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Abstract

A survey was performed of the experiments on glass tested in an ambient envir-
onment and which were conducted in the last 40 years. The experiments which
comprise some 3100 tests of individual specimens in nearly 200 samples, recorded
the fracture stress of new and monolithic annealed float glass panes. Four different
testing devices were employed in the experiments, viz. the three-point and four-
point bending devices, the double ring bending device, and the setup that allows
for laterally supported plates to be subjected to uniform out-of-plane pressure. It
was found that the strength ranges from about 20 MPa to over 200 MPa. The
strength of annealed glass is a complex entity that is dependent on a number of
factors including the load-duration and environmental conditions.

A review of strength models for use with glass was carried out. The models can be
separated into three categories. First, there are models that assume no particular
representation of the surface condition in glass. To these phenomenological or
macroscopic models we reckon e.g. the application of some standard statistical
distribution. Second, there are models which are based on a flaw size approach
towards brittle failure. The surface flaws are represented rigorously with stochastic
cracks that have shape, a size distribution, and an orientation of the crack plane.
Third, there are models which are based on an elemental strength approach which
is not dependent on an explicit representation of the surface condition in terms of
flaw shape and crack plane orientation.

The performance of various standard statistical distributions for modelling the
strength was examined. In the case of edge failures in glass, it was found that the
Weibull distribution provides a basic model that performs better than the normal
and the lognormal distributions, and at least as good as the extreme value Gumbel
distribution. However, when surface failures are considered, the strength modelling
is complicated and no standard statistical distribution was found to be capable
of modelling the strength. It is likely that multiple flaw populations govern the
pristine surface condition in glass such that the extreme value Weibull and Gumbel
distributions are unsuited to model the surface strength.

A development was made of a type of strength model which depends on a flaw
size approach towards brittle failure. The surface condition in glass was repres-
ented rigorously with stochastic cracks that have shape, a size distribution and
an orientation in the plane. This approach was used to model the fracture stress
and failure origins in small plates subjected to double ring bending. Both a single
and a dual flaw population concept was explored and the implication of using a



mode I as well as a mixed mode fracture criterion was investigated. The dual pop-
ulation flaw size approach was found to better reflect the apparent bimodality in
the empirical data set that was selected as a benchmark than the ordinary Weibull
model, however at the expense of two additional degrees of freedom. The flaw
size approach was further studied in simulations of the fracture origins in laterally
supported plates subjected to uniform out-of-plane pressure. The boundary con-
ditions were governed by either soft neoprene gasket supports or continuous strips
of thick nylon. It was found that the support conditions had a profound impact
on the fracture statistics while the incorporation of shear stress into the fracture
criterion had little or no impact on the distribution of failure origins. Furthermore,
the flaw size approach was used to model the fracture stress and failure origins in
a tall slender panel with a complex structural geometry that was subjected to a
soft body impact. The complex geometry was due to the existence of an array of
ventilation holes near the bottom of the tall panel.

Although it is feasible to model glass fracture with a flaw size approach, there is a
need for more research on the surface condition in glass of which little is currently
known with any significant degree of confidence. This is a major drawback with the
flaw size approch modelling of fracture in glass. Nevertheless, it is clear that the
standard statistical distributions are insufficient for the modelling of the surface
strength of glass and hence more sophisticated approaches are warranted. It is
indicated that the extreme value Weibull distribution can be used as a basic model
for the edge strength although further investigation is needed. As an interesting
alternative to either the application of a standard distribution or to the modelling
based on a flaw size approach, there emerges the models that are based on an
elemental strength approach. These models are more sophisticated than the mere
application of a standard distribution but are somewhat less stringent than the
models that are based on a flaw size approach. Hence, this type of fracture model
might be examined further in future research.



Populärvetenskaplig
sammanfattning

Glas används allt mer i byggnader. Vanligt planglas är genomsiktligt vilket gör det
möjligt att utforma miljöer som är b̊ade ljusa och som upplevs som öppna. Den
ökande användningen av byggnadsglas förstärks av samtida trender i modern ar-
kitektur. Ett traditionellt fönsterglas har som huvudsyfte att utestänga vind, väta
och kyla samt att möjliggöra för ljusinsläpp och utblickar. I moderna tillämpningar
ing̊ar glaset i konstruktioner som exempelvis bär upp permanent last fr̊an intilli-
gande bärverksdelar s̊asom blir fallet när glaset används som ett balk- eller pelare-
lement. I andra fall ing̊ar glaset i konstruktioner som p̊a grund av sin belägenhet
utsätts för snölast s̊asom blir fallet när glaset utgör ett takparti. När en väggpanel
eller balustrad utformas i glas m̊aste det beaktas att det kan komma att utsättas
för en mjuk stöt p̊a grund av en person som av en olyckshändelse faller in mot
det. S̊aledes finner vi glas i en mängd tillämpningar där det traditionellt sett inte
har använts. Detta medför nya krav p̊a dimensioneringen vid utförandet av dessa
konstruktioner.

