-stress �bresegments and fractured connections respectively, initially and after 12, 50, 75 and96 connections have failed. Final failure occurs after the 97th connection has failed,and after this step the entire structure is stress-less. The corresponding �x�x-curveis given in Figure 9.11, with indications of which points on the curve correspond tothe states shown in Figure 9.10.The corresponding results from the case of beam failure only are shown in Fig-ures 9.12 and 9.13.Finally, Figure 9.14 shows the �x�x-curve for the case when both strength ofbeams and connections are according to Section 8.1, and both degrees of utilizationare evaluated. For the strength parameters chosen here, almost only connectionsfail; of the 88 failed elements at complete fracture only 5 are beam elements. Thedomination of connection failure reects the performance of a dry-shaped material.If the strength parameters for the connections were adjusted to reect the strengthof connections of a wet-shaped material like paper, occurrence of beam failure, i.e.�bre failure, would become more frequent.With respect to strength, Figures 9.11 and 9.14 show that prevention of beamfailure does not give any increase at all for the present network. Comparing Fig-ures 9.14 and 9.13, it can be seen that prevention of connection failure gave approx-imately 60 % increase in strength. For a real network, connection failures can beavoided by use of an adhesive aerosol, as discussed in Chapter 1.The character of the fracture process is somewhat di�erent if connection or beamfailure is considered. When a beam has failed a load-bearing path has been com-pletely destroyed, whereas when a connection fails load may still be transmitted.There is more of a pull-out fracture phenomenon when connections fail; only whena �bre end has been completely pulled out of the structure is the load-bearing pathentirely destroyed. This explains why it takes fewer element failures to reach com-plete failure when only beam failure is considered. The curves of Figures 9.11 and9.14 are similar, since both show fracture when connection failures are dominant.To give a numerical example and an illustration to (8.12), which states that thefracture energy wn of a network is larger than the sum of the fracture energies of thefailed components, wfc, the network with only connection failures is considered. Forthis network wn is 7:2 � 10�8 Nm, while the sum of the fracture energies of the failedconnections is only 0:6 � 10�8 Nm. The di�erence between the fracture energy of amaterial and the sum of the fracture energies of the failing micro-components of the



104 CHAPTER 9. RESULTS FROM ANALYSIS OF FRACTURE PROCESSmaterial, even when there is no plastic dissipation, is in principle quite importantand can also be of signi�cant magnitude. In the present example less than 10%of the total energy corresponds to fracture energy of the failing components. Theother part, more than 90%, can be referred to heterogeneity of the material. Thismajor part of the fracture energy can be regarded as a result of instabilities withinthe micro-structure of the material.

Figure 9.9: Basic fracture example network.
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Figure 9.10: Fracture process of example network, only fracture of connections con-sidered, i.e. fracture of �bres prevented.
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Figure 9.11: Stress-strain relationship of example network, only fracture of connec-tions considered, i.e. fracture of �bres prevented.
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Figure 9.12: Fracture process of example network, only fracture of �bres considered,i.e. fracture of connections prevented.
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Figure 9.13: Stress-strain relationship of example network, only fracture of �bresconsidered, i.e. fracture of connections prevented.
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Figure 9.14: Stress-strain relationship of example network, both fracture of connec-tions and of �bres considered.



9.3. INFLUENCE OF PROPERTIES OF CONNECTIONS 1099.3. Inuence of properties of connectionsIn this section it is assumed that only connections fail, that is, the �bres are as-sumed to be strong enough to avoid �bre failure. Under these circumstances theinuence of the properties of the connections on the fracture behaviour is studied.The connection properties taken into consideration are sti�ness, strength and degreeof ductility, the last property being quanti�ed by ns, number of slips before completefailure, and by �1 and �2, see Figure 3.4.Starting out by considering one single linear elastic spring, the e�ect of changingspring properties can be seen from Figure 9.15. In a) two springs of equal sti�nessbut di�erent strength are compared, and in b) the springs are equal in strength butdi�er in sti�ness. From the F � �u-relationships it can be seen that if the springstrength F is doubled and the sti�ness k is kept constant, both the ultimate forceand ultimate extension �u are doubled, while the fracture energy, w, increases fourtimes. If instead the spring sti�ness is doubled and the strength is kept constant, asin b), the ultimate force does not change but both ultimate extension and fractureenergy reach only half their original values.
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Figure 9.15: a) E�ect of modi�ed spring strength. b) E�ect of modi�ed spring sti�-ness.When a network is considered instead of a single spring, the conclusions from



110 CHAPTER 9. RESULTS FROM ANALYSIS OF FRACTURE PROCESSthe spring case are directly applicable to the case of change of strength, providedthat only connections fail. This is illustrated by Figure 9.16, where the stress-strainrelationship of the example network of the previous section is given, together withthe corresponding curve for the same network when the strength of the connectionshas been doubled, dashed in the diagram. Doubling the strength of the connectionshere means doubling of both ultimate force and ultimate moment. As is expectedfrom the spring case, the ultimate stress as well as the ultimate strain are twicethe value of the example network, and the fracture energy is hence increased by afactor of four. When only fracture of connections is considered, and the strength of
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Figure 9.16: Change of stress-strain relationship for fracture example network whenconnection strength is doubled.the connections is modi�ed, the fracture behaviour of the new network can thus beobtained from the simple relations of Figure 9.15a. From these relations it is alsofound that the intrinsic or characteristic length parameter of the material, lch, see(8.15), is not a�ected by the connection strength.If on the other hand we choose to modify the spring sti�ness, the situation is morecomplicated. This is because the relation between connection and beam sti�nessesinuences the fracture behaviour. To get an implication of what e�ects to expect,simple spring systems are studied once again, see Figure 9.17, which shows couplingsof springs, spring 1 symbolizing connections and spring 2 symbolizing beams. Theultimate force of spring 1 is k�u, where k and �u are constants. The e�ect ofdecreasing the sti�ness of spring 1 while keeping its ultimate force constant at k�uis studied. Serial and parallel couplings are compared. The following equations



