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Summary of papers 1-3 
 
 
Paper 1 
 

This literature study was compiled to gain knowledge of flax and hemp 
fibres and their composites. When the work of this dissertation started, 
the knowledge of these fibres and their composites was negligible at the 
division of Structural Mechanics. In order to have a base for the research, 
this review was written. The paper covers the structure and mechanical 
properties of flax and hemp fibres. Further are models for prediction of 
composite properties treated. Important models of stiffness, strength and 
hygroexpansion are reviewed.  

 
 
Paper 2 
 

In this paper, elementary natural fibres are examined by means of finite 
element analyses. Plasticity and large deformation strain measures are 
used to model the non-linear tensile behaviour of elementary fibres. The 
non-linear effect is a consequence of structural misalignments, so called 
dislocations. The dislocations can also explain that elementary fibres of 
increasing diameter have a decreasing stiffness.  

 
 
Paper 3 
 

This paper presents a micromechanical model of a technical fibre and a 
finite element implementation of the model. The model explains and 
predicts the strength and non-linear stress versus strain performance of a 
technical fibre. The model takes in to account the shear interface between 
the elementary fibres. Defects in the elementary fibres are modelled using 
Weibull theory. The model is compared with test results of flax and hemp 
fibres. The shear interface of the test result is changed by testing both 
glued and non-glued fibres. The importance of the shear interface 
strength and fracture energy is shown both by the computational and the 
experimental results.  
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Introduction 
 

Background 
 
Flax and hemp are annual plants that give fibres with good mechanical properties. 
Both flax and hemp can successfully be grown in the Nordic countries and they may 
in the future give the raw material for an extensive domestic production of several 
structural materials. The usage of flax and hemp fibres for composite materials is 
today predominantly for interior components in cars. The German automotive 
industry has increased the usage of natural fibres from 4000 tonnes in 1996 to 15500 
tonnes in 1999. It has been projected that the usage by the European automotive 
industry may increase to more than 100000 tonnes by 2010. The main type of fibre 
used for these applications is flax, but hemp is rapidly increasing. The reason to their 
usage is both commercial and technical (Evans et.al. [1]). 
 
According to Kessler [2], the reasons to the usage of natural fibres are a combination 
of favourable pricing and good mechanical properties. The main reason to the use of 
long fibres is their capability to make up composites with complex forms. Short 
fibres, for instance wood fibres, are too short to make composites of these forms. 
According to Evans et al [1], the natural fibres are used for applications such as door 
liners, boot liners, seat backs etc. Hence, they are today not used as high performance 
composites with extensive load carrying capability.  
 

 
 
Figure 1. Mercedes E-class showing interior parts of natural fibres [1]. 
 
In order to use the natural fibres for more elaborate engineering applications it is 
necessary to be able to manufacture composites of a high and predictive quality. This 
is the main objective in the present work. This dissertation is a part of the project 
“Plant fibres as raw material for accurately characterized structural materials”, which 
is a research collaboration between the Swedish Agricultural University at Alnarp 
(SLU) and the Division of Structural Mechanics, Lund University. The agricultural 
part of the project aims at developing methods for quality quantification of the fibres 
(Wretfors [3]) and the aim of the present work is to establish tools for prediction of 
the mechanical properties of their composites. Important mechanical properties for 
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design of contemporary products are stiffness, strength, moisture sensitivity, creep 
and fracture toughness.  
 
A forthcoming method for investigation of advanced composite behaviour is 
homogenisation using finite element analyses. The advantage of this method is that a 
small piece of the material with complex geometry and material properties of the 
constituents can be analysed very accurately. The average result can then be used for 
continuum modelling. Examples of successful studies of this kind are Persson [4], 
who modelled the microstructure of wood and Heyden [5] who studied the properties 
of fibre fluff by means of network mechanics in conjunction with finite element 
analyses. 
 
 

Present work 
 
The objective of this licentiate dissertation study has been to develop methods to 
predict and explain mechanical properties of composites containing flax and hemp 
fibres. Since the knowledge of these fibres and their composites were poor in the 
beginning of the project, a thorough review was written. This review covers the 
structure and mechanical properties of flax and hemp fibres. Further are models for 
prediction of composite properties treated. Important models of stiffness, strength and 
hygroexpansion are reviewed. The review is presented as Paper 1.  
 
During the work with the review several areas of interest to investigate further was 
found. Two of them were assumed more important for the development of models for 
prediction of the mechanical properties of the composite. The first phenomenon 
studied is that elementary fibres have a non-linear tensile performance and a 
decreasing stiffness with increasing diameter. (An elementary fibre is defined as one 
single cell of the plant fibres. The size of an elementary fibre is approximately a 
diameter of 20 µm and a length up to 50 mm.) Both these phenomenon are believed to 
be caused by structural misalignments of the cellulose chains, so called dislocations. 
In Paper 2, finite element analyses are performed on elementary fibres with 
dislocations taken in to account. The dislocations were modelled as kinked trusses 
embedded in hemicellulose. The hemicellulose was modelled with 3D-continuum 
elements. The non-linear tensile performance of the fibre could be described by 
giving the hemicellulose a plastic material model in conjunction with large 
deformation strain measures. It was found that the dislocations gave local rotations of 
the elementary fibres that resulted in the non-linear tensile performance.  
 
When bundles of fibres, referred to as technical fibres, are tensile tested the tensile 
performance is almost completely linear elastic. This is believed to be caused by that 
the pectin interface between the fibres prevents local rotations. The same mechanism 
is believed to be valid also in a composite where the adhesive prevents these rotations.  
The decreasing stiffness with increasing diameter was a consequence of the geometry 
of the dislocations. The dislocation was kinked in the tangential direction. Together 
with the helical structure of the cellulose, the effect of this assumption was that the 
angle of the dislocation increases for an increasing diameter of the fibre, which in turn 
gave a decrease of the tensile stiffness of the fibre. An analytical expression for the 
variation of stiffness is presented in the Appendix. For comparison, the result is 
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shown together with the computational result from the finite element analyses in 
Figure 2. 
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Figure 2 Stiffness of elementary fibre versus fibre diameter. 
 
Secondly, Paper 1 revealed that models for accurate prediction of the stiffness of 
composites are readily available, whereas models of strength are less accurate and not 
suitable for natural fibres with such a vast variation in strength. This gave the impetus 
to try to predict the strength of their composites. A first attempt is described in Paper 
3. In this study is the strength of technical fibres examined both experimentally and 
by means of finite element analyses. The finite element model takes defects in to 
account and each defect is assigned strength according to Weibull theory. The shear 
interface, transferring stress from one fibre to the adjacent, is described by means of 
non-linear fracture mechanics. The solution method gives a possibility to follow non-
stable stress-displacement curves. By adjusting parameters it was possible to fit the 
computational result to the experimental. Further, a substantial parameter study was 
performed in order to show the influence of the different parameters.  
 
 

Future work 
 
In Paper 3 it was experienced that it is possible to predict and explain the strength of 
elementary fibres cooperating with an adhesive. The technical fibre can be said to be a 
composite itself although it only contains up to approximately 25 elementary fibres. A 
composite used for engineering applications however contains thousands of fibres. 
The natural next step is therefore to increase the number of elementary fibres in order 
to simulate a unidirectional composite. An initial attempt of doing so gave the result 
according to Figure 3 and 4. The model and its parameters are described in Paper 3. 
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The analyses are performed for τf = 15 MPa, m = 2, σ0 = 9000 MPa, D = 8.1 
defects/mm, lm = 10 µm and le = 0.2 mm and the length of the composite was 3 mm. 
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Figure 3 Tensile curves of composite model with 100 elementary fibres. 
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Figure 4 Tensile curves of composite model with 400 elementary fibres. 
 
The number of parallel elementary fibres is 100 and 400, respectively, and the defects 
are located at random. Two seeds were used for the random generation of the 
microstructure and the micro strength properties of the composite. The fracture energy 
parameter Gf represents the shear deformation toughness of the interface layer 
between elementary fibres. The result of the analysis of the composite containing 400 
parallel fibres with Gf = 100 J/m2 is not completed. These analyses were performed 
during 168 hours at an AMD Opteron 148 (2.2 GHz) cluster, which gives an 
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an indication of the required computer time. The computer time of the analyses with 
100 parallel elementary fibres was 2-4 hours and the analyses with 400 parallel fibres 
and Gf = 800 J/m2 was approximately 150 hours. The stress measure is calculated as 
the global force divided by the cross sectional area of the fibres. The nominal cross 
sectional area of the composite also takes into account the space between the fibres 
and the lumen. The stress reported in Figure 3 and 4 are therefore higher than in the 
composite. 
 
So far only the tensile properties in the direction of the fibres of the composite have 
been investigated. For engineering applications it is however important to be able to 
predict properties in other load directions. For a complete determination of the 
composite, the tensile properties transverse the fibres, the compressive properties both 
in the direction and transverse the fibres needs to be investigated. Furthermore, the 
shear properties have to be considered.  
 
When models for all load directions of the unidirectional composite have been 
established, continuum models can be developed. Micro mechanical analyses of the 
kind shown in Paper 3 are extremely computer time consuming and therefore possible 
to apply to a small volume of material. Applied analysis in relation to design of 
industrial products calls for finite element analysis by means of continuum material 
modelling at the assumption of homogeneity of the material. Thus, further and future 
work on homogenisation continuum material modelling and applied finite element 
analysis is proposed. 
 
In the experimental tensile tests, it was found that the scatter of both stiffness and 
strength is vast and it can be questioned whether the strength and stiffness properties 
is relevant for estimation of the properties of a fibre in the composite. It is therefore 
proposed that a standard composite is developed for evaluation of the stiffness and the 
strength of natural fibres. This composite should be unidirectional and the resin and 
manufacturing method should be standardised. Testing of such a composite is much 
easier to perform and the scatter will most likely decrease since a large number of 
fibres are loaded simultaneously. 
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1. Introduction 
 

1.1. General introduction 
 
Flax and hemp are annual plants that give fibres with good mechanical properties. 
Both flax and hemp can successfully be grown in the Nordic countries and they may 
in the future give the raw material for an extensive domestic production of several 
structural materials with well-defined engineering properties, competing with 
established materials like wood and wood based materials, mineral fibre materials, 
glass-fibre reinforced plastics, aluminium and steel. 
 
Flax and hemp fibres have historically been important handicraft materials. However, 
to reach consideration in the process of choice of material in contemporary 
engineering design of industrial products there are other and much higher demands in 
terms of uniform material quality and knowledge about engineering properties and 
structural performance. 
 
This report deals with current knowledge of the mechanical properties and structure of 
flax and hemp fibres and flax and hemp fibre based composites. 
 

1.2. Possible products 
 
Possible products for contemporary engineering designs are found in many branches 
of the industry. At present it appears that the automotive industry is leading in 
development and modern industrial use of composite materials based on fibres from 
flax and hemp. It seems that the choice of materials in this case is due to the 
combination of good mechanical properties and a favourable prizing [1]. The 
automotive industry may be leading the development because of the financial 
resources for research and product development in this branch of the industry. Several 
examples of current and imaginable products within various branches of the industry 
are listed below. Although several examples are listed, it is only a few of all 
possibilities. Examples of more possible products are presented in [2]. The best 
possibilities for use of large quantities of flax and hemp fibre materials might be in 
the construction and packaging industry branches. For other branches the use of the 
fibre materials might be of greater interest for the material and processing industries 
than for the producers of fibre raw material. 
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Table 1.1 Possible products in different branches of the industry. 
 
Branch Products 
Automotive industry Inner fenders 

Interior parts 
Bumpers 

Construction industry Reinforcing of concrete 
Reinforcing of timber and glulam 
Insulation 
Laminate floors 
Window frames 
Hard Boards (HB) 
Medium Density Fibreboards (MDF) 
Particle board 
Studs 

Packaging industry “Tetra paks” 
Cardboard 
High strength paper 

Electronics industry Outer casings (e.g. VCR, Mobile phones) 
Furniture industry Chairs 

Tables 
Shelves etc. 

Other industries Blades for wind turbines 
Pleasure boats 
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1.3. Required mechanical properties for different products 
 
When designing a product several classes of properties of the material to be chosen 
have to be considered. Table 1.2 shows the classification of properties according to 
[3]. As can be seen the properties to consider are not only mechanical. The table can 
be extended by both classes and properties, for instance by the class environmental 
properties with properties like recyclability and CO2 neutrality. 
 
Table 1.2  Classes of properties for designing a product [3]. 
 

Properties Class of property 
Price and availability Economic properties 
Density 
Modulus and damping 
Yield strength, tensile strength, hardness 
Fracture toughness 
Fatigue strength, thermal fatigue resistance 
Creep strength 

 
 
Bulk mechanical properties 

Thermal properties 
Optical properties 
Magnetic properties 
Electrical properties 

 
Bulk non-mechanical properties 

Oxidation and corrosion 
Friction, abrasion and wear 

Surface properties 

Ease of manufacture 
Fabrication, joining, finishing 

Production properties 

Appearance, texture, feel Aesthetic properties 
 
The most important mechanical properties for some of the products listed in Table 1.1 
are indicated in Table 1.3. For the selection of products, properties that are estimated 
to be of importance for each product are marked with an X.  
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Table 1.3 Necessary mechanical properties for some of the products above. 
 

 Property 
 1 2 3 4 5 6 7 8 
Product         

Inner fender   X  X  X  
Interior parts 
(automotive) 

X X   X    

Bumpers X X X  X  X X 
Reinforcing 
of concrete 

X X X X   X  

Window 
frames 

  X X     

Cardboard  X X X X  X  
Blades for 
wind turbines 

X X X X X X X  

Outdoor 
furniture 

X X X X   X  

Indoor 
furniture 

X X  X     

1 = Stiffness and damping, 2 = Strength, 3 = Moisture effects, 4 = Creep,  
5 = Density, 6 = Fatigue, 7 = Durability, 8 = Impact strength (fracture 
toughness, ductility)  

 
The following mechanical properties are estimated to be of interest in engineering 
design and analysis of natural fibre based materials and products: 
 

• Stiffness 
• Damping 
• Strength 
• Hygroexpansion (Moisture induced expansion) 
• Moisture transport (“Water diffusion”) 
• Durability 
• Creep 
• Density 
• Fatigue 
• Impact strength, fracture toughness and ductility  

 
Each of these properties can in general be quantified by one or more parameters 
together with a material model. Thus, for instance, if the stiffness properties may be 
characterised as orthotropic linear static, then the in-plane stiffness properties are 
defined by five parameters: the material orientation angle and four independent 
parameters in the stiffness matrix.  
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1.4. Manufacturing methods 
 
Several methods for manufacturing of composites in general are available. Several of 
them are presumably not appropriate for use in bio fibre based composites. The 
methods used for manufacturing of bio fibre based composites found in the literature 
are briefly described below. The development of manufacturing methods is rapid, 
especially in the automotive branch of the industry.  
 
Manual lay-up 
 
The simplest technique to manufacture a composite is called lay-up moulding, wet 
lay-up or laminating. This method is performed by applying (by hand) layer upon 
layer of fibres (or mats of fibres) with resin in between on a shaped surface. This is 
repeated until the desired thickness is obtained after which pressure is applied, 
normally by hand rolling.  
 
Vacuum bagging (bag moulding) 
 
A little bit more elaborate than the manual lay-up method, is to impregnate a mat with 
a resin, (referred to as a prepreg), which is placed on the shaped surface with a bag on 
top. The pressure is applied either by evacuating the air inside, creating a vacuum, or 
by pressurising the bag on the outside with compressed air.  
Both manual lay-up and vacuum bagging are then cured at room temperature or at an 
elevated temperature. These two methods work best for thermoset resins [4].  
 
Sheet moulding compound (SMC) 
 
SMC is a thin mat of short/continuous fibres impregnated by a thermoset resin. The 
mats are placed in a hot-pressing machine, where heat and pressure is applied which 
activates the curing process [5].  
 
Bulk moulding compound (BMC) 
 
BMC is a pre-mix of short/continuous fibres and normally a thermoset resin. The 
mixture is cured under pressure and heat [6].  
 
Natural fibre mat thermoplastic (NMT)  
 
NMT is a development of GMT, which is a Glass fibre Mat with non-oriented short 
fibres impregnated by a Thermoplastic. The fibres in the NMT are natural fibres such 
as flax and hemp, thereby the replacement of the G in GMT to an N! 
The manufacturing starts out by placing the NMT in an oven. When the matrix starts 
to melt the NMT is pressed to the desired shape in a hydraulic press. The matrix cools 
in the press and the matrix solidifies [5].  
 
Preform sheet resin (PSR) 
 
PSR is similar to the SMC method. A preform of fibres is placed in a mould with a 
sheet of resin on top. Then the mould is closed and curing occurs in vacuum [5].  
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Pultrusion 
 
Pultrusion is a continuous manufacturing process for manufacturing long straight 
profiles with a constant cross sectional area. The process is basically performed by 
squeezing the mixture of resin and fibres through a heated die, similar to extrusion of 
aluminium profiles [5].  
 
The manufacturing methods appropriate for a thermoset or a thermoplastic resin is 
summarised in Table 1.4 
 
 
Table 1.4 Manufacturing methods for different types of raw material. 

Fibre raw material Thermoset Thermoplastic 
Mat Maual lay-up 

Vacuum bagging 
Sheet moulding compound 

Natural fibre mat 
thermoplastic 

Bulk Bulk moulding compound 
Pultrusion 

Bulk moulding compound 
Pultrusion 

Preform Preform sheet resin  
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2. The plant fibres 
 
The plant fibres discussed in this text are flax (Linum Usitatissimum) and hemp 
(Cannabis Sativa L). It should be emphasised that the hemp plants used for fibres are 
so called industrial hemp with a very small content of THC, the active substance in 
hemp used for drugs. Regulations in the EU have set the limit of THC in industrial 
hemp to less than 0.2 % by weight. 
 

2.1. Structure 
 
The structure of the fibres described in this report is limited to the structure of the 
elementary fibre and the technical fibre. The structural differences of flax and hemp 
are small. Their stems have a similar structure where the bast fibres are situated near 
the bark as shown in Figure 2.1. The bast fibre is the supporting plant tissue 
containing lengthy fibres of usually dead cells with strong and thick cell walls. The 
bast fibre bundles runs along the stem from root to top of the plant. 
 

 
 
Figure 2.1 Cross section of a flax stem [7]. 
 
The technical fibre is simply a smaller part of a bast fibre bundle. The elementary 
fibre (sometimes referred to as ultimate or single fibre) is one cell of the bast fibres. 
The principle of the different levels of fibres in the plant is described in Figure 2.2.  

