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Abstract

In this thesis, methods for efficiently determining stresadaminated glass structures are
developed and tested. The laminated glass structures majwoth bolted and adhesive
joints.

A recently developed finite element is suggested to be daifabthe modeling of lam-
inated glass structures. The element is implemented atetitef is proven by means
of a simple test example that the element can be used in filiteemt analysis of lami-
nated glass structures and give a good accuracy with a saetildn of the corresponding
model size using standard solid elements. As an illustmatiohow the element would
perform when more complicated glass structures are coadeansimilar element is im-
plemented in the commercial finite element software ABAQWS & used to analyze
a laminated glass structure comprising one bolt fixing. Tleenent performs well both
when it comes to accuracy and efficiency. It is indicated thatnew finite element is
well suited for modeling laminated glass structures.

The new finite element is rigourously tested and comparedaiadard solid elements
when it comes to the modeling of laminated glass structuresshown that the new finite
element is superior to standard solid elements when it camesodeling of laminated
glass. The new element is applied to laminated glass stegttomprising bolted and
adhesive joints. Good results concerning accuracy andegftig are obtained. The results
show that the element may well be suited to model complexratad glass structures
with several bolted or adhesive joints.

The new element is used in the development of a method to censfress concentration
factors for laminated glass balustrades with 2+2 bolt figin@he stress concentration
factors are represented graphically in design charts. Bkeeotithe design charts allow
the maximum principal stresses of the balustrade to berdeted without using finite
element analysis or advanced mathematics. The stressbs camputed for an arbitrary
combination of geometry parameters of the balustrade.

It is illustrated how design charts for laminated glass sades with 3+3 bolt fixings are
developed.

Keywords: finite element, computational techniques, laminatedsylagess concentra-
tion factor, design chart, bolt fixing, adhesive joint, [siade.
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1 Introduction

1.1 Background

During the past decades mass production of flat glass, dawelot of new techniques
to post-process the manufactured glass and the use of catgmatl structural analyses
by means of the finite element method have allowed for an as&@ use of glass as a
structural material, [16]. Compared to other structuralerats, for instance concrete,
knowledge about mechanical properties and structuralvi@imaof glass is less. The
result of this lack of knowledge has led to failure of sevetats structures during the last
years, [13].

In construction, the standard (elastic) design method lisdtcghe maximum stress ap-
proach, [16]. In the maximum stress approach, the engingermines the dimensions
of a structure through ensuring that the maximum stressemtiexceed the strength of
the material at any position of the structure. The elastssgitemethod is frequently used
in glass structure design. When using the maximum stres®agipy it is essential that
the maximum stresses are predicted correctly. Only fordstahgeometries, boundary
conditions and loading relatively simple methods basedamntlas and design charts are
available, [16].

One of the recent developments in the field of post-procgsdiglass is to laminate glass,
[16]. Laminated glass normally consists of two or more |lay#rglass bonded with plastic
interlayers. The most common material used for the interigg/polyvinylbutyral (PVB).
The use of laminated glass compared to single layered gftes several advantages.
When the glass breaks, the interlayer keeps the fractured ggether which increases
safety. If one glass pane breaks the remaining layers camaoerto carry the applied
loads given that the structure is properly designed. Otteamstages of laminated glass
are their acoustic and thermal insulation properties. Duihe increased safety that is
obtained, laminated glass is often used instead of singé¥dal glass in structures.
Laminated glass displays a complicated structural mechhbehavior due to the combi-
nation of a stiff material (glass) and a soft material (PVBgwous work, [21], shows that
the discontinuous stress distributions that may develdgnmnated glass panes subjected
to certain loads and boundary conditions are difficult to elodimerically. In Figure 1, a
cantilever beam subject to bending by a point load at its egld is displayed. The beam
is modeled by means of the finite element method using two mioeal plane stress
elements in the xz-plane for both glass and PVB layers. Thenmhparameters take on
the value€ = 78 GPa and = 0.23 for glass an& = 9 MPa andv = 0.43 for PVB.

In Figure 2, the resulting distribution of normal stressha thickness direction at a cross
section located at the center of the beam is shown.

From Figure 2 it is evident that there are discontinuitieshi@ levels of normal stress
at the boundaries between the glass and PVB layers. Suabntiimgities are normally
most pronounced around holes and close to edges of a seuf2daj. It is common that
the largest stresses occur in these regions ([7],[21]) anthEe sake of safe design, it is
important that the stress distributions are representgédity by the model, particularly
in these regions.



Figure 1: A cantilever laminated glass beam subjected tard [wad.
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Figure 2: Distribution of normal stress along thickness.

Stress distributions as in Figure 2 are well captured byetdimensional solid elements.
The disadvantage is that the resulting finite element mddet®me very large which
requires great computational effort. When modeling an exgging structure that com-
prises laminated glass panes, the computational timerezjoiay prevent fast and simple
evaluation of different design alternatives. Papers 1 add& with the implementation
of a new method for increasing the computational efficientygmvmodeling laminated
glass structures by means of the finite element method.

In the design of glass structures, tables and graphs cedtamdesign standards can
be utilized when considering common geometries and boynoarditions. For more
complicated geometries and boundary conditions, for mnt&abolt fixings, a detailed
computational analysis is often required, [16]. The stathalaethod for predicting the
stress distribution in a laminated glass structure witress\bolt fixings is to use three
dimensional solid elements in finite element analyses. \4age finite element models
are required for an accurate stress prediction of this ty®troctures, which makes the
analyses practically impossible from a computational pectve. Using the method de-
scribed in Papers 1 and 2, analyses are made possible, lautd@owledge about finite
element analysis is required. The topic of Paper 3 is theldprneent of design charts for
bolt fixed laminated glass balustrades with a variable nurobieolts. Thus, the design of



bolt fixed glass balustrades is made possible without paifay advanced mathematics
or finite element analyses.

1.2 Aim and Objectives

The aim of this thesis is to provide means of efficiently deiang the stress distribution
in advanced laminated glass structures. A recently deedldipite element is imple-
mented in finite element analysis and applied to laminatedsgstructures comprising
structures that contain bolted and adhesive joints. Theopeance of the element in
terms of accuracy and computational efficiency is testedcamgpared to conventional
three dimensional solid element models. For bolt fixed |lat@d glass balustrades, de-
sign charts are developed for the determination of thestietributions. The objective
is to provide a relatively simple design tool for users thatlass familiar with the finite
element method.

1.3 Limitations

In the work developed in this thesis, some limitations areessary. In the modeling of
the bolts, only one type of bolt is used. It is a bolt for a cgfical bore hole. Only one
combination of thickness and material of the bush is coms@tlé/NVe also limit ourselves to
stress predictions, leaving out details of further designkw\When the design charts are
developed, we restrict ourselves to the analysis of indatudtrades, which somewhat
simplifies the load situation since wind loads do not needea@dnsidered, [9]. It is
intended that the charts are not to be used for the highesldad (3 kN/m) according to
Swedish construction standards, since for this case, &lpaithgiving rise to a worst case
loading situation is required in the analysis, [9]. Furft®&wedish construction standards,
[9], are used consistently when determining the load coatlmn and balustrade height
used in the analyses. It is assumed that the gravitatior®l fmvce due to the weight of
the structure could be neglected.

2 Theory and Methods

2.1 TheMaterial Glass

Generally, glass forms when a liquid is cooled down in suclagthat "freezing” happens
instead of crystallization, [20]. Glasses do not consist géometrically regular network
of crystals, but of an irregular network of silicon and oxggegoms with alkaline parts in
between, [16]. The most common oxide glass, silico-soai@-lass, is used to produce
glazing, [20]. Table 1 shows the chemical composition a¢sisoda-lime glass according
to European construction standards, [16].

When manufacturing glass, four primary operations can betiftkd: batching, melting,
fining and forming, [20]. While the three first operations asedlin all glass manufactur-
ing processes, the forming and the subsequent post-prdepsad on which end product



Table 1: Chemical composition of silico-soda-lime glassgst®).

Component Chemical formula Content (mass %
Silica sand SiO, 69-74
Lime (calcium oxide) CaO 5-14
Soda Nap,O 10-16
Magnesia MgO 0-6
Alumina Al>0O3 0-3
Others 0.5

that is manufactured. During the batching process, theecomix of raw materials is
selected based on chemistry, purity, uniformity and plersze, [20]. When melting the
raw materials, glass furnaces are used. Different furnaeessed for producing different
end products. The aim of the glass fining process is to produm®lten glass that is
uniform in terms of composition and temperature and alsdlautee.

Flat glass (which could be used for architectural glazisgyroduced by the float process,
which was introduced by Pilkington Brothers Ltd in the 199@6). It is noteworthy that
this mass production process, together with continuousfyroved post-processes, have
made glass cheap enough to allow it to be used extensivéig icanstruction industry and
to grow in importance as construction material during thet p@ years. Within the last
two decades, further development within the field of posiepssing operations, together
with numerical analyses of structures (finite element aesdy have enabled glass to be
used as structural elements in architectural glazing, [6jhe start of the float process,
the raw materials are melted in a furnace. Then, a fining g Used to eliminate
bubbles. Later, the melt is poured onto a pool of molten timatfl under a nitrogen
atmosphere in order to prevent corrosion of the tin bath. h&is higher specific weight
(weight per unit volume) than glass, so that the glass floathe tin. The glass spreads
out and forms a smooth flat sheet at an equilibrium thickné&b®mm. In order to
produce various glass thicknesses, rollers working fragrtap of the glass are used. The
speed of the rollers controls the glass thickness. The rahgemmercial glass thickness
is 2-19 mm, [20]. During this phase, the glass is graduallyied. The next step of the
process is the annealing lehr, which slowly cools the glassder to prevent that residual
stresses are induced within the glass. After the lehr, thesgk inspected and it is ensured
that visual defects and imperfections are removed. Thes gdasut to a typical size of 3.21
x 6.00 m, [16], and then stored.

The standard flat glass produced through the float procesdlésl @nnealed glass, [16].
Often further post-processing of the glass is required depto produce glass products
with different properties. For instance lamination of tha&sg and hole drilling are made
at this stage.

2.2 Typesof Glass

During the post-processing phase, glass types and proditbtslifferent properties can
be manufactured. Below, the most common glass types arelgescr
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2.21 Annealed Glass

Annealed glass is standard float glass without furtherrireat. At breakage, annealed
glass splits into large fragments, [16].

2.2.2 Fully Tempered Glass

Another commonly used term for fully tempered glass is taungd glass. During temper-
ing, float glass is heated and then cooled rapidly (Qquendinedbld air jets. The aim of
the tempering process is to create a parabolic residuakdiiedd that has tensile stresses
in the core and compressive stresses at the surfaces ofag®e Jlhe surface of the glass
always contains some cracks. Under a tensile stress fieldrétks are allowed to grow.
If the glass is subjected to loads, cracks will not grow usikbere is a net tensile stress
field at the surface of the glass. Fully tempered glass usbatlaks into small harmless
pieces and therefore fully tempered glass is also termedysgliass, [16].

2.2.3 Heat Strengthened Glass

Heat strengthened glass is produced similarly as fully enegbglass, but the cooling rate
is lower. The resulting residual stress is lower, and thedéhsile strength is lower than
for fully tempered glass. At fracture, the fragments argdarthan for fully tempered
glass. On the other hand, the larger glass fragments alloavdceater post-breakage load
capacity than for fully tempered glass, [16].

2.24 Laminated Glass

Laminated glass consists of two or more glass panes bondaglastic interlayer. The
glass panes can have different thicknesses and heat treatiiost common among the
lamination processes is autoclaving, [16]. The use of lateithglass in architectural glaz-
ing is of great advantage for two reasons. Firstly, if onesglaane breaks, the remaining
panes can continue to carry the applied loads given thatrihetsre is properly designed.
Secondly, the scattered glass pieces can stick to thedgpterand thereby serve to pre-
vent people from getting injured. The interlayer is mosenftnade of polyvinylbutyral,
PVB. The nominal thickness of a single foil of PVB is 0.38 mmisltommon that two
(0.76 mm) or four (1.52 mm) foils form one PVB interlayer, [1®VB is a viscoelastic
material whose physical properties depend on the temperatu the load duration.

2.3 Mechanical Properties of Glass

Glass is an elastic, isotropic material and exhibits leritthcture. In contrast to other
construction materials, no plastic deformation occursrpio failure. Therefore, local

stress concentrations, occurring for instance close tohodés, are not reduced.The brit-
tle characteristic of glass is of concern when construciwity glass as a load bearing
element.



Glass has a very high theoretical tensile strength, up toR2i&possible, [16]. However,
the actual tensile strength depends on the influence of maaiasurface flaws. The
compressive strength of glass is considerably higher tharensile strength, since there
is no surface flaw growth or failure under compression, [16].

In Table 2, relevant material properties of silico-sodadiglass are summarized, [12].

Table 2: Material properties of silico-soda-lime glass.
Density 2500 kg/nt
Young’'s modulug 70 GPa
Poisson’s ratio 0.23

Table 3 summarizes strength values that could be used tmtstal design, [15].

Table 3: Strength values for glass design.

Compressive strength880-930 MPal
Tensile strength 30-90 MPa
Bending strength | 30-100 MPa

2.4 StressPrediction of Laminated Glass Structures

When predicting stresses in laminated glass structuress #re two main options for
stress predictions. The first possibility is to use formutables or design charts. The
other method consists of finite element analyses of the tsireic The former method
has the advantage that it is easy to use, but its use is litotedme general cases of
geometry and boundary conditions, [16]. In this work, maimblt fixed connections are
considered. For the case of bolt fixed laminated glass strest finite element analyses
must be used in most cases. In [16], an example of a desighfona more advanced
bolt fixed laminated glass structure is presented.