I dimensioneringen beaktas vanligtvis att h̊allfastheten uppvisar en viss spridning
i sitt värde som i princip betraktas som en materialparameter. H̊allfastheten kan
mätas i försök med provuppställningar som är standardiserade. Ett h̊allfasthetsvärde
som är betryggande med hänsyn till konstruktionens säkerhet kan identifieras med
hjälp av den statistiska fördelning som bäst passar provresultaten. Experiment p̊a
vanligt planglas som provats i ett inomhusklimat avslöjar att h̊allfastheten varie-
rar inom vida gränser och att variationen är mycket sv̊ar att förutsäga. Det visar
sig ocks̊a att brottläget varierar till synes slumpmässigt. Gängse metoder för att
bestämma h̊allfasthetsvärdet fungerar därför inte. Tolkningen av mätresultaten
försv̊aras av att glasmaterialet uppvisar ett utmattningsbeteende som innebär att
brottlasten är starkt beroende av belastningstiden.

Spridningen i uppmätt h̊allfasthet och variationen i brottläge kan förklaras genom
att anta att glasytan är bemängd med en m̊angfald mikroskopiska sprickor som
fungerar som brottanvisningar. Utmattningsbeteendet kan förklaras genom att an-
ta l̊angsam tillväxt av de befintliga sprickorna p̊a grund av en kemisk process som
äger rum vid sprickspetsen och som aktiveras av p̊akänning, temperatur och luft-
fuktighet. En spricka som tillväxer tillräckligt mycket blir kritisk och föranleder
brott som kännetecknas av ett sprött verkningssätt. Det betyder att brottet sker
plötsligt, utan förvarning eller andra tecken p̊a upphällning.



Detta medför i praktiken att stora säkerhetsmarginaler m̊aste tillgripas i dimensio-
neringen av glaskonstruktioner. Det innebär att material̊atg̊angen ofta blir onödigt
stor vilket medför extra produktionskostnader och större energi̊atg̊ang under trans-
porten fr̊an glasverket till byggarbetsplatsen. Det innebär ocks̊a att konstruktio-
nerna ofta blir onödigt stora och tunga. Med anledning av detta har ett forsknings-
projekt genomförts med syfte att bättre kunna förutsäga h̊allfastheten i glas.

Det visar sig att det finns ett flertal h̊allfasthetsmodeller för glas som kan indelas
i tre kategorier baserat p̊a hur glasytans beskaffenhet beaktas. En första katego-
ri av modeller är i grund och botten frikopplade fr̊an ett begrepp om glasytans
särskilda beskaffenhet. Hit hör vanliga statistiska standardfördelningar som an-
passas till provresultat. De för glasmaterialet relevanta standardfördelningarna har
granskats och jämförts med avseende p̊a deras anpassningsgrad till provresultat som
finns tillgängliga. För det ändam̊alet har en genomg̊ang gjorts av experiment fr̊an
de senaste 40 åren och närmare 200 stickprov har insamlats vilka omfattar över 3100
mätresultat för h̊allfastheten i vanligt planglas som är ohärdat och som provats i ett
inomhusklimat. Slutsatsen kan dras att den s̊akallade Weibullfördelningen motsva-
rar den modell som överlag bäst anpassar sig till provresultaten jämfört med andra
standardfördelningar när kanth̊allfastheten studeras. När istället yth̊allfastheten
studeras visar det sig att ingen av standardfördelningarna har potential för att va-
ra modell. Det föreligger s̊aledes en grundläggande skillnad i karaktär mellan kant-
brott i glas och brott som börjar fr̊an ytan. De statistiska standardfördelningarna
är relativt enkla att använda eftersom det finns standardiserade metoder för att
anpassa dem till mätresultat.