9.3. INFLUENCE OF PROPERTIES OF CONNECTIONS 111are obtained for resultant sti�ness ktot, ultimate force, Ftot and ultimate extension�utot, by analysing the situation when spring 1 reaches its ultimate force:
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Figure 9.17: Spring couplings showing e�ect of decrease in sti�ness in one of thesprings.Spring coupling 1: ktot = 11k + 1k = k2Ftot = F1 = k�u�utot = Ftotktot = k�uk=2 = 2�uSpring coupling 2: ktot = 12k + 1k = k3Ftot = F1 = k�u�utot = Ftotktot = k�uk=3 = 3�uSpring coupling 3: ktot = k + k = 2k�utot = �u1 = F1k1 = k�uk = �uFtot = F1 + F2 = k�u+ k�u = 2k�uSpring coupling 4: ktot = k2 + k = 3k2�utot = �u1 = F1k1 = k�uk=2 = 2�uFtot = F1 + F2 = k�u+ 2k�u = 3k�u



112 CHAPTER 9. RESULTS FROM ANALYSIS OF FRACTURE PROCESSA weaker spring 1, as expected, implies a lower value of ktot for both serialand parallel couplings. In a serial coupling a weaker spring 1 implies the sameultimate load and increased ultimate extension, and in a parallel coupling it impliesan increase in both ultimate load and extension. If we think of a network as anintermediate between connections and beams coupled in series and parallel, we thusexpect a reduction of the connection sti�ness to give a decrease in initial sti�nessand increase in ultimate stress, ultimate strain and fracture energy. This is alsowhat simulations show.Simulations have been made on the basic fracture example network geometryof Section 8.1, with spring sti�nesses multiplied by 0.01, 0.1, 1, 10 and 100. Allother parameters, including the spring strength parameters, are kept at constantvalues according to Table 8.1. The studied variation in spring sti�ness is aboutthe same as that which gives strong inuence on the initial sti�ness of the networkaccording to Figure 7.7. Spring sti�ness k here includes all three sti�ness values kx,ky and k�, which are all multiplied by the same constant. Due to big di�erencesin magnitudes it is not possible to show all the �ve curves in the same diagram.Figure 9.18 shows the stress-strain relationship of the example network, and thetwo networks with reduced spring sti�nesses. It is clear that the initial sti�nessdecreases and ultimate stress and strain increases as the spring sti�ness decreases.Figure 9.19 shows the corresponding relationships for the example network and thetwo networks with higher sti�ness values. The curves for 10k and 100k are partlyinterfering and di�cult to distinguish. Figures 9.20 and 9.21 show the maximumstress and fracture energies against k=k0, k denoting sti�ness of connections in thenetwork studied and k0 being connection sti�ness of the fracture example network.In Table 9.2 the results are given numerically, also for the initial sti�ness, (�x=�x)0,and the characteristic length, lch. It should be noted that the computational resultsfor the various k=k0 are obtained from one single network geometry.Table 9.2: Material property parameters against sti�ness of connections.k=k0 (�x=�x)0 �max Gf lch[N/m] [N/m] [Nm/m] [m]0.01 110 6.56 210 � 10�5 5:4 � 10�30.1 430 3.28 30 � 10�5 12 � 10�31 1100 1.22 1:8 � 10�5 13 � 10�310 1600 0.61 0:36 � 10�5 16 � 10�3100 1800 0.42 0:30 � 10�5 31 � 10�3Even though the e�ect of changing the spring sti�ness seems very big from thediagrams it is not as strong as the e�ect of changing the strength. In the sti�nesscase we get a factor of increase in ultimate stress of approximately 16 when sti�nessis decreased with a factor 10000; in the case of change of strength there is directproportionality between the increase in spring strength and network ultimate stress.
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Figure 9.18: Stress-strain relationship of example network when connection sti�nessis decreased.
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Figure 9.20: Maximum stress against k=k0.
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9.3. INFLUENCE OF PROPERTIES OF CONNECTIONS 115Simulations have also been made in order to investigate the inuence of ductilityof connections on global fracture behaviour. The stick-slip behaviour of the con-nections is de�ned in Figure 3.4. The parameters used were reduction in sti�nessbetween two slips �1 = 0:5, and reduction in strength between two slips �2 = 1:0.The number of slips before complete failure, ns, investigated were 1, 2 and 5. Thenetwork density is 20 mm�1 and the rest of the input parameters are according toTable 8.1. As many as �ve slips before �nal failure of a connection may seem alot, but the relative displacement of two �bres in a connection is here still at themicroscopic level. The e�ect of �bres slipping and forming new connections in anew geometric con�guration remains to be accounted for.Two simulations were made for each value of ns. In order to speed up thecalculations, more than one connection was modi�ed in each step for the cases ofns = 2 and 5. Figure 9.22 illustrates the e�ect of this approximation, the �rstdiagram showing the result for ns = 2 when only one connection is modi�ed inevery step, and the second the result when �ve connections are modi�ed in eachstep. The details of the curve are changed, but the overall impression is much thesame. For ns = 5, ten connections were modi�ed in each step.If the results from all the simulations are plotted in the same diagram the curvesinterfere and make interpretation of the results di�cult. In order to avoid thisproblem the average of the two curves in the di�erent simulations was substitutedby a hand-drawn simpli�ed approximation. Figure 9.23 shows the two original curvesas well as the approximated one in the same diagram, for the case of ns = 5.The result of the simulations is shown in Figure 9.24. It is clear that an increasein connection ductility has a remarkable e�ect on the global strength and fractureenergy. This is because the greater ductility allows the degree of utlisation to be-come more evenly distributed over the network. The sti�ness of a connection thatis severely stressed is reduced, allowing other less stressed connections to take overpart of the loading. Ideally, one could imagine a situation where every connection inthe network reaches �nal failure at the same time, although this would cause a veryabrupt failure. The ultimate stress and fracture energy against ns are shown in Fig-ures 9.25 and 9.26. In Table 9.3 also the results for initial sti�ness and characteristiclength are indicated.Table 9.3: Material property parameters against ductility of connections.ns (�x=�x)0 �max Gf lch[N/m] [N/m] [Nm/m] [m]1 25000 22 6:8 � 10�5 3:5 � 10�32 25000 30 14 � 10�5 3:9 � 10�35 25000 56 120 � 10�5 9:6 � 10�3
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Figure 9.22: Stress-strain relationship for the same network when 1 and 5 connec-tions respectively have been removed in each step.
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Figure 9.26: Fracture energy against ns.
9.4. Inuence of network densityThe inuence of network density on the fracture behaviour of a network has beenexamined by simulating a series of networks of density �= 8.7, 15 and 20 mm�1.Connection failure is assumed, and the rest of the properties of the networks cor-respond to those of the fracture example network. Five simulations were made foreach value of network density, and the average of the results is given in the following�gures. The stress-strain relationships for the di�erent densities are all given inFigure 9.27, despite big di�erences in both maximum stress and strain. To facilitateinterpretation of the �gure, hand-drawn approximations have been made, accordingto the principle given in the preceding section. As � increases, the networks be-come remarkably stronger, and also more brittle. The maximum stress and fractureenergy, average and standard deviation, against � are given in Figures 9.28 and 9.29.In [1], where the connections were assumed to be rigid, it was concluded that thestrength of a network is proportional to Young's modulus of the network times theultimate shear strain in a connection. From Figure 9.30 it is clear that the resultsof the present simulations agree with [1] in that the maximum stress of a networkdivided by the initial sti�ness is almost exactly constant. If the connections arelinear elastic, the ratio between �bre and connection sti�ness is kept constant andfailure is allowed to occur only in the connections, it is obvious that the strength will