Bast fibre 
bundles  

Bark  

Centre of 
stem  
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Figure 2.2 Fibre classification in a flax stem [8]. 
 
 
2.1.1. The elementary fibre 
 
The elementary fibre in plant science refers by definition to a single cell in the plant. 
The structure of the elementary fibres of flax and hemp are similar. A simple way to 
distinguish fibres from flax and hemp without chemical or microscopic examination is 
to wet the fibres. Since the helical disposed cellulose goes in different directions, flax 
has a so called S-shaped helix and hemp a Z-helix, the flax fibre will rotate clockwise 
and hemp counter clockwise [9]. It seems that the science community has so far not 
agreed on the true structure of the elementary fibres in flax and hemp. Models of the 
elementary fibres however exist [7,10]. Figure 2.3 shows models of the structure of a 
single cell, i.e. the elementary fibre and Figure 2.4 shows pictures of flax and hemp 
fibres respectively. 
 
The length/diameter ratio of the elementary fibres varies somewhat between hemp 
and flax. Typical values of length and “diameter” of the elementary fibre for hemp 
and flax are shown in Table 2.1. The quotation marks on the word “diameter” are due 
to the fact that the cross section is rather polyhedrical than circular. 
 
Table 2.1 Reported values of length and diameter of hemp and flax [7,11], spruce 

is listed for comparison.   
Plant Length of an elementary fibre 

(mm) 
“Diameter” of an elementary fibre 
(µm) 

Flax 3-50 10-25 
Hemp 5-100 18-26 
Spruce 1-4 20-40 
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Figure 2.3 Two different models of the structure of an elementary fibre. (1-3) - 

Secondary cell wall, (4) - Lumen, (5) – Primary cell wall and (6) – 
Middle lamella [7, 10]. 

 
 
 

 

 
 
 
 

 

Figure 2.4 Left figure [12] shows cross sections of flax elementary fibres and 
right figure [13] shows hemp. 
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The science community seems to have agreed on that the cell wall consists of a 
primary cell wall, a secondary cell wall and a lumen, which is an open channel in the 
centre of the cell. Somewhat uncertain is that the secondary cell wall consists of the 
three sub layers S1, S2 and S3.  
 
The middle lamella is not really considered to be a part of the cell, but rather a matrix 
bonding the cells together. In [14], the following thickness relations of the cell wall 
was used for stiffness prediction of a flax fibre: P = 8%, S1 = 8%, S2 = 76% and S3 = 
8%. According to [8], the thickness of the primary cell wall is only about 0.2 µm. The 
lumen can be as small as 1.5 % of the cross section [8]. 
 
The primary cell wall (P) consists of lignin, pectin and randomly oriented cellulose 
[8,11,15]. 
 
The secondary cell wall (S1- S3) is the major part of the fibre diameter, where the S2 
layer clearly dominates. It consists of highly crystalline cellulose microfibrils 
bounded together by lignin and hemicellulose. The microfibrils are oriented spirally 
around the fibre axis. The microfibrils in the S2 layer have an angle of 5-10o with 
respect to the fibre axis, which explains the stiffness and strength of the fibre in the 
axial direction [8,9,11,16]. This is because cellulose is stiff and strong in axial 
loading. The total chemical composition of the cell of flax and hemp is shown in 
Table 2.2. 
 
Table 2.2 Chemical composition of flax and hemp elementary fibres. [9,15]. 
 

Substance Content (flax) 
(wt.%) 

Content (hemp) 
(wt.%) 

Cellulose 64.1 68.1 
Hemi cellulose 12.0 15.1 
Pectin 1.8 - 
Lignin 2.0 10.6 
Water soluble substances 3.9 - 
Wax 1.5 - 
Water 10.0 - 

 
It should be noted that the sum of the values in the columns does not equal 100%. No 
explanation has been given in the references, but it is likely that there are other 
substances present. The chemical composition should be viewed as typical values. For 
instance, figures of the amount of cellulose in flax found in literature ranges between 
64.1 and 78.5 % and the content of lignin between 2 and 8.5 % [9,15]. The amount of 
lignin is known to increase at the end of the growth period, so the amount of lignin 
depends on when the fibres are harvested. 
 
2.1.2. The technical fibre 
 
According to [8] the technical bast fibre (or bundles of elementary fibres) consists of 
elementary fibres overlapped over a considerable length and glued together by the 
middle lamella, which consists mainly of pectin and hemi cellulose. The principle of 
bundles of fibres is shown in Figure 2.5. The flax plant is approximately 1 meter tall, 



 13

which yields a technical fibre of the same length. Hemp grown in Sweden is 
approximately 3 meter, which presumably means that the technical hemp fibre 
reaches a length of 3 meters. 
 
  

 
 

 
Figure 2.5 Principle of bundles. Left figure shows the cross section and the right 

shows the bundle from the side. Note that the side view is not to scale. 
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2.2. Stiffness and strength 
 
2.2.1. Tensile stress vs. strain behaviour 
 
A typical load-extension curve of an elementary flax fibre is shown in Figure 2.6. It is 
obvious that the relation is not linear for a continuously increasing load [10].  
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Figure 2.6  Typical load-displacement of an elementary flax fibre, clamping length 

10 mm [10]. 
 
If the fibre is subjected to a successive loading-unloading the load-extension curve 
behaves as shown in Figure 2.7 [10]. This indicates that the fibre behaves elasto-
plastically at least at the first loading cycle. The reason can, according to [10], be 
explained on the structural level of the cell. 
It is well known that during a deformation the microfibrils are oriented towards the 
fibre axis. This behaviour is believed to be caused by one or more of the three 
following deformation mechanisms [10]: 
 

1. The length of the fibrils and the non-crystalline regions in between are 
increased. 

2. The fibre extends like a spiral spring together with a contraction of the fibrils, 
of the interface in between and voids. 

3. The interface between the fibrils is deformed plastically? and the fibrils are 
straightened.  
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Figure 2.7 Elasto-plastic behaviour of an elementary fibre [10]. 
 
The behaviour of a technical fibre is somewhat different from the elementary fibre. As 
can be seen in Figure 2.8 the constitutive relation between stress and strain is almost 
linear. This has however to be taken with precaution. What happens if the test is 
carried out in a successively increasing loading-unloading? 
 
It is however likely that the pectin interface between the elementary fibres prevents 
rotation and the microfibrils to be straightened out during deformation, which could 
explain the linear behaviour. 
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Figure 2.8 Stress-strain curve of a technical flax fibre [8]. 
 
 
2.2.2. Stiffness 
 
The compilation in Table 2.3 shows that various authors have reported different 
values of the average E-modulus in the direction of the fibre of flax and hemp. The 
variation of stiffness is also vast, Madsen et. al. [13] have reported an average E-
modulus of single hemp fibres of 25.4 GPa and a coefficient of variation of 53.3 %. 
The variation can have many explanations. One important factor, which also justifies 
a part of this research project, is the growing conditions such as area of growth, 
climate and when harvested. The growing conditions affect the content of the 
substances (e.g. cellulose) and the structure of the fibres [15]. As described above the 
stiffness is highly dependent on the secondary cell wall layer, which contains a large 
amount of cellulose. Another important factor is how the fibre is separated from the 
plant, i.e. the defibration process. Several methods exist; mechanical, physical and 
chemical. Depending on the method the structure or the chemical composition of the 
fibre can be affected.  
 
Further, the method of determining the cross sectional area of the fibre seems to vary 
between different authors. If the area is defined differently the evaluation of the 
stiffness of the material will, of course, be affected. Additionally, if the elementary 
fibre behaves as shown in Figure 2.6, which slope of the curve should be used for 
evaluation of the E-modulus? 
 
Finally, the moisture content in the fibre has a great influence on the stiffness. This 
important factor is discussed in more detail in section 2.3. 
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Table 2.3 Typical average values of stiffness from different references. 

Ref E-modulus Flax (GPa) E-modulus Hemp (GPa) 
[15] 27.6 - 
[17] 60 32 
[18] 43.5 19.1 
[19] 80 - 

Note: It is not evident whether the results refer to elementary or bundles of fibres. 
 
No values of transversal stiffness have been found in the literature. Several attempts 
to model the stiffness of an elementary fibre in the direction of the fibre have been 
presented in the literature. The methods are discussed in [8,14,15]. As in the case of 
stiffness in the direction of the fibre, it should be possible to determine the stiffness in 
the transversal direction from the elastic properties of cellulose, hemicellulose and 
lignin. The elastic properties of the constituents are shown in section 2.3 due to their 
high dependence on moisture content. 
 
 
2.2.3. Tensile strength 
 
As in the case of stiffness, the reported values of tensile strength are different in 
different references, see Table 2.4. The different authors also report a large scatter of 
strength in their tests, for instance, [13] reports an average strength of elementary 
hemp fibres of 1249 MPa with a coefficient of variation of 32.4 %. It is widely 
accepted that defects determine the strength of most materials, which probably is the 
case also for natural fibres. This is supported by [8], who made tensile tests on flax 
fibres decorticated by two different methods. The standard decorticated fibres gave a 
strength of 1522±400 MPa and the more gentle by hand decorticated fibres yielded a 
strength of 1834±900 MPa. This indicates that defects are induced during the 
decortication process. Somewhat contradictory is that the scatter increases when the 
average strength increases. It seems like defects already exists in the plant, which 
again can be related to the growing conditions. 
 
A typical defect in an elementary fibre is shown in Figure 2.9. The defects are 
presumably kink bands [10] sometimes referred to as “nodes” or “dislocations”. 
The strength distribution can be described by a Weibull plot, where the Weibull 
modulus is a measure of the scatter. For a high modulus the scatter is small and vice 
versa. 
 
Table 2.4 Typical values of tensile strength from different references. 

Ref Strength of Flax (MPa) Strength of Hemp (MPa) 
[15] 345-1035 690 
[17] 1000 700 
[18] 270 270 
[19] 800 - 

Note: It is not evident whether the results refer to elementary or bundles of fibres. 
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Figure 2.9 Examples of defects in flax fibres [10]. 
 
An interesting phenomenon is that when bundles of fibres are tensile tested, the 
scatter of strength decreases compared to elementary fibres. Partly this may be 
because the average strength of a bundle is only half of the strength of an elementary 
fibre. The reason for the decrease of scatter is probably that the pectin interface 
between the elementary fibres transfers the forces from a damaged fibre to the 
adjacent fibre, which might be undamaged. This kind of phenomenon might be 
possible to use when designing a composite. In that case the interface between the 
fibres is the man made matrix, which is easier to control than the natural existing 
pectin. 
 
Another important phenomenon is that the strength of a technical, and presumably an 
elementary fibre, increases as the clamping length is decreased. Figure 2.10 shows a 
plot of the tensile strength of technical fibres versus the clamping length. This 
behaviour has two probable causes [8]. Firstly, the risk of presence of a critical 
damage on the fibre increases with increasing length. Secondly, since the technical 
fibre is composed of overlapping elementary fibres with a weak pectin layer in 
between, the failure at large clamping lengths is believed to occur by shearing of the 
pectin layer. This is also supported by [20] who have noticed a much lower tensile 
strength of well-retted technical fibres than for unretted fibres. (Retting removes the 
pectin interface between the elementary fibres.) At shorter clamping lengths, in the 
order of an elementary fibre, the stress redistributes to the fibres yielding a higher 
value of tensile strength. This behaviour leads to the following question: What 
happens when the fibres are embedded in a man-made matrix? What is the “clamping 
length”? 
 
Strength differences due to moisture are discussed in section 2.3. 
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Figure 2.10 Fibre strength versus the clamping length. Error bars indicate 

standard deviation [8]. 
 
2.2.4. Compressive strength 
 
The compressive stiffness modulus is usually assumed to be equal to the tensile 
modulus [8]. The compressive strength of an elementary flax fibre has been examined 
by [8], who used an elastica loop (Figure 2.11) originally developed by Sinclair 
(reference 17 in [8]). When the loop is tightened the relation c/a remains constant at a 
value of approximately 1.34 until a non-linear deformation occurs in top of the loop. 
At this instant the critical value ccrit is measured and the compressive strength can be 
calculated as: 
 

crit

fc
fc c

dE34.1
=σ         2.1 

 
where Efc is Young’s modulus in compression, here assumed equal to Young’s 
modulus in tension, and d is the fibre diameter.  
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c 

a 
 

Figure 2.11 Geometry of the elastica loop. 
 
 
The test showed that the elementary flax fibres failed at a compressive stress of 
1200±370 MPa. The failure mechanism is however different from tensile fracture. 
The main reason is that during compression the cell wall buckles and creates kink 
bands. A buckled elementary fibre is shown in Figure 2.12. Similar tests can 
presumably be carried out for hemp fibres, but no reported test results have been 
found in the literature. 
 

 
Figure 2.12 Kink band formation in compressive test [8]. 
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2.3. Moisture and effects of moisture 
 
2.3.1. Transport and absorption  
 
Due to the nature of growing plants, materials like flax, hemp and wood are 
hygroscopic. A lot of research has been carried out on moisture effects and moisture 
transport in wood. Since wood and plant fibres contain the same basic constituents, a 
lot of the general results found for wood can be applied on flax and hemp. Figure 2.13 
shows the equilibrium moisture content versus the relative humidity in humid air of 
the constituents in wood. The moisture content is measured as weight of water per 
weight of dry material. 
 

 
 
 
 
 

Wood 
Hemicellulose 
Cellulose 
Lignin 

 
 

Figure 2.13 Absorption isotherms of wood and its constituents. Two curves are 
shown for lignin prepared with different methods [16]. 

 
Recently (2000) an absorption isotherm of flax fibres was reported in [21], the result 
is shown in Figure 2.14, and comprises the equilibrium moisture content at 20, 66, 93 
and 100 % relative humidity. A smoother curve could have been obtained by 
measuring at closer intervals. In [22], absorption isotherms are reported both for flax 
straw and hemp stalks. Although the isotherms are reported for the stems, the result 
might be valid also for the fibres.  
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Figure 2.14 Moisture absorption of flax fibres versus the relative humidity [21]. 
 
Transport of moisture is often assumed to be a diffusion process where the driving 
force is the gradient of the moisture content. The basic equation describing diffusion 
is  
 

x

c
DF c ∂

∂−=          2.2 

 
where F is the flux measured in kg/m2s, Dc is the diffusivity measured in m2/s and 
∂c/∂x is the gradient of the concentration (kg/m3) with respect to the distance (m). 
This equation is commonly referred to as Fick’s first law. By conservation of mass, 
i.e. 
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Fick’s second law of diffusion is obtained as; 
 

2

2

x

c
D

t

c
c ∂

∂=
∂
∂

         2.4 
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To be able to describe the sorption of vapour into the fibre, the isotherm (as shown in 
Figure 2.14) has to be known:  
 

)(φfc =          2.5 
 
where φ is the relative humidity.  
 
Values of the diffusivity, Dc, for a single elementary fibre of flax and hemp have not 
been found in the literature. Bundles of flax fibres, however, have been examined by 
[21], who measured the moisture content of initially dry fibres as a function of time in 
66% relative humidity. The test was carried out on bundles bounded together to a 
radius of approximately 1.5 mm. The plot is shown in Figure 2.15. The diffusion 
coefficient in this case is determined to Dc = 4.04·10-6 cm2/s. This is to be considered 
as a value valid for this special case. For a more general value of diffusivity the 
moisture transport in the pores within the fibres and the interface between the humid 
air and the fibre have to be accounted for. This is discussed in detail in [23]. 
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Figure 2.15 Moisture content of flax at 66% of relative humidity [21]. 
 
 
The mentioned equations are used to describe the moisture transport when the fibre is 
surrounded by humid air. If the fibre is surrounded by water, the equations are 
different. In [24] it is suggested how to describe the sorption process in such a case. 
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2.3.2. Effects on mechanical properties 
 
The mechanical properties of the plant fibre are affected by the moisture content. 
Since no information of how the stiffness of flax and hemp are affected by the 
moisture content could be found in the literature, the chemical constituents are 
described in this section. A thorough review of how the mechanical properties of the 
plant constituents are influenced by moisture have been carried out by Persson [25]. 
The review is concerning wood fibres but the plant cells seem to contain the same 
substances, although with different proportions and geometry.  
 
The stiffness of the microfibrils is believed to be independent of the moisture content. 
The microfibril is regarded to be a transversely isotropic material. This means that the 
stresses in the plane perpendicular to the axial direction are isotropic. The stiffness 
matrix of such a material can be written as [25]: 
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where the 1-direction is along the axis of the fibril and the 23-plane is isotropic. The 
index C indicates cellulose. Stiffness data for native cellulose is reported in [25] and 
shown in Table 2.5. By means of this data and C-matrix shown in appendix, the 
components of the DC matrix for native cellulose can be calculated.  
 
Table 2.5  Stiffness coefficients of native cellulose [25]. 

Coefficient Value Method and Reference 
E11 (GPa) 135 

138 
140 
168 

Measured, ref 60 in [25] 
Measured, ref 47 in [25] 
Measured, ref 43 in [25] 
Molecular model, ref 68 in [25] 

E22 (GPa) 17.7 
27 
18 

Molecular models, ref 68 in [25] 
Molecular model, ref 41 in [25] 
Estimated, ref 12 in [25] 

G12 (GPa) 4.4 
5.1 

Molecular model, ref 41 in [25] 
Molecular models, ref 68 in [25] 

G23 = 2(1+ν12)/E22 - - 
ν12 0.011 

<0.005 
0.047 

Molecular model, ref 41 in [25] 
Molecular model, ref 68 in [25] 
Estimated, ref 12 in [25] 

ν23 0.52 
0.48 

Molecular model, ref 68 in [25] 
Estimated, ref 12 in [25] 
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The stiffness of hemicellulose depends strongly on the moisture content. Cousins 
(reference 14 in [25]) measured the stiffness on hemicellulose extracted from wood 
fibres at different moisture contents, which proved to be isotropic. The relation is 
shown in Figure 2.16. The moisture content of hemicellulose is related to the 
surrounding humid air and has been measured by Cousins. The relation is shown in 
Figure 2.17. For instance, at equilibrium 20 % RH gives a moisture content of 8 % 
and 60 % RH a moisture content of 16 %. 
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Figure 2.16 Stiffness of extracted hemicellulose versus the moisture content [25]. 
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Figure 2.17 Moisture content of extracted hemicellulose versus the relative 

humidity [25]. 
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In the fibre, the hemicellulose molecules tend to align with the fibril axis, which leads 
to an anisotropic material behaviour. Based on Cousins experiments, Cave (reference 
12 in [25]) have suggested that hemicellulose (in the fibre) can be described as a 
transversely isotropic material: 
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where cH(w) is a moisture dependent function fitted to the experimental data shown in 
Figure 2.16. The values of the matrix are chosen to show the relation between 
different components of the matrix and are not to be taken as absolute physical 
properties. Following Figure 2.16 and Figure 2.17, a relative humidity of 60 % gives a 
moisture content of about 16 %, which gives a stiffness of the extracted isotropic 
hemicellulose of approximately 8 GPa. Since hemicellulose is considered as a 
transversely isotropic material in the fibre, the stiffness in the direction of the 
cellulose fibrils (11-direction) is higher and the transverse directions are lower. 
Estimates of stiffness coefficients at 60 % RH can be found in [25] and are 
summarised in Table 2.6. The curve presented in Figure 2.16 has to be scaled to these 
estimated stiffness coefficients. The scaled curve is the function cH(w). 
 