When making analyses using three dimensional solid elemanédysis results become
sufficiently accurate given that the discretization of theded is fine enough. When ana-
lyzing the type of structures that are relevant in this wdirkie element models become
too large and the demand on computational resources tog.h€agre is a scope for in-
vestigating alternative methods for performing finite edertranalyses of those structures.
According to the classification of [24], laminated glass$®ecalled laminated composite,
which is made up of layers of different materials. For thitegary, there are several the-
ories developed including corresponding numerical treatsn One means of reducing
the model size is to use two dimensional models for compgpsities, so-called Equiva-
lent Single-layer Theories, (ESL), [24]. The two dimensiobmodels are derived through
making assumptions regarding the kinematics or the strekkifi the thickness direc-
tion of the laminate in a fashion such that the three dimeraimodel is reduced to a
two dimensional one. The simplest ESL theory is the Classiaalinated Plate Theory,
(CLPT). Itis an extension of the classical Kirchhoff platedhy to laminated composite

6



plates. In the CLPT theory, the assumptions regarding th@atisment field are such
that straight lines normal to the midsurface remain stitzagal normal to the midsurface
after deformation. Thus, the transverse shear and traseswermal effects are neglected
(plane stress). The First Order Shear Deformation TheB&D([), extends the ESL the-
ory through including a transverse shear deformation irkthematic assumptions such
that the transverse shear strain is assumed to be constantespect to the thickness
coordinate. In terms of kinematic assumptions this meaatssthaight lines normal to the
midsurface do not remain perpendicular to the midsurfate deformation. There are
also higher order theories for laminated composite platbs. higher order theories may
be able to more accurately describing the interlaminasstdéstributions. On the other
hand, they also require considerably more computatiof@aitefn the Third Order Shear
Deformation Theory, the assumption on straightness anahady of straight lines nor-
mal to the midsurface after deformation is relaxed. Theltésa quadratic variation of
the transverse stresses through each layer. Even highar sivdar deformation theories
are available, but the theories are complicated algeblai@ad expensive numerically,
and yield a comparatively little gain in computational a@ay. The simple ESL laminate
theories are often not capable of accurately determiniadhtee dimensional stress field
at ply level, which may be required for an accurate desanipdif the stress distribution in
a complex laminated glass structure.

An alternative is to use Layerwise Theories, [24]. The Layse Theories contain full
three dimensional kinematics and constitutive relatidiey also fulfill requirements on
C? continuity, ([24], [11]). These requirements should neeety be fulfilled in order to
correctly describe the stress field in the thickness dwedthat characterizes laminated
glass. Even if there are some computational advantagesaredhpo full three dimen-
sional element models, for instance that two dimensionaéfelements could be used in
the analysis, in the modeling of advanced structures theelaaday be computationally
inefficient and difficult to implement, [24].

There exist several other layerwise models for laminatatepl| see [24] and references
therein. It is not the intention to provide a full review ofriaus Layerwise Theories, so
the interested reader is referred to the references prawidihe reference cited above.
Another possible method, which is adopted in this work, isge solid-shell elements. A
solid-shell element is a three dimensional solid elementhvis modified so that shell
like structures could be modeled in an appropriate mannee. basis for the solid-shell
element used in this work, [10], is a conventional eight ntddee dimensional solid
element. Since low-order three dimensional solid elemargsused in order to model
shell like structures, locking phenomena occur. In thedsstiell formulation, certain
methods are incorporated such that locking is preventee@vigw of solid-shell elements
is provided in Paper 2. We note that through maintainingetitienensional constitutive
relations and kinematic assumptions, the stress disiibbwdf laminated glass can be
accurately determined. The computational efficiency isgased due to the use of a
special reduced integration scheme that only requires rtegriation point per material
layer.



3 Related Research on Laminated Glass

3.1 Introduction

Past research on glass has focused mainly on monolithiglésiayered) glass, whereas
the properties of laminated glass remain less well undedstd@he aim of this section
is to review past research on the properties and behavianuhkted glass for architec-
tural glazing. The review is subdivided into sections, vehtire first section deals with
experimental testing, the second with analytical methodisthe last section reviews nu-
merical testing results. In the last section, emphasis iBioie Element Method (FEM)
analyses. It is shown that a clear cut division of previosgaech findings into these dis-
tinct categories is difficult, but the subdivision is ratlaeneans of providing a structured
presentation of the available knowledge.

3.2 Experimental Results

Most analyses on laminated glass units are experiment&.ig particularly the case for
plates, since the behavior is very complex, [1]. In thiseevive consider test results for
both beams and plates. Studies on glass beams are ofterowggatdximate the behavior
of glass plates. According to Asik, [1], this methodology(generally) not acceptable,
since the two structures have different stress and displentfields.

One of the first studies on the behavior of architectural teat@d glass subjected to struc-
tural loading is conducted by Hooper, [18]. In that studg thndamental behavior of
architectural laminates in bending is assessed. This ie bgmmeans of studies of lami-
nated glass beams subjected to four-point bending. Firaty@ical formulas are derived
for the shear force at the interface between glass and tedaper and the central de-
flection respectively. These expressions are then usedmbioation with experimental
bending tests in order to provide general understandingtahe behavior of laminated
glass beams subjected to bending as well as to produce dattedayer shear stiffnesses
(shear moduli) for various loading and temperature comati Results show that the
bending resistance of the laminated glass is dependenttbpdhickness and shear mod-
ulus of the interlayer. The physical properties of the ilatggr are dependent upon the
temperature and the duration of the loading. From an athitel designer’s perspective,
laminated glass which is subjected to sustained loads ghmmutreated as consisting of
two independent glass layers. For short-term loading, #reling stresses of the glass
could be determined on the basis of an interlayer shear medwdrresponding to the
maximum temperature at which such loading is likely to ocddhen the glass is sub-
jected to both sustained and short-term loading, the comaldiending stress values in the
glass layers may be calculated using the principle of suysgipn.

Behr et al., [3], reports on studies on the behavior of laneidajiass units consisting of
two glass plates with an interface of PVB. The glass units @bgested to lateral pressure
(wind loads). Experiments are conducted in order to find duttiver the behavior of a
laminated glass unit is similar to that of a monolithic glas# of the same thickness or
to that of a layered glass unit consisting of two glass umitsrao interlayer. Results show



that the glass unit behaves more like a monolithic glassainibom temperature. When
temperatures are high, the behavior approaches that oflage gnits without interlayer.
Laminated glass units (two glass plates with a PVB interjayeder uniform lateral loads
and simply supported boundary conditions are investigexgerimentally in Behr et al.,
[4]. According to the results, interlayer thickness effech the structural behavior (in
terms of corner stresses and center deflections) of landirglgess units are not large.
Further, long-duration load tests at different tempeedware performed. For this case,
the response in structural behavior is increasing as aiumof time at load. Rates of
increase in response in structural behavior decrease withdt load. In overview, the
experimental data gathered during the tests are withinrd¢tieally derived monolithic
and layered bounds on stresses and deflections.

Minor and Reznik, [22], study the failure behavior of lamexhglass units. Three speci-
men sizes are used in the tests. Annealed monolithic glasgles are used as reference
specimens. Laminated glass samples of the same dimensidtisieknesses as the refer-
ence specimens are tested to failure using the same loadewyas for the failure analysis
of the reference specimens. Failure strengths are evdlaatéunctions of several vari-
ables: glass type (heat treatment), temperature and surendlition (subjected to surface
damage or not). The most interesting result is that annéatethated glass strengths are
equal to annealed monolithic glass strengths at room teatyrer This result is valid for
all three sample sizes. Another interesting result is themtemperatures are increased,
laminated glass strengths decrease.

Behr et al., [5], makes a reliability analysis of the glassrsth data presented in [22].
The results of this analysis support the conclusions maff2in However, the reliability
analyses suggest that the issue of the relative strengitebatmonolithic glass units
versus laminated glass units is complex at elevated teryvesa Whereas a clear strength
reduction occurs in laminated glass at @7 little strength reduction occurs at4®. This
indicates the possible existence of a break point in theioeldetween temperature and
lateral pressure strength for laminated glass at aroun@.4khus, for temperatures above
this threshold it is suggested that the structural behafitaminated glass is not longer
similar to that of monolithic glass.

3.3 Analytical Results

Analytical work on laminated glass properties are scarceaddition, most results are
derived under various simplificating assumptions, [13].

In early work by for instance Vallabhan et al., [25], a prexsty developed computer
model is used in order to analyze layered and monolithi@aregilar glass plates subjected
to uniform lateral pressure. The layered and monolithitgslénave the same in-plane ge-
ometry total thickness. So-called strength-factors areldped for a variety of glass
plate geometries. The strength-factor is defined as thelvativeen maximum stresses in
a monolithic plate and those in a layered plate. It is notéwathat for certain geometries
and loads, layered glass plates can possess larger maxitresses than an equivalent
monolithic glass plate. This result has an implication fag behavior of laminated glass
plates, since a laminated glass plate is considered toagigttuctural mechanical be-



haviour in between the limiting cases of monolithic and fageplates. It is implied that
the maximum stresses in a laminated glass plate can be ddsed even exceed) the
maximum stresses in an equivalent monolithic glass pladeucertain conditions.
Vallabhan et al., [26], use the principle of minimum potah&nergy and variational cal-
culus, [17], in order to develop a mathematical model forrtbelinear analysis of lami-
nated glass units. The final model consists of five nonlingterdntial equations which
are solved numerically and validated through full-scalpegiments. The test specimens
are square plates of laminated glass. The plates are simpbpsted and subjected to lat-
eral pressure in increments. Stresses and correspondiupat stresses are calculated
as a function of the lateral pressure. The results of the enadltical model compare very
well with the experimental results. It is suggested thatier research focuses on testing
the mathematical model for various thicknesses of the latathglass plates.

Norville et al., [23], set up an analytical beam model thailaxs data on deflection and
stress for laminated glass beams under uniform load. Therexpntal data are presented
in [6]. In the model, the PVB interlayer performs the funasoof maintaining spacing
between the glass sheets and transferring a fraction ofathzdmtal shear force between
those sheets. The PVB interlayer increases the sectionlogdie. the ratio between
the bending moment at a cross section and the stress on #regtags fiber at that cross
section, of a laminated glass beam, and the magnitude ofekeréll (bending) stresses
in the outer glass fibers is therefore reduced. Thus, thegti®f a laminated glass beam
is higher than that of a monolithic glass beam with the sanmeimal thickness.

The analytical model of [26] is used in [1] in order to provalset of graphs that shed light
on the nonlinear behavior of simply supported, laminateggplates typically used for
architectural glazing. Such plates have very thin glagspWhich results in that they may
undergo large deflections solely due to their own weightss Tdsults in complex stress
fields, which the author studies extensively. The resulhefdtudy is that the laminated
glass plate that is studied undergoes very complex andmearlbehavior when uniformly
distributed load is applied. A conclusion is that nonlinaaalysis is the only acceptable
type of analysis for laminated glass plates.

In [2], a theoretical model for the behavior of laminatedsgldbeams is presented. It is
assumed that the glass beams are very thin such that largetaeflbehavior is used in
the model building. The minimum potential energy and vaoiad! principles are used in
the derivations. Three coupled nonlinear differentialaopns are obtained and closed
form solutions are presented for simply supported lamthgtass beams. The model is
verified for the simply supported laminated glass beam tjinousage of experimental
data and for a fixed supported laminated glass beam by meéing®tlement modeling.
Also, the behavior of laminated glass is presented in com@amwith the behaviors of
monolithic and layered glass beams. Displacement, mommehstiess functions for a
simply supported laminated glass beam are given for therudesign to determine the
strength of a laminated glass beam. It is proven analyyi¢hdit the behavior of a simply
supported laminated glass beam is linear even under lafggetien. On the other hand,
for the case of the fixed supported laminated glass beantteffd membrane stresses
are substantial and nonlinearities arise from geometnisstraints. A discussion about
the behavior of laminated glass beams versus laminated glates is conducted. It

10



is concluded that as earlier work on laminated glass pldtew shat simply supported
glass plates undergo nonlinear behavior, simply suppdaeihated glass beams may
not be used to draw conclusions about the behavior of laedinglass plates. In contrast,
it is concluded that a study of nonlinear behavior of lanedaglass beams makes sense
concerning the behavior of laminated glass plates due teiderable similarities between
these two cases.

