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Abstract

In this thesis, methods for efficiently determining stresses in laminated glass structures are
developed and tested. The laminated glass structures comprise both bolted and adhesive
joints.
A recently developed finite element is suggested to be suitable for the modeling of lam-
inated glass structures. The element is implemented and tested. It is proven by means
of a simple test example that the element can be used in finite element analysis of lami-
nated glass structures and give a good accuracy with a small fraction of the corresponding
model size using standard solid elements. As an illustration of how the element would
perform when more complicated glass structures are concerned, a similar element is im-
plemented in the commercial finite element software ABAQUS and is used to analyze
a laminated glass structure comprising one bolt fixing. The element performs well both
when it comes to accuracy and efficiency. It is indicated thatthe new finite element is
well suited for modeling laminated glass structures.
The new finite element is rigourously tested and compared to standard solid elements
when it comes to the modeling of laminated glass structures.It is shown that the new finite
element is superior to standard solid elements when it comesto modeling of laminated
glass. The new element is applied to laminated glass structures comprising bolted and
adhesive joints. Good results concerning accuracy and efficiency are obtained. The results
show that the element may well be suited to model complex laminated glass structures
with several bolted or adhesive joints.
The new element is used in the development of a method to compute stress concentration
factors for laminated glass balustrades with 2+2 bolt fixings. The stress concentration
factors are represented graphically in design charts. The use of the design charts allow
the maximum principal stresses of the balustrade to be determined without using finite
element analysis or advanced mathematics. The stresses canbe computed for an arbitrary
combination of geometry parameters of the balustrade.
It is illustrated how design charts for laminated glass balustrades with 3+3 bolt fixings are
developed.
Keywords: finite element, computational techniques, laminated glass, stress concentra-
tion factor, design chart, bolt fixing, adhesive joint, balustrade.
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1 Introduction

1.1 Background

During the past decades mass production of flat glass, development of new techniques
to post-process the manufactured glass and the use of computational structural analyses
by means of the finite element method have allowed for an increased use of glass as a
structural material, [16]. Compared to other structural materials, for instance concrete,
knowledge about mechanical properties and structural behaviour of glass is less. The
result of this lack of knowledge has led to failure of severalglass structures during the last
years, [13].
In construction, the standard (elastic) design method is called the maximum stress ap-
proach, [16]. In the maximum stress approach, the engineer determines the dimensions
of a structure through ensuring that the maximum stresses donot exceed the strength of
the material at any position of the structure. The elastic design method is frequently used
in glass structure design. When using the maximum stress approach, it is essential that
the maximum stresses are predicted correctly. Only for standard geometries, boundary
conditions and loading relatively simple methods based on formulas and design charts are
available, [16].
One of the recent developments in the field of post-processing of glass is to laminate glass,
[16]. Laminated glass normally consists of two or more layers of glass bonded with plastic
interlayers. The most common material used for the interlayer is polyvinylbutyral (PVB).
The use of laminated glass compared to single layered glass offers several advantages.
When the glass breaks, the interlayer keeps the fractured glass together which increases
safety. If one glass pane breaks the remaining layers can continue to carry the applied
loads given that the structure is properly designed. Other advantages of laminated glass
are their acoustic and thermal insulation properties. Due to the increased safety that is
obtained, laminated glass is often used instead of single layered glass in structures.
Laminated glass displays a complicated structural mechanical behavior due to the combi-
nation of a stiff material (glass) and a soft material (PVB). Previous work, [21], shows that
the discontinuous stress distributions that may develop inlaminated glass panes subjected
to certain loads and boundary conditions are difficult to model numerically. In Figure 1, a
cantilever beam subject to bending by a point load at its right end is displayed. The beam
is modeled by means of the finite element method using two dimensional plane stress
elements in the xz-plane for both glass and PVB layers. The material parameters take on
the valuesE = 78 GPa andν = 0.23 for glass andE = 9 MPa andν = 0.43 for PVB.
In Figure 2, the resulting distribution of normal stress in the thickness direction at a cross
section located at the center of the beam is shown.
From Figure 2 it is evident that there are discontinuities inthe levels of normal stress
at the boundaries between the glass and PVB layers. Such discontinuities are normally
most pronounced around holes and close to edges of a structure, [21]. It is common that
the largest stresses occur in these regions ([7],[21]) and for the sake of safe design, it is
important that the stress distributions are represented correctly by the model, particularly
in these regions.
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Figure 1: A cantilever laminated glass beam subjected to a point load.
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Figure 2: Distribution of normal stress along thickness.

Stress distributions as in Figure 2 are well captured by three dimensional solid elements.
The disadvantage is that the resulting finite element modelsbecome very large which
requires great computational effort. When modeling an engineering structure that com-
prises laminated glass panes, the computational time required may prevent fast and simple
evaluation of different design alternatives. Papers 1 and 2deal with the implementation
of a new method for increasing the computational efficiency when modeling laminated
glass structures by means of the finite element method.
In the design of glass structures, tables and graphs contained in design standards can
be utilized when considering common geometries and boundary conditions. For more
complicated geometries and boundary conditions, for instance bolt fixings, a detailed
computational analysis is often required, [16]. The standard method for predicting the
stress distribution in a laminated glass structure with several bolt fixings is to use three
dimensional solid elements in finite element analyses. Verylarge finite element models
are required for an accurate stress prediction of this type of structures, which makes the
analyses practically impossible from a computational perspective. Using the method de-
scribed in Papers 1 and 2, analyses are made possible, but decent knowledge about finite
element analysis is required. The topic of Paper 3 is the development of design charts for
bolt fixed laminated glass balustrades with a variable number of bolts. Thus, the design of
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bolt fixed glass balustrades is made possible without performing advanced mathematics
or finite element analyses.

1.2 Aim and Objectives

The aim of this thesis is to provide means of efficiently determining the stress distribution
in advanced laminated glass structures. A recently developed finite element is imple-
mented in finite element analysis and applied to laminated glass structures comprising
structures that contain bolted and adhesive joints. The performance of the element in
terms of accuracy and computational efficiency is tested andcompared to conventional
three dimensional solid element models. For bolt fixed laminated glass balustrades, de-
sign charts are developed for the determination of the stress distributions. The objective
is to provide a relatively simple design tool for users that are less familiar with the finite
element method.

1.3 Limitations

In the work developed in this thesis, some limitations are necessary. In the modeling of
the bolts, only one type of bolt is used. It is a bolt for a cylindrical bore hole. Only one
combination of thickness and material of the bush is considered. We also limit ourselves to
stress predictions, leaving out details of further design work. When the design charts are
developed, we restrict ourselves to the analysis of indoor balustrades, which somewhat
simplifies the load situation since wind loads do not need to be considered, [9]. It is
intended that the charts are not to be used for the highest line load (3 kN/m) according to
Swedish construction standards, since for this case, a point load giving rise to a worst case
loading situation is required in the analysis, [9]. Further, Swedish construction standards,
[9], are used consistently when determining the load combination and balustrade height
used in the analyses. It is assumed that the gravitational body force due to the weight of
the structure could be neglected.

2 Theory and Methods

2.1 The Material Glass

Generally, glass forms when a liquid is cooled down in such a way that "freezing" happens
instead of crystallization, [20]. Glasses do not consist ofa geometrically regular network
of crystals, but of an irregular network of silicon and oxygen atoms with alkaline parts in
between, [16]. The most common oxide glass, silico-soda-lime glass, is used to produce
glazing, [20]. Table 1 shows the chemical composition of silico-soda-lime glass according
to European construction standards, [16].
When manufacturing glass, four primary operations can be identified: batching, melting,
fining and forming, [20]. While the three first operations are used in all glass manufactur-
ing processes, the forming and the subsequent post-processdepend on which end product
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Table 1: Chemical composition of silico-soda-lime glass (mass %).
Component Chemical formula Content (mass %)
Silica sand SiO2 69-74

Lime (calcium oxide) CaO 5-14
Soda Na2O 10-16

Magnesia MgO 0-6
Alumina Al2O3 0-3
Others 0.5

that is manufactured. During the batching process, the correct mix of raw materials is
selected based on chemistry, purity, uniformity and particle size, [20]. When melting the
raw materials, glass furnaces are used. Different furnacesare used for producing different
end products. The aim of the glass fining process is to producea molten glass that is
uniform in terms of composition and temperature and also bubble free.
Flat glass (which could be used for architectural glazing) is produced by the float process,
which was introduced by Pilkington Brothers Ltd in the 1950s,[20]. It is noteworthy that
this mass production process, together with continuously improved post-processes, have
made glass cheap enough to allow it to be used extensively in the construction industry and
to grow in importance as construction material during the past 50 years. Within the last
two decades, further development within the field of post-processing operations, together
with numerical analyses of structures (finite element analyses) have enabled glass to be
used as structural elements in architectural glazing, [16]. In the start of the float process,
the raw materials are melted in a furnace. Then, a fining process is used to eliminate
bubbles. Later, the melt is poured onto a pool of molten tin, float, under a nitrogen
atmosphere in order to prevent corrosion of the tin bath. Tinhas higher specific weight
(weight per unit volume) than glass, so that the glass floats on the tin. The glass spreads
out and forms a smooth flat sheet at an equilibrium thickness of 6-7 mm. In order to
produce various glass thicknesses, rollers working from the top of the glass are used. The
speed of the rollers controls the glass thickness. The rangeof commercial glass thickness
is 2-19 mm, [20]. During this phase, the glass is gradually cooled. The next step of the
process is the annealing lehr, which slowly cools the glass in order to prevent that residual
stresses are induced within the glass. After the lehr, the glass is inspected and it is ensured
that visual defects and imperfections are removed. The glass is cut to a typical size of 3.21
× 6.00 m, [16], and then stored.
The standard flat glass produced through the float process is called annealed glass, [16].
Often further post-processing of the glass is required in order to produce glass products
with different properties. For instance lamination of the glass and hole drilling are made
at this stage.

2.2 Types of Glass

During the post-processing phase, glass types and productswith different properties can
be manufactured. Below, the most common glass types are described.
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2.2.1 Annealed Glass

Annealed glass is standard float glass without further treatment. At breakage, annealed
glass splits into large fragments, [16].

2.2.2 Fully Tempered Glass

Another commonly used term for fully tempered glass is toughened glass. During temper-
ing, float glass is heated and then cooled rapidly (quenched)by cold air jets. The aim of
the tempering process is to create a parabolic residual stress field that has tensile stresses
in the core and compressive stresses at the surfaces of the glass. The surface of the glass
always contains some cracks. Under a tensile stress field, the cracks are allowed to grow.
If the glass is subjected to loads, cracks will not grow unless there is a net tensile stress
field at the surface of the glass. Fully tempered glass usually breaks into small harmless
pieces and therefore fully tempered glass is also termed safety glass, [16].

2.2.3 Heat Strengthened Glass

Heat strengthened glass is produced similarly as fully tempered glass, but the cooling rate
is lower. The resulting residual stress is lower, and thus the tensile strength is lower than
for fully tempered glass. At fracture, the fragments are larger than for fully tempered
glass. On the other hand, the larger glass fragments allow for a greater post-breakage load
capacity than for fully tempered glass, [16].

2.2.4 Laminated Glass

Laminated glass consists of two or more glass panes bonded bya plastic interlayer. The
glass panes can have different thicknesses and heat treatments. Most common among the
lamination processes is autoclaving, [16]. The use of laminated glass in architectural glaz-
ing is of great advantage for two reasons. Firstly, if one glass pane breaks, the remaining
panes can continue to carry the applied loads given that the structure is properly designed.
Secondly, the scattered glass pieces can stick to the interlayer and thereby serve to pre-
vent people from getting injured. The interlayer is most often made of polyvinylbutyral,
PVB. The nominal thickness of a single foil of PVB is 0.38 mm. Itis common that two
(0.76 mm) or four (1.52 mm) foils form one PVB interlayer, [16]. PVB is a viscoelastic
material whose physical properties depend on the temperature and the load duration.

2.3 Mechanical Properties of Glass

Glass is an elastic, isotropic material and exhibits brittle fracture. In contrast to other
construction materials, no plastic deformation occurs prior to failure. Therefore, local
stress concentrations, occurring for instance close to bolt holes, are not reduced.The brit-
tle characteristic of glass is of concern when constructingwith glass as a load bearing
element.
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Glass has a very high theoretical tensile strength, up to 32 GPa is possible, [16]. However,
the actual tensile strength depends on the influence of mechanical surface flaws. The
compressive strength of glass is considerably higher than the tensile strength, since there
is no surface flaw growth or failure under compression, [16].
In Table 2, relevant material properties of silico-soda-lime glass are summarized, [12].

Table 2: Material properties of silico-soda-lime glass.
Density 2500 kg/m3

Young’s modulus 70 GPa
Poisson’s ratio 0.23

Table 3 summarizes strength values that could be used for structural design, [15].