En andra kategori av h̊allfasthetsmodeller baseras p̊a en rigorös gestaltning av
glasytans beskaffenhet genom antagande om ytsprickors form och storlek, s̊aväl
som orientering och läge. Dessa modeller beforskas i skrivande stund av ett antal
forskarlag i Europa och Nordamerika s̊aväl som i Asien och Australien. I avhand-
lingsarbetet har en modell inom denna kategori utvecklats och anpassats för att
tolka mätresultat fr̊an ett experiment med en vanlig form av provuppställning. En
modell har ocks̊a tagits fram för att förutsäga brottläget i fyrsidigt infästa plat-
tor som är utsatta för jämnt utbredd last. Ytterligare en modell har utvecklats
för att förutsäga h̊allfasthet och brottläge i konstruktioner med komplex geometri
vilka utsätts för dynamisk belastning av s̊adant slag som kan förväntas p̊a grund
av en mjuk stöt. Tyvärr r̊ader det brist p̊a tillförlitliga upplysningar om glasytans
beskaffenhet som kan ligga till grund för en stringent gestaltning av ytsprickorna.
Det saknas även effektiva metoder för att verifiera glasytans beskaffenhet. S̊aledes
är denna sortens modellskapande förenat med betydande sv̊arigheter, åtminstone
för tillfället.

En tredje kategori av h̊allfasthetsmodeller bygger p̊a ett antagande om en fun-
damental h̊allfasthetsfördelning som gäller lokalt p̊a mikroskopisk niv̊a och som
är direkt knuten till förekomsten av en viss spricka. Här görs inget antagande



om sprickans särskilda gestaltning med hänsyn till form, storlek eller orientering.
H̊allfastheten för konstruktionen som helhet erh̊alls genom en sammanvägning där
det tas hänsyn dels till den fundamentala h̊allfasthetsfördelningen och dels till det
aktuella spänningsläget orsakat av n̊agon viss belastning. Dessa modeller är me-
ra sofistikerade än de som resulterar fr̊an en anpassning av en vanlig statistisk
standardfördelning. Men dessa modeller är mindre stringenta än de som är base-
rade p̊a en rigorös gestaltning av glasytans beskaffenhet. Denna tredje kategori av
h̊allfasthetsmodeller framst̊ar därför som ett intressant alternativ för vidare be-
forskning.

En vidare slutsats som kan dras är att insamlad mätdata behöver analyseras mera
för att kunna dra robusta slutsatser om h̊allfasthetens beroende av ett flertal fak-
torer inbegripet kantbearbetningen och betydelsen av var glaset kommer ifr̊an, det
vill säga effekten av tillverkningen och leverantören.
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Part I

Introduction and overview





1
Introduction

1.1 BACKGROUND

Glass is increasingly used in structures such as large windows, doors, rooflights,
stair-cases, walls, floors, and balustrades. The demand for glass in structures is
magnified by the qualities inherent in the material which allow for making the
most of natural daylight while satisfying modern architectural trends for style and
design. With glass it is also possible to control heat, light, and sound transmission
while meeting requirements for safety, security, and energy efficiency.

The role of glass in a building can be decorative, functional, structural, or any
combination of these. Fig. 1.1 exemplifies this with photographs of various glazed
units. The role of a traditional window glass pane is mainly functional, i.e. to
shut out the weather, cold, and wind while allowing for light transmission. With
modern use of glass in buildings, however, the structural role as a beam, pillar,
plate or panel element is significant. The glass unit can be a primary or secondary
member of the load-bearing structure. The strength design has to consider static
load cases due to e.g. snow load and secondary structural members. The design
also has to take into account dynamic load cases due to e.g. accidental impacting
from a soft body. Fig. 1.1a illustrates an infill wall panel inside the Mathematics
Annex at the Faculty of Engineering, LTH. The infill panel consists of laminated
glass units with an artwork interlayer. The role of this panel is decorative. It is
also structural because the glass unit has to be able to withstand significant load
from e.g. an accidental human impact. Fig. 1.1b illustrates the Tornet building
at Helsingkrona Nation in Lund. The thirteen story building was constructed in
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the year 2015 and contains a conference room on the top floor with large windows
that provide a view over Lund, Malmö, and Copenhagen. The balcony on the top
floor has a glazed balustrade. The role of this balustrade is structural because it
was designed to resist static and dynamic loads. It is moreover functional because
it allows for a stunning view of the surroundings. It also allows for the light to
reach further onto the balcony floor. Fig. 1.1c illustrates the Orkanen building
at Malmö University, the facade of which comprises some 3000 monolothic and
tempered glass panes with a decorated surface consisting of many small grooves
that run from the top to the bottom on the outward facing side. The visual impact
is magnified by the location at the waterfront. The main role of this glazed unit
is decorative. It is moreover structural because it has to be able to withstand
significant climatic loads induced by the wind as well as the rising and setting sun
that is capable of producing thermal gradients over the thickness of the pane.