Foraboschi, [13], sets up an analytical model for laminafieds beams under uniaxial
bending. The model predicts stress developments and gtirehtaminated glass beams
with given geometries, glass moduli of elasticity and PVBdumoof elasticity in shear.
The ultimate load is determined using a design value of taesgtensile strength. The
model is valid under the following assumptions: (i) planess sections in the whole
beam, as well as in the PVB interlayer, do not remain planenanchal to the longitudi-
nal axis (ii) glass is modeled in a linear elastic manney BVB is modeled in a linear
elastic manner by means of the modulus of elasticity in stypaen that the value of this
parameter is related to temperature and duration of loadling latter assumptions al-
lows a closed-form solution to the problem, contrary to tagecwhen PVB is modeled in
a viscoelastic manner. Since no particular simplificataresmade when formulating the
model, the model predictions are in excellent agreemert tegt results. In particular,
no presumed strength-factor, [25], has been used in orderdount for the contribution
of the PVB layer to the bending capacity through its capaaityansfer horizontal shear
force between the glass layers. An analysis of commerceledaminated glass beams is
made in order to gain information regarding the rationalgtesf laminated glass beams.
Failure strengths and loads are determined for these casesnparison is made between
the laminated glass model and monolithic and layered efgnieg models respectively
with respect to failure strengths and loads. Some of the mnagults are: 1) The greater
the value of the shear modulus of elasticity of PVB and thertér the PVB layer, the
closer the prediction of the stress values are to those ahthlithic equivalency model
and the greater is the tensile strength of the beam. 2) kotise of parameter values, the
layered model is not suitable for analyzing laminated glasams with the actual loads
and boundary conditions. The conditions of the layered rhigdmnly approached as the
temperature is reaching a value that prevails during firéosxpe or similar conditions.
3) When the thickness of the beam is designed appropriabesttength of the beam is
raised by up to 70-80 %. 4) The historical assumption thastrength of laminated glass
is equal to 60 % of the strength of monolithic glass of the s#mekness is sufficiently
preservative, but it doesn’t represent a lower bound. Thefiteof using the above rela-
tion is that it provides a simplification, but at the cost of tiisk of underestimating the
actual load-bearing capacity. 5) The behavior of the mdmolequivalency model is far
away from that of a laminated glass beam, and the implementat the model for design
purposes is not recommended.

3.4 Numerical Results

A study of stress development and first cracking of glass-RB&acite) laminates is
performed in [8]. Fracture behavior is studied during logdn biaxial bending. A three
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dimensional finite element model which incorporates the olPVB thickness and the
viscoelastic character of the PVB layer in stress developiinghe laminate is developed
and tested. The finite element model is combined with a Wedrsgcription of glass
strength in order to provide a failure prediction framewéok the present set up. The
glass is modeled using eight-node brick elements with ingadible modes for accurate
capture of bending modes. The PVB layer is modeled using-eigtie brick elements
with incompatible modes using a hybrid formulation. The ocoencial finite element code
ABAQUS is used in the investigations. Comparisons to expemntal test data show that
the finite element model is in good agreement. Stress daveopin the laminate is de-
termined for a set of experimental loading rates. At a slde&ding rate, each glass plate
deforms nearly independently. At a faster loading rate ptrexall stresses are higher for
a certain deflection which indicates a higher overall stiés There is also a shift in the
location and magnitude of the peak tensile stress of thenlati®i This shift is expected
to change the initiation of the first cracking, which is alkown in subsequent investiga-
tions. Itis shown, both experimentally and through finieneént modeling, that the peak
stress changes locations with the loading rate. Two primawges for the initiation of
failure associated with changes in maximum stress areifgkeht(i) first crack located in
the upper ply at the glass/PVB-surface and (ii) first crackted in the lower glass sheet
at the outer glass surface. Regarding a comparison to theibelod the corresponding
monolithic and layered models, it is observed that at mdddoading rates, the stress in
the laminate is higher than in the equivalent monolith. Rerhighest loading rates, the
laminate demonstrates stress behavior similar to the ntbnélurthermore, it is shown
that the peak stress locations is a complex function of fwachte, polymer thickness and
load uniformity. The first-cracking sequence is affectedrgrlayer thickness and load-
ing distribution: concentrated loading and thicker/soiitgéerlayer gives first cracking in
the upper ply and distributed loading and stiffer/thinmeerlayer promote initial cracking
in the lower glass sheet. The failure sequence is a funcfitmading rate and tempera-
ture: high temperatures and/or slow loading rates pronfostgracking in the upper ply
whereas low temperatures and/or high loading rates leamterIply first cracking. The
probability of first cracking can be computed by combining fimite element model with
a Weibull statistical description of glass fracture. Th@raach used in this paper can
form a foundation for laboratory tests for laminates and loarextended to encompass
laminate plates used in commercial applications.

Van Duser et al., [27], present a model for stress analysgdass/PVB laminates used
as architectural glazing. The model consists of a three msineal finite element model
incorporating PVB viscoelasticity and large deformatioi&udies are performed on a
square, simply supported glass/PVB laminate subjectediform loading. The question
of load-bearing capacity for first glass fracture of the @last addressed through com-
binating the finite element model with a statistical (Welpuahodel for glass fracture.
The approach used in this paper extends the work of Bennisah, 8], to apply to
commercial-scale architectural laminated glass platgher than laboratory scale disks.
Results from the modeling exercise is compared to expermhessgults from [26]. The
framework developed for stress analysis and failure ptiedianay be applied to lami-
nates of arbitrary shape and size under specified loadindittmms. Validated against
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more extensive data the method may be used to develop negndgandards for lam-
inated glass. Regarding the finite element model, the glasststare modeled using
8-node solid elements with incompatible modes to avoidifagkn bending. The PVB
interlayer is modeled using eight-node solid elements witlompatible modes using a
hybrid formulation in order to account for nearly incommieée deformations. The com-
mercial program ABAQUS is used for the analysis. Accuractheffinite element model
is obtained through successively refining the mesh untihaiedependent results are ob-
tained. The model predictions are in excellent agreemettit eata presented in [26].
One of the main findings of the study is that for most of the eaogpressure used in the
study, the probability of failure is lower than the monaiithmit, except at low pressures.
At those pressures and stresses that would be used in d&signate strength for this
case would be predicted to be higher than for the equivaleniofithic glass plate. Since
the concept of layered and monolithic limits is defined basedmall strain analysis of
beams, and doesn’t take into account the membrane-dordistitss state that develops
in large deflection of plates close to glass first crackingtress analysis that involves
comparison to these limiting states could be misleadindadt if the derivation of these
limits are based on transition to membrane-like behavangé deflections), the stresses
and deflections for a layered system in the membrane limiezaetly the same as for
the equivalent monolithic plate. Since the monolithic timgnores the thickness of the
interlayer, the first cracking strength of the laminate mayavger than that of the mono-
lith. Further, itis shown that stress development in theitarte is temperature (or loading
rate) dependent. The influence of temperature can be dimeidiat large deflections as
membrane stresses dominate and the coupling between Hseshleets play a lesser role
in the stress development. Somewhat surprisingly, focglmlass Weibull moduli (-
5-10) the probability of first cracking is only weakly depentdon temperature.

The model of van Duser et al., [27], is based on a three diroaakfinite element formu-
lation. Thus, the resulting model becomes very large anddhgutations are expensive.
This is noted by Ivanov, [19], who aims at investigating tiffee of design parameters
on the strength and stiffness of glass laminates. Anotimeisaio perform structural opti-
mization of glass laminates. It is emphasized that both dicated analytical models that
require numerical solutions and computationally expengmdels are inappropriate for
such analyses. The paper treats the case of a simply suppbats/PVB beam. The fol-
lowing simplifications are used: (i) only a plane beam is ad&r®d and (ii) the problem is
confined to small strains and displacements. The reprdssntd the laminated glass as a
plane multilayer beam leads to a plane problem of theoryastlity, which requires less
equations although the same degree of discretization ghrthe thickness of the beam
and makes the corresponding finite element analysis moreuationally efficient. The
materials (glass and PVB) are both represented by lineaastielmaterial models. At
the first stage of the analysis, a finite element model is dpesl. The model is used
for the analysis of the case bending of a laminated glass hew®er transverse forces.
The beam is analysed by means of the finite element analyfvgase ANSYS 6.1. A
linear finite element analysis is performed and yields datmadal deflections, strains
and stresses. The analysis shows that the bending strémsgtass layers is determinant
for the load-bearing capability of laminated glasses, hetghear in the PVB layer is
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important for glass-layer interaction. Based on this firgthgsis step an analytical model
of a laminated glass beam is developed. The model is based roowleEuler beam
theory for each glass layer, with an additional differdregguation for the PVB interlayer
shear interaction. The obtained differential equatioeseassily solved analytically for the
case of a simply supported beam under uniform transverse Tdeae mathematical model
is validated against the previously developed two dimaraifinite element model and
against analytical results from [2]. For both cases, theltesf the analytical model show
great agreement with other solutions. The model is usedrforpe a parametric study of
the influence of layer thicknesses on deflections and ssedssebeam under transverse
uniform load. Later, the model is utilized for lightweightscture optimization of layer
thicknesses. The results show that the inner layer of laimihglasses could be thinner
than the external glass layer and that the optimally deslidg@inated glasses could be
superior to monolithic glasses in all criteria.

3.5 Discussion

To summarize the review above, one can conclude that moseahvestigations done
consider beams and plates of regular geometries subjexttdridard point loads or uni-
formly distributed loads. Some attention is directed talgahe physical properties of the
interlayer. A main issue is to place laminated glass strattiehavior correctly in rela-
tion to the behavior of layered and monolithic equivalenodeis for different geometries
and loading cases. Some investigations deal with the frattehaviour of simple struc-
tures. Analytical models of various complexity have beevettgped in order to describe
the structural mechanic behaviour of laminated glass be&mite element models are
mainly three dimensional and are developed for the purpbse/estigating failure be-
haviour or for optimization purposes. In all cases the stmgs are simple (beams and
plates) and the boundary conditions are standard. One ranmiations that model size
constitutes a limitation when it comes to analyzing lamedaglass beams subjected to
uniaxial bending for optimization purposes. The remedyiside a plane (two dimen-
sional) finite element model rather than a full (three dinn@mal) model.

4 StressPrediction of a Bolt Fixed Balustrade

4.1 Genera

In this section an example of a glass structure with boltedgas used in order to demon-
strate the use of the two stress prediction methods presénthis thesis. The exam-
ple comprises a laminated glass balustrade of the type missbén Paper 3. Since the
balustrade in this example has 3+3 bolts, it is simultanigaiswn how the concept of
design charts can be expanded to balustrades with the sstteaumber of bolts. The
results in terms of accuracy are compared to results thadt@eened when a standard
finite element method is used.

14



4.2 Description of Example

The structure is a balustrade of laminated glass consistingio glass layers with an

intermediate PVB layer. The structure contains 3+3 bolheations, which means that
this example is also used to illustrate how design chartsdeasloped for the case of 3+3
bolt connections. In Figure 3, the two dimensional geometihe structure is displayed.

Iy
+ kS o o
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lj*‘—'O O O'—'

'Y

w

Figure 3. Two dimensional geometry of balustrade.

Cylindrical bolts with bolt head diameted,, of 60 mm were used. The bolts are made
of steel and have bushes of EPDM at the contact surfaces wé@tglass. The bore hole
diameter,d,, was set to 22 mm. A list of the geometry parameters with spwading
design values is included in Table #y g is the thickness of the PVB laydgppw is the
thickness of the EPDM layer antglis the glass thickness.

As an example, a horizontal (uniform) line load was applietth@ upper edge of the glass
balustrade. The load had the magnitude 3 kN/m. Alla mateware modeled as isotropic
and linear elastic materials. In Table 5, the material patamvalues are presenteH.
denotes modulus of elasticity anddenotes Poisson’s ratio for glass, PVB, EPDM and
steel respectively.

In the coming subsections, it is described how the test eleamas analysed using three
different methods. First, three dimensional solid elerm&rdre used in ABAQUS in order
to provide a benchmark solution to which the two other meshedre compared. Then,
M-RESS elements were used in ABAQUS in order to illustrateapplicability of the
method presented in Papers 1-2 to this test problem. Fjra@gign charts for balustrades
with 3+3 bolt connections are introduced and it is shown hiogvdharts were used in
order to analyze the balustrade. Design charts for baties$ravith 2+2 bolt connections
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Table 4: Design parameters for test example.

la 1.275m
Ip 0.48 m
lc 0.24m
Ay 0.18 m
w 1.23m

tpyg | 0.76 mm
teppm | 3 MM

dh 22 mm
dp 60 mm
ty 12 mm

Table 5: Material parameters for test example.

E; | 70GPa
Vg 0.25
Epve | 6.3 MPa

VpvB 0.4

Eeppm | 20 MPa

VEPDM 0.45
Es 210 GPa
Vg 0.3

is the topic of Paper 3.

4.3 FiniteElement AnalysisUsing Three Dimensional Solid Elements

In this subsection, second order three dimensional saichehts were used in ABAQUS
in order to provide a benchmark solution to the problem preskin the former subsec-
tion. For each bolt, the entire bolt head consisting of algieg and an EPDM layer
was explicitly modeled. Only those bolts located at posgiavhere equilibrium reaction
forces acting on the glass occur, were included in the mddehstraints of the type tie
were used between the glass pane and the EPDM layers. Asdryurwhdition it was

used that displacements are prohibited in all directiorth@bpposite side of the bolts.
Second order three dimensional solid elements (C3D20R) waed for the glass and
PVB layers. Standard linear three dimensional solid elesn@BD8R) were used for the
other parts of the model. A total of about 270000 elementgwsed. The line load was
converted to a pressure load acting on al surface of infingeiall width, since it is not

possible to apply line loads in ABAQUS. The maximum printigaess occurred at the

middle bolt of the upper bolt row, as is indicated in Figur@add took on the value 119.4
MPa.
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Figure 4: Maximum principal stresses for balustrade udmge dimensional solid ele-
ments.

