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How to derive an analytical network

mechanics theory

Susanne Heyden, Division of Structural Mechanics, Lund University

susanne.heyden@byggmek.lth.se

Abstract

This report was originally written as a part of the course material
in the FPIRC course Paper Mechanics given at STFI/KTH. The aim
of the report is to explain the ideas behind analytical network theories
based on the homogeneous strain assumption in a simple way. One
example, corresponding to the Cox model, [2], is also worked out in
detail in the report.

1 Introduction

Many network theories rely on the assumption of homogeneous strain. This
means that the strain is equal everywhere in a sheet, and thus equal to the
average strain. In a heterogeneous material there is generally not a state of
homogeneous strain since areas of less stiffness elongates more than stiffer
areas when a sheet is subjected to extension. Homogeneous strain is a better
approximation the more homogeneous the material. In the following section
it is outlined how a homogeneous strain theory can be formulated. Thereafter
a simple example is shown in detail.

2 Outline of method

1) Basic assumptions:
Assume a 2-dimensional fibre network of straight identical fibres positioned
uniformly in the sheet. Fibre properties could also be assumed to follow some
statistical distribution.
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2) Homogeneous strain assumption:
Each bond center is assumed to be displaced exactly as the corresponding
point would have been if the material had been homogeneous. The part of a
fibre between two neighboring bond centres is denoted a fibre segment. Some
assumption could also be made regarding the rotation of the fibre segment
end points, e.g. no rotation or rotation determined by the strain field.

3) Calculate the displacement and rotation of the fibre segment end points
as a function of fibre orientation, θ, and global strain, (ǫx, ǫy, γxy).

4) Make assumption regarding what types of deformation the fibre can sus-
tain, eg axial elongation, bending or shear. Assume constitutive behaviour of
the fibre, e.g. linear elastic. Assume behaviour in relative rotation of fibres
at bonds, e.g. free relative rotation, moment in bond proportional to relative
rotation or rigid bonds. These assumptions must be consistent with the ones
in 2).

5) Calculate the forces in the fibre segment end points as a function of θ
and (ǫx, ǫy, γxy) by using theory for structural elements like bars or beams.
If no load is applied to the fibre between bonds the axial and shear force is
constant along the fibre segment, and the bending moment varies linearly.

6) Determine the number of fibres, of a certain angle θ, crossing a line of unit
length parallel to the x-axis and y-axis respectively. This is a function of the
total fibre length per unit area, ρ, and the orientation distribution, f(θ).

7) Calculate the total force per unit length·thickness in the x-direction on
a line parallel to the y-axis, σx, in the y-direction on a line parallel to the
y-axis, τxy, and in the in the y-direction on a line parallel to the x-axis, σy.
An alternative method is to calculate the elastic energy per unit volume of

the system, W , and obtaining σx as
∂W

∂ǫx

etc.

8) Determine homogenized constitutive parameters. From 7) we have a rela-
tion between stress (force per unit area) and strain. By assuming plane stress
we have the same relation for a homogeneous material. By identification of
coefficients the elastic parameters, e.g. for an isotropic material E and ν,
can be determined.
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3 Example of calculations

1) Assume a 2-dimensional fibre network of straight identical fibres posi-
tioned uniformly in the sheet. Fibre length is denoted lf and cross-section
area is denoted Af .

2) Each bond center is assumed to be displaced exactly as the corresponding
point would have been if the material had been homogeneous. The rotation
of the fibre segment ends is according to the strain field. This means that
the fibre remains straight after deformation and there is no use trying to
incorporate bending in the model.

3) From a textbook in solid mechanics, [1], we have the formula for transfor-
mation of strain, stating the axial strain in an element oriented in an angle
θ to the x-axis, when the global strain is (ǫx, ǫy, γxy).

ǫ′x = ǫx cos2 θ + ǫy sin2 θ + γxy sin θ cos θ (1)

4) The fibres are linear elastic with Young’s modulus Ef , and support only
axial force, that is, act like bars. The rotation of a fibre due to global defor-
mation of the sheet is dependent on fibre orientation. Because of this there
is relative rotation between the fibres at a bond where two fibres of different
orientation cross each other. It is assumed that there is no resistance to rel-
ative rotation of the fibres at the bonds.

5) From Hooke’s law for a bar (σ = Eǫ or
F

A
= Eǫ) we get the force, Ff , in

a fibre subjected to axial strain ǫa

Ff = EfAf ǫa = EfAf(ǫx cos2 θ + ǫy sin2 θ + γxy sin θ cos θ) (2)

6) The orientation distribution of the fibres is uniform, that is f(θ) =
1

π
. The

number of fibres at angle θ which intersect a line of unit length perpendicular
to the x- and y-directions are ρf(θ) cos θ and ρf(θ) sin θ respectively.
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7) The axial force in a fibre can be divided into components along the co-
ordinate axes, Ffx = Ff cos θ, Ffy = Ff sin θ. Now σx, σy and τxy can be
obtained by integrating over θ. t denotes sheet thickness.