Research into the structural use of glass in buildings is an emerging field. This is
reflected e.g. in the increased number of dedicated scientific journals and confer-
ences as well as in the overall number of peer-reviewed publications which deal with
this topic. As an indication of the increasing research activity, we may consider
the statistics generated by the following two search strings in the Scopus database
(www.scopus.com) which is an abstract and citation database of scientific journals,
books, and conference proceedings. Both search phrase (1.1) and (1.2) are limited
to the title, abstract and keywords fields. The second search phrase is in addition
limited to the subject area “engineering”. The search phrases are:

”glass in buildings” (1.1)

and
{structural glass} OR {glass structures} (1.2)

The number of retrieved records per year with the respective search phrases are
illustrated in the graphs in Fig. 1.2 and it is evident that structural glass engineering
is being researched at an accelerated pace. The reason for this increased activity
is mainly due to glass being used more in load-bearing situations.

The strength of glass is a complex entity. To begin with, it can only be revealed
by destroying the glass. And yet, the strength thus revealed is not the strength
at the onset of testing, for it is significantly altered during the course of loading.
As a matter of fact, the strength depends on the load history, environment, and
temperature, as well as the size of the structure and the state of the surface, the
condition of which might be new as-received or aged and weathered. The simultan-
eous action of stress and environmental conditions promote a fatigue phenomenon
in glass. The combined effect of load-history and climate on the strength can be
accounted for by implementing the stress corrosion rate theory or some empirical
formula.
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Figure 1.1: The Tornet building at Helsingkrona Nation in Lund. Artwork infill
panel in the Mathematics annex at the Faculty of Engineering, LTH.
The Orkanen building at Malmö University. Photographs of Tornet
and Orkanen were obtained from Wikimedia Commons.
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Figure 1.2: Number of retrieved records per year in Scopus (www.scopus.com)
from search phrase (1.1) on left-hand side and search phrase (1.2) on
right-hand side. The data shown is until the year 2017.

A relatively large number of experiments on annealed glass have been conducted
over the past four decades, many of which were carried out in recent years. These
tests provide statistics about the strength and the location of fracture origins.
The results from these experiments demonstrate that the strength exhibits a large
variation which spans about one order of magnitude. In spite of efforts to create
probabilistic strength models which are fitted with methods of statistical inference,
it remains a great challenge to try to model and predict the strength value for some
structural glass unit.

Present techniques for modelling and predicting the strength are based either on
a fracture mechanical approach or on some phenomenological method which takes
into consideration only the macroscopic behaviour. As an example of the latter we
may take the adoption of a standard statistical distribution to model the fracture
stress. Current failure prediction models, however, are limited in scope. At best,
they are suited to particular test arrangements and environmental conditions. In
fact, the failure prediction remains a formidable challenge in the general case of a
structural unit with boundary conditions that can vary from very rigid to fairly
flexible with continuous support or point fixings, where the load is either distributed
or concentrated, and with the geometrical properties of the glass depending on e.g.
aspect ratio and the existence of boreholes. Additionally, although the failure
prediction generally refers to the strength value, it can also be useful to make
predictions about the failure origin. There is need for further development of a
failure prediction model that can be conducive to the improvement of structural
standards and building codes.

The failure prediction and strength design of a glass structure is dependent on a
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range of theories and methods at the material as well as the structural level as
illustrated in Fig. 1.3. Fracture mechanical theories consider the microscopic beha-
viour of solids and form the basis of failure prediction models for use with brittle
materials. At the structural level, mechanical models allow for the determination of
the stresses and strains in plates and beams due to bending under various forms of
loading and support conditions. In combination, fracture mechanical and structural
mechanical models provide a powerful tool for the analysis of brittle specimens sub-
jected to bending loads. However, glass fatigue complicates the prediction-making.
Experimental test results can be used to validate the models at the structural level,
to make investigations into the surface condition at the material level e.g. through
the estimation of a surface flaw size density function, and to quantify the rate of
subcritical crack growth. Ultimately, it is necessary to employ probability the-
ory and methods of statistical inference at both the material and the structural
level to account for the various aspects of glass failure. Some of the methods thus
employed are made feasible by the use of numerical techniques such as the finite
element method. Finally, the failure prediction model has to be put to practical
use by carefully considering the requirements and directives of modern building
codes and structural standards.

Monolithic panes of annealed float glass are an important object for modelling
because according to the structural standards, e.g. prEN 16612:2017 and DIN
18008-1:2010, the strength of a glass pane is based on the socalled characteristic
value for the strength of annealed glass. In practice, a glass structure may comprise
a monolithic pane of heat-strengthened or fully tempered glass. Or it may involve
a laminated set of annealed, heat-strengthened, or fully tempered plies of glass. In
either case, knowledge of the strength of a monolithic pane of annealed glass is a
basis. Hence, it can be said that a key to making predictions about the strength of
some heat-strengthened or tempered pane of glass, or some laminated component,
lies in modelling the strength of ordinary annealed glass.