4.4 Finite Element Analysis Using M-RESS Elements

In this subsection, the model of the previous subsectionused, but the element type of
the laminated glass was selected to be M-RESS. A modificatitreaonodel of the former
subsection was necessary. The line load was distributethtoaquidistant points and
applied as concentrated forces using manual lumping. snntlmdel, two element layers
per glass layer and one element layer for the PVB layer weze. s total, around 160000
elements were used. The maximum principal stress of the Qlsistrade reached 185
MPa.

45 StressPrediction Using Design Charts

In the course of writing this section, design charts for bakdes with 3+3 bolt connec-
tions were developed. The in-plane geometry of the baldstimthat of Figure 3. When
comparing to the case of a balustrade with 2+2 bolt connestithe set of unknown pa-
rameters is the same. The development of the new desigrseh#rts a simple extension
of the already developed charts. Table 6 displays the dgsigameters and the ranges of
variation for each parameter.

In Figure 5, the design chart that applies to the test exaofflas section is displayed.
Next, it is illustrated how the maximum principal stress @flass balustrade with geom-
etry parameters according to Table 6 and material paramat&ording to Table 5 was
computed. First, the nominal stress valagem Was computed using equations (1), (35),
(37) and (39) of Paper 3.

Equation (1) gav&, = 3000- 1.23- (1+ 32%) ~ 1.3492. 10° N.

From equation (1)M (0.48) = (1421001275048 ., 4 7049.16° Nm.
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Table 6: List of geometry parameters.

Parameter Value

la 1.25m
Il 0.24m

tpvp 0.76 mm

tepDM 3 mm
Iy 0.2,0.4,0.8m
aw 0.1-(3-0.15) m in step of 0.02%
w 0.9-2.7min stepof 0.3 m
dh 15-40 mm in step of 5 mm
tg 6, 8,10, 12 mm
dp 60 mm

Equation (19) gave (using Matlakijt(0.48) ~ —1.8008- 10° N.
Equation (20) yielded\(0.48) = 3(4.7049- 10° + 0.012- (—1.8008- 10°)) ~ 1.2720- 10°

Nm.
Finally, equation (21) gaveom= L272018° _ (-1800810) ~ 553 MPa.

6
In Figure 5, the applicable design chart for this case islaygul. The chart was selected
as the one which has parameter values closest to the actighaxample.

—_—lpy=02m

(== |y=04m

1 =08m
——

2.8

2.6

2.4

2.2

Figure 5: Design chart fdg = 12 mm,w = 1.2 m,d, = 60 mm anddy = 20 mm.

In the diagrama, = 0.18 m was chosen on the x-axis, whereas in the cadg ofie
had to interpolate between the isolines corresponding$00.4 m andly, = 0.8 m. The
value ofa which corresponded to the actual combination of parametgeandly,, was
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read off from the diagram, which yielded~ 2.44. The maximum principal stress of the
balustrade was determined accordingte o - Onom= 2.44-55.3 ~ 1349 MPa.

4.6 Resultsand Comparison

This subsection is devoted to a discussion and comparisine oésults obtained using the
various design methods discussed in this section. In Talkee¥alues of maximum prin-
cipal stress are presented. From the table one can contlathé results are sufficiently

Table 7: Comparison of different methods for stress premficti

Method Maximum principal stress (MPa)
FEM, solid elements 1194
FEM, M-RESS 1255
Design chart 134.9

close to each other in order to classify the methods as yigldquivalent results. More

rigorous comparisons of the two first methods are providéthmers 1-2. The result using
the third method carries some uncertainties related to messity when constructing the
chart, the selection of the design chart to match the acttatfsparameters, parameter
interpolation and reading off the chart.

5 Summary of the Papers

5.1 Paperl

M. Fréling and K. Persson. Applying Solid-shell Elementd.aminated Glass Struc-
tures. Published inGlass Worldwidglssue 31, Sept/Oct 2010, 144-146.

Summary: Solid-shell finite elements are proposed by Maria Fréling Eent Persson
for the efficient and accurate modeling of laminated glasscires. The elements are
applied to two test examples and performance is compareD telésticity theory. One
example involves a real world structure, where speciahtitie is directed to the predic-
tion of stress distribution around point fixings.

5.2 Paper 2

M. Froéling and K. Persson. Computational Methods for LamgdaBlass. Submitted to:
International Journal of Applied Glass Science

Summary: A new solid-shell finite element is proposed for the purpofkefficient and
accurate modeling of laminated glass structures. The eleime@pplied to two test ex-
amples and the performance concerning accuracy and etfyciscompared to standard
three dimensional solid elements. Further examples liitssthow the element could be
applied in the modeling of laminated glass structures watltelol and adhesive joints.
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5.3 Paper 3

M. Froéling and K. Persson. Designing Bolt Fixed LaminatedsSlaith Stress Concen-
tration Factors. Submitted téinternational Journal of Applied Glass Science

Summary: A method for determining stress concentration factorsldaminated glass
balustrades with 2+2 bolt fixings is developed. The stresg@atration factors are pre-
sented graphically in design charts. Through the use oflsifigpmulas and the design
charts, the maximum principal stresses of the balustraddeadletermined for an arbi-
trary combination of the geometry parameters involved.

6 Conclusionsand Future Work

This thesis deals with the development of methods for spresdiction of bolt fixed lam-
inated glass structures. On one hand, a recently develamesldiement, [10], is imple-
mented and it is proven that the performance is accurate Witemes to the modeling
of thin laminated glass structures subjected to bendingefisaw for laminated glass with
bolted and adhesive joints. The computational performamstrongly improved com-
pared to when a standard three dimensional solid elemese. Wne can conclude that
this element could be used in finite element analyses of a@rpminated glass struc-
tures with many bolt fixings or adhesive joints. On the othaardy a method is developed
such that the maximum principal stress of a laminated glakstrade with 2+2 bolt fix-
ings could be determined using simple formulas and designtsh This leads to great
time savings for the designer, since an investigation ofsthesses of balustrades with
different design parameters could be performed withoutefiiement analyses. It is also
not necessary for the designer to possess the advancededgawf the finite element
method which is required in order to analyse advanced gtasstgres.

For future work, a number of extensions can be made when iesaaithe development of
the design charts. The must obvious extension is to devatufas charts for balustrades
with 3+3 bolt fixings. The development of these charts is toempdeal finished, which
has been demonstrated in Section 4. There are possibfittiedeveloping charts for
parameter combinations that have not been taken into atdounnstance considering
different thicknesses of the PVB layer. Other materialstif@r interlayer could also be
considered. It could also be interesting to consider otpyeed of bolts and bolts for
countersunk holes. It is of course of interest to make suaettie design charts are in
line with current Eurocodes, since Eurocodes substitutedh construction standards
from the beginning of year 2011. An extension to include oatdbalustrades would
also be within reach. Less obvious is to consider other tygpeonnections, see [16]
for an overview of different types of connections. Espdgiablhesive connections are
of interest, because the larger contact area between timection and the glass leads to
a redistribution of the stress concentrations that glasg lmeasubjected to. The use of
glued connections also leads to greater transparency dttheture. Furthermore, one
may consider to develop similar charts for other types afcstires, for instance facades.
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APPLYING SOLID-SHELL ELEMENTS TOLAMINATED GLASS
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Applying Solid-shell Elements to Laminated Glass Structures

Maria Fréling and Kent Persson

Abstract

Solid-shell finite elements are proposed by Maria Froling and Kent Refssdhe efficient and
accurate modeling of laminated glass structures. The elements are appliedtéstwramples
and performance is compared to 3D elasticity theory. One example involeaswaarld structure,
where special attention is directed to the prediction of stress distributiondmint fixings.

| ntroduction

Although glass is commonly used as a structural materiakkedge about its mechanical
properties and structural behaviour is less than for ottractiral materials. Therefore,
it may be difficult to predict the strength of glass structirghich may result in sudden
failures [4]. One alternative to the use of single layereakglis the use of laminated
glass, ie two or more layers of glass bonded with plastialeyers. A major advantage
of laminated glass is that a properly designed structuosvalfor one glass pane to break,
while the remaining layers can continue to carry the appbeds.

The combination of very stiff (glass) and very soft (PVB) miatls makes a laminated
glass pane behave in a complicated manner [1]. The disecantgistress distributions that
may develop in laminated glass panes subject to certais lmad boundary conditions are
difficult to model numerically by means of the finite elemerthod. The discontinuities
are particularly pronounced around holes and edges anglisiscommon that the largest
stresses occur in these regions, it is important that stiesssbutions are represented
correctly by the model.

The stress distributions are well captured by 3D solid el@mbeut the application of these
elements to large real world structures with several poxmds leads to very large mod-
els, which are practically impossible to analyse usingddath computational resources.
One means of overcoming the problem of poor computatiori@liezicy is to use shell
elements. However, the shell theories that are requireddaraccurately to determine
stress distributions in laminated glass structures arepticated. In this work, a novel
so-called solid-shell finite element [3] is implemented apglied to test examples that
comprise laminated glass structures. The element is de»eltor modeling composite
structures with different material properties in each taye

The reason why the solid-shell element is appropriate #ntbhdeling of this type of com-
posite structures is that the element only requires oneegielayer per material layer but
includes several integration points through thicknesss Téature leads to great savings
in terms of computational time, still preserving great aacy.

Implementation of the element is relatively straight-fard. Further advantages com-
pared to shell-elements are that the full 3D constitutiveslare maintained, the use of
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rotational degrees of freedom is avoided and that contact®ns are more easily mod-
eled through the presence of physical nodes on top and bstidiacces. The element has
proved to be both robust and efficient through extensivagpst

Numerical Tests

In this section, the solid-shell element of [3] is applieddietermine the behaviour of
laminated glass structures. The accuracy and computagaéiitdency of the element are
evaluated through the analysis of two numerical test probland comparison is made to
3D elasticity theory (3D solid element).

The first test problem consists of a clamped plate, subjdot@dconcentrated load. As
a second test example, a standard solid-shell element afatimenercial finite element
software ABAQUS/CAE is applied to a square plate, with a pdikihg in the middle of
the plate. This structure has been analysed experimeatadiyzaumerically by [2].

The clamped plate is a square plate with a side length of 1620fme thickness of one
glass layer is 5mm and the thickness of the PVB layer is 0.5@lass and PVB are set
to be linear elastic materials. The material parametergléss arde = 78 GPay = 0.23
andE = 6 MPa andv = 0.43 for PVB. A point load is applied on the top glass plate, at
the centre of the plate. This load has the size 40000 N. The islaiscretized using 88
elements in the x-y plane, and one element per layers in thesgtion.

In figure 1, the deformed structure in 3D is shown. Only top Bottom surfaces of
the glass panes are shown. A scale-factor of sizB02is applied when visualising the
results.

The same structure is implemented in ABAQUS/CAE. The elenyge is a 20 node
hexahedral quadratic solid element (C3D20R). The mesh has@2b000 elements. In
the model, the symmetry of the structure is utilised and amlg quarter of the plate is

1000

Figure 1: Deformed structure for clamped plate test.



modeled.

Table 1 summarises results for the two models. The varighbiaterest is the midpoint
deflection in the z-direction of the lower glass pane. Alke,riumbers of variables of the
models are reported. All results are given as fractions @tctirresponding result for the
3D model.

For this test, the result using solid-shell elements desiapproximately 10 % from the
corresponding result using 3D solids. The model size whersttid-shell elements are
used is less than 0.5 % of the model size when 3D solids are ikede results illustrate
the relatively good accuracy that is achieved with the usmbdl-shell elements but with
a very small fraction of the model size for the corresponaimgiel using 3D solids.

In the case of the square plate with point-fixing, the geoynaftthe structure is that of a
500mmx 500mm plate of laminated toughened glass, with a bolt halleeatentre. The
diameter of the hole is 28mm.

For symmetry reasons, only half of the plate is modeled. Thdehis set up to mimic a
compression test, where a compression force is appliedooof @ cylindrical bolt affixed
to the glass [2]. The glass plate rests on a steel frame witlensions such that the
unsupported area of the glass plate becomes 424m24mm. The bolt has a diameter
of 50mm. In the compression test, the top cylindrical meiat@ (spreader plate) is put
at the location of the bolt hole and a compression force isiegpo the bolt.

In the modeling work, some simplifications are made. Theegensbber gasket between
the frame and the glass and only this part of the frame is neddelhe same modeling
strategy is chosen for the bolt, where an EPDM ring is plaatd/iéen the bolt and the
glass. The inner diameter of the EPDM ring is 34mm.

All materials are modeled as linear elastic. The bolt rind #re rubber gasket are con-
nected to the glass by constraints with the type tie. Theeulhsket is assumed to be
locked in all directions. In order to reflect the conditiorishee compression test, a deflec-
tion of 4.75mm is applied to the top of the EPDM ring. This esponds to a deflection
of the upper glass pane, close to the bolt hole, of approgmn&mm.

The solid-shell element of [3] is not implemented in ABAQ3E. In order to get an
idea of the performance of this type of element applied towcire with a point fixing,
a similar element in ABAQUS/CAE is used, namely an eight-ngadadrilateral in-plane
general-purpose continuum shell element (SC8R) is usedddathinated glass part. For
the other parts, standard eight-node linear brick elem@®@®8R) are used. In total,
around 11000 elements are used. For comparison, the sanmed imachplemented us-
ing 20-node quadratic brick elements (C3D20R). For this maajgbroximately 32000
elements are used. The finite element meshes for both maeedésplayed in Figure 2.
Figure 3 shows result graphs for the two models. The resu#bia is maximum principal

Table 1: Comparison between solid-shell elements and 30 stdéiments for clamped
plate test.