9.4. INFLUENCE OF NETWORK DENSITY 119be proportional also to the ultimate strain of the connections, see Figure 9.16. If theultimate strain of the connections is increased by increasing ns from 1 to 2 and 5respectively, an increase in network strength is found again, though not proportionalto the ultimate strain, see Figure 9.20.In Table 9.4 the computational results for initial sti�ness, strength, fractureenergy and characteristic length are indicated numerically. It is interesting to notethat the fairly moderate increase in density from 15 mm�1 to 20 mm�1 gives morethan a two-fold increase in both sti�ness, strength and fracture energy. In the regionfrom 8.7 mm�1 to 15 mm�1 the e�ect on sti�ness and strength is even stronger.The theoretical percolation density of the network is 5.7/2.0=2.9 mm�1. Since thestrength is low already at � = 8:7 mm�1, the sensitivity in strength to density isprobably very small in the region from the percolation point up to about 8 mm�1.From Table 9.4 it is also interesting to note that the coe�cient of variation forthe various properties is greater at low density. This is in agreement with the moreheterogeneous character of the geometry of networks with low density. Also, thevariation of the intrinsic material length parameter, lch, with density is consistent.The lowest value, 2.9 mm, at the highest density, � = 20 mm�1, may correspondto the more brittle character of more homogeneous materials. The variation of lchwith density seems to reect also the general absolute size of the micro-structure ofthe material. Although the �bre length is the same for the di�erent networks, thefree �bre segment length as well as the size of the open areas, the `pores', is muchsmaller at density � = 20 mm�1 than at � = 8:7 mm�1.Table 9.4: Average and coe�cient of variation, (c.o.v.), of material properties atdi�erent densities.� (�x=�x)0 [N/m] �max [N/m] Gf [Nm/m] lch[mm�1] average c.o.v. average c.o.v. average c.o.v. [m]8.7 1271 0.45 1.2 0.41 1:35 � 10�5 0.35 11:9 � 10�315 9126 0.19 8.4 0.19 2:61 � 10�5 0.18 3:4 � 10�320 23018 0.09 21.7 0.15 6:01 � 10�5 0.27 2:9 � 10�3
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122 CHAPTER 9. RESULTS FROM ANALYSIS OF FRACTURE PROCESS9.5. Simulation of complex example networkThis section shows an example of a simulation of a network of curled �bres ofvarying length. The length distribution of the �bres is the same as in Figure 7.26in Section 7.6, approximately representing the length distribution of a CTMP pulp.The radius of curvature of the �bres is 1.4 mm. At a �bre crossing the probability ofa connection is 0.4, and each connection shows a stick-slip peformance. The numberof slips before complete failure is �ve, and at each slip the sti�ness is reduced bya factor of 0.5, while the strength is una�ected. The orientation distribution isuniform. The network density is 22.1 mm�1, giving an average free �bre segmentlength of 0.18 mm. This corresponds to a three-dimensional �bre u� of density80 kg/m3, if it is assumed that the �bres are randomly distributed in space, seeAppendix E. Only failure of connections is considered and ten connections aremodi�ed in each step.The input parameters of the network are summarized in Table 9.5.Table 9.5: Input parameters of complex example network.Parameter Value and unitlf see Figure 7.26� 714 mm�1Af 2:5 � 10�10 m2If 0:2 � 10�20 m4Ef 35 � 109 Pa�ult 100 MPa�ult 50 MPakx1 = ky1 8750 N/mk�1 2:8 � 10�7 Nm/radFult1 3:5 � 10�3 NMult1 5:6 � 10�9 Nmns 5�1 0.5�2 1.0L 4:2 mm� 22:1 mm�1N� 1� ; 0 < � < �s 0.4d(x; y) 1:0Figure 9.31 shows an image of the network, which consists of 1800 active beamelements and 1005 connections, and the approximate active part is 70%. The numberof degrees of freedom in the �nite element model is 6366.Figure 9.32 shows the stress-strain relationship of the network. There are 39