1.2 AIM AND OBJECTIVES

The main aim of the research is to develop models that can be used in engineering
practice for failure prediction of glass structures, e.g. as a basis for design rules.
Failure prediction is dependent on a range of theories and methods at the material
as well as the structural level as illustrated in Fig. 1.3. This includes

• fracture mechanics

• the phenomenon of glass fatigue

• structural mechanical models that determine the behaviour of plates and
beams subjected to various forms of bending
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Fracture
mechanics
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mechanical
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methods of statistical inference

Numerical techniques

Experimental tests

Figure 1.3: Engineering practice dependencies.

• various models in probability theory which are used to e.g. represent surface
microcrack concepts

• various numerical techniques including the finite element method which is
key to calculating the stresses and strains in solids

• and more recently, certain numerical schemes used to implement stochastic
flaws in Monte Carlo simulations of the strength

Statistical methods which are used to draw inference about model parameters and
performance is a fundamental part of a prediction model. Strength models for
potential use with glass should be mapped out with respect to the basic character-
istics and assumptions. This would permit a careful analysis which comprehensivly
considers the utilities and drawbacks of each model and which may provide guid-
ance and direction for the benefit of future research efforts. In order to appraise
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the potential in performance of any strength model, there is a need for empirical
data on the fracture stress to be collected and organized.

As a first objective, a glass strength model for use with plates tested in the double
ring bending device is developed based on Monte Carlo simulations of Griffith flaws.
Secondly, the empirical data on the strength of new monolithic annealed glass
when it is tested in ambient conditions is collected from the available literature,
i.e. scientific journals, conference proceedings, and academic dissertations, and
organized in a summarized form that permits an overview. The performance of the
most pertinent standard statistical distributions for modelling glass strength with
is evaluated based on the empirical data set. Moreover, a model is developed which
allows for analyzing the fracture origins in laterally supported glass plates subjected
to uniform pressure. Also, a dynamic load case involving a glass structure with
a complex geometry is modelled with respect to both fracture stress and failure
location. Finally, various strength models for potential use with glass are reviewed.

1.3 LIMITATIONS

Only monolithic panes of float glass are considered. It is generally assumed that
the glass is stressed in an ambient environment meaning that the temperature and
relative humidity are similar to indoor conditions. Flaws in the bulk are generally
disregarded from and it is assumed that failure is governed by surface flaws. It is
assumed that the shape of flaws can be represented by planar cracks. Mode III crack
displacement is not considered. Crack healing effects are not taken into account
in the strength modelling. The analysis and discussion of structural standards is
limited mainly to the draft for a European standard for strength of glass in building,
viz. prEN 16612:2017.
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Glass material

The facts in sec. 2.1 to 2.4 are mostly from Le Bourhis (2008). When no reference
is given, it is implicit that Le Bourhis (2008) is cited.

2.1 MATERIAL PROPERTIES

Soda-lime silicate glass is an amorphous and inorganic ceramic material with a
typical composition according to Tab. 2.1. Glass can be considered a supercooled
liquid which has solidified from a melt without crystallizing. However, at room
temperature, the viscosity is so high that no flow can be observed. The glass
material is formed by a network of Si–O which have covalent bonds. The network
is modified by Na+ and Ca2

+ ions through ionic bonds. The glass network is
characterized by a short-range order which means that after about five interatomic
distances, order almost vanishes. This conclusion can be drawn from investigations
carried out with X-ray or neutron diffraction techniques. In three dimensions, the Si
and O atoms arrange to form tetrahedral elements with a Si atom at the centre. The
elemental tetrahedrons are connected by the sharing of corners. This is illustrated
in Fig. 2.1 which contains a two-dimensional projection of the glassy form of SiO2.
The addition of Na+ causes the rupture of O–O bonds. Although the bond is
broken, the pair of tetrahedra still interact electrostatically. The modification of
the network induces a decrease in viscosity. This is of great practical importance
because it lowers the melting temperature of glass significantly. In pure silica the
melting temperature is about 1700 ◦C while in soda glass it is only about 790
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Table 2.1: Typical composition of soda-lime silicate glass in weight percent (Le
Bourhis 2008).

SiO2 Na2O K2O CaO MgO Al2O3 Fe2O3

71-73 13-15.5 0-1 6.5-12 2-4.5 0-2 0-1

Table 2.2: Typical values for a range of glass material properties (Le Bourhis
2008)

Density (kg m−3) 2500
Thermal conductivity (W (mK)−1) 1.00
Thermal expansion coeff. (10−6 K−1) 8.5
Young’s modulus (GPa) 74
Poisson’s ratio 0.22
Surface energy (J m−2) 0.6

Fracture toughness (MPa m
1
2 ) 0.75

Stress corrosion threshold limit (MPa m
1
2 ) 0.25

◦C after addition of 25% soda to silica. Values for a range of material properties
including the elastic properties are given in Tab. 2.2.