Table 3: Strength values for glass design.
Compressive strength880-930 MPa

Tensile strength 30-90 MPa
Bending strength 30-100 MPa

2.4 Stress Prediction of Laminated Glass Structures

When predicting stresses in laminated glass structures, there are two main options for
stress predictions. The first possibility is to use formulas, tables or design charts. The
other method consists of finite element analyses of the structure. The former method
has the advantage that it is easy to use, but its use is limitedto some general cases of
geometry and boundary conditions, [16]. In this work, mainly bolt fixed connections are
considered. For the case of bolt fixed laminated glass structures, finite element analyses
must be used in most cases. In [16], an example of a design chart for a more advanced
bolt fixed laminated glass structure is presented.
When making analyses using three dimensional solid elements, analysis results become
sufficiently accurate given that the discretization of the model is fine enough. When ana-
lyzing the type of structures that are relevant in this work,finite element models become
too large and the demand on computational resources too heavy. There is a scope for in-
vestigating alternative methods for performing finite element analyses of those structures.
According to the classification of [24], laminated glass is aso-called laminated composite,
which is made up of layers of different materials. For this category, there are several the-
ories developed including corresponding numerical treatments. One means of reducing
the model size is to use two dimensional models for compositeplates, so-called Equiva-
lent Single-layer Theories, (ESL), [24]. The two dimensional models are derived through
making assumptions regarding the kinematics or the stress field in the thickness direc-
tion of the laminate in a fashion such that the three dimensional model is reduced to a
two dimensional one. The simplest ESL theory is the ClassicalLaminated Plate Theory,
(CLPT). It is an extension of the classical Kirchhoff plate theory to laminated composite
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plates. In the CLPT theory, the assumptions regarding the displacement field are such
that straight lines normal to the midsurface remain straight and normal to the midsurface
after deformation. Thus, the transverse shear and transverse normal effects are neglected
(plane stress). The First Order Shear Deformation Theory, (FSDT), extends the ESL the-
ory through including a transverse shear deformation in thekinematic assumptions such
that the transverse shear strain is assumed to be constant with respect to the thickness
coordinate. In terms of kinematic assumptions this means that straight lines normal to the
midsurface do not remain perpendicular to the midsurface after deformation. There are
also higher order theories for laminated composite plates.The higher order theories may
be able to more accurately describing the interlaminar stress distributions. On the other
hand, they also require considerably more computational effort. In the Third Order Shear
Deformation Theory, the assumption on straightness and normality of straight lines nor-
mal to the midsurface after deformation is relaxed. The result is a quadratic variation of
the transverse stresses through each layer. Even higher order shear deformation theories
are available, but the theories are complicated algebraically and expensive numerically,
and yield a comparatively little gain in computational accuracy. The simple ESL laminate
theories are often not capable of accurately determining the three dimensional stress field
at ply level, which may be required for an accurate description of the stress distribution in
a complex laminated glass structure.
An alternative is to use Layerwise Theories, [24]. The Layerwise Theories contain full
three dimensional kinematics and constitutive relations.They also fulfill requirements on
C0

z continuity, ([24], [11]). These requirements should necessarily be fulfilled in order to
correctly describe the stress field in the thickness direction that characterizes laminated
glass. Even if there are some computational advantages compared to full three dimen-
sional element models, for instance that two dimensional finite elements could be used in
the analysis, in the modeling of advanced structures the models may be computationally
inefficient and difficult to implement, [24].
There exist several other layerwise models for laminated plates, see [24] and references
therein. It is not the intention to provide a full review of various Layerwise Theories, so
the interested reader is referred to the references provided in the reference cited above.
Another possible method, which is adopted in this work, is touse solid-shell elements. A
solid-shell element is a three dimensional solid element which is modified so that shell
like structures could be modeled in an appropriate manner. The basis for the solid-shell
element used in this work, [10], is a conventional eight nodethree dimensional solid
element. Since low-order three dimensional solid elementsare used in order to model
shell like structures, locking phenomena occur. In the solid-shell formulation, certain
methods are incorporated such that locking is prevented. A review of solid-shell elements
is provided in Paper 2. We note that through maintaining three dimensional constitutive
relations and kinematic assumptions, the stress distribution of laminated glass can be
accurately determined. The computational efficiency is increased due to the use of a
special reduced integration scheme that only requires one integration point per material
layer.
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3 Related Research on Laminated Glass

3.1 Introduction

Past research on glass has focused mainly on monolithic (single-layered) glass, whereas
the properties of laminated glass remain less well understood. The aim of this section
is to review past research on the properties and behavior of laminated glass for architec-
tural glazing. The review is subdivided into sections, where the first section deals with
experimental testing, the second with analytical methods and the last section reviews nu-
merical testing results. In the last section, emphasis is onFinite Element Method (FEM)
analyses. It is shown that a clear cut division of previous research findings into these dis-
tinct categories is difficult, but the subdivision is rathera means of providing a structured
presentation of the available knowledge.

3.2 Experimental Results

Most analyses on laminated glass units are experimental. This is particularly the case for
plates, since the behavior is very complex, [1]. In this review we consider test results for
both beams and plates. Studies on glass beams are often used to approximate the behavior
of glass plates. According to Aşik, [1], this methodology is (generally) not acceptable,
since the two structures have different stress and displacement fields.
One of the first studies on the behavior of architectural laminated glass subjected to struc-
tural loading is conducted by Hooper, [18]. In that study, the fundamental behavior of
architectural laminates in bending is assessed. This is done by means of studies of lami-
nated glass beams subjected to four-point bending. First, analytical formulas are derived
for the shear force at the interface between glass and the interlayer and the central de-
flection respectively. These expressions are then used in combination with experimental
bending tests in order to provide general understanding about the behavior of laminated
glass beams subjected to bending as well as to produce data oninterlayer shear stiffnesses
(shear moduli) for various loading and temperature conditions. Results show that the
bending resistance of the laminated glass is dependent uponthe thickness and shear mod-
ulus of the interlayer. The physical properties of the interlayer are dependent upon the
temperature and the duration of the loading. From an architectural designer’s perspective,
laminated glass which is subjected to sustained loads should be treated as consisting of
two independent glass layers. For short-term loading, the bending stresses of the glass
could be determined on the basis of an interlayer shear modulus corresponding to the
maximum temperature at which such loading is likely to occur. When the glass is sub-
jected to both sustained and short-term loading, the combined bending stress values in the
glass layers may be calculated using the principle of superposition.
Behr et al., [3], reports on studies on the behavior of laminated glass units consisting of
two glass plates with an interface of PVB. The glass units are subjected to lateral pressure
(wind loads). Experiments are conducted in order to find out whether the behavior of a
laminated glass unit is similar to that of a monolithic glassunit of the same thickness or
to that of a layered glass unit consisting of two glass units and no interlayer. Results show
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that the glass unit behaves more like a monolithic glass unitat room temperature. When
temperatures are high, the behavior approaches that of two glass units without interlayer.
Laminated glass units (two glass plates with a PVB interlayer) under uniform lateral loads
and simply supported boundary conditions are investigatedexperimentally in Behr et al.,
[4]. According to the results, interlayer thickness effects on the structural behavior (in
terms of corner stresses and center deflections) of laminated glass units are not large.
Further, long-duration load tests at different temperatures are performed. For this case,
the response in structural behavior is increasing as a function of time at load. Rates of
increase in response in structural behavior decrease with time at load. In overview, the
experimental data gathered during the tests are within theoretically derived monolithic
and layered bounds on stresses and deflections.
Minor and Reznik, [22], study the failure behavior of laminated glass units. Three speci-
men sizes are used in the tests. Annealed monolithic glass samples are used as reference
specimens. Laminated glass samples of the same dimensions and thicknesses as the refer-
ence specimens are tested to failure using the same loading rates as for the failure analysis
of the reference specimens. Failure strengths are evaluated as functions of several vari-
ables: glass type (heat treatment), temperature and surface condition (subjected to surface
damage or not). The most interesting result is that annealedlaminated glass strengths are
equal to annealed monolithic glass strengths at room temperature. This result is valid for
all three sample sizes. Another interesting result is that when temperatures are increased,
laminated glass strengths decrease.
Behr et al., [5], makes a reliability analysis of the glass strength data presented in [22].
The results of this analysis support the conclusions made in[22]. However, the reliability
analyses suggest that the issue of the relative strength between monolithic glass units
versus laminated glass units is complex at elevated temperatures. Whereas a clear strength
reduction occurs in laminated glass at 77◦C, little strength reduction occurs at 49◦C. This
indicates the possible existence of a break point in the relation between temperature and
lateral pressure strength for laminated glass at around 49◦C. Thus, for temperatures above
this threshold it is suggested that the structural behaviorof laminated glass is not longer
similar to that of monolithic glass.

3.3 Analytical Results

Analytical work on laminated glass properties are scarce. In addition, most results are
derived under various simplificating assumptions, [13].
In early work by for instance Vallabhan et al., [25], a previously developed computer
model is used in order to analyze layered and monolithic rectangular glass plates subjected
to uniform lateral pressure. The layered and monolithic plates have the same in-plane ge-
ometry total thickness. So-called strength-factors are developed for a variety of glass
plate geometries. The strength-factor is defined as the ratio between maximum stresses in
a monolithic plate and those in a layered plate. It is noteworthy that for certain geometries
and loads, layered glass plates can possess larger maximum stresses than an equivalent
monolithic glass plate. This result has an implication for the behavior of laminated glass
plates, since a laminated glass plate is considered to display structural mechanical be-
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haviour in between the limiting cases of monolithic and layered plates. It is implied that
the maximum stresses in a laminated glass plate can be close to (and even exceed) the
maximum stresses in an equivalent monolithic glass plate under certain conditions.
Vallabhan et al., [26], use the principle of minimum potential energy and variational cal-
culus, [17], in order to develop a mathematical model for thenonlinear analysis of lami-
nated glass units. The final model consists of five nonlinear differential equations which
are solved numerically and validated through full-scale experiments. The test specimens
are square plates of laminated glass. The plates are simply supported and subjected to lat-
eral pressure in increments. Stresses and corresponding principal stresses are calculated
as a function of the lateral pressure. The results of the mathematical model compare very
well with the experimental results. It is suggested that further research focuses on testing
the mathematical model for various thicknesses of the laminated glass plates.
Norville et al., [23], set up an analytical beam model that explains data on deflection and
stress for laminated glass beams under uniform load. The experimental data are presented
in [6]. In the model, the PVB interlayer performs the functions of maintaining spacing
between the glass sheets and transferring a fraction of the horizontal shear force between
those sheets. The PVB interlayer increases the section modulus, i.e. the ratio between
the bending moment at a cross section and the stress on the outer glass fiber at that cross
section, of a laminated glass beam, and the magnitude of the flexural (bending) stresses
in the outer glass fibers is therefore reduced. Thus, the strength of a laminated glass beam
is higher than that of a monolithic glass beam with the same nominal thickness.
The analytical model of [26] is used in [1] in order to providea set of graphs that shed light
on the nonlinear behavior of simply supported, laminated glass plates typically used for
architectural glazing. Such plates have very thin glass plies, which results in that they may
undergo large deflections solely due to their own weights. This results in complex stress
fields, which the author studies extensively. The result of the study is that the laminated
glass plate that is studied undergoes very complex and nonlinear behavior when uniformly
distributed load is applied. A conclusion is that nonlinearanalysis is the only acceptable
type of analysis for laminated glass plates.
In [2], a theoretical model for the behavior of laminated glass beams is presented. It is
assumed that the glass beams are very thin such that large deflection behavior is used in
the model building. The minimum potential energy and variational principles are used in
the derivations. Three coupled nonlinear differential equations are obtained and closed
form solutions are presented for simply supported laminated glass beams. The model is
verified for the simply supported laminated glass beam through usage of experimental
data and for a fixed supported laminated glass beam by means offinite element modeling.
Also, the behavior of laminated glass is presented in comparison with the behaviors of
monolithic and layered glass beams. Displacement, moment and stress functions for a
simply supported laminated glass beam are given for the use in design to determine the
strength of a laminated glass beam. It is proven analytically that the behavior of a simply
supported laminated glass beam is linear even under large deflection. On the other hand,
for the case of the fixed supported laminated glass beam, effects of membrane stresses
are substantial and nonlinearities arise from geometric constraints. A discussion about
the behavior of laminated glass beams versus laminated glass plates is conducted. It
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is concluded that as earlier work on laminated glass plates show that simply supported
glass plates undergo nonlinear behavior, simply supportedlaminated glass beams may
not be used to draw conclusions about the behavior of laminated glass plates. In contrast,
it is concluded that a study of nonlinear behavior of laminated glass beams makes sense
concerning the behavior of laminated glass plates due to considerable similarities between
these two cases.
Foraboschi, [13], sets up an analytical model for laminatedglass beams under uniaxial
bending. The model predicts stress developments and strength of laminated glass beams
with given geometries, glass moduli of elasticity and PVB moduli of elasticity in shear.
The ultimate load is determined using a design value of the glass tensile strength. The
model is valid under the following assumptions: (i) plane cross sections in the whole
beam, as well as in the PVB interlayer, do not remain plane andnormal to the longitudi-
nal axis (ii) glass is modeled in a linear elastic manner (iii) PVB is modeled in a linear
elastic manner by means of the modulus of elasticity in shear, given that the value of this
parameter is related to temperature and duration of loading. The latter assumptions al-
lows a closed-form solution to the problem, contrary to the case when PVB is modeled in
a viscoelastic manner. Since no particular simplificationsare made when formulating the
model, the model predictions are in excellent agreement with test results. In particular,
no presumed strength-factor, [25], has been used in order toaccount for the contribution
of the PVB layer to the bending capacity through its capacityto transfer horizontal shear
force between the glass layers. An analysis of commercial-scale laminated glass beams is
made in order to gain information regarding the rational design of laminated glass beams.
Failure strengths and loads are determined for these cases.A comparison is made between
the laminated glass model and monolithic and layered equivalency models respectively
with respect to failure strengths and loads. Some of the major results are: 1) The greater
the value of the shear modulus of elasticity of PVB and the thinner the PVB layer, the
closer the prediction of the stress values are to those of themonolithic equivalency model
and the greater is the tensile strength of the beam. 2) Irrespective of parameter values, the
layered model is not suitable for analyzing laminated glassbeams with the actual loads
and boundary conditions. The conditions of the layered model is only approached as the
temperature is reaching a value that prevails during fire explosure or similar conditions.
3) When the thickness of the beam is designed appropriately, the strength of the beam is
raised by up to 70-80 %. 4) The historical assumption that thestrength of laminated glass
is equal to 60 % of the strength of monolithic glass of the samethickness is sufficiently
preservative, but it doesn’t represent a lower bound. The benefit of using the above rela-
tion is that it provides a simplification, but at the cost of the risk of underestimating the
actual load-bearing capacity. 5) The behavior of the monolithic equivalency model is far
away from that of a laminated glass beam, and the implementation of the model for design
purposes is not recommended.