Table 2.6  Stiffness coefficients of native cellulose [25]. 
 

Coefficient Value 
E11, GPa 14.0-18.0 
E22, GPa  3.0-4-0 
G12, GPa 1.0-2.0 
ν12 0.1 
ν32 0.40 
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Figure 2.18  Stiffness of lignin versus the moisture content [25]. 
 
The stiffness of lignin also depends on the moisture content but to a lesser extent than 
hemicellulose. Lignin is amorphous and regarded as an isotropic material. Reference 
12 in [25] have suggested the moisture dependent stiffness matrix DL(w) of lignin as 
 

DL(w) = 
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where cL(w) is a moisture dependent function fitted to the experimental data of lignin 
shown in Figure 2.18 which is obtained in the same manner as for hemicellulose. As 
in the case of the stiffness matrix of hemicellulose the values in the stiffness matrix of 
lignin are not to be seen as absolute physical values. 
 
As can be seen, the stiffness of the constituents of the elementary fibre is highly 
affected by the moisture content. Lacking experimental data for fibres, it is possible to 
determine their stiffness by micro mechanical modelling using the material data for 
the constituents. This is discussed in more detail in section 4.  
 
The variation of strength of flax due to the moisture content has been examined in 
greater detail, than has the stiffness. In [15] it is reported that wet fibres have a 2-6% 
higher tensile strength than a dry fibre and in [26] it is reported a ~14% increase of 
strength. Reported values of increase of elongation at break are 25-30% and ~27 % 
respectively [15,26]. No values of strength of wet hemp fibres have been found in the 
literature. The tensile strength of elementary flax fibres has been measured at different 
levels of relative humidity [21]. The result is shown in Figure 2.19. 
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Figure 2.19 Average tensile strength of flax fibres versus the relative humidity [21]. 
 
2.3.3. Effects on durability 
 
According to [27] flax fibres resists insect attacks and if the fibre is clean and dry, it 
has also a good resistance to attack by microorganisms. This suggests that the 
durability of a wet fibre is affected. However, a living proof that cellulose fibres used 
in composites is durable even when wet is the former East-German car brand Trabant. 
Trabant used a hybrid composite made of glass fibre and wood cellulose with a 
phenol resin in certain parts of the body. For daily use it is hard to find a more 
aggressive environment for a component than when it is used in exterior applications 
of a car. Since the constituents of wood and plant fibres seem to be similar, it is likely 
that flax and hemp fibres are rather resistant when wet as well, at least when within a 
phenol resin. The performance of flax and hemp might be similar to the performance 
of wood: it is durable when dry and when in water, but may rot if stored in air at a 
moisture content equal to or above the fibre saturation point. 
 
2.3.4. Hygroexpansion 
 
The fibre swells due to moisture. This is normally referred to as hygroexpansion or 
moisture induced expansion. Since no coefficients of hygroexpansion of flax and 
hemp have been found in the literature, the fibre constituents are described in this 
section. The description is obtained from [23], but applied to flax instead of wood. 
 
Cellulose does not shrink or swell due to changes of the moisture content. Therefore, 
as in the case of stiffness, the microfibrils are assumed to be independent of moisture 
changes. The hemicellulose is assumed to be non expanding in the direction of the 
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microfibril and isotropic in the plane perpendicular to the direction of the microfibril 
[25]. The vectorial strain, s

Hε∆ , due to hygroexpansion of hemicellulose can be 
approximated by: 
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The lignin is assumed to behave isotropically in hygroexpansion and its vectorial 
strain contribution, s

Lε∆ , can be approximated by 
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The index s denotes hygroscopic expansion (swelling) and the indices H and L 
denotes hemicellulose and lignin respectively. The parameters o

Hε  and o
Lε  are 

functions of wb and are related to the volumetric expansion of hemicellulose and 
lignin respectively. The variable wb is the bound fraction of the absorbed water w. It is 
assumed that the parameters can be coupled to the volume of water absorbed by the 
hemicellulose and the lignin.  
 

)()( bHbbH www ∆=∆oε        2.11 
 

)()( bLbbL www ∆=∆oε         2.12 
 
where Hbw∆  and Lbw∆  are the changes in bound water of hemicellulose and lignin 
respectively. Further, a relation between the total moisture content, w, and the bound 
water wb is introduced; 
 
wb = b w         2.13 
 
where b is a constant, which describes how much water is bound compared to the total 
amount of water.  
 
It has been suggested that the bound water, wb is divided between hemicellulose and 
lignin with the proportions 2.6:1, which yields that 
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LbHb ww ∆=∆ 6.2         2.14 
 
The change of bound water can be written as 
 

LbLHbHb wfwfw ∆+∆=∆        2.15 
 
where Hf  and Lf  are the weight fractions of hemicellulose and lignin respectively. 

Now o
Hε  and o

Lε  can be written as 
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With the weight fractions of constituents of flax according to Table 2.2 adjusted to a 
dry fibre, the weight fractions of hemicellulose and lignin becomes Hf  = 14.1% and 

Lf  = 4.4%. Here the pectin has been assumed to behave as lignin. If all the absorbed 
water is assumed to be bound, i.e. b = 1, the strains due to hygroexpansion can be 
written as 
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where 
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Expression 2.20 and 2.21 can be used for determining the total hygroexpansion of the 
fibre. The methodology is discussed in section 4. The assumption that b = 1 has been 
used in [25], which gave a good correlation with experiments.  
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2.4. Miscellaneous mechanical properties 
 
2.4.1. Creep 
 
No information of the creep behaviour of flax and hemp fibres has been found in the 
literature. It is however likely that they behave as wood, since the constituents are 
believed to be the same. Wood creeps at constant moisture content, and change of the 
moisture content during loading increases the creep rate. If the load is high enough, 
wood experiences a creep-rupture. I.e. for a certain stress level the wood specimen 
fails after a certain time.  
 
2.4.2. Fatigue 
 
Fatigue of an elementary flax fibre has been examined by [10]. The test was carried 
out by applying a pulsating tensile force in the direction of the fibre. The force versus 
time is shown in Figure 2.20. 
As mentioned in section 2.2, the fibre experiences a plastic deformation. The stiffness 
increases in every load-cycle until rupture occurs at approximately 200 cycles. The 
behaviour is shown in Figure 2.21. 
 

 
Figure 2.20 Definition of fatigue tensile test [10]. 
 

 
Figure 2.21 Tensile fatigue test of single flax fibre. Evolution of the stiffness versus 

the number of cycles [10]. 
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2.4.3. Impact strength 
 
The impact strength is related to the toughness of a material. In turn the toughness is 
related to the critical energy release rate Gc. Gc is a material property, which is a 
measure of how much energy per unit area that is needed to make a crack propagate. 
The energy balance, which must be fulfilled, for a crack to advance can be stated as: 
 

atGUW c
el δδδ +≥          2.22 

 
where Wδ  is the energy due to external loads, elUδ  is the change of elastic energy, t 
is the material thickness and aδ  is how much the crack advances.  
The fracture toughness Kc is at plane stress related to Gc by  
 

cc EGK =          2.23 

 
A crack is about to start to propagate in a stable or unstable manner when K = Kc, 
where K is the stress intensity factor of the crack.  
No values of Gc or Kc have been found in the literature neither for flax nor for hemp. 
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3. Physical properties of matrix materials 
 
The adhesive used for binding the fibres together in a composite is usually referred to 
as a matrix material. Many different types of matrix materials exist on the market, 
therefore only the most common materials will be covered in this text. Matrix 
materials can be divided into two groups, thermosetting and thermoplastic matrices. A 
thermosetting matrix is normally a mouldable resin, which after adding a curing 
agent, hardens to a network of the initial molecules. This process is irreversible. A 
thermoplastic matrix contains linear or branched molecule chains. At low 
temperatures weak van der Waal forces binds the molecules together creating a solid. 
At higher temperatures these forces decrease drastically which leads to that the 
material melts. When cooled the van der Waal forces reappear and the material 
solidifies. Hence, it is a reversible process [5]. Table 3.1 shows examples of 
thermosetting and thermoplastic matrices and some of their properties. 
 
Table 3.1 Properties of some thermosetting and thermoplastic matrices [5]. 
Material Density 

(kg/m3) 
Tensile strength (MPa) E-modulus (GPa) 

Thermo set    
Polyimide 1430-1890 100-110 3.1-4.9 
Epoxy 1110-1400 49-85 2.6-4.5 
Phenol Formaldehyde 1300-1500 17 4.1 
Polyester 1100-1460 23-68 1.0-4.6 
    
Thermoplastic    
Polyamide 1040-1140 70-84 1.5-3.3 
Polyethylene 940-970 44 0.8 
Polypropylene 900 31-42 1.1-2 
Polycarbonate 1200 70 2.3 
Polystyrene 1040-1090 50 3.3 
 
The matrices shown in Table 3.1 are used for conventional composites such as glass 
fibre reinforced polyester or wood fibre particleboards with a phenol formaldehyde 
matrix and it seems that some of the matrices are possible to use for flax and hemp 
fibre composites as well. According to [28] the adhesion between the matrix and the 
fibre is not a problem when using a thermosetting resin since the functional groups on 
the surface of the fibres reacts with the resin, whereas it is a significant problem when 
using a thermoplastic matrix. A thermoplastic matrix, such as for instance 
polypropylene or polyethylene, has a bad compatibility with the lingocellulosic fibres. 
This is because the natural fibres are hydrophilic and the thermoplastic hydrophobic. 
Extensive research has been carried out in order to improve the compatibility between 
the fibre and the matrix. To mention one method, by adding the coupling agent maleic 
anhydride in polypropylene or polyethylene, the adhesion is increased. 
 
In addition to the artificial matrices shown in Table 3.1, several biodegradable 
polymers usable as matrix materials are presented in [29,30]. 
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4. Mechanical properties and modelling  
 

4.1. General 
 
In the process of designing a contemporary product it is of major importance to be 
able to predict the performance of the product. In this report, the performance of 
interest is limited to the mechanical properties of the composite material. During the 
last decade computer capacity has increased drastically which has lead to that 
complicated structures can be analysed accurately. It is fully possible to analyse a 
composite by modelling of the distinct phases on a microscale level [31]. This 
approach is however (still) too time consuming for large structures. Hence, it is more 
convenient to model the composite on a macroscale continuum level. An analogy is to 
model steel as a homogenous material instead of modelling the crystals and grains. 
 
The method used when determining the macroscale continuum properties from the 
microscale properties, is referred to as homogenisation. The macroscale properties are 
obtained by analysing a representative volume element, RVE, of the composite on a 
microscale. Several different models of stiffness, strength, hygroexpansion etc are 
presented in the literature. Some of them are presented in this report.  
 
Composite mechanics has developed during the latter part of the 20th century. It seems 
that a lot of the theoretical and experimental work has been developed for artificial 
reinforcing materials in form of either continuous or short fibres or particles. Flax and 
hemp elementary fibres have a length/diameter ratio of more than 100. If this ratio is 
to be viewed as a continuous or a short fibre depends on the adhesion between the 
fibre and the matrix. If the fibre is damaged it might be more appropriate to consider 
the fibre as short. 
 
As mentioned above a lot of research has been performed on composites based on 
artificial fibres. One of the advantages of artificial materials is their uniformity, which 
simplifies the modelling of stiffness and strength. For natural fibres with such a vast 
variation of both stiffness and strength a lot less research appears to have been 
performed. 
 
The macroscopic properties of a composite, i.e. its density, stiffness, thermal and 
hygro expansion etc are determined by the equivalent properties of the fibre and 
matrix materials. A central parameter in micro mechanical modelling is the volume 
fraction of the fibres and the matrix. The volume fractions are Vf and Vm for the fibre 
and the matrix respectively. Vf and Vm are defined such that 
 
Vf + Vm = 1         4.1 
 
This relation is valid if the composite is solid, i.e. it does not contain any pores. 
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4.2. Stiffness of the composite 
 
4.2.1. The Voigt and Reuss approximation 
 
By assuming that the strain in a RVE is homogeneous, the stiffness of a composite 
can be approximated by [32]: 
 

mmffc VV DDD +=         4.2 

 
where cD , fD  and mD  are the stiffness matrices of the composite, fibre and the 

matrix respectively. fV  is the volume fraction of the fibres and mV  the volume 

fraction of the matrix.  
Equation 4.2 is referred to as the Voigt approximation, the rule of mixture (ROM) or 
the parallel-coupling model. The approximation might be more familiar in its one-
dimensional form [5]: 
 

mmffc EVEVE +=         4.3 

 
where cE , fE  and mE  are the E-modulus of the composite, the fibre and the matrix 

respectively. 
 
If the stress field is assumed to be homogeneous, the compliance matrix can be 
approximated according to [32]: 
 

mmffc VV CCC +=         4.4 

 
and its one-dimensional form 
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        4.5 

 
which is referred to as the Reuss approximation or the series-coupling model. 
 
It should be mentioned that both the Voigt and Reuss approximations are incorrect on 
the microscale level. Assuming a uniform strain field of the RVE leads to that the 
tractions at the boundaries of the phases cannot be in equilibrium. Similarly, if the 
stress field is assumed to be uniform, the matrix and the reinforcement material 
cannot remain bonded.  
 
Although these approximations are incorrect on the microscale level, they are the 
most important equations for determining the stiffness of a composite. This is because 
they are the upper and lower bounds of the stiffness of a composite, independent of 
the geometry of the constituents. The Voigt model gives the upper bound of stiffness 
and the Reuss model the lower bound. This has been shown by [33]. 
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4.2.2. The Halpin-Tsai equations 
 
For composites with short unidirectional fibres, the Halpin-Tsai equations are often 
employed [5]. First two constants are determined according to equations 4.6 and 4.7.  
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where Lf is the length and df is the diameter of the fibres. 
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The stiffness of the composite in the direction of the fibres is then determined by:  
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and in the transversal direction according to: 
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4.2.3. Arbitrarily oriented fibres 
 
A common way to use bast fibres is in curved or non-curved plates where the 
orientation of the fibres is distributed arbitrarily tangentially to the surface of the 
plate. By calculating the stiffness of a unidirectional fibre composite by means of the 
Voigt approximation and integrating all the infinitesimal contributors, the in-plane 
stiffness of the composite can be approximated as [31]:  
 

ϕϕ
π

dfuc  )(
0
∫= DD         4.10 

 
where )(ϕf  is the fibre orientation distribution in the plane with the angle ϕ  

measured from the x-axis and uD  is the stiffness matrix of the unidirectional fibre 
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composite transformed to the global coordinate system. The relation can also be 
extended to three dimensions for composites with spatial fibre orientation distribution. 
 

( ) θϕθθϕψ
π

dduc   sin ,
0
∫= DD        4.11 

 
where ( )θϕψ ,  is the spatial fibre orientation distribution in a spherical coordinate 
system where the angle θ  is measured between the fibre and the z-axis and ϕ  is the 
angle between the projection of the fibres to the x-y plane and the x-axis. 
 
 
4.2.4. Fibres with large variation of stiffness 
 
Artificial materials such as glass and carbon fibres have uniform values of stiffness, 
which is not the case for natural fibres. This has the consequence that it might not be 
sufficient to use average values of stiffness of natural fibres. The large variation has to 
be dealt with in some manner. [34] has performed extensive measurements of the 
stiffness of flax fibres. The result reveals that the stiffness of the fibres decrease with 
increasing fibre diameter. Average values of stiffness vary from 78.7 GPa to 39.0 GPa 
at a diameter of 6.8 µm to 34.5 µm respectively. By classifying the diameter into 
classes and counting the number of fibres in each class a more accurate value of the 
stiffness in the direction of the fibres of a unidirectional composite can be obtained as 
[30]: 
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       4.12 

 
where ni is the number of fibres in each class, di is the diameter in each class, Ei is the 
stiffness of the fibres in each class and n is the number of classes. Equation 4.12 is a 
development of the Voigt approximation in one dimension. It might be possible to 
generalise equation 4.12 to a continuous expression where the summations are 
replaced by integrals over a distribution function. Moreover, a generalisation to 2 and 
3 dimensions might be possible. 
 
4.2.5. Other models of stiffness 
 
The sought after accurate predictions of stiffness has provided many different models. 
Interpolation between the Voigt and Reuss models [35,36], the self-consistent scheme 
[37] (particle composites) and the Hashin-Shtrikman bounds [38,39] are examples of 
such models. Several textbooks cover the mechanics of heterogeneous materials. For 
a thorough treatment, for instance [32,40,41], may be consulted.  
 
4.2.6. Experimental values 
 
In order to grasp the mechanical performance of flax or hemp fibre reinforced 
composites, for instance [42] may be referred to. In this article, both flax and hemp 
fibre-epoxy composites have been examined experimentally. The result of the tensile 
tests is presented in Table 4.1. As can be seen in the table, retted hemp fibres yield a 
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stiffer composite than unretted fibres. The reason according to [38] is that the resin 
can penetrate into the fibre tissue between the bundles where the retting has caused 
gaps to appear. In the composite containing unretted fibres the adhesion is poor 
between the fibre and the matrix. The exact mechanism leading to a lower stiffness is 
however not explained. One possible reason is that the strain increases, for a given 
stress, due to shearing of the matrix in between the fibres or maybe even slipping 
might occur. Slipping would however lead to a non-linear constitutive behaviour of 
the tensile performance of the composite.  
 
Table 4.1 Mechanical properties of flax and hemp fibre composites. M = mean, S 

= standard deviation, COV = coefficient of variation, n = number of 
specimens tested [42]. 