2.2 MANUFACTURE

The manufacturing involves a long process line with the following operations, viz.
batching, melting, fining, forming, and annealing, see also Fig. 2.2. Glass for use

S

O

7 Si-ring

6 Si-ring

Figure 2.1: Glassy state of SiO2 with an elemental tetrahedron indicated by
dashed lines. Adapted from Le Bourhis (2008).
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in structures is composed of the following raw materials which are selected in the
batching operation, viz. sand, sodium carbonate, calcium carbonate, and various
metal oxides. Grain size distribution and purity are important considerations in
the batching operation (McLellan & Shand 1984). The composition of raw material
is indicated in Tab. 2.3. The material composition is further standardized in EN
572-1:2004. The role of sodium in the batch is to soften the glass network and
reduce the melting temperature to a practical regime while the addition of calcium
stabilizes the network (McLellan & Shand 1984). Various metal oxides are added,
among other reasons, to facilitate in the fining operation. The melting is done in
a furnace which is usually combustion heated. In the fining operation, the glass
composition and temperature is made uniform through convection and bubbles
are eliminated. In the float process which was introduced in the late 1950’s, the
glass melt is floated on a bed of molten tin at a temperature of about 1100 ◦C
under a nitrogen atmosphere. As the glass exits the float, it has a temperature of
about 600 ◦C. Then, it enters the annealing lehr where it is cooled down to room
temperature. The thermal history is carefully controlled to design the residual
stresses. The glass is usually cut into standard size panes with the dimensions
6x3.21 m2 (EN 572-1:2004).

When the sheet is cut it is first scribed in a lateral movement under a sharp tip of
high hardness using an automated cutting machine. Cutting oil is applied in front of
the cutting head to protect the mark from the environment. The scribing generates
median cracks. The scribing tool is carefully controlled to limit the introduction of
lateral cracks which degrade the edge quality. In Fig. 2.3, the median and lateral
cracks are illustrated for the case of a sharp indentation fracture. While flexuring
the scribed glass, the median cracks are driven through the thickness of the plate
breaking it in two, cf. Fig. 2.4. The cut edge is characterized by 1) a mechanically
scribed and damaged edge on one side and 2) a sharp edge on the other. The
raw-cut edge was studied in a project related to this thesis for three different
thicknesses, viz. 4, 6, and 8 mm, of new annelead glass using an optical microscope
model WILD Makroskop M420 together with an integrated Leica system DMC
2900. Fig. 2.5a illustrates the opposite side of the mechanically scribed edge of the
4 mm glass while Fig. 2.5b and 2.5c demonstrate the scoring edge of the 6 and 8
mm glass, respectively. The raw-cut edge is sharp and can cause injury.

In the manufacturing process line, the glass is like a continuous ribbon that is
pulled upstream. The standard thicknesses are 2, 3, 4, 5, 6, 8, 10, 12, 15, 19, and
25 mm according to EN 572-1:2004. American standard thicknesses are given in
ASTM C1036-01:2011.
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Table 2.3: Raw material composition in a batch of soda-lime silicate float glass
(Le Bourhis 2008).

Raw material Sand Sodium carbonate Calcium carbonate Metal oxides

Concentration (%) 54 24 16 2

400 m

Melt Fining Tin bath Annealing lehr Cutting

Batch
1550 °C 1000 °C 600 °C 500 °C 100 °C

Figure 2.2: Flat glass production line with the float process. Adapted from
Haldimann (2006) and Le Bourhis (2008).

+ + - - -+

"plastic" zone median crack lateral crack

Figure 2.3: Median crack forming and extending upon loading under a sharp
indenter. Lateral cracks form during unloading. If the load is large
enough the lateral cracks extend to the surface. Adapted from Le
Bourhis (2008).

Figure 2.4: Glass is cut in the process of scribing, flexuring and breaking. Adap-
ted from Lindqvist (2013).

Figure 2.5: The cut edge as seen on (left) 4 mm thick glass at opposite side of
the scribed edge, (middle) 6 mm thick glass at scribed edge, (right) 8
mm glass at scribed edge. The photographs were acquired with the
support of Smart Housing Sm̊aland.
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2.3 TYPES OF PRODUCT

The flat glass that exits the annealing lehr in the float glass production line
can be further processed in several ways to produce various products with added
value. Here follows a description of the operations that are most pertinent to glass
products for structural use. The processing can be done on the manufacturing site
or off-site, e.g. with a supplier. The basic, un-processed product is in this context
understood to be the monolithic pane of annealed float glass with an as-cut edge,
see Fig. 2.6a.