3.4 Numerical Results

A study of stress development and first cracking of glass-PVB(Butacite) laminates is
performed in [8]. Fracture behavior is studied during loading in biaxial bending. A three
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dimensional finite element model which incorporates the role of PVB thickness and the
viscoelastic character of the PVB layer in stress development in the laminate is developed
and tested. The finite element model is combined with a Weibull-description of glass
strength in order to provide a failure prediction frameworkfor the present set up. The
glass is modeled using eight-node brick elements with incompatible modes for accurate
capture of bending modes. The PVB layer is modeled using eight-node brick elements
with incompatible modes using a hybrid formulation. The commercial finite element code
ABAQUS is used in the investigations. Comparisons to experimental test data show that
the finite element model is in good agreement. Stress development in the laminate is de-
termined for a set of experimental loading rates. At a slowerloading rate, each glass plate
deforms nearly independently. At a faster loading rate, theoverall stresses are higher for
a certain deflection which indicates a higher overall stiffness. There is also a shift in the
location and magnitude of the peak tensile stress of the laminate. This shift is expected
to change the initiation of the first cracking, which is also shown in subsequent investiga-
tions. It is shown, both experimentally and through finite element modeling, that the peak
stress changes locations with the loading rate. Two primarymodes for the initiation of
failure associated with changes in maximum stress are identified: (i) first crack located in
the upper ply at the glass/PVB-surface and (ii) first crack located in the lower glass sheet
at the outer glass surface. Regarding a comparison to the behavior of the corresponding
monolithic and layered models, it is observed that at moderate loading rates, the stress in
the laminate is higher than in the equivalent monolith. For the highest loading rates, the
laminate demonstrates stress behavior similar to the monolith. Furthermore, it is shown
that the peak stress locations is a complex function of loading rate, polymer thickness and
load uniformity. The first-cracking sequence is affected byinterlayer thickness and load-
ing distribution: concentrated loading and thicker/softer interlayer gives first cracking in
the upper ply and distributed loading and stiffer/thinner interlayer promote initial cracking
in the lower glass sheet. The failure sequence is a function of loading rate and tempera-
ture: high temperatures and/or slow loading rates promotesfirst cracking in the upper ply
whereas low temperatures and/or high loading rates lead to lower ply first cracking. The
probability of first cracking can be computed by combining the finite element model with
a Weibull statistical description of glass fracture. The approach used in this paper can
form a foundation for laboratory tests for laminates and canbe extended to encompass
laminate plates used in commercial applications.
Van Duser et al., [27], present a model for stress analysis ofglass/PVB laminates used
as architectural glazing. The model consists of a three dimensional finite element model
incorporating PVB viscoelasticity and large deformations. Studies are performed on a
square, simply supported glass/PVB laminate subjected to uniform loading. The question
of load-bearing capacity for first glass fracture of the plate is addressed through com-
binating the finite element model with a statistical (Weibull) model for glass fracture.
The approach used in this paper extends the work of Bennison etal., [8], to apply to
commercial-scale architectural laminated glass plates, rather than laboratory scale disks.
Results from the modeling exercise is compared to experimental results from [26]. The
framework developed for stress analysis and failure prediction may be applied to lami-
nates of arbitrary shape and size under specified loading conditions. Validated against
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more extensive data the method may be used to develop new design standards for lam-
inated glass. Regarding the finite element model, the glass sheets are modeled using
8-node solid elements with incompatible modes to avoid locking in bending. The PVB
interlayer is modeled using eight-node solid elements withincompatible modes using a
hybrid formulation in order to account for nearly incompressible deformations. The com-
mercial program ABAQUS is used for the analysis. Accuracy ofthe finite element model
is obtained through successively refining the mesh until mesh-independent results are ob-
tained. The model predictions are in excellent agreement with data presented in [26].
One of the main findings of the study is that for most of the range of pressure used in the
study, the probability of failure is lower than the monolithic limit, except at low pressures.
At those pressures and stresses that would be used in design,laminate strength for this
case would be predicted to be higher than for the equivalent monolithic glass plate. Since
the concept of layered and monolithic limits is defined basedon small strain analysis of
beams, and doesn’t take into account the membrane-dominated stress state that develops
in large deflection of plates close to glass first cracking, a stress analysis that involves
comparison to these limiting states could be misleading. Infact, if the derivation of these
limits are based on transition to membrane-like behavior (large deflections), the stresses
and deflections for a layered system in the membrane limit areexactly the same as for
the equivalent monolithic plate. Since the monolithic limit ignores the thickness of the
interlayer, the first cracking strength of the laminate may be larger than that of the mono-
lith. Further, it is shown that stress development in the laminate is temperature (or loading
rate) dependent. The influence of temperature can be diminished at large deflections as
membrane stresses dominate and the coupling between the glass sheets play a lesser role
in the stress development. Somewhat surprisingly, for typical glass Weibull moduli (m∼
5-10) the probability of first cracking is only weakly dependent on temperature.
The model of van Duser et al., [27], is based on a three dimensional finite element formu-
lation. Thus, the resulting model becomes very large and thecomputations are expensive.
This is noted by Ivanov, [19], who aims at investigating the effect of design parameters
on the strength and stiffness of glass laminates. Another aim is to perform structural opti-
mization of glass laminates. It is emphasized that both complicated analytical models that
require numerical solutions and computationally expensive models are inappropriate for
such analyses. The paper treats the case of a simply supported glass/PVB beam. The fol-
lowing simplifications are used: (i) only a plane beam is considered and (ii) the problem is
confined to small strains and displacements. The representation of the laminated glass as a
plane multilayer beam leads to a plane problem of theory of elasticity, which requires less
equations although the same degree of discretization through the thickness of the beam
and makes the corresponding finite element analysis more computationally efficient. The
materials (glass and PVB) are both represented by linearly elastic material models. At
the first stage of the analysis, a finite element model is developed. The model is used
for the analysis of the case bending of a laminated glass beamunder transverse forces.
The beam is analysed by means of the finite element analysis software ANSYS 6.1. A
linear finite element analysis is performed and yields data on nodal deflections, strains
and stresses. The analysis shows that the bending stress in the glass layers is determinant
for the load-bearing capability of laminated glasses, but the shear in the PVB layer is
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important for glass-layer interaction. Based on this first analysis step an analytical model
of a laminated glass beam is developed. The model is based on Bernoulli-Euler beam
theory for each glass layer, with an additional differential equation for the PVB interlayer
shear interaction. The obtained differential equations are easily solved analytically for the
case of a simply supported beam under uniform transverse load. The mathematical model
is validated against the previously developed two dimensional finite element model and
against analytical results from [2]. For both cases, the results of the analytical model show
great agreement with other solutions. The model is used to perform a parametric study of
the influence of layer thicknesses on deflections and stresses of a beam under transverse
uniform load. Later, the model is utilized for lightweight structure optimization of layer
thicknesses. The results show that the inner layer of laminated glasses could be thinner
than the external glass layer and that the optimally designed laminated glasses could be
superior to monolithic glasses in all criteria.

3.5 Discussion

To summarize the review above, one can conclude that most of the investigations done
consider beams and plates of regular geometries subjected to standard point loads or uni-
formly distributed loads. Some attention is directed towards the physical properties of the
interlayer. A main issue is to place laminated glass structural behavior correctly in rela-
tion to the behavior of layered and monolithic equivalency models for different geometries
and loading cases. Some investigations deal with the fracture behaviour of simple struc-
tures. Analytical models of various complexity have been developed in order to describe
the structural mechanic behaviour of laminated glass beams. Finite element models are
mainly three dimensional and are developed for the purpose of investigating failure be-
haviour or for optimization purposes. In all cases the structures are simple (beams and
plates) and the boundary conditions are standard. One author mentions that model size
constitutes a limitation when it comes to analyzing laminated glass beams subjected to
uniaxial bending for optimization purposes. The remedy is to use a plane (two dimen-
sional) finite element model rather than a full (three dimensional) model.

4 Stress Prediction of a Bolt Fixed Balustrade

4.1 General

In this section an example of a glass structure with bolted joints is used in order to demon-
strate the use of the two stress prediction methods presented in this thesis. The exam-
ple comprises a laminated glass balustrade of the type presented in Paper 3. Since the
balustrade in this example has 3+3 bolts, it is simultaneously shown how the concept of
design charts can be expanded to balustrades with the increased number of bolts. The
results in terms of accuracy are compared to results that areobtained when a standard
finite element method is used.
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4.2 Description of Example

The structure is a balustrade of laminated glass consistingof two glass layers with an
intermediate PVB layer. The structure contains 3+3 bolt connections, which means that
this example is also used to illustrate how design charts wasdeveloped for the case of 3+3
bolt connections. In Figure 3, the two dimensional geometryof the structure is displayed.

w

lb

lc

la

aw

Figure 3: Two dimensional geometry of balustrade.

Cylindrical bolts with bolt head diameter,db, of 60 mm were used. The bolts are made
of steel and have bushes of EPDM at the contact surfaces with the glass. The bore hole
diameter,dh, was set to 22 mm. A list of the geometry parameters with corresponding
design values is included in Table 4.tPVB is the thickness of the PVB layer,tEPDM is the
thickness of the EPDM layer andtg is the glass thickness.
As an example, a horizontal (uniform) line load was applied at the upper edge of the glass
balustrade. The load had the magnitude 3 kN/m. Alla materials were modeled as isotropic
and linear elastic materials. In Table 5, the material parameter values are presented.E
denotes modulus of elasticity andν denotes Poisson’s ratio for glass, PVB, EPDM and
steel respectively.
In the coming subsections, it is described how the test example was analysed using three
different methods. First, three dimensional solid elements were used in ABAQUS in order
to provide a benchmark solution to which the two other methods were compared. Then,
M-RESS elements were used in ABAQUS in order to illustrate theapplicability of the
method presented in Papers 1-2 to this test problem. Finally, design charts for balustrades
with 3+3 bolt connections are introduced and it is shown how the charts were used in
order to analyze the balustrade. Design charts for balustrades with 2+2 bolt connections
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Table 4: Design parameters for test example.
la 1.275 m
lb 0.48 m
lc 0.24 m
aw 0.18 m
w 1.23 m

tPVB 0.76 mm
tEPDM 3 mm

dh 22 mm
db 60 mm
tg 12 mm

Table 5: Material parameters for test example.
Eg 70 GPa
νg 0.25

EPVB 6.3 MPa
νPVB 0.4

EEPDM 20 MPa
νEPDM 0.45

Es 210 GPa
νs 0.3

is the topic of Paper 3.

4.3 Finite Element Analysis Using Three Dimensional Solid Elements

In this subsection, second order three dimensional solid elements were used in ABAQUS
in order to provide a benchmark solution to the problem presented in the former subsec-
tion. For each bolt, the entire bolt head consisting of a steel part and an EPDM layer
was explicitly modeled. Only those bolts located at positions where equilibrium reaction
forces acting on the glass occur, were included in the model.Constraints of the type tie
were used between the glass pane and the EPDM layers. As boundary condition it was
used that displacements are prohibited in all directions atthe opposite side of the bolts.
Second order three dimensional solid elements (C3D20R) were used for the glass and
PVB layers. Standard linear three dimensional solid elements (C3D8R) were used for the
other parts of the model. A total of about 270000 elements were used. The line load was
converted to a pressure load acting on al surface of infinitely small width, since it is not
possible to apply line loads in ABAQUS. The maximum principal stress occurred at the
middle bolt of the upper bolt row, as is indicated in Figure 4,and took on the value 119.4
MPa.
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(Avg: 75%)
S, Max. Principal

−1.195e+07
−1.003e+06
+9.944e+06
+2.089e+07
+3.184e+07
+4.278e+07
+5.373e+07
+6.468e+07
+7.563e+07
+8.657e+07
+9.752e+07
+1.085e+08
+1.194e+08

Figure 4: Maximum principal stresses for balustrade using three dimensional solid ele-
ments.

4.4 Finite Element Analysis Using M-RESS Elements

In this subsection, the model of the previous subsection wasused, but the element type of
the laminated glass was selected to be M-RESS. A modification of the model of the former
subsection was necessary. The line load was distributed to nine equidistant points and
applied as concentrated forces using manual lumping. In this model, two element layers
per glass layer and one element layer for the PVB layer were used. In total, around 160000
elements were used. The maximum principal stress of the glass balustrade reached 125.5
MPa.

4.5 Stress Prediction Using Design Charts

In the course of writing this section, design charts for balustrades with 3+3 bolt connec-
tions were developed. The in-plane geometry of the balustrade is that of Figure 3. When
comparing to the case of a balustrade with 2+2 bolt connections, the set of unknown pa-
rameters is the same. The development of the new design charts is thus a simple extension
of the already developed charts. Table 6 displays the designparameters and the ranges of
variation for each parameter.
In Figure 5, the design chart that applies to the test exampleof this section is displayed.
Next, it is illustrated how the maximum principal stress of aglass balustrade with geom-
etry parameters according to Table 6 and material parameters according to Table 5 was
computed. First, the nominal stress value,σNom, was computed using equations (1), (35),
(37) and (39) of Paper 3.
Equation (1) gaveR2 = 3000·1.23· (1+ 1.275

0.48 )≈ 1.3492·104 N.

From equation (1):M(0.48) = (1.3492·104)·1.275·0.48
(1.275+0.48) ≈ 4.7049·103 Nm.
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Table 6: List of geometry parameters.
Parameter Value

la 1.25 m
lc 0.24 m

tPVB 0.76 mm
tEPDM 3 mm

lb 0.2, 0.4, 0.8 m
aw 0.1-(w2 -0.15) m in step of 0.025
w 0.9-2.7 m in step of 0.3 m
dh 15-40 mm in step of 5 mm
tg 6, 8, 10, 12 mm
db 60 mm

Equation (19) gave (using Matlab):N(0.48)≈−1.8008·105 N.
Equation (20) yieldedM(0.48) = 1

2(4.7049·103+0.012· (−1.8008·105))≈ 1.2720·103

Nm.
Finally, equation (21) gaveσNom= 1.2720·103

1.23·0.0122
6

−
(−1.8008·105)

1.23·0.012 ≈ 55.3 MPa.

In Figure 5, the applicable design chart for this case is displayed. The chart was selected
as the one which has parameter values closest to the actual design example.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

a
w

 (m)

α

 

 
l
b
 = 0.2 m

l
b
 = 0.4 m

l
b
 = 0.8 m

Figure 5: Design chart fortg = 12 mm,w= 1.2 m,db = 60 mm anddh = 20 mm.

In the diagram,aw = 0.18 m was chosen on the x-axis, whereas in the case oflb one
had to interpolate between the isolines corresponding tolb = 0.4 m andlb = 0.8 m. The
value ofα which corresponded to the actual combination of parametersaw and lb, was

18



read off from the diagram, which yieldedα ≈ 2.44. The maximum principal stress of the
balustrade was determined according toσ = α ·σNom= 2.44·55.3≈ 134.9 MPa.

4.6 Results and Comparison

This subsection is devoted to a discussion and comparison ofthe results obtained using the
various design methods discussed in this section. In Table 7, the values of maximum prin-
cipal stress are presented. From the table one can conclude that the results are sufficiently

Table 7: Comparison of different methods for stress prediction.
Method Maximum principal stress (MPa)

FEM, solid elements 119.4
FEM, M-RESS 125.5
Design chart 134.9

close to each other in order to classify the methods as yielding equivalent results. More
rigorous comparisons of the two first methods are provided inPapers 1-2. The result using
the third method carries some uncertainties related to meshdensity when constructing the
chart, the selection of the design chart to match the actual set of parameters, parameter
interpolation and reading off the chart.

5 Summary of the Papers

5.1 Paper1

M. Fröling and K. Persson. Applying Solid-shell Elements toLaminated Glass Struc-
tures. Published in:Glass Worldwide, Issue 31, Sept/Oct 2010, 144-146.

Summary: Solid-shell finite elements are proposed by Maria Fröling and Kent Persson
for the efficient and accurate modeling of laminated glass structures. The elements are
applied to two test examples and performance is compared to 3D elasticity theory. One
example involves a real world structure, where special attention is directed to the predic-
tion of stress distribution around point fixings.

5.2 Paper 2

M. Fröling and K. Persson. Computational Methods for Laminated Glass. Submitted to:
International Journal of Applied Glass Science.

Summary: A new solid-shell finite element is proposed for the purposeof efficient and
accurate modeling of laminated glass structures. The element is applied to two test ex-
amples and the performance concerning accuracy and efficiency is compared to standard
three dimensional solid elements. Further examples illustrate how the element could be
applied in the modeling of laminated glass structures with bolted and adhesive joints.
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5.3 Paper 3

M. Fröling and K. Persson. Designing Bolt Fixed Laminated Glass with Stress Concen-
tration Factors. Submitted to:International Journal of Applied Glass Science.

Summary: A method for determining stress concentration factors forlaminated glass
balustrades with 2+2 bolt fixings is developed. The stress concentration factors are pre-
sented graphically in design charts. Through the use of simple formulas and the design
charts, the maximum principal stresses of the balustrade can be determined for an arbi-
trary combination of the geometry parameters involved.

6 Conclusions and Future Work

This thesis deals with the development of methods for stressprediction of bolt fixed lam-
inated glass structures. On one hand, a recently developed finite element, [10], is imple-
mented and it is proven that the performance is accurate whenit comes to the modeling
of thin laminated glass structures subjected to bending as well as for laminated glass with
bolted and adhesive joints. The computational performanceis strongly improved com-
pared to when a standard three dimensional solid element is used. One can conclude that
this element could be used in finite element analyses of complex laminated glass struc-
tures with many bolt fixings or adhesive joints. On the other hand, a method is developed
such that the maximum principal stress of a laminated glass balustrade with 2+2 bolt fix-
ings could be determined using simple formulas and design charts. This leads to great
time savings for the designer, since an investigation of thestresses of balustrades with
different design parameters could be performed without finite element analyses. It is also
not necessary for the designer to possess the advanced knowledge of the finite element
method which is required in order to analyse advanced glass structures.
For future work, a number of extensions can be made when it comes to the development of
the design charts. The must obvious extension is to develop similar charts for balustrades
with 3+3 bolt fixings. The development of these charts is to a great deal finished, which
has been demonstrated in Section 4. There are possibilitiesfor developing charts for
parameter combinations that have not been taken into account, for instance considering
different thicknesses of the PVB layer. Other materials forthe interlayer could also be
considered. It could also be interesting to consider other types of bolts and bolts for
countersunk holes. It is of course of interest to make sure that the design charts are in
line with current Eurocodes, since Eurocodes substitute Swedish construction standards
from the beginning of year 2011. An extension to include outdoor balustrades would
also be within reach. Less obvious is to consider other typesof connections, see [16]
for an overview of different types of connections. Especially adhesive connections are
of interest, because the larger contact area between the connection and the glass leads to
a redistribution of the stress concentrations that glass may be subjected to. The use of
glued connections also leads to greater transparency of thestructure. Furthermore, one
may consider to develop similar charts for other types of structures, for instance facades.
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APPLYING SOLID-SHELL ELEMENTS TOLAMINATED GLASS
STRUCTURES
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Applying Solid-shell Elements to Laminated Glass Structures

Maria Fröling and Kent Persson

Abstract

Solid-shell finite elements are proposed by Maria Fröling and Kent Persson for the efficient and
accurate modeling of laminated glass structures. The elements are applied to twotest examples
and performance is compared to 3D elasticity theory. One example involves a real world structure,
where special attention is directed to the prediction of stress distribution around point fixings.

Introduction

Although glass is commonly used as a structural material, knowledge about its mechanical
properties and structural behaviour is less than for other structural materials. Therefore,
it may be difficult to predict the strength of glass structures, which may result in sudden
failures [4]. One alternative to the use of single layered glass is the use of laminated
glass, ie two or more layers of glass bonded with plastic interlayers. A major advantage
of laminated glass is that a properly designed structure allows for one glass pane to break,
while the remaining layers can continue to carry the appliedloads.
The combination of very stiff (glass) and very soft (PVB) materials makes a laminated
glass pane behave in a complicated manner [1]. The discontinuous stress distributions that
may develop in laminated glass panes subject to certain loads and boundary conditions are
difficult to model numerically by means of the finite element method. The discontinuities
are particularly pronounced around holes and edges and since it is common that the largest
stresses occur in these regions, it is important that stressdistributions are represented
correctly by the model.
The stress distributions are well captured by 3D solid elements but the application of these
elements to large real world structures with several point fixings leads to very large mod-
els, which are practically impossible to analyse using standard computational resources.
One means of overcoming the problem of poor computational efficiency is to use shell
elements. However, the shell theories that are required in order accurately to determine
stress distributions in laminated glass structures are complicated. In this work, a novel
so-called solid-shell finite element [3] is implemented andapplied to test examples that
comprise laminated glass structures. The element is developed for modeling composite
structures with different material properties in each layer.
The reason why the solid-shell element is appropriate for the modeling of this type of com-
posite structures is that the element only requires one element layer per material layer but
includes several integration points through thickness. This feature leads to great savings
in terms of computational time, still preserving great accuracy.
Implementation of the element is relatively straight-forward. Further advantages com-
pared to shell-elements are that the full 3D constitutive laws are maintained, the use of
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rotational degrees of freedom is avoided and that contact situations are more easily mod-
eled through the presence of physical nodes on top and bottomsurfaces. The element has
proved to be both robust and efficient through extensive testing.

Numerical Tests

In this section, the solid-shell element of [3] is applied todetermine the behaviour of
laminated glass structures. The accuracy and computational efficiency of the element are
evaluated through the analysis of two numerical test problems and comparison is made to
3D elasticity theory (3D solid element).
The first test problem consists of a clamped plate, subjectedto a concentrated load. As
a second test example, a standard solid-shell element of thecommercial finite element
software ABAQUS/CAE is applied to a square plate, with a point-fixing in the middle of
the plate. This structure has been analysed experimentallyand numerically by [2].
The clamped plate is a square plate with a side length of 1000mm. The thickness of one
glass layer is 5mm and the thickness of the PVB layer is 0.5mm.Glass and PVB are set
to be linear elastic materials. The material parameters forglass areE = 78 GPa,ν = 0.23
andE = 6 MPa andν = 0.43 for PVB. A point load is applied on the top glass plate, at
the centre of the plate. This load has the size 40000 N. The plate is discretized using 8×8
elements in the x-y plane, and one element per layers in the z-direction.
In figure 1, the deformed structure in 3D is shown. Only top andbottom surfaces of
the glass panes are shown. A scale-factor of size 2·106 is applied when visualising the
results.
The same structure is implemented in ABAQUS/CAE. The elementtype is a 20 node
hexahedral quadratic solid element (C3D20R). The mesh has around 25000 elements. In
the model, the symmetry of the structure is utilised and onlyone quarter of the plate is

Figure 1: Deformed structure for clamped plate test.
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modeled.
Table 1 summarises results for the two models. The variable of interest is the midpoint
deflection in the z-direction of the lower glass pane. Also, the numbers of variables of the
models are reported. All results are given as fractions of the corresponding result for the
3D model.
For this test, the result using solid-shell elements deviates approximately 10 % from the
corresponding result using 3D solids. The model size when the solid-shell elements are
used is less than 0.5 % of the model size when 3D solids are used. These results illustrate
the relatively good accuracy that is achieved with the use ofsolid-shell elements but with
a very small fraction of the model size for the correspondingmodel using 3D solids.
In the case of the square plate with point-fixing, the geometry of the structure is that of a
500mm× 500mm plate of laminated toughened glass, with a bolt hole atthe centre. The
diameter of the hole is 28mm.
For symmetry reasons, only half of the plate is modeled. The model is set up to mimic a
compression test, where a compression force is applied on top of a cylindrical bolt affixed
to the glass [2]. The glass plate rests on a steel frame with dimensions such that the
unsupported area of the glass plate becomes 424mm× 424mm. The bolt has a diameter
of 50mm. In the compression test, the top cylindrical metal piece (spreader plate) is put
at the location of the bolt hole and a compression force is applied to the bolt.
In the modeling work, some simplifications are made. There isa rubber gasket between
the frame and the glass and only this part of the frame is modeled. The same modeling
strategy is chosen for the bolt, where an EPDM ring is placed between the bolt and the
glass. The inner diameter of the EPDM ring is 34mm.
All materials are modeled as linear elastic. The bolt ring and the rubber gasket are con-
nected to the glass by constraints with the type tie. The rubber gasket is assumed to be
locked in all directions. In order to reflect the conditions of the compression test, a deflec-
tion of 4.75mm is applied to the top of the EPDM ring. This corresponds to a deflection
of the upper glass pane, close to the bolt hole, of approximately 3mm.
The solid-shell element of [3] is not implemented in ABAQUS/CAE. In order to get an
idea of the performance of this type of element applied to a structure with a point fixing,
a similar element in ABAQUS/CAE is used, namely an eight-nodequadrilateral in-plane
general-purpose continuum shell element (SC8R) is used for the laminated glass part. For
the other parts, standard eight-node linear brick elements(C3D8R) are used. In total,
around 11000 elements are used. For comparison, the same model is implemented us-
ing 20-node quadratic brick elements (C3D20R). For this model, approximately 32000
elements are used. The finite element meshes for both models are displayed in Figure 2.
Figure 3 shows result graphs for the two models. The result variable is maximum principal

Table 1: Comparison between solid-shell elements and 3D solid elements for clamped
plate test.

Element type Midpoint defl. in z-dir. No of variables
3D solids (ABAQUS/CAE) 1 1

Solid-shell elements 1.10 0.003
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Figure 2: Finite element meshes for the point fixed plate. Left (a) solid element; right (b)
solid-shell element.

stress. In the graphs, the location of the maximum values of this variable is concluded to
be in the upper glass layer around the bolt fixing, directly above the PVB layer.

Figure 3: 3D plots of maximum principal stress for the point fixed plate models. Top (a)
solid element; Bottom (b) solid-shell element.

Results for maximum principal stress at one corner node closeto the hole of the upper
glass pane, together with number of variables in the models and CPU times are presented
in Table 2. All results are presented as fractions of the corresponding results for the 3D-
model.
The experimental mean value of the maximum principal stressat the corresponding loca-
tion is 1.16 times the corresponding value for the 3D model [2]. The modeling results are
in rough accordance with the experimental results. Noteworthy is that when solid-shell
elements are used, less than 1% of the CPU time of the corresponding job is required
when 3D solid elements are used.

Table 2: Comparison between solid-shell elements and 3D solid elements for point fixed
plate test.

Element type Max princ. stress No of variables CPU time
3D solids 1 1 1

Solid-shells 1.04 0.11 0.007
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Conclusion and Outlook

In this work, numerical tests have been performed to assess the performance of a relatively
new so-called solid- shell element [3]. Overall, performance of the element is good in
comparison to standard 3D solid elements but with considerably smaller model sizes and
thus, shorter CPU times. For a real-world like glass balustrade with one point-fixing, less
than 1% of the CPU time is required when modeling the structurewith solid-shells than
with 3D solids. Given that the dimensions and number of point-fixings of this structure
are small compared to those of real-world structures, it is possible to imagine the great
time savings that are obtained when analysing larger and more complex structures using
the solid-shell element. The long-term goal of this work is to implement the solid-shell
element [3] in a glass design programme, Clear Sight, which has been developed in work
by [5]. It is intended that large glass shell structures withan arbitrary number of point
fixings could be appropriately designed with standard computer power. The results of the
current work show that the solid-shell element is well suited for this purpose.
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Abstract

A new solid-shell finite element is proposed for the purpose of efficient and accurate modeling
of laminated glass structures. The element is applied to two test examples and theperformance
concerning accuracy and efficiency is compared to standard three dimensional solid elements.
Further examples illustrate how the element could be applied in the modeling of laminated glass
structures with bolted and adhesive joints.

1 Introduction

It is common today to use glass as a structural material. Unfortunately the strength design
and structural behavior of glass is less known than for otherstructural materials like steel,
wood or concrete. Thus, there is a risk for inaccurate predictions of the strength of glass
structures which could result in sudden failures, [12].
In order to increase safety, laminated glass may be used instead of single layered glass.
Laminated glass consists of two or more glass layers bonded with plastic interlayers.
The most common material used for the interlayer is polyvinalbutyral, PVB. The use of
laminated glass should allow for the glass panes to break while the remaining layers can
continue to carry the design loads, and the scattered glass pieces can stick onto the plastic
interlayer, and thereby prevent injury.
On the other hand, laminated glass displays a complicated mechanical behavior due to
the combination of a very stiff material (glass) and a very soft material (PVB), [4]. A
laminated glass-PVB plate is less stiff than a monolithic glass structure of correspond-
ing dimensions, which leads to larger displacements. Furthermore, under certain loads
and boundary conditions, discontinuous stress distributions develop in laminated glass
structures, ([5], [23]).
Regions close to supports and connections are often subjected to concentrated forces.
Since glass is a brittle material that not show plastic deformations before failure, the abil-
ity to distribute stresses at load is limited and thus stressconcentrations easily develops.
Glass fails under tension and in reality the tensile strength is much less than its theoretical
counterpart. This is due to the impact of defects on the surface. The defects are created
during manufacturing, treatment (such as hole drilling andcutting) and the use of the
glass, [5].
The discontinuities of the stress distributions of laminated glass structures are most pro-
nounced around holes and edges, that is, in the regions wherethe largest stress concen-
trations often occur, since these regions often are subjected to concentrated forces and
may have larger amounts of micro defects. In order to illustrate the discontinuous stress
distributions that may arise in a laminated glass structure, a simple example is provided.
In Figure 1 below a cantilever beam subjected to bending by a point load at its free end is
displayed.
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Figure 1: A cantilever laminated glass beam subjected to a point load.

The structure in Figure 1 is modeled by means of the finite element method using two
dimensional plane stress elements. The material parametersE = 78 GPa,ν = 0.23 (glass)
andE = 6 MPa,ν = 0.43 (PVB) are used. The distribution of normal stress along the
thickness direction at a cross section located at the centerof the beam is shown in Figure
2. As one can see from the figure, the normal stress distributions of the two glass layers
are linear as expected. At the glass/PVB interfaces there are discontinuities in the stress
distribution and the normal stress in the PVB layer is almostzero. The large difference in
stiffness between glass and PVB leads to a shear deformationof the PVB layer and thus
to a partial shear force transfer between the glass layers.
It is important for the purpose of safe and cost efficient strength design, that the structural
behavior in terms of displacements and stress distributions are accurately determined.
Classical design methods, such as simple analytical formulas, do not provide sufficient
information in order to determine the stress distributionsaround bolt connections and
determine the load bearing capacity of glass, [14], especially laminated glass. Instead,
a finite element model may be used for stress predictions. In order to sufficiently well
describe the stress distributions around the bolt connections, a very fine mesh around the
bolt holes are required. In comparison to bolted connections, adhesive connections may
distribute the load over a greater surface of the glass, leading to a reduction in stress
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Figure 2: Distribution of normal stress along thickness.
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concentrations. Despite this advantage, there are few examples of load bearing adhesive
connections used in glass structures and appropriate design guidelines are lacking, [27].
For load bearing adhesive connections, the maximum stresses occur in edge regions of
the adhesive layer and for accurate design of the connectionit is important to achieve
accurate enough stress predictions in these critical regions. Finite element analysis is
recommended as a tool for stress prediction, [1].
Accurate predictions of laminated glass strength can be obtained through finite element
analyzes using three dimensional solid elements. However,to make precise prediction
of the stress distribution several elements must be employed in the thickness direction
of each layer resulting in that standard computational resources limit the scope of the
analyzes that can be made. Large real world structures with several point fixings are thus
practically impossible to analyze, since it easily needs millions of degrees of freedom for
a correct result.
According to the classification of [25], a laminated glass plate falls into the category
laminated composites, which are made up of layers of different materials. It is possible
to reduce the three dimensional elasticity problem to a two dimensional one by mak-
ing suitable assumptions regarding the kinematics or stress state through the thickness of
the laminate. In the simplest of those laminate theories, the kinematic assumptions that
straight lines normal to the xy-plane before deformation remain straight after deformation
and do not undergo thickness stretching are used. These assumptions are the same as in
the classical Kirchhoff and Reissner Mindlin plate theories. The structure is in a state
of plane stress. The use of these theories as a basis for a finite element model reduces
the model size and increases computational efficiency. However, due to the material dis-
continuity in the thickness direction of a glass/PVB composite, this structure experiences
piecewise continuous displacement and transverse stresses in the thickness direction. The
requirements that these two conditions are fulfilled are termedC0

z-requirements, [9]. Un-
fortunately, the two dimensional laminate theories do not fulfill all these demands. The
resulting stress distributions are erraneous and the discontinuous stress distribution shown
in Figure 2 is not correctly predicted.
An alternative is to use a layerwise laminate theory that contains full three dimensional
kinematics and constitutive relations, [25]. The corresponding finite element model pos-
sesses some computational advantages compared to a full three dimensional solid element
model. These advantages relate to the fact that a two dimensional data structure (two di-
mensional finite elements) could be used. In the modeling of advanced structures, the
layerwise model may however be computationally inefficient, [25], and cumbersome to
implement.
Instead it may be appropriate to use so-called solid-shell elements, such as the element
presented in [8]. The element is developed for modeling composite structures with dif-
ferent material properties in each layer. In particular, the full three dimensional consti-
tutive laws are maintained allowing for a correct stress distribution prediction, especially
at loads and supports. Since the element only requires one element in the thickness di-
rection of each material layer, but includes several integration points through thickness,
great computational savings are made and and good accuracy is obtained. The imple-
mentation of the element is relatively straight-forward. Afurther advantage compared
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to plate or shell element formulations is that contact situations are more easily modeled
through the presence of physical nodes on top and bottom surfaces of the element. Of
great importance for applications with bolted joints is that the full three dimensional ma-
terial definition is used and all stress components are calculated which may be important
at the supports. The element has proven to be both robust and efficient through extensive
testing.
In this work, the solid-shell element in [8] was implementedand applied to test examples
comprising laminated glass structures. The accuracy and efficiency of the solid-shell
element were examined. The results were compared to the results that were obtained with
a three dimensional solid element. Finally, the application of solid-shell elements to real
glass structures is illustrated through several examples.

2 The Solid-Shell Concept: An Overview of the Litera-
ture

A solid-shell element is a three dimensional solid element which is modified in order to
be suited for the analysis of shell-like structures. The modifications are made in a man-
ner so that typical shell properties like bending and in plane stretching can be modeled
approprietly using one element in the thickness direction only. When using a low order
three dimensional solid element for the modeling of shell-like structures, certain lock-
ing phenomena occur. The solid-shells are constructed in a fashion such that locking is
prevented.
The solid-shell concept stems from work by [16]. In that paper, several solid-shell ele-
ments are presented. Common for these elements is that they all employ the Assumed
Natural Strain (ANS) method, [11], to prevent locking. Other contributions to the litera-
ture on solid-shell elements are for instance [24] and [17].[15] discusses several locking
phenomena occuring in low order solid-shell elements and the focus is particularly on
large deformations’ problems. [3] proposes a new class of eight-node solid finite ele-
ments. The elements can be used both for three dimensional and thin shell applications.
The elements use the Enhanced Assumed Strain (EAS) approach, [26], in order to pre-
vent locking problems. However, the use of the EAS method in these cases leads to poor
computational efficiency. The Reduced Enhanced Solid-Shell(RESS) elements presented
in ([2], [8]) are eight-node solid-shells. Due to a special one-point quadrature integration
scheme, these elements possess considerably higher computational efficiency than their
predecessors of [3]. The integration scheme requires only one element layer for a single-
layered material, but uses multiple integration points through thickness. This leads to
high computational efficiency and great accuracy. The reduced integration scheme re-
quires physical stabilization to prevent zero-energy modes. The stabilization method of
[7] and the ANS method are employed for this purpose. In orderfor the Modified RESS
(M-RESS) element, [8], to pass the membrane patch test, the stabilization method based
on results of ([22], [21]) is used. For instance the B-bar approach, [18], is used in order to
alleviate locking problems that occur due to the stabilization procedure. The EAS method,
[26], plays an important role in preventing various types ofother locking problems that
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occur in the element formulation.
The M-RESS element is particularly suited to use for the application to laminated glass,
since the reduced integration scheme allows that only one element layer is used per mate-
rial layer, which greatly reduces the computational efficiency. The excellent performance
of the element, and the fact that implementation guidelinesare straightforward further
motivates the choice of this element for use for computations of glass structures.

3 Brief Description of the M-RESS Element

3.1 M-RESS and the EAS-method

M-RESS stands for Modified Reduced (in-plane) integration, Enhanced strain field, Solid-
Shell element. The geometry of the element is that of a three dimensional hexahedral solid
element with eight nodes and three translational degrees offreedom per node. The ge-
ometry of the element, together with the coordinate systemsinvolved, is shown in Figure
3.
The M-RESS element is based on the Enhanced Assumed Strain (EAS) approach, [26].
The EAS method plays an important role in reducing volumetric and Poisson locking.
The crucial point of the EAS method is to enlarge the strain field, ε, through adding a
new field of enhanced strain parameters,α. It can be shown (see for instance [2]) that
only one enhancing parameter,α1, is enough in order to reduce the locking problems.
This means that the locking problems can be reduced considerably, while maintaining
high computational efficiency of the element formulation which is achieved through the
reduced integration of having multiple integration pointsalong the localζ-axis only. To
overcome the hourglass modes that then may develop, hourglass stabilization is made by
the Assumed Natural Strain (ANS) method for the transverse shear components whereas
the membrane field were stabilized based on the stabilization vectors of [22].
In the local frame, the enhanced strain field is added to the ordinary strain field:

ε̃ = ε+ εα = [B̂u B̂α]

[

u
α

]

= B̃ũ. (1)
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Figure 3: Element geometry.
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B̂u is the standard FEM strain-displacement matrix.εα is the enhanced part of the strain
field. In the convective coordinate system, the enhanced strain field is chosen as:

εα
ζζ = ζα1, (2)

which leads to the following enhanced strain-displacementmatrix in the local coordinate
system:

B̂α = Q0[000ζ 00]T . (3)

For a definition of the transformation matrixQ0, see [8] and references therein. For
linear applications, the application of the EAS method leads to the following system of
equations, [26]:

[

K̂uu K̂uα

K̂αu K̂αα

](

u
α

)

=

(

fext

0

)

. (4)

Static condensation ofα can be performed on (4) that leads to:

K̂u+α = K̂uu
− K̂uα(K̂αα)−1K̂αu

. (5)

The physical stabilization procedure adds an extra part,K̂H , to the stiffness matrix as
follows:

K̂ = K̂u+α + K̂H
. (6)

The displacement field can now be obtained as:

u = (K̂)−1fext
. (7)

3.2 Strain Field

For the application of the physical stabilization method, adivision of the strain tensor
into membrane, normal and transverse shear components is necessary. In the convective
coordinate system the strain tensor can be written as:

ε = [εm...εn...εs]
T = [εξξ εηη εξη...εζζ...εξζ εηζ]

T
, (8)

where the strain components are defined as:

εab =
1
2
(J

,au
,b+J

,bu
,a), (a,b= ξ,η,ζ), (9)

whereJ
,a are the lines of the Jacobian matrixJ.

The strain tensor in the local coordinate system is given by

ε̂ = Q0ε, (10)

whereQ0 is defined as in [8] and references therein.
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It can be shown, see [8], that the total strain field can be expanded to constant, linear
and bilinear terms in the coordinatesξ, η andζ. The constant membrane strain field is
composed of a component evaluated at the center of the element and a component that
depends only on theζ coordinate:

εC
mI = ε0

m+ζεζ
m. (11)

The constant membrane strain tensor must be transformed to the local coordinate system
through the transformation (10). For a detailed description of the corresponding strain-
displacement matrices, see [8].
The reduced integration scheme with integration points only along theζ-axis will lead to
the cancellation of the contributions to the strain-displacement matrix that are correspond-
ing to the non-constant terms of the strain field. Physical stabilization strain-displacement
relations are therefore required for those terms. The membrane part of the stabilization
strain tensor is given by:

εH
mI = ξεξ

m+ηεη
m+ξηεξη

m +ξζεξζ
m +ηζεηζ

m . (12)

The strain tensor is transformed to the local coordinate system through the application of
(10). Explicit descriptions of the corresponding strain-displacement matrices are given in
[8].
The ANS-method is used in order to construct strain-displacement stabilization matrices
for the normal strain componentεζζ and for the transverse shear strainsεξζ andεηζ. For
a description of the application of the ANS-method, we referto [8].
A second stabilization method is applied to the membrane strain components in order
to make the M-RESS element pass the membrane patch test. Bases for the method are
provided in ([22], [21]).

To eliminate volumetric locking that occurs due to the stabilization procedure, the B-
bar method, [18], is used. When applying the B-bar method in thelocal coordinate system,
the strain-displacement operator corresponding to the physical stabilization scheme is
divided into its dilatational and deviatoric components, and only the deviatoric part is
used for stabilization. See [8] for details. The resulting strain-displacement matrices for
the hourglass membrane field are given in [8].
It should be noted that the stabilization scheme requires that the nodal degrees of freedom
are specified in the local coordinate system. The following transformation from global
coordinates to local coordinates is therefore used:

d̂I = R̂0 ·dI . (13)

R̂0 is defined in [8].
The resulting membrane strain tensor for the hourglass fieldis defined as

ε̂H
m =





ε̂x̂x̂

ε̂ŷŷ

ε̂x̂ŷ



= (ξ · B̂ξ
mI +η · B̂η

mI+ξη · B̂ξη
mI+ξζ · B̂ξζ

mI+ηζ · B̂ηζ
mI) · R̂0 ·dI . (14)
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3.3 Stress Evaluation

The displacements obtained from (7) are used together with equation (1) in order to com-
pute the strain field,̃ε. Once the strain distribution has been determined, the stress distri-
bution is given by:

σ = Dε̃ = D · [B̂u B̂α]

[

u
α

]

. (15)

D is the constitutive matrix. The stresses are evaluated at the integration points. A stress
smoothing procedure based on a quadratic least squares fit isused in order to extrapolate
and average the stresses at the nodes, [10].

4 Numerical Examples

The M-RESS element described in the previous section was applied to a simple test ex-
ample comprising laminated glass and a convergence analysis. The accuracy and compu-
tational efficiency of the element were evaluated through the analysis of the test problems
and comparison was made to three dimensional solid elements. In the first test example,
a cantilever beam made of laminated glass was loaded with a point load in the negative
z-direction. The convergence analysis comprised a clampedlaminated glass plate with a
distributed load applied at the top surface.

4.1 Cantilever Beam

First, the M-RESS element was implemented and tested using a simple test problem com-
prising a cantilever beam of laminated glass subjected to a point load at the tip of the
beam. The x-y dimensions of the beam were 100× 10. The laminate consisted of two
glass layers with a PVB interlayer. An illustration of the beam in the xz-plane is provided
in Figure 4. Glass and PVB were set to be linear elastic materials. The material param-
eters were the modulus of elasticity,E and Poisson’s ratio,ν. For glassE = 78 GPa and
ν = 0.23 and for PVBE = 6 MPa andν = 0.43. The point loadF = 4000 N and was
directed in the negative z-direction.
The example was modeled using Matlab. Two different values of the thickness,t, were
employed, namelyt = 2.1 andt = 4.2. For the first case, the thickness of the glass layers,

z
F

x
t
g

t
g

t
PVB t

Figure 4: Two dimensional geometry of cantilever beam.
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tg = 1 and the thickness of the PVB layer,tPVB= 0.1. For the second case,tg = 2 and
tPVB= 0.2.
The beam was discretized using four different discretizations in the xy-plane, and one
element per material layer in the z-direction.
The test problem was also modeled using ABAQUS. The element type was a 20-node
quadratic brick element (C3D20R). The mesh was discretized using four different dis-
cretizations in the xy-plane and four elements per materiallayer in the z-direction.
Results from the analysis with a total thicknesst = 2.1 are presented in Table 1 for the M-
RESS element. The presented quantities are the vertical deflection at the tip of the beam,
the maximum normal stress component in the x-direction and the number of variables in
the model. The maximum normal stress component is given for across section at the
middle of the beam in the x-direction. The first two measured quantities are structural
mechanical quantities and reflect the accuracy of the element. The last quantity is related
to the computational efficiency of the element. All structural mechanical quantities are
represented as fractions of the results achieved when the finest mesh is used. The number
of variables are taken as fractions of the number of variables for the finest mesh when a
three dimensional solid element is used, see below.
Similar results for the three dimensional solid element arepresented in Table 2.
The corresponding results fort = 4.2 are reported in Tables 3 and 4.
For the thickness,t, equal to 2.1, both the M-RESS element and the solid element show
good convergence. The results for both the vertical tip displacement,wtip, and the normal
stress in the x-direction,σxx, have converged within reasonable limits (+/− 5% from
the corresponding results for the finest discretized model respectively) using the 20×2
discretization in the xy-plane. The M-RESS element model uses only around 0.7 % of
the variables of the finest discretized solid element model,compared to around 8 % for
the solid element model of the same discretization. Whent is equal to 4.2, only 0.2 % of
the finest model size for the solid element is required for theM-RESS element to yield
convergence.

Table 1: Results for cantilever beam test for M-RESS element,t = 2.1.
Mesh wtip σxx Number of variables

10× 1× 1 0.997 0.934 0.0024
20× 2× 1 0.999 1.020 0.0070
40× 4× 1 1.000 1.000 0.0228
80× 8× 1 1.000 1.000 0.0810

Table 2: Results for cantilever beam test for solid element,t = 2.1.
Mesh wtip σxx Number of variables

10× 1× 4 1.317 1.002 0.0265
20× 2× 4 1.000 0.999 0.0806
40× 4× 4 1.000 1.000 0.2737
80× 8× 4 1.000 1.000 1.000
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Table 3: Results for cantilever beam test for M-RESS element,t = 4.2.
Mesh wtip σxx Number of variables

10× 1× 1 0.998 0.974 0.0024
20× 2× 1 0.999 1.003 0.0070
40× 4× 1 1.000 1.000 0.0228
80× 8× 1 1.000 1.000 0.0810

Table 4: Results for cantilever beam test for solid element,t = 4.2.
Mesh wtip σxx Number of variables

10× 1× 4 1.326 1.000 0.0265
20× 2× 4 1.000 1.000 0.0806
40× 4× 4 1.000 1.000 0.2737
80× 8× 4 1.000 1.000 1.000

This test example points to that the M-RESS element is more efficient than a second order
three dimensional solid element when it comes to modeling laminated glass. However, the
results above are not optimized when it comes to mesh size andone should be careful to
draw any conclusion regarding relative efficiency of the twoelements. In the next section,
a more rigorous convergence study is made which shows the relative performance of the
elements in a more clear way.
The ability of the M-RESS element to represent the discontinuous stress distribution that
arises in the thickness direction of laminated glass is demonstrated in Figure 5. The stress
distribution forσxx is shown for a cross section atx = 50. The results from simulations
using the finest discretized mesh for the M-RESS element is taken as reference solution
and the stress distribution for the 10×1×1 mesh is chosen to illustrate the efficiency of
the M-RESS element.
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Figure 5: Distribution of normal stress along thickness, cantilever beam test,t = 4.2.
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From the figure it is clear that the use of the M-RESS element produces results that are
representing theσxx distribution in the z-direction well, for a relatively coarse mesh.

4.2 Convergence Analysis

This convergency analysis comprised of a clamped square plate of a laminated glass
loaded by a pressure surface load, Figure 6. The laminate consisted of two glass panes
and one intermediate layer made of PVB. The surface load of 4000 per unit area acted
on the surface of the uppermost glass pane. The in-plane dimensions of the plate were
1000×1000 and the total thickness was 21 whereas the glass thickness was 10 and the
interlayer thickness 1. Both glass and PVB were modeled as linear elastic materials and
the same material parameters as for the cantilever beam testwere used. The plate was
clamped, thus all displacements of the four sides were constrained to zero.
Three different elements were tested in the finite element analysis of the plate; the M-
RESS element, a linear 8-node (C3D8R) and a quadratic 20-node element (C3D20R),
both standard isoparametric quadrilateral elements with reduced integration. The analyses
with the 8- and 20-node elements were made using the commercial FE package ABAQUS
and the analyses with the M-RESS element were made using Matlab. For the M-RESS
element, one element for each material layer was used in the thickness direction whereas
the 8-node element required four elements and the 20-node two elements for each element
layer to reach a reasonable convergence rate.
To evaluate the models, the in-plane stress in one directionand the vertical displacement at
the center point of the bottom glass surface were compared. Results from the convergence
analysis are shown in Figures 7 and 8. The results in the figures were normalized to the
results using the 20-node element and 2 millions degrees of freedom.
The 8-node element showed very poor convergence rate for theclamped laminated plate
structure. Not even by using 500.000 degrees of freedom the element reached a sufficient
result, especially not for the stresses that showed about 20% error. The 20-node element
showed much better convergence rate as shown in Figure 8. About 3000 degrees of free-
dom was needed to get less than 5 % error for both the displacents and the stresses. The
M-RESS element that performed extremely well and only required about 300 degrees of

Z

Y

X

Figure 6: Geometry of the clamped plate.
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Figure 7: Comparison of the M-RESS and the 8-node quadrilateral element, displacement
versus number of degrees of freedom to the left and stress versus number of degrees of
freedom to the right.
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Figure 8: Comparison of the M-RESS and the 20-node quadrilateral element, displace-
ment versus number of degrees of freedom to the left and stress versus number of degrees
of freedom to the right.

freedom to get less than 5 % error for the displacements and about 700 degrees of freedom
for the stresses to get less than 5 % error.
A conclusion is that standard isoparametric elements with linear approximating functions
is not recommended for analyzing laminated glass and the M-RESS element is an excel-
lent choice for analyzing laminated glass.

5 Application to Glass Structures

In the previous section the ability of the M-RESS element to represent displacements
and stress distributions of laminated glass structures is demonstrated. In order to fully
illustrate the usefulness of the approach, this section deals with the application of the M-
RESS element to several real glass structures comprising laminated glass. All examples
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comprise supports and joints. The glass supports are eitherbolted or adhesive.
In the regions where the stress concentrations are expected, local mesh refinement is re-
quired. When analysing real glass structures of large dimensions that contains several bolt
or adhesive connections, the total finite element model willbe large and the scope of the
solid-shell concept is particularly useful in order to decrease the model size and to reduce
the computational requirements of memory and time.

5.1 Laminated Glass with Bolt Connection

In the following example, a finite element model was made of anexperimental test where
a square glass plate with one bolt connection is subjected toa compressive force. The aim
of the experimental test was to determine the strength of glass around a bolt fixing. The
commercial finite element programme ABAQUS was used for the simulations.
The geometry of the glass specimen is shown in Figure 9.
In the experimental set-up, the glass plate rested on a steelframe of size 500×500×38
mm. Thus, the unsupported area of the glass specimen was 424× 424 mm. A rubber
gasket was placed between the glass and the steel. A cylindrical bolt was placed on the
top of the glass, at the middle of the plate, and a compressiveforce was applied to the
bolt. The bolt had an outer diameter of 50 mm and the hole was 28mm in diameter.
Strain gauges were glued on the glass on the tension side at the hole edge. A test series
was performed and the ultimate tensile stress,σmax, for each test, the mean ultimate tensile
stress,σmean, for the whole test series and the maximum compressive force, Fmax, for each
test are calculated, [5]. The results are reported in Table 5.
Since the steel frame was regarded as rigid, only the rubber gasket between the steel frame

500

500

250

250
o 28

6 Glass
0.76 PVB
6 Glass

Figure 9: Geometry of glass plate.

Table 5: Test results.
Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Mean

σmax (MPa) 174.91 201.88 180.78 173.29 154.38 177.52 177.13
Fmax (kN) 4.81 4.70 4.75 4.56 4.25 4.57 4.61
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and the glass plate was modeled. Similarly, the bolt has an EPDM ring that protects the
glass from direct contact with the steel bolt. Only the EPDM ring was modeled. The inner
diameter of the EPDM ring was 34 mm and the ring had a thicknessof 3 mm.
Due to symmetry, only half of the plate was modeled.
All materials were modeled as linear elastic and isotropic and the material parameters are
shown in Table 6.
Since no slip between the rubber and the glass was expected, afull tie constraint was
applied. The load for the compression test was set to the meanvalue of the maximum
force from the experimental tests, see Table 5. The load was applied on the top of the
EPDM ring. Along the symmetry line, symmetry boundary conditions were applied. The
rubber frame was constrained to zero displacement in all directions.
The M-RESS element was used in the modeling of the laminated glass plate. For the other
parts of the model, a standard eight-node linear brick element (C3D8R) was employed.
The model contained around 11000 elements. The laminated glass part had one element
layer per material layer and the EPDM ring as well as the rubber gasket parts had three
element layers in the thickness direction. In Figure 10, thefinite element mesh for the
whole structure in the vicinity of the bolt hole is displayed. As can be seen, the mesh was
refined close to the bolt hole.
As a comparison, numerical tests were performed by use of ABAQUS and 20-node second

Table 6: Material parameters for model.
Material E (MPa) ν

Glass 78000 0.23
PVB 5.2 0.45

Rubber 1 0.45
EPDM 7 0

ZY

X

Figure 10: Finite element mesh for square plate model.
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order solid elements (C3D20R). When solid elements were used, four element layers per
glass layer and two element layers for the PVB layer were employed. The whole model
contained approximately 34000 elements.
In finite element analyses of the laminated glass plate, the results show that the largest
maximum principal stresses are located in the upper glass layer, close to the bolt fixing,
as expected. The distribution of the maximum principal stresses in the glass plate close to
the bolt fixing is shown in Figure 11.
As a quantitative comparison, the maximum principal stressat an element close to the hole
edge in the lower glass layer was determined for the models applying M-RESS elements
and C3D20R respectively. These correspond to the values of the maximum principal
stress determined experimentally. The results are presented in Table 7. Observe that the
experimental values of the maximum principal stress are notthe maximum values that
arise in the structure. There was no possibility to glue the strain gauges in between the
glass layers, where the maximum principal stresses do occur.
The model size of the finite element model with M-RESS elementswas only 10 % of that
of the model with solid elements.
The result by applying the M-RESS element is very good for modeling a laminated glass
structure with bolts. The element predicts stresses as accurate as the second order solid
element with only 10 % of the model size of that element. The correspondance between
simulations and experiments is fair and the modeling results are accurate enough to be
used in practical design of glass structures. The discrepance between the experimental
and simulation results are probably due to that the properties of the PVB-layer not were
accurate enough.

(Avg: 75%)
SPOS, (fraction = 1.0)
SNEG, (fraction = −1.0)
S, Max. Principal

−2.848e−01
+1.322e+01
+2.673e+01
+4.024e+01
+5.374e+01
+6.725e+01
+8.076e+01
+9.426e+01
+1.078e+02
+1.213e+02
+1.348e+02
+1.483e+02
+1.618e+02

Figure 11: Maximum principal stress close to bolt connection.

Table 7: Maximum principal stress close to bore hole.
Maximum principal stress (MPa)

Experimental mean value 177.1
M-RESS 159.2
C3D20R 153.4
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5.2 Glass Beam with Adhesive Joint

This example deals with the finite element modeling of an experimental test with the aim
of determining the shear capacity of an adhesive joint in a large dimension glass beam.
A series of tests consisting of a four-point bending test of abeam with a three meter span
were conducted. The beams were constructed by three flat-glass elements measuring 250
× 2000 mm2 with a width of 12 mm. They were joined in overlap joints at themiddle
of the three meter span by two adhesive joints each measuring250 × 250 mm. The
arrangement of three glass elements was chosen to create a symmetrical beam in order to
obtain pure shear stresses in the joints, see Figure 12.
Five types of adhesives were tested consisting of three stiff adhesives; a UV curing acry-
late, a polyurethane glue and an epoxy, and two soft, rubber-like, adhesives based on silyl
modified polymers (SMP), commonly found as adhesives in automotive glass gluing. The
adhesive layers were about 0.2 mm in thickness for the stiff adhesives and about 2 mm
for the soft adhesives. The tests revealed that a soft weak SMP-based adhesive may, for a
large shear-joint, result in a stronger joint than for usinga stiff strong adhesive, see Table
8.
Tests were also conducted on small specimens (20× 20 mm2) to evaluate material proper-
ties and material models for the various types of adhesives,[20]. These material properties

P/2
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P/2

250

5 4 3
7

A - A

A A
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6

12

B B

3000

Adhesive layer

2000

Figure 12: Test setup of four-point bending test of glass beam with adhesive joint.

Table 8: Ultimate load and deformations at the mid-point of the beam.
Type of adhesive Total applied load (kN) Displacement (mm)

SMP type 1 49.3 51
SMP type 2 48.8 50

Epoxy 30.3 10
Polyurethane 10.3 3.5

UV-curing glue 22.3 7.5
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were utilized in the finite element modeling of the jointed beam.
In order to evaluate the tested adhesives the glass beam was simulated in ABAQUS both
by use of the M-RESS element and an eight node three-dimensional quadratic solid ele-
ment (C3D20R). Here, the results from the simulation with the epoxy adhesive are pre-
sented and a comparison is made from using the two element types. The flat glass el-
ements were modeled as three dimensional objects with a Young’s Modulus of 70 GPa
and a Poisson’s ratio of 0.23. The epoxy joint was modelled according to the evaluated
material model from the tests of the small specimens to a Young’s Modulus of 1500 MPa
and a Poisson’s ratio of 0.25.
To ensure that the load was applied symmetrical, the load wasapplied on a reference
point coupled to nodes by a kinematic coupling constraint. The load was applied as
a displacement of the reference point. The magnitude of the displacement was -0.006
m in the load direction. All other possible displacements ofthe reference point were
constrained to zero. At the supports, displacements were prevented in the load direction
and in the thickness direction of the beam.
In the finite element model with M-RESS elements, one element layer per material layer
was applied in the thickness direction. The model containedapproximately 16000 ele-
ments. For three-dimensional solid elements, the model contained about 34000 elements.
As a comparison between experimental results and the results from the finite element
simulations, the displacement in the load direction at point 4 of Figure 12 was taken as
test variable. Results from experiment and simulations are presented in Table 9. Both
of the finite element models give accurate enough results, and it is noted that the model
with M-RESS elements requires merely 20 % of the model size of the model with solid
elements.
For the stiffer adhesives, stress-concentrations occurred at the corners of the joint and
consequently the critical shear stress was first reached there. For the silicones the stresses
were more evenly distributed, the concentrations were observed at the edges of the joint
and of less magnitude than in the stiffer adhesives. The principal pattern of the stress
distribution is shown in Figure 13.
From the results it is shown that the concentration of stresses plays a decisive role in the
ultimate load of the joints. The apparently stronger glues turn out to have less ultimate
load than the silicones due to the high magnitude of the stress-concentrations in the cor-
ners. The only glue to compete with the silicones is the Epoxy, which due to its high
ultimate shear stress supports the stress concentrations better.

Table 9: Ultimate deformations at the mid-point of the beam.
Test Displacement (mm)

Experimental 10.00
M-RESS 10.20
C3D20R 10.24
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Figure 13: Shear stress distribution for adhesive layer.

6 Conclusions

This paper deals with accurate and efficient methods to perform finite element analyses
of laminated glass structures. The solid-shell element of [8] is suggested as an excellent
choice to use for the finite element simulations. The elementwas tested using two test
examples comprising thin structures of laminated glass subjected to bending. Comparison
is made to three dimensional solid elements. It is demonstrated that the M-RESS element
produces accurate results for displacements and stresses with a relatively small fraction
of the model size of the corresponding solid element model. The computational time is
increasing between square and cubic with the model size, which means that the use of the
M-RESS element instead of three dimensional solid elements decreases computational
time significantly.
The M-RESS element was further evaluated by analyzing two glass structures with bolted
and adhesive joints respectively and comparing with experimental results. The finite el-
ement software ABAQUS was used for the examples. The tests illustrate the solid-shell
element applied to laminated glass structures where jointsare used and show a successful
prediction of displacements and stresses with a considerable increase in computational
efficiency. The real advantage of the solid-shell concept isfor the use in the analyses of
structures that are even more complicated than the examplesshown. For these cases, the
use of the M-RESS element might make it possible to perform finite element analyses us-
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ing standard computational resources, whereas the models would become too large using
conventional three dimensional solid elements.
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Abstract

A method for determining stress concentration factors for laminated glass balustrades with 2+2
bolt fixings is developed. The stress concentration factors are presented graphically in design
charts. Through the use of simple formulas and the design charts, the maximumprincipal stresses
of the balustrade can be determined for an arbitrary combination of the geometry parameters in-
volved.

1 Introduction

Recently, demand from architects has made it more common to use glass as a structural
material. Unfortunately, knowledge about mechanical properties of glass is less than for
other structural materials and there is a lack of guidelineson how to perform strength
design of glass structures. Thus, there is a risk for inaccurate predictions of glass strength
which may result in sudden failures due to the brittle natureof the material glass. In order
to increase safety of glass constructions, laminated glassmay be used instead of single
layered glass. Laminated glass consists of two or more glasslayers with intermediate PVB
(polyvinylbutyral) layers. Laminated glass displays a complicated structural mechanical
behavior due to the combination of a very stiff material (glass) and a very soft material
(PVB), [1]. When a laminated glass structure is subjected to certain loads and boundary
conditions, discontinuous stress distributions may develop, ([2], [11]). The discontinuities
are most pronounced around holes and edges, that is, in the regions where the largest stress
concentrations often occur. It is of significant importancethat these stress concentrations
are accurately determined. Accurate glass strength prediction is also of advantage from
the perspective of using material efficiently.
Design of glass structures can be performed using tables andgraphs contained in de-
sign standards as far as common geometries and loading conditions are concerned. For
more complicated geometries and support conditions, for instance bolt fixings, a more de-
tailed computational analysis is often required, [7]. The traditional method for predicting
stress distributions in laminated glass structures with bolt fixings is to use three dimen-
sional models in finite element analyses. The large models that are required for accurate
stress predictions, make this type of analyses practicallyimpossible from a computational
perspective. Apparently, there is a need for strength design methods with scientific and
technical base for laminated glass structures with bolt fixings.
In previous work, the authors implemented a solid-shell element, [3], suitable for stress
predictions of large laminated glass structures with many bolt fixings, [6]. The compu-
tational efficiency is increased while the accuracy of the stress predictions is preserved.
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However, the use of this method requires advanced knowledgeof finite element analy-
sis. In the present work, the solid-shell element is used in finite element analysis in or-
der to develop a method for determining stress concentration factors for laminated glass
balustrades with 2 + 2 bolt fixings. With the use of the stress concentration factors, the
maximum of the largest principal stress of the balustrade can be determined for arbi-
trary geometrical parameter combinations. The computed stress values could be used in
strength design of the balustrade.
Design methods in terms of formulas, tables or graphs are particularly rare when it comes
to bolt fixed laminated glass design. A comprehensive overview of the current state of
knowledge is given in [7]. Existing design methods for vertical bolt fixed glass are typ-
ically constructed for the case of a uniformly distributed wind load and fixed positions
of the bolts. In this work, simple formulas and charts are developed for balustrades sub-
jected to a uniform line load and with variable positions of the bolt fixings. The aim is
to make the design of bolt fixed laminated glass balustrades possible without performing
high level mathematics or advanced finite element analysis.

2 Available Methods for Stress Prediction of Bolt Fixed
Laminated Glass

Currently, few studies are available that describe guidelines or methods for stress pre-
diction of bolt fixed laminated glass. In [12], a single glasspane with one bolt fixing
is investigated. The pane is subjected to in-plane load. Forstress predictions, a finite
element analysis is performed. A novelty is that a procedurefor verification of the fi-
nite element model is developed. This procedure is of advantage, because is serves to
standardize the required finite element analyses so that a designer less experienced with
finite element analysis can obtain reliable results. As mentioned previously, [7] provides
an excellent overview on how to deal with glass in its role as astructural material. In
the book, an example of a design chart for bolt fixed laminatedglass is presented. The
dimensions of the glass panes can be selected given the position of the bolts, the design
strength and a specific value of the load. The load type is a uniformly distributed wind
load. In [13], guidelines for structural analyses of glass panels subjected to in-plane shear
forces are given. The analyses are performed by means of the finite element method. The
guidelines are valid for linear supported as well as point fixed glass panes. [14] presents
experimental and numerical investigations of small-scaled axially compressed laminated
glass panels that are point fixed. A comprehensive stress analysis is made, a parametric
study is performed and an empirical formula for the stress concentration factor is derived.
[11] deals with the development of a design program for bolt fixed laminated glass fa-
cades and balustrades. The program aims to facilitate design of those glass structures and
the user does not need to have any knowledge about the finite element method.
Many of the existing stress prediction methods for laminated glass design contain rec-
ommendations on how to perform finite element analyses. Thatmeans that the designer
or analyst has to be very familiar with the finite element method. One major aim of this
work is to present a method that does not require knowledge ofneither finite element
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analysis nor advanced mathematics. Overall, few stress prediction methods exist for lam-
inated glass structures with bolt fixings, and for this particular case of laminated glass
balustrades with four bolt fixings with non-fixed positions,only the work of [11] exists.
As a complement to that work, this paper develops simple formulas and charts that can be
used for stress prediction of bolt fixed laminated glass balustrades.

3 Design of Bolt-fixed Balustrade Glass with Stress Con-
centration Factors

In this paper, a method is developed for determining stress concentration factors,α, for
bolt fixed laminated glass balustrades.α relates the nominal stress value,σNom, to the
maximum (positive) principal stress value,σ. σ typically occurs in the vicinity of a hole.
σNom is defined as the maximum (positive) principal stress for thecase of a laminated
glass structure of the same dimensions as the balustrade, but without holes. However, the
influence of the reaction forces at the bolt locations are included in the computation.
WhenσNom has been determined, the case of a balustrade with bolt fixings can be con-
sidered. It remains to find the stress concentration factorα asσ = ασNom, whereσ is the
maximum (positive) principal stress of the balustrade.σ occurs at the edge of a bore hole.
This problem is too complicated to be treated analytically.A later section deals with the
finite element modelling of a balustrade with 2+2 bolt fixings. With the aid of the finite
element model, design charts are developed so that the stress concentration factors,α, can
be determined for arbitrary parameter combinations.