9.5. SIMULATION OF COMPLEX EXAMPLE NETWORK 123steps before maximum stress is reached, and after 95 steps the network has failedcompletely. (�x=�x)0 = 1:29 �103 N/m, �max = 5:81 N/m, Gf = 20 �10�5 Nm/m andlch = 7:6 � 10�3 m.Figure 9.33 shows the locations of the failed connections after 16, 39 70 and95 steps. The �rst column indicates connections that have slipped at least once,the second indicates at least three slips and the third indicates �ve slips, whichcorrespond to completely failed connections. It can be seen that connections slipall over the network, but the completely failed connections tend to be concentratedalong a localized fracture zone. Maximum load is reached after 39 steps. At thispoint 210 connections have been modi�ed and one has reached �nal failure. This�rst �nal failure corresponds to maximum load, and reveals that the stress-strainrelationship begins to show a `saw-tooth' behaviour. After 95 steps, 380 connectionshave been modi�ed, and 53 have failed entirely.Figure 9.34 shows in the �rst row the connections that fail during the part of thefracture where the stress is increasing, and in the second row the connections thatfail while the stress decreases. Even though the side-length of the square, 4.2 mm,is only 1.5 times the distance between the end-points of the longest �bres, 2.8 mm,there is a weak tendency of localization.

Figure 9.31: Complex example network geometry.
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10. Numerical considerationsSome numerical problems have arisen and been dealt with during the study. Basic-ally these problems are all estimated to originate in round-o� errors in combinationwith coe�cients of extremely varying magnitude in the global sti�ness matrix. Thiskind of error can be detected by lack of equilibrium, and seems to arise in particularwhen the solution of the global system of equations is numerically extensive.When the di�erence in magnitude of the coe�cients is caused by di�erencesbetween normal and bending sti�ness of the beam elements, and between beam andconnection sti�ness, it has proved to be e�ective to rescale the matrix as discussedin Section 10.1.If there happens to be an extremely short beam element in the structure, thiscauses extremely big coe�cients in the sti�ness matrix. This is due to the �brelength occurring to the power of three in the denominator of the beam sti�nessmatrix. This is taken care of by slightly modifying the element, see Section 10.2.Even with the above measures, in some cases there have been di�culties inachieving accurate global moment equilibrium in the solution when analysing largenetworks with curled �bres. In those cases moment equilibrium has been explicitelyrequired by constraints in order to stabilize the solution process. This is discussedin Section 10.3.10.1. Scaling of the sti�ness matrixThe character of a dry-shaped cellulose �bre material is such that the �bre-to-�breconnections are much weaker than the �bres, and the �bres themselves are weakerin bending than in axial deformation. The di�erences in sti�ness are, however,not so great that we want to disregard the deformation of the sti�er componentsby, for example, considering the �bres to be rigid, or possibly rigid in the axialdirection. This means that we have a system of equations in which the coe�cientsare of varying order of magnitude, which implies numerical problems in the solutionprocedure. This problem is further emphasized by the fact that we want to performparameter studies over wide ranges of variation of the di�erent material properties.To suppress the e�ect of these phenomena the coe�cients of the sti�ness matrix arerescaled. By rescaling the dimension of length, a better conditioned system matrixcan often be achieved. Table 10.1 provides some input and output parameters withthe corresponding units and scale factors if the length dimension is multiplied by n(equivalent of using another unit for the dimension length).If we look at the upper left part of the sti�ness matrix for a straight beam127