2.3.1 Edge treatments

The arrised edge has got small bevels introduced at an angle of about 45 degrees to
the surface of the glass, see Fig. 2.6b. The arrising is performed in a grinding op-
eration. Grinding is to cause irregular-shaped grains of abrasive to wedge between
the surface of a moving body and the glass so that glass material breaks down into
small fragments (McLellan & Shand 1984). Water is used to increase the grinding
rate and to prevent overheating. A socalled ground edge, see Fig. 2.6c, is an ar-
rised edge that has been subjected to further grinding cycles. The ground surface
is characterized by its roughness. The roughness depends on the grinding wheel’s
properties and settings as well as its total age and usage. Instead of a grinding
wheel, a belt can be used. The direction of grinding has a bearing on the quality
of the ground edge (Kleuderlein et al. 2014). The appearance of a ground edge is
rough with fine abrasion marks. Sometimes, smooth spots of raw-cut glass may be
visible on the surface edge depending on the amount of grinding that took place,
see Fig. 2.6d. A polished edge, see Fig. 2.6e, has been subjected to both grinding
and polishing operations. The action of polishing is carried out in a similar manner
to grinding, however, very little material is removed in the process (McLellan &
Shand 1984). A polished edge is characterized by a shiny and reflective appearance.
A water-jet cut edge, see Fig. 2.6f, is created by a water jet that carries with it fine
sand particles which pierce the glass. The water-jet cut edge is characterized by a
matt appearance (Veer & Rodichev 2012).

2.3.2 Tempering

Tempering produces a glass sheet with all surfaces subjected to compressive stresses
which are counter-balanced by tensile stresses in the interior. The compressive sur-
face stresses have to first be overcome before the tempered glass can be broken,
unless the fracture is initiated from the interior (Tooley 1984). Thermal tempering
is performed by heating up the glass article close to the transition temperature
at about 650 ◦C and rapidly quenching it by chilling the surface with blasts of
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Figure 2.6: Edge finishings. (A) As-cut. (B) Arrised. (C) Ground with smooth
spots. (D) Ground. (E) Polished. (F) Water-jet cut.

air (McLellan & Shand 1984). The rapidly cooled glass material is subjected to a
thermal gradient while it passes through the viscous-elastic domain which results
in the build-up of compressive residual stresses at the surface. The compressive
stresses are balanced by tensile stresses in the core. The thermal and structural
histories during tempering are complex and include unknown thermal transfer coef-
ficients. However, a simple model for the through-the-thickness stress distribution
can be achieved by assuming a constant rate of cooling and supposing that no
structural relaxation takes place. Then, the temperature variation through-the-
thickness is parabolic and the temperature difference between the surface and the
centre is

∆T =
b2cRcp

8k
(2.1)

where b is the thickness of the pane, cR is the cooling rate, cP is the specific heat,
and k is the thermal conductivity.

A fully tempered glass pane usually has a breaking stress that is increased by a
factor of 2.5 to 3.5 compared to annealed glass (McLellan & Shand 1984). Ac-
cording to prEN 16612:2017, the strength of properly toughened safety glass is
about 2.5 times as great as that of ordinary annealed glass while the strength of
heat strengthened glass is about 1.5 times as great. Upon failure, a fully tempered
pane shatters into small cubes and this is referred to as dicing. The dice are un-
likely to cause serious injury. Heat-strengthened glass is produced similarly to
fully tempered glass but with a lower rate of quenching which produces smaller
compressive surface stresses. On failure, heat-strengthened glass does not dice into
small fragments like fully tempered glass. Instead, it retains a large fracture pattern
similar to annealed glass.

Chemical tempering is performed by immersing the glass in a molten salt bath. The
outer surface of the glass is strengthened through an ion exchange process. It is
possible to achieve much higher surface compression with chemical tempering than
with thermal tempering. However, the ion exchange depth is limited which results
in a much smaller compression depth compared to thermally tempered articles.
Moreover, the ion diffusion rates are very slow for ordinary soda-lime-silica glass
which is widely used in building applications (Tooley 1984).
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2.3.3 Laminated glass

Laminated glass is formed by bonding together two panes by a tough polymer in
an autoclave. Polyvinyl butyral (PVB) is the most common choice of interlayer
material and normally two foils are used, each foil having a thickness of 0.38 mm.
However, there exist a whole range of alternative interlayer materials that offer
higher stiffness, greater temperature resistance, etc. Laminated glass units achieve
a greatly improved post-fracture behaviour compared to monolithic units due to
the way in which the polymer interlayer absorbs energy from impacting objects,
retains the fractured pieces of glass providing structural redundancy, and limits the
risk of flying shards (McLellan & Shand 1984).