4 Stresses in a Laminated Glass without Holes

A laminated glass without holes subjected to three-point bending can be modelled as a
simply supported beam that is subjected to a bending moment,given that the load and
boundary conditions are symmetric. The maximum principal stresses for a laminated
beam that is subjected to a bending moment may be determined analytically, [4]. The
stresses are derived for a laminated glass beam consisting of two glass layers with an
interlayer of PVB. Figure 1 shows the geometry of the beam model applied to a balustrade.

R2

Glass

Glass

R1 PTot

PVB

lb la

x

Figure 1: Geometry of beam model.
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According to Swedish construction standards, the balustrade is subjected to a uniformly
distributed line load,P, at the top of the balustrade in the direction normal to the glass
pane. The load conditions are displayed in Figure 2.

Figure 2: Description of load conditions.

Multiplying the line load,P, with the width,w, of the glass pane gives the total load,PTot.
R1 andR2 are reaction forces that represent the bolt locations. The reaction forceR2 and
the moment,M(x), can be derived by equilibrium equations as

R2 = PTot(1+
la
lb
) and M(x) =

R2lax
(la+ lb)

. (1)

The moment equation is valid on the interval 0≤ x≤ lb. In [4], a differential equation that
governs the behavior of the laminated beam problem is derived. As a starting point for the
derivation, an infinitesimal beam element is considered. The forces and displacements of
the beam element is shown in Figure 3.
As a starting point, the displacement between the individual glass panes,us(x), is given
by

M1 M1 + dM1

N1 N1 + dN1

M2
M2 + dM2

N2 N2 + dN2

1

2

M + dMH

H

x

M

dx

h1

u2

x

h2

u1

w

t

Q

Figure 3: Forces acting on an infitesimal laminated beam element, to the left and dis-
placements to the right.
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us(x) = u2(x)−u1(x). (2)

Derivating (2) with respect tox gives

d
dx

us =
d
dx

u2−
d
dx

u1. (3)

The normal strain components in the x-direction are defined to be the derivatives of the
corresponding displacement components, which means that (3) can be written as

d
dx

us = ε2− ε1. (4)

ε1 is the normal strain in the x-direction of the upper glass pane, in the lowermost fibre
of that pane.ε2 is the normal strain in the x-direction of the lower glass pane, in the
uppermost fibre of that glass pane.
For one single pane, Navier’s formula, [8], of the form

σ =
M
I

y+
N
A
. (5)

gives the total normal stress in the x-direction,σ. Since the small deformation assumption
prevails, Hooke’s lawσ = Eε applies and equation (5) then yield the normal strain in the
x direction,ε, for each glass layer as

ε1 =
M1

EI1

h1

2
+

N1

EA1
and ε2 =

−M2

EI2

h2

2
+

N2

EA2
, (6)

whereh1 andh2 are the thicknesses of glass panes one and two respectively.
Substituting equations (6) into (3) gives

dus

dx
=−

M2

EI2

h2

2
−

M1

EI1

h1

2
+

N2

EI2
−

N1

EI1
. (7)

The equation to describe the deformation of a basic beam cross section, which due to the
kinematic assumptions made can be applied as

d2w
dx2 =−

M1

EI1
=−

M2

EI2
, (8)

wherew(x) is the beam deformation (in the y direction). From horizontal equilibrium
of a single beam cross section,N1(x) = −N2(x) = N(x) is given and equation (7) can be
written as

dus

dx
=

d2w
dx2 ht −N(

1
EA1

+
1

EA2
), (9)

whereht =
h1
2 + h2

2 .
It is assumed that the shear deformation,us, of the PVB layer is given by

us(x) = γhPVB=
HtPVB

GPVBlw
=

H
kPVB

, (10)
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whereγ is the shear strain,kPVB=
GPVBlw

tPVB
is the spring stiffness,GPVB is the shear modu-

lus, lw the width andtPVB is the thickness of the PVB layer.
From horizontal equilibrium of the first glass pane,

H(x) =−

dN
dx

. (11)

Equations (10) and (11) are inserted into (9) which yields

−

d2N
dx2

1
kPVB

=
d2

dx2vht −N(
1

EA1
+

1
EA2

). (12)

A moment equilibrium computation about the left part of the beam cross section at the
center of gravity of the second glass pane gives

M = M1+M2−Nht . (13)

Equations (13) and (8) together gives

d2w
dx2 =−

M
EI1+EI2

−

Nht

EI1+EI2
. (14)

Combining equations (14) and (12) yields the governing differential equation for the prob-
lem

d2

dx2N(x)−c2N(x) = c1M(x) (15)

where the following constants are defined in order to simplify the equation

c1 = kPVB
ht

EgI1+EgI2
and c2 = kPVB(

1
EgA1

+
1

EgA2
+

h2
t

EgI1+EgI2
). (16)

whereEg is the modulus of elasticity for glass,I1 is the moment of inertia of a cross
section of the upper glass pane,I2 is the moment of inertia of a cross section of the lower
glass pane,A1 is the cross section area of the upper glass pane,A2 is the cross section area
of the lower glass pane, andtg is the glass pane thickness. For the balustrades considered,
it is assumed that the glass panes have equal cross section geometries, and thusI1 = I2 = I ,
h1 = h2 = tg andA1 = A2 = A are used in the following.
The homogeneous and particular solution, respectively to (15) is given by

N(x) = Bsinh(
√

c2x)+Ccosh(
√

c2x)−
c1R2lax

c2(la+ lb)
. (17)

To determine the constantsB andC the boundary conditionsN(0) = 0 and(dN
dx )x=lb = 0

yieldsC= 0 and

B=
c1R2la

c2
√

c2(la+ lb)cosh(
√

c2lb)
. (18)

The final solution may the be written as
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N(x) =
c1R2la

c2
√

c2(la+ lb)cosh(
√

c2lb)
sinh(

√

c2x)−
c1R2lax

c2(la+ lb)
. (19)

SinceM1(x) = M2(x) equation (13) can be written

M1(x) = M2(x) =
1
2
(M(x)+htN(x)). (20)

From Navier’s formula, (5), the normal stress in the x-direction of one glass pane can
be computed. The maximum tensile stress occurs at the lower surface of the laminate.
Since the shear stresses are zero at the surfaces of the laminate, the tensile stress in the x-
direction at the lower surface of the laminate is equal to themaximum (positive) principal
stress.σNom is defined as the maximum (positive) principal stress (evaluated atx = lb).
At the lower surface of the laminate,M2(x) = M(x), I2 = I , N2(x) = −N1(x) = −N(x)
andy=−

tg
2 . Thus,

σNom=
M(lb)

wt2g
6

−

N(lb)
wtg

. (21)

Note that equation (21) is valid for glass panes with rectangular cross sections only. For
the balustrades considered in this paper, this will always be the case.

5 Determining Stress for a Bolt Fixed Balustrade

In this section, a finite element model is developed with the purpose of determining the
stresses in a point fixed balustrade glass. The finite elementmodel yields a value for the
largest maximum principal stress of the balustrade for an arbitrary parameter combina-
tion. In previous sections, this quantity is denotedσ. The goal is to determine the stress
concentration factor,α, for each parameter combination. This is achieved through deter-
mining bothσNom andσ for all possible parameter combinations and then compute the
corresponding values ofα. Later,α is represented in simple design charts so that for each
parameter combination, the value ofα can be determined from the charts.
The in-plane geometry of the balustrade is displayed in Figure 4. In the figure, the pa-
rameters that determine the basic in-plane geometry of the glass pane are displayed. The
bore hole has the diameterdh and the bolt head has the diameterdb. It is convenient to
construct design charts for each glass pane thickness,tg, separately. The height of the
balustrade,la, and the vertical position of the bolts,lc, are set tola = 1.25 m andlc = 0.24
m. It should be noted that the edge distance,aw, is equal for all four bolt holes.
Table 1 summarizes the relevant geometry parameters. The ranges over which every
variable parameter is allowed to vary are also given. A standard valuetPVB= 0.76 mm
is used for the thickness of the PVB layer. In the finite element model, only the EPDM
bush between the bolt head and the glass pane is included and its thickness is fixed to
tEPDM = 3 mm.
The material parameters used areEg = 78 GPa,νg = 0.3, EPVB= 6 MPa,νPVB= 0.43,
EEPDM = 20 MPa, andνEPDM = 0.45.
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aw

w

lb

lc

la

Figure 4: Geometry of balustrade.

Table 1: List of geometry parameters.
Parameter Value

la 1.25 m
lc 0.24 m

tPVB 0.76 mm
tEPDM 3 mm

lb 0.2, 0.4, 0.8 m
aw 0.1-(w2 -0.1) in step of 0.025
w 0.9-2.7 m in step of 0.3 m
dh 15-40 mm in step of 5 mm
tg 6, 8, 10, 12 mm
db 60 mm

The complex geometry of the balustrade requires the use of a mesh generator. The solid-
shell element, [3], used has quadrilateral in-plane geometry and therefore a quadrilateral
mesh generator is used. In the finite element analysis, the mesh generator and finite
element program of [5] and [9] are used together with Matlab.Due to symmetry, only
half of the balustrade needs to be modeled. Along the symmetry line, displacements in
the in-plane direction normal to the symmetry line are set tozero.
When computingα, a value of the line loadP is arbitrary but is in the simulations set to
the valueP= 3 kN/m. When the charts are constructed,α can be determined irrespective
of design load by use of the available charts.
When modeling the bolts, only the EPDM bushes are included in the model. The bushes
are modeled by means of a spring model, where springs are connected, in all three coor-
dinate directions, to the nodes that are located on the contact surfaces between bush and
glass. In the direction normal to the balustrade, springs with stiffness
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k=
EEPDM∆A

tEPDM
(22)

are connected, [15].∆A is the influence area of each node, determined by

∆A=
∫

A
NTdA. (23)

N is the global shape function vector, [5]. Equivalently, forthe other coordinate directions
shear springs with stiffness

ks =
GEPDM∆A

tEPDM
(24)

are used, [10]. The springs are fixed to their surrounding, which means that the corre-
sponding displacements are set to zero. The spring stiffnesses,ki, are thus assembled into
the global stiffness matrix,K , according to

K ii = K ii +ki. (25)

ki represents the spring stiffness corresponding to degree offreedomi. The bushes are
modeled explicitly only for the sides of the laminate where the reaction forces are acting
on the glass. These positions are indicated in Figure 1. On the other sides of the laminate,
the bolts are not modelled.
When meshing the structure, a two dimensional mesh of the geometry illustrated in Figure
4 is first created. To form a three-dimensional mesh, this mesh is swept in the direction
normal to the two dimensional structure. A special feature of the solid-shell element, [3],
only one element per material layer is required to reach a good solution.

6 Design Charts for Determination of Stress Concentra-
tion Factors

The process of determiningσ by means of the finite element method described in the pre-
vious section is time consuming and requires decent knowledge about the finite element
method. In order for the glass designer to avoid using the finite element method, a sim-
plified method for determiningσ for arbitrary combinations of certain design parameters
is suggested. The method contains graphical representations, design charts, that allowα
to be determined for a certain parameter combination. WhenσNom is determined for the
same parameters,σ is practically known. The required equations for determination of
σNom are (1), (19), (20) and (21).
One design chart is made for each possible combination of glass thickness,tg, glass
pane width,w, bolt head diameter,db, and bore hole diameter,dh. As examples, de-
sign charts for the parameter combination [w = 0.9 m, db = 60 mm,dh = 15 mm] with
[tg = 6,8,10,12] mm are shown in Figures 5-8.
The suggested method for determiningσ by use of the design charts starts with computing
σNom for an arbitrary combination of the parameterstg, w andlb. The design chart for the
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Figure 5: Design chart fortg = 6 mm,w= 0.9 m,db = 60 mm anddh = 15 mm.
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Figure 6: Design chart fortg = 8 mm,w= 0.9 m,db = 60 mm anddh = 15 mm.

selected values of (tg, w) is then consulted. Remembering that a value oflb has already
been selected, the isoline corresponding to the value of this parameter is chosen in the
design chart. It remains to choose a value ofaw and read off a corresponding value of the
stress concentration factor,α, from the design chart. Using the relationσ = ασNom, σ is
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Figure 7: Design chart fortg = 10 mm,w= 0.9 m,db = 60 mm anddh = 15 mm.

0.1 0.15 0.2 0.25 0.3 0.35
2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2.55

2.6

2.65

a
w

 (m)

α

 

 
l
b
 = 0.2 m

l
b
 = 0.4 m

l
b
 = 0.8 m

Figure 8: Design chart fortg = 12 mm,w= 0.9 m,db = 60 mm anddh = 15 mm.

determined.σ is the maximum (positive) principal stress value in the balustrade and this
value is compared to a fracture criterion. If the fracture criterion is met, the parameter
combination is possible. If the value ofσ fails to meet the fracture criterion, at least one
parameter value has to be changed and the procedure to determine σ starts over again.
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The optimal positions of the bolts may be determined directly from the design charts.
Since the lowest value ofα gives the lowest stresses at the bolts, the charts directly provide
this information.

7 Conclusions

A method for the determination of stress concentration factors has been developed for two
ply laminated glass balustrades with 2 + 2 bolt fixings. Usingthe method, the designer can
determine the maximum (positive) principal stress value for each combination of glass ply
thickness, width of the glass pane, bolt position, bolt headdiameter and bore hole diam-
eter using simple formulas and charts, and thus avoiding advanced and computationally
expensive finite element analysis.
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