 
Fibre and treatment   E-modulus (GPa) Strength (MPa) 

 
 Vf n M S COV M S COV 

Unretted flax, 
mechanically 
decorticated 

0.5 2 4.65 - - 59.5 - - 

Unretted hemp, 
carefully extracted 

0.5 3 4.5 0.3 6.7 % 62 1.15 1.9 % 

7 days retted hemp, 
carefully extracted 

0.5 4 12.65 2.27 17.9 % 145.5 8.1 5.6 % 
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4.3. Failure of the composite 
 
The models of stiffness discussed above correlates quite well with experimental 
results. Models of failure and strength are much more difficult to achieve. According 
to [41], no accurate general models exist (1998) for predicting failure. It seems that 
this is the case also today. A general model should be able to predict failure at all 
levels of analysis, all load conditions and all types of composites [41]. 
 
The failure of a composite is often a consequence of accumulated damages/failures on 
the micro-level of the composite. It is hence, necessary to understand the failure 
mechanisms on the fibre and matrix level. The failure mechanisms on the micro level 
of the composite are fibre fracture, fibre buckling (kinking), fibre splitting, radial 
cracks, fibre pullout, debonding between the fibre and the matrix and matrix cracking. 
The description of failure mechanisms above is valid for unidirectional composites. 
Fibre fracture occurs when the strength of the fibre is attained either in tension or in 
compression. When the composite is subjected to compression it is more common that 
the composite fails due to local buckling of the fibres. Fibre fracture is often followed 
by fibre pullout accompanied by debonding of the fibres from the matrix. Fibre 
splitting and radial cracks in the fibre occur due to transversal stress and finally, 
matrix cracking occurs when the strength of the matrix is exceeded.  
 
4.3.1. Axial tensile strength of composites with continuous fibres 
 
The axial tensile strength of a unidirectional composite can be estimated by assuming 
that the composite contains continuous identical fibres aligned in a homogeneous 
manner. Equilibrium in the axial direction then yield the composite average stress 
[5,41]: 
 

mmff
ult
c VV σσσ ′+′=         4.13 

 
where fσ ′  is the stress in the fibre and mσ ′  is the stress in the matrix at composite 

failure.  
Fracture of the composite occurs when either the fibre or the matrix fails. The strength 
of a composite failing due to fibre fracture is called the fibre dominated composite 
failure stress, which can be estimated by: 
 

( )fmf
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c VV −′+= 1σσσ        4.14 

 
where it has been assumed that the composite does not contain any pores, i.e. 

1=+ mf VV , and that the failure strain of the matrix is larger than the failure strain of 

the fibre. For the fibre to actually be reinforcing, the stress in the fibre portion at 
fracture must be larger than the stress in the matrix portion of the composite volume 
after fracture of all fibres. If the portion of fibres is too low, the composite will not 
fail after fibre fracture. Instead, the matrix will be able to carry the load. In such a 
case, the failure stress of the composite can be estimated by: 
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Thus, it is evident that the volume fraction of fibres has to exceed a critical number in 
order to supply reinforcement. The critical fibre volume fraction is given by: 
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Equation 4.14-4.16 are valid when the limit failure strain of the matrix is greater than 
that of the fibres. When the opposite is prevailing, the fibre has to carry the entire load 
when the matrix fails. For low fibre fractions, the fibres will however not be able to 
carry the load. Thus the composite fails at matrix failure. In that case, the strength of 
the composite can be obtained by: 
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When the fibre fraction is high, the entire load is carried by the fibres after matrix 
failure. Hence, the strength of the composite can be estimated by: 
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If equation 4.17 or 4.18 should be used can be determined by setting the equations 
equal and solving for the fibre volume fraction. 
 
4.3.2. Axial tensile strength of composites with non-continuous 

fibres 
 
The strain field in axially loaded composites with continuous fibres is homogeneous. 
This is not the case in composites with non-continuous fibres. Short (or broken) fibres 
in the composite have the consequence that the strain field becomes inhomogeneous. 
If the fibre is short enough, the strain in the fibre is lower than in the matrix. For an 
increased fibre length the strain difference is smaller and finally the strain in the fibre 
and the matrix are equal. The length of the fibre at this point of equality is referred to 
as the critical fibre length, Lcrit.  
 
The critical length of a circular fibre can be estimated by assuming that the strain in 
the matrix is constant. Moreover, it is assumed that the strain in the fibre increases 
linearly from zero at the end surface of the fibre to the same level as in the matrix. 
This results in a critical fibre length according to [5]: 
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σ f
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where maxσ  is the maximum stress in the fibre, rf is the radius of the fibre, and τ  is 
the maximal shear stress of the interface between the fibre and the matrix. Equation 
4.19 shows that for a given fibre, a short critical length can be obtained by increasing 
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the adhesion between the matrix and the fibre. The average stress in the fibre can with 
the same assumptions be estimated by [5]: 
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The short fibre ruptures at the location where the tensile stress is reached. The stress 

in the fibre just before rupture is then obtained by replacing maxσ  with ult
fσ  in 

equation 4.20. With this in mind, the strength of a short fibre composite can be 
estimated by [5]:  
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This relation shows that a full reinforcement can be obtained by using a high ratio 
between the fibre length and the critical fibre length, Lf/Lcrit. Equation 4.21 is not valid 
for fibres with variation of strength as is the case with natural fibres.  
 
4.3.3. Consideration to varying fibre strength 
 
In composites containing fibres with large variation of strength, the fibres will fail 
successively. This leads to that the reinforcing effect will disappear on a length equal 
to the critical fibre length for each fractured fibre.  
 
An important tool when dealing with variations of strength is Weibull statistics. 
Weibull [43] suggested that the probability of rupture, Pf, of a body in uniaxial 
homogenous tension can be described by: 
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where V is the volume of the specimen, σ is the applied stress and σ0 and m are two 
material parameters. The parameter m is related to the coefficient of variation in 
strength, e.g. m = 2 corresponds to COV ≈ 52 % and m = 4 corresponds to COV ≈ 28 
%. The Weibull distribution has been modified by for instance [44] so that the 
volume, V, of the material can be referred to a reference volume, V0.  
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For fibres with identical cross sectional area the term V/V0 may be replaced by the 
length ratio L/L0. By taking the natural logarithm of the survival probability, Ps = 1-Pf, 
two times, the following is obtained: 
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The median strength of the fibres can be determined by calculating the stress where 
50 % of the fibres have ruptured, i.e. 
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The median strength then becomes: 
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Proceeding by setting ult
fσσ =max  in equation 4.19 and 4.20 yields: 
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Inserting equation 4.27 into equation 4.14 gives the following estimate of the strength 
of a composite containing non-continuous fibres with large variation of strength: 
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It should be pointed out that equation 4.28 does not take into account that the stress 
increases when fibres rupture successively: the Weibull model is a weakest-link 
model, meaning that the entire body is assumed to fail as soon as the weakest part 
fails. 
 
In order to illustrate the importance of the fibre length, equation 4.27 is plotted in 
Figure 4.1 for different values of m and τ . The parameters used for the plot are; L0 = 
10 mm, σ0 = 700 MPa, rf = 10 µm.  
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Figure 4.1 Fibre strength according to equation 4.27. 
 
Figure 4.1 shows that a short fibre length gives a low reinforcement factor, which 
increases rapidly for an increased fibre length until the optimum length is reached. If 
the fibre length is increased more, the likelihood of damages on the fibre increase, 
which leads to that the strength of the fibre decreases. This is sometimes referred to as 
the Weibull or the size effect. Obviously, equation 4.27 reveals a drawback for very 
short fibres. When the fibre length decreases towards zero, fσ  increases towards 

negative infinity. This is, of course, not possible in reality. 
 
In the equations above it is assumed that the cross sectional area of the fibres is 
constant. The diameter of flax and hemp fibres varies between approximately 10 and 
40 µm and hence, the equations need to be modified for the variation of cross 
sectional area as well. 
 
4.3.4. Axial compressive strength 
 
Compressive failure of a unidirectional composite is somewhat different from a 
tensile failure. The failure mechanism is usually not only related to the compressive 
strength of the constituents, but rather to an instability phenomenon on the micro 
mechanical level. This phenomenon is often referred to as micro mechanical buckling 
which is influenced by for instance fibre size and shape, fibre waviness, strength of 
the interface between fibre and matrix and stiffness of the fibre and the matrix. In this 
section only three models of compressive strength will be treated.  
 
Micro mechanical buckling basically occurs in the two different modes as shown in 
Figure 4.2. These are referred to as strain mode and shear strain mode. By applying 
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elementary beam theory for compressed beams on a lamella, where the lamella is 
assumed to consist of linear elastic fibres with a rectangular cross section embedded 
in a linear elastic medium (the matrix), the following estimates of the compressive 
strength are obtained [45]. 
 
The strain mode buckling strength: 
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and the shear strain mode:  
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Figure 4.2 Fibre deformations in a compressed lamella. Left figure shows the 

strain mode and the right figure the shear strain mode [45]. 
 
Both equation 4.29 and 4.30 overestimates the compressive strength as can be seen in 
the example below. A model proposed by Hahn and Williams (1986) has shown good 
results when comparing with experimental data [41]. The model includes fibre 
imperfection (fibre curvature) and assumes an elastic-perfectly plastic composite with 
strong fibres and reads:  
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where 12G  is the shear modulus of the composite, yτ  is the shear yield stress and 

Lf /0  is a fibre curvature ratio.  

As an example, a composite containing fibres with 50=fE GPa and 23.19=fG GPa 

and a matrix with 3=mE GPa and 15.1=fG GPa is analysed by equation 4.27-29. 

The shear yield stress is 50=yτ MPa, 005.0/0 =Lf  and 12G  is estimated by: 
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The result is presented in Figure 4.3 and clearly reveals that the strain and shear strain 
mode models overestimates the compressive strength. At a volume fraction of 50% 
the strain mode model gives a compressive strength of 7500 MPa, the shear strain 
mode model 2300 MPa and the Hahn and Williams model 650 MPa. The latter value 
is reasonable compared to the others. 
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Figure 4.3 Compressive strength versus the fibre volume fraction. 
 
 
4.3.5. Continuum failure theories 
 
The information in this section is, if nothing else is stated, obtained from [41]. 
 
In the following section the unidirectional composite is assumed to be a continua i.e. 
the material is viewed as a homogenous continuum on the macro scale level. The 
material is assumed to be orthotropic with known strengths in the one-dimensional 
principal material directions. The principal material directions 1 and 2 are shown in 
Figure 4.4, the 3rd direction is perpendicular to the 1st and the 2nd. 
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Figure 4.4 Principal material directions. 
 
In the principal directions there is no sign dependence of the shear stress, whereas in 
another coordinate system the sign of the shear stress has a great influence on the 
stress in the principal coordinate system. This is illustrated in Figure 4.5. 
 
 
 
 

 

 
 

 
Figure 4.5 Pure shear and its principal stresses in a unidirectional composite. 
 
Since the strengths in the different principal material directions are very different, 
positive and negative shear strength will vary vastly in the off axis directions. 
 
 
Maximum stress theory 
 
In the maximum stress theory, it is assumed that the composite fails when one 
component of stress reaches the maximum (or minimum) allowable value independent 
of the other stress components. The allowable stress level has to be determined in the 
principal material directions for each stress component. The failure criterion can then 
be stated as: 
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where T indicates tension and C indicates compression. 
 
For stress states others than the principal material directions, the maximum stress 
criterion can be transformed into another coordinate system. In order to illustrate this, 
the following example is useful. Consider a unidirectional composite with the off-axis 
loading xσ  as shown in Figure 4.6. 
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Figure 4.6 Off-axis tensile strength. 
 
By assuming plane stress, the stress state can be transformed to: 
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Inserting equation 4.34 in 4.33 yields: 
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Equation 4.35 states that xσ  is safe if it lies within the limit values. For different 
angles θ, one of the three failure modes will give the lowest value, which is the 
current failure stress. 
 
It should be mentioned that the maximum stress failure criterion is limited when 
trying to predict failure stress in multi-axial loading since there is no coupling 
between the stress components. 
 
Tsai-Hill theory 
 
The Tsai-Hill failure criterion is an application of Hill’s anisotropic plasticity model 
to anisotropic failure. The failure surface is given by: 
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where F, G, H, L, M and N are parameters related to the strength of the material. 
These parameters can be expressed in the one-dimensional failure stresses by looking 
at the different possible one-dimensional stress states. As an example the stress state 
pure shear, 012 ≠τ  and all other stress components equal to zero yields: 
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Continuing in this manner for all possible one-dimensional stress states, gives all the 
material strength parameters expressed in the one-dimensional failure stress. 
 
For the off-axis stress state, as shown in Figure 4.6, the failure criterion becomes: 
 

22max
2

4
22

2max
1

2max
12

2max
1

4 1sin
cossin

11cos

xσσ

θθθ
στσ

θ =+












−+    4.38 

 
Evidently, the Tsai-Hill failure criterion reveals a severe disadvantage. Since the 
equation is quadratic, no distinction between positive (tensile) and negative 
(compressive) strength is present. In general tensile and compressive strengths are not 
the same.  
 
Tsai-Wu tensor polynomial failure criterion 
 
In order to account for different tensile and compressive strengths, several tensor 
polynomial failure criteria have been suggested. They are invariant scalar functions of 
tensor quantities. 
 
Here the Tsai-Wu tensor polynomial failure criterion is treated which reads [41]: 
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or on reduced index notation 
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where the components (Fi, Fij) of the failure tensors are strength parameters. 
 
Failure occurs when: 
 

1)( ≥if σ          4.41 
 
The Tsai-Wu criterion can be reduced to an orthotropic model by assuming that the 
failure tensors are symmetric and that the shear strengths are sign independent in the 
principal material directions. The orthotropic failure criterion becomes: 
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The components of the failure tensors can be expressed in the strengths in the 
principal material directions. This is carried out by working through the one-
dimensional stress states. For instance, the axial stress state in tension and 
compression can be examined as follows. 
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and for compressive failure at max
11
Cσσ =  

 

1
2max

111
max

11 =+ CC FF σσ        4.44 
 
Solving equation 4.43 and 4.44 simultaneously gives: 
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For the off-axis stress state, as shown in Figure 4.6, the Tsai-Wu failure criterion 
becomes: 
 

12 =+ xx BA σσ         4.46 
 
where A and B are functions related to the load direction and the one-dimensional 
strength parameters. A and B are given by: 
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where θcos=m  and θsin=n . 
 
4.3.6. Damage 
 
In the models described in the previous section, failure has assumed to occur abruptly. 
In reality the fibre or the matrix fails successively forming micro cracks in the 
composite. Successive failures of the constituents lead to a non-linear material 
behaviour.  
 
The interested reader can be referred to [41], where damage mechanics is thoroughly 
treated.  
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4.4. Modelling of hygroscopic and thermal expansion 
 
Non-mechanical physical phenomena leading to deformations in a material are for 
instance hygroscopic and thermal expansion. These two effects are treated in this 
section. The models in this text are limited to an orthotropic level of anisotropy. The 
material behaviour is also assumed to be linear. The total strains in a composite 
subjected to elastic, hygroscopic and thermal deformation is commonly calculated by 
addition: 
 

tse εεεε ++=         4.49 
 
where eε  are the elastic strains, sε  are the hygroscopic strains and tε  are the thermal 
strains. 
 
Natural fibres as well as polymeric matrices absorb water, which leads to expansion 
of the composite. The hygroscopic strains are related to the moisture content in the 
composite, which is defined by [25]: 
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where OHm

2
 is the weight of the water, 0m  is the weight of the dry composite and mw 

is the weight of the composite and the water. The linear orthotropic constitutive model 
for hygroscopic strains is expressed as a function of the moisture change and is given 
by: 
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where iβ  are the hygroscopic expansion coefficients in the principal material 

directions. For a transversely isotropic material two of the coefficients iβ  are equal 

and for the isotropic case all iβ  are equal. 
 
Linear thermal expansion is treated mathematically exactly in the same manner but 
with the difference that the constitutive model is expressed as a function of 
temperature change instead of moisture change. The strains are modelled as: 
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where iα  are the thermal expansion coefficients in the principal material directions. 

For a transversely isotropic material two of the coefficients iα  are equal and for the 

isotropic case all iα  are equal. 
 
The constitutive equation for linear elasticity is given by: 
 

eDεσ =          4.53 
 
where D is the stiffness matrix. 
 
By using equation 4.49, the constitutive relation for elasticity, hygroscopic and 
thermal expansion becomes: 
 

ts DεDεDεσ −−=         4.54 
 
It should be mentioned that equation 4.54 is expressed in the principal material 
directions, but can easily be transformed into another coordinate system. 
 
Having established the continuum constitutive relations for hygroscopic and thermal 
expansion it is necessary to be able to predict the coefficients from the behaviour of 
the constituents. According to [32], the effective coefficients of thermal (or 
hygroscopic) expansion of a two-phase composite with anisotropic elastic constituents 
and arbitrary geometry may be expressed as: 
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where cα  is the thermal expansion of the composite and cC  is the compliance matrix 

of the composite. 21,αα  and 21,CC  are the thermal expansion coefficients and the 
compliance matrices for the two different phases respectively. The volume fractions 
of the different phases are included in equation 4.55 through the term cC , which is 
determined by some of the methods described above.  
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4.5. Homogenisation 
 
Homogenisation is methods for obtaining the homogeneous macro scale continuum 
properties from the heterogeneous micro scale in a composite. The basic idea is that a 
small representative volume element (RVE) is analysed very accurately, yielding 
average properties of the RVE, which can be used for continuum modelling. Often, 
periodic boundary conditions are used for the RVE. This is because the RVE is 
chosen so that the adjacent RVE is similar [25,31,32,41].  
 
A major advantage of homogenisation is that non-linear material behaviour of the 
constituents can be used. Several models of homogenisation are presented in the 
literature. Examples are; the method of cells (MOC), the generalised method of cells 
(GMC), the self-consistent method and the Mori-Tanaka method [41]. 
The most feasible way to predict advanced material behaviour appears to be the finite 
element method. With this method it is possible to homogenise composites containing 
constituents with complex geometries, non-linear materials and large deformation 
effects. Examples of non-linear materials are plasticity, non-linear elasticity and 
damage mechanics. Numerous studies have been performed on micro mechanical 
modelling using the finite element method. Examples are for instance [25,31,46,47]. 
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4.6. Miscellaneous mechanical composite properties 
 
4.6.1. Creep 
 
No information of models of creep has been found in the literature for neither flax nor 
hemp composites. The creep behaviour is probably similar to wood or wood fibre 
composites. A simple creep model for a MDF is presented in [48].  
 
A more elaborate model for creep behaviour of composites is presented in [49], where 
creep plasticity of polycrystals was homogenised using a second-order self-consistent 
scheme. A modification of this model might be possible to use for flax or hemp based 
composites.  
 
In [50], two fibre bundle models are presented. They are based on microscopic 
mechanisms that lead to macroscopic creep behaviour. Also these models might be 
usable for flax and hemp fibre based composites.  
 
4.6.2. Fatigue 
 
According to [5], the typical fatigue fracture starts in the matrix where a stress 
concentration appears at each load change, which leads to a damage (matrix crack). 
This damage is often accumulated at micro cracks in the fibres, which leads to 
damage travel through the fibre. This is repeated until the damage in the composite 
leads to failure.  
 
Not much work on fatigue properties appears to have been performed on flax and 
hemp fibre based composites. In [51] however, fibre properties and interface 
parameters affecting the fatigue properties have been examined. 
 
One method, which might be possible to use for fatigue modelling is the 
homogenisation method in conjunction with the finite element method and damage 
mechanics.  
 
4.6.3. Impact strength (toughness) 
 
The impact strength of a composite is related to its fracture energy. The main 
mechanism leading to high fracture energy is often fibre pull-out in a crack running 
transverse the fibre direction. For a crack running parallel to the fibres, the main 
mechanism is fibre splitting or debonding [5]. 
 
Since fibre pull-out is an important factor for high fracture energy, the adhesion must 
be low in order to obtain a composite with high impact strength. This leads to that the 
strength of the composite subjected to a static load decreases. Hence, a low static 
strength often means that the impact strength is high [5]. When designing a composite 
it is thus often a compromise between strength and impact strength.  
 
A possible method for modelling impact strength is (as for the case of fatigue) the 
homogenisation method in conjunction with the finite element method and damage 
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mechanics. By analysing a small part of the composite subjected to a static load, the 
elastic energy is small compared to the fracture energy and hence, the softening part 
of the fracture might be obtained. This method admits detailed studies of the 
mechanisms affecting the impact strength.  
 
Several authors have examined the impact strength of natural fibre based composites, 
for instance [52,53] might be mentioned. It can be concluded that for instance a GMT 
(Glass fibre mat thermoplastic) has a superior impact strength compared to natural 
fibre based composites. It is thus evident that this issue needs further examination and 
development. 
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5. Discussion and conclusions 
 

5.1. Additional aspects 
 
Additional aspects concerning properties of natural fibre based composites are for 
instance degradation of the fibres in the composite. No such information has been 
found, but it can presumably be assumed that the composite behaves as the free fibre, 
which is described in section 2.3.3. 
 

5.2. Concluding remarks 
 
One important conclusion that can be drawn from this study is that a lot of research 
needs to be performed on flax and hemp fibre composite. The knowledge of the fibre 
on the micro and nano level is rather poor. Fundamental knowledge is crucial for 
development of the materials. 
 
On the composite macro level, the stiffness predictions are rather well established, but 
more advanced material property predictions for properties such as strength, damage, 
creep and fracture needs further development. The most forthcoming method to model 
advanced material behaviour appears to be homogenisation using the finite element 
method. 
 
The information in this text has been collected from various public sources. The 
knowledge in the private sector, especially in parts of the automotive industry, about 
manufacturing methods and properties of plant fibre composites is most probably 
more advanced than the knowledge given in the open literature, but unfortunately not 
available.  
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 61

 

6. References 
 
 
1 Forskning & Framsteg nr 1, 2003 pp23 
2 B. Svennerstedt, Plant fibres in sustainable constructions, special report 243, 

JBT, SLU, 2003 
3 M.F. Ashby & D.R.H. Jones, Engineering materials 1, Pergamon press, 1993 
4 Tutorial for the course Composites (MFGT 247) 2001, California state 

university, Chico, webage: www.csuchico.edu/~jpgreene/m247/m247_ch05/ 
5 Från fiber till komposit, Division of production and materials engineering, 

Lund institute of technology, 1995. 
6 Bulk moulding Compound, European Alliance for SMC 
7 Hannele Sankari, Towards bast fibre production in Finland: Stem and fibre 

yields and mechanical fibre properties of selected fibre hemp and linseed 
genotypes, Academic dissertation university of Helsinki, Finland, 2000 

8 H.L. Bos, J.A. van den Oever and O.C.J.J. Peters, Tensile and compressive 
properties of flax fibres for natural fibre reinforced composites, Journal of 
materials science 37 pp1683-1692, 2002 

9 J. Militky, V. Bajzik and D. Kremenakova, Selected properties of cottonized 
flax, Textile Faculty, Technical University of Liberec, Czech Republic 

10 C. Baley, Analysis of the flax fibres tensile behaviour and analysis of the 
tensile stiffness increase, Composites: part A, pp 939-948, 2002 

11 Kent Persson, Modelling of wood properties by a micromechanical approach, 
Licentiate thesis, Structural mechanics Lund institute of technology, 1997 

12 I. His, C. Andème-Onzighi, C. Morvan and A. Driouich, Microscopic studies 
on mature flax fibres embedded in LR white: immunogold localization of cell 
wall matrix polysaccharides, The Journal of Histochemistry & Cytochemistry, 
vol 49(12) pp 1525-1535, 2001 

13 F. T. Madsen, I. Burgert, C. Felby, K. Jungnikl, A. B. Thomsen, Effect of 
enzyme treatment and steam explosion on tensile strength and elongation of 
elementary hemp fiber. 

14 J. Gassan, A. Chate and A.K. Bledzki, Calculation of elastic properties of 
natural fibres, Journal of materials science 36 pp 3715-3720, 2001 

15 A.K. Bledzki and J. Gassan, Composites reinforced with cellulose based 
fibres, Progress in polymer science 24, pp 221-274, 1998 

16 Lars Wadsö, Studies of Water Vapor Transport and Sorption in Wood, 
Doctoral Dissertation Building materials, Lund university, 1993 

17 C. Garcia-Jaldon, D. Dupeyre and M.R. Vignon, Fibres from semi-retted hemp 
bundles by steam explosion treatment, Biomass and bioenergy 3, pp 251-260, 
1998 

18 S.J Eichhorn, J. Sirichaisit, R.J. Young, Deformation mechanisms in cellulose 
fibres, paper and wood, Journal of materials science 36 pp 3129-3135, 2001 

19 B. van Voorn, H.H.G. Smit, R.J. Snike, B. de Klerk, Natural fibre reinforced 
sheet moulding compound, Composites: part A 32 pp 1271-1279, 2001 

20 Personal communication with Professor Rudolf Kessler, Institut für 
Angewandte Forschung, Fachhochschule Reutlingen, Germany, 2003 

21 S. Stamboulis et.al., Environmental durability of flax fibres and their 
composites based on polypropylene matrix, Applied composite materials 7: 
273-294, 2000 



 62

22 D. Nilsson, B. Svennerstedt, C. Wretfors, Adsorption equilibrium moisture 
contents of flax straw, hemp stalks and reed canary grass, Biosystems 
engineering (2005) 91 (1) 35-43. 

23 B.V. Ramarao, Moisture sorption and transport processes in paper materials, 
Adsorption and its applications in industry and environmental protection, 
Studies in surface science and catalysis, Vol 120, 1998 

24 G.I. Efremov, Quasistationary method of describing the kinetics of treatment 
process for fibre materials, Fibre Chemistry, Vol 34, No 5, 2002 

25 Kent Persson, Micromechanical modelling of wood and fibre properties, 
Doctoral thesis, Structural mechanics Lund institute of technology, 2000 

26 E.E. Smirnova et. al. Change in the properties of textile materials containing 
polyester and cellulose fibres caused by moisture, Fibre chemistry, vol 34, no 
3, 2002 

27 D. Starkie, Chapter 3 in Materials and technology, Wood, paper, textiles 
plastics, photographic materials, Longman Group Ltd, 1973 

28 T. Lindström and L. Wågberg, An overview of some possibilities to modify 
fibre surfaces for tailoring composite interfaces, Sustainable natural and 
polymeric composites – Science and technology, 23 rd Risö international 
symposium on materials science, Denmark, 2002 

29 K. Van de Velde, P. Kiekens, Biopolymers: overview of several properties and 
consequences on their applications, Polymer Testing 21 (2002) 433-442. 

30 B. Svennerstedt, Recycled and renewable resources for construction, 
insulation and automotive composites, Proceedings of NTC 2005 

31 Kristian Stålne, Modelling of stiffness and hygroexpansion of wood fibre 
composites, Licentiate thesis, Structural mechanics Lund institute of 
technology, 2001 

32 J. Aboudi, Mechanics of composite materials, Elsevier, Amsterdam, The 
Netherlands, 1991 

33 R. Hill, Elastic behaviour of a crystalline aggregate. Proceedings of the 
physical society, Section A, 349-354, 1952 

34 B. Lamy and C. Baley, Stiffness prediction of flax fibres-epoxy composite 
materials, Journal of materials science letters 19, 979-980, 2000 

35 A. Hillerborg, Kompendium I Byggnadsmateriallära FK, Division of building 
materials, Lund university, Sweden (1986) 

36 K. Stålne, P. J. Gustafsson, A 3D model for analysis of stiffness and 
hygroexpansion properties of fibre composite materials, Journal of 
engineering mechanics. 

37 R. Hill, A self consistent mechanics of composite materials, Journal of the 
mechanics and physics of solids, 13, 213-222, 1965 

38 Z. Hashin, S. Shtrikman, A variational approach to the theory of the elastic 
behaviour of multiphased materials, J. Mech Phys. Solids, 11, 127-140, 1963 

39 Z. Hashin, On elastic behaviour of fibre reinforced materials of arbitrary 
transverse phase geometry, Journal of the mechanics and physics of solids, 13, 
119-134, 1965 

40 S. Nemat-Nasser, M. Hori, Micromechanics: overall properties of 
heterogeneous materials, North-Holland series in applied mathematics and 
mechanics, 1993 

41 C. T. Herakovich, Mechanics of fibrous composites, John Wiley & sons, 1998 



 63

42 D.G. Hepworth, D.M. Bruce, J.F.V. Vincent, G. Jeronimidis, The manufacture 
and mechanical testing of thermosetting natural fibre composites, Journal of 
materials science 35 (2000) 293-298 

43 W. Weibull, A statistical theory of the strength of materials. Proceedings no 
151, Ingenjörsvetenskapsakademien, Sweden, 1939   

44 M.F. Ashby & D.R.H. Jones, Engineering materials 2, Pergamon press, 1993 
45 J. Hult, H. Bjarnehed, Styvhet och styrka, Studentlitteratur, 1993 
46 O. Kristensson, Micromechanical modelling using computational 

homogenisation, Doctoral thesis, Division of mechanics Lund institute of 
technology, 2005 

47 S. Heyden, Network modelling for the evaluation of mechanical properties of 
cellulose fibre fluff, Doctoral thesis, Structural mechanics Lund institute of 
technology, 2000 

48 A. Planche, P. Morlier, Strength, stiffness and creep of medium density 
fibreboards, Proceedings of the international conference on Wood and wood 
fiber composites, Germany 2000. 

49 M. Bornert, P. Ponte Castañeda, Second-order estimates of the self-consistent 
type for viscoplastic polycrystals, Proceedings: mathematical, physical and 
engineering sciences, vol. 454, no 1979 (Nov. 8 1998), 3035-3045 

50 F. Kun et.al., Scaling laws of creep rupture of fibre bundles, ArXiv:cond-
mat/0209308v1 13 Sep 2002 

51 J. Gassan, A study of fibre and interface parameters affecting the fatigue 
behaviour of natural fibre composites, Composites: part A 33 (2002) 369-374 

52 A. C. N. Singelton et.al., On the mechanical properties, deformation and 
fracture of a natural fibre/recycled polymer composite, Composites: part B 34 
(2003) 519-526 

53 K. Oksman, Mechanical properties of natural fibre mat reinforced 
thermoplastic, Applied composite materials 7:403-414, 2000 

 



Denna sida skall vara tom!



 65

7. Acknowledgments 
 
The financial support from Formas that made this study possible is gratefully 
acknowledged.  
 
I also wish to thank my supervisor Professor Per Johan Gustafsson for his invaluable 
comments on this report.  



Denna sida skall vara tom!



 67

 

8. Appendix 
 
 
The linear relation between strain and stress in three dimensions of a transversely 
isotropic material can be described on matrix format as: 
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or as  
 

Cσε =  
 
with the inverse relation 
 

Dεσ =  where 1−= CD  
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Abstract 
 
This paper presents finite element analyses of the tensile behaviour of elementary 
fibres of flax and hemp, focusing on the non-linear tensile behaviour of the fibres and 
the relationship between the stiffness and the diameter of the fibre. The non-linear 
tensile behaviour is modelled by introducing dislocations in the helical structure of the 
cellulose fibrils and assuming that the hemicellulose has an elastoplastic constitutive 
relation. The relationship between the elastic stiffness and the diameter of the fibres is 
analysed similarly, using an elastic constitutive behaviour of the hemicellulose. The 
results agree with experimental results found in the literature.  
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1. Introduction 
 
Flax and hemp are annual plants that yield bast fibres with good mechanical 
properties. These bast fibres are composed of elongated cells (elementary fibres) 
glued together in bundles by pectins. The bundles of elementary fibres are often 
referred to as technical fibres. The mechanical behaviour of the elementary fibres is 
related to the cell wall structure and the mechanical properties of the constituents. The 
subject of this study is the tensile properties of the elementary fibres, specifically how 
the helical microstructure, the dislocations and the plastic performance of the 
hemicellulose affect the non-linear stress vs. strain performance of the fibres and the 
relation between fibre diameter and elastic stiffness. 
 
The cell wall is divided into a primary cell wall and a secondary cell wall. The 
primary cell wall, with a thickness of ~0.2 µm, makes up only a very small portion of 
the cell wall ([1],[2]). The primary cell wall is chemically composed of pectin, lignin 
and randomly oriented cellulose. The secondary cell wall is mainly composed of 
lignin, hemicellulose and highly crystalline cellulose disposed in a helical structure. 
The microfibril angle is about 10° with respect to the fibre axis [1]. According to [3] 
the density of the constituents are in the same order of magnitude. By assuming that 
they have the same density no distinction between weight or volume fraction is 
needed. Only small or no errors are introduced by this assumption. The volume 
fractions of the various constituents in the elementary fibres have been reported to be 
as follows: for flax – cellulose 64.1%, hemicellulose 12.0% and lignin 2.0% [4]; for 
hemp – cellulose 68.1%, hemicellulose 15.1% and lignin 10.6% [5]. The content of 
lignin is low in the early stages of growth and high at the end. This lignification may 
explain why the volume fraction numbers found in the literature are somewhat 
scattered. 
 
A thorough literature review relating to the stiffness of the constituents is given in [6]. 
The stiffness of the cellulose is independent of the moisture content and is in the 
range of 135–165 GPa [6], although a lower value of 130 GPa has also been reported 
[7]. The stiffness of the hemicellulose and lignin constituents is dependent on the 
moisture content. The stiffness of isolated hemicellulose ranges from 8 GPa at low 
moisture content to about 0.01 GPa at a moisture content of 70%. Lignin is less 
dependent on the moisture content, the range being from 6.5 GPa at 4% moisture to 3 
GPa at 20% moisture content and higher.  
 
Extensive experimental tests of the tensile properties of elementary flax fibres were 
carried out by Baley [8]. The test results revealed two important phenomena: the 
stiffness varies with the diameter of the fibre, and the constitutive relation between 
stress and strain is non-linear with a characteristic S-shape to the stress vs. strain 
curve. In this paper, the hypothesis is that the dislocations in cellulose and shear strain 
plastic yield of the hemicellulose between the chains of cellulose explain Baley’s 
experimental observations. A dislocation is a microstructural misalignment from the 
otherwise perfectly helical cellulose chains. In this paper, larger structural 
misalignments such as kink bands are treated, but also waviness of the cellulose 
chains might be considered as dislocations. In a paper by Northolt et al [9], the tensile 
and compressive performances of polymeric materials are examined by means of 
experimental and theoretical methods. In the theoretical method, the waviness of the 
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polymer chains is introduced in the model, which leads to a non-linear material 
behaviour. This method is similar to the work in this paper. Representative 
dislocations, i.e. microstructural misalignments, in an elementary fibre can be seen in 
Figure 1 [10]. 
 

 
Figure 1 Dislocations in hemp [10] 
 
The hypothesis regarding the significant influence of the dislocations is given initial 
support by the magnitude of the experimentally recorded elastic stiffness of the fibres. 
If we assume a microfibril angle of 10° in the secondary cell wall and a cellulose 
content of 65%, both reasonable assumptions, the stiffness of the fibre would, 
according to simple calculations, be about 85 GPa. However, the experimental results 
reported by Baley indicate a much lower average stiffness, about 55 GPa. 
In this paper the tensile behaviour is modelled using FE analysis, taking into account 
relevant geometric and material non-linear actions within the microstructure of the 
fibre.  
 
 

2. Method 
 
The FE model of the elementary fibre is somewhat idealised. The fibre is assumed to 
be circular rather than polygonal as observed under a microscope. This assumption 
substantially simplifies the geometric modelling. Further, only the secondary layer is 
modelled. The primary cell wall layer has a thickness of only about 0.2 µm whereas 
the secondary cell wall has a thickness of several µm.  
 
The secondary cell wall layer is composed mainly of cellulose, hemicellulose and 
lignin. Since cellulose is the main constituent and is far stiffer than the other 
constituents, it is assumed that it does not matter much whether the surrounding 
matrix is hemicellulose or lignin. It appears that the relative proportion of 
hemicellulose is higher than that of lignin, which leads to the assumption that it is 
sufficient to model only the hemicellulose and the cellulose. 
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2.1. Geometry of the FE models 
 
The FE models employed in this study are made up of truss elements with the 
mechanical properties of cellulose embedded in 3D continuum elements with the 
properties of hemicellulose. Abaqus, the commercial software used to perform the 
analysis, refers to these as embedded elements [11]. 
 
The elementary fibre is modelled as a thick walled tube, with the size of the lumen set 
to 5% of the cross-sectional area of the elementary fibre. The cellulose is modelled as 
a helix with several layers. The pitch (axial distance for one revolution), 2πp, of the 
helix is assumed to be constant along the radius, r. The parameter, p, is used for the 
mathematical description of the geometry of the helical structure. The resultant 
variations of the microfibril angle, α, are in accordance with the formula α = atan(r/p), 
i.e. the microfibril angel increase with increasing radius. According to several sources 
in the literature, the microfibril angle is about 10° at the outer surface of the S-layer 
[1,4,5]. The parameter, p, for this angle has been determined at a radius of 12 µm, i.e. 
p = 12/tan(10°) ≈ 68.1 µm. The coordinates of the nodes in the model of the cellulose 
are determined by the mathematical formulation of a helix in parameterised form: 
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=
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          (1) 

 
where the z-axis is measured in the axial direction of the fibre. 
 
The volume fraction of cellulose is set to 65% and that of the hemicellulose to 35%. 
An FE model of an ideal elementary fibre without dislocations is shown in Figure 2. 
 

  
Figure 2 FE model without dislocations, hemicellulose to the left and embedded 
cellulose to the right. 
 
The hypothesis considered in this paper is that dislocations are of major importance 
for the tensile behaviour of the elementary fibre. The type of dislocation studied 



 4

corresponds to rotation of a part of the perfect helical cellulose structure around the z-
axis. This rotational misalignment gives a kinked shape to the microfibrils, as 
illustrated in Figure 3. The dislocation in the FE model is achieved by a rotational 
movement of the relevant nodes around the z-axis. 
 

 

 β2 

 β1  L 

 L 

 α  

 
Figure 3 Geometric model of the dislocation 
 
An analysis performed in the appendix shows that the dislocation angles β1 and β2 
vary according to 
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where ( )yRα  and ( )yR1β  are the microfibril angle and the dislocation angle at 

yRr =  on the outside of the fibre and at the kink, respectively. Here it is assumed that 

( ) o10=yRα  and ( ) o451 =yRβ  at m12µ=yR . The dislocation angle β1 is an example 

of a reasonable choice. The angle β2 can be determined by equation 2.  
 
The magnitude of the dislocation (dislocation ratio) of a fibre is defined by the ratio of 
the total length of the dislocations, nL2 , to the total length of the fibre, Lf,: 
 

fL

nL
D

2=           (3) 

 
where 2n is the number of β1-dislocations plus the number of β2-dislocations. 
 
The dislocation ratio is adjusted so that the initial stiffness of a fibre with a radius of 
12 µm is approximately 55 GPa, i.e. it is calibrated to a mean value of the results 
obtained by Baley. This results in the dislocation ratio employed in this study being 
approximately 13%. A part of the FE model of a representative part of an elementary 
fibre with dislocations is shown in Figure 4. 
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Figure 4 Part of an FE model with dislocations, hemicellulose to the left and the 

embedded cellulose with dislocations to the right. Note that only the 
outermost truss elements are shown. 

 

2.2. Elastic model 
 
During isolation of hemicellulose, the molecular arrangement changes, making the 
material behaviour isotropic. In the plant, the hemicellulose molecules tend to align 
with the cellulose chains. On the basis of Cousins’ [12] measurement of the stiffness 
of hemicellulose, Cave [13] has suggested a transversely isotropic material model of 
hemicellulose in wood. The stiffness matrix is given by 
 

DH(w) = 



























100000

010000

001000

000422

000242

000228

cH(w) GPa       (4) 

 
Where cH(w) is a moisture dependent function fitted to the experimental data reported 
by Cousins. 
 
In this study, the main mechanism of the tensile behaviour is, however, not assumed 
to be related primarily to the anisotropy of the hemicellulose, but instead to the shear 
strain performance. Thus an isotropic material model of the hemicellulose is used. At 
a relative humidity of 60%, which corresponds to a moisture content of approximately 
16 %, the stiffness of isolated hemicellulose is about 4.5 GPa. In the plant, the 
stiffness along the cellulose fibrils is higher and the cross-directional stiffness lower. 
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The stiffness along the cellulose fibrils employed in this study is set to 16 GPa, which 
has been used in [6] with good results. This is also the E-modulus used in the 
isotropic elastic material. Poisson’s ratio is set to 0.3. Since the embedded element 
does not ‘fill out’ the continuum elements, the E-modulus of the hemicellulose is 
reduced by multiplying it by its volume fraction, i.e.: EHC=16(1–0.65) = 5.6 GPa. 
 
The E-modulus of the cellulose is set to 130 GPa [7] and Poisson’s ratio to 0.3. 
 

2.3. Plasticity models 
 
In analysing the S-shaped stress vs. strain behaviour of fibres, the main mechanisms 
are assumed to be plastic shearing of the hemicellulose between the chains of 
cellulose and large deformation geometric effects corresponding to the decrease in the 
kink angles β1 and β2 during tensile loading. This assumption of elasto-plastic 
hemicellulose is supported by Baley’s [8] experiments, where an elementary fibre was 
loaded and unloaded in a progressively increasing manner. The results indicate that 
the elementary fibres experience plastic deformation. In this study, two different von 
Mises plasticity models are used. The associated tensile behaviour is shown in Figure 
5. 
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Figure 5 Plasticity models 
 
The software Abaqus uses true stress and logarithmic strain when describing 
plasticity. True stress is defined as the current force divided by the current area. 
Logarithmic strain in one dimension is defined by [14] 
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where l  is the current length, 0l  is the initial length and ( ) 00 llln −=ε  is the 
nominal strain. The initial yield stress of hemicellulose is adjusted to 140 MPa so that 
the fibre’s departure from Hookean behaviour starts at the same strain level as in the 
tensile test in Baley’s experiments. 
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2.4. Boundary conditions 
 
The boundary conditions of the models are applied at both ends of the fibre. At one 
end, displacement is prevented in the axial and rotational degrees of freedom. At the 
other end, only the rotation is prevented and a prescribed axial deformation is applied. 
The displacement in the radial direction is not prescribed. 
 

2.5. Analyses 
 
Three different types of analyses were performed. The relation between stiffness and 
diameter of the fibre was analysed using linear elasticity and small deformation 
theory. The non-linear tensile behaviour was analysed using the two plasticity models 
in Figure 5 together with large deformation theory. The three kinds of models are 
summarized in Table 1. The non-linear analysis was only performed for the diameter 
24 µm. 
 
Table 1 Description of the different analyses 
Model 1 Model 2 Model 3 
Elastic cellulose EC =  
130 GPa 
Elastic hemicellulose EHC = 
5.6 GPa 
Small deformation theory 

Elastic cellulose EC =  
130 GPa 
Elasto-plastic hemicellulose 
model A in Figure 5 
Large deformation theory 

Elastic cellulose EC = 
130 GPa 
Elasto-plastic hemicellulose 
model B in Figure 5 
Large deformation theory 
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3. Results 
 
The global average or nominal stress versus strain performance of the fibre is 
obtained from the reaction forces in the axial direction in the fixed end and the 
displacements of the other end. The nominal stress in the elementary fibre is 
calculated by dividing the total reaction force by the initial cross-sectional area, not 
including the area of the lumen. The nominal strain is calculated by dividing the 
applied elongation by the initial length of the fibre. In model 1, the stiffness of the 
fibre is calculated using Hooke’s law, and in models 2 and 3 the stress is plotted 
versus the strain.  
 
The results of Baley’s experimental S-shaped tensile test were given in a force-
displacement diagram, showing the clamping length, but not the cross-sectional area 
of the fibre. The area of the experimental fibre was therefore adjusted so that the 
initial stiffness of the experimental result correlates with the theoretical stiffness. The 
results from the analyses are shown in Figure 6 and 7. 
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Figure 6 Stiffness versus fibre diameter. Results from the FE analyses compared 

with the Baley experiments 
 
Figure 6 shows the relation between fibre stiffness and fibre diameter. Baley’s 
experimental results are represented by a dashed straight line fitted by least square 
estimation to the experimental values, while the results of the FE analyses are 
indicated by circles. Although the FE solution does not correlate perfectly with the 
experimental result, the tendency is clear: the stiffness of the fibre decreases with 
increasing diameter. 
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The results of the non-linear analyses are shown in Figure 7 and reveal the typical S-
shape. This curve is produced by local rotations of the fibre as a consequence of 
plastic shearing of the hemicellulose. The rotation straightens the dislocated cellulose 
fibrils, which in turn increases the stiffness of the fibre. 
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Figure 7 Tensile behaviour of the elementary fibre 
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4. Concluding remarks 
 
The hypothesis that dislocations affect the tensile behaviour seems reasonable. The 
FE models do, however, introduce several uncertainties. While the exact geometry of 
the modelled dislocations probably does not correlate perfectly with those in nature, 
the main mechanisms seem to have been captured. Other uncertainties relate to the 
material models, especially that of hemicellulose. The plasticity models employed are 
normally used for metals, whereas hemicellulose is a polymer. If more correct 
constitutive measurements were available as regards the behaviour of hemicellulose, 
the results might have been different. But no such results are available. Alternative 
material models of the hemicellulose should include non-linear elasticity and linear 
elastic damage.  
 
The typical non-linear tensile behaviour of elementary fibres is not observed in the 
technical fibres. The technical fibres manifest linear elastic tensile behaviour, 
probably because the pectin interface between the elementary fibres prevents local 
rotations. 
 
It is not known how the dislocations are created. It is possible that compressive stress 
in the elementary fibre during growth causes local buckling of the cellulose fibrils. 
The helical arrangement of the microfibrils in flax and hemp is spun in different 
directions. However, this does not influence the results.  
 
In conclusion, it has been found that the elastic stiffness of a fibre is greatly affected 
by dislocations and that the S-shaped stress vs. strain performance can be explained 
by non-linear geometric effects and yielding of the hemicellulose in the dislocation 
areas. It has further been found that the decrease in elastic stiffness with increase in 
the fibre diameter can be explained by the increase in dislocation angle according to 
equation 2. The variation of the dislocation angle by the radius and the true geometry 
of the dislocations remain to be verified experimentally with the aid of a microscope. 
Other future work should include a thorough parametric study of dislocation angles, 
dislocation ratio and microfibril angle in order to validate the hypothesis. 
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A1 Appendix: Determination of the microfibril and 
dislocation angles. 
 
A part of a microfibril with a dislocation is shown in Figure A.1. The dislocation in 
the model is created by a rotational movement of the relevant nodes around the z-axis. 
The arc length of the rotational movement is given by: 
 

rrs  )( γ=           A.1 
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Figure A.1 Dislocated microfibril in the fibre. 
 
If the outer surface of the layer where the microfibril is present is unfolded, the 
geometry is mapped to the plane as shown in Figure A.2. The microfibril angle is 
defined as: 
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The law of sines for the geometry in Figure A.2 (right) gives: 
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Figure A.2 Mapped geometry of the dislocated microfibril in the fibre. 
 

The angles )( y
ref Rαα =  and )(11 y

ref Rββ =  are reference angles chosen at the 

reference radius at the surface of the fibre. By utilising equation A.1 the rotation angle 
around the z-axis of the dislocation becomes: 
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Since γ is constant, the arc length as a function of the radius can be determined 
according to: 
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The distance f in Figure A.2 is calculated according to: 
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The relationship for the angles θ1 and θ2 are then obtained by : 
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The dislocation angles β1 and β2 are finally obtained as: 
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Abstract 
 
This paper presents a finite element model of bundles of natural fibres. The model 
takes into account defects, which are described by Weibull theory, and the shear 
interface properties adhering the elementary fibres. The complete constitutive 
behaviour including softening of the fibre is obtained. Tensile tests of flax and hemp 
technical fibres are performed for glued and non-glued fibres in order to examine the 
effect of shear interface properties. The computational result gives a good correlation 
with tensile tests and an extensive study of the influence of different material 
parameters is performed. 
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1. Introduction 
 
The main subject of the present study is the mechanical properties of technical flax 
and hemp fibres. Knowledge of the strength and stiffness of the bundle of elementary 
fibres that make up a technical fibre is necessary in the course of developing material 
models for fibre composite material design. It is crucial to understand the underlying 
mechanisms leading to the mechanical behaviour of the composite. The study is also 
an attempt to link fibre quality quantification to mechanical properties of fibres when 
being in a composite. The quality quantification of the fibres has been described by 
Wretfors [1].  
The empirical observation that gave the incitement and idea for this study was 
presented by Kessler [2], who had experienced that retted fibres have a low tensile 
strength whereas their composites have high strength and the opposite for non-retted 
fibres. 
It is common knowledge that the adhesive of the fibre to matrix shear interface in 
composites affects their tensile strength to a great extent. Since technical fibres are 
composites themselves, the same mechanism is believed to be the reason to the 
behaviour observed by Kessler. This hypothesis has been introduced by Bos [3] but it 
appears that models explaining and predicting this behaviour are missing.  
More specifically, the tensile properties of flax and hemp technical fibres are 
examined by means of experimental tests and micromechanical modelling. The focus 
is on fracture and fibre strength, but also stiffness is treated. Glued and non-glued flax 
and hemp technical fibres of different length are tensile tested in order to examine the 
influence of the shear interface. A model describing the influence of damage and 
shear interface properties is presented. 
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2. Method 
 

2.1. Experimental 
 
2.1.1. Fibre material 
 
The flax and hemp fibres examined in this paper were grown in the south of Sweden 
during 2003 on the research farm of SLU, Alnarp. The flax variety was Belise and the 
hemp variety was Futura 75. The flax stems were field retted for a month (October) 
and the hemp stems were water retted in 55˚C for 10 days. The flax fibres were 
decorticated by the traditional method, breaking, scutching and hackling. The hemp 
fibres were extracted by ripping them of the stem by hand and thereafter hackled.  
 
2.1.2. Scanning electron microscopy 
 
In order to get an indication of frequency and location of dislocations and other 
defects in the fibres, samples of flax were examined in a scanning electron 
microscope (SEM). Bundles of fibres, i.e. technical fibres, were examined in the SEM 
and the number of dislocations per length in the elementary fibre was counted. Only 
flax fibres were studied. For hemp has similar but more elaborate tests been 
performed by Thygesen & Hoffmeyer [4]. 
 
 
2.1.3. Tensile test 
 
Tensile tests of individual technical fibres were carried out for four different types of 
technical fibres; flax, glued flax, hemp and glued hemp. For each type were tests 
made with 3 test lengths: 3, 9 and 27 mm. The number of nominally equal tests was 8-
17 for each of the 12 test groups. 
The specimens were prepared in the following manner: The fibres were randomly 
selected from a pile. Then the length and the weight of the fibres were measured. By 
assuming that the cross sectional area of a fibre is constant along its length and using 
a density of 1500 kg/m3, the area was determined. This method is rather blunt, but still 
believed to give a reasonable estimation of the size of the cross sectional area. 
The glued fibres were soaked in a low viscosity epoxy (type NM Laminering 650) and 
then they were hung vertically to cure between two clothes pegs. After curing, the 
fibres were weighed again in order to obtain the amount of added glue. 
Attachment of fibres to the tensile loading machine was arranged by gluing the end 
parts of the fibres between washers, Figure 2.1. The glue was of the make X60. Each 
type of fibre was clamped with the three lengths; 3, 9 and 27 mm. The total length 
was for all fibres greater than 27 mm and the fibres clamped with different lengths 
were nominally equal. The fibres with clamps were placed in the testing device MTS 
810 as shown in Figure 2.1.  
Load and elongation were recorded during the tests. The stroke rate was 0.1mm/min 
and the time to failure in the order of 30-60 seconds. The tests were made at 
temperature 22 ˚C and RH 50%.  
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Since the clamping system, i.e. washers, glue and hook, is deformable, the recorded 
deformation is not only due to the elongation of the fibre. The stiffness of the fibres is 
therefore underestimated if evaluated from the load and the recorded total 
deformation. In an attempt to account for the additional deformation, a method of 
least squares is used.  
The fibre and the clamping system can be represented by springs in series. The 
stiffness of two linear springs in series is given by: 
 

cftot kkk

111 +=         2.1 

 
where ktot is the measured stiffness, kf is the actual fibre stiffness and kc is the stiffness 
of the clamping. Further, by assuming that fibres of different lengths have the same E-
modulus and cross sectional area and that the stiffness of the clamping system is the 
same in each nominally equal test, the following equation system is obtained: 
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where Ef, is the actual stiffness of the fibre material and E3, E9 and E27 the apparent 
stiffness as evaluated from the total deformation recorded during the tests of fibre 
lengths 3, 9 and 27 mm, respectively. On matrix format, the system of equations can 
be written as: 
 

bxA =          2.3 
 
This system of equations has the least-square solution [5]: 
 

( ) bAAAx TT 1−
=         2.4 

 
where the matrix x contains the estimated stiffness of the clamping and the E-modulus 
of the fibre, i.e. 
 

[ ]T
totc Ek 11=x         2.5 

 



 5

 
 
 
 
 
 

 
 

Figure 2.1 Setup for tensile test. 
 
 

ExtensometerFibre 
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2.2. Material model 
 
2.2.1. Structure 
 
When micrographs of flax and hemp fibres in the stem are studied (His et. al. [6]) it 
can be observed that most of the elementary fibres are hexagonal and arranged in a 
hexagonal pattern, much like a honeycomb. Since the fibres are of varying size, some 
fibres however deviate from this pattern. In order to simplify the modelling, the fibres 
are assumed circular and the diameters of the fibres are assumed to be equal. This 
leads to a perfect hexagonal structure of a technical fibre as shown in Figure 2.2 and 
2.3. The diameter of the elementary fibres was assumed to be 20 µm. 
 

 
 

Figure 2.2 Model of a piece of a technical fibre. 
 

R 

 
 
Figure 2.3 Cross section model of a technical fibre. 
 
A side view of a part of the technical fibre model is shown in Figure 2.4. The 
elementary fibres are bonded to each other by a layer denoted shear interface. Defects 
of random magnitude and location are present in the elementary fibres. The fibres are 
divided into material length units denoted lm. The elementary fibre material properties 
are homogenous within each length lm. The strength and stiffness properties of the 
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fibre length units lm and the shear interface are modelled as described below. The 
defects present in the fibres are assumed to be distributed over one fibre diameter. The 
damaged area, in this paper referred to as one material length unit, lm, is marked with 
dotted lines in the figure.  
 

lm 
Fibres 

Shear interface Defects 
(damage) 

Fibre direction 

 
Figure 2.4 Model of technical fibre.  
 

 
2.2.2. Elementary fibres 
 
Stiffness 
 
The stiffness values of flax and hemp fibres in uniaxial tension reported in the 
literature are very scattered. Examples of stiffness values of flax fibres are E = 27.6 
GPa and E = 80 GPa reported by Bledzki et al. [7] and van Voorn et al. [8], 
respectively. Likewise, the stiffness of hemp fibres range between E = 19.1 GPa and 
E = 70 GPa reported by Eichhorn et al. [9] and Kandachar [10], respectively. An 
example of a reasonable choice is E = 55 GPa, which is the value used in the present 
analyses. 
 
Strength 
 
The uniaxial tensile strength of the elementary unit fibre lengths, lm, that has a defect 
is described by means of Weibull [11] theory. The probability of failure, Pf, of a 
volume of a material exposed to a homogenous tensile stress, σ, is given by:  
 

m

V
V

f eP








−

−= 001 σ
σ

        2.6 

 
where V0 is a reference volume and σ0 and m are material parameters indicating the 
magnitude and scatter in strength respectively. In the present model is the strength of 
those of the elementary fibre lengths, lm, that are damaged defined according to  
 

m

f eP








−

−= 01 σ
σ

        2.7 

 
Occurrence and localisation of damage is at random. However, if the technical fibre is 
damaged at some location, then all of the elementary fibres at that location are 
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assumed to be more or less damaged. This assumption is supported by the results of 
the SEM-observations and also by argument of damage localisation when a technical 
fibre is bent when decorticated. The occurrence and localisation of damage is in the 
model made by taking random numbers between 0 and 1 for each technical fibre 
length lm. If the random number is less than the damage ratio, Dr, the cell is assumed 
damaged. The damage ratio is defined as the number of defects per number of lengths 
lm: 
 

DlD mr =          2.8 
 
where D is the number of defects per unit length. The SEM-pictures gave D = 8.1 
defects/mm which is used for the analyses. The length of the cells, lm, was set to the 
fibre diameter 2R, i.e. 20 µm, giving Dr = 0.16. 
For each damaged cell, a new random number between 0 and 1 is used in Equation 
2.7 to obtain the strength, σf. Undamaged cells are assumed to have unlimited 
strength. 
The constitutive behaviour of elementary fibres is somewhat uncertain after the peak 
stress, but is assumed very brittle. The principle of the constitutive behaviour adopted 
in the analyses is shown in Figure 2.5 (marked with B).  
 
2.2.3. Shear transfer 
 
The strength and stiffness properties of the shear interface between the elementary 
fibres reflects the properties of the actual interface surface, i.e. the bounding agent 
(normally pectin) and also the longitudinal shear properties of the walls of the 
elementary fibres. In the present model is the interface assigned a linear elastic brittle 
shear stress versus shear slip performance according to curve B in Figure 2.5. The true 
performance is probably non-linear, e.g. according to curve A. This means that 
different shear stiffness values are relevant dependent on the magnitude of load and 
the purpose of the analysis. For analysis of stiffness at low load is the elastic shear 
properties of the fibre wall relevant and for analysis of the strength of the technical 
fibre is correct modelling of the shear fracture energy relevant. In the case of strength 
analysis should accordingly the shear stiffness be chosen so that the areas under 
curves A and B are equal. In the below is first the elastic stiffness discussed and then 
the fracture energy relevant stiffness discussed.  
 
Stiffness 
 
It appears that no value of shear modulus of the cell wall has been reported in the 
literature. However, linear elastic coefficients of the main constituents of wood fibres 
(cellulose, hemicellulose and lignin) are given in a doctoral thesis by Persson [12]. 
Since the constituents of flax and hemp are the same as in wood; it is assumed that the 
mechanical properties also are the same.  
Cellulose and hemicellulose are both considered as transversely isotropic materials 
with the stiffer axis along the cellulose molecule chain. The stiffness of cellulose has 
a low dependence on moisture changes, whereas the stiffness of hemicellulose is 
highly dependent on the moisture content. Lignin is considered as an isotropic 
material with a moderate dependence on the moisture content. Shear stiffness 
coefficients of the constituents valid at 60 % relative humidity are for longitudinal 
shear compiled in Table 2.1.  
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Table 2.1 Shear stiffness coefficients according to Persson [12] 

 Cellulose Hemicellulose Lignin 
G (GPa) 3.0-6.0 1.0-2.0 0.8-1.3 

 
 
In order to estimate the shear modulus of the cell wall, micro mechanical modelling is 
a feasible method. Several micro mechanical models can be found in the literature. 
For instance Herakovich [13] may be consulted. Since there are many uncertainties 
concerning the stiffness values and the proportion of the constituents, the chosen 
model is of minor importance. Here the Reuss model in one dimension is chosen for 
its simplicity. This model constitutes the lower bound of stiffness. The equation reads: 
 

2

1

1

1 11
G

V

G

V

G

−
+=         2.9 

 
where G is the overall shear modulus of the composite, G1 and G2 are the shear 
modulus of the two different phases and V1 is the volume fraction of phase 1. 
According to Nilsson [14], the content of cellulose in flax fibres reported in the 
literature ranges between 64 and 78 %, hemicellulose approximately 12 % and lignin 
between 2 and 8.5 %. It is, hence, difficult to obtain an accurate value of the shear 
modulus of the cell wall. It is however possible to determine the range of possible 
values according to equation 2.9. This is carried out by choosing the limiting values, 
the maximum is obtained by assuming that only cellulose and hemicellulose are 
present and using their maximum values, i.e. V1 = 0.78, G1 = 6 GPa and G2 = 2 GPa 
and the minimum is obtained by assuming that only cellulose and lignin are present 
and using their minimum values, i.e. V1 = 0.64, G1 = 3 GPa and G2 = 0.8 GPa. With 
these values the shear modulus of the cell wall becomes: G = 1.5-4.2 GPa. Since 
Equation 2.9 determines the lower bound, a value of G = 3 GPa seems reasonable for 
modelling of the shear stiffness. 
 
Strength and energy equivalent stiffness 
 
The shear strength of the interface is denoted τf  and is in the present numerical 
calculations assigned various deterministic values ranging from 10 MPa to 60 MPa, 
representing a probable range of magnitude for the shear strength of the polymers that 
constitutes the shear interaction layer.  
Increasing tensile loading and the subsequent failure of a technical fibre involves 
tensile failures of the elementary fibres. The load transfer between the elementary 
fibres is then similar to the performance of a glued lap joint, see Figure 2.6. The load 
carrying capacity of such a joint is according to Gustafsson [15] strongly affected not 
only by shear strength, τf, but by the fracture energy, Gf, of the shear layer, defined as 
the area under the shear stress, τ, versus shear displacement, δ, curve: 
 

δτ∫
∞

=
0

d fG          2.10 

 
If τf and Gf are correctly represented, then the actual shape of the τ-δ curve does 
commonly not affect the load capacity very much (Gustafsson [15]). If modelling the 
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shear performance as a linear performance, i.e. curve B in Figure 2.5, when the 
fracture energy equivalent shear stiffness is by the condition of equal energy found to 
be: 
 

G

R
G f

f

2τ
=          2.11 

 
where G by definition is τ/γ (γ indicating shear strain) and by the kinematics δ = 2Rγ, 
see Figure 2.6. The present numerical analyses focus on the strength rather than the 
stiffness of technical fibers. Equation 2.11 is therefore applied. Results obtained for 
values of Gf in the range of 100 J/m2 to 800 J/m2 are presented. 
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Figure 2.5 Two different shapes of stress-displacement curves.  

γ 

δ 
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Figure 2.6 Deformation principle of two adhered fibres.  
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2.3. FE-analysis 
 
 
2.3.1. FE-model 
 
The FE-model of the technical fibre is described by spring elements. The cross 
sectional structure follows the geometry of the dashed lines in Figure 2.3. The side 
view of the FE-model is shown in Figure 2.7. The spring element representing the 
elementary fibre is indicated by 1 and the shear spring element by 2. The shear spring 
elements transfer shear forces between adjacent fibres. 
 

le 

 
Figure 2.7 Side view of a small part of the FE-model of the technical fibre. 
 
By assembling the system of springs, the finite element equation system becomes: 
 

fuK =          2.12 
 
Where K is the global stiffness matrix containing the individual stiffness of the spring 
and shear spring elements, u is the nodal displacement matrix and f is the external 
nodal force matrix. The boundary conditions needed to solve the system of equations 
are described in section 2.3.3.  
 
2.3.2. Spring properties 
 
The stiffness of the springs that represent the elementary fibres is given by: 
 

e
f l

EA
k =          2.13 

 
where E is Young’s modulus, A is the cross sectional area of the elementary fibre and 
le is the spring element length. The ultimate force in the fibre is calculated by 

AF f
ult
f σ= . If the finite elements, le, are chosen to a length shorter than lm then more 

than one defect may be present in the element. In such a case the smallest strength 
value is selected. 

1

2

Fibres 

Shear 
interface 



 12

In the case of strength analyses of a technical fibre is the shear modulus G of shear 
spring elements determined according to Equation 2.11. The shear modulus then has 
to be related to the shear spring stiffness. An estimate can be obtained by analysing a 
homogenous cylinder (fibre) constrained at the outer surface and subjected to a 
homogenous body force, bV (N/m3). The strain energy in the cylinder is then set equal 
to the strain energy in the spring element. Equilibrium in the axial direction of the 
homogenous cylinder is given by: 
 

( )
2

              02 2 rb
rhrbrh V

V =⇒=− τππτ      2.14 

 
Where τ is the shear stress and r is the radius. The strain energy of the cylinder is 
given by: 
 

∫= VW d
2
γτ

         2.15 

 
With equation  2.14 and the shear strain, Gτγ = , the strain energy is obtained as; 
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G
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3
2 ππ
∫ ==        2.16 

 
Where G is the shear modulus and R and h are the outer radius and the length of the 
cylinder respectively. 
The strain energy of the spring element is determined in a similar manner. The body 
force is replaced by a line load, bl (N/m) and the constitutive behaviour is δsl khb = , 

where sk  is the shear spring stiffness and δ  is the deformation of the spring. The 
strain energy of the spring can then be determined to: 
 

s

ls
l k

hbk
W

22

222

==
δ

        2.17 

 
By setting the total load equal, i.e. hRbhb Vl

2π= , the body force can be related to the 
line force and the energy stored in the spring becomes: 
 

s

V
l k

hRb
W

2

242π=         2.18 

 
Finally, by setting the strain energy of the cylinder and the spring equal, the spring 
stiffness is obtained as: 
 

hGks π8=          2.19 
 
Peculiarly, the spring stiffness obtained by this model is independent of the radius.  
In order to obtain the stiffness of the shear spring element, h is set equal to le. 
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The maximum shear force of the shear spring elements is estimated by dividing the 
shear strength by the transferring area. This area is defined by the element length of 
the elementary fibres and one sixth of the circumference of the fibre, i.e. 
 

36
2 RlRl

F e
f

e
f

ult
s

πτπτ ==        2.20 

 
2.3.3. Boundary conditions 
 
The boundary conditions, i.e. the assumed condition at the two ends of the modelled 
piece of a technical fibre, affect the stress distribution and accordingly the calculated 
strength and stiffness. In the present analyses are cyclic boundary conditions applied 
in order to simulate the stress distribution in a very long fibre. The modelled piece of 
fibre is considered as one of many identical pieces of an infinite fibre. This leads to 
continuity requirements, meaning that the pieces have to have matching boundary 
displacements (Heyden [16]). Considering the simple example in Figure 2.8 the 
continuity requirement is fulfilled if u6-u4 = c and u3-u1 = c, where c is the applied 
elongation of the structure.  
 

�� �� ��

�� �� ��  
 

Figure 2.8 Simple spring model to show principle of cyclic boundary conditions. 
 
Introduction of boundary condition implies reduction of the number of degrees of 
freedom from 6 to 4 according to: 
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Generally, this type of boundary condition can be written on matrix format as: 
 

cuBu += red          2.22 
 
Insertion of 2.22 in 2.12 gives: 
 

fcKuBK =+red         2.23 
 
A symmetric stiffness matrix is obtained by multiplying all terms with TB  i.e: 
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cKBfBuBKB TT

red
T −=        2.24 

 
where the reduced global stiffness matrix is defined as: 
 

BKBK T
red =          2.25 

 
And the reduced force matrix is given by: 
 

cKBfBf TT
red −=         2.26 

 
2.3.4. Solution strategy 
 
The analyses are performed in Matlab with use of the CALFEM toolbox. The 
procedure is as follows. First, the geometry is determined, and then the elements are 
assigned their strength according to the method described in Section 2.2.2. The 
structural analysis is then carried out in a step-wise manner where each computational 
step corresponds to rupture of a fibre element or a shear element. The applied 
deformation, c, is for each step set to 0.1Lf, where Lf is the total length of the fibre and 
the system of equations is then solved by: 
 

redredred fKu 1−=         2.27 
 
The nodal displacements u are obtained by Equation 2.22. Then the element forces, 

an
iF , and reaction force, rF , are extracted. In order to determine which element to 

fracture, the fraction between the element forces obtained in the analysis step, an
iF , 

and the assigned strengths ult
ifF ,  is calculated according to (i indicates element 

number): 
 

ult
if

an
i

i F

F

,

=λ          2.28 

 
The fractured element is then found by: 
 

( )if λλ max=          2.29 

 
If the fractured element represents a fibre, the stiffness of the fractured spring element 
is multiplied with 0.0001 and if the fracture occurs in a shear spring element the 
stiffness is set to zero. The difference is due to requirement of numerical stability of 
the analysis. Then the next step in the analysis is performed with the new values. The 
result from the analysis is the global force-displacement curve, due to the applied 
deformation, c. The actual global reaction force and displacement are obtained by 

ff
g cL λδ /=  and f

rg FF λ/=  which are registered in each analysis step. This 

operation is possible since the analysis is linear. The global stress in the technical 
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fibre is calculated by dividing gF  with the total cross sectional area. The global strain 
is obtained by f

gg Lδε = . 

 
2.3.5. Analyses types 
 
Three types of analyses are performed. These are element convergence, adjustment of 
parameters to fit experiments and parameter study. The element convergence is 
performed in order to get an indication of how coarse the mesh can be without 
affecting the accuracy of the analysis. The adjustment of parameters is carried out by 
performing a large number of analyses for the parameters believed to affect the result. 
The parameters are; fracture energy Gf = 100, 200, 400 and 800 J/m2, the shear 
strength, τf = 10, 20, 40 and 60 MPa, the Weibull material parameters σ0 = 6000, 
7000, 8000 and 9000 MPa and m = 2.0, 2.5, 3.0 and 3.5. All combinations for two 
lengths, 3 and 9 mm, of the technical fibre were analysed with 10 different seeds to 
the random generator (nominally equal fibres). This gave a total of 5120 analyses. 
The analyses were performed at the LUNARC cluster at Lund University.  
Combining the result from the two lengths and comparing them with result from the 
tensile test gives an indication of the magnitude of the parameters. 
 
The parameter study was made by means of numerical results obtained during the 
parameter fitting analyses in order to show their influence on the fibre strength. 
Additionally, analyses are performed to show the influence of number of elementary 
fibres per technical fibre. Furthermore, the influence of the number of defects per mm, 
D, and the material length units, lm, are studied. 
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3. Result  
 

3.1. Experiment 
 
3.1.1. SEM-result 
 
The SEM study gave pictures of the kind shown in Figure 3.1. The pictures were used 
to estimate the number of defects per unit length. The counted type of defects is 
indicated by ellipses in the figure. The defects were counted for several fibre pieces 
along a total length of 3575 µm. The count resulted in 29 defects.  
Another important result is that the elementary fibres seem to have the same thickness 
along a long part of the fibre. However, since only the surface of the fibre can be seen, 
it cannot for certain be concluded that the cross sectional area is constant.  
 

 
Figure 3.1 SEM-picture of flax fibres. 
 
 
3.1.2. Tensile test 
 
The results from the tensile tests are presented in this section. The cross sectional area 
of the technical fibres was estimated to range between 3145 µm2 and 8527 µm2 for 
flax and between 11532 µm2 and 94600 µm2 for hemp. With a mean diameter of the 
elementary fibre of 20 µm and a lumen size of 5 % of its cross sectional area the mean 
number of elementary fibre per technical fibre is 18 for flax and 112 for hemp. The 
larger number for hemp is because the technical hemp fibres are coarser. This large 
number of elementary fibres of hemp leads to that FE-analyses of hemp are to time 
consuming for the present study. The analyses are however possible to carry out. 
Figure 3.2 shows an example of three different stress-strain curves obtained in the 
tests. The curves show that the recorded stiffness is higher for longer fibres, which is 
a consequence of less influence of the deformation in the clamping system. Therefore 
is the stiffness result only shown for the fibres of 27 mm length and also the stiffness 
values estimated by the least-squares method (LS), i.e. Equation 2.4. The result of the 
tests is compiled in Table 3.1. The least-square result is somewhat uncertain since the 
clamping stiffness was at random. The glue between the washers was not applied in 
exactly the same manner for the different tests. Residue of the glue in varying amount 
was in contact with the hook, which gave different stiffness in each test. 

10 µm 
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Figure 3.2 Representative tensile behaviour of flax fibres. 
 
 

Table 3.1 Result from tensile test, E = E-modulus, S = strength, cov = coefficient 
of variation, n = number of tested fibres 

 E (GPa) 
LS 

E (GPa) 
L=27 mm 

S (MPa) 
L=3 mm 

S (MPa) 
L=9 mm 

S (MPa) 
L=27 mm 

Retted hemp 50.4 
cov=29% 

40.3 
cov=24% 

731.9 
cov=31% 
n = 8 

653.8 
cov=36% 
n = 11 

434.7 
cov=33% 
n = 11 

Retted glued 
hemp 

65.1 
cov=44% 

50.1 
cov=30% 

819.7 
cov=31% 
n = 10 

735.1 
cov=27% 
n = 11 

599.4 
cov=36% 
n = 14 

Retted flax 67.1 
cov=22% 

63.4 
cov=19% 

931.6 
cov=41% 
n = 9 

623.6 
cov=31% 
n = 17 

500.4 
cov=52% 
n = 16 

Retted glued flax 75.8 
cov=45% 

60.6 
cov=32.5% 
 

999.9 
cov=31% 
n = 8 

726.5 
cov=49% 
n = 14 

555.7 
cov=48% 
n = 14 
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Figure 3.3 Measured tensile strength versus clamping length. 
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3.2. FE-analysis 
 
3.2.1. General 
 
The results from the analyses are in global force-displacement curves. The stress-
strain curve is easily obtained by dividing by the total cross sectional area and fibre 
length respectively. An example of such a curve is shown in Figure 3.4. The sharp 
large summits are due to rupture of elementary fibres (examples are marked with 
arrows in the figure). The smaller summits are due to rupture of the shear interface. 
The strength of the fibre is by definition the maximum stress in the global stress-strain 
curve, indicated by a circle in the figure. The strength of the fibre in Figure 3.4 is 
dependent on the 3-4 weakest elementary fibres. This number of ruptures is different 
in different analyses but the weakest fibres are limiting in all the analyses. As 
depicted in Figure 3.4, the stress-strain relation experiences snap-back. This 
behaviour is very difficult to record experimentally since it would require an 
extremely sensitive and fast control system. The loading in the present experimental 
tensile tests is deformation controlled and hence only monotonically increasing 
deformation can be registered. In order to compare the computational and 
experimental results, the computational result is made monotonically increasing in 
strain. The corresponding curve is represented by the dotted line in the figure. The 
figure shows that the monotonic curve gives a fracture that in a global sense is stable. 
Stable fracture was only captured a few times for the weaker fibres during the test. 
One reason to this is that the elastic energy stored in the clamping system, is released 
dynamically on the softening part of the stress-strain curve. This leads to that the fibre 
snaps faster in the tests than in the computational analyses.  
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Figure 3.4 Global stress-strain curve from one of the analyses of technical fibres. 

Fibre rupture 
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3.2.2. Convergence results 
 
The deviation in strength from the analysis with the finest mesh is calculated for 
different mesh size. The result from the convergence study is shown in Figure 3.5. It 
appears that the strength is almost insensitive to element size. This has a great impact 
on the required analysis time. For an element size equivalent to 5 elements/mm the, 
deviation from the finest mesh is less than approximately 4 %. For further analysis 
this mesh size is used. The number of elementary fibres modelled per technical fibre 
is 3 times 6, i.e. 18 elementary fibres. That is the mean number found in the tensile 
tests. The parameters used for the analyses was τf = 20 MPa, σ0 = 9000 MPa, m = 2 
and Dr = 0.16. 
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Figure 3.5 Result from convergence study. 
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3.2.3. Adjustment of parameters to fit experimental results 
 
The 5120 analyses were performed for 512 technical fibres with the same number of 
parallel elementary fibres, 18, and the same damage ratio, Dr = 0.16, as in the 
convergence analysis. The technical fibre with a length of 3 mm was given an element 
mesh with 15 element lengths, le, along the fibre and the 9 mm ditto an element mesh 
with 45 element lengths. The strength values of the fibres were calculated as the mean 
obtained for 10 nominally equal fibres. The technical fibres with a length of 27 mm 
would require a large number of elements and computational increments. An estimate 
of the strength of fibres with length 27 mm is however obtained by dividing the 
nominally equal fibres of length 9 mm into groups of 3. The mean value of the 
minimum of each group is taken as the strength of technical fibres with the length 27 
mm. In order to simplify comparison, the fraction between computational and tested 
result is determined. The fractions are named f3, f9 and f27. The results closest to the 
tested results and their parameters are presented in Table 3.2 and 3.3. The parameters 
investigated are presented in section 2.3.4. 
 

Table 3.2 Result comparison of flax 

 

Gf  (J/m2) 
 

τf  (MPa) 
 

m (-) 
 

σ0 (MPa)
 

f3 
 

f9 
 

f27 

(estimated) 
100 10 2.0 9000 1.0 1.0 1.1 
100 10 2.5 6000 1.0 1.0 1.2 
100 20 2.0 8000 1.0 1.0 1.2 
200 10 2.0 8000 0.9 1.0 1.2 
200 10 2.0 9000 1.0 1.1 1.3 

 
 

Table 3.3 Result comparison of glued flax 

 

Gf  (J/m2) 
 

τf  (MPa) 
 

m (-) 
 

σ0 (MPa)
 

f3 
 

f9 
 

f27 

(estimated) 
100 20 2.5 6000 1.0 1.0 1.2 
200 10 2.5 6000 1.0 0.9 1.2 
200 20 2.0 9000 1.0 1.1 1.3 
400 10 2.0 9000 1.0 1.0 1.2 
800 10 2.0 8000 1.0 1.0 1.2 
300 15 2.0 9000 1.0 1.1 1.3 

 
If it is assumed that the glue does not affect the elementary fibres, its Weibull 
parameters are the same for non-glued and glued fibres. The number of possible 
parameters is thereby further reduced. From the tables it can be seen that the closest 
fit to test values with the same Weibull parameters, m = 2.0 and σ0 = 9000, is for non-
glued fibres Gf = 100 J/m2, τf = 10 MPa, in the below referred to Analysis 1, and for 
glued fibres Gf = 400 J/m2, τf = 10 MPa, in the below referred to Analysis 2.  
These values show that the shear fracture energy is higher for the glued fibres, which 
also is expected. It is however expected that also the shear strength should be higher 
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for glued fibres. In order to check the result also for fibres of 27 mm length, 10 
nominally equal fibres each, with the parameters obtained in the fitting procedure, 
was performed. The number of element lengths was 135. The result is illustrated in 
Figure 3.6 and compiled in Table 3.4. 
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Figure 3.6 Tested and fitted analysis results. 
 
 

Table 3.4 Result comparison of computational and tested result. 

 Mean strength ± std (MPa) 
 L = 3 L = 9 L = 27 
Retted flax 931.6±382 623.6±193 500.4±260 
Analysis 1 957.2±223 596.4±48 499.0±59 
Retted glued flax 999.9±310 726.5±356 555.7±267 
Analysis 2 1033±196 759.9±64 697.2±60 

 
The computational and tested results agree rather well but an even better fit should be 
possible to obtain by investigating the strength for the parameters divided in closer 
intervals. The standard deviation presented in Table 3.4 is for short fibres (3 mm) of 
the same order of magnitude in computational and tested result. For longer fibres (9 & 
27 mm) the standard deviation of the computational result is much lower than the 
tested fibres. The reason is probably that shear properties are taken as deterministic 
values. If a variation of the modelled properties of the shear interface had been used, 
the standard deviation of the computational result would probably have been larger. 
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3.2.4. Parameter study 
 
Material property parameters 
 
The result from the analyses used for the fitting procedure is used in order to show the 
influence of the different parameters. The strength of the fibre is plotted versus its 
length for the parameters Gf, τf, m and σ0. The strength values of fibres with the length 
27 mm are estimated in the same manner as described previously. These values are 
therefore not as accurate as the strength values for fibres of the length 3 and 9 mm but 
still believed to show the influence of the strength. The damage ratio used was Dr = 
0.16. 
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Figure 3.7 Influence of shear interface fracture energy on the fibre strength. 
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Figure 3.8 Influence of shear interface strength on the fibre strength.  
 
As depicted in Figure 3.7 and 3.8, an increase in both the fracture energy and the 
strength of the shear interface increases the strength of the technical fibre. The 
explanation to this is that when an elementary fibre is broken, the shear interface 
distributes the force to the adjacent fibres. This behaviour is more evident for longer 
fibres because the shear force can act on a longer distance. For shorter fibres the shear 
force transfer consequently has less influence on the strength. If the analyses would 
have been performed for very short fibres, the strength difference would have been 
very small.  
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Figure 3.9 Influence of the Weibull parameter σ0 on fibre strength. 
 
The Weibull parameter σ0 influence the strength of short technical fibres to a greater 
extent than long fibres. σ0 represents the stress where approximately 63 % of the 
fibres have ruptured. Since the probability of damage is larger for longer fibres and 
the weaker part of the elementary fibres are limiting, more weak elementary fibres are 
present and thereby is the influence smaller for longer technical fibres. The behaviour 
is the same for different shear interface fracture energy, but less for higher values of 
Gf. The reason is that shear forces are transferred to adjacent elementary fibres, where 
the strength of the elementary fibre might be higher.  
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Figure 3.10 Influence of the Weibull parameter m on fibre strength. 
 
The Weibull parameter m has a great influence on the strength of technical fibres. The 
reason is that the interval of strength of the elementary fibre decrease for an 
increasing m. The probability of weak fibres is decreased and the strength of the 
technical fibre increases. As depicted in Figure 3.10, an increase of the shear interface 
fracture energy gives an increasing strength of the technical fibre, but the length effect 
is not evident.  
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Geometrical parameters 
 
The parameters studied in the below are number of elementary fibres per technical 
fibre, the number of defects per mm, D, and the material length units, lm. All the 
analyses are performed for the material parameters Gf = 100 J/m2, τf = 10 MPa, m = 2 
and σ0 = 9000 MPa and the length of the technical fibre was 3 mm. Unless otherwise 
stated it was further assumed that the number of elementary fibres was 18, D = 8.1 
defects/mm, lm = 10 µm and le = 0.2 mm.  
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Figure 3.11 Fibre strength versus number of elementary fibres per technical fibre. 
 
The result from the study of the number of elementary fibres per technical fibre is 
shown in Figure 3.11. The circles represent the strength obtained in each individual 
analysis and the line the mean strength. It appears that the influence of the number of 
elementary fibres is very small. A tendency can however be discerned; the strength of 
the technical fibre increases if the number of elementary fibres is increased up to 12. 
If the number of elementary fibre is increased further, the strength of the technical 
fibres decreases. It is expected that the strength decrease for a larger volume of 
material as described by the Weibull theory. It is however uncertain what causes the 
increase of strength for fewer fibres. One reason might be that if one elementary fibre 
is weak in a technical fibre with few elementary fibres, the failure of the whole 
technical fibre will occur at this elementary fibre’s stress level. If more elementary 
fibres are present, the limiting fibre might be the second or third elementary fibre 
which would give a stronger technical fibre.  
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The result from the analyses where the number of defects per mm, D, has been varied 
is compiled in Table 3.5. The strength value indicated is the average ± standard 
deviation. It is obvious that an increased number of defects gives a decrease of the 
strength of the technical fibre since the probability of weaker fibres is increased.  

Table 3.5 Influence of number of defects on fibre strength. 

D (defects/mm) 4.0 8.1 16 
Strength (MPa) 1298±164 957±223 628±67

 
Finally, the influence of the material length units, lm, is studied. The result from the 
analyses is shown in Table 3.6. The result shows that the influence is small. The 
number of nominally equal fibres was 10. If more analyses had been performed, a 
more statistically accurate result would have been obtained, most probably showing 
an even smaller influence of lm on the mean strength values. The reason can be 
explained by the following example which is valid if Dr is small. Dr is small for small 
lm. Assume that lm is doubled. Then is also Dr doubled. Since the random number is 
compared with Dr, the probability of having a defect is the same for the doubled lm as 
for 2 non-doubled lm.  
 

Table 3.6 Influence of material length lm on fibre strength. 

lm (µm) 10 20 40 
Strength (MPa) 912±197 957±223 916±171
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4. Discussion 
 

4.1. Tensile test 
 
The results obtained in the tensile test seem reasonable. Other authors [3] have 
obtained similar results with respect to the absolute values of strength and stiffness 
and with respect to the influence of length results in the same order of magnitude. It is 
obvious, that the scatter of recorded strength and stiffness is great which makes it 
difficult to make certain conclusions regarding results obtained for different treatment 
of the fibres. However the mean values for both strength and stiffness were found to 
be increased by gluing both for the flax and the hemp. 
 

4.2. Computational result 
 
The presented computational model shows that the constitutive behaviour and 
strength of technical fibres can be predicted. It has also been shown that the shear 
interface properties affect the strength of the technical fibre. Also the Weibull 
parameters are important for the strength of the technical fibre. The Weibull 
parameters are linked to the number of defects present in the elementary fibres. 
Hence, the parameters of the fibres possible to affect by man, in order to change the 
strength of a technical fibre (or a composite) are strength and fracture energy of the 
shear interface and the number of defects. In an industrial process, the inducing of 
defects is however difficult to avoid, which implies that the only factor possible to 
affect is the shear interface.  
The explanation to the empirical observation by Kessler [2], i.e. that retted fibres have 
a low tensile strength whereas their composites have high strength and the opposite 
for non-retted fibres, can be explained by the computational result. Since the retting 
decrease the strength of the shear interface, the strength of the technical fibre 
decreases and the opposite for non-retted fibres. When technical fibres are used in the 
composite, the retted fibres allow resin to penetrate into the technical fibre (between 
the elementary fibres). Since it is likely that the shear properties of the resin are 
superior to the pectin in the middle lamella, retted fibres will give a stronger 
composite. It can then be concluded that if a strong composite is to be obtained, the 
technical fibre should not be used at all. In stead, the elementary fibre should be 
completely separated from each other, so that resin has contact with the whole 
elementary fibre. Further, it is important that the resin adheres to the elementary 
fibres. This implies that the elementary fibre has to be free from residue from the 
stem. In practice, it might still be more feasible to use technical fibres since the 
separation process might induce damage to the elementary fibres. It is hence a 
question of optimising the degree of separation versus inducing of damage. 
 

4.3. Future work 
 
The scatter of both stiffness and strength when testing the technical fibres is vast and 
it can be questioned whether the strength and stiffness properties of an un-glued fibre 
is relevant for estimation of the properties of a fibre in the composite. It is therefore 
proposed that a standard composite is developed for evaluation of the stiffness and the 
strength of natural fibres. This composite should be unidirectional and the resin and 
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manufacturing method should be standardised. Testing of such a composite is much 
easier to perform and the scatter will most likely decrease, since a large number of 
fibres are loaded simultaneously. Studies of the influence of variables like harvesting 
time, retting degree and retting method would probably be facilitated.  
It is believed that the proposed computational model can be developed for modelling 
of unidirectional composites by increasing the number of elementary fibres and 
changing the random model for how defects are distributed. In a composite, the fibres 
can come from different locations in the stem or different plants. This implies that the 
defects are located completely at random.  
Furthermore, it would be interesting to examine how a non-linear shear stress 
interface performance according to curve A in Figure 2.5 would affect the properties 
of a technical fibre and composite. 
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Analytical calculation of stiffness of fibres with dislocations 
 
In addition to finite element analyses of the elementary fibre as reported in Paper 2, 
this short report presents an analytical expression for how the stiffness varies with the 
fibre diameter. The calculations are performed on a lamella where the micro fibrils are 
oriented as shown in Figure A.2 (b) in Paper 2. The lamella is assumed to be a thin 
layer of the elementary fibre at the radius r. The stiffness in the direction of the fibre 
of the non-dislocated part is called Eα, the stiffness of the β1-dislocation 

1βE  and the 

stiffness of the β2-dislocation 
2βE . By assuming a constant force in the fibre, the 

overall stiffness of the dislocated lamella is obtained as: 
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where D is the dislocation ratio as defined in Paper 2. 
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Figure 1 Lamella showing material and global directions. 
 
The lamella shown in Figure 1 represents the cell wall of the elementary fibre. The x-
axis is the direction of the fibre and the 1-axis is the direction of the non-dislocated or 
dislocated micro fibril. The material model is assumed orthotropic. The compliance 
matrix in the 1-2 coordinate system is given by: 
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The compliance matrix is transformed to the x-y system by the relation: 
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The transformation matrix, T, is defined by: 
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where c = cosθ  and s = sinθ. 
 
The linear elastic relation can then be written as: 
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Where the components are functions of θ  according to equation 3. The functions are 
not written out explicitly since the expressions are very long. 
 
Two boundary conditions are examined; σyy = 0 and τxy = 0, and σyy = 0 and γxy = 0. 
The first condition corresponds to free rotation of the thin walled tube made up of the 
thin layer of the fibre under consideration. The second condition corresponds to 
prevented rotation. 
For the first condition is Equation 6 reduced to: 
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For the second condition is Equation 6 reduced to: 
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The E-modulus is calculated by the inverse of the compliances in Equation 7 and 8. 
The stiffness values Eα, 

1βE  and 
2βE  are calculated by setting θ to -α, -β1 and β2, 

respectively. These angles are functions of the fibre radius, and thus is also the overall 
stiffness a function of the radius. The expressions of the angles are: 
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These expressions are derived in Paper 2.  
 
For the case σyy = 0 and τxy = 0, the E modulus as a function of the radius becomes: 
 

( ) ( )( ) ( ) ( ) 





 ++−= −− 21 111111 22

11 ββα C
D

C
D

CDrE      11 

 
For the other case, σyy = 0 and γxy = 0, the E-modulus is obtained as:  
 

( )

( )





















−+








−+








−−

=

−− 21
33

3113
11

33

3113
11

33

3113
11 22

11
ββα C

CC
C

D

C

CC
C

D

C

CC
CD

rE

 12 

 

r  
dr  

dF 

 
Figure 2 Cross section of fibre for equilibrium calculation. 
 
By assuming that the strain in the fibre is constant, it is possible to determine the total 
force in the fibre by equilibrium calculations in the direction of the fibre as shown in 
Figure 2. 
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The average stress is obtained by division of the cross sectional area, i.e.,  
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where the average global stiffness is obtained as: 
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The functions E(r) (Equation 11 and 12) are evaluated in Maple and thereafter is the 
integral in Equation 15 calculated numerically in Matlab. The parameters used are 
adjusted to be similar to those used for the finite element analyses in Paper 2. The 
stiffness properties are ( ) 5.8635.06.565.013011 ≈⋅+⋅=−+= CHCCC VEVEE GPa, 

E2 = EHC = 5.6 GPa, 3.012 =ν  and ( )( ) 15.212 12212 ≈+= νEG  GPa. The reference 
parameters of the geometry of the fibre and the dislocations are Ry = 12 µm, α(12) = 
10˚, β1(12) = 45˚ and p = 12/tan(10˚). The size of the lumen is set to 5 % of the cross 

sectional area which gives oi RR 05.0= . The dislocation ratio is set to D = 0.13. 
Calculations are performed for diameters between 10 and 40 µm for the two different 
models. A plot of the result is shown in Figure 3, where also the experimental and 
finite element results are plotted for comparison. Additionally, the influence of the 
dislocation ratio, D, is investigated. The result is shown in Figure 4 and 5.  
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Figure 3 Stiffness versus the fibre diameter. 
 
The result shows that the boundary conditions σyy = 0 and τxy = 0 underestimates the 
stiffness whereas the boundary conditions σyy = 0 and γxy = 0 overestimates the 
stiffness of the fibre compared to the result obtained in the finite element analyses. 
For larger diameters the boundary conditions σyy = 0 and γxy = 0, appears to give a 
stiffness closer to the result from the finite element analyses. The reason might be that 
neither τxy nor γxy are zero. In a composite it seems reasonable to use γxy = 0, since 
rotations are prevented by the adhesive between the fibres. 
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The result obtained for varying dislocation ratio (Figure 4 and 5) shows that the 
dislocation ratio has a large impact on the stiffness of the fibres. 
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Figure 4 Influence of dislocation ratio on fibre stiffness for τxy = 0. 
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Figure 5 Influence of dislocation ratio on fibre stiffness for γxy = 0. 
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