128 CHAPTER 10. NUMERICAL CONSIDERATIONSTable 10.1:Parameter Unit Scaled parameterlf [m] nlfAf [m2] n2AfIf [m4] n4IfEf [ kgms2m2 ] n�1Ef� [m�1] n�1�kx [kgms2m ] kxk� [kgm2s2 ] n2k�L [m] nL� [m�1] n�1�ux [m] nux� [ ] �Fx [kgms2 ] nFxM [kgm2s2 ] n2Melement, (6.3), this means that266666664 EAL 0 00 12EIL3 6EIL20 6EIL2 4EIL
377777775 �! 266666664 EAL 0 00 12EIL3 n6EIL20 n6EIL2 n24EIL

377777775 ; (10:1)the rotation spring sti�ness is multiplied by n2 and the transversal springs are nota�ected at all. As an example of the e�ects of scaling, we study the sti�ness matrixof a beam element of 0.5 mm length with properties of the basic example network,Table 5.1. From (6.3) this isKe = 2666666664 1:75 � 104 0 0 �1:75 � 104 0 00 6:72 1:68 � 10�3 0 �6:72 1:68 � 10�30 1:68 � 10�3 5:6 � 10�7 0 �1:68 � 10�3 5:6 � 10�7�1:75 � 104 0 0 1:75 � 104 0 00 �6:72 �1:68 � 10�3 0 6:72 �1:68 � 10�30 1:68 � 10�3 5:6 � 10�7 0 �1:68 � 10�3 5:6 � 10�7
3777777775 :



10.2. MODIFICATION OF EXTREMELY SHORT FIBRES 129If we use a scaling factor n = 105 the sti�ness matrix becomes
Ke = 2666666664 1:75 � 104 0 0 �1:75 � 104 0 00 6:72 1:68 � 102 0 �6:72 1:68 � 1020 1:68 � 102 5:6 � 103 0 �1:68 � 102 5:6 � 103�1:75 � 104 0 0 1:75 � 104 0 00 �6:72 �1:68 � 102 0 6:72 �1:68 � 1020 1:68 � 102 5:6 � 103 0 �1:68 � 102 5:6 � 103

3777777775 :In order to obtain the condition number (the ratio of the largest singular value ofKeto the smallest) for those single element matrices, three degrees of freedom must beprescribed in order to avoid rigid body motion. This is equivalent to removing threedegrees of freedom (rows and columns) from the system. The condition numberof the upper left 3 � 3 matrix without scaling is 1:25 � 1011, and with scaling it is1:04 � 104. This example does not precisely tell how the global sti�ness matrix isa�ected by scaling, but practical experience shows that scaling is very e�cient andit is used in most of the simulations.10.2. Modi�cation of extremely short �bresSince the �bres are independently positioned when the network is generated, there isthe possibility that the distance between two crossings on a �bre becomes arbitrarilyshort. This means that the beam element between the crossings becomes very short.Since beam length occurs to the power of three in the denominator of the beamsti�ness matrix, those coe�cients become extremely big. In studies where the �bre-to-�bre connections are assumed to be rigid, c.f. [2], [14], this problem has beenovercome by merging the two close connections into one. This method is, however,not straightforward to use when the connection is modelled by springs. Insteadthe beam is slightly modi�ed by moving one of its nodes a short distance. This isalso physically reasonable, since the centres of two �bres cannot be closer to eachother than one �bre width. In the present implementation, all beams which areshorter than 1/100 of the mean beam element length are modi�ed by moving oneend a distance equal to 1/10 of the mean beam element length. This causes a slightdistorsion of this �bre, as well as of the �bre connected in the displaced node. Theshort �bre segments relatively often occur in pairs or triplets, in the form of triangles,in which case the local distorsion of the network becomes somewhat bigger. This is,however, not believed to have an appreciable e�ect on the �nal solution since thedistorsion is very local and occurs quite rarely.10.3. Explicit requirement of moment equilibriumWhen boundary conditions C are used, only two degrees of freedom, one in thex-direction and one in the y-direction, are prescribed to prevent rigid body motion.This is because global rotation is in theory automatically prevented by the cyclic



130 CHAPTER 10. NUMERICAL CONSIDERATIONSboundary conditions. In some cases though, for curled �bres, this has proved tobe troublesome numerically. If there is a slight numerical instability in the system,this does not appear as lack of force equilibrium in the x- and y-directions, sincethe fact that the reaction forces are equal in magnitude and opposite in directionis closely related to the cyclic boundary conditions. Instead it appears as lack ofmoment equilibrium, that is, the sum of the resultant shear forces on sides 1 and2 are unequal to that of sides 3 and 4. This has been taken care of by explicitlyrequiring global moment equilibrium by applying constraints implying that �Fx onside 2 be equal to �Fy on side 1. This method is believed to give a globally correctsolution since the three independent simulations made to obtainD, describing initialsti�ness, give a symmetric D.



11. Concluding remarks11.1. Summary and conclusionsA network mechanics model for describing materials made of dry-shaped cellulose�bres has been proposed. A two-dimensional implementation of the model has beencarried out, and various parameter studies have been performed. Through a pa-rameter which controls whether or not two crossing �bres are bonded to each other,a three-dimensional network can be symbolically represented in a two-dimensionalsimulation.The network is composed of �bres, which are modelled as beams of constant in-plane curvature made of linear elastic material. Length, cross-sectional properties,curvature, Young's modulus and ultimate stress for the �bres constituting a networkare given in terms of arbitrary statistical distributions.Where �bres cross there may be �bre-to-�bre interaction. The �bre-to-�brebonds are modelled as an assemblage of springs. Sti�ness and strength properties ofthe bonds are given in terms of arbitrary statistical distributions, and the probabilityof a bond at a �bre crossing is another input parameter. The connection springscan be assigned a linear or non-linear behaviour. The non-linear model correspondsto stick-slip performance in the �bre-to-�bre connection.The �bres are positioned at random in the studied area, with orientation accord-ing to a statistical distribution. Network density is another parameter concerningthe geometry of the network. The geometry is periodic, that is, the square underconsideration is regarded as one of many identical cells making up a global structureof in�nite size. Loading is applied by a set of cyclic boundary conditions such thateach point on the boundary of a cell is in equilibrium with the corresponding pointof the neighbouring cell. At the same time geometric compatibility is achieved ateach boundary point. In addition to this method of loading, the more conventionalmethod where straight boundaries are assumed to remain straight is implemented.Geometry output parameters considered were number of �bre crossings and me-chanically active part of the network. It has been veri�ed that the number of cross-ings obtained from simulations agrees with the number predicted by a theoreticalformula from the literature, except for the case of curled �bres where the formulafails, and a new one has been given for the special case of circle arc shape of thecurled �bres. The mechanically active part has, for densities above the percolationpoint, been found to be well approximated by the part of the network that is notfree �bre ends. This quantity is easily calculated by use of well-known equations.A general concept for subjecting a cell of cyclic geometry to load and thereby131



132 CHAPTER 11. CONCLUDING REMARKSobtaining the homogenized elastic parameters of the material has been provided.The method is independent of what kind of heterogeneous material is inside thecell, as long as it is of periodic structure, and was used for obtaining the isotropicsti�ness parameters E and �, as well as the corresponding orthotropic parameters.Simulations have been performed in order to obtain the global elastic sti�nessproperties of a network. A basic example network of representative properties hasbeen used, and the di�erent input parameters have been varied in order to yieldtheir respective inuence on global elastic sti�ness.Simulations show that the use of cyclic boundary conditions allows simulatingsmaller cells than does the use of conventional boundary conditions. For the caseof constant �bre length, a side-length of the cell of 1.2 times �bre length seems tobe enough to avoid a false, simulation-induced, size dependence of the initial sti�-ness, except for extremely low densities. The conventional conditions with straightboundaries seem to give too high network sti�ness even when the side-length of thecell is several times the length of a �bre.The inuence of the individual sti�ness components on the global initial sti�nesshas been examined, and it was concluded that the transversal springs are of greaterimportance than are the rotational springs of the connections, and that the axialsti�ness of straight �bres is more important than the bending sti�ness.Simulations show that curled �bres give a less sti� network, and that this is,in the �rst place, due to the �bres not extending along a straight path with theconnection points along a straight line, and only secondarily because of the smalleraxial sti�ness of curled beam segments.For constant network density, long �bres give a sti�er network than short onesdo, and for a statistical distribution in length the weighted mean �bre length seemsto be a more relevant parameter than the arithmetic mean �bre length.The inuence of network density, degree of �bre-to-�bre interaction and orienta-tion distribution of the �bres on the homogenized sti�ness properties have also beeninvestigated.Fracture criteria have been introduced and the non-linear fracture process of net-works analysed. The fracture process has been quanti�ed in terms of initial sti�ness,maximum stress, fracture energy, intrinsic length and localization of fracture.Several results on sample size dependence of fracture properties are indicatedand a comparison is made with Weibull theory. The conclusion is that the resultfrom a fracture simulation is always size-dependent, and that Weibull theory is notapplicable due to assumptions concerning heterogeneity and material properties notbeing ful�lled.The di�erent characters of �bre and connection failure have been indicated bysimulating an example network. The failure of a �bre segment has a greater inuenceon the fracture process than the failure of a connection, since when connectionfailures are considered the �bres must be pulled out of the network. For dry-shapedmaterials with no adhesive added though, connection failure is dominant.For the case of connection failure, simulations have shown that increased strength,decreased sti�ness and increased ductility of the connections result in a stronger and



11.2. FUTURE DEVELOPMENTS 133more ductile network.As for network density, a higher density gives a stronger but more brittle network.Finally, an example is given of a fracture simulation of a network of curled �bresof varying length, with connections showing stick-slip behaviour.11.2. Future developmentsPossible future work on network mechanics models for cellulose �bre materials in-cludes both further simulations within the present model and development of newor completed models.Further simulations within the present model include both the many variationsof input data which have not been studied yet, and simulations for veri�cation ofthe model and comparisons with experimental results. A parameter which has notbeen given the attention it deserves in the present study is the rate of heterogeneity,and its inuence on the mechanical properties of a network. One reason for thisis that it is not quite straightforward to quantify heterogeneity. Experimentally,heterogeneity is described by variance of local grammage, given a certain cell size.This could also be a useful concept for simulations. It would also be worthwhile towork somewhat with the visualization of the fracture process by means of computergraphics. Although it would not add anything fundamentally new, it would facilitateinterpretation of the results.As for further development of the model there are several possibilities. Thetwo-dimensional model could be re�ned by including large-strain theory and timedependent e�ects. The modelling of the �bre-to-�bre interaction also calls for furtherre�nement, preferably coupled to experimental work on the function of �bre-to-�brebonds. The modelling of the �bres can be improved by consideration of kinks, whicha�ect the �bre geometry and have low or zero bending sti�ness. Network geome-try, presently generated theoretically, might be taken directly from experimentalobservation if available. An as yet unexplored area is the e�ect of initial stressesin the network, originating from the manufacturing process. Another way to go isto, if necessary, simplify the model and go into three-dimensional modelling. In thiscontext the need for developing e�cient computational techniques is pronounced.
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A. Detection of crossings of twocircle arcsCircle arc shaped �bres A and B are de�ned by their center points, C, radii ofcurvature, r, and angles between which the �bres extend counter-clockwise, �1; �2,see Figure A.1 a). In order to detect possible crossings between �bres A and B, thefollowing path is pursued.1) Check if circles cross, if so, calculate coordinates of crossings.Distance d, see Figure A.1 b) between center points CA and CB, (CBx > CAx) isd = q(CBy � CAy)2 + (CBx � CAx)2:If rA + rB < d then circles do not cross.If rA + rB > d then circles cross twice, and the coordinates of the two crossings k1and k2 are calculated as follows, with notations according to Figure A.1 c).From the cosine theorem� = arccos(r2A + d2 � r2B2rAd ) (0 � � � �);and we have � = arctan(CBy � CAyCBx � CAx ) (��2 � � � �2 ):This gives k1x = CAx + rA cos(� + �)k1y = CAy + rA sin(� + �)k2x = CAx + rA cos(�� �)k2y = CAy � rA sin(�� �):2) If circles cross, check if crossings are on the arcs.Point k1 is a circlular arc crossing if it is on both circle arcs. With notationsaccording to Figure A.1 d), and i denoting A or B, we have
135



136 APPENDIX A. DETECTION OF CROSSINGS OF TWO CIRCLE ARCS
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Figure A.1: Notation used when calculating �bre crossings.k1x = Cix + ri cos �k1y = Ciy + ri sin�:Introducing �1 = arccos kix � Cixri (0 � � � �)�2 = arcsin kiy � Ciyri (��2 � � � �2 );we have � = ( �1; �2 > 02� � �1; �2 < 0 :Now, obviously, k1 is on arc i if �i1 < � < �i2, or, for the case of �i1 > �i2, k1is on arc i if �i2 < � or � < �i1. The same procedure is followed for point k2.



B. Analysis of connectedness ofnetworkThe �rst thing that has to be established is what is meant by a connected network.When studying a global network, made up of many cells, it is considered to be aconnected network if it is of such geometry that it can sustain load in an arbitrarydirection.For the individual square this implies that there has to be a locally connectedstructure within the square, which is connected with itself across both the left-rightand up-down borders. Figure B.1 shows some schematic examples of connected andnon-connected networks.The criterion given above is a su�cient condition for connectedness of a network,but it is not necessary. This can be seen in Figure B.2, which shows a network thatis connected, but still does not satisfy the criterion stated above. The computerprogram applies the criterion above, and should a network of the type shown inFigure B.2 occur, it is thus falsely classi�ed as not connected.The following procedure is applied to determine whether a network satis�es thecriterion stated above or not.A network can be viewed as a graph, with beam elements as edges which con-nect nodes (�bre-to-�bre connections or points on the boundary). A graph can bedescribed by an incidence matrix, in which a 1 in position (i; j) means `connectionbetween nodes i and j', that is `a beam element between �bre-to-�bre connectionsi and j', and a 0 means no connection.The �rst thing to do is to sort the graph into connected graphs. (A connectedgraph is a graph in which there is a path between every pair of nodes.) This is doneas follows: Choose an arbitrary node. Incorporate in this node all nodes that it haspaths to. Choose a new starting node, which has not previously been classi�ed as amember of a connected graph, and incorporate all nodes that it has paths to. Keepon doing this until every node is part of a connected graph. In the computer codethis is done by means of manipulations in the incidence matrix.Now we have a number of connected graphs. The next step is to go through thoseand check if any of them satis�es the conditions stated in the beginning. If thereis a �bre-to-�bre connection in every �bre crossing there can only be one connectedgraph that satis�es the conditions, but if there are not connections in every crossingthere is a theoretical possibility that there may be more than one. This possibilityis not taken into account in the code.If we have found a connected graph which is also connected with itself across theborders, we must complete it with possible parts that it is connected with across137
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9 cells

Connected

Not connected

Not connected

Not connected

1 cell

Figure B.1: Examples of connected and not connected networks.borders, but not inside the square.The rest of the connected graphs, if any, are `islands', clusters of �bres withno contact with the rest of the global network. Those are removed and can bedisregarded in the following.Clusters of �bres that are attached to the rest of the network by only one �breare detected as follows. For every beam element: Take away the beam element andgo through the procedure above. If there are now two connected graphs, the onethat does not satisfy the conditions in the beginning is a `semi-island', or `peninsula'.
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Figure B.2: A connected network which is di�cult to detect.
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C. Angle change of line segment inpure shearThe deformation in pure shear is described byx = X + Yy = Y; (C:1)where capital letters denote coordinates of a point in the undeformed con�guration,lower-case letters denote coordinates of a point in the deformed con�guration and is the angle of shear, see Figure C.1.
γ

Y

X x

y

Figure C.1: De�nition of angle of shear, , of unit cell.The gradient of this deformation is@x@X = " 1 0 1 # : (C:2)A line segment of unit length making an angle � with the x-axis can be describedas a vector " XY # = " cos�sin� # : (C:3)Under pure shear this deforms as" xy # = " 1 0 1 # " cos�sin� # = " cos� +  sin�sin� # : (C:4)141



142 APPENDIX C. ANGLE CHANGE OF LINE SEGMENT IN PURE SHEARThe angle �0 relative to the x-axis in the deformed con�guration is�0 = arctan sin�cos� +  sin� = arctan YX + Y : (C:5)To simplify the expression we make a �rst order approximation in  by takingthe Taylor expansion f(x) = f(0) + f 0(0)1! x + r(x): (C:6)Sincedd arctan( YX + Y )j=0 = 11 + ( YX + Y )2 ( �Y 2(X + Y )2 )j=0 = �Y 2X2 + Y 2 = � sin2 �;(C:7)we have �0() � �� (sin2 �): (C:8)That is, the angle change of a line segment with initial angle � relative to x-axis is(sin2 �), with sign according to the sign convention used.



D. Effective bending stiffness ofspiral beamWe have a spiral beam with moments of inertia Ix0 and Iy0 around its principal axes,which completes one revolution in a distance l. We want to know the moments ofinertia of the non-spiral beam which yields the same angle change ��x = u0(l)�u0(0)when subjected to moment mx as in Figure D.1.The bending sti�ness of a spiral beam varies along the z-axis. Therefore we start bycomputing change in �x per unit length as a function of z for a spiral beam segmentof length l subjected to moment mx. We begin by considering the angle change per
m
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Figure D.1: Spiral beam segment and cross section.unit length around the principal axes of the beam cross-section, x0; y0, which arerotated an angle � relative to the nominal x- and y-axes.d�x0dz = mx cos�EIx0 ; d�y0dz = mx sin�EIy0 : (D:1)From this we can calculate the angle change per unit length around the x-axis.d�xdz = mxE (cos2 �Ix0 + sin2 �Iy0 ): (D:2)To obtain the total angle change we integrate over the revolution length, l.143



144 APPENDIX D. EFFECTIVE BENDING STIFFNESS OF SPIRAL BEAM��x = Z l0 d�xdz dz = mxE Z l0 (cos2 �Ix0 + sin2 �Iy0 )dz (D:3)Since � = zl 2� (D:4)and dz = l2�d�; (D:5)D.3 gives��x = mxl2�E Z 2�0 (cos2 �Ix0 + sin2 �Iy0 )d� = mxl2�E ( �Ix0 + �Iy0 ) = mxl2E ( 1Ix0 + 1Iy0 ): (D:6)For a non-spiral cross section with moment of inertia Ie around the x-axis, the anglechange on length l when subjected to moment mx is��x = mxlEIe : (D:7)On setting ��x for spiral and non-spiral beam equal and solving for Ie we obtainIe = mxlEmxl2E ( 1Ix0 + 1Iy0 ) = 2Ix0Iy0Ix0 + Iy0 : (D:8)For a rectangular cross section of width b and depth h this yieldsIe = 2bh312 b3h12bh312 + b3h12 = b3h36(b2 + h2) : (D:9)



145
E. Relation between network densitiesin 2 and 3 dimensionsWhen a three-dimensional network structure is analysed by a two-dimensional model,an interesting issue is the relation between the mass density in 3D, �3D [kg/m3], andthe network density in 2D, �2D [m�1]. One possible approach is to compare themean free �bre segment length, �ls, in the two cases.If it is assumed that �ls is the same in the three-dimensional real material andthe two-dimensional model network, a relation between the two densities can beobtained. In this calculation the equations for �ls from [17] are used. In thoseequations it is assumed that the �bres are uniformly distributed in position andorientation. The �bres are assumed to be straight, and in the case of 3D, they areassumed to be of circular cross section.�ls in three dimensions is �ls = 2V�Dnf�lf ; (E:1)where D denotes diameter of �bres and V is the volume studied. Since�3D = nf�lfAf�fibreV ; (E:2)where �fibre denotes the density of a cellulose �bre, we have�ls = D�fibre2�3D : (E:3)The corresponding equation in two dimensions is, from (2.1) and (2.2),�ls = nf�lf2�nc = �2�2D : (E:4)Combining (E.3) and (E.4) gives �2D = ��3DD�fibre (E:5)On assuming �fibre to be 1600 kg/m3, and D to correspond to the cross-sectionalarea of a �bre used in this study, 2:5 � 10�10 m2, that is,D = s4Af� = 1:78 � 10�5m; (E:6)



146 APPENDIX E. RELATION BETWEEN NETWORK DENSITIES ...we have �2D � 110�3D: (E:7)If the probability of a connection in a �bre crossing is s, the equation is modi�ed to�2Ds � 110�3D: (E:8)
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