2.3.4 Insulated glass units

An insulated glass unit is composed of two or more glass panes with closed cavities
which reduce heat transfer due to radiation, conduction, and convection. A low-
conductivity gas fill is normally used between the panes. Radiative heat transfer
can be further limited by tinted or coated glazing.

2.4 GLASS FATIGUE

Material fatigue means that the strength deteriorates over time. The earliest record
of fatigue in glass is found in Grenet (1899) who subjected rectangular plates and
small rods of glass to three-point bending at various rates of loading. He observed
a decrease in strength as the load-duration was increased. Since then, many ex-
periments have manifested fatigue in glass. For instance, Baker & Preston (1946a)
observed in experiments that the fracture stress in glass was about three times as
great for load durations only a fraction of a second in length compared to load
durations 24 hours in length. The effect of fatigue was found to decrease when
moisture was removed from the environment (Baker & Preston 1946b, Culf 1957,
Mould & Southwick 1959). In fact, the strength of glass depends on the duration
and magnitude of load as well as on the environment and temperature. The en-
vironment comprises agents such as water, usually in the form of humidity. Glass
fatigue is not observed at temperatures below -196 ◦C. It has been demonstrated
that fatigue in glass is not aggrevated by cyclic loading as is otherwise the case with
e.g. steel (Lü 1997). Fatigue in glass is conventionally termed static fatigue, per-
haps to distinguish it from cyclic fatigue which is common in the steel engineering
literature, see e.g. Haldimann (2006). However, fatigue in glass is present whether
the loading is static or dynamic. Present theories that explain glass fatigue are
based on the assumption of pre-existing surface flaws, see Sec. 2.5.3.
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2.5 FRACTURE MECHANICS

2.5.1 Background

Suppose that the strength is determined by the work necessary to separate the
atoms in a given plane which slices the material in two. From a purely theoretical
point of view then, the inert strength can be estimated at (Le Bourhis 2008, Orowan
1949)

σf =

√
Eζ

ρ0
(2.2)

where E is Young’s modulus, ζ is the surface energy of the cleavage surface, and ρ0

is the Si–O distance. Taking E = 70 GPa, ζ = 0.6 J m−2, and r0 = 0.15 nm, the
strength is found to be about 16 GPa (Le Bourhis 2008). However, experiments on
annealed float glass panes demonstrate that this value is incorrect by more than
two orders of magnitude, see Chap. 4. It is well-known that a scratch can reduce
the strength of a glass sheet. In fact, glass is cut into the desired dimensions by
flexuring a pane that has been scored on the surface with the use of a cutting
wheel. The sharp indenter used in scoring produces median cracks that are driven
through the thickness by the action of bending (Le Bourhis 2008).

In this section, we consider explanations for how some material flaw might prompt
the onset of fracture in a solid based on a representation of the flaw as a crack. A
crack is a flat separation bounded within the material by a leading edge which is
approximated by a simple curve (Mencik 1992). A flaw can refer to many sorts of
defects in general, for a discussion see Mencik (1992). On a submicroscopic scale it
might refer to a dislocation array, an interstitial atom, etc. Flaws include bonded
precipitate particles, surface grains, inhomogeneities, etc. Possibly visible to the
naked eye are bubbles, pores, “cracks”, voids, impurities, etc. In the following, a
crack refers to an idealization. It is a concept that represents the type of flaw that
is thought to prompt failure in glass.

Based on linear elasticity theory, Inglis (1913) offered a logical explanation for the
weakening effect of a material flaw. Inglis (1913) considered the elastic stresses near
the edge of an elliptical through-the-thickness hole in an infinite plate of isotropic
material subjected to uniform uniaxial tension. It was found that the crack warps
the stress field. The maximum stress at the tip of the elliptical hole was calculated
to be

σ̂ = σ
(

1 + 2
a

b

)
(2.3)

where σ̂ denotes the crack tip stress, a is the half major axis, b is the half minor axis,
and σ is the farfield stress. A sharp crack tip is obtained by letting the radius of
curvature tend to zero. However, then the crack tip stress is magnified indefinitely.
Nevertheless, supposing that an elliptical crack represents a real material flaw,
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I II III

Figure 2.7: Crack displacement modes: mode I opening, mode II sliding, and
mode III tearing. Adapted from Broek (1983).

Inglis’ (1913) model explