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Preface and overview

PER-FRIK AUSTRELL

This report is a part of the work encompassed by a research project financed
by NUTEK - the Swedish National Board for Industrial and Technical develop-
ment -, during the two-year period of June 1997 to June 1999, in the VAMP
program (in swedish: Verkstadstekniskt materialprogram). The project concerns
methodology for the development of rubber components. The aim is to investi-
gate strategies for the design that the companies in this area currently are guided
by and to improve and rationalize the procedures employed in order that better
performance and better quality of products can be achieved.

A number of companies, research institutes and university departments par-
ticipates. The companies are Adtranz, Alfa Laval Separation AB, Electrolux-
Wascator AB, Higglunds Vehicle AB, Svedala Skega AB, Trelleborg Industri
AB, Volvo Articulated Haulers AB, and Volvo Wheel loaders AB.

The research institutes participating are IVF - the Swedish Institute of Pro-
duction Engineering Research - (in swedish: Institutet fér Verkstadsteknisk Forsk-
ning) and IFP -the Swedish Institute for Fiber and Polymer Research- (in swedish:
Institutet for Fiber och Polymer teknologi).

The university departments involved, are Structural Mechanics LTH (Lunds
Tekniska Hogskola), Acoustics MWL (Marcus Wallenberg Laboratoriet), KTH
(Kungliga Tekniska Hogskolan), and Polymer Technology IPT (Institutionen for
PolymerTeknologi) KTH.

The survey of material properties and design methods contained in this report
represents a part of the initial phase of the project. It consists of contributions by
several authors. The chapters concerning quasi-static and low frequency charac-
teristics along with the chapter on fracture mechanics! are written by Per-Erik
Austrell (Structural Mechanics LTH), who is also the editor of this report. The
chapters concerning high frequency and acoustic properties are authored by Ulf
Carlsson and Leif Kari MWL (Acoustics KTH) and the chapters on the choice
of materials, on long-term properties, and on environmental effects are written
by Martin Bellander and Bengt Stenberg IPT (Polymer Technology KTH).
Sture Persson Svedala-Skega AB has examined the material thoroughly and
given many valuable comments and suggestions.

1Chapter 9 is based on the master thesis work of Jorgen Nilsson.
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Motivation and background

The unique properties of elastomeric materials are taken advantage of in many
engineering applications. Elastomeric units are used as couplings or mountings
between stiff structures. Examples of these are shock absorbers, vibration insu-
lators, flexible joints, seals and suspensions.

The development of computers and of analysis programs in this area has given
engineers a new tool for the design of elastomeric components. Computer simu-
lation by finite element analysis has become increasingly important, allowing the
mechanical behavior of products with for complex geometries, as well as loading
cases of different kinds to be evaluated. Computer simulations enable both static
and dynamic aspects to be analyzed. These matters have been recognized by
the manufacturers of rubber products and by their customers. The benefits are
shorter time for product development and also quality improvements.

However, the possibilities available for finding less complicated technical solu-
tions at lower cost with the use of elastomers, has not been fully utilized. Rubber
components could be employed more frequently in design if engineers were more
familiar with materials of this sort.

Part of the problem lies in education and in the dissemination of information.
Engineers working in the design area tend to not be very familiar with elastomeric
materials and their properties. The offerings of courses on the mechanics of
polymers at schools and universities are very limited. Skillful engineers in this
field have usually acquired their knowledge through many years of experience and
not from formal education.

Moreover, the complicated nature of the material behavior involved makes
it difficult to devise general design rules and design tools. Only recently have
computers and analysis programs become powerful enough for the analysis of
nonlinear elastic problems involving large strains.

Tt is essential, if one is to become competitive in high-tech applications, to
possess a thorough knowledge of computer methods, material models and test
methods available.

There has likewise been a lack of relevant data for the computer analysis of
elastomeric materials. The design tools employed rely on the material models
available and on the test data required for the calibration of these models. In
many cases, the only information available for analysis is a value for the hardness
of the rubber in question. The wide variety of rubber compounds is also a prob-
lem. The characterization of different materials is costly and time-consuming.
There is thus a need for simple and reliable methods to characterize the different
vulcanizates.




Overview

The basic topics covered in the report are shown in Figure 0.1. Questions con-
cerning design tools, test methods, and material properties in connection with

the topics encircled in the figure are discussed.
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Figure 0.1: Overview of areas covered in this survey.
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Chapter 1

General aspects of rubber
engineering

P.-E. AUSTRELL AND B. STENBERG

This chapter presents some general properties of rubber, including a brief descrip-
tion of the molecular structure of rubber vulcanizates and processes in manufac-
turing them, various mechanical properties of rubber, tools for the construction
and design of rubber units, and a brief discussion of constitutive models. In
addition, the chapter presents a survey of the literature and of other sources of
information.

1.1 Molecular structure and manufacturing pro-
cess

Although elastomers can be made of any of a wide variety of different organic
substances, all of them are polymers consisting of very long molecular chains. The
raw material having no chemical bonds between the separate molecular chains,
is soft and plastic in its consistency.

The first elastomeric units were manufactured of natural rubber, which is
still the most common material used for general-purpose applications. The most
common synthetic rubber is made of styrene and butadiene its main application
being in car tires, due to its good abrasion resistance.

The important process of vulcanization converts the plastic raw elastomeric
material into a material of solid and elastic consistency. Vulcanization is a chem-
ical process by which the long molecular chains are linked together, forming a
stable and more solid molecular structure. The cross-linking is obtained using
activators, accelerators, and curatives. The vulcanization process starts when
the mixture is heated to 120 — 200°C, crosslinks connecting the molecular chains
being formed.

Fillers such as carbon black are added so as to increase the stiffness of the
material and, in some applications, the resistance to wear. Carbon black consists




Figure 1.1: Molecular structure for a carbon black-filled rubber vulcanizate. Car-
bon particles, polymer chains and crosslinks are schematically illustrated.

of very small particles of carbon (20nm - 300nm) that are mixed into the raw
rubber base prior to vulcanization. In the rubber phase, a continuous network
is formed, the filler material being in the form of aggregates inside the rubber
network. What is involved is thus a two-phase material of the two constituents
which differ completely in their mechanical properties. Figure 1.1 shows schemat-
ically the structure on a molecular level of a carbon black-filled vulcanizate. 'The
polymer chains are depicted as solid lines and the crosslinks as dashed lines.

Vulcanization and shaping are combined in the moulding process, the rubber-
filler mix being inserted into the mould cavity and heated to the appropriate
temperature, allowing vulcanization to start. The curing time is dependent on
the temperature, of the size of the unit and on how well heat is transferred to the
rubber unit.

In technical applications, elastomeric units are often composed of both rubber
and steel. The attached steel parts, used to connect the rubber unit involved to
other structures or to increase the units stiffness, can be attached to the rubber
material in the moulding process, being bonded very efficiently then to the rubber.
The bonding is stronger than the rubber material itself, in the sense that in a
properly manufactured rubber-steel unit a rupture usually occurs in the rubber
itself rather than at the bonding surface between rubber and steel.

The properties of different elastomer types, as well as the compounds and
processing techniques employed, are described in references [2], [4], and [5].

1.2 Mechanical properties

The major properties of elastomeric materials taken advantage of in engineering
applications are the ability to sustain large straining without permanent defor-
mation, the vibration damping property and the resistance to wear.

The most prominent feature of vulcanized rubber is its elastic property. The
ability to store large amounts of strain energy and to release most of it in unload-
ing is a characteristic discussed further in Chapter 3. Although the molecular
structure of vulcanized rubber enables it to undergo large deformations and re-
cover almost completely in unloading, the material becomes harder, less elastic
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Figure 1.2: Force-displacement relations for a rubber vulcanizate exposed to cyclic
loading.

and more leathery as the amount of filler mixed into it increases.

The elasticity of rubber is due to the long, tangled molecular chains and their
ability to stretch and orient themselves in the direction of strain. This is possible
due to the repeated molecular units in the polymer being able to rotate freely
about the bonds joining the units. Elongations of several hundred percent are
possible.

Another characteristic feature of rubber is the large difference between its
shear modulus and its bulk modulus. A typical carbon black-filled rubber vul-
canizate for technical applications has a shear modulus of about 1MPa and a
bulk modulus of about 1000-2000 MPa (Freakley and Payne [2] p. 32). The large
volumetric stiffness compared to the shear stiffness indicates the behavior being
nearly incompressible. In many applications, in fact, complete incompressibility
is a reasonable agsumption.

Although rubber is highly elastic, it is not perfectly elastic. A difference
is always observed between the loading and unloading curves in a stress-strain
diagram. This phenomenon, referred to as hysteresis, is illustrated for a carbon
black-filled Tubber in planar tension in Figure 1.2. (Typical values of stress and
strain for tension/compression and for shear are given below in Figure 1.4) In
cyclic loading there is thus always a part of the energy that is not recoverable.
The area enclosed by the loading and unloading curves represents energy that is
dissipated, mainly as heat. In free vibration, this dissipation causes the amplitude
of the vibrations to decrease over time, a material property termed damping.
Adding fillers to the rubber compound increases the damping. This is discussed
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Figure 1.3: Relationship between the shear modulus G and the hardness in IRID
or Shore A units.

further in Chapter 4.

Stress softening, or Mullin’s effect, is another phenomenon to be considered.
The decrease in stiffness through straining is shown in Figure 1.2. If a previously
unstrained rubber specimen is exposed to cyclic loading up to a specific strain
level, the maximum stress and the distance between the loading and unloading
curves will decrease in the first few load cycles. After some four to eight load
cycles, a steady state is reached at this specific maximum strain level. If the
specimen is exposed to a new set of cyclic strains at higher strain level, a new
decrease in stress and hysteresis, occours until a new steady state is reached.
The stress-softening behavior originates in configurational changes in the rubber
network and a gradual breakdown of the molecular links (primarily the rubber-
carbon links) as the strain increases (cf. Chapter 4).

In order to obtain stationary values in the testing of rubber specimens, it is
thus necessary to pre-strain the specimens before recording the corresponding
force-displacement values. This is called mechanical conditioning.

The filler phase has a very small stress-carrying capacity as compared with the
rubber phase. The filler particles can be regarded as rigid inclusions embedded
in the rubber matrix. Consequently, the stress and strain in the rubber phase
reaches higher levels in elastomeric units to which filler has been added than in
identical and unfilled units. The filler also affects the maximum elongation (at
break), which is lowered. This effect which the filler has on the rubber phase is
called strain amplification.

The stiffness of a rubber vulcanizate is classified in terms of a value of hard-
ness. Two methods for measuring hardness are generally used: the IRHD test
(International Rubber Hardness Degrees), which is also the ISO-standard test,
and the Shore Hardness test. These involve the indentation by a ball or needle
with a spherical tip (IRHD) or a truncated cone (Shore). A constant force is
applied and the indentation depth is measured. The scales for the two methods

11
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Figure 1.4: Homogeneous deformations of a 60 IRHD rubber. Left: Uniazial state
of stress. Right: Simple shear.

are almost identical for rubbers within the 30-80 IRHD range, in which most
rubber mixes are found. Such a hardness test provides an indirect measure of
the elastic modulus. This is sometimes the only value available for the modulus
of the material. The relationship between the shear modulus G' and hardness
is indicated in Figure 1.3. The diagram is constructed from data reported by
Lindley [10] (Table 3, p. 8).

Simple shear is more linear than other homogeneous modes of deformation.
Since the shear modulus is relatively independent of the shear strain, it can be
regarded, at least for moderate strains, as a material constant. This is not the
case for Young’s modulus, as can be seen in Figure 1.4, which shows loading
curves in compression/tension and simple shear for a 60 IRHD carbon black-
filled natural rubber vulcanizate. (The curve representing the uniaxial state of
stress is based both on a tension test and a compression test.) The behavior of
rubber in compression is progressive. For tension and simple shear in the case of
large strains, the behavior is first digressive and then progressive. Modeling the
behavior shown in Figure 1.4 by use of nonlinear elastic models will be discussed
in Chapter 3.

Some dynamic properties will also be discussed briefly here. Dynamic tests
in simple shear performed at small amplitudes for unfilled rubber vulcanizates,
yield a linear dynamic response, a behavior characterized by a sinusoidal response
to sinusoidal excitation. The response is of the same frequency as the excitation,
with the response shifted by a phase angle 4.

Graphing the stress-strain loop yields an elliptic path, as shown in Figure 1.5.
(The static load there being assumed to be applied slowly.) The elliptic hysteresis

12
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obtained is associated with the dissipation of energy. The energy loss for a strain
cycle U, is related to the phase angle ¢ according to U = TTokosind, with 75 and
ko being the shear-stress and strain amplitudes, respectively.

The use of rubber components often involves both static and dynamic proper-
ties. A common load case is that of cyclic straining in combination with a static
preload. The static (secant) and dynamic shear moduli are defined as

Gstat = IS_ Gdyn = IO_,
Ks Ko
according to Figure 1.5. For simple shear, the static-secant and the static-
tangential modulus are approximately equal. The dynamic modulus is always
larger than the static (or the tangential) modulus, as indicated in the figure.

The dynamic properties of rubber change with temperature and frequency.
The dynamic modulus and the phase angle are frequency- and temperature-
dependent. An increase in temperature has a softening effect, and an increase
in frequency a stiffening effect. For frequencies below 1000 Hz and temperatures
between 0 and 50°C, in the commonly used natural rubber vulcanizates, however
the dependence is quite weak (Lindley [10] p. 15).

Nonlinearities in the dynamic behavior of rubber appear as a distortion in
the hysteresis loop. Such nonlinearities are due to the nonlinear elasticity of
the rubber network, and for filled rubbers due to the filler structure breakdown
and reforming as well. Filler induced nonlinearity appears as a decrease of the
dynamic shear modulus as the amplitude increases. The linear and nonlinear
dynamic properties in rubber will be discussed further in Chapter 4 and the
modeling of these properties in Chapter 5.

Considerations of the fatigue of components subjected to repeated loading is
important in many engineering applications. Cracks may develop due to stress
concentrations at defects or small flaws. Ultimately such cracks may enlarge and
result in failure of the component. The tearing energy is the basis for fracture
and fatigue predictions. This will be discussed in Chapter 9.
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1.3 Tools for the design of rubber units

Static and dynamic design tools involve both closed-form expressions and computer-
based techniques. A brief overview of these matters, which are discussed further
in Chapter 3 and 5 will be presented here.

1.3.1 Closed-form expressions

Simple hand-calculation formulas for static and dynamic analysis are sufficient
for the design of many rubber components. In the static analysis, linear elasticity
involving only Hookes law in uniaxial stress or simple shear yields spring stiffness
expressions and stress levels estimates useful in solving many problems. ‘

Closed-form expressions for static and dynamic analysis are discussed in gen-
eral treatises [2] [4] [5] [8] [10] on rubber engineering. An excellent introduction
to the design of rubber components by the use of hand-calculation formulas, can
be found in Gent [5], Chapter 8, which also presents examples.

1.3.2 Capabilities of FE-programs

In the following a brief summary is presented of capabilities with regards to
analysis of rubber components in the well known and wide spread finite element
codes ABAQUS, ANSYS, and MARC. The programs FLEXPAC and NISA are
also included in this overview.

All programs discussed are capable of hyperelastic FE-analysis for large strains
in two or three dimensions. The programs also include capabilities for handling
damping on a structural level by defining a global damping matrix as a linear
combination of the mass and stiffness matrices.

The two most versatile programs for the analysis of elastomers appear to be
ABAQUS and MARC. The capabilities of these two programs are similar, the
differences between them being indicated. A more thorough discussion of the
terms dealt with here and the topics considered is presented in Chapters 3 and 5.

ABAQUS

ABAQUS allows both hyper-viscoelastic analysis for steady-state and transient
analysis. A very comprehensive theory manual is a unique feature of the pro-
gram’s documentation in contrast to MARC and the other programs.

ANSYS

ANSYS provides no hyper-viscoelastic models for transient or steady state dy-
namic analysis involving large strains, although it allows for viscoelastic analysis
for small strains to be carried out.

14




FLEXPAC

FLEXPAC has special features for fracture mechanics analysis and fatigue for
elastomers. The program provides no hyper-viscoelastic analysis for large strains.

MARC

MARC possesses all the features regarding elastomers included in ABAQUS and
is unique in providing a damage model capable of assessing Mullin’s effect.

NISA

NISA provides a combination of hyperelastic analysis and modeling of damping
on a structural level and also analysis of material damping in terms of viscous
damping. These capabilities regarding damping can also be used in transient
analysis.

1.4 Test methods

This section contains brief accounts of some ISO-standard mechanical tests. Other
tests, some of them non-standard, are mentioned in Chapter 3 which concerns
the determination of material parameters for static elastic FE-analysis.

Test methods are discussed in detail in Gent [5] Chapter 10 and in Friberg [4]
Chapter 6.

1.4.1 ISO-standard mechanical tests
A brief description of some ISO-standard tests follows.

Hardness 15048, ISO7619

Hardness is measured in degrees and is based on the indentation of a definined
indentor under constant load (as briefly described in Section 1.2). Three scales
are commonly used; IRHD (International Rubber Hardness degrees), Shore A
and for hard materials Shore D. IRHD is preferred for most specifications, but
Shore A is also in widespread use.

Tensile strength and elongation ISO37

A standard dumbbell-type test piece of known cross sectional area is stretched
until it breaks. The force at break is recorded, the tensile strength obtained being
expressed as force per unit of the original (unloaded) area. Elongation is defined
as the engineering breaking strain, expressed in %.
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Stress at a given elongation ISO37

The stress for a given elongation is measured as the force per unit of the original
area, required to extend the dumbbell specimen by a specified percentage of its
original length, for example at 100%, 200% or 300% strain.

Shear modulus ISO1827

The standard shear test is a quadruple shear test, using a specimen made of four
rectangular blocks of rubber connected to metal. The specimen is loaded to 30%
shear strain by applying a force at a constant rate of deformation. The shear
modulus is determined from the force required for 25% shear strain.

Tension set ISO2285

A standard test piece of known length is stretched by a stated percentage for a
certain period of time and is then released. After recovery, the length of the piece
is measured and the tensile strain remaning is determined.

Compression set ISO815

A cylindrical specimen is compressed to a fixed height at a defined temperature for
a specified period of time. The cylinder is then released and is allowed to recover,
and its height being measured. The compression set that results is expressed in
% as the deformation remaining divided by the initial deformation.

Stress relaxation IS03384

A cylindrical specimen is compressed to a fixed height, the decrease in compressive
force being measured.

Density ISO2781
Density, defined as the mass per unit volume, is measured by weighing the sample

in air and in water.

Resilience IS0O4662

Resilience is obtained by standard test equipment in which a test piece is struck
with a pendulum and the bounce-back of the pendulum is measured.

Dynamic modulus and damping ISO4664

The dynamic modulus and the damping are determined from the complex mod-
ulus obtained in a forced vibration shear test at 10 Hz at a fixed amplitude.
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Tear strength 1SO34

Standard test pieces (of the trousers, angle, and crescent type), either nicked or
unnicked, are used to measure the force required to tear the test piece.

Tension fatigue ISO6943

A standard dumbbell specimen is exposed to cyclic loading, the number of cycles
required for failure being measured at different maximum stress levels, yielding a
Wohler type diagram.

Ozone resistance 1S0O1431

The test pieces are usually placed under a small degree of tension, for example by
bending them round a mandril or stretching them by 5%. Samples are exposed
under static conditions to a controlled atmosphere containing ozone.

The ozone causes the rubber to crack. The cracks are graded either by stan-
dard photographs, by measurements or by description, e.g. visible under "10 x
magnification”, ”visible to the unaided eye” and the like. The results can be
recorded either as the time required for a particular degree of cracking to be
obtained or the grade of cracking apparent after a fixed period of time.

Accelerated aging ISO188

Heat aging is widely used as a method for evaluating long-term aging properties.
Hardness and dumbbell-type tensile test pieces are placed in an air-circulating
oven for a specified period of time at a given temperature (e.g. for 7 days at
70°C). The properties of the rubber are then tested and are compared with the
properties prior to aging. For each of the properties the percentage retained is
recorded. Change in hardness, for example, is recorded in degrees.

1.5 Mechanical data on materials

Tables of material properties are available in Friberg [4] Chapter 10, Table 10.3,
p. 307 and in Freakley and Payne [2] Appendix I, p. 639. See the discussion in
Section 1.7.1 as well. Properties corresponding to the ISO tests already discussed
are given for a number of different rubbers in the references.

MRPRA Engineering Data Sheets is a series giving detailed information on
the mechanical engineering properties of 50 different natural rubber vulcanizates.

Another source to mechanical data is RAPRA Abstracts database which in-
cludes the worlds largest collection of published literature on rubber and plastics.

The articles cited in the following chapters also contain information on mate-
rials in more dispersed form.
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1.6 International research

Tun Abdul Razak Research Centre, TARRC (formerly MRPRA)

This is a part of the Malaysian Rubber Research and Development Board, located
in England. It conducts research and support regarding all aspects of natural
rubber and its use.

MRRDB, The Malaysian Rubber Research and Development Board, is a Gov-
ernment agency responsible for research, technical development and promotion in
support of the Malaysian rubber industry. Extensive research and development
activities are carried out at its research centres, the Rubber Research Institute of
Malaysia (RRIM) and the Tun Abdul Razak Research Centre (TARRC) in the
United Kingdom.

Address: Tun Abdul Razak Research Centre, Brickendonbury, Hertford SG13
8NL, United Kingdom. Tel: +44 (0)1992 584966, Fax: +44 (0)1992 554837,
E-mail: general@tarrc.tcom.co.uk.

RAPRA Technology Ltd

RAPRA, Rubber And Plastics Research Association, conducts on research in the
rubber and plastics area. Formerly the Research Association of British Rubber
Manufacturers, it is now RAPRA Technology Ltd. is a multinational associa-
tion of industrial firms found in some 30 countries involved in the manufacture,
processing, and use of rubber and plastics materials and products. The RAPRA
Abstracts database includes the world’s largest collection of published literature

on rubber and plastics.
Address: Rapra Technology Ltd, Shawbury, Shropshire, SY4, 4NR, UK. Tel:
+44(0)1939 250383, Fax: +44 (0)1939 251118. Email: info@rapra.net.

DIK, Deutsches Institut fiir Kautschuktechnologie e.V.

A research institute that conducts research on all matters relating to the needs
of the rubber industry.

Address: DIK e.V: Hannover, Eupener Strasse 33, 305 19 Hannover, Tyskland.
Tel: +49 (0)511-842 01-0, Fax: +49 (0)511-8386826. Email: DIKautschuk@t-
online.de.

Rubber Process Engineering Centre, RuPEC

A sub-department of IPTME (Institute for Polymer Technology and Materials
Engineering), Loughborough University. Current research topics include rubber
mixtures, the microstructure and characteristics of elastomer mixtures, and the
use of finite element analysis in rubber manufacture.

Address: IPTME, Loughborough University, Loughborough, Leicestershire,
I.E11 3TU, UK, Tel: +44 (0) 1509 223171 or 223331, Fax: +44 (0) 1509 223949.
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University of Akron, Institute of Polymer Engineering

One of the largest centers for rubber research in the world. The College of Polymer
Science and Polymer Engineering consists of the Polymer Science and Polymer
Engineering Departments, as well as two research units- the Institute of Poly-
mer Science and the Institute of Polymer Engineering, and the Akron Polymer
Training Center, a college devoted exclusively to polymer education and research.
Alan N. Gent is Professor of Polymer Physics and Polymer Engineering at the
University.

Adress: University of Akron, Institute of Polymer Engineering, Ohio 44325~
0301.

MERL

MERL Materials Engineering Research Laboratory is an independent British
company founded in 1986 by a small group of polymer scientists and engineers,
providing research and development, finite element analysis, laboratory testing
and consultancy services on polymeric materials for engineering systems and
structures. MERL has a client base of several hundred companies worldwide.

Address: Tamworth Road, Hertford SG13 7DG, England, Tel: +44(0)1992
500120, Fax: +44(0)1992 586439

1.7 Literature, sources of information and edu-
cation

The general textbooks on engineering with rubber cited frequently in this survey
are Freakley and Payne [2] Theory and Practise of Engineering with Rubber,
Friberg [4] Konstruera 1 gummi, Gent [5] Engineering with Rubber, and Lindley
[10] Engineering Design with Natural Rubber. A review of these books and of
other general texts in the area is presented below.

If only one book were to be recommended, the choice would fall on Engineering
with Rubber, edited by Gent. It is very comprehensive and up-to-date and covers
most matters relevant to the design of rubber units.

Nonlinear finite element analysis of elastomers [12] from MARC Analysis Re-
search Corporation is a booklet (48 pages) providing a very satisfactory summary
of topics in finite element analysis of elastomers, without mathematical deriva-
tions.

Scientific articles on computational methods in rubber engineering, on the
other hand, are usually on a very high mathematical level. It is often easier to
understand these subjects through use of manuals for finite element programs,
see for example [9] ABAQUS User’s manual.
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1.7.1 General textbooks
Konstruera i gummi [4] (360 pages, Swedish)

(Designing in Rubber), G. Friberg (editor), PGI and Sveriges Mekanfoérbund,
Ljungforetagen 1986.

Contents: Deals mainly with the selection and characteristics of different materi-
als, as well as methods of testing, and simple designing examples. Includes many
tables of data.

Data on materials: Characteristics of different types of rubber in terms both

of-relative merits and of absolute values. Includes mechanical characteristics, .

ozone resistence, aging characteristics, chemical resistance (highly detailed) and
electrical characteristics.
Mathematical details: Very limited.

Elastguide for konstruktdrer [11] (50 pages, Swedish)
(Guide to Elastic Materials for Constructors), H. Palmgren, Plast Nordica 1977

Contents: Although rubber materials are dealt with in only a very general way,
readers content with being presented many facts but not desirous of going into
matters in depth are provided a good basic description.

Data on materials: Limited.

Mathematical details: None.

Gummi som konstruktionsmaterial [3] (100 pages, Swedish)

(Rubber as a Construction Material), Frangeur, Friberg, Johansson, Levin, Lin-
deberg, Nilsson, and Nordenskjold. Ingenjorsforlaget 1975.

Contents: General topics on rubber engineering.

Data on materials: Very limited. Vibration and noise insulation data; comparison
with other types of material. A brief summary of the mechanical characteristics
of different rubber types.

Mathematical details: Only few mathematical equations.

Engineering with Rubber [5] (320 pages)
A. N. Gent, Oxford University Press, 1992.

Contents: Introductory text describing principles of rubber science and rubber
technology. Comprehensive and up-to-date. Covers most aspects relevant to the
design of rubber units.

Data on materials: Has tables containing limited material data on the most
usual rubber types. Gas permeability and solvent and interaction parameters for
various rubber types are also included.
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Mathematical details: To some extent. Equations are stated without derivations.

Theory and Practice of Engineering with Rubber [2] (650 pages)
P. K. Freakley, A. R. Payne, Applied Science 1978.

Contents: Introductory presentation containing a summary of the characteristics
of rubber generally and a short review of different types of rubber and the specific
characteristics of each.

Data on materials: Basic characteristics of the 17 most common types of rubber.
Mathematical detasls: Contains many simple formulas and computational meth-
ods.

Engineering design with natural rubber [10] (35 pages)
P. B. Lindley, MRPRA 1992

Contents: Mechanical characteristics, aging characteristics and the like, but only
for natural rubber. Considerable material on the design of cushioning and insu-
lating products. Elementary examples of product design and of the computations
required.

Data on materials: Limited, presenting a number of brief tables.

Mathematical details: Various computational exercises.

Gummimaterial, Hogre kurs i gummi- och plastteknologi 2G [6] (130
pages, Swedish)

(Rubber Material, Advanced Course in Rubber and Plastic Technology 2G),
Sveriges Gummitekniska Forening 1996

Contents: Summary presentation of the most common types of rubber material.
Detailed presentation of ingredients and mixtures.

Data on materials: Not directly, but dispersed through the text.

Mathematical details: None.

Gummi! Ett utbildningsmateriel for gummiindustrin. [7] (300 pages,
Swedish)

(Rubber! Training -program material for the rubber industry.)

Contents: 9 booklets of about 30 pages each. Materials, processes, tests and
control, products, etc. Descriptive review without going into depth.

Data on materials: Presented in a table showing mainly qualitative (relative)
merits for a large number of rubbers.

Mathematical details: None.
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Engineering in rubber [1] 24 pages

Haboro Rubber Company Ltd, England 1997.

Contents: A brief introductory account of different practical aspects of rubber
engineering. Available free of charge from Harboro Rubber Company (E-mail
admin@harboro.co.uk).

Data on materials: Presented in tables showing mainly the qualitative (rela-
tive) merits of a number of commonly-used rubbers.
Mathematical detasls: None.

1.7.2 Periodicals

Some well-known periodicals in the area are the following:

Automotive Engineering

Journal of Applied Polymer Science
Journal of Natural Rubber Research
Journal of Rheology

Journal of Sound and Vibration
Kautschuck Gummi und Kunststoffe
Polymer Testing

Rubber Chemistry and Technology
Rubber Developments

Rubber Plastics and Composites
Rubber World

1.7.3 Web sites

Considerable information is available at various web sites. Here are some inter-
esting sites to start with:

MERL: www.merl-1td.co.uk
MRPRA: www.rubber.demon.co.uk

o RAPRA: www.rapra.net

e University of Akron: www.polymer.uakron.edu
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Chapter 2

Basic considerations regarding
choice of material and its
specifications

M. BELLANDER, S. PERSSON, AND B. STENBERG

SQummaries of the characteristics of different types of rubber material are available
in the literature reviewed in Chapter 1 and in this chapter. Such characteristics
are important for the selection of a suitable rubber material. Issues relevant
to the selection of an appropriate type of rubber for the application at hand is
the subject of section 2.2. A special section on characteristics of thermoplastic
elastomers is also included in section 2.3.

2.1 Descriptions of some rubbers

Descriptions of properties of different rubbers are available in several sources for
example in Friberg [3] chapter 3, in Gent [4] chapter 2, in Freakley and Payne [1]
chapter 1, in Franta [5], and in Eirich et al. [6]. The text in this section is based
on references [2] and [7].

Rubber materials can be classified into different categories in many different
ways. In this text we will have the following classification: Normal Rubber and
Specialty Rubber types, the latter which in turn can be classified into Large Volume
and Low Volume types. The nomenclature and abbreviations of rubber materials
may sometimes be a little confusing. Table 2.1 gives the common names in
Swedish and English and the abbreviations according to ISO1629. The general
properties of the rubbers to be described, and some more in addition, are given
in tables 2.2 and 2.3. The Swedish Institution of Rubber Technology (SGF) has
compiled the Rubber Handbook [8] which contains a lot of information about
commercial materials, including both rubber materials and additives.
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2.1.1 Normal rubber types
Natural rubber, NR (cis-polyisoprene):

Natural rubber is the original rubber material which has been in commercial use
long before the turn of the century. It is one of the most widely developed rubbers
and it also usually available at a low price.

Properties:

NR vulcanisates show a high tensile strength over a large hardness range.
The high tensile strength is due to the self-reinforcing of the polymer obtained by
crystallization (aligning of polymer chains when strecthed). This means that even
qunfilled NR - has an unexpected high tensile strength. NR is, except for butadiene
rubber (BR) the rubber material that shows the highest elasticity of all rubber.

Other conspiciuous properties of NR, are low permanent set and stress relax-
ation, excellent electrial properties and high resistance to abrasion and fatigue.

The highest temperature of use for NR is around 90°C. NR vulcanisates are
elastic down to -55°C. NR is like other unsaturated rubber materials sensitive
to ozone. The ozone- and weather-resistance can be improved by addition of
antiozonants in combination with waxes.

NR is not resistant to mineral oils or fuels, while the resistance to organic and
inorganic chemicals such as non-mineral based brake fluids, silicon oils, greases,
glycols, alcohols, water and non-oxidizing water-solutions (acid, bases, salts) is
good.

Typical Applications:

NR is the best choice in a lot of applications where low heat build-up is a
demand, such as large truck tires, tire frames, vibration dampers, springs and
rubber bearings. Other important applications for NR. are hoses, gaskets and
seals, conveyor belts, rollers, rubber coated fabrics, elastic bands, medical app-
plications and condoms.

Isoprene Rubber, IR (cis-polyisoprene):

IR is the synthetic variant of natural rubber. Even though they have identical
chemical structure, they do not behave exactly the same. This difference is mainly
due to different molecular weight and molecular weight distribution. IR tend to
crystallize less than NR, thereby lowering the mechanical properties. On the
other hand, the low temperature properties are somewhat better for IR. The long
term properties and chemical resistance are almost identical as those of NR.
Typical Applications:

IR can be used pure or blended together with NR in most applications where
NR is used.

Styrene Butadiene Rubber, SBR (polystyrene-co-butadiene):

SBR is a synthetic rubber which is easy to process in large quantities. Widely
used in the footwear and tyre industries.
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Properties:

In opposition to NR, unfilled SBR shows very low tensile strength (typically
10-15% of NR). This is due to the fact that SBR cannot crystallize upon elon-
gation, as NR does. To obtain acceptable properties, SBR must be filled with
reinforcing fillers, such as carbon black. The elasticity and low temperature
properties are inferior compared to NR, while the heat resistance is better. The
temperature range of SBR is between -50 and +100°C. As most other highly
unsaturated elastomers, SBR shows bad ozone resistance. However, this can be
improved by blending with EPDM and by addition of antiozonants together with
protecting waxes. The chemical resistance of SB is very much like that of NR.
Typical Applications: E

SBR. was developed during the Second World War, to replace NR. Gener—
ally, SBR can replace NR in most applications, except for demanding dynamic
applications such as truck tires and certain dampers and bearings.

2.1.2 Specialty rubber types - large volume

Ethylene Propylene Rubber, EPDM (Polyethylene-co-propylene-co-
diene monomer) and EPM (Polyethylene-co-propylene monomer):

Properties:

EPDM was originally developed in 1950s for tyre applications. It became
more widely used because of its suitability for outdoor use. Ethylene Propylene
Rubbers are the most water resistant type of rubber - also very resistant to most
water based chemicals. It has a very inert structure (low degree of unsaturations),
and remains stable over long periods of time. Very good weathering resistance.

Ethylene Propylene Rubbers can withstand temperatures of up to 120°C for
extended periods of time (months). Drawbacks are that they do not resist oil or
oil based products. Compression set is not as good as some other rubbers, but
can largely be improved by careful compounding.

Typical Applications:

Ethylene Propylene Rubbers is used in many different applications, such as O-
rings, gaskets, door- and window seals, cable insulation, roller-coating, conveyor
belts, hoses, bellows and clothing.

Chloroprene Rubber, CR (Polychloroprene):

Properties:

CR is one of the first synthetic rubbers developed in the search for oil resis-
tant rubber. It is widely used due to its combination of useful properties and
comparatively low price. One common trademark of CR is Neoprene which is a
registered trade mark of Du Pont.

CR is resistant to a wide range of hostile environments including oils and
chemicals, and is very weather and water resistant. It can withstand temperatures
from -30°C to 95°C. Easy to process and compound, offering cost benefits. It
has a tendency to tear once there is initial damage. CR may crystallize during
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storage or use, causing temporary stiffening (increase in modulus/hardness). If
parts are deformed during crystallisation, they may take on a set. However,
crystallisation is a readily reversible phenomenon and can be removed by warming
to temperatures higher than 80°C and can be prevented by the use of special
grades.

Typical Applications:

The most important applications of CR includes adhesives, hoses, v-belts,
coated fabrics, cable mantles, tire sidewalls, seals and gaskets in contact with
cooling media. CR is not particularly resistant to oil, but it is inherently flame
retardant to some degree (due to the presence of the halogen atom - chlorine - in
the polymer.chain). CR is particularly useful in marine environments due to its
good ozone resistance.

Nitrile Rubber, NBR. (Polyacrylonitrile-co-butadiene):

Properties:

NBR is another early development in the search for an oil resistant rubber.
It is the most suitable rubber for applications requiring resistance to petroleum
based fluids. Rubbers with higher degrees of resistance are available but these
are much more expensive. It shows good high temperature resistance - up to
100°C (120°C with special cure systems), and is economical to compound and
produce. It has low permeability to gases. Drawbacks are, poor resistance to
outdoor weathering without special compounding (antiozonantz and waxes) and
flammability with toxic fumes.
Typical Applications:

NBR is the most common rubber for oil and fuel resistant components such
as gaskets and seals, membranes, hoses, and cable mantles.

Butyl Rubber, ITR (Polyisobutylene-co-isoprene):

IIR was first introduced during the Second World War largely for use in inner
tubes. IIR and its derivatives have retained an important role as special-purpose
rubbers with production similar to ethylene propylene rubbers and it is only
exceeded by SBR, NR, and BR.

Typical Applications:

The main use of IIR is in applications which demand a low gas permeability,
such as inner tubes for vehicles, football bellows, vacuum seals, and membranes.
Other applications are vulcanisation bellows, steam hoses, shoch absorbers, gas-
kets, cable insulation, and encapsulation of medical bottles.

2.1.3 Specialty Rubber types - low volume
Acrylic Rubber, ACM:

Properties:
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ACM is a synthetic rubber which is particularly resistant to hot oils. Further
it shows excellent resistance to oxidation and weathering. Low temperature appli-
cations are limited to temperatures above -20°C. It has poor chemical resistance
to acids and bases. The resilience below 70°C is very low.

Typical Applications:

ACM is used preferably in applications where the combination of resistance

to oils, oil additives and heat is a demand. Examples are O-rings and gaskets.

Ethylene Acrylic Rubber, AEM (Polyethylene-co-acrylate):

Properties:

Trademarks of AEM are for example Vamac (Du Pont) and Hycar (BF Goodrich).
AEM provides good oil resistance over a wide temperature range. It is more ex-
pensive than nitrile rubber but cheaper than silicone rubber. Moreover, it shows
good resistance to oxidation and weathering, and good oil resistance. It is strong
and abrasion resistant.

Typical Applications:

The field of use is quite similar to that of ACM. AEM is used preferably over
ACM when low temperature properties are important. Examples of applications
are seals, gaskets, hoses, and ignition-cable mantles.

Silicone Rubber, Q (Polysiloxane):

Properties:

Silicone rubber is a synthetic rubber with a wide temperature range and out-
standing resistance to weathering. It is exceptional among the synthetic rubbers,
as it contains both an organic and an inorganic (silicon) part.

The silicon rubbers can be divided into three groups: 1) Heat vulcanised non-
liquid rubbers 2) Heat vulcanised liquid rubbers 3) Room temperature vulcanised
(RTV) rubbers, supplied "ready-to-use” in one- or two-component systems.

Silicone rubbers can be used within a wide temperature range, with excep-
tional properties at low temperatures. The resistance to weathering is extremely
good and the electrical properties are excellent. Other favorable properties are
good resistance to oil and low level of toxicity. Furthermore, silicone rubbers are
easily coloured.

Drawbacks are, low strength and poor resistance to fuels. It is also expensive
compared to other rubbers.

Typical Applications:

The main use is in electrical insulation, ignition cables, O-rings, static seals,
breathing masks, hoses and roller coating in the medical and food industry. The
RTV-types are used mainly in the building industry, for encapsulation of elec-
tronic components and for production of flexible moulds.
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Fluorocarbon Rubber, FPM (copolymer of different fluoro-containing
monomers):

Properties:

All fluoro-containing polymers are very stable and have an exceptional resis-
tance to oxidation, weather, fire, chemical attack, and swelling in many different
liquids, like water, fuels, oils and most chemicals. Some of the limitations may
be use at low temperatures, -20°C being the limit for flexibility, and their high
price.

Typical Applications:

FPM.is used mainly in critical applications where the demands are extreme
in terms of resistance to oils, fuels, chemicals and elevated temperatures. FPM
can be used continuously at +200°C and intermittently, for shorter times, up
to +300°C. Main products include O-rings, gaskets, shaft-seals, fuel hoses, mem-
branes, and cable mantles under extreme conditions. FPM is approximately 30-40
times more expensive than natural rubber.

Fluorosilicone Rubber, FMQ:

Properties:

Fluorosilicone rubbers are compounded in the same way as conventional sil-
icone rubbers. The properties of FMQ are also similar to conventional silicone
rubbers. But, in addition, they show a better resistance to many aggressive oils
and fuels. However, the temperature resistance is somewhat limited as compared
to conventional silicone and fluorocarbon rubbers. FMC performs excellently in
the temperature range -60°C to 175°C.

Typical Applications:

FMQ is more expensive than conventional silicone rubber, and is used mainly
in applications where low temperature properties in combination with low swell
are important.

Chlorosulphonated Polyethylene, CSM:

Properties:

CSM, also known under the trademark Hypalon, was developed in the 1950s
as a speciality rubber for rugged applications. It is resistant to oil and fluids,
especially at higher temperatures, above 125°C. It is extremely resistant to ozone
and weathering, being able to withstand harsh outdoor conditions for up to 15
years. The fuel resistance, however, is poor.

Typical Applications:

Situations where there is likely to be heavy weather conditions or exposure to

hot liquids and/or gases.
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Hydrogenated Nitrile Rubber, HNBR (Hydrogenated Polyacrylonitrile-
cobutadiene):

Hydrogenated nitrile rubber provides good all round performance at a compound
cost between Nitrile and Fluoroelastomer. Its highly saturated main chain pro-
vides good resistance against thermal oxidation and chemical attack.
Properties:

HNBR has good physical properties, including abrasion resistance, at high
temperatures and good dynamic behaviour and flex cracking resistance at elevated
temperatures. It has excellent heat, ageing and ozone resistance and outstanding
resistance to steam and hot water.

Limitations are the absence of inherent flame retardency and the poor electri-
cal properties. Furthermore, it is unsuitable in contact with aromatic and polar
organic solvents.

Typical Applications:

HNBR is used in diaphragms requiring chemical and heat resistance, chain

tensioners, seals in vehicle engines, oil exploration and production.
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English Svenska Designation
1501629
Acrylonitrile butadiene rubber Nitrilgummi NBR
Alcylated CSM Alkylerat CSM ACSM
Brominated butyl rubber Brombutylgummi BIIR
Butadiene rubber Butadiengummi BR
Butyl rubber Butylgummi IR
Carboxylated NBR Karboxylerad NBR XNBR
Chlorinated butyl rubber Klorbutylgummi CIIR
Chloropolyethylene Kloretengummi CM
Chlorosulphonated polyethylene Klorsulfonerad polyeten CSM
Epichlorohydrine copolymer rubber Epiklorhydringummi (sampolymer) ECO
Epichlorohydrine-ethylene oxide Epiklorhydringummi (sampolymer) GECO
Epichlorohydrine homopolymer rubber | Epiklorhydringummi (homopolymer) | CO
Epoxidised natural rubber Epoxiderat naturgummi ENR
Ester polyurethane Uretangummi EU
Ethylene acrylate copolymer Akrylgummi ACM
Ethylene acrylic terpolymer Ften-akrylgummi AEM
Ethylene copolymer Etenpropengummi EPM
Ethylene propylene diene terpolymer Etenpropen-diengummi EPDM
Ethylvinyl acetate Eten-vinylacetatgummi EVM
Fluoro, fluoroalkyl or fluoroalkoxy Fluorgummi FPM
Fluoromethyl silicone Fluorsilikongummi FMQ
Hydrogenated NBR Hydrerat nitrilgummi HNBR
Isoprene rubber Isoprengummi IR
Methy]l silicone with vinyl groups Silikongummi VMQ
Natural rubber Naturgummi NR
Perfluoro rubber Perfluorgummi FFKM
Phenyl/vinyl methyl silicone Silikongummi PVMQ
Polychloroprene Kloroprengummi CR
Polyester polyurethane Uretangummi AU
Polyfluoralkoxyphosphazene Polyfosfazengummi FZ/PZ
Polynorbornene Norbornengummi PNR
Polysulphide rubber Polysulfidgummi OT/EOT
Propylene oxide/allyl glycidyl ether Propengummi GPO
PVC/NBR blends Nitril-PVC-blandning PNBR
Styrene butadiene rubber Styrenbutadiengummi SBR
Tetrafluoroethylene propylene rubber | Tetrafluoretenpropengummi FEPM

Table 2.1: Names and abbreviations for common rubber materials.
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2.2 Selecting the most suitable rubber

To select the most suitable rubber the following information is required:

a) The highest temperature likely to be encountered in service.

o

The highest temperature at which continuous service will be required.

]

o

What fluids will be encountered in service and at what temperature?

)
)
) The lowest temperature at which the component must remain operable.
)
e)

Is the frequency of contact with the fluid continuous, intermittent, or very
occasional (e.g. accidental contamination)?

f) Is long-term weather or ozone resistance an important factor?

Tables 2.2 and 2.3 below shows properties of the rubbers described in section 2.1
as related to these questions. The cost factor is also indicated in the table.
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2.3 TPE-materials

Although the first TPE materials appeared on the market already during the
1950s, the variety of different TPE materials that have become available has in-
creased explosively with the introduction of new manufacturing techniques. The
development of increasingly specialized materials with improved characteristics,
however, can sometimes make it more difficult to find the right material for a
particular application. A comprehensive review on thermoplastic elastomers has
been given by Holden et al. [9].

What 1s. TPE?

TPE stands for ThermoPlastic Elastomers. These represent polymer chains
consisting partly of soft and partly of hard molecule segments. The soft seg-
ments are respousible for the rubberlike behavior of the material, whereas the
hard segments, which correspond to the crosslinks hold it together to form an
elastic material. What makes TPE material so special is the fact that, when
the hard segments are warmed up, they assume a fluid character, allowing the
material to be moulded freely into shape, just as a usual thermoplastic such as
polyethylene can be. This is the major difference between TPE and usual rubber
material. When cooled, the material becomes solid again, and rubberlike in its
characteristics. Since such a process can be repeated, TPE material can be recy-
cled far more easily than vulcanized rubber can. A limitation is, however, that
each warming up results in a thermal stress on the polymer, which leads to a cer-
tain breakdown of the material and thereby lower properties. Thus, the material
cannot be recycled indefinetely without a deterioration in its characteristics.

2.3.1 Temperature resistance

The highest temperature at which a TPE material can be used is a function
of the temperature at which the hard segments in the polymer chains soften
and begin to flow. The polymer chains become readily movable so that they
are free to separate from each other. This results in the material’s losing its
mechanical characteristics. Even at a temperature below that at which the hard
segments soften, however, the mechanical characteristics of the material begin
to deteriorate. Particularly when TPE material is placed under strain for long
periods of time, its deformation resistance becomes inferior to that of vulcanized
rubber material, i.e. rubber material in which crosslinks are present.

2.3.2 Resistance to solvents

In order for a TPE material to be resistant to a particular solvent, the hard seg-
ments must be resistant to it. Since there are no chemical crosslinks between the
polymer chains, the material would otherwise break down completely. Advances
in the TPE area during the past few years, however, have led to the development
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of increasing numbers of TPE materials that are resistant to both oil and sol-
vents. It is unlikely, on the other hand, that TPE materials will come to replace
vulcanized rubber in all applications in which resistance to solvents is called for.

2.3.3 Commercial names

Since an intensive development of new TPE materials is underway, new materi-
als, new quality levels and new commercial names for such materials appear all
the time. This sometimes makes it difficult to choose a suitable material within
the jungle of different names that flourish. A list of the different TPE materials
- presently found and of their commercial names, as well as of the companies man-
ufacturing them, is contained in Table 2.4. Explanations of abbreviations used
in the Table are given below:

Aleryn  Chlorinated double-bonded ethylene interpolymer mixture
EPDM Ethylene/propylene diene-monomer

PP Polypropene

EVA Ethylene vinylacetate

TPU Termoplastic polyurethane

SBS Styrene butadiene styrene

SEBS  Styren ethylene butadiene styrene

TPO Thermoplastic olefin

36




Commercial name | Type Manufacturer
Acsium Alcryn*® DuPont Dow
Adiprene Polyether TPU | Dupont
Alcryn Alcryn* DuPont Dow
C Flex SEBS Notdome
Calprene SBS Repsol
Deflex TPO RPI/Dexter
Desmopan TPU Bayer

Diorez TPU Hyperlast
Diprane TPU Hyperlast
Dryflex SEBS Elastoteknik
Dynathane TPU Hyperlast
Dytron Alcryn* AES

Elvax EVA DuPont Dow
Escorene Ultra EVA Exxon

ET- semicon Alcryn* Borealis
Ferroflex TPO Ferro Corp
ET-polymer Aleryn* Borealis
Finaclear SBS PetroFina
Finaprene SBS PetroFina
Forflex Modif. PP So.F.Ter.
Forprene PP+EPDM So.F.Ter.
Geolast Alcryn* AES

Hytrel Polyether-ester | Dupont
Kelburou TPO DSM
Laprene SEBS So.F.Ter.
Laripur TPU COIM
Levaprene EVA Bayer
Pellethane TPU Dow Chemicals
Polathane TPU Polaroid
Poytrope TPO A. Schulman
Santoprene EPDM/PP AES

SEBS Compound SEBS Borealis
Sofprene SBS So.F.Ter.
Solprene SBS Housmex
Telcar TPO Teknor Apex
Texin TPU Bayer

TPR TPE Uniroyal
Ureflex TPU Baul

Vector SBS Dexco
Vestolen TPO Chemische Werke Huls
Vistaflex TPO AES
Vitacom TPO TPO British Vita
Vyram EPDM/PP AES

Table 2.4: TPE: Commercial name, type and manufacturer.
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Chapter 3

Elastic properties and static
design

P.-E. AUSTRELL

This chapter, which concerns static elastic analysis methods, is divided into two
sections, the first dealing with spring stiffness expressions and the second with
finite element analysis. A good description of the elastic behavior of rubber is
essential for the designing of rubber units, which usually begins with some form of
static elastic analysis with the aim of deriving a particular load-deflection curve
or of determining the stress levels in a unit. This is achieved either by closed-
form expressions or by computer calculation methods such as the finite element
method.

The first section focus on spring stiffness expressions and closed form solutions
and the second section in this chapter concerns nonlinear finite element analysis.

3.1 Spring stiffness expressions

Spring stiffness expressions and closed form solutions are treated in most general
rubber engineering texts, such as in [6], [7], [8], and [13] which also presents
formulas for simple geometries and load cases. A short overview of spring stifiness
expressions is provided by Muhr [16].

Gent [8] (chapter 3) discusses these matters from a linear elastic point of view,
making use of linear elasticity theory to estimate the stress levels in bonded rubber
blocks subjected to tension or compression.

Matters within this area are also discussed by Grafstrom in [7] (chapter 8.1)
who present semi empirical diagrams concerning the design of rubber springs
of differing hardness. Recommended stress levels for different shape factors are
shown in diagrams.

Linear elastic relations are used in hand calculation methods for rubber springs.
Although rubber is known for its ability to undergo large elastic deformations,
in practice the strains to which many rubber springs are subjected to are rela-
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Figure 3.1: Basic load cases and corresponding elastic constants.

tively small. The spring stiffness expressions discussed in this section are valid for
strains of up to about 25% in compression or extension and of up to about 5%
in shear (according to Gent [8] Chapter 3 p.35). Suitable modifications of the
formulas are required for taking nonlinearities and inhomogenities into account.

3.1.1 Basic linear elastic relations

The basic assumtions are that the material can be regarded as a linear elastic,
isotropic, and homogeneous. With these assumptions it is sufficient with two
parameters to characterize the material. The use of Young’s modulus £ and
Poisson’s ratio v as material parameters is not suitable here. Young’s modulus
varies considerably with strain.

The shear modulus G and the bulk modulus B are more suitable as charac-
teristic material constants since rubber is quite linear in shear and its volumetric
strains are small so that G and B can be regarded as basically constant material
parameters (c.f. Figure 1.4).

Uniaxial stress

The first linear elastic relationship (c.f. Figure 3.1 at the left) used for deriving
spring stiffness expressions is

o = F, (3.1)
which is the conventional Hookes law valid for uniaxial stress, where o = P/A is
the stress, represented by the force P, divided by the cross section area A, and
where € = 6/L is the strain in the direction of the load. Young’s modulus can be
expressed then in terms of the bulk and shear modulus as

9BG
3B+G

since only two constants are required for caracterizing the material. Note that
(3.2) implies that for large values of the bulk modulus B, i.e. when incompress-
ibility is approached, E' = 3G .

E= (3.2)

Simple shear
The second relationship used is the expression for simple shear

T =Gy (3.3)
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where the loading is that shown in Figure 3.1 (middle).

Hydrostatic stress

The third relationship is valid when the elastic response is due to the bulk modulus
of the material. This is the case for very confined rubber springs, for example
springs consisting of thin layers of rubber as in some laminated rubber metal
components. The connection between hydrostatic stress p and volumetric strain
AV/V is given by

AV

p= B—V— (3.4)

where B is the bulk modulus. Hydrostatic loading is illustrated in Figure 3.1 (to
the right).

These linear elastic expressions are the basis for the spring stiffness expressions
taken up in the next section.

3.1.2 Compression and shear springs

Expressions for the stiffness of compression, shear, and combined shear and com-
pression springs will be discussed.

Compression springs

Figure 3.2: Compression springs with different shape factors. Cross sectional area
A and height H.

Figure 3.2 shows compression springs of different width-to-height ratios. The lat-
eral expansion is not particularly restrained in the compression spring at the left,
whereas the spring at the right is highly confined between the bonding surfaces.
It is reasonable to assume, therefore, that Hooke’s law (3.1) is approximately
valid (for moderate strains) for the spring to the left and that the volumetric
stiffness expression given by (3.4) is important for the spring at the right in the
figure. Using (3.1) and inserting it into o = —P/A and € = —u/H yields the
following stiffness expression valid for the spring at the left

3G A

P:KC - Kc:
U — 7

(3.5)
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Hardness Ey G k B
IRHD (MPa) (MPa) (MPa)
30 0.92 0.30 0.93 1000
35 1.18 0.37 0.89 1000
40 1.50 0.45 0.85 1000
45 1.80 0.54 0.80 1000
50 2.20 0.64 0.73 1030
55 3.25 0.81 0.64 1090
60 4.45 1.06 0.57 1150
65 5.85 1.37 0.54 1210
70 7.35 1.73 0.53 1270
75 9.40 2.22 0.52 1330

Table 3.1: The factor k related to the stiffness of carbon-black-filled natural rub-
bers, according to Lindley

the spring stiffness K. depending on Young’s modulus, which is equal to 3G. In
the highly confined case, the bulk modulus equation (3.4), with p = —P/A and
AV/V = —Au/AH = —u/H, yields
BA
P=Ku — K. =——. (3.6)
H
There is thus a considerable difference between the compression stiffness obtained
in the two cases since B ~ 1500G.
The transition between the influence of Young’s modulus to that of the bulk
modulus can be described by the so called shape factor S, defined as

loaded area (3.7)

~ force free area’

By definition, the loaded area is restricted to the upper bonded surface exposed
to the force P, the force free surface being the vertical surrounding (bulging)
surface shown in Figure 3.2. By defining the so called compression modulus E,
which is dependent upon the shape factor, the stiffness of the compression springs
obtained for various shape factors can be described in a single expression

K, = E,(5)= . (3.8)
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According to Lindley [13] p.33, the dependence of the compression modulus
on the shape factor can be expressed as

E,(S)=E (1+2k5%) (3.9)

where k is a factor between 0.9 and 0.5 which decreases with increasing rubber
hardness, as given in [13] Table 3 p.8., reproduced here as Table 3.1. A similar
table is given in [8] Chapter 8 p.215 of Sheridan et. al.

Lindley [13] also presents a nonlinear expression for compression springs

P = E.Ae(1+e) (3.10)

where e = u/H is the compression strain. For small values of e, the slope of
the force displacement curve given by expression (3.10) coincides with the linear
compression stiffness as given by (3.8).

Shear springs

Figure 3.3: Shear spring.

The basic expression used for the shear spring is Equation (3.3). Inserting 7 =
P/A and v = u/H yields the stiffness expression valid for the shear spring

Ga

PeKu — K,—
Y H

(3.11)
Expression (3.11) is valid as long as bending does not substantially influence the
mode of deformation, requiring that the height is small compared with the width.

For heigths that are sufficiently small, the forces on the vertical surfaces that
are present in the ideal state of simple shear, shown in Figure 3.1, are insignificant.

The transition from bending deformation in which the shear spring is rela-
tively high to the simple shear state in which the height is small is considered by
Gent p.40 and by Sheridan et. al. [8] p.213.
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Case 1

Determine the compression stiffness K, of a rubber cylinder of radius R and height
H bonded by steel plates. The initial Young’s modulus Ey is assumed to correspond
to approximately 50 IRHD material. Data for the cylinder are shown in Figure 3.4

Ve

R=0.15m H=0.Im
E, =2.IMPa

Figure 3.4: Cylindrical compression spring.
Solution:
The spring compression stiffness K, is given by (3.8)

K, = EC(S)g with FE.(S) = E (1+ 2k S?) (3.12)

where according to Table 3.1 the factor k = 0.75 for Fy = 2.1M Pa. For the cylindrical
component, the shape factor is

T R2

S = R 0.75

The compression stiffness can now be calculated:

7+ 152
10

K.=21(1+2-0.75-0.75%) = 273N/mm. .

This linear stiffness expression is compared with the nonlinear finite element solution
presented in Case 2 in Section 3.2.
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Combined shear and compression springs

Figure 3.5: Combined compression and shear spring.

The combined shear and compression spring will be illustrated here by an ex-
ample. Figure 3.5 shows two rubber blocks subjected to combined shear and
compression due to the inclined mounting by an angle a.

Compression and shear are considered independently, giving the force compo-

nents
P, =K.,u. P;,=K;u; (3.13)

in the compression and shear direction, respectively, dependent on the corre-
sponding displacements. In these components, the external load P can be ex-
pressed on the basis of equilibrium considerations as

P = 2P.cosa + 2P;sina . (3.14)
The displacements in the compression and shear directions are given by
Uy = UCOSQL Ug = USINQ (3.15)

where u is the displacement in the direction of the load P. Combining the equa-
tions yields the spring stiffness expression K for this combined load case

K = 2(K.cos’a + K;sin’a) (3.16)

where it can be readily seen that the stiffness depends on the angle a.
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3.1.3 Other stiffness expressions

Several other cases are considered in the references cited earlier, including many
axisymmetric cases. In the following, various formulas taken from Muhr [16]
which also involve the torsional stiffness of some axisymmetric components are
given. In the case of torsional stiffness the stiffness expression correlates a tor-
sional moment to a torsional angle, the spring stiffness being denoted by 1.

Figure 3.6: Cylindrical bearing.

As shown in Figure 3.6, the cylindrical bearings have “compressive” stiffnesses
K. and T,, which are affected by the shape factor, and “shearing” stiffnesses K,
and T, which are not.

The expressions involved are

K - 3rr2G(1 + 25%) 7 — 3rrtG(1 + 25%)
h 4h
and °G iG
T T
= TS =
K h 2h

where r is the radius and h is the height of the cylindrical component and the
shape factor is S = r/2h.

Figure 3.7: Bush mounting.

A hollow cylindrical bush mounting with the outer radius R, the inner radius
r, and the length L is shown Figure 3.7. It has the axial stiffnesses K, and T,
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which are not affected by the shape factor and the radial stiffnesses K, and 1,
which are affected by the shape factor.

The expressions for the axial stiffnesses are

_ZGL _ 4nGL
“In(R/r) L&

The expressions for the radial stiffnesses are
1
K, ~ LG T, = 1—2ﬁL3G

where it is assumed that L > 2R and the factor § is given by the smallest of the
following expressions

0.08L
R—r

B=p0 or B=p+ (06— Bs)
with

B 807 (R? + r?) 5 = 4 (R? +r?)
P = S5 T (R — (0 — 1) 'R+ D)in(Rfr) — (R2—r2)
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3.2 Finite element analysis

In this section finite element analysis, as well as material models describing the
nonlinear elastic behavior of rubber materials related to the derivation of material
constants for finite element analysis, are discussed.

For rubber units with complex geometry and loading, hand calculation meth-
ods are of limited value, computer methods neding to be used. The insufficiencies
of closed form solutions as compared with computer methods in more complicated
cases are discussed by Finney [5].

Figure 3.8: Material characterization, finite element analysis, and comparative
testing.

The finite-element method is the most versatile and successful computational
method used in solid mechanics. It provides a systematic procedure for analysing
structures of different types of material and arbitrary geometric form. The struc-
ture to be analyzed is divided into smaller parts, or elements, connected at nodal
points. The force-displacement relations for a particular element, i.e. the connec-
tion between nodal forces and displacements, can only be obtained if the relation
between stress and strain in the element is known. This relationship is provided
by the constitutive model (cf. Figure 3.8).

The steps involved in the finite element analysis of rubber units are shown in
Figure 3.8 and listed here. These are:

e Laboratory tests of rubber specimens.

e Determination of the parameters of the mathematical model for the elas-
tomeric material in question.

e Establishment of the finite-element model through geometric modeling, ma-
terial data input, and load specification.
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The first step concerns the experimental stress-strain values for the elastomeric
material in question. Test specimens made of the same material as the rubber
unit to be designed are manufactured and are tested in the laboratory.

In the second step the pairs of measured stress-strain values obtained are used
to calibrate the hyperelastic model, i.e. the mathematical model connecting stress
and strain. The hyperelastic model is fitted to the experimentally obtained stress-
strain values, and the parameters in the model are determined by some fitting
procedure, such as the method of least squares. Well-established hyperelastic
constitutive models, derived from a strain energy function, are implemented in
many commercial finite element codes.

- The first two items above result in a set of parameters defining the constitutive
model of the elastomeric material. These parameters, together with a geometric
description and a specification of the loads, provide the necessary input for the
finite element analysis in step three.

A simple introduction to rubber elasticity and to fitting to test data, relevant
to the first two steps listed above, can be found in [1] Chapter 2.

An example of the capabilities finite element analysis provides is given in Fig-
ure 3.9. The figure shows a simulation of the mounting and compression of a seal
used for concrete pipes. Rigid elements are employed in the mounting and com-
pression steps. The analysis involves several intricate features of finite element
analysis, such as large strains, nonlinear material behavior, contact conditions,
and nearly incompressible behavior. The analysis can among other things, reveal
whether the contact pressure between the pipe and the seal is sufficiently large.

The handling of incompressible material behavior is a specific problem in finite
element analysis. A large difference between deviatoric (shear) and volumetric
(bulk) stiffness tends to make ordinary elements far too stiff, and even complete
“locking” can be encountered. Special “hybrid” elements have been developed
that can circumvent the locking phenomena.

Several general-purpose finite element codes are available for nonlinear elastic
analysis. Among the best known are ABAQUS, ANSYS, MARC and NASTRAN,
to mention some of the best known.

The well-known texts of Zienkiewicz and Taylor (vol.1 and 2) [24] provide
a comprehensive treatment of different aspects of finite element analysis. An
introduction to the finite element method can be found in [18].
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Initial position

Mounting

Compression

Figure 3.9: Fzample: Analysis of a seal by means of computer simulation using
the finite element method.
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3.2.1 Nonlinear elastic material models

A theory of rubber elasticity, termed statistical theory based on the molecular
structure of the chain network, was developed by Treloar [21] and by others. This
theory resulted in a strain energy expression containing only one material param-
eter, which can be identified as the shear modulus. Mooney [15] and Rivlin [19]
developed the phenomenological theory of rubber elasticity. Mooney initiated
this work, Rivlin developed a general theory then on the basis of a strain en-
ergy density expression, postulated without molecular considerations. The strain
energy density function is regarded as a potential function for the stresses, the
- elastic properties being determined on the basis of this function in these so called
hyperelastic materials developed by Rivlin.

3.2.2 Strain energy density expressions

A function W, representing the strain energy per unit volume in the reference
geometry usually the undeformed geometry is introduced. Two general strain
energy function formats will be discussed here: the polynomial form and the
Ogden form. These functions are expressed in terms of strain invariants and
principal stretches, respectively.

The general polynomial form of the strain energy density function W, im-
plemented in most of the general finite element programs capable of handling
hyperelastic materials, is given by the series expansion

W= > Cy(li—3)I—3) (3.17)
§=0,j=0
where Cj; are constants and I; and I, represent the so called strain invariants,
which are generalized measures of strain. (The sum is formally written as a sum
to infinity, although normally only a few terms are used.)
The general form of the Ogden model [17] is also expressed by a series ex-
pansion, although the strain measure, as mentioned, is replaced by the principal
stretches \; according to

N
204 oy a; a;
W =3 0 403+ 2g —3), (3.18)

=1 2

with the material constants «; and p; . The Ogden model can in general not
be compared with the polynomial form, except for certain specific choices of the
constants.

In the polynomial form, the elastic constants are linear dependent, whereas the
Ogden form, have the constants as exponents, yielding a non-linear dependence
of the constants. Although this makes the fitting of the Ogden model more
complicated, the fit to experimental data obtained tends to be better and more
stable. However, for natural rubber vulcanizates, the special choice of constants
by Yeoh [23], disscussed below, with the three parameters Cig, Cg and Csg in
the polynomial form, gives an accurate and stable fit to experimental data.
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3.2.3 Specific models

A large number of strain energy density functions applying to different types of
rubbers have been proposed, their validity being dependent upon the range of
strain involved. Several of these choices with differing number of constants are
discussed by Charlton and Young [3], Finney and Kumar [4], and Treloar [21].
Some of these hyperelastic models are also discussed in [1] Chapter 3.

The Mooney-Rivlin model, having two parameters, Cyo and Cy, is a special
case of the polynomial form. It is widely used in modeling of rubber elastic-
ity, and it has been successfully fitted to experimental data for unfilled rubber
vulcanizates. In engineering problems, however, rubbers are often carbon-black-
filled vulcanizates of hardness 40-80 IRHD and for these rubbers, the agreement
with experiments obtained for this simple model is poor. Figure 3.10 shows a
comparison of the two-parameter Mooney-Rivlin model with the actual behavior
of a carbon black-filled rubber having a hardness of about 65 IRHD. For large
stretch values, the Mooney-Rivlin model is linear in tension whereas the actual
behavior of a carbon-black-filled rubber specimen is progressive. There is also a
deviation in simple shear, the Mooney-Rivlin model showing a linear behavior in
simple shear.
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Figure 3.10: The Mooney-Rivlin model compared to actual behavior of carbon-
black-filled rubber in compression/tension and simple shear.

The three-parameter model proposed by O.H Yeoh [23], defined by
W — 010(11 - 3) + OZO(Il — 3)2 —|— 030(11 - 3)3 (319)

yields the qualitative behavior of a carbon-black-filled rubber vulcanizate shown
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in Figure 3.10. This model yields correct physical behavior and is quite simple
having only three constants, which are linearly dependent.

Case 2

The ABAQUS input file required to determine the force-displacement relation for
the cylindrical damper in Case 1 Section 3.1 is given here:

*HEADING
Cylinder R=15 H=10,
Yeoh material (50 IRHD)
*k
*% Corner nodes
*%

*NODE
1,0.,0.
30,15.,0.
1001,0.,10.
1030,15.,10.

*%
*% Boundary node sets
sk
*NGEN, NSET=BOT
1,30,1
*NGEN, NSET=3YM
1,1001,100
*NGEN , NSET=TOP
1001,1030,1
*NGEN, NSET=0UT
30,1030,100
*
** Internal nodes.
*k
*NFILL,NSET=ALL
SYM,0UT,29,1
*k
** Element generation
*%
*ELEMENT , TYPE=CAX4H
1,1,2,102,101
*ELGEN , ELSET=RUB
1,29,1,1,10,100,100
*k
*% Material definition
*%
*MATERIAL , NAME=YEQH
*HYPERELASTIC,N=3
0.3493,0.0,-0.0363,0.0,0.0,0.0069
0.0,0.0,0.0,0.00,0.0,0.0
*SOLID SECTION,ELSET=RUB,MATERIAL=YEOH
*k
**% Fixed boundary conditions
Hok
*BOUNDARY
BOT,1,2
T0P,1
SYM, XSYMM
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The axisymetric mesh (radius 15 mm
and height 10 mm) is defined *NODE,
*NGEN, *NFILL, *ELEMENT, and *EL-
GEN instructions, giving the mesh below:

ABAQUS

The material parameters Cyy, Cag, and
Cyp are supplied in the *HYPERELAS-
TIC instruction.




Kk
*#% Calculation step

- The calculation step yields the deformed

*STEP , NLGEOM mesh below (30% compression):
+STATIC
0.1,1.,1e-10,0.1

*BOUNDARY

**TOP,2, »=5. AA@@S

#% Results: force and displacement
*k
*NODE PRINT,NSET=TOP

U
*NODE PRINT,NSET=BOT,TOTALS=YES
RF
*END STEP NN
T\ N
ST \\\ \\\
\ \ N
1] 1 LR A A \ \
1 ! 1 11 ] ] /
I” /L /|
T 717 717
i
%% %

6000 T T T T T T T T T

5000

4000
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2000
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Figure 3.11: Cylindrical damper. Comparison of force(N)-displacement(mm) re-
lations a) linear Eq. (8.8) b) nonlinear Eq. .(8.10) c) present finite element
analysis. (Increasing stiffness a) to c))

...............................................................
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3.3 Hyperelastic characterization

Hyperelastic characterization involves the choice of a strain energy density func-
tion, the type of test specimens to use, and the test procedure to employ. A review
of methods for characterizing the elastic behavior of rubber is given by Charlton
and Young [3]. A short but comprehensive description of the steps involved in
hyperelastic characterization is provided by Holst [10]. Discussions of the char-
acterizing of rubber can also be found in the documentation of finite-element
programs, for example [9] and [14].

As indicated, for static analysis the models discussed here concern only the
elastic properties. Laboratory tests designed to determine the elastic properties
thus must also account for inelastic effects and in particular, for stress softening.
It is desirable to perform some kind of pre-straining, or mechanical conditioning,
of the test specimens, since in engineering applications most rubber units are
exposed to some form of periodic loading which results in stress softening under
operating conditions. Procedures for mechanical conditioning are discussed in
James and Green [12], Yeoh [23], and in [1] Chapter 5.

Test specimens and analytical strain-stress expressions applicable for the fit-
ting procedure can be found in several sources for example in [3] and [9]. A
number of test specimens and the analytical expressions applicable to them are
presented in [1] Chapter 4. Test specimen accuracy as compared with the ideal
analytical expressions is also discussed in [1] Chapter 6. The topics of model
stability and of checking on stability are also addressed.

The stress-stretch relationship in compression and tension and the least square
fitting to experimental data are discussed in the following sections. The fitting
procedure will be illustrated by an example, where a carbon-black-filled natural
rubber vulcanizate is characterized in terms of the Yeoh model mentioned earlier.

3.3.1 Stress-stretch relationship

Figure 3.12: Nonlinear elastic bar loaded by force P.

The uniaxial stress-stretch relationship is derived here for a nonlinearly elastic
bar, shown in Figure 3.12. It’s original length is L and the cross-section area is
A. The force P causes the displacement u at the end of the bar. Strain energy
is stored up in the bar as the length increases to [ giving the stretch A =1/L.
The strain energy density, denoted by W, is calculated as strain energy per unit
volume of the undeformed bar, and assumed to be a function of the stretch A.
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The total strain energy U in the bar is computed by multiplying the strain
energy density W with the volume, giving

U=ALW()) .

The incremental work done by the external force P should be equal to the incre-
ment in total strain energy. Hence, the energy balance is stated as

Pdu = dU , (3.20)

and the increment in total strain energy can be expressed by use of W as

dU = ALAW = AL dg- ir. (3.21)
The displacement increment can also be written in terms of stretch by using

u =1 — L = (A —1)L. Differentiation yields

du = Ld\. (3.22)

Inserting (3.22) and (3.21) into the energy balance equation (3.20) yields
aw
LdA = AL ——d\ .
PLd - dA

Simplifying the expression gives

P 4w

— = (3.23)

where P/A is the nominal stress, i.e. force per original cross section area, derived
from the strain energy function.

The stress can be obtained from the strain energy density function (3.17) by
introducing the strain invariants for this uniaxial case

W =W = WL, LX) . (3.24)

The generalized strain measures, the strain invariants I; and 5, mentioned
earlier can be expressed in terms of A for compression and tension [1] as

I1:%+/\2 (3.25)
I, =L +2) '
2—/\2+

Taking partial derivatives of (3.24) yields

AW _ oW dl W Iy
d\ 0 dx = Ol d\

By using the expressions for the invariants (3.25) in (3.26), the expression for the
nominal stress (3.23) becomes

P ow 10w 1
q= 2(—871 + ng)(A - ﬁ> (3.27)

(3.26)
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The nominal uniaxial stress expression for the Yeoh model is obtained by
inserting the strain energy density W (3.19) and the expressions for the first
invariant (3.25) into (3.27), giving

P 2 2 1
<= 2(C1o + 20 (5 + M —3) + 3Ca0(5 + A2 — 3D (N - ) (3.28)

The material parameters Cyg, Co and Cjp can be determined by a least squares
procedure as will be described next.

3.3.2 Least squares fit to test data

The parameters in the hyperelastic model are obtained from experimental data
by a fitting procedure, described in this section.

S=P/A

o experimental data
— fitted curve

0 0.I5 I‘.O I.‘5 2.I0 2'.5
Figure 3.13: Fit of the model to test data.

Consider Figure 3.13 where the experimental data points and the stress-stretch
relation from theory are shown schematically. The small circles correspond to the
(A\;, S;) values ¢ = 1,...,n, where ); is the stretch and S; is the nominal stress,
obtained from experiments and n is the number of data points. The stress-stretch
relation obtained from the constitutive model should closely fit the experimental
data points, and the conditions to be fulfilled as close as possible, for every data
point are

Sper x4 SEP (3.29)
This “closest fit” has to be defined in some way. In the method of least squares
the “closest fit” is defined as the minimum of the sum, over all data points, of
the square of the errors between theory and experiments i.e.

T =3 (Sfer — 557)2. (3.30)
=1

k2

Relation (3.29) can be written alternatively as

Sier ) SE a1 (3.31)
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and the corresponding sum of squares is written as

n
® =3 (Sfr/8f™ —1)* (3.32)
=1
where the sum is expressed by the relative error. The form (3.32) is a normalized
version of (3.30). The absolute error puts more emphasis on the higher stress
values where the absolute error is higher, while the relative error gives equal
weight to the data points.

The nominal stress obtained from theory S;/®" depends on the unknown elastic
parameters in the strain energy function W(ly, ;). Minimizing ® with respect
to the unknown parameters yields a system of equations. The solution to the
system is the elastic parameters giving the best fit in the least squares sense. The
equation system is linear, if the polynomial form of strain energy function is used.

The procedure will be discussed here specifically in terms of a fit to com-
pression and tension data. The nominal stress values S and corresponding
stretches \; are shown as circles in Figure 3.13.

The tension and a compression stress-stretch relation S is defined by (3.27)
giving ow 10w 1

teor
ST = 2(8I1 -+ 3 aIQ)()\ )\2) , (3.33)
where )\ is the stretch in the loaded direction.

Setting up the (approximative) equalities at every experimental point yields a
linear system of equations. Normally the number of experimental points exceeds
the number of coefficients, yielding an overdetermined linear system of equations.
This overdetermined system of equations can be written in matrix form as

Ac=h. (3.34)

To be more specific, consider the three parameter Yeoh model where (3.33)
is given by (3.28). In this case A is a nx3 matrix corresponding to the n exper-
imental points, ¢ is a 3x1 matrix with ¢; = Chg, ¢3 = Ca, 3 = C30 and b is a
nxl matrix.

The overdetermined system (3.37) can not be solved in the ordinary way
because there is no unique solution to this system of equations.

Inserting a trial solution ¢* in (3.37) will always yield a difference between
the left- and the right-hand side. This difference is expressed by the residual

e=Ac* —b

which is a vector containing the relative error in each data point. We want to
find a solution ¢* that minimizes the residual. The size of the residual e must be
measured in some way. Using

lefl; =e"e
yields an expression precisely equal to the sum of the squares of the relative error
between theory and experiments, i.e

@ = [lell} = (Ac — b)" (Ac —b) = 3 (57 /5 —1)*.

i=1
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Minimizing ® is equivalent to finding the solution to the equations

0D

70 = i=1,2,..n. (3.35)

which can be written conveniently [1] in matrix form as
ATAc=A"b. (3.36)

Observe that (3.36) is an ordinary linear system of equations with the same num-
ber of unknowns as the number of equations.

Case 3

The cubic I1 model (3.19) according to Yeoh, is used here to illustrate the fitting
procedure. The strain energy expression is

W = 010(11 — 3) -+ 020(11 - 3)2 + 030(11 — 3)3

with three hyperelastic constants. The model is fitted to experimental data in compres-
sion/tension for a 65 IRHD carbon-black-filled rubber vulcanizate. The experimental
data points, shown as circles in Figure 3.14 are listed in the table below. These values
are used in the relative error format of (3.31), which was stated as S/ 8 ~ 1.

S=P/A

(MPa)

AR o experimental At il ]

Figure 3.14: Fitting of the Yeoh model (solid line) to experimental data (circles).

The compression stress-stretch relationship (3.33) with three constants to be deter-
mined 5 5 1
54 = 2(Co + 2C0(5; + 3 —3) +3Ca0(5; + A = 31— 33)

is applied in the quotient Sf"/ S for each of the 25 experimental stress-stretch
values, yielding
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X | §°7P (MPa)

06 5788 [ 15623 21663 2.2530 F 17
0.64 -2.30 1.5664  1.6748  1.3431 1
0.68 1.904 1.5574 12570  0.7610 1
0.72 1.564 1.5461  0.9158  0.4069 1
0.76 1.976 1.5224  0.6369  0.1998 1
0.8 102 1.4951  0.4186  0.0879 1
0.84 -0.792 14577 0.2523  0.0328 1
0.88 0.576 1.4282  0.1346  0.0095 1
0.92 -0.376 1.3008  0.0565  0.0017 1
0.96 0.18 1.3897  0.0137  0.0001 1
1.1 0.378 1.4474  0.0816 = 0.0034 1
1.2 0.630 1.6049  0.3424  0.0548 Cio 1
1.3 0.814 = 1.7403  0.7952  0.2725 [ Cao ] =11
1.4 0.98 1.8159  1.4112  0.8225 Cso 1
1.5 1.130 1.8682  2.1796  1.9072 1
1.6 1.258 1.9227  3.1148  3.7344 1
1.7 1.380 1.9623  4.1854  6.6955 1
1.8 1.536 1.9419 52474 10.6347 1
1.9 1.684 1.9275  6.4096 15.9852 1
2.0 1.852 1.8898  7.5594 22.6782 1
2.1 2.056 1.8222  8.6096 30.5086 1
2.2 2.306 1.7289  9.5056 39.1978 1
2.3 9.648 1.5944 10.0751 47.7495 1
2.4 3.092 1.4401 10.3405 55.7838 1
2.5 3.694 L 1.2669 10.2620 62.3419 | L1

The overdetermined system of equations above is written in matrix form as
Ac=Db. (3.37)

where A is a 25x3 matrix corresponding to the 25 experimental points, ¢ is a 3x1 matrix
with Cl = 010, Cg = OQ(), [ 030 and b is a 25x1 matrix.

Applying (3.36) to the overdetermined system of equations yields an ordinary sys-
tem of equations with three equations and three unknowns i.e.

67.92 147.44 487.11 Cho 40.8894
147.44  649.47  2717.13 Cy | = | 87.6551 . (3.38)
487.11 2717.13 12699.74 Cso 303.5157

Solving (3.38) yields
Cho = 0.6803 M Pa Cqp = —0.0982 M Pa  Csp = 0.0188 MPa .

We can conclude that in order to obtain the unknown elastic parameters we have to
set up the matrices A and b and solve (3.36). The solution obtained in this way is the
“closest fit” to experiments in the sense that the sum of the squares of the errors for
all experimental points is minimized.

The experimental data points and the fitted curve are shown in Figure 3.14. The
fitting to the experimental points is good, and the fitted curve is progressive outside the
interval of experimental data. For this choice of parameters the least squares procedure
generates a model with a good fit and reasonable behavior outside the interval of fitted

points.
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Chapter 4

Inelastic quasi-static and
dynamic properties

P.-E. AUSTRELL

This chapter contains a discussion of inelastic and dynamic properties and the
microstructure involved. Creep, relaxation, stress softening, and steady state
dynamic behavior are dealt with.

4.1 Microstructure and damping properties

Figure 4.1: Molecular structure for a carbon-black-filled rubber vulcanizate. Car-
bon particles, polymer chains (solid lines) and crosslinks (dashed lines) are shown
schematically.

The origin of the damping property of rubber can be understood on the basis
of the molecular structure of the material. Vulcanized rubber is made up of
very long cross-linked polymer molecules. The damping is increased when filler,
usually carbon-black, is added to the rubber compound. Carbon-black consists of
small particles of carbon (20nm - 300nm). These are mixed into the raw rubber
base before vulcanization. The material is thus of two-phase character, containing
constituents differing completely in their mechanical properties. Figure 4.1 shows
schematically the molecular level structure of a carbon-black-filled vulcanizate.
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The cross-links are indicated as dashed lines and the rubber network is shown
with solid lines inside which the agglomerates of carbon particles are formed.

The damping property of filled rubbers, i.e. the ability to dissipate mechani-
cal energy into heat, is mainly due to two kinds of mechanisms. One is of viscous
character, the viscous damping originating in the resistance in the rubber phase to
reorganize the molecular chains. The fact that reorganization of the long molec-
ular chains cannot occur instantaneously results in a rate dependent resistance
of viscous character. The other mechanism is due to the filler, damping being
increased when fillers are added to the rubber compound. The filler particles can
be regarded as rigid compared with the relative flexibility of the rubber matrix.
As mentioned above, these form agglomerates which result in a filler structure
[12] inside the rubber network. When the compounded rubber material is de-
formed forces develop at the filler interfaces, causing the filler structure to break.
The increase in damping which the filler causes must therefore be attributed to
a resistance in the rubber-carbon and carbon-carbon interfaces. This part of the
damping is of a rate-independent character. It is responsible for the nonlinear
dynamic behavior of filled rubbers that appears as amplitude dependence of the
dynamic stiffness and of the phase angle (as discussed in Section 4.3).

4.2 TInelastic quasi-static properties

In this section, creep and relaxation, as well as strain softening or Mullin’s effect,
are dealt with.

4.2.1 Creep and relaxation

Both rate and time dependence and dissipative mechanisms can be identified in
such material behavior as creep and relaxation phenomena. Creep is an increase
in strain in response to a step-stress loading, and relaxation is a decrease in stress
in response to a step-strain loading.

o

t t
Figure 4.2: Creep behavior, increase in strain in response to a stress step.

A creep test is performed by applying a stress step, creep compliance being
defined as Je(t) = eg(t)/oo (cf. Figure 4.2).

A relaxation test is performed by applying a strain step, the relaxation mod-
ulus being defined as Fg(t) = or(t)/eo (cf. Figure 4.3).

Freakley and Payne ([3] p.35) discuss creep and relaxation. Gent ([5] p.172)
describes a logaritmic relationship for creep and relaxation with respect to time.
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Figure 4.3: Relazation behavior, decrease in stress in response to a strain step.

Related matters are discussed by Stenberg [10] in ”Compression relaxation of
rubbers”.

Linear viscoelasticity is characterized by the ability to define a single relax-
ation function independent of the strain step amplitude.

For unfilled rubbers a linear viscoelastic behavior is observed in simple shear,
which is a linear mode of deformation if the strains are not too large. In the case
of filled rubbers, however, nonlinear behavior is present even in the case of simple
shear and small strains, due to breakdown and reforming of the carbon-black
structure. In relaxation tests a step size dependence is observed, the smallest
strain step yielding the largest relaxation modulus. This is discussed in [1] Chap-
ter 8.

4.2.2 Mullins’ effect

Cyclic straining of a rubber specimen causes a successive decrease both in stiffness
and in the distance between the loading and unloading curves, the hysteresis. The
breakdown is limited, however, a stationary state being reached after about four
to eight cycles. If the stretch is increased then further breakdown occurs and a
new stationary curve is obtained, one which lies below the previous stationary
curve, the stiffness of the material having decreased, cf. Figure 1.2.

Mullins [7] observed that, if strain amplification (cf. Chapter 1) is taken into
account, the differences in softening between gum and filled vulcanizates are very
small. He concluded, therefore that for strains larger than 0.1% the softening
is mainly due to the effects the strain has on the rubber network and not to
interaction with the filler. Recovery from softening was, however found to be
slower in filled vulcanizates. Mullins attributed this to the hindering effect of
the filler. He also concluded that only the unrecoverable part of the softening
is due to breakdown of the cross-links, wheras the part of the softening that is
recoverable (after about 24 hours) is due to configurational changes in the rubber
network.

For strains of below 0.1%, softening was attributed to rupture of the filler
aggregates. According to Payne [8] this softening at very small strains due to
effects of the filler is immediately recoverable to a large extent.

The proper treatment of strain softening is important in the testing of rubber
specimens aimed at hyperelastic characterization. The usefulness of the test data
obtained depends on how the pre-stretching or mechanical conditioning has been
performed.
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4.3 Dynamic properties

This section concerns the dynamic properties of rubber, special emphasis being
placed on the dynamic modulus and its dependence on frequency, temperature,
and amplitude.

4.3.1 Definition of dynamic modulus and damping

Steady state harmonic excitation is an important type of loading. When non-
linearities are present, the response to a sinusoidal excitation is not perfectly
sinusoidal, even for small vibrations. Figure 4.4 shows two hysteresis loops for
a sample subjected to a pure sinusoidal strain. The left-hand path is elliptic,
corresponding to linear dynamic (viscoelastic) behavior. The right-hand path is
a more general hysteresis in which nonlinearities are present. The stress response
contains higher harmonic components, i.e. multiples of the frequency of the strain
input.

Figure 4.4: Linear viscoelastic and general hysteresis loop for harmonic excitation.

A general definition of the dynamic modulus valid also for the nonlinear case
is required. Definitions consistent with linear viscoelasticity for the dynamic
modulus Egy, and normalized damping d are

Bam=2 d=

)
€0 o€y

(4.1)

where U, is the hysteresis work done during a single cycle. The dynamic modulus
is defined in the same way as for linear viscoelasticity. At moderate damping,
when d = ¢, normalized damping coincides with the phase angle.

If the nonlinearities are not too severe, so that the deviation from a sinu-
soidal shape is only slight, then a least squares fit to the response of an harmonic
function with the same fundamental frequency as the input yields approximately
the same dynamic modulus and phase angle as the definition above provides.
This can be regarded as an equivalent viscoelastic damping. The dynamic mod-
ulus and damping are discussed further in Chapter 5 in connection with linear
viscoelasticity.
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4.3.2 Frequency and temperature dependence of the dy-
namic modulus

The dynamic properties of rubber are dependent upon frequency, temperature,
static load and amplitude.

102 103 10t f (Hz)

Figure 4.5: Frequency dependence of dynamic shear modulus and phase angle for
a filled natural rubber. Influence of temperature is also shown.
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Glassy

Rubbery

80 60 -40 20 0 20 40 60 T(¢C)

Figure 4.6: Temperature dependence of dynamic shear modulus and phase angle
for a filled natural rubber. Influence of frequency is also shown.

Figure 4.5 shows the frequency dependence of the dynamic modulus and the
phase angle for a filled rubber. The dynamic shear modulus and the phase angle
are shown as functions of frequency. The effect of changing the temperature is
also shown. The values given are approximate and are also strongly dependent
upon the amplitude, as will be discussed below.
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Figure 4.6 shows the temperature dependence of the dynamic shear modulus
and the phase angle for a filled rubber. The values given are approximate and
are also dependent upon the amplitude. The dynamic modulus decreases with
an increase in temperature. The effect of changing the frequency is also shown.
The general behavior shown in Figure 4.6 is the same for all rubbers, although
the temperature scale can be shifted due to additives in the rubber compound.

Three temperature regions are indicated. The first is the glassy region in
which the thermal motion of the polymer molecules is reduced. In this range
almost no inter-molecular motion is possible, the material being glass-like and
brittle. The mechanical behavior of rubber in this temperature range is dependent
on the interatomic bonds. The modulus in this region is thus very high (~1
GPa) , whereas the damping represented by the phase angle is low. The second
region is the transition region, in which there is a drastic drop in the dynamic
modulus, the maximum damping appearing as a peak in the phase angle. The
third temperature region is the rubbery region in which the dynamic modulus
is low (=1 MPa). Under functional conditions rubbers need to be near the end
of the transition region or in the rubbery region in order to have rubber-like
properties.

The shift in the modulus and the phase curves shown in Figure 4.6 is a gen-
eral property valid for a variety of polymers over a wide frequency and temper-
ature range. The frequency-temperature correspondence has been summarized
by Williams, Landel, and Ferry [14] in an empirical universal function valid for
amorphous polymers at temperatures above the glassy region. An important
consequernce of this correspondence is that over many decades of frequency, mod-
ulus and phase curves can be obtained at different temperatures by performing
experiments within a limited frequency range. The entire frequency range is
covered by shifting the limited frequency data along the frequency axis. Low
temperature measurements correspond to high frequencies and high temperature
measurements to low frequencies. The combined curves give the appearance of
being mirror images of the temperature curves shown in Figure 4.6.

4.3.3 Amplitude dependence of the dynamic modulus

Special emphasis will be placed here on the strain amplitude dependence of the
dynamic modulus. The modulus is seen to decrease with increasing strain ampli-
tude. This effect is sometimes denoted the Payne effect, due to investigations of
reinforced elastomers made by Payne [8]. He interpreted the decline in modulus
with increasing strain amplitude as being a result of filler structure rupture. The
structure is composed of aggregates held together by van der Waals bonds. Payne
found the modulus to be almost recoverable upon the return to small amplitudes,
which means that the filler structure largely reforms within an amplitude cycle.
The mechanisms involved should not be confused with Mullin’s effect, which is
mainly attributable to reorganizations within the rubber network [7], with recov-
ery times of about 24 hours.

Payne also observed that for low frequencies the shape of the decline in modu-
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lus with increasing strain amplitude was nearly independent of frequency. He also
refered to Warnaka [13], who observed this same type of frequency independence
at higher frequencies, up to 1500 Hz.

A comprehensive review of the dynamic properties and the amplitude depen-

dence of carbon-black-filled rubbers can be found in the often-cited article by
Medalia [6].
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Figure 4.7: Amplitude dependence of dynamic shear modulus and phase angle for
some filled natural rubbers of various filler contents. A-E represent increasing
filler contents. (Reproduced from Harris and Stevenson.)

Harris and Stevenson [2] have carried out experimental studies of various non-
linear aspects of the dynamic behavior of filled rubbers in particular, investigating
the effects of frequency, amplitude, and elastic nonlinearity for filled and unfilled
rubbers. For unfilled rubbers the hysteresis loop was found to have an elliptic
shape for small amplitudes and small preloads, the behavior being viscoelastic.
For filled rubbers, a significant effect of the strain amplitude on the dynamic
modulus was obtained. Figure 4.7 shows the equivalent complex modulus, re-
produced from [2], for natural rubbers (NR) with different carbon-black loading.
The rubbers were all of approximately the same hardness (about 55 IRHD). These
conditions were obtained by using three different types of carbon-black and by
balancing the reinforcing effect through the addition of a high-viscosity aromatic
oil. Figure 4.7 shows the influence of the strain amplitude in simple shear. The
vulcanizates are denoted in [2] as A,B,C,D,E in the order of increasing reinforce-
ment of carbon-black, the carbon-black content varying between 30 and 75 phr,
(parts per hundred of rubber by weight) with 75 phr for vulcanizate E. B was
omitted in the reproduction shown in Figure 4.7) because vulcanizates B and
C behaved similarly. The vulcanizate with the highest damping effect and the
greatest variation in dynamic modulus is the one with the highest filler content.

Harris and Stevenson also reported that for harmonic loading in simple shear
the stress response is influenced by higher harmonic components, resulting in
a distorted elliptic shape which tends towards a parallelogram when graphing
stress versus strain. The most significant contribution is from the third harmonic
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component. The ratios of the third to the first harmonic component for a 1 Hz
test of vulcanizate E at different amplitudes were given. The maximum ratio was
0.035, obtained for a strain amplitude of 5%.

The combined influence of amplitude and temperature for a filled rubber sim-
ilar to vulcanizate E above is shown in [5] Figure 10.11 p 304.

4.4 Summary of deviations from linear dynamic
behavior

Deviations from linear dynamic behavior are based on the underlying nonlinear
elastic properties and on the damping mechanisms introduced by the filler.

For unfilled rubbers, linear viscoelastic behavior can be observed in simple
shear, which is a linear mode of deformation if the strains are not too large. In
the case of filled rubbers, nonlinear dynamic behavior is found even in the case of
simple shear, due to the breakdown and reforming of the carbon-black structure.

The dynamic properties of carbon-black-filled rubbers can be summarized
summarized as follows:

e In quasi-static loading a difference between loading and unloading curves
can be observed irrespective of how slow the loading rate is. It can also
be observed that in quasi-static loading the hysteresis loop takes on the
approximate shape of a parallelogram.

e The shape of the periodic strain history function does not influence the
shape of the hysteresis loop appreciably.

e In relaxation tests, a step size dependence can be observed, the smallest
strain step yielding the largest relaxation modulus. The relaxation modulus
falls towards an asymptotic value with increasing step size.

e In harmonic loading the dynamic modulus shows strong amplitude depen-
dence. For large amplitudes, the modulus declines with amplitude towards
an asymptotic value. The damping represented by the equivalent phase
angle reaches a maximum, where the decline in modulus is greatest.

e In harmonic testing, the dynamic modulus has been shown to be almost
recoverable during a strain cycle. The mechanisms involved at the mi-
crostructural level, namely the breakdown and reforming of the carbon-
black structure, are thus different from these involved in the Mullins effect.

e The shape of the decline in the dynamic modulus with increasing amplitude
is insensitive to frequency. Experiments indicate that the amplitude and
the frequency dependence are independent.
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4.5 Test methods

Descriptions of the test methods can be found for example, in Friberg [4] Chapter
6 and Gent [5] chapter 10.

4.5.1 Quasi-static testing

Relaxation and creep tests are examples of quasi-static tests. The compression set
and tension set tests mentioned in Chapter 1 belong to this category. Mechanical
conditioning procedures represent quasi-static tests.

4.5.2 Dynamic testing

The resilience test, a simple dynamic test method described in Chapter 1, gives
a rough estimate of material damping properties.

More accurate dynamic tests and equipment are described in Gent [5] pp.
301-303, which deals in particular with resonant-beam, servohydraulic, and elec-
trodynamic testers.
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Chapter 5

Modeling of inelastic and
dynamic properties

P.-E. AUSTRELL

This chapter concerns viscoelasticity, various fundamental concepts of linear dy-
namics, and models for highly filled rubbers. Deviations from viscoelasticity as
well as aspects of nonlinear dynamic behavior introduced by the adding of filler
are also discussed.

Linear dynamics and viscoelastic material models are the basis for the predic-
tion of various dynamic properties of rubber components, including such impor-
tant aspects as resonance frequency, transmissibility and dynamic stiffness.

However, as was discussed in Chapter 4 several aspects of the dynamic be-
havior of rubber are not explainable by linear dynamics. Examples mentioned
were the amplitude dependence of the dynamic stiffness, the presence of multiple
frequencies in harmonic responses, and distorsion of the hysteresis loop. Models
dealing with these aspects of rubber behavior will be disscussed in Section 5.5.
The section that follows will focus on linear dynamic models of rubber units.

5.1 Linear dynamics

Linear dynamic systems responds to sinusoidal excitation with a delayed sinu-
soidal output of the same frequency as the input as shown in Figure 5.1. This
property enables the use of complex quantities and permits a definition of a com-
plex stiffness that depends upon frequency alone.

5.1.1 A one-dimensional model system

The basic features of linear dynamics can be derived from a study of a simple one-
dimensional system consisting a linear spring, and a viscous damper connected
in parallel to a mass as shown in Figure 5.1.
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Figure 5.1: Linear dynamic system ezposed to steady state sinusoidal loading.
“The response is-a delayed sinusoidal function of the same frequency.

The dynamics of the system is described by the second-order differential equa-
tion
mi(t) + cu(t) + ku(t) = P(t) (5.1)

where the viscous damping force is proportional to the displacement rate such
that F, = c @ with the proportionality constant ¢ and the elastic force being
proportional to the displacement F, = ku containing the proportionality constant
k.

Free vibrations

The vibration frequency attained by the system (5.1) in force-free vibrations (i.e.
for P = 0), is called the natural frequency or eigenfrequency. The free response
is an exponentially decaying harmonic function.

The undamped system for which ¢ = 0, has a natural angular frequency wy

as given by
[ k
Wy = 27l’f0 = _77—’2, (52)

where fy is the natural frequency. The response of the system (5.1) to free vibra-
tions for which there is slight to moderate damping results in a natural vibration
frequency that deviates only slightly from the natural frequency of the undamped
system according to (5.2).

Forced vibrations

The most interesting case technically is that of forced vibrations, when the sys-
tem is driven by a sinusoidal force. The response in this case is a sinusoidal
displacement of the same angular frequency as the force but with a delay. The
undamped (¢ = 0) displacement solution for the case of forced vibration in which
P = Pysin(wt) is

Py 1

- FToEy (5.3)

Ug
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where w is the angular frequency of the driving force. The expression (5.3) can be
viewed as the static solution Py/k multiplied by an amplification function. The
solution illustrates an important phenomena. Expression (5.3) shows that the
vibration amplitude can increase to an unlimited extent when the driving force
hits the system’s natural frequency. At this frequency the system is in resonance,
and an alternative designation for the natural frequency is therefore resonance
frequency. Introducing damping limits the response at resonance and produces a
slight shift in resonance frequency. Hence, in a moderately damped system the
maximum displacement amplitude is attained at approximately w ~ wo.

‘Transmissibility

An important question in vibration damping applications is how much of the driv-
ing force is transmitted through the damper and into the supporting structure.
The ratio of the transmitted force to the driving force is called transmissibility.
For the undamped system this ratio can be expressed as

Mo |l
Pl (2)?

wo

T = (5.4)

i.e. as the amplitude of the force in the spring divided by the amplitude of the
driving force. The expression (5.4) is shown graphically in Figure 5.2. This

OL;;::;.;_S%

¢} 0.5 1 1.5 2 2.5 3 3.5 4
Figure 5.2: Transmissibility versus normalized frequency for an undamped system.

expression is approximately valid for a moderately damped system also if the
frequency of the driving force is well above the resonance frequency. This is not
a restriction since in order for a reduction in the transmitted force to be obtained
the frequency has to be well above the resonance frequency.
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Case 1

Determine the resonance frequency wg and the transmissibility 7' at w = 3wp for
the cylindrical component with the spring stiffness K,=273N/mm analyzed in cases 1
and 2 in Chapter 3. The cylinder is connected to a mass m=20kg, as shown in Figure

5.3.
\1, P=P, sin(®t)

K=273 kN/m

S/ S \l/ S S
F=F, sin(wz)

Figure 5.3: Cylindrical compression spring attached to a mass.

Solution:
The resonance frequency fo is calculated from expression (5.2),

1 /273108

= — = 18. .
fo o 20 8.6 Hz

Transmissibility is calculated from expression (5.4),

1
kg 5l = 0125,

T:|736‘|=\1_

indicating that 12.5% of the exitation force amplitude is transmitted through the
damper and into the support at a frequency w = 3wg.
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5.2 Linear viscoelasticity

The previous section concerned dynamic behavior at a structural level using a
simple model of the damper consisting of a linear spring and a viscous damper
connected in parallel. This section discusses more sophisticated modeling at a
material level in terms of linear viscoelasticity. Viscoelasticity provides a way to
take into account time- and frequency- dependent properties of rubber behavior.
Certain fundamental concepts such as those of complex modulus and relaxation
modulus are discussed in this section.

'5.2.1 Creep and relaxation modulus

Material behavior explainable by linear viscoelastic models includes creep and
relaxation phenomena. Creep is an increase in strain in response to a step-stress
loading, and relaxation is a decreasing stress as response to a step-strain loading.

£
Gt

t t
Figure 5.4: Creep behavior: increasing strain in response to a stress step.
For a linear viscoelastic material the creep compliance Jo(t) = e(t) /oo (cf.

Figure 5.4) is a characteristic function independent of the stress step oo. For a
given linear viscoelastic material, this function is unique.

G ®

0] o,

t t

Figure 5.5: Relazation behavior; decreasing stress as response to a strain step.

For a linear viscoelastic material, the relazation modulus Eg(t) = o(t)/eo (ct.
Figure 5.5) is a characteristic function independent of the strain step €. This
function is unique for a given linear viscoelastic material.

It can be shown that the instantaneous elasticity, i.e. the relationship between
the creep compliance and the relaxation modulus at ¢ = 0, is Fr(0) =1/Jc(0).

The behavior of a linear viscoelastic material can be defined on the basis
of this single-step response function. Linearity and superposition (Boltzmann’s
superposition principle) leads to a constitutive equation defined as a convolution
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integral (also called the hereditary integral). The stress history o(t) corresponding
to a particular strain history €(t) can be obtained from this integral, given by

o) = [ Balt—9) %ds

the constitutive model thus being defined by the relaxation modulus. For the in-
verse relationship, the creep compliance takes the place of the relaxation modulus
in a similar expression.

5.2.2 Harmonic excitation and the complex modulus

The response to a stationary sinusoidal strain history is of interest in many en-
gineering applications. Harmonic excitation of a linear viscoelastic material pro-
duces a harmonic response of a frequency equal to the excitation frequency. The
response is however, phase shifted compared to the excitation. Consequently, if
the strain € = ¢o sin(wt) and the stress o = g sin(wt + J) are plotted in the (0, €)
plane, an elliptic path is obtained, as shown in Figure 5.6.

Figure 5.6: The stress o = ogsin(wt + &) and the strain € = cosin(wt) plotted in
the (o, €) plane, giving an elliptical hysteresis loop.

The phase relationships are conveniently shown in a rotating-vector represen-
tation and it is convenient to use complex notation. The strain €* and the stress
response o* can be written as the complex quantities

toand oF = gyl (5.5)

e = €o eiw
Behavior in stationary harmonic loading can be characterized by a complex mod-
ulus that depends on the frequency but is independent of the amplitude

o* = E*(w)e" .

An interpretation of the complex modulus in terms of measurable quantities
is given by
ol
| B* |= = and arg(E")=4.
€0
The absolute value | E*(w) |, here termed the dynamic modulus, is thus the
amplitude ratio of stress and strain and the phase angle arg (E*(w)) is the phase

shift between stress and strain.
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Note that the dynamic modulus and the phase angle are functions of the
angular frequency w only. Hence, for a linear viscoelastic material, the dynamic
modulus is independent of the strain amplitude €.

Im E

) Es Re

Figure 5.7: Relation between the polar and the rectangular form of the complex
modulus.

Alternatively, the complex modulus can be expressed in rectangular form as
E* = ?0035 +i%%ins = B, +iE, (5.6)
0 €0

where the real part Fy is termed the storage modulus and the imaginary part £
the loss modulus. The storage modulus represents an in-phase response and the
loss modulus represents an out-of-phase response, as shown in Figure 5.7. An
alternative representation of the rectangular form is

E* = E,(1+itand),

where tan d is called the loss factor.

For small values of 8, the relation of the polar to the rectangular form of the
complex modulus can be simplified. The approximate equalities sind ~tand =~ 0
and cos § ~ 1 yield

E, ~| E* | and Ey~|E*|0.

For example, § = 0.2rad yields sind = 0.199, cos § = 0.980, and tan d = 0.203.

In cyclic loading, viscoelastic materials dissipate energy, which for example
results in damping of free vibrations. The area enclosed by the loading and the
unloading curves (cf. Figure 5.6) represents the energy dissipated as heat. The
energy dissipated during a single cycle is

U, = Tog€x8in o .

The dissipated energy increases with the phase difference 4.

5.2.3 Rheological models

An illustrative way to describe and interpret the nature of viscoelastic behavior
is to use rheological models. These are mechanical analogue assemblages of linear
springs and dashpots. The mechanical behavior of a specific viscoelastic material
is analogous to the behavior of a proper combination of springs and dashpots.
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Figure 5.8: Basic elements in rheological models: the linear spring and the dash-
pot.

The elastic behavior is due to the linear springs, whereas the viscous behavior
is due to the dashpots, as shown in Figure 5.8. The stress in the linear spring is
proportional to the strain giving o = Le. The dashpot stress is proportional to
the strain rate giving o = né, where the dot denotes the time derivative and 7 is
the viscosity coefficient (Ns/m?).

Simple viscoelastic models can be obtained using linear springs and dashpots
coupled in series and in parallel. The spring and dashpot combination in series
yields the Maxwell model, which is a viscoelastic fluid model. The spring and
dashpot components coupled in parallel yield the Kelvin model, which is a crude
viscoelastic solid model. The Kelvin model is not particularly physical. For
example, a sudden application of strain yields a discontinuous stress response.

The simplest viscoelastic solid model displaying reasonable physical behavior
is obtained by a spring and a Maxwell element coupled in parallel. This is the
standard linear solid model, also called the Zener model.

E(‘D
(e}
n E — =
| Te

Figure 5.9: The Zener model.

The Zener model is the simplest viscoelastic model with solid properties that
reflect the behavior of real solid materials in the sense of the relaxation behavior
being reasonable and the creep response limited.

5.2.4 Properties of linear viscoelastic solids

To understand the behavior and restrictions of the rheological models for differ-
ent strain histories, the behavior for different loading rates (frequencies) will be
examined. The Zener model responds in an approximately elastic way to both
very slow and very fast loading. This is because a dashpot behaves like a rigid
clement at fast loading rates and because the stress in it is being relaxed at slow
loading rates.

Behavior is similar in the case of harmonic excitation. Consider three cases,
those of low, medium, and high frequency:

1) wt K1 2) w1l 3) wi>1
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" Pigure 5.10: Response of a linear viscoelastic solid to-sinusoidal excitation.

with t, = n/FE being a characteristic relaxation time for the Zener model. The
elliptic paths in the (o, €) plane for the three cases are shown in Figure 5.10. Low
and high frequencies yield approximately clastic behavior. Alternatively, this
can be shown as in Figure 5.11, where the frequency dependence of the complex
modulus is indicated.

IE] arg(E")

L

0 log(Wt . ) 0 log(®1 . )

Figure 5.11: Zener model; frequency dependence of the complex modulus. Omaz =
g/(2—g) for g < 0.5, with g = E/(Ex + E).

The Zener model is a simple example of a linear viscoelastic solid model having
physically reasonable properties. Figure 5.11 shows the frequency dependence
schematically.

Some properties of the linear dynamic behavior of viscoelastic solids are sum-
marized here:

e The dynamic modulus is independent of the amplitude.

e Harmonic excitation yields a phase-shifted harmonic response of the same
frequency.

The hysteresis loop has an elliptic shape.

The dynamic modulus increases with frequency.

e Elastic behavior (no damping) for both low and high strain rates or fre-
quencies.
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5.2.5 Hysteretic damping models

The observation that the complex modulus is approximately constant over a lim-
ited range of frequency and temperatures is the basis for the so-called hysteretic
damping model. The assumtion is thus that the modulus can be set to a constant
complex number, independent of frequency.

The hysteretic damping model cannot be derived from linear viscoelasticity
and it has some theoretical anomalities. However, in practice it is often used for
frequency domain calculations.

5.3  Dynamic spring stiffness expressions

The static spring stiffness expressions can be converted to dynamic stiffness ex-
pressions by introducing a complex modulus into the spring stiffness expressions
presented in Chapter 3.

For example, the complex shear modulus

G* = G4(1 + i tand)

inserted into the expression of the shear spring (3.11) of Chapter 3, yields the
complex stiffness

G* A
K; = T
containing the dynamic stiffness and damping for the shear spring.

Case 2

Estimate the dynamic stiffness Kgyn at 10Hz for the cylindrical component ana-
lyzed in previous cases. The rubber material is assumed to have the dynamic shear
modulus Ggyn = 0.9MPa at low frequencies.

Solution:

The the static spring compression stiffness K. given by (3.8) as K3 = Ec(S)A/H
where E,(S) = Eo (1+2k S%) was calculated in case 1 in Chapter 3, with Ey = 2.1MPa,
giving K,=273N/mm.

An estimate of the complex dynamic stiffness is obtained by replacing the static
Young’s modulus Ey with the complex modulus E*. Applying the static relationship
between Young’s modulus and the shear modulus for an incompressible material to the
complex modulus yields E* = 3G™* and

3-0.9

Ko = %@_Kgmt = S - 273N /mm = 351N/mm

Dynamic stiffness models will be dealt with more thoroghly in Chapter 8.
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5.4 Capabilities in FE-codes

a)

Response to cyclic loading:

P

b)

Material model analog

Figure 5.12: Viscoelastic FEA for large strains: a) Small vibrations on a large

static elastic deformation b) Large strain transient viscoelastic analysis.

Coonstitutive models in FE-codes should be able to handle multiaxial stress and
strain. The established models applicable to the behavior of rubber are the hy-
perelastic models and the viscoelastic models discussed earlier. Viscoelasticity
provides a way of taking into account the time- and frequency-dependent prop-
erties of ribber behavior. However, only a few codes have the ability to handle
large strain dynamic problems. The constitutive models in these codes combine
hyperelasticity and viscoelasticity. These visco-hyperelastic models are modified
linear viscoelastic models applied to large strains for which there is a purely rate-
dependent damping (cf Figure 5.12). A few commercial codes include options for
steady-state dynamic analysis considering small viscoelastic vibrations overlaid

on a large static elastic deformation.

A model for viscoelastic analysis of large and arbitrary strains, the clas-
tic behavior being based on hyperelasticity, have been developed by Simo [10].
His model also includes the modeling of damage. Viscoelastic models involv-
ing large strains for both nearly incompressible and compressible materials are

implemented in the finite element codes ABAQUS and MARC.

A modification of the theory for the important case of small steady-state
vibrations superposed on a large static hyperelastic state of strain was proposed
by Morman [9]. This model has also been implemented in the finite element codes

ABAQUS and MARC.

Experimental investigations suggest that unfilled rubbers can be dealt with
by viscoelastic models [7], whereas in terms of the previous discussion the be-
havior of filled rubbers requires some form of rate independent damping model.
The amplitude dependence of the dynamic stiffness is significant in highly filled
rubbers and its influence is generally greater than that of frequency and tempera-
ture. Amplitude dependence is not included in the viscoelastic three-dimensional
large-strain models available in finite element programs, which is a serious limita-
tion in dynamic finite element analysis of filled rubbers. One-dimensional models
that incorporate modeling of the amplitude dependence through rate-independent

damping is disscussed in Section 5.5.
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5.5 Nonlinear inelastic material models

The introductory discussion here concerns damping properties of filled rubbers,
which will be discussed in terms of the simple one-dimensional model shown in
Figure 5.13. The of this model.

9
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Figure 5.13: Simple one-dimensional rheological model including nonlinear elas-
tic, viscous, and frictional properties. A mechanical analog of filled-rubber behav-
107

The elastic behavior is provided by the spring element, which is assumed to
be nonlinear. The rate-dependent part, represented by the viscous damper and
the rate-independent part, is symbolized by a frictional element, consisting of
two blocks with sliding contact between the surfaces. The elastic, viscous, and
frictional stresses act in parallel, the sum of the stresses yields to the total stress,

0 =0+ 0y + 0y,

where o, is the nonlinear elastic stress, o, is the viscous stress, and o the fric-
tional stress. The viscous stress o, corresponds to dissipative stresses in the
rubber network. Stresses in the filler phase and in the rubber-filler interfaces are
responsible for the rate-independent contribution oy. If the model is subjected to
loading followed by unloading, the response as plotted in a stress-strain diagram
will exhibit the behavior as shown in Figure 5.13, yielding a difference between
the loading and unloading paths. The elastic response, i.e. the nonlinear spring
characteristic, is indicated by the dotted line. The viscous part of the stress will
gradually vanish if the strain rate approaches zero. This is a reasonable assump-
tion for rubbers without fillers. However, for filled rubbers there will always be
a difference between the loading and unloading curves, even if the strain rate
approaches zero. A rate-independent frictional stress component is necessary,
therefore, to model the behavior of filled elastomers.

This model is consistent with the microstructure of a filled rubber, as shown
in Figure 4.1. The elastic stress and the rate-dependent resistance are due to the
rubber network, while the rate-independent stress is due to the filler. The forces
that develop in the rubber network and between the filler particles act in parallel.
The damping due to the filler adds to the damping in the rubber network.

The model incorporates some important aspects of the mechanical behavior
of filled rubbers. It provides a qualitative and conceptual understanding of such

85




properties as frequency dependence, effects of static load on the dynamic modulus,
distortion of the hysteresis loop, and amplitude dependence. However, it has some
apparent nonphysical properties, and it should not be interpreted as an exact
quantitative model of elastomeric materials. For example, the stress response
can be discontinuous even if the strain is continuous. Another limitation of the
model is the absence of relaxation behavior. However, the sketched model is a
starting point for the modeling of damping mechanisms in filled rubbers.

5.5.1 Frictional solid models

Figure 5.14: A one-dimensional rheologic model including elastic and frictional
properties.

This section concerns the modeling of rate-independent damping by a model in-
cluding a frictional element. Frictional one-dimensional models have been shown
to provide a good representation of the behavior of filled rubbers under cyclic
loading [1] (Chapter 10).

An important need is to model the amplitude dependence, i.e. the decrease
in the dynamic modulus Eg, with increasing strain amplitude.
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Figure 5.15: Amplitude dependence of the dynamic modulus and the phase angle
for the simple frictional model.(e; =Y /E)
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The rheologic model shown in Figure 5.14 represents a solid model with rate-
independent damping properties. Except for the dissipative element, the dashpot
having been replaced by frictional blocks, this model is analogous to the Zener
model. For fully developed friction, the rate-independent stress in the frictional
element is limited to oy = £Y. As was shown in [1] (Chapter 10), a generalized
version of this model could fit the amplitude dependence of the dynamic modulus
and the phase angle for the steady state dynamic data reported by Harris and
Stevenson [7].

The amplitude dependence of the dynamic modulus in the simple frictional
model is shown schematically in Figure 5.15. The qualitative behavior is in
accordance with experiments on filled rubbers.

The rate-independent frictional element thus introduces a nonlinearity that is
seen in the amplitude dependence and the parallelogram-shaped hysteresis loop,
contrary to linear dynamics, for which a sinusoidal strain results in a sinusoidal
stress and thus in an elliptic hysteresis loop.

The stress response for the frictional solid model can be resolved into Fourier
components which are odd multiples of the input frequency, in accordance with
the experimental findings of Harris and Stevenson [7].

The simple frictional model has also been discussed qualitatively by Gregory
[6]. He concludes that for heavily filled rubbers the hysteresis loop approaches a
trapezoidal form, in accordance with the behavior of the simple model. Models
with frictional elements coupled in series are discussed by Turner [11] and Coveney
et al. [4]. These models are shown to fit the dynamic modulus and the phase
angle obtained in shear experiments with highly filled rubbers.

A one-dimensional model of the amplitude dependence in the case of periodic
sinusoidal loading was suggested by Kraus [8]. This model explains amplitude
dependence here in terms of continuous breaking and reforming of the van der
Waals forces between carbon-black aggregates. The Kraus model has been in-
vestigated and evaluated by many researchers, see for example Ulmer [11] and
Vieweg [12]. The latter found that, within the range investigated, 0.06 — 20 Hz,
the sigmoidal decline (in logarithmic coordinates) of the dynamic modulus does
not depend on the frequency.

The following summarizes various properties of frictional damping:

e The hysteresis loop has the shape of a parallelogram.
e The hysteresis is independent of the rate (frequency) of loading.
e The dynamic stiffness decreases with amplitude.

e Harmonic excitation yields a non-harmonic response which can be resolved
into harmonic components that are odd multiples of the excitation fre-
quency.
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5.5.2 Combined viscous and frictional models

The previous discussion focused on two sources of damping in filled rubbers,
namely viscous damping in the rubber base and frictional damping in the rubber-
carbon and carbon-carbon interfaces. A combination of rate-independent and
rate-dependent damping is needed to account for the inelastic effects present in
carbon-black filled rubbers.

The experimental observations presented in Chapter 4 indicated that the am-
plitude and frequency dependence of the dynamic shear modulus were nearly
independent of each other. Hence, in terms of rheological models, the viscous
and frictional elements should be connected in parallel, since the total damping
stress is the sum of the viscous and the frictional stresses. '

H WA —
= M\ ¢

Figure 5.16: Five-parameter model including elastic, viscous, and frictional prop-
erties.

The one-dimensional model shown in Figure 5.16 is a model of this sort, to
which viscoelastic and frictional stress contributions have been added. A step-size
dependent relaxation modulus and an amplitude dependent dynamic modulus are
properties of the model.

This model was, in [1] Chapter 11, shown to agree well with quasi-static and
dynamic simple shear tests obtained for a highly filled rubber vulcanizate. A
model with only five parameters that was fitted to stationary dynamic data, was
shown to model the frequency and amplitude dependence of the dynamic modulus
well.

Similar models have been used for vehicle dynamics and earthquake protection
applications, for example. For dynamic analysis of rail vehicles, Berg [2] has
proposed a five-parameter rubber spring model with elastic, frictional and viscous
forces in parallel.

There appears to be no three-dimensional large-strain counterpart to the one-
dimensional models that incorporate the modeling of rate-independent damping
(cf. Figure 5.16), which is required for finite element analysis of filled rubbers.
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Chapter 6

General aspects of vibration
isolation |

U. CARLSSON AND L. KARI

Noise and vibrations have a negative effect on the human environment, as well
as on various equipment and materials people make use of. A large part of the
vibrations and noise many people are exposed to comes from machines and indus-
trial processes. A useful strategy to prevent this from occurring is to interrupt
the pathway between the source and the receiver which noise and vibrations fol-
low. The use of elastic supports is one way of achieving this. In practical terms,
this involves placing vibration isolators at particular points along the conduction
route. For example, strongly vibrating machines in factories, apartment houses
and office buildings are often mounted on elastic supports, just as springs between
the chassis and the axles in cars are used to isolate the passenger compartment
against vibrations generated by contact between the wheels and the road. The
mounting of machines on elastic supports, if done in an appropriate way, is ef-
fective in reducing the transmission of noise and vibrations which the machines
produce. It also need not be expensive.

Chapters 6, 7, and 8 aim to provide a basic understanding of the design of
vibration isolaton and the physical principles involved, as seen in terms of current
research in this area.

6.1 Source and receiver isolation

Vibration isolation aims at reducing the level of vibration at one or more locations.
The idea is to limit the transmission of vibrations along the transmission route,
see Figure 6.1. Vibration isolation can be carried out in many different ways. For
one thing, the locations at which isolators are placed along the transmission path
can differ. For another, isolators can be of quite differing size. It is important
that as satisfactory a combination as possible of the placement and design of
isolators be achieved.

90




Vibration

source Lp  Receiver
) ononO // \
KA T A
Vibration w \ /
isolation ™18 4 \ / [{
AN~/ AN~ ¥
W

Transmission

Figure 6.1: Ezample of a situation in which a machine 1s isolated against the
spreading of vibrations. Power W; from the machine reach the vibration isolator,
which reflects back the power W, toward the source, the power W, being transmit-
ted to the floor.

Regarding where isolators are placed, two opposite approaches can be dis-
tinguished: placing them near the source and near the receiver. The first case,
involving isolation of the source from the surroundings, is referred to as source iso-
lation. The second, involving isolation or protection of the receiver from the sur-
roundings, is termed receiver isolation. The two approaches are shown schemati-
cally in Figure 6.2. Note that source isolation and receiver isolation can also be
combined. If achieving as low a level of vibration as possible is called for, the
decision is often made to isolate both the source and the receiver.

W | e % w| B f

o
a0 e r - r 1 B

Figure 6.2: Two different strategies for vibration isolation: a) source isolation of
machines and b) receiver isolation of sensitive equipment.

6.2 General principles for vibration isolation

A problem involving vibration isolation is often described schematically as con-
sisting of a number of different sub structures, including a source structure, a
receiver structure and vibration isolators located between the two. Vibration iso-
lation aims at reducing vibration in some particular part of the receiver structure.
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Tt can be carried out in differing ways. The task of the designer is to select some
appropriate form of isolation.

Vibration isolation is governed by simple physical principles. When a wave
transmitted through an elastic medium encounters a region in which the char-
acteristics of the medium change, only a part of the wave passes through, the
remainder of it being reflected back at the approaching wave. The magnitude of
the reflected part of the wave is dependent upon the size of the change in the
medium. Vibration isolation reduces the transmission of vibrations by effecting
changes in the medium along the transmission path.

The most usual way of achieving a change in the medium is to introduce an
 element of lower stiffness than the parts of the medium adjacent to it, see Figure
6.3 2. Such an element is termed a vibration isolator. Examples of vibration
isolators available commercially are rubber isolators of different kinds and coil
springs made of steel. Note that the stiffness of the medium can also be changed
by introducing an element stiffer than the adjacent parts.

a) b)

|-

W
_>

W, W

Figure 6.3: Two different methods of vibration-isolation: a) Reflection by a soft
element. b) Reflection by a mass. W; = incident power, W, = reflected power
och Wy = transmitted power.

Reflection of vibrations can also be produced by an element that changes
the inertia of the system. Such an element is often treated computationally as
representing a rigid mass, see Figure 6.3 b. Elements of this sort, are in Figure
6.4 exemplified by auxiliary blocks placed at soft foundation points and seismic
blocks.

b
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gl >3
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Support \ = 3
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Auxiliary
blocks

L

Seismic block

Figure 6.4: a) Seismic block. b) Auziliary blocks placed at points of flexible sup-
port.
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The most usual construction materials, such as steel and concrete, are rela-
tively stiff. Thus, the simplest and most frequently employed approach to achiev-
ing major changes in conductive media is to use soft elements as isolators, al-
though in some cases stiffer elements are needed for purposes of stability and
strength.

In designing vibration isolators for machine use have long been made of prin-
ciples of trial and error combined with the making of rough estimates. Although
this can yield good results in the low-frequency range below approximately 100
Hz, it fails to adequately indicate how vibration isolators should be designed
in the entire acoustic frequency range. This calls for the use of more advanced
theoretical and experimental methods.

6.3 Measures of transmission isolation

‘Without isolator ‘With isolator

AAAAAAAAAAAAAAAAAAA

PBRERERIXHITH
RN I O N R R DTN

I‘{! before F qfter

Figure 6.5: Isertion loss can be defined as the difference in force level before versus
after isolation.

Designing a vibration isolaton in an optimal way requires not only determining
what vibrations are produced, but also having some measure of the vibration
isolation the isolator can provide. There are various measures of this sort. These
vary in the applications to which they apply. Insertion loss, Dy, is the measure
most frequently employed. This can be defined in any of three different ways:

DY, = Lbefore _ [after [dB] (6.1)
DE = phefore _ pafter [dB) (6.2)
DW= phefore el [dB] (6.3)

where L,, Ly and Ly - or the velocity, force and sound power level, respectively
- are defined as

L, :20loguif [dB] (6.4)
Ly = 20log#- [dB] (6.5)
Ly = 10l0gmzf [dB] (6.6)
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the wavy bar denoting a rms value and the straight bar a mean value, the reference
levels being vres = 1079 m/s, Frep = 107° N and Wiep = 10712 'W.

Insertion loss is thus defined as the difference, at some given point, between
the velocity, force or sound power levels prior to and after applying the vibra-
tion isolator in question, see Figure 6.5. Other, related measures can be defined
through different weighting of the various frequency components or frequency
bands, such as in the case of A-weighting, the latter being achieved by use of a
filter similar in effect to the perception of different vibrations by the human ear.
The choice among the types of measures listed in (6.1) - (6.3) depends upon the
specific application.

6.4 Computations of vibration isolation

For designing vibration isolaton for frequencies of up to about 1000 Hz, complex
computations are required. In principle, computational models for the machine,
the isolator and the foundation, correctly describing the relationship between
loads and the accompanying deformations within the entire frequency range, are
needed. Omne soon discovers that the computational tasks required are extremely
difficult. Even computations using the finite elements method, carried out in
detail are so time-consuming and yield such uncertain results as to be of very
doubtful value.

In practice, therefore, one is forced to use simplified computational models
for the various structural components. Although such models should not be used
for obtaining exact values for the degree of vibration isolation achieved within
narrow frequency bands, they can be used to advantage, with the help of octave
or tertiary band analysis, for comparing alternative solutions. They can also
be used to indicate basic tendencies and to suggest how vibration isolation can
be improved. Fairly reliable results can be obtained through utilizing so-called
frequency-response-function methods, using measured indata. The measurement
of frequency response functions, in particular in connection with vibration isola-
tors, is an important research area in itself.
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Chapter 7

Different models for the
‘computation of vibration
isolation

U. CARLSSON AND L. KARI

In order for comparisons of alternative vibration isolations to be practically
achievable on a computational basis, simplified models are needed. The over-
all problem is that at each point of connection between different parts of the
structure the transmission of vibrations involves a large number of degrees of
freedom. To simplify the problem, one can

(i) assume that the connecting areas are very small, i.e. of point-wise character.

(ii) assume that the vibration transmission at such points involves only one or
two degrees of freedom.

(iii) disregard connecting points that contribute only slightly to the transmission
of vibrations.

(iv) combine different transmission routes to form a single route that is equiva-
lent to these.

The last-named approach is applicable if the points connecting the isolator with
the machine and with the foundation move in phase with each other, the ampli-
tude of the movement being the same in each case.

95




7.1 Rigid bodies, ideal springs and foundations

When the excitation frequencies are very low, a simplified model of the compo-
nent structures can be employed. Assume, for example, that a machine resting on
a concrete joist is supported at four points and that the machine has an axle gen-
erating sinusoidal forces at the bearings, generating them at the same frequency
as the rotation of the axle. At very low excitation frequencies (axle-rotation fre-
quencies), the deformation of the machine is very slight, it behaves as a rigid
body. In physical terms, the forces acting upon the machine vary over time so
slowly that all parts of the machine react to the forces before the next change
in forces occur. Mathematically, the machine’s movements can be described in
terms of rigid body mechanics. The machine’s position is determined completely
by six degrees of freedom, whereby three represent translation and three rotation.
In practice, the number of degrees of freedom can often be reduced to one or two
through eliminating those that are unimportant.

When the rotation frequency of the axle increases, the forces applied finally
come to vary so rapidly that not all parts of the machine succeed in reacting
before the forces at the point of application change anew. Now, the transmission
of waves within the machine begins to play a role.

If the rotation frequency increases still more, an excitation frequency is reached
at which the amplitude of the machine’s deformation rises quickly to a maximum,
due to the deformation waves and the reflections of these supporting each other.
This represents the resonance phenomenon. At such frequencies, the machine no
longer behaves as a rigid body. A rule of thumb here states that the principles
pertaining to a rigid body can be employed for frequencies of up to 1 /3 of the
first resonance frequency of the machine.

A rigid body model corresponding to that of the machine can also be applied
to model the foundation. Consider yet another case involving the machine just
referred to. At very low interfering frequencies, the joist on which the machine
rests reacts with a quasi-static downward bending due to the slowly varying
force acting upon the points on which the machine rests. When the excitation
frequencies are so low that the deformation of the joist is negligible compared with
the deformation of the isolator, the joist can be described, in terms of vibration
isolation, as a stiff foundation. Note that this does not mean that the foundation
£ails to be set into vibration at all. If such were the case, no vibrations whatever
could be transmitted to the foundation.

Let the excitation frequency increase now in the same way as it did with
the machine. When the frequency becomes sufficiently large, the deformation it
produces can no longer be neglected, the transmission of waves in the foundation
increasing. If the boundaries of the foundation are nearby, the first resonance
frequency of the foundation soon appears. Thus, it is only at low frequencies, up
to approximately 1/3 of the foundation’s first resonance frequency, that it can be
described as rigid.

Assume now that one wants to reduce the vibrations transmitted from the
machine to the supporting joist by inserting soft vibration isolators between the

96




machine and the surface of the joist, doing so at the points on which the machine
rests. The force exerted by the machine deforms the spring which each of the iso-
lators represents. At low excitation frequencies, all parts of the isolator are able
to react to changes in the load upon it. Thus, the force exerted on the isolator is
the same throughout. Accordingly, no appreciable wave transmission occurs. The
isolator can therefore be considered at this point to be without mass. Since in
contrast to the joist, however, the isolator is soft, the deformation it experiences
when subjected to excitation forces cannot be neglected. Under such conditions,
the isolator can be described as an ideal spring without mass. As the frequency
increases, however, the movements assume increasingly the character of a wave.

- Again, beyond a particular excitation frequency, resonance appears. A rule of

thumb analogous to that described above applies here, stating that up to about
1/3 of the isolator’s first internal resonance frequency the the conditions of an
ideal spring apply.

Case 1

Consider the electric motor shown in Figure 7.1 a, mounted on four identical isola-
tors attached to a 2 cm thick steel plate.

b) | lFm“ c)

— LA
4K

Figure 7.1: a) An electric motor mounted on a large steel plate. b) A simplified
model of the system shown in case a. ¢) The system in case b represented by
subsystems.

When the motor is in operation, the rotating parts of it generate a vertically-
directed sinusoidal excitation force between the machine and the steel plate supporting
it. For the total force directed at the steel plate, compute the ratio of the force when
the vibration isolators are installed to the force when they are not present. For the
computations pertaining to low frequencies, assume that the electric motor, when in
operation, generates a vertical harmonic excitation force of Fegeit = ﬁea:p(iwt). As-
sume too that the motor has a mass of 100 kg and that the complex stiffness of each
isolator is (1.0 4 0.014)10* N/m.
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Solution:

Assume that the excitation frequency is sufficiently low that
(i) the motor can be considered to behave as a rigid body,
(ii) the foundation can be considered to be rigid and infinitely stiff and
(iii) each isolator can be described as an ideal spring without mass.

Assume, in addition, that the movements of the motor are dominated by vertical trans-
lations of low amplitude. Under these conditions, the one-degree-of-freedom model
. shown in Figure 7.1 b provides a useful description of the problem.

With isolators:

For the exposed system shown in Figure 7.1 c, the following two equations, for
movements of the mass m and for the action of the springs, can be expressed

d*x
m:lt—Q = Flogeit — 4F
and
Fi=k(x—0).

The complex sinusoidal displacement @ = Zexp(iwt) is eliminated in the two equations
just listed. The force exerted on the foundation, normalized to the excitation force,

then becomes
4 F 1 w2 2

w
(] - -1 _ 1— = —1
Femcit ( 4""‘/m) ( w%)

wg being the rigid body resonance frequency, i.e. the resonance frequency of the vibra-
tion of the machine’s mass against the vibration isolators.

Without isolators:

As one can readily see, when no isolator is employed the force against the foundation
becomes Fozeit. The ratio of the force against the foundation with versus without an
isolator is thus given by
Fwithout . (1 _ &)_z_) .

Fuith wg
Defining insertion loss on the basis of this ratio, one gets

w?
dx/m
where Y, and Y ; represent the mobility of the machine and of the isolator, respectively,
defined as the ratio of the velocity to the force involved. Note that the equation also
applies to receiver isolation.

Tnsertion loss has certain definite characteristics in such a case, see Figure 7.2. For

one thing, for excitation frequencies markedly lower than the first resonance frequency
fo, corresponding to wp, the insertion loss has a value of null. For another, for excitation

2

W
1— 1- =
wg

Y,+Y;
Dy, = 20log = 20log = 20log ‘—"lyfr——l (7.1)
m
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Figure 7.2: Insertion loss of a rigid body elastically mounted on a rigid surface,
fo = 38.18 Hx.

frequencies that approach the rigid body resonance frequency, the insertion loss assumes
large negative values. Thus, in the vicinity of the rigid body resonance frequency, forces
directed against the foundation tend more to be enhanced than to be reduced. Finally,
as the frequency increases above the level of the first resonance frequency, the insertion
loss increases rapidly so as to assume high positive values. The asymptotic increase
approaches 40 dB per decade, which means an increase of 40 dB for each tenfold
increase in the excitation frequency. For excitation frequencies that exceed the rigid
body resonance frequency, isolation thus appears to be highly effective. Unfortunately,
this apparent effectiveness is largely the result of using a highly simplified model. In
reality, the increase in insertion loss stops when the excitation frequency exceeds a level

of 10fo.

An important conclusion to be drawn on the basis of Case 1 is that in designing
vibration isolators one should see to it that the rigid body resonance frequency
does not coincide with any major excitation frequency. One should thus endeavor
to design isolators in such a way that the rigid body resonance frequency is as
low as possible. In practice, machine foundations are often so designed that the
rigid body resonance frequency is in the range of 2 - 10 Hz.
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7.2 A flexible foundation

As the excitation frequency increases, the state is soon reached in which the de-
formation of the foundation by the interfering force is no longer negligible. This
calls for the use of a model concerned with a flexible foundation. Various models,
differing in their characteristics, are available. If, for example, the foundation is a
joist of large dimensions, a plate infinite in its dimensions can serve as a model for
the deformation occurring. If the deformation of the surface involves resonance,
a mass-spring system can be used to provide an initial approximation of it.

Case 2:

Consider the machine and its installation described in Case 1. Assume that the
model involving a steel plate of infinite dimensions is applicable to the deformation of
the foundation. Compute the ratio with versus without isolators for the total force
directed against the foundation.

Solution:

Assume the deformation of the foundation to be the same at each of the four legs on
which the machine is standing. Regard the assumptions (i) and (ii) made in connection
with Case 1 as also applying here.

) ) b ) 2 Individual isolator
a) ) F,
chxcit
m
I K
x x
1 . 4F1 T 1

T
1 4x ‘ E |
4Fll ) %y
X2 Xq :

Figure 7.3: Simple model of a machine mounted on a flexible supporting surface.

The following system of equations given by the equation of motion,
d2w1

a2 = Lexcit — 4F

m

the spring stiffness expression
Fi = k(zy —@2)
and the mobility expression of the plate

Ty = (iw)_lYplatellFl.
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applies according to Figure 7.3. Eliminating #1 and @9 gives

ARy —4k/mw® B Yo
Fopeit 1- 4""'/77%‘)2 + 4"3/(iw)Yplate Yn+Y;+ Yplate,

where Y, = 1/iwm and Y; = iw/4x. When no isolators are present, the forces on the
foundation are determined by eliminating the second equation above concerning the
spring stiffness and setting 1 equal to 2. The resulting system of equations has the
solution

4FP lfiwm Yn

Fopeit 1/iwm + Yplate Y.+ Yplate‘

~The insertion loss is then

Ym + Yi + Yplate

Dy, =201
v d Ym + Yplate

. (7.2)

Equation (7.2) can be shown to also apply to the case of receiver isolation. By use of
appropriate formulas, the mobility of a very large plate can be derived;

3(1 —v?)
Yplate = A2 /———pE .

For a 2 cm thick steel plate, with the parameters p = 7800kg/m?, E = 2.0 - 10! Pa,
v = 0.3, and h = 0.02m, the mobility becomes Y piate = 135 1078m/Ns.

Tnserting into the equation for insertion loss (7.2) the values obtained yields the
curves shown in Figure 7.4, which displays results for both a flexibel and a rigid foun-
dation.
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Figure 7.4: Insertion loss of a rigid body mounted elastically on a steel plate of
infinile size.

A surface of the latter type obviously affects the insertion loss in two different
areas: that in which the rigid body resonance frequency is found and that lying above
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approximately 50 Hz. At the rigid body resonance frequency an increase in insertion
loss is observed due to the energy absorbing ability of the infinite plate. In the region
above 50 Hz, there is a considerable drop in the isolation efficiency because of the
flexible supporting plate. The isolation there being largely determined by the ratio
of the mobility of the isolator to that of the plate. At high frequencies the isolation
increases asymtotically by 20 dB per decade, as opposed to the 40 dB per decade it
increases with the rigid foundation.

7 3  Wave transmission in the isolator

If the excitation frequency increases so much that a wave movement develops
in the isolator, the ideal spring model is no longer adequate for describing the
isolator. Different models for wave transmission can then be employed, depending
upon the design of the isolator. Case 3 provides an example of a simple wave
transmission model of an isolator.

Case 3:

Consider again the machine and its mounting dealt with in Case 2. Assume the
isolator to be a circular cylindric rod that mainly becomes deformed in the axial direc-
tion. Since the deformation is axial, movements within the isolator consist primarily of
axially directed longitudinal waves. To permit a direct comparison with the previous
case, assume each isolator to be 0,05 m in height and to have a cross-sectional area
of 0,005 m2. Assume also the density of the isolation material to be 2500 kg/m3 and
that the complex Young’s modulus is E = 0, 1(1 +i0,01) M Pa. This agrees with the
stiffness of the isolator at low frequencies as found in cases 1 and 2 above.

Solution:

Block one end of the isolator. This allows the frequency-dependent dynamic isolator
stiffness Kgyn to be computed on the basis of the ratio of the force at the blocked end
to the displacement produced at the free end. If the stiffness « obtained in Case 2 is
replaced by this dynamic stiffness, one obtains an insertion loss that takes account of
the longitudinal wave transmission through the isolator. This result can be compared
with the results described earlier, shown in figures 7.4 and 7.5.

The longitudinal transmission of waves through the isolator leads at certain fre-
quencies to the isolator’s becoming very stiff. This is due to the combined action of
the ongoing and the reflected waves. At such frequencies, the isolator no longer func-
tions as a soft element. At these frequencies the insulating effect is very low. In the
present case, these higher resonance frequencies are 64 Hz, 130 Hz, etc. As can be seen
in Figure 7.5, the second resonance frequency results in the insertion loss failing then
to increase. At higher frequencies, the average insertion loss remains approximately
constant, remaining in the case above, except at the higher resonance frequencies, at
about 40 dB.
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Figure 7.5: Insertion loss. Summary of the results for cases 1 through 3

Case 3 shows clearly how wave transmission through the isolator stops the
rise in insertion loss.

7 4 A deformable machine

For cases 1 to 3 it was assumed that the machine moves like a rigid mass in
one coordinate direction. At excitation frequencies in the region of the first
resonance frequency, the insertion loss thus becomes very low. If several or all of
the machine’s six degrees of freedom for a rigid body are included in the model,
this results in there being several different rigid body resonance frequencies. In
the most general case, the insertion loss thus disappears at six different rigid
body resonance frequencies. In a real situation, a machine also displays internal
resonances at certain frequencies. For a compact machine with a mass of 100
kg, such as a small combustion engine, the first internal resonance frequency is
typically found in the region of 100 Hz - 500 Hz. If a machine contains different
softly coupled parts, the first resonance can appear at a still lower frequency.

The possibility of wave transmission also affects the insertion loss of an elas-
tically mounted machine. The insertion loss that results depends partly on the
comparative stiffness of the machine versus that of the isolator. If the stiffness of
the machine varies markedly due to resonance and antiresonance, the insertion
loss will vary markedly as well. Above the first internal resonance frequency, the
average degree of isolation declines. Figure 7.6 shows the insertion loss of a simple
system consisting of a machine with internal resonances, together with the same
rigid foundation and the same type of isolators as described in Case 1.

In this case the machine has resonances at 185, 345 and 535 Hz and antireso-
nances at 160, 205 and 495 Hz. Figure 7.6 indicates that at resonance frequencies
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Figure 7.6: a) Insertion loss for the machine mounting in Case 1, taking account
of the internal resonances in the machine as well. b) A mechanical model of the
machine.

where the machine becomes soft there is a decrease in insertion loss, whereas at
antiresonance frequencies the insertion loss increases, the machine becoming very
stiff. As the excitation frequency increases within the frequency region above the
first resonance of the machine, the average insertion loss successively declines.
The decline is caused by the effective mass of the rigid fondation that moves with
the isolator successively decreases as the number of resonance frequencies that
have been passed increases.

7.5 General formula for computing insertion loss

In solving cases 1 to 3, a general approach to computing insertion loss was de-
veloped, though not commented on there. This is an approach applying to a
structure of the type shown in Figure 7.7. The approach is based on its being
possible to replace the mobility of each of the three initial structures Y, Y; and
Y piate by the true, computed or measured mobilities ¥ ar, Y;and Y.

Machine Vibration isolation Supporting structure
Yy Y; Y

Figure 7.7: The general vibration isolation problem.

This results in a formula for insertion loss involving two different characteristic
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structures and the presence of one or more isolators such that

YM+Y[+Y5
Yu+Ys '

D1, = 20log (7.3)

The system must also satisfy the condition of its being possible to regard the
transmission routes between the machine and the foundation as a single route. If
one needs to consider different routes of transmission, a generalized form of (7.3)
is required. Note that (7.3) also applies to the case of receiver isolation.
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Chapter 8

Practical aspects of vibration
isolation

U. CARLSSON AND L. KARI

Tt was shown in a series of cases above that at high frequencies it is not possible to
obtain the high insertion loss which the simplified computational models predict.
This is due to the assumptions of the simplified models not applying to conditions
of high frequency. Under such conditions, the machine and the foundation on
which it stands are no longer rigid and the isolators are no longer soft.

Dy, [dB]
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Figure 8.1: Typical curve for insertion loss. I.) Frequencies below the rigid body
resonance frequencies. II.) Rigid body resonance frequencies. II1.) Stiff machine
- soft isolator - rigid foundation. IV.) Internal resonances in the machine, the
foundation and the isolator.

In practice, the simple models are often found to give acceptable results up
to about 100 Hz. Above that point, insertion loss tends to remain at a relatively
constant level, between about 20 and 30 dB, see Figure 8.1. Under some condi-
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tions, not even that level of insertion loss is achieved at high frequencies. If the
point of support is fairly soft, the isolation obtained at high frequencies is often
no more than one of 15 dB. Figure 8.2 shows, for a machine mounted elastically
on an aluminum section of a vehicle, how the the choice of support affects inser-
tion loss. The machine can be described as a rigid mass and the isolator as an
ideal spring. Curve a) shows the insertion loss when the points of support can
be considered rigid. The other two curves show the insertion loss for each of two
alternative types of mountings of the machine, the one type being stiffer than
the other, being supported by two crossed ribs, the other being softer and being
supported by a single rib. If use of the softest points of support is selected, the
insertion loss at high frequencies becomes no more than 7 - 8 dB.

’ Dy [dB]
60 "é‘)’."_

i 1 | N4
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" Ay \N j

c)

60 80 100 120 140 160 180 200
Frequency {Hz]

Figure 8.2: Vibration insertion loss. a) Rigid support. b) Flexibel support,
mounted on the intersection of two ribs. ¢) Flexibel support, mounted on a single
71b.

8.1 Designing of vibration isolators

There are a number of rules of thumb to follow in designing vibration isolatons.
If these are followed, the results obtained should be acceptable.

(i) A (static) stiffness of the isolator should be chosen that is low enough so
that the highest rigid body resonance frequency is considerably lower than
the lowest excitation frequency.

(i) The points of support should be as stiff as possible.

(ifi) The points at which the machine is joined to the isolators should be as stiff
as possible.
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At low frequencies, one usually has no difficulties in applying rules (ii) and (iii).
At higher frequencies, however, problems appear due to internal resonances.

(iv) Insofar as possible, an isolator should be so designed that its first internal
anti-resonance frequency is higher than the highest excitation frequency of
interest.

This last rule is very difficult to adhere to in practice. If it cannot be followed,
one should carry out appropriate measurements or computations and see to it
that the following rules are adhered to:

(v) “The isolator should be so designed that its internal anti-resonances do not
coincide with any of the strong components of the excitatory spectrum.

(vi) Insofar as possible the isolator should be so designed that its anti-resonance
frequencies do not coincide with the resonance frequencies of the support.

In addition to these rules, one have to follow a number of other design rules,
concerning for example the geometry, the durability and the stability of the sys-
tem.

8.2 Various methods of improving insertion loss

Under some conditions, one can achieve a considerable improvement in inser-
tion loss by use of rather simple methods. If particularly effective isolation is
called for, so-called double vibration isolation can be employed. This represents
a combination of elastic elements and a mass, see Figure 8.3.

In practice, double vibration isolation can be achieved by introducing between
the machine and the supporting surface a structure which possesses considerable
mass and still acts as a rigid body at as high a frequency as possible.

w Kdyn Kdyn

Figure 8.3: Schematic representation of double vibration isolation.

Machinery contained within a vehicle, for example, can be mounted elastically
on a stiff and heavy supporting structure which, in turn, is mounted elastically
on a supporting structure, see Figure 8.4.

Tf the double-elastic mounting is carried out properly, it can lead to an im-
provement in insertion loss. Due to a rigid body’s being added, the isolation
system possesses then six separate internal rigid-body resonance frequencies 1.e.
six separate secondary resonance frequencies above the basic rigid body resonance
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Figure 8.4: Double-elastically mounted diesel engine in a vehicle.

frequencies, the insulation efficiency thus being very low. For this reason, the iso-
lators should be designed so that the secondary resonance frequencies are lower
than the first excitation frequency of interest. If the additional structures are
designed so that their mass and moments of inertia are of the same magnitude as
those of the machine, the internal resonance frequencies of the isolation system
lie fairly near to the rigid body resonance frequencies. This can be shown in the
lower limit being rather low for area III in Figure 8.1, where the insertion loss
increases rapidly. Vibration isolation there has a positive effect at low frequen-
cies. If the design of the double-elasic system has been successful, the insertion
loss within area IIT increases then by 80 dB per decade, twice as much as in the
case of conventional isolation.

Some types of mechanical constructions, such as water or land vehicles of
different types, require that machines be mounted at relatively soft points. Motors
of small boats such as those used for recreation purposes are often mounted, by
way of vibration isolators, directly on the thin, soft body of the boat. Vibration
isolation has no effect then, due to the difference in impedance between the
points of contact and the isolators being too small. One method of increasing the
difference in impedance is to use inserts that add additional mass at the points
of contact, see Figure 6.4 b. If the mass of these inserts is sufficient, the insertion
loss can be increased considerably.

8.3 Vibration isolators available commercially

There is a large market for vibration isolators. Among the types available com-
mercially are spiral springs made of steel, isolators made of rubber and gas springs.
The two fundamental characteristics of an isolator are dynamic stiffness and a
loss factor. The stiffness is the characteristic that largely determines whether an
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isolator can be used at all, as was shown above. The loss factor is of importance
as an amplitude-limiting factor in the case of resonance. Both of these parameters
are dependent upon the frequency and are usually determined experimentally.

Figure 8.5: Ezamples of commercially available vibration isolators (Diagram.:
Briiel & Kjer.)

Spiral springs of steel can be designed so as to be of very low stiffness. If
the lower limit for isolation needs to be very low, say 2-3 Hz, spiral springs are
appropriate. A disadvantage with them, however, is that the loss factor for them
is very low.

Rubber isolators are the type of isolators used most. They can be constructed
s0 as to be appropriate for deformation both in terms of shear and of compression,
being useful for shear down to about 3 Hz and for compression down to about 5
Hz. A special problem with rubber isolators is that their characteristics can vary
markedly from one example to another of a given type. The variation in static
stiffness for a particular type of rubber isolator can vary, for example, by 30 -
40 %. In critical cases it can thus be necessary to determine the characteristics
of different isolators individually. Gas springs can be more appropriate to use
in situations calling for particularly low resonance frequencies. In train cars and
buses, gas springs are sometimes used to isolate the body of the car or bus from
the chassis or bogie.
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8.4 The dynamic stiffness of an isolator

An isolators stiffness characteristic can be described in many different ways. The
ability of an isolator to stop transmission of vibrations is strongly dependent upon
the so-called transfer stiffness. This can be expressed as the inverted ratio of the
displacement occurring on the incoming side to the force on the outgoing side
which results when the latter is blocked.
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Figure 8.6: The measured dynamic transfer stiffness for a circular cylindric rubber
isolator of 50mm length and 75mm diameter.

Obtaining reliable data on the dynamic stiffness of isolators requires that one
measure the dynamic stiffness of the individual isolator. The data on dynamic
stiffness provided by manufacters consists simply of only partially corrected fig-
ures on static stiffness. At high frequencies the discrepancies between the true
dynamic stiffness and the corrected static stiffness is often very large. This is
illustrated in Figure 8.6, showing the dynamic stiffness of an ordinary circular
cylindric rubber isolator. The corrected static stiffness and the true measured
stiffness can differ by as much as several thousand percent!

8.5 More refined dynamic stiffness models

The simplest dynamic stiffness model is that of the frequency- and static load-
independent complex stiffness corresponding to the hysteretic damping model
mentioned in Chapter 5, as given by

k = ko(1+ mi), (8.1)
where 7 is the loss factor, ¢ the imaginary unit and ko the static stiffness. For an

long body, the static stiffness can be computed as ko = FEygA/L, where Ej is the
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static Young’s modulus of the material in the spring, and A and L are its area
and length. Correcting for the vibration isolator’s form is done by setting

ko = EoAJL(1 4 2k, S%), (8.2)

where k; is a correction constant obtained partly on an empirical basis. .S is the

form factor
loaded area

load free area’

(8.3)

Equation (8.2) apply to compression loading as discussed in Chapter 3. For loads
involving shear the stiffness kg is replaced by

ko = GoA/L, (8.4)

where G is the static shear modulus of the spring material. In order for the
computed stiffness to apply to the dynamic case, the frequency dependency of the
module must normally be corrected for. This can be done most simply by using
the correction constant ks, which denotes the relationship between the dynamic
and the static values, which typically varies between 1.1 and 1.9, depending on
the rubber material involved. The dynamic stiffness then is for compression

k= koEyA(1 4 2k15%)(1 + mi)/L (8.5)
and for shear

These models are satisfactory enough in the low-frequency area. When the
excitation frequency increases, however, a wave transmission in the the isolator
must be accounted for. The simplest longitudinal-wave model 3], that was used
in Case 3 assumes the displacement field to be planar and uniform and that
movement occur in one direction only. The dynamic transfer stiffness is then

L BAxi/E[p
= (8.7)
sin(2n fL/+/E/p)

and

- GA2rf/+\/G/p 82)
sin(2rn fL/+/G/p)

where p is the density and F is the dynamic Young’s modulus and G is the dy-
namic shear modulus. The dynamic stiffness in shear (8.8), in particular, is highly
predictable, no corrections on the theoretical values normally being called for.
The compression stiffness (8.7), on the other hand, tends to be underestimated
in the low-frequency area. The underestimation can be reduced by correcting
(8.7) for the vibration isolator’s form, giving

b= (14 28,57 A2 VE/p (8.9)
sin(2rfL/\/E/p)
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This compression stiffness model is rather satisfactory for estimating the low-
frequency characteristics and the first internal resonance frequency. However,
the stiffness value for this frequency tends to be overestimated, which holds also
for (8.7).

A more refined model, taking some account of movements in the radial direc-
tion is the so-called Love model [3]. This model assumes radial movements to be
directly proportional to axial movements in accordance with Poisson’s ratio. The
dynamic transfer stiffness then becomes

_ BAwfyfp(1 - (2rfvR)2p/E)/E
sin(2mf Ly/p/ (B(L ~ (2n fvR)?0/ E)) )

where R is the polar radius of gyration of the cross-sectional area of the isolator
and v is Poisson’s ratio, for rubber normally 0.5.

Particularly when vibration isolators are large in width and are made of soft
rubber material, the Love model can overestimate the effect of radial movements
and do so to such an extent that the stiffness computed may be less accurate
than with use of (8.7). To obtain better estimates, account must be taken of the
shear stresses stemming from radial movements. A model that corrects for such
stresses is the so called Bishop model [4].

During the last few decades, the development of analytical models for pre-
dicting the dynamic stiffness of vibration isolators has more or less stood still.
Rather, emphasis has been placed instead on finite element analysis. An exception
to this is the newly presented wave guide model [1], providing an exact solution
to the basic (linear) equations without any assumptions being made regarding
movement patterns and the like.

Figure 8.7 shows the dynamic transfer stiffness computed for an ordinary
circular cylindric rubber isolator of 50mm length and 100mm diameter, together
with the measured results. The limitations of the approximative methods are
obvious, whereas the wave guide solution largely agrees with the measurements.

(8.10)

8.6 Models of the rubber material

Within a large range of frequencies, the rubber material damping is clearly the
most important characteristic for its serving as a vibration isolator. Modelling
this characteristic is far from simple, however. A large number of different re-
search projects within this area are being conducted. It is often assumed that
rubber exercises its damping effect only in terms of shear. The simplest model for
this assumes the presence of a frequency- and static load independent complex
shear modulus

G = Go(1 + i), (8.11)

where 7 is the loss factor equivalent to (8.1) and Gy is the static shear modulus.
The damping can be expressed either as the loss factor or as the loss modulus,
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Figure 8.7: Computed dynamic transfer stiffness for a circular cylindric rubber
isolator compared with measurements (dashed line). Wave guide model (thick
solid line), longitudinal wave model (solid line), Love model (dotled line), and
Bishop model (dash dotted line).

which is the imaginary part of the complex shear modulus. A correction constant
for the dynamic processes involved is usually required such that

G = kyGo(1 + i), (8.12)

where the constant &y is the same as in (8.5) and (8.6).
Equations (8.11) and (8.12) approximate a slightly damping material such as
unfilled natural rubber. For strongly damping rubber, a viscous model is required,

G = Gy(1 + ciw), (8.13)

where the constant c is the viscosity and w is the angular frequency.
Most rubber, however, displays neither frequency independency nor viscous
damping, but rather
_ ZaZepalio)"
S o G (i0)™
where p, and ¢, are material constants. In principle, all rubbers can be charac-
terized in terms of this relationship if the conditions are such that the nonlinear
dynamic effects are negligible.
Intensive research is being carried on to reduce the number of material con-
stants needed, thus simplifying computations and measurements. An example of
how this has succeeded is development of the so-called fractional derivative model

(8.14)
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[1], in which the integer exponents in (8.14) are replaced by non-integer numbers.
This yields a significant reduction in the number of material constants needed,
without loss of agreement to experiments in a broad frequency range.

Research aimed at arriving at more non-phenomenological models related to
the structure and movements of the rubber molecules is also being carried on.

8.7 Measurement methods

One distinguishes between measuring the dynamic characteristics of a vibration
isolator and the material characteristics of rubber. The former concerns the
dynamic stiffness of the isolator as a whole, based both on its geometry and the
material of which it is made, whereas the latter concerns only the characteristics
of the rubber itself, without account of the geometry.

Research aimed at using the first-named approach also as a means of deter-
mining the purely material characteristics of rubber is underway, involving partly
the use of so-called computer-based generic algorithms.

8.7.1 Dynamic stiffness

Dynamic stiffness can be measured either directly or indirectly. Direct methods
measure both the dynamic force and the motion of the isolator, with the ratio
of the two being the dynamic stiffness. Direct methods often cannot be used at
high frequencies, however, due to resonances in the measuring equipment. One
is forced then to use indirect methods.

Source signal

Frequency analyzer

s

PC

00

Figure 8.8: Measuring-setup and measuring equipment.

Figure 8.8 illustrates such a method, in which a static deformation is imposed
through pressing two masses together by means of screws or hydraulic pistons.
Vibration isolators are placed between the two masses. The upper block is then
set into dynamic motion by means of electrodynamic excitators. Through mea-
suring the movements of the blocks by accelerometers, one is able to compute the
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dynamic transfer stiffness indirectly. This can be done in terms of each of the
six degrees of freedom. Figure 8.9 shows the measured dynamic stiffness [1] ob-
tained for a large circular cylindrical rubber isolator of 170mm length and 165mm
diameter, containing several metal plates vulcanized into it.
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Figure 8.9: Dynamic transfer stiffness of a circular cylindric rubber isolator lam-
inated with metal plates, measured for a pre-load of 10 kN.

Work on developing international standards and research on developing im-
proved methods of measurement is underway [1].

8.7.2 Material characteristics

Since within a large range of frequencies the damping in shear is the most im-
portant material characteristic for a vibration isolator, measurement work tends
to be focused upon this mode of deformation. Here too, both direct and indirect
methods are employed, together with certain standards. Due to the need of mini-
mizing the effects of the geometry of the object, and to the fact that deformations
in the objects studied should occur primarily as shear, the objects measured need
to be very small, objects about the size of a sugar lump being rather usual.
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8.8 Finite Element methods

When the geometries and the material characteristics are complex and heavy
static loads are employed, finite-element computations are needed for obtaining
accurate results [1]. If one has access to a powerful computer, the computations
themselves require comparatively little research effort. On the other hand, the
damping effect of the rubber must be modelled correctly if close agreement with
measurements is to be obtained over a wide range of frequencies. Figure 8.10
shows the dynamic transfer stiffness [1] computed for the same circular cylindric
rubber isolator as in Figure 8.7, but with the use of static pre-loads, ranging from
zero up to the maximum load employed.
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Figure 8.10: Dynamic transfer stiffness for a circular cylindric rubber isolator as
obtained by finite element analysis for different pre-loads starting from zero.
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Chapter 9

Fracture mechanics and fatigue

P.-E. AUSTRELL

Considerations of fracture mechanics and fatigue are essential in the designing of
rubber components. Knowledge of these matters makes it possible for engineers
to more fully exploit the behavior of elastomers and to optimize the performance
of these in applications.

The - analysis and prediction of crack initiation and crack propagation has
become increasingly precise due to the development of fracture mechanics, origi-
nating from the work of Griffith [3], who in the early 1920s formulated the first
criterion for crack growth. The fracture criterion Griffith proposed, as well as the
related tearing-energy concept and considerations of fatigue are dealt with in the
present chapter.

9.1 Crack initiation and growth

The initiation of a crack that occurs in a rubber material is influenced by flaws,
holes and irregularities. A rubber compound contains various additives of differ-
ing particle sizes that form inhomogeneities in the material. Large-scale geomet-
rical features in loaded rubber units, such as roughness of cut and molded edges,
can also lead to the initiation of cracks. The feature common to all such inho-
mogeneities is that they all lead to localized concentrations of stress that greatly
exceed the nominal stress in the material, thus initiating crack propagation.

In addition, environmental effects such as exposition to ozone or to chemicals
can increase the crack growth and reduce service life of a rubber unit. Matters
relating to the effect of the environment are discussed further in Chapter 10.

9.1.1 Crystallizing and noncrystallizing elastomers

Under static conditions, crystallizing and noncrystallizing elastomers differ in
crack growth. The formation of crystallites at the tip of the crack where high
local strains occur inhibits crack growth. Hence, crystallizing rubber such as
NR and CR show no crack growth under static loading conditions. In contrast,
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noncrystallizing rubber materials such as NBR and SBR. are subject to crack
growth even under static conditions.

9.2 Fracture criterion

Griffith [3] proposed a fracture criterion based on the balance of energy, involving
the change in mechanical strain energy due to the formation of new crack surfaces.
According to this criterion, the energy required to propagate a crack and create
new surfaces in the material is equal to the elastic energy released in the material
surrounding the crack. The criterion states that a crack can grow if the strain
energy applied to the material is just sufficient to cause a small increase dA in
the crack surface area.

The growth of a crack depends on the tearing energy 7', also referred to as the
fracture energy. This quantity is related to the rate of release of elastic energy in
terms of

ou

(aA)K -
where U is the total elastic energy stored in body studied, A is the area of new
crack growth, and £ indicates that the partial differentiation is with respect to
constant deformation. Under fixed displacement conditions, the external force
applied can do no work, and crack growth being driven by the release of elastic
energy.

Rivlin and Thomas [7] applied the criterion to the tearing of rubber vulcan-
izates. They showed that the tearing energy required to propagate a crack was
independent of the geometry of the test-piece. This property is desirable, simpli-
fying the relationships and the understanding of the mechanical factors involved
in determining crack gowth. The concept used for tearing of rubber is thus the
same as that originaly proposed by Griffith for fracture of metals. Although rub-
bers are more complicated, due to elastic nonlinearties, there is no development of
a plastic zone at the crack tip in these materials. A fracture mechanics approach
thus being simpler in this sense than it is for metals.

The criterion (9.1) can be used for the estimation of catastrophic crack growth,
which occurs if the elastic energy release rate, given by the left-hand side in (9.1),
exceeds a certain maximum tearing energy T, which the material can withstand.
The criterion can also be used for calculating the fatigue life of rubber. The
tearing energy T is considered then as a measure of the mechanical straining at
the crack tip, the development of the crack being a function of T This will be
discussed further in Section 9.3.

T (9.1)

9.2.1 Tear energies for different test-pieces

Test pieces of different geometries for evaluation of the tearing energy will be con-
sidered next. The difficulties in applying criterion (9.1) in practice arise from the
need of calculating the tearing energy for different geometries of the engineering
components. The initial work by Rivlin and Thomas [7] and subsequent work
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in the area provide solutions for various cases involving thin rubber strips. The
studies following provide solutions for bonded rubber layers in cases of simple
shear and of uniaxial compression. The solutions are based on theoretical inves-
tigations of the energy balance between the stored elastic energy and the fracture
energy.

The trousers test piece

Figure 9.1: The trousers test piece.

The trousers test piece shown in Figure 9.1 is a widely used test piece and one
of the first for which a solution was obtained. Regarding the energy balance of
the test piece, the work done by the force that is applied is approximately equal
to the sum of the energy required for tearing and the increase in strain energy in

the legs. This can be shown to yield
2F

T="" (9.2)

the fracture energy of the trousers test piece depending only on the force F
applied and the thickness ¢ of the test specimen, the latter being constant.

The pure shear test piece

Figure 9.2: The pure shear test piece.

Another widely used test piece is the pure shear test specimen shown in Figure
9.2, of which the fracture energy is

T =Wh, (9.3)




where h is the height of the specimen and W is the strain energy density discussed
in Chapter 3.

The tensile strip

A A

= "z

[

Figure 9.3: A tensile strip-test piece with a crack of length c.

Yet another case is that of the tensile strip shown in Figure 9.3. The length L of
the test piece is large compared with the length ¢ of the cut. If the cut length
was zero, the test piece would be in simple extension. For a small edge crack it is
assumed that the tensile strip is approximately in simple extension. The fracture
criterion then can be written as

T = 2kWe, (9.4)

where k is a constant. The value of this constant have been investigated by
Lindley [5] useing finite element analysis and by Greensmith [2] in experiments
showing k to be approximatly 3/ v\, with X being the longitudinal stretch.

Simple shear

Figure 9.4: A simple shear test-piece with a crack.

The following expression applying to the tearing energy T' in the case of simple
shear was derived by Lindley and Teo [6]

T = kWh (9.5)
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where the constant k is approximately 0.4 but can vary, depending on the size
and configuration of the crack. The expression (9.5) is an approximation and it
holds only if the crack length is smaller than the height A of the specimen.

Constrained compression

A solid rubber cylinder, bonded to rigid metal discs of the same diameter is
employed, yielding constrained compression, which is an inhomogeneous defor-
mation, in contrast to the other cases previously discussed. For this case, the
strain energy W will depend upon the shape factor in terms of the compression
modulus F,.

An approach for this specimen was suggested by Stevenson [9].

a d

Figure 9.5: Typical stages of crack growth in compression. (a) unstrained; (b)
compressed - crack initiation at bond edges; (c) compressed - bulge separates from
core; (d) unstrained - showing parabolic crack locus.

On the basis of experimental observations, Lindley and Stevenson [5] sug-
gested that in bonded rubber units under cyclic compression the locus of the
crack growth defines a surface which is approximately parabolic in section, as
shown in Figure 9.5 (from Stevenson [9]).

An approximate expression for the tearing energy 1’ is
1 1
which is valid for shape factors above 0.5 and compression strains e, below 50%,
where e, is the compression displacement divided by the original height.

The tearing energy expressions presented for different test specimens here
are approximations. More accurate expressions can be obtained by use of finite
element analysis. One way of doing this is to use the finite element model to
calculate the elastic energy for the body at different crack lengths.
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9.3 Fatigue of rubber components

Since the service life of rubber components subjected to cyclic loading is limited,
due to fatigue, efforts to estimate service life are important. The major causes
of fatigue cracking in rubber material are mechanical, thermal, environmental
(oxygen, ozone and ultraviolet radiation) and chemical (e.g. oil, gasoline) in
character. Rubber materials are thus provided with protective agents to prevent
these problems.

max

mearn

min

Figure 9.6: Wohler curve. The dynamic stress or strain range S is plotted against
the number N of cycles to failure.

The original manner of presenting the fatigue characteristics of a material has
been to determine a so-called Wohler curve, in which the dynamic stress or strain
range is plotted against the number of cycles to failure. Such a curve, which also
includes a fatigue limit representing infinite fatigue life is shown schematically in
Figure 9.6. The limiting value for fatigue life is denoted in the figure as S the
static limit load S, also being shown. One should note that it is only crystallizing
rubbers that display a fatigue limit S; that differ from zero.

Obtaining Wohler curves for rubber useing specimens without a pre-defined
crack, requires a considerable amount of testing due to the large scatter in the
experimental data this approach yields. A different approach is usually taken
in the fatigue analysis of rubber. Pre-defined cracks are applied and the tearing
energy concept is introduced through use of test specimens of the type discussed
earlier. A review of the fracture mechanics approach to fatigue of rubbers is given
by Seldén [8].

The fatigue properties are usually shown in a diagram in which the crack
growth rate dc/dn is plotted against the tearing energy T as examplified by
Figure 9.7. Since the tearing energy is independent of the geometry of the test-
piece it is useful in characterizing crack growth. The curve shown in Figure 9.7,
which is characteristic for NR cycled under relaxing conditions, where the the
specimen is unloaded completely in the cyclic loading, can be divided into four
regions.

Since in region I the tearing energy 7', as shown in Figure 9.7 is less than
the threshold value Tj, no mechanical fatigue will occur. In the region below
this mechanical fatigue limit Ty, crack growth is caused by ozone only. Crack
growth in region II is dependent both on ozone and mechanical factors, so-called
mechanico-oxidative crack growth occurs. In region III, a power law has been
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.Figure 9.7: An ezample of the crack growth characteristics of an NR vulcanizate
in a laboratory atmosphere at 100 cycles/min under non-relazing conditions.

found to work well for both crystallizing and noncrystallizing elastomers. The

relationship is
dc

b /é

o BT? | (9.7)
which is valid for Ty < T < T,, where T, is the critical tearing energy, T4
being located between regions II and III as shown in Figure 9.7. B and § are
constants characteristic of region III. For natural rubber, j is often about 2, and
for noncrystallizing rubbers such as SBR it may be about 4. In region IV the tear
energy is limited by the critical value T, when catastrophic failure is approached

asymptotically.

9.3.1 Calculating fatigue life

Predicting values for the theoretical number of cycles to failure can be done on
the basis of fatigue crack growth characteristics. A methodology for predicting
the number of cycles is illustrated in Lake [4].

Crack growth can be expressed as a function of the tearing energy T,

de
= f(T) (9.8)

as shown in Figure 9.7. For moderate to high strains, as was indicated earlier,
it can be approximated, by the power law relationship. The number of cycles
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required for a crack to grow from length ¢y to the final failure size c, is given by

e dc
n = o ﬁ—fj (99)

which can be evaluated, provided the function (9.8) of the tearing energy 7' and
the crack length ¢y and c. are known. An example of the evaluation of the
expression for the tensile strip (9.4) and for the power law (9.7) is given by Ellul

[1].

9.3.2 Factors influencing fatigue life

Several factors influence the mechanical fatigue properties of rubber. Ellul [1]
(section 6.4) discusses such factors in detail. The following is a brief summary of
matters taken up: ‘

e Static strain/stress: Nonrelaxing conditions are present if the minimum
strain or stress in a fatigue test is non-zero. A parameter R, which is the
ratio of the minimum to the maximum load (cf. Figure 9.6), is normally
used to characterize nonrelaxing conditions. Under nonrelaxing conditions
(R > 0), fatigue life of rubbers is prolonged. This effect is particularly
significant for strain-crystallizing rubbers.

e Frequency: Whereas for crystalizing rubbers the influence of frequency is
small, for rubbers of the noncrystallizing type the effect is significant due
to the time dependent behavior of these rubbers. Changing the frequency

- also changes the duration of the load.

A complicating factor in the use of high frequencies and maintained ampli-
tudes is the heat generation which can cause thermal degradation.

e Temperature: The effect of temperature is also more significant for non-
crystallizing rubbers.
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9.3.3 TFatigue life for different rubbers

Fatigue crack growth rate as a function of tearing energy at 22°C for different
rubbers are shown in Figure 9.8 (from reference [1]). The minimum tearing energy
in each cycle is equal to zero.

Log dC/dN
(m/cycle)

4}

6k

2 3 s 5
Log G (J/m? )

Figure 9.8: Fatigue crack growth rate as a function of tearing energy at 22°C for
various elastomers under relazing conditions.
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Chapter 10

Longevity characteristics

M. BELLANDER AND B. STENBERG

When the long-term properties of a product are to be predicted, several de-
tails not found in the common descriptions of different rubber types must be
taken account of. These include the degree of stress relaxation of a material
at different temperatures, the creep and compression set of the material, and
the material’s dynamic-mechanical characteristics as described by frequency and
temperature spectra, the latter being especially important when a product has
requirements to be met at widely different temperatures. Often, all that is avail-
able are single-point values, such as the tand for a certain temperature. This is
far from satisfactory when the characteristics and behaviour of a product under
varying conditions are to be predicted. On the other hand, it is difficult to de-
velop a data bank providing all sufficient information on such characteristics, as
every rubber compound has its own characteristics depending on e.g the type and
amount of additives and fillers.

10.1 Methods for estimating the lifetime of a
material

The properties of a rubber material change over time. Both mechanical strain
and conditions in the environment, such as oxygen and ozone, and the exposure
to sunlight and to various chemicals, can produce gradual changes in a material.
Changes of this sort will sooner or later lead to deterioration of the material, and
they may also lead to failure of the function of the product considered. How long
this takes depends on many factors.

When the lifetime of a material is to be determined, the function of the product
in question first needs to be clarified, and what factors that may have a decisive
effect on its lifetime. For example, an O-ring can lose its sealing properties due
to stress relaxation of the material, leading to declined contact pressure since
the rubber is no longer elastic enough. An O-ring can also break down due to
exposure to such reactive media as acids, bases or ozone, or it can harden during
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use, losing its elasticity and ability to seal. Many rubber materials harden when
exposed to the oxygen in the air, but the opposite may also occur: softening of the
material. It is not uncommon that many different factors influences the lifetime of
a rubber product, e.g. oxygen and ozone in the atmosphere in combination with
UV-light (from the sun). In addition the product may be mechanically loaded,
thereby complicating the situation yet more. All of these factors need to be taken
into account in the prediction of the lifetime of the material.

When the decisive factors leading to failure of the rubber product in charge
are known, a failure criterion can be established. The failure criterion do not
necessary need to be identical with the break of the product, it can as well be
when a certain property has reached, say, 60% of its original value. The following
are factors that can be of help when establishing a failure criterion of a rubber
product:

e Development of cracks, perhaps in the presence of ozone. Static or dynamic
load.

e Hardening due to oxidative aging. Cracks may be formed at the surface,
leading to further crack propagation to the interiour of the product.

e Swelling in the presence of solvents.
e Chemical deterioration in the presence of aggressive chemicals.

e Stress relaxation, with loss of resilience and loss of sealing capability, due
to a decrease in elasticity.

e Deformation changes due to creep phenomena.

e Loss of mechanical properties, e.g. measured by tensile testing of the ma-
terial. This can occur either in the presence of oxygen or at elevated tem-
peratures without oxygen.

e Thermal deterioration at elevated temperatures.

Figure 10.1 is a schematic presentation of the approach used in determining the
lifetime of a rubber product.

How much data on lifetime that is needed for designing a rubber product
properly, depends on the demands placed on the product. There is less need for a
careful analysis of the lifetime of a doorstop, for example, than of an O-ring in a
nuclear plant. How carefully the lifetime of a rubber product needs to be assessed
depends partly, therefore, on what the consequences of a breakdown would be.
If it is perfectly acceptable for a product to simply break down and be replaced,
a rough estimate of its lifetime can suffice. On the other hand, if it is essential
that the product last, far more thorough assessment and careful examination of
the lifetime curves of the product or material in question are needed (see the
following sections). Between these two extremes, there are no set of principles on
how to proceed. Often, it is a matter of ”intuitive feel”, such that one invests the
time and effort that seems reasonable for obtaining an acceptable result.
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Figure 10.1: Approach used in determining the longevity of a rubber product,
adapted from A. Stevenson and R. P. Campion in ”Engineering with Rubber”,
edited by A. Gent, Ozford University Press, 1992.

10.2 Type of polymer

Selecting an appropriate type of rubber is of critical importance. Most rubber
types are hydrocarbon-based, and the chemical bonds are susceptible to deteri-
oration in various ways. A proper selection of a rubber material which fulfills
all criterion can always be done. However, as in so many contexts, matters of
cost can play an important role. The types of rubber able to withstand extreme
conditions are often quite expensive, while the cheaper types perform less sat-
isfactorily. A rough overview of the characteristics of different rubber materials
is provided in Chapter 1. By carefully specifying the demands placed on the
finished product, and analyse it thoroughly, it is possible to avoid purchasing
unnecessarily expensive material or to obtain a product that breaks down before
it is expected to.
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10.3 Environment

The environment will obviously affect the lifetime of the rubber product. Ag-
gressive chemicals such as oil, fuels, acids, and bases are examples of media that
rubber material may be exposed to. Applications in such environments may re-
quire the use of special types of rubber for the product to last. Although many
rubber products are only exposed to the surrounding air, this may suffice to de-
teriorate the material, resulting in failure of the product. The oxygen in the air
plays a central role here. Most rubber polymers react chemically with oxygen,
and create weak sites in the polymer chain. These weak sites (carbonyls, perox-
ides) can react further and lead to breakdown of the material. In the absence of
oxygen, no weak sites are created, and the material will last much longer.

When a rubber product is exposed to air, the surface will be attacked by the
oxygen and form a kind of oxidation skin. If the product does not deform, this
oxidation layer will prevent the oxygen to penetrate the material, thereby leaving
the interiour of the material fresh. In this way rubber products can look like they
are deteriorated on the surface, but behave perfectly as a virgin material due to
the unaffected core of the material. A good example of this phenomenon is bridge
bearings of natural rubber which have been used for more than 100 years! The
same is true for products that have been into the water for long time. Parts from
crashed planes have been picked up and found to be almost as new, even though
they have been laying at the ocean bed for 30-40 years.

This shows the importance of the geometry of a rubber product. A thick
piece of rubber displays a completely different type of aging behaviour than a
thin piece. The oxide layer formed on the surface of a thick piece prevents the
major part of the product from being broken down. A thin piece, in contrast,
is easily oxidized all the way through, becoming disfunctional much earlier. In
some cases, the presence of chemical agents that protect the rubber from aging
can prevent the formation of an oxidized layer, and thereby reduce the product’s
lifetime.

On the other hand, the oxidized layer may have negative influence on the
performance if the product is loaded mechanically. Very often small cracks are
formed at the surface (look on the tires of your car or bicycle!). These cracks can
initiate catastrophic crack propagation through the whole product and thereby
failure. During accelerated aging tests (aging at elevated temperature to accel-
erate the deterioration) this may be seen as a drastic decrease in elongation at
break. It is not necessary that the same behaviour is seen if the stress at break is
measured. The reason is that the stress at break is governed by the whole cross-
section of the material, and not only the surface. In this way, an aged rubber
material can still show a high stress at break, but very low values for elongation
at break.
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10.4 Loading

The lifetime of a product exposed to mechanical loading is often limited by creep
or relaxation. Creep is defined as deformation under constant load, while relax-
ation, in turn, is defined as a reduction in the mechanical stress under constant
deformation. The speed at which creep or relaxation occurs depends on the tem-
perature. Two major types of processes steer relaxation and creep phenomena.
The distinction is made between physical and chemical relaxation. The first stems
from the polymer chains’ gliding either across or away from each other, making
the material unable to hold the load it is subjected to. Chemical relaxation, in
contrast, occurs as a result of chemical reactions that breaks either the polymer
chain or the crosslinks in the material. Both leads to the material losing its
load-bearing capacity. A further factor that can be important for how rapidly
the breakdown of a rubber product occurs is the type of loading to which it is
subjected. Products subjected to static loading can behave quite differently than
those subjected to dynamic loading. This too is due to the possibility of oxy-
gen’s gaining access to the rubber polymers. A dynamically-loaded rubber test
object cannot form a protective oxide coating in the same way that a statically
loaded object can. Dynamic loading leads to cracks developing in the oxide layer,
exposing new and fresh material to oxidation and causing further disintegration.
Although most rubber mixtures contain substances that protect them against
aging, generally in the form of waxes that migrate to the surface and form a thin
protective film, this film can crack and lose its effect if the object is subjected to
dynamic loading. It is important under such conditions that an antioxidant be
present not only on the surface as a protective layer, but also in the bulk of the
material being active inside.

10.5 Geometry

Few rubber products are directly comparable with the standardized rubber test
specimen used to investigate the characteristics of the rubber material itself.
Thus, it can be difficult to translate the material characteristics determined by
means of such tests to product characteristics. It would be the best, of course,
to test a real product, but this is seldom economically feasible, if indeed possible
at all. In utilizing the lifetime data from standard test specimen, therefore, one
must often make a subjective evaluation of the applicability of the data to the
product at hand.

10.6 Lifetime estimations

It is important to understand what is meant by lifetime. There are often definite
requirements to be met regarding various characteristics, in the form of either a
minimum or a maximum value, that an aging material shows. This may be the

133




stipulation, for example, that the stress at break may not be less than 60% of the
original value.

Many norms for rubber involve a simple aging test of some sort, such as
hanging a test object in a heated air-circulated oven for a particular period of
time, say for 3 days, and using as norm the maximum decline the specimen is
permitted to show on some measured characteristic. This is a simple approach,
but it is not always particularly informative. A more enlightening approach that
provides a better prediction of the lifetime of a material is to determine a so-
called lifetime curve. However, it is often completely impractical, or nearly so, to
perform aging tests at room temperature, due to the time this would require. One
way. to try to overcome this is to accomplish accelerated aging. Using elevated
temperatures when carrying out aging tests accelerates deteriorating processes,
allowing the results of an experiment performed within a relatively short period
of time to serve as a basis for predicting lifetimes involving considerably greater
periods of time. Testing at different temperatures and measuring the time it takes
for a material to fail (or to pass the limit for some particular characteristic) allows
lifetime curves to be constructed. In these, lifetime is plotted against temperature
(cf. Figure 10.2).

Within an IFP (Swedish Institute for Fiber and Polymer Research) project
lifetime curves for rubber and for other elastic materials under conditions of
exposure to air, to water and to oil have been obtained. The results of this work
[2] are available upon request.

10000
10000 \\ “Na NRY,)
. A Y .
N 1\
IR\ | FPM )\ 1000 o\
1000 X G\ \acu
“EPDM \\‘ K
E R \ = “\"\\‘
> -
100 |- N\, N 100 |~ € +— g
o) 5, ¢ g RSN
g \ N\ 5l
] AN 1 CR \:
10 AN . 10 AR \
AN R \u; o
\\ N \‘ P
3 \ . SBRY "%
N\ N X+ NBR
1 N N 1 N SN~
~
Temperature °C * Temperature °C \ A
| l i
100 150 200 250 300 350 100 150 200 250 300

Figure 10.2: Lifetime curves.

Since measurements were only made at high temperatures (= shorter lifetime),
it was necessary to extrapolate to lower temperatures (= longer lifetime). This
saves the time that would otherwise be required for aging the material to the
state of breakdown at lower temperatures. Such an approach assumes that the
same basic processes steer aging under both low and high temperature conditions.
However, at extremely high temperatures, the processes that steer aging differ,
producing a different slope of the curve (see Figure 10.2, right-hand diagram).
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Bearing this in mind, it is important not to perform the accelerated aging at a
too high temperature, as this will yield a misleading result.

Lifetime curves is usually obtained for test specimen of a certain, standardized
type. Thus, they provide a measure of the material’s lifetime in only a general
sense. As already indicated, the lifetime of individual products made of rubber
of a particular type can vary to a great extent, depending upon the geometry of
the product and the type of loading to which the product is subjected.

The product may also be subjected to other harmful factors than exposure to

air. Exposure to ozone is one such factor. Examples of other factors are exposure
to oil, to solutions of chemicals and to the UV radiation in sunlight. Strictly
_speaking, the lifetime prediction obtained, applies only to the conditions under
which the measures were obtained. These conditions seldom coincide with those
a particular product made of this material is exposed to. Thus, it is important
to handle data on lifetime very cautiously and to not regard them as providing
any absolute measure of the lifetime of a particular product.

10.7 Ozone

Ozone is present not only in the upper atmosphere, but also at ground level where
its concentration is about 0,1-1 ppb (parts per billion. It can also be expressed
as pphm, parts per hundred million. 1 ppbm = 10 pphm). Ozone reacts with
the double bonds in polymer chains, causing them to break. This results in
”ozone cracks”, which can be observed on tires for example. A condition that
must be fulfilled for such cracks to develop is that the rubber product in question
is stretched somewhat, in the order 5-10%. Typical for ozone cracks is that
they develop perpendicular to the direction of stretch. On tires, they are readily
visible to the naked eye. Such cracks may well have only a cosmetic effect, and
no influence at all on the lifetime of the product. Alternatively, they may initiate
the formation of larger cracks, leading to breakdown of the product.

Crack formation in rubber samples exposed to ozone has been studied thor-
oughly, models having been developed to predict how long it should take for
breakdown to occur. Some types of rubber are fairly insensitive to ozone and can
be a good choice if the product in question will be exposed to significant amounts

of ozone.
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10.8 Examples

Case 1

A sulfur vulcanized carbon black-filled natural rubber is selected for gaskets to be
used for sealing pipe joints in a drain. What processes contribute to determining the
gaskets’ lifetime?

Solution:

The gaskets are usually at ground temperature, which in the summer is about 10°C
and in the winter about 4°C. At such temperatures only physical relaxation processes
occur. When physical relaxation or creep processes are dominant, it is usually quite
simple to predict how rubber will behave over long periods of time. If relaxation or
creep behavior on a linear scale is plotted against logarithmic time, a linear relationship
is obtained. Hence, the speed with which relaxation or creep occurs can be expressed
as percentage of change per time-decade (cf. Figure 10.3). Relationships of this sort
hold as long as physical processes alone determine the behavior of the rubber material.

40 +

20 +
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Figure 10.3: Percentage of relazation or tension/compression-set plotted against
logarithmic time.

Tn some parts of the drain system, the gaskets are exposed for brief periods of time
to warm water from washing machines. The water can be as warm as 90°C. Depending
upon the material, this may suffice for thermooxidative processes to begin.

Case 2

Figure 10.4 shows relaxation curves for fluoro rubber FKM, perfluoro rubber PFE,
silicone rubber, fluorsilicone rubber, polyacrylate and nitrile rubber. At 150°C only
fluoro rubbers and perfluoro rubbers possess acceptable characteristics.

Figure 10.4 illustrates the difficulties in interpreting such curves. The curves for
PFE and FKM probably reflect only the the physical component of relaxation, whereas
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Figure 10.4: Relazation of different types of rubber according to R. J. Weston in
A. Stevenson, ”Rubber in Offshore Engineering”, Adam Hilger Ltd 1984.

the curve for nitrile rubber reflects primarily the thermooxidative component. Silicon
rubber and fluorsilicon rubber are shown to be relatively stable at 150 °C, the curves
obtained showing primarily thermooxidative breakdown.
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Figure 10.5: Creep of a sulfur vulcanized natural rubber either containing or not
containing filler. P. B. Lindley, Engineering Design with Natural Rubber, MR-
PRA 1992 p. 8.

Figure 10.5 shows creep developing in a sulfur vulcanized natural rubber. (o) repre-
sents NR, without filler, (+) non-reinforcing carbon-black (50 phr), and () reinforcing
carbon-black. Note that when creep is displayed as a function of logarithmic time,
almost a linear relationship is obtained. The rate with which creep develops can be
defined in terms of the slope shown in the diagram, the speed of creep being expressed
as deformation/time decade. Relaxation speed, in turn, is expressed as percentage of
decrease in stress per time decade.
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Chapter 11

Environmental effects, recycling
and processing effects

M. BELLANDER AND B. STENBERG

Many different chemicals are used in rubber as additives for obtaining the product
characteristics desired. The rubber material is chosen for its elasticity. The
additional characteristics called for can be achieved by the selection of appropriate
elastomeres, fillers, vulcanizing agents, preservatives, and the like.

11.1 Rubber manufacture

Particular attention has been directed at rubber manufacturing for the following
reasons:

e vulcanizing agents contain accelerators for regulating the speed of vulcan-
ization. These usually consist of organonitrogenous sulfurous compounds
that, through producing nitrosamines, can be injurious to health. Nowa-
days, accelators are available that are safer to use than those employed
earlier.

e chloroprene rubber may contain traces of chloroprene monomer that can
produce cancer; it is also vulcanized by thiourea, which is suspected of
likewise producing cancer.

o vulcanization fumes which develop during the vulcanization of rubber to
form the finished product are generally removed by ventilation, preventing
contamination of the air in factories. However, opening the moulds can free
such fumes nevertheless.

e the aromatic oils employed as softeners are effective in technical terms.
Their use has been questioned, however, from an environmental standpoint.
Particularly the highly aromatic oils should be avoided.
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11.2 Recycling

All over the world, large numbers of worn-out tires are collected. It is estimated
that in Sweden some six million tires are discarded annually. A certain portion
of these (about 20%) are recapped.

What is problematical about the recycling of rubber products that are worn out?
Answer: Rubber material that has been vulcanized cannot be melted as a ther-
moplastic substance can. When vulcanized rubber is heated to a sufficiently high
temperature, it either ignites (in air) or is broken down (in an inert atmosphere).

A wide variety of techniques are available for getting rid of worn-out tires. A
frequently used technique is to incinerate them in concrete ovens in the manufac-
ture of cement (thermal recycling). The combustion energy of rubber is nearly
as high as that of oil. Tires have a sulfur content of several percent, which is
-desirable in manufacturing cement. Another technique for getting rid of tires is
to incinerate them in heating plants and in garbage disposal plants.

11.2.1 Grinding

Grinding and pyrolysis are two alternatives to the recapping and thermic recycling
of tires. The following are three different approaches employed:

e cryo-grinding, which involves cooling the cut-up tires to a low temperature
by means of liquid nitrogen, in which the rubber material becomes brittle.
The cold and brittle rubber material ( at -100 °C) is ground to a powder
(several tenths of a mm in size) in a mill.

e warm grinding, which involves the risk of the material’s igniting.

e wet griding, a technique that increases fire-safety but may require a drying
step afterwards.

Powdered rubber can be put to the following uses:

e Blending it with newly-formed rubber mass. Up to 10% can be added in
this way without the mechanical characteristics of the resulting mass being
negatively affected to any appreciable extent. To reduce the impairment of
the mechanical properties, the surface characteristics of the rubber particles
are often modified chemically so that adhesion to the newly formed rubber
mass is improved.

e Blending it with asphalt. This improves the surface of roads, in the winter

in particular.

11.2.2 Pyrolysis

Worn-out tires and other worn-out rubber products are warmed up in an inert
atmoshere and broken down into gases, oil and solid residue. The gases consist
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of hydrocarbons that can be burned for heating purposes. The oil produced is
often contaminated and needs to be purified, but it can also be used for heating.
The solid residue consists in part of soot that can be employed as filler. Several
plants for the pyrolysis of worn-out rubber products have come into operation.

11.2.3 Unvulcanizing of rubber products

The basic idea here is to use thermal treatment to split the crosslinks that vul-
canization produced. The most frequently employed techniques involve the use
of microwaves or of ultrasound. For removing the rubber from combinations of
rubber and metal, use has been made in Japan of fluid masses of abrasive parti-
cles, although difficulties may come about in separating the rubber material from
the fluidized particles.

11.3 Processing effects

The processing of the rubber material affects the characteristics of the final prod-
uct. Vulcanization results not only in crosslinks, with an accompanying increase
in elasticity, but also in a certain shrinkage, which can generally be noted in the
extrusion of tubing.

Another important phenomenon that occurs is anisotropy, or differences in the
characteristics of the material depending upon the direction through the material
considered. Anisotropy can be desirable in different products that are subjected
to mechanical strain. One sometimes endeavors to orient a fibrous filler (either
of glass or of polyamide, polyester or kevlar fiber) in the direction of the strain
exerted on the product. In order for the characteristics that are desired to be
achieved, close adhesion between the fibers and the rubber material is necessary.
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