Element type Midpoint defl. in z-dir.| No of variables
3D solids (ABAQUS/CAE) 1 1
Solid-shell elements 1.10 0.003




Figure 2: Finite element meshes for the point fixed platet (&fsolid element; right (b)
solid-shell element.

stress. In the graphs, the location of the maximum valueligiariable is concluded to
be in the upper glass layer around the bolt fixing, directigva@xthe PVB layer.

Figure 3: 3D plots of maximum principal stress for the poirédl plate models. Top (a)
solid element; Bottom (b) solid-shell element.

Results for maximum principal stress at one corner node d¢tosiege hole of the upper
glass pane, together with number of variables in the model<CdPU times are presented
in Table 2. All results are presented as fractions of theesmonding results for the 3D-
model.

The experimental mean value of the maximum principal staéfise corresponding loca-
tion is 1.16 times the corresponding value for the 3D modelTRBe modeling results are
in rough accordance with the experimental results. Notdwas that when solid-shell
elements are used, less than 1% of the CPU time of the corrésgpjob is required
when 3D solid elements are used.

Table 2: Comparison between solid-shell elements and 3@ stdiments for point fixed
plate test.

Element typel Max princ. stress No of variables| CPU time
3D solids 1 1 1
Solid-shells 1.04 0.11 0.007




Conclusion and Outlook

In this work, numerical tests have been performed to assegsetformance of a relatively
new so-called solid- shell element [3]. Overall, performamf the element is good in
comparison to standard 3D solid elements but with considigsamaller model sizes and
thus, shorter CPU times. For a real-world like glass baldstkaith one point-fixing, less
than 1% of the CPU time is required when modeling the struaiitte solid-shells than
with 3D solids. Given that the dimensions and number of pfikimgs of this structure
are small compared to those of real-world structures, ibssible to imagine the great
time savings that are obtained when analysing larger ane camplex structures using
the solid-shell element. The long-term goal of this workasmplement the solid-shell
element [3] in a glass design programme, Clear Sight, whishokean developed in work
by [5]. It is intended that large glass shell structures waitharbitrary number of point
fixings could be appropriately designed with standard cdergaower. The results of the
current work show that the solid-shell element is well glif@r this purpose.
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Computational Methods for Laminated Glass

Maria Fréling and Kent Persson

Abstract

A new solid-shell finite element is proposed for the purpose of efficiedtaccurate modeling
of laminated glass structures. The element is applied to two test examples gretfthrenance
concerning accuracy and efficiency is compared to standard three dom&nsolid elements.
Further examples illustrate how the element could be applied in the modeling of tathglass
structures with bolted and adhesive joints.

1 Introduction

It is common today to use glass as a structural material. ftinfately the strength design
and structural behavior of glass is less known than for attreictural materials like steel,
wood or concrete. Thus, there is a risk for inaccurate ptiedis of the strength of glass
structures which could result in sudden failures, [12].

In order to increase safety, laminated glass may be useshimhstf single layered glass.
Laminated glass consists of two or more glass layers bond#dplastic interlayers.
The most common material used for the interlayer is polybungral, PVB. The use of
laminated glass should allow for the glass panes to breale e remaining layers can
continue to carry the design loads, and the scattered glkxssgcan stick onto the plastic
interlayer, and thereby prevent injury.

On the other hand, laminated glass displays a complicatedhamécal behavior due to
the combination of a very stiff material (glass) and a verf swaterial (PVB), [4]. A
laminated glass-PVB plate is less stiff than a monolithiesgl structure of correspond-
ing dimensions, which leads to larger displacements. Eumbre, under certain loads
and boundary conditions, discontinuous stress distobstidevelop in laminated glass
structures, ([5], [23]).

Regions close to supports and connections are often suthjexteoncentrated forces.
Since glass is a brittle material that not show plastic de&drons before failure, the abil-
ity to distribute stresses at load is limited and thus steesgentrations easily develops.
Glass fails under tension and in reality the tensile sttergtnuch less than its theoretical
counterpart. This is due to the impact of defects on the sarfahe defects are created
during manufacturing, treatment (such as hole drilling aotting) and the use of the
glass, [5].

The discontinuities of the stress distributions of lam@iaglass structures are most pro-
nounced around holes and edges, that is, in the regions whetargest stress concen-
trations often occur, since these regions often are swdgetct concentrated forces and
may have larger amounts of micro defects. In order to ilatstthe discontinuous stress
distributions that may arise in a laminated glass strucasemple example is provided.
In Figure 1 below a cantilever beam subjected to bending lyirat fpad at its free end is
displayed.



Figure 1: A cantilever laminated glass beam subjected tard [wad.

The structure in Figure 1 is modeled by means of the finite efgnrmethod using two
dimensional plane stress elements. The material parasitetei78 GPay = 0.23 (glass)
andE = 6 MPa,v = 0.43 (PVB) are used. The distribution of normal stress along the
thickness direction at a cross section located at the cehtbe beam is shown in Figure
2. As one can see from the figure, the normal stress distisiof the two glass layers
are linear as expected. At the glass/PVB interfaces therdiacontinuities in the stress
distribution and the normal stress in the PVB layer is almzesb. The large difference in
stiffness between glass and PVB leads to a shear deforneitibe PVB layer and thus
to a partial shear force transfer between the glass layers.

It is important for the purpose of safe and cost efficientrgjtle design, that the structural
behavior in terms of displacements and stress distribsiteme accurately determined.
Classical design methods, such as simple analytical fosndia not provide sufficient
information in order to determine the stress distributiansund bolt connections and
determine the load bearing capacity of glass, [14], espgdaaminated glass. Instead,
a finite element model may be used for stress predictions.rdardo sufficiently well
describe the stress distributions around the bolt conmestia very fine mesh around the
bolt holes are required. In comparison to bolted connestiadhesive connections may
distribute the load over a greater surface of the glass,jrigan a reduction in stress
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Figure 2: Distribution of normal stress along thickness.



concentrations. Despite this advantage, there are fewrarof load bearing adhesive
connections used in glass structures and appropriaterdgsidelines are lacking, [27].
For load bearing adhesive connections, the maximum sgegs®ir in edge regions of
the adhesive layer and for accurate design of the conneittisimportant to achieve
accurate enough stress predictions in these critical megid-inite element analysis is
recommended as a tool for stress prediction, [1].

Accurate predictions of laminated glass strength can baidéd through finite element
analyzes using three dimensional solid elements. Howéwenake precise prediction
of the stress distribution several elements must be emgloy¢he thickness direction
of each layer resulting in that standard computationaluess limit the scope of the
analyzes that can be made. Large real world structures ewiral point fixings are thus
practically impossible to analyze, since it easily needans of degrees of freedom for
a correct result.

According to the classification of [25], a laminated glasatglfalls into the category
laminated composites, which are made up of layers of diffemeaterials. It is possible
to reduce the three dimensional elasticity problem to a timeedsional one by mak-
ing suitable assumptions regarding the kinematics orsstete through the thickness of
the laminate. In the simplest of those laminate theories kthematic assumptions that
straight lines normal to the xy-plane before deformationam straight after deformation
and do not undergo thickness stretching are used. Thesmpiisus are the same as in
the classical Kirchhoff and Reissner Mindlin plate thearid$e structure is in a state
of plane stress. The use of these theories as a basis foradlaihent model reduces
the model size and increases computational efficiency. Meivdue to the material dis-
continuity in the thickness direction of a glass/PVB comi@shis structure experiences
piecewise continuous displacement and transverse striesgee thickness direction. The
requirements that these two conditions are fulfilled anmestC-requirements, [9]. Un-
fortunately, the two dimensional laminate theories do ndtlf all these demands. The
resulting stress distributions are erraneous and themliscmus stress distribution shown
in Figure 2 is not correctly predicted.

An alternative is to use a layerwise laminate theory thataias full three dimensional
kinematics and constitutive relations, [25]. The corregpiog finite element model pos-
sesses some computational advantages compared to adelldimensional solid element
model. These advantages relate to the fact that a two dioeadsiata structure (two di-
mensional finite elements) could be used. In the modelingdeéiaced structures, the
layerwise model may however be computationally ineffigi¢®b], and cumbersome to
implement.

Instead it may be appropriate to use so-called solid-shethents, such as the element
presented in [8]. The element is developed for modeling asn@ structures with dif-
ferent material properties in each layer. In particulag, fill three dimensional consti-
tutive laws are maintained allowing for a correct stresgithstion prediction, especially
at loads and supports. Since the element only requires engeet in the thickness di-
rection of each material layer, but includes several irgtggn points through thickness,
great computational savings are made and and good accwatytdined. The imple-
mentation of the element is relatively straight-forward.fukther advantage compared



to plate or shell element formulations is that contact situns are more easily modeled
through the presence of physical nodes on top and bottoracasfof the element. Of
great importance for applications with bolted joints istttie full three dimensional ma-
terial definition is used and all stress components are ledémiwhich may be important
at the supports. The element has proven to be both robustfaidre through extensive
testing.

In this work, the solid-shell element in [8] was implemengad applied to test examples
comprising laminated glass structures. The accuracy dideety of the solid-shell
element were examined. The results were compared to thiesréfsat were obtained with
a three dimensional solid element. Finally, the applicatbsolid-shell elements to real
glass structures is illustrated through several examples.

2 The Solid-Shell Concept: An Overview of the Litera-
ture

A solid-shell element is a three dimensional solid elememttvis modified in order to
be suited for the analysis of shell-like structures. The ifications are made in a man-
ner so that typical shell properties like bending and in elatretching can be modeled
approprietly using one element in the thickness directioly.oWhen using a low order
three dimensional solid element for the modeling of shké-ktructures, certain lock-
ing phenomena occur. The solid-shells are constructed asladn such that locking is
prevented.

The solid-shell concept stems from work by [16]. In that pageveral solid-shell ele-
ments are presented. Common for these elements is that theyploy the Assumed
Natural Strain (ANS) method, [11], to prevent locking. Qthentributions to the litera-
ture on solid-shell elements are for instance [24] and [[l14] discusses several locking
phenomena occuring in low order solid-shell elements aerdfdlbus is particularly on
large deformations’ problems. [3] proposes a new class giitaiode solid finite ele-
ments. The elements can be used both for three dimensioddhenshell applications.
The elements use the Enhanced Assumed Strain (EAS) appi{@&thin order to pre-
vent locking problems. However, the use of the EAS methotiése cases leads to poor
computational efficiency. The Reduced Enhanced Solid-SREIES) elements presented
in ([2], [8]) are eight-node solid-shells. Due to a speciagoint quadrature integration
scheme, these elements possess considerably higher atiopail efficiency than their
predecessors of [3]. The integration scheme requires ardyetement layer for a single-
layered material, but uses multiple integration point®tigh thickness. This leads to
high computational efficiency and great accuracy. The reductegration scheme re-
quires physical stabilization to prevent zero-energy rsodéhe stabilization method of
[7] and the ANS method are employed for this purpose. In ofaethe Modified RESS
(M-RESS) element, [8], to pass the membrane patch test, dabdisation method based
on results of ([22], [21]) is used. For instance the B-bar apph, [18], is used in order to
alleviate locking problems that occur due to the stabilaaprocedure. The EAS method,
[26], plays an important role in preventing various type®ttfer locking problems that
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occur in the element formulation.

The M-RESS element is particularly suited to use for the appbn to laminated glass,

since the reduced integration scheme allows that only amestt layer is used per mate-
rial layer, which greatly reduces the computational efficie The excellent performance
of the element, and the fact that implementation guidelaresstraightforward further

motivates the choice of this element for use for computatmfrglass structures.

3 Brief Description of the M-RESS Element

3.1 M-RESS and the EAS-method

M-RESS stands for Modified Reduced (in-plane) integratiomgticed strain field, Solid-
Shell element. The geometry of the element is that of a threergsional hexahedral solid
element with eight nodes and three translational degreégefiom per node. The ge-
ometry of the element, together with the coordinate sysiaamdved, is shown in Figure
3.

The M-RESS element is based on the Enhanced Assumed Stra8) @pfproach, [26].
The EAS method plays an important role in reducing volumetnd Poisson locking.
The crucial point of the EAS method is to enlarge the straild fie through adding a
new field of enhanced strain parameters, It can be shown (see for instance [2]) that
only one enhancing parameter;, is enough in order to reduce the locking problems.
This means that the locking problems can be reduced coasilgewhile maintaining
high computational efficiency of the element formulationiethis achieved through the
reduced integration of having multiple integration poiaksng the local-axis only. To
overcome the hourglass modes that then may develop, hesrgfiabilization is made by
the Assumed Natural Strain (ANS) method for the transvdisarscomponents whereas
the membrane field were stabilized based on the stabilizagotors of [22].

In the local frame, the enhanced strain field is added to thimary strain field:

5:8+£a:[§uéu][g}:l§0. (1)

L
X 3

5 X = Integration points

Figure 3: Element geometry.



B, is the standard FEM strain-displacement mateiis the enhanced part of the strain
field. In the convective coordinate system, the enhancadhdield is chosen as:

&7z = (a1, (2)

which leads to the following enhanced strain-displacemettix in the local coordinate
system:

Ba = Qo[000200]". 3

For a definition of the transformation matr@y, see [8] and references therein. For
linear applications, the application of the EAS method ¢etdthe following system of

equations, [26]:
Ruu Rua u fext
ko o [ (2) = (%0 ) @

Static condensation af can be performed on (4) that leads to:

Ru+a :Ruu_Rua(Raa)flkau. (5)

The physical stabilization procedure adds an extra rb%i'?'t,, to the stiffness matrix as
follows:

K =KUY+ kM. (6)

The displacement field can now be obtained as:

u=(K)" 7)

3.2 Strain Field

For the application of the physical stabilization methodiiasion of the strain tensor
into membrane, normal and transverse shear componentedassay. In the convective
coordinate system the strain tensor can be written as:

€= [Em...€n...& | = [Egz Enn Een---E2z.--ExzEng] ", (8)

where the strain components are defined as:

1
€ab= 5(Jalp+Jpla), (@D=EnN,0), ©)

whereJ 5 are the lines of the Jacobian matdix
The strain tensor in the local coordinate system is given by

€ = Qog, (10)
whereQg is defined as in [8] and references therein.



It can be shown, see [8], that the total strain field can be @@ to constant, linear
and bilinear terms in the coordinatésn and{. The constant membrane strain field is
composed of a component evaluated at the center of the elemndra component that
depends only on thé coordinate:

e = Em+Lghy (11)
The constant membrane strain tensor must be transformée todal coordinate system
through the transformation (10). For a detailed descniptibthe corresponding strain-
displacement matrices, see [8].
The reduced integration scheme with integration pointg atdng theC-axis will lead to
the cancellation of the contributions to the strain-displaent matrix that are correspond-
ing to the non-constant terms of the strain field. Physi@ddiBzation strain-displacement
relations are therefore required for those terms. The manabpart of the stabilization
strain tensor is given by:

efl) = g8, + ne, + Ened) + £2e8 4 el (12)

The strain tensor is transformed to the local coordinateesyshrough the application of
(10). Explicit descriptions of the corresponding straigpthcement matrices are given in
[8].

The ANS-method is used in order to construct strain-dispteent stabilization matrices
for the normal strain componegf; and for the transverse shear straggsande,;. For

a description of the application of the ANS-method, we ré&dgB].

A second stabilization method is applied to the membrara@nsttomponents in order
to make the M-RESS element pass the membrane patch test. Baslke method are

provided in ([22], [21]).

To eliminate volumetric locking that occurs due to the diahiion procedure, the B-
bar method, [18], is used. When applying the B-bar method itotted coordinate system,
the strain-displacement operator corresponding to thesipalystabilization scheme is
divided into its dilatational and deviatoric componentsd anly the deviatoric part is
used for stabilization. See [8] for details. The resultitrgis-displacement matrices for
the hourglass membrane field are given in [8].

It should be noted that the stabilization scheme requisiie nodal degrees of freedom
are specified in the local coordinate system. The follownaggformation from global
coordinates to local coordinates is therefore used:

di =Ro-d. (13)

Ro is defined in [8].
The resulting membrane strain tensor for the hourglassiseldfined as

sl— | &y | = (E-B, +n-B),+&n B+ B +nt-BY) -Ro-di.  (14)



3.3 Stress Evaluation

The displacements obtained from (7) are used together wuhte®n (1) in order to com-
pute the strain fielcE. Once the strain distribution has been determined, thessttistri-
bution is given by:

G:DézD-[éuéa]{u}. (15)

D is the constitutive matrix. The stresses are evaluatedeahtbgration points. A stress
smoothing procedure based on a quadratic least squareadgdsin order to extrapolate
and average the stresses at the nodes, [10].

4 Numerical Examples

The M-RESS element described in the previous section wasedppl a simple test ex-
ample comprising laminated glass and a convergence asaljs¢ accuracy and compu-
tational efficiency of the element were evaluated througthatimalysis of the test problems
and comparison was made to three dimensional solid elemientise first test example,
a cantilever beam made of laminated glass was loaded witliné Ipad in the negative
z-direction. The convergence analysis comprised a clartgmethated glass plate with a
distributed load applied at the top surface.

4.1 Cantilever Beam

First, the M-RESS element was implemented and tested usingpéestest problem com-
prising a cantilever beam of laminated glass subjected toirt poad at the tip of the
beam. The x-y dimensions of the beam were %M. The laminate consisted of two
glass layers with a PVB interlayer. An illustration of theabein the xz-plane is provided

in Figure 4. Glass and PVB were set to be linear elastic nsserThe material param-
eters were the modulus of elasticiB/,and Poisson’s ratio). For glassE = 78 GPa and

v = 0.23 and for PVBE = 6 MPa andv = 0.43. The point load= = 4000 N and was
directed in the negative z-direction.

The example was modeled using Matlab. Two different valdebethicknesst, were
employed, namely= 2.1 andt = 4.2. For the first case, the thickness of the glass layers,

AZ F

Figure 4. Two dimensional geometry of cantilever beam.



ty = 1 and the thickness of the PVB layés,g = 0.1. For the second casg,= 2 and
tpyg=0.2.

The beam was discretized using four different discretiretiin the xy-plane, and one
element per material layer in the z-direction.

The test problem was also modeled using ABAQUS. The elenypat was a 20-node
qguadratic brick element (C3D20R). The mesh was discretizedydsur different dis-
cretizations in the xy-plane and four elements per matkyar in the z-direction.
Results from the analysis with a total thicknéss2.1 are presented in Table 1 for the M-
RESS element. The presented quantities are the verticattefiat the tip of the beam,
the maximum normal stress component in the x-direction hadhtimber of variables in
the model. The maximum normal stress component is given fopss section at the
middle of the beam in the x-direction. The first two measuraedngjities are structural
mechanical quantities and reflect the accuracy of the elerii@e last quantity is related
to the computational efficiency of the element. All struatunechanical quantities are
represented as fractions of the results achieved when & fimesh is used. The number
of variables are taken as fractions of the number of vargafdethe finest mesh when a
three dimensional solid element is used, see below.

Similar results for the three dimensional solid elemenfaesented in Table 2.

The corresponding results foe= 4.2 are reported in Tables 3 and 4.

For the thicknesg, equal to 2.1, both the M-RESS element and the solid elememt sh
good convergence. The results for both the vertical tipldegmentyip, and the normal
stress in the x-directiongyy, have converged within reasonable limits/(— 5% from
the corresponding results for the finest discretized masgectively) using the 202
discretization in the xy-plane. The M-RESS element mode$ wsdy around 0.7 % of
the variables of the finest discretized solid element mam@hpared to around 8 % for
the solid element model of the same discretization. Wherequal to 4.2, only 0.2 % of
the finest model size for the solid element is required forNRRESS element to yield
convergence.

Table 1: Results for cantilever beam test for M-RESS elemen®.1.

Mesh Weip Oxx | Number of variables
10x 1x 1|0.997| 0.934 0.0024
20x 2x 1(0.999| 1.020 0.0070
40x 4 x 1| 1.000| 1.000 0.0228
80x 8x1|1.000| 1.000 0.0810

Table 2: Results for cantilever beam test for solid elenmtent?.1.

Mesh Wip Oyx | Number of variables
10x1x4|1.317| 1.002 0.0265
20x 2x 4| 1.000| 0.999 0.0806
40x 4 x 4| 1.000| 1.000 0.2737
80x 8 x4 |1.000 1.000 1.000




Table 3: Results for cantilever beam test for M-RESS element.2.

Mesh Weip Oxx | Number of variables
10x 1x11|0.998| 0.974 0.0024
20x 2x 1|0.999| 1.003 0.0070
40x 4 x 1| 1.000| 1.000 0.0228
80x 8x 1|1.000| 1.000 0.0810

Table 4: Results for cantilever beam test for solid elentent4.2.

Mesh Wip Oyx | Number of variables
10x 1x4|1.326| 1.000 0.0265
20x 2x 4| 1.000| 1.000 0.0806
40x 4 x 4| 1.000| 1.000 0.2737
80x 8x4|1.000 1.000 1.000

This test example points to that the M-RESS element is mo@egitithan a second order
three dimensional solid element when it comes to modelimgiated glass. However, the
results above are not optimized when it comes to mesh sizermmdhould be careful to
draw any conclusion regarding relative efficiency of the eA@ments. In the next section,
a more rigorous convergence study is made which shows thveeperformance of the
elements in a more clear way.

The ability of the M-RESS element to represent the discontisistress distribution that
arises in the thickness direction of laminated glass is daestnated in Figure 5. The stress
distribution foroyy is shown for a cross section at= 50. The results from simulations
using the finest discretized mesh for the M-RESS element entak reference solution
and the stress distribution for the 0L x 1 mesh is chosen to illustrate the efficiency of
the M-RESS element.

5 T
—e—10x1
—+— Reference

2k

Thickness direction
o

[ Il Il Il Il Il Il Il Il Il
21 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Normal stress x1d"

Figure 5: Distribution of normal stress along thicknessitibgver beam test,= 4.2.
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From the figure it is clear that the use of the M-RESS elemerdymes results that are
representing theyy distribution in the z-direction well, for a relatively caa mesh.

4.2 Convergence Analysis

This convergency analysis comprised of a clamped squate pfaa laminated glass
loaded by a pressure surface load, Figure 6. The laminatsted of two glass panes
and one intermediate layer made of PVB. The surface load od #@0 unit area acted
on the surface of the uppermost glass pane. The in-planendiores of the plate were
1000x 1000 and the total thickness was 21 whereas the glass tisskmes 10 and the
interlayer thickness 1. Both glass and PVB were modeled aaiielastic materials and
the same material parameters as for the cantilever bearwéestused. The plate was
clamped, thus all displacements of the four sides were insd to zero.

Three different elements were tested in the finite elemealyais of the plate; the M-
RESS element, a linear 8-node (C3D8R) and a quadratic 20-nedeert (C3D20R),
both standard isoparametric quadrilateral elements wdheed integration. The analyses
with the 8- and 20-node elements were made using the commhEEEpackage ABAQUS
and the analyses with the M-RESS element were made usingMd&ita the M-RESS
element, one element for each material layer was used imitlness direction whereas
the 8-node element required four elements and the 20-nadelements for each element
layer to reach a reasonable convergence rate.

To evaluate the models, the in-plane stress in one direahdrthe vertical displacement at
the center point of the bottom glass surface were comparesliliérom the convergence
analysis are shown in Figures 7 and 8. The results in the 8guese normalized to the
results using the 20-node element and 2 millions degreaseddm.

The 8-node element showed very poor convergence rate fatahged laminated plate
structure. Not even by using 500.000 degrees of freedomi¢heeat reached a sufficient
result, especially not for the stresses that showed aboui @ror. The 20-node element
showed much better convergence rate as shown in Figure &it8060 degrees of free-
dom was needed to get less than 5 % error for both the dispgkeed the stresses. The
M-RESS element that performed extremely well and only reguabout 300 degrees of

Figure 6: Geometry of the clamped plate.
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Figure 7: Comparison of the M-RESS and the 8-node quadrilakaent, displacement
versus number of degrees of freedom to the left and stresswv@umber of degrees of
freedom to the right.
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Figure 8: Comparison of the M-RESS and the 20-node quadalagéement, displace-
ment versus number of degrees of freedom to the left andsstezsus number of degrees
of freedom to the right.

freedom to get less than 5 % error for the displacements amat &0 degrees of freedom
for the stresses to get less than 5 % error.
A conclusion is that standard isoparametric elements widal approximating functions
is not recommended for analyzing laminated glass and the SR&ement is an excel-
lent choice for analyzing laminated glass.

5 Application to Glass Structures

In the previous section the ability of the M-RESS element fwresent displacements
and stress distributions of laminated glass structuregiisothstrated. In order to fully
illustrate the usefulness of the approach, this sectiofsddth the application of the M-

RESS element to several real glass structures comprisingdsea glass. All examples
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comprise supports and joints. The glass supports are @&thed or adhesive.

In the regions where the stress concentrations are expdotadl mesh refinement is re-
quired. When analysing real glass structures of large dimeashat contains several bolt
or adhesive connections, the total finite element modellweillarge and the scope of the
solid-shell concept is particularly useful in order to dease the model size and to reduce
the computational requirements of memory and time.

5.1 Laminated Glass with Bolt Connection

In the following example, a finite element model was made abgperimental test where
a square glass plate with one bolt connection is subjectad¢dmnpressive force. The aim
of the experimental test was to determine the strength esgdaound a bolt fixing. The
commercial finite element programme ABAQUS was used for itinelations.

The geometry of the glass specimen is shown in Figure 9.

In the experimental set-up, the glass plate rested on afsheed of size 50k 500x 38
mm. Thus, the unsupported area of the glass specimen was 424 mm. A rubber
gasket was placed between the glass and the steel. A cgldhdlt was placed on the
top of the glass, at the middle of the plate, and a compre$sice was applied to the
bolt. The bolt had an outer diameter of 50 mm and the hole wasrB8n diameter.

Strain gauges were glued on the glass on the tension side hbtl edge. A test series
was performed and the ultimate tensile stregg,y, for each test, the mean ultimate tensile
stresspmean for the whole test series and the maximum compressive fBreg for each
test are calculated, [5]. The results are reported in Table 5

Since the steel frame was regarded as rigid, only the rulaseg between the steel frame

Figure 9. Geometry of glass plate.

Table 5: Test results.
Test1l| Test2 | Test3 | Test4| Test5| Test6| Mean

Omax(MPa) | 174.91| 201.88| 180.78| 173.29| 154.38| 177.52| 177.13
Fmax (KN) 4.81 4.70 4.75 4.56 4.25 4.57 4.61
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and the glass plate was modeled. Similarly, the bolt has &dMERNg that protects the
glass from direct contact with the steel bolt. Only the EPDi\ wvas modeled. The inner
diameter of the EPDM ring was 34 mm and the ring had a thickaE8snm.

Due to symmetry, only half of the plate was modeled.

All materials were modeled as linear elastic and isotropatthe material parameters are
shown in Table 6.

Since no slip between the rubber and the glass was expecfatl,ti@ constraint was
applied. The load for the compression test was set to the waae of the maximum
force from the experimental tests, see Table 5. The load wpked on the top of the
EPDM ring. Along the symmetry line, symmetry boundary cdiodis were applied. The
rubber frame was constrained to zero displacement in attions.

The M-RESS element was used in the modeling of the laminates$ gllate. For the other
parts of the model, a standard eight-node linear brick elef@3D8R) was employed.
The model contained around 11000 elements. The laminasesd gart had one element
layer per material layer and the EPDM ring as well as the rulghsket parts had three
element layers in the thickness direction. In Figure 10, fihiée element mesh for the
whole structure in the vicinity of the bolt hole is displayés can be seen, the mesh was
refined close to the bolt hole.

As a comparison, numerical tests were performed by use of@B3 and 20-node second

Table 6: Material parameters for model.
Material | E (MPa) | v
Glass | 78000 | 0.23

PVB 5.2 0.45
Rubber 1 0.45
EPDM 7 0

Figure 10: Finite element mesh for square plate model.
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order solid elements (C3D20R). When solid elements were usadefement layers per
glass layer and two element layers for the PVB layer were eyaol. The whole model
contained approximately 34000 elements.

In finite element analyses of the laminated glass plate, dbelts show that the largest
maximum principal stresses are located in the upper glass, lelose to the bolt fixing,
as expected. The distribution of the maximum principalsstes in the glass plate close to
the bolt fixing is shown in Figure 11.

As a quantitative comparison, the maximum principal sta¢ss element close to the hole
edge in the lower glass layer was determined for the modelyiag M-RESS elements
and C3D20R respectively. These correspond to the valueseomdximum principal
stress determined experimentally. The results are predemtTable 7. Observe that the
experimental values of the maximum principal stress aretimimaximum values that
arise in the structure. There was no possibility to glue thersgauges in between the
glass layers, where the maximum principal stresses do .occur

The model size of the finite element model with M-RESS elemematsonly 10 % of that
of the model with solid elements.

The result by applying the M-RESS element is very good for rinda laminated glass
structure with bolts. The element predicts stresses agaecas the second order solid
element with only 10 % of the model size of that element. Theespondance between
simulations and experiments is fair and the modeling resark accurate enough to be
used in practical design of glass structures. The discphrtween the experimental
and simulation results are probably due to that the pragsedf the PVB-layer not were
accurate enough.

Figure 11: Maximum principal stress close to bolt connectio

Table 7: Maximum principal stress close to bore hole.

Maximum principal stress (MP3)
Experimental mean valug 177.1
M-RESS 159.2
C3D20R 153.4
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5.2 Glass Beam with Adhesive Joint

This example deals with the finite element modeling of an grpental test with the aim
of determining the shear capacity of an adhesive joint ingeldimension glass beam.

A series of tests consisting of a four-point bending testloéam with a three meter span
were conducted. The beams were constructed by three fleg-glaments measuring 250
x 2000 mn? with a width of 12 mm. They were joined in overlap joints at thaldle

of the three meter span by two adhesive joints each measB&fg< 250 mm. The
arrangement of three glass elements was chosen to createngesycal beam in order to
obtain pure shear stresses in the joints, see Figure 12.

Five types of adhesives were tested consisting of thrdeasiifesives; a UV curing acry-
late, a polyurethane glue and an epoxy, and two soft, rulkesradhesives based on silyl
modified polymers (SMP), commonly found as adhesives inmatwe glass gluing. The
adhesive layers were about 0.2 mm in thickness for the sthkaives and about 2 mm
for the soft adhesives. The tests revealed that a soft wedk-BAded adhesive may, for a
large shear-joint, result in a stronger joint than for usargjiff strong adhesive, see Table
8.

Tests were also conducted on small specimens«(20 mn?) to evaluate material proper-
ties and material models for the various types of adheq26%, These material properties

P2 P/2
250
A\ l l A\
s T I
7 6
A 54 f JaoE
L
1 1200 1
A-A
3 2000 3
1 1
Adhesive layer=
| | i 12
|
| ]
Bl B

3000

Figure 12: Test setup of four-point bending test of glassrbedh adhesive joint.

Table 8: Ultimate load and deformations at the mid-pointeflbeam.

Type of adhesive Total applied load (kN) Displacement (mm
SMP type 1 49.3 51
SMP type 2 48.8 50
Epoxy 30.3 10
Polyurethane 10.3 3.5
UV-curing glue 22.3 7.5
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were utilized in the finite element modeling of the jointedire

In order to evaluate the tested adhesives the glass beammuaated in ABAQUS both
by use of the M-RESS element and an eight node three-dimexisjoadratic solid ele-
ment (C3D20R). Here, the results from the simulation with thexg adhesive are pre-
sented and a comparison is made from using the two elemeas.typhe flat glass el-
ements were modeled as three dimensional objects with agiiodulus of 70 GPa
and a Poisson’s ratio of 0.23. The epoxy joint was modellexmaing to the evaluated
material model from the tests of the small specimens to a ysuodulus of 1500 MPa
and a Poisson’s ratio of 0.25.

To ensure that the load was applied symmetrical, the loadappied on a reference
point coupled to nodes by a kinematic coupling constrainhe Toad was applied as
a displacement of the reference point. The magnitude of is@datement was -0.006
m in the load direction. All other possible displacementshaf reference point were
constrained to zero. At the supports, displacements weneepted in the load direction
and in the thickness direction of the beam.

In the finite element model with M-RESS elements, one elenagmriper material layer
was applied in the thickness direction. The model contamguroximately 16000 ele-
ments. For three-dimensional solid elements, the modeaowed about 34000 elements.
As a comparison between experimental results and the sesaih the finite element
simulations, the displacement in the load direction at péiof Figure 12 was taken as
test variable. Results from experiment and simulations ezsgmted in Table 9. Both
of the finite element models give accurate enough resultsjtas noted that the model
with M-RESS elements requires merely 20 % of the model sizée@htodel with solid
elements.

For the stiffer adhesives, stress-concentrations oatwatehe corners of the joint and
consequently the critical shear stress was first reacheel. tRer the silicones the stresses
were more evenly distributed, the concentrations werergbdeat the edges of the joint
and of less magnitude than in the stiffer adhesives. Thecipah pattern of the stress
distribution is shown in Figure 13.

From the results it is shown that the concentration of steptays a decisive role in the
ultimate load of the joints. The apparently stronger glugs put to have less ultimate
load than the silicones due to the high magnitude of thestteacentrations in the cor-
ners. The only glue to compete with the silicones is the Epasych due to its high
ultimate shear stress supports the stress concentragties. b

Table 9: Ultimate deformations at the mid-point of the beam.

Test Displacement (mm
Experimental 10.00
M-RESS 10.20
C3D20R 10.24
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Figure 13: Shear stress distribution for adhesive layer.

6 Conclusions

This paper deals with accurate and efficient methods to perfimite element analyses
of laminated glass structures. The solid-shell elemen8pis[suggested as an excellent
choice to use for the finite element simulations. The elemes tested using two test
examples comprising thin structures of laminated glasgestdd to bending. Comparison
is made to three dimensional solid elements. It is demamestthat the M-RESS element
produces accurate results for displacements and stre#tfea velatively small fraction
of the model size of the corresponding solid element modee domputational time is
increasing between square and cubic with the model size&hwheans that the use of the
M-RESS element instead of three dimensional solid elemestsedses computational
time significantly.

The M-RESS element was further evaluated by analyzing twesgtuctures with bolted
and adhesive joints respectively and comparing with erpemial results. The finite el-
ement software ABAQUS was used for the examples. The téssérdte the solid-shell
element applied to laminated glass structures where janetsised and show a successful
prediction of displacements and stresses with a considenatrease in computational
efficiency. The real advantage of the solid-shell concefitrishe use in the analyses of
structures that are even more complicated than the exarsipbeen. For these cases, the
use of the M-RESS element might make it possible to perforrefglement analyses us-
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ing standard computational resources, whereas the modelsl Wwecome too large using
conventional three dimensional solid elements.
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Abstract

A method for determining stress concentration factors for laminated glasstiaales with 2+2
bolt fixings is developed. The stress concentration factors are peelsgraphically in design
charts. Through the use of simple formulas and the design charts, the maxinmeipal stresses
of the balustrade can be determined for an arbitrary combination of the ¢rygqmagameters in-
volved.

1 Introduction

Recently, demand from architects has made it more commoretglass as a structural
material. Unfortunately, knowledge about mechanical proes of glass is less than for
other structural materials and there is a lack of guidelme$iow to perform strength
design of glass structures. Thus, there is a risk for inateyredictions of glass strength
which may result in sudden failures due to the brittle natitbe material glass. In order
to increase safety of glass constructions, laminated ghegsbe used instead of single
layered glass. Laminated glass consists of two or more gess with intermediate PVB
(polyvinylbutyral) layers. Laminated glass displays a ptinated structural mechanical
behavior due to the combination of a very stiff material ¢gleand a very soft material
(PVB), [1]. When a laminated glass structure is subjected t@aiteloads and boundary
conditions, discontinuous stress distributions may agye[2], [11]). The discontinuities
are most pronounced around holes and edges, that is, irgiloasevhere the largest stress
concentrations often occur. It is of significant importatita these stress concentrations
are accurately determined. Accurate glass strength piedlis also of advantage from
the perspective of using material efficiently.

Design of glass structures can be performed using tablegyaphs contained in de-
sign standards as far as common geometries and loadingtiomsdare concerned. For
more complicated geometries and support conditions, &taince bolt fixings, a more de-
tailed computational analysis is often required, [7]. Tiaelitional method for predicting
stress distributions in laminated glass structures withfbongs is to use three dimen-
sional models in finite element analyses. The large modatsatte required for accurate
stress predictions, make this type of analyses practioalpssible from a computational
perspective. Apparently, there is a need for strength desigthods with scientific and
technical base for laminated glass structures with bohdsi

In previous work, the authors implemented a solid-shelneliet, [3], suitable for stress
predictions of large laminated glass structures with mawiy fixings, [6]. The compu-
tational efficiency is increased while the accuracy of tmesst predictions is preserved.



However, the use of this method requires advanced knowletifjaite element analy-
sis. In the present work, the solid-shell element is useditefielement analysis in or-
der to develop a method for determining stress concentréictors for laminated glass
balustrades with 2 + 2 bolt fixings. With the use of the streswentration factors, the
maximum of the largest principal stress of the balustrade b determined for arbi-
trary geometrical parameter combinations. The computedstalues could be used in
strength design of the balustrade.

Design methods in terms of formulas, tables or graphs atepkarly rare when it comes
to bolt fixed laminated glass design. A comprehensive oeenof the current state of
knowledge is given in [7]. Existing design methods for \atibolt fixed glass are typ-
ically constructed for the case of a uniformly distributethavload and fixed positions
of the bolts. In this work, simple formulas and charts areetlgyed for balustrades sub-
jected to a uniform line load and with variable positionstoé bolt fixings. The aim is
to make the design of bolt fixed laminated glass balustradssilple without performing
high level mathematics or advanced finite element analysis.

2 Available Methods for Stress Prediction of Bolt Fixed
Laminated Glass

Currently, few studies are available that describe guidslior methods for stress pre-
diction of bolt fixed laminated glass. In [12], a single glasme with one bolt fixing
is investigated. The pane is subjected to in-plane load. skess predictions, a finite
element analysis is performed. A novelty is that a procedoreserification of the fi-
nite element model is developed. This procedure is of adgmjtbecause is serves to
standardize the required finite element analyses so thatigrae less experienced with
finite element analysis can obtain reliable results. As roaet previously, [7] provides
an excellent overview on how to deal with glass in its role adractural material. In
the book, an example of a design chart for bolt fixed laminglads is presented. The
dimensions of the glass panes can be selected given th@pasithe bolts, the design
strength and a specific value of the load. The load type is @umiy distributed wind
load. In [13], guidelines for structural analyses of glaasgds subjected to in-plane shear
forces are given. The analyses are performed by means ohtteediement method. The
guidelines are valid for linear supported as well as poirgdiglass panes. [14] presents
experimental and numerical investigations of small-stabaally compressed laminated
glass panels that are point fixed. A comprehensive stredgss&s made, a parametric
study is performed and an empirical formula for the stresgentration factor is derived.
[11] deals with the development of a design program for bg#dilaminated glass fa-
cades and balustrades. The program aims to facilitateresifose glass structures and
the user does not need to have any knowledge about the fiaiteeat method.

Many of the existing stress prediction methods for lamidagkass design contain rec-
ommendations on how to perform finite element analyses. ifieains that the designer
or analyst has to be very familiar with the finite element rodthOne major aim of this
work is to present a method that does not require knowledgeeher finite element
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analysis nor advanced mathematics. Overall, few stressgbi@ methods exist for lam-
inated glass structures with bolt fixings, and for this paifair case of laminated glass
balustrades with four bolt fixings with non-fixed positionsly the work of [11] exists.
As a complement to that work, this paper develops simple @itamiand charts that can be
used for stress prediction of bolt fixed laminated glassdieddes.

3 Design of Bolt-fixed Balustrade Glass with Stress Con-
centration Factors

In this paper, a method is developed for determining streesantration factorsy, for
bolt fixed laminated glass balustrades.relates the nominal stress valu®yom, to the
maximum (positive) principal stress valug, o typically occurs in the vicinity of a hole.
Onom IS defined as the maximum (positive) principal stress fordase of a laminated
glass structure of the same dimensions as the balustraeitbaut holes. However, the
influence of the reaction forces at the bolt locations arkigex in the computation.
Whenaonom has been determined, the case of a balustrade with bolt $ixaag be con-
sidered. It remains to find the stress concentration factso = aonom Whereo is the
maximum (positive) principal stress of the balustraseccurs at the edge of a bore hole.
This problem is too complicated to be treated analyticalyater section deals with the
finite element modelling of a balustrade with 2+2 bolt fixind¥ith the aid of the finite
element model, design charts are developed so that the stresentration factors, can
be determined for arbitrary parameter combinations.

4 Stresses in a Laminated Glass without Holes

A laminated glass without holes subjected to three-poindbey can be modelled as a
simply supported beam that is subjected to a bending morgest) that the load and
boundary conditions are symmetric. The maximum principadsses for a laminated
beam that is subjected to a bending moment may be determmadgtiaally, [4]. The
stresses are derived for a laminated glass beam considtitvgpa@lass layers with an
interlayer of PVB. Figure 1 shows the geometry of the beam irequj#ied to a balustrade.

Ry
Glass

Glass
Rl PTut

PVB

X

Figure 1: Geometry of beam model.



According to Swedish construction standards, the baldsti subjected to a uniformly
distributed line loadP, at the top of the balustrade in the direction normal to tlasgl
pane. The load conditions are displayed in Figure 2.

e
8/ =

O

T

Figure 2: Description of load conditions.

Multiplying the line load P, with the width,w, of the glass pane gives the total lo&gy;.
R:1 andRy are reaction forces that represent the bolt locations. &aetion forceR, and
the momentM(x), can be derived by equilibrium equations as

R2|aX
(la+1p)’

The moment equation is valid on the intervak& < |,. In [4], a differential equation that
governs the behavior of the laminated beam problem is dikri&e a starting point for the
derivation, an infinitesimal beam element is considerea féhces and displacements of
the beam element is shown in Figure 3.

As a starting point, the displacement between the individlass panesys(X), is given

by

Ry = Prot(1+|—a) and M(x) = (1)

ly

M, M, +dM,
Nl“g ® }’Nﬁle
v |——— A M+dM
( £ ) ;

«—— — —— M2+(1'M2

M H
Nz‘_zé @ ;_' Ny+dN,

dx

Figure 3: Forces acting on an infitesimal laminated beam e¢nio the left and dis-
placements to the right.



Us(X) = U2(X) — U1(X). (2)
Derivating (2) with respect t& gives

d d d

&US: &UZ-&U]_. (3)

The normal strain components in the x-direction are defindaetthe derivatives of the
corresponding displacement components, which means3hea be written as

d
als =2 & (4)

€1 is the normal strain in the x-direction of the upper glassepam the lowermost fibre
of that pane.&; is the normal strain in the x-direction of the lower glass gain the
uppermost fibre of that glass pane.

For one single pane, Navier’'s formula, [8], of the form

M N

gives the total normal stress in the x-direction Since the small deformation assumption
prevails, Hooke’s lavwo = E€ applies and equation (5) then yield the normal strain in the
x direction,g, for each glass layer as

(6)

whereh; andh; are the thicknesses of glass panes one and two respectively.
Substituting equations (6) into (3) gives

dus M- h2 M1 h1 N> N1

i e e e 7

dx EL2 EL2 EL El 0
The equation to describe the deformation of a basic beans sexgion, which due to the
kinematic assumptions made can be applied as

2
1 2

wherew(x) is the beam deformation (in the y direction). From horizbeguilibrium

of a single beam cross sectid¥, (X) = —N2(x) = N(x) is given and equation (7) can be

written as

dus d%w 1 1
E—WH_N(E—A&"F@% (9)
wherehy = % + 2.

It is assumed that the shear deformatia) of the PVB layer is given by

Ht H
Us(X) = Yheve = GP\T\E/)EV " keve' (10
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wherey is the shear straifkpyg = G{;L\fiw is the spring stiffnes$py g is the shear modu-
lus, I the width andpy g is the thickness of the PVB layer.
From horizontal equilibrium of the first glass pane,

dN

H(x) = ~dx (11)
Equations (10) and (11) are inserted into (9) which yields
d>N 1 d? 1 1

A moment equilibrium computation about the left part of theain cross section at the
center of gravity of the second glass pane gives

M =M1+ Mz —Nh. (13)
Equations (13) and (8) together gives
2
dew _ M ~__Nh _ (14)
dx2 ElL+El, EL+EI
Combining equations (14) and (12) yields the governing ckffiéial equation for the prob-
lem

2

d
WN(X) — C2N(X) = c1M(x) (15)
where the following constants are defined in order to simphE equation
hy 1 1 h?
c1=kpyp=———=— and co =k + + . 16
LT PYBE L + Egly 2= kevel EA1  EgAz  Egli+ Eglz) (16)

whereEg is the modulus of elasticity for glas$, is the moment of inertia of a cross
section of the upper glass pamgis the moment of inertia of a cross section of the lower
glass paneA is the cross section area of the upper glass p&nis,the cross section area

of the lower glass pane, amglis the glass pane thickness. For the balustrades consjdered
itis assumed that the glass panes have equal cross seatimeyes, and thug =1, =1,

hy = hp =tg andA; = A, = Aare used in the following.

The homogeneous and particular solution, respectivel$3pi6 given by

ClR2|aX

Co(la+1p) an

N(x) = Bsinh(,/c2x) + Ccosh(,/C2x) —
To determine the constanBsandC the boundary conditionsl(0) = 0 and(‘é—'i)xab =0
yieldsC =0 and
B— C1R2|a
~ c/C2(la+1p) cosh(/Clp)

The final solution may the be written as

(18)




_ c1Rola . C1Rolax
NG9 = C21/C2(la+p) cosi/C2lp) Sih(y/C2x) - Co(la+1p)’ (19)
SinceM1(x) = M2(x) equation (13) can be written
M1(6) = Ma(x) = 2 (M) + RN, (20)

From Navier’'s formula, (5), the normal stress in the x-diat of one glass pane can
be computed. The maximum tensile stress occurs at the lawtzace of the laminate.
Since the shear stresses are zero at the surfaces of thetantire tensile stress in the x-
direction at the lower surface of the laminate is equal tathgimum (positive) principal
stress.onom IS defined as the maximum (positive) principal stress (ateld atx = |y,).
At the lower surface of the laminat®)z(x) = M(X), l2 =1, Na(x) = —N1(X) = —N(X)
andy = —%9. Thus,

_ M(b)  N(lp)
ONom= V\Tng Wiy . (21)

Note that equation (21) is valid for glass panes with reatéargcross sections only. For
the balustrades considered in this paper, this will alwaythke case.

5 Determining Stress for a Bolt Fixed Balustrade

In this section, a finite element model is developed with thgppse of determining the
stresses in a point fixed balustrade glass. The finite elemedel yields a value for the
largest maximum principal stress of the balustrade for &itrary parameter combina-
tion. In previous sections, this quantity is denotedThe goal is to determine the stress
concentration factoq, for each parameter combination. This is achieved throwgérd
mining bothonom ando for all possible parameter combinations and then compwe th
corresponding values of. Later,a is represented in simple design charts so that for each
parameter combination, the valuectan be determined from the charts.

The in-plane geometry of the balustrade is displayed inréigu In the figure, the pa-
rameters that determine the basic in-plane geometry ofltss gane are displayed. The
bore hole has the diametdy and the bolt head has the diamedigr It is convenient to
construct design charts for each glass pane thickngsseparately. The height of the
balustradel,, and the vertical position of the bollg, are settd; = 1.25 m and; = 0.24

m. It should be noted that the edge distargg,is equal for all four bolt holes.

Table 1 summarizes the relevant geometry parameters. Tgesaover which every
variable parameter is allowed to vary are also given. A stesh@aluetpyg = 0.76 mm

is used for the thickness of the PVB layer. In the finite elenmeadel, only the EPDM
bush between the bolt head and the glass pane is includedsatiickness is fixed to
tepom = 3 mMm.

The material parameters used &g= 78 GPayvg = 0.3, Epyg = 6 MPa,vpyp = 0.43,
Eeppm = 20 MPa, and)EpDM = 0.45.
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Figure 4. Geometry of balustrade.

Table 1: List of geometry parameters.

Parameter Value

la 1.25m
le 0.24m

tpvp 0.76 mm

tepDM 3 mm
lp 0.2,0.4,0.8m
aw 0.1-(5-0.1) in step of 0.025
w 0.9-2.7 min step of 0.3 m
dh 15-40 mm in step of 5 mm
ty 6, 8,10, 12 mm
dp 60 mm

The complex geometry of the balustrade requires the use afsh generator. The solid-
shell element, [3], used has quadrilateral in-plane gegnaetd therefore a quadrilateral
mesh generator is used. In the finite element analysis, thsdh mgenerator and finite
element program of [5] and [9] are used together with MatlBbe to symmetry, only
half of the balustrade needs to be modeled. Along the symyrilieg, displacements in
the in-plane direction normal to the symmetry line are seei.

When computingx, a value of the line loaé is arbitrary but is in the simulations set to
the valueP = 3 kN/m. When the charts are constructed;an be determined irrespective
of design load by use of the available charts.

When modeling the bolts, only the EPDM bushes are includeddemtodel. The bushes
are modeled by means of a spring model, where springs arectet) in all three coor-
dinate directions, to the nodes that are located on the cosuwafaces between bush and
glass. In the direction normal to the balustrade, sprindis stiffness



K = EepomAA (22)
tEpDM

are connected, [15PA is the influence area of each node, determined by
AA = / NTdA (23)
A

N is the global shape function vector, [5]. Equivalently, thoe other coordinate directions
shear springs with stiffness

_ GepomAA

tepDM
are used, [10]. The springs are fixed to their surroundingchvimeans that the corre-
sponding displacements are set to zero. The spring stifsgs, are thus assembled into
the global stiffness matriX, according to

ks (24)

Kii = Kii + k. (25)
ki represents the spring stiffness corresponding to degrée@domi. The bushes are
modeled explicitly only for the sides of the laminate whédre teaction forces are acting
on the glass. These positions are indicated in Figure 1. ©attier sides of the laminate,
the bolts are not modelled.
When meshing the structure, a two dimensional mesh of the gegitiustrated in Figure
4 is first created. To form a three-dimensional mesh, thisnmeswept in the direction
normal to the two dimensional structure. A special featdhe® solid-shell element, [3],
only one element per material layer is required to reach a gotution.

6 Design Charts for Determination of Stress Concentra-
tion Factors

The process of determinirggby means of the finite element method described in the pre-
vious section is time consuming and requires decent knaelatbout the finite element
method. In order for the glass designer to avoid using theefelement method, a sim-
plified method for determining for arbitrary combinations of certain design parameters
is suggested. The method contains graphical represamatiesign charts, that allow

to be determined for a certain parameter combination. gy, is determined for the
same parameters;, is practically known. The required equations for determaraof
Onomare (1), (19), (20) and (21).

One design chart is made for each possible combination slglasicknessty, glass
pane width,w, bolt head diametend,, and bore hole diameted,,. As examples, de-
sign charts for the parameter combinatien 0.9 m, d, = 60 mm,d, = 15 mm] with

[tg = 6,8,10,12] mm are shown in Figures 5-8.

The suggested method for determinafy use of the design charts starts with computing
onomfor an arbitrary combination of the parametgy;sv andl,. The design chart for the
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Figure 6: Design chart fdg = 8 mm,w = 0.9 m,d, = 60 mm anddy = 15 mm.

selected values otg, w) is then consulted. Remembering that a valué,dfas already
been selected, the isoline corresponding to the value sfgaitameter is chosen in the
design chart. It remains to choose a valuegand read off a corresponding value of the
stress concentration factar, from the design chart. Using the relation= aonom O IS
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Figure 7: Design chart fdg = 10 mm,w = 0.9 m,d, = 60 mm andd, = 15 mm.
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Figure 8: Design chart fdg = 12 mm,w = 0.9 m,d, = 60 mm anddy = 15 mm.

determinedo is the maximum (positive) principal stress value in the bthde and this
value is compared to a fracture criterion. If the fracturéecion is met, the parameter
combination is possible. If the value offails to meet the fracture criterion, at least one
parameter value has to be changed and the procedure to deterstarts over again.
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The optimal positions of the bolts may be determined diyetttm the design charts.
Since the lowest value of gives the lowest stresses at the bolts, the charts directiyge
this information.

7 Conclusions

A method for the determination of stress concentratiorofadtas been developed for two
ply laminated glass balustrades with 2 + 2 bolt fixings. Usihrggmethod, the designer can
determine the maximum (positive) principal stress value#xh combination of glass ply
thickness, width of the glass pane, bolt position, bolt hd¢iacheter and bore hole diam-
eter using simple formulas and charts, and thus avoidingrambd and computationally
expensive finite element analysis.
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