σx =
∫ π

0

ρ

t
f(θ)Ff cos2 θdθ =

=
ρAfEf

πt

∫ π

0

(ǫx cos2 θ + ǫy sin2 θ + γxy sin θ cos θ) cos2 θdθ

σy =
∫ π

0

ρ

t
f(θ)Ff sin2 θdθ =

=
ρAfEf

πt

∫ π

0

(ǫx cos2 θ + ǫy sin2 θ + γxy sin θ cos θ) sin2 θdθ

τxy =
∫ π

0

ρ

t
f(θ)Ff sin θ cos θdθ =

=
ρAfEf

πt

∫ π

0

(ǫx cos2 θ + ǫy sin2 θ + γxy sin θ cos θ) sin θ cos θdθ

(3)

By evaluating the following integrals
∫ π

0

cos4 θdθ =
∫ π

0

1

8
(3 + 4 cos 2θ + cos 4θ)dθ =

1

8
[3θ + 2 sin 2θ +

1

4
sin 4θ]π

0
=

=
3π

8
∫ π

0

sin4 θdθ =
∫ π

0

1

8
(3 − 4 cos 2θ + cos 4θ)dθ =

1

8
[3θ − 2 sin 2θ +

1

4
sin 4θ]π

0
=

=
3π

8
∫ π

0

sin2 θ cos2 θdθ =
∫ π

0

1

8
(1 − cos 4θ)dθ =

1

8
[θ −

1

4
sin 4θ]π

0
=

π

8
∫ π

0

sin3 θ cos θdθ =
∫ π

0

1

8
(2 sin 2θ − sin 4θ)dθ =

1

8
[− cos 2θ +

1

4
cos 4θ]π

0
= 0

∫ π

0

sin θ cos3 θdθ =
∫ π

0

1

8
(2 sin 2θ + sin 4θdθ =

1

8
[− cos 2θ −

1

4
cos 4θ]π

0
= 0

(4)
we have, on matrix form,







σx

σy

τxy





 =
ρAfEf

t









3/8 1/8 0

1/8 3/8 0

0 0 1/8















ǫx

ǫy

γxy





 . (5)
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The same relation can be obtained by an energy method. The total elastic
energy of the network is calculated. The elastic energy stored in a bar of unit
length is

Wbar =
F 2

2AE
(6)

The total elastic energy stored in a unit volume of the network is

W =
∫ π

0

ρf(θ)F 2

f (θ)

2AfEf t
dθ =

ρAfEf

2πt

∫ π

0

(ǫx cos2 θ + ǫy sin2 θ + γxy sin θ cos θ)2dθ

(7)
which after integration yields

W =
ρAfEf

t
(

3

16
ǫ2

x +
2

16
ǫxǫy +

3

16
ǫ2

y +
1

16
γ2

xy) (8)

Differentiation with respect to the strain components gives

σx =
∂W

∂ǫx

=
ρAfEf

t
(
3

8
ǫx +

1

8
ǫy)

σy =
∂W

∂ǫy

=
ρAfEf

t
(
1

8
ǫx +

3

8
ǫy)

τxy =
∂W

∂γxy

=
ρAfEf

t
(
1

8
γxy),

(9)

that is, the same as eq. (5).

8) From [1] we have the stress-strain relationship for a homogeneous, linearly
elastic, isotropic, continuous material in plane stress.







σx

σy

τxy





 =
E

1 − ν2











1 ν 0
ν 1 0

0 0
1 − ν

2

















ǫx

ǫy

γ





 (10)

Here E denotes Young’s modulus and ν denotes Poisson’s ratio. Identification
of the first two coefficients in the matrices gives

E

1 − ν2
=

ρAfEf

t

3

8

νE

1 − ν2
=

ρAfEf

t

1

8

(11)
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which leads to

E =
ρAfEf

3t

ν =
1

3

(12)

Since
ρAf

t
= D/d, D denoting density of sheet [kg/m3] and d denoting

density of cellulose fibre [kg/m3], an equivalent expression for E in eq. (12)
is

E =
D

d

Ef

3
, (13)

4 Concluding remark

The simple model formulated in the previous section is in principle identical
to those of Cox [2] and Campbell [3]. All the references [2]-[8] present different
network models that in principle follows the outline in this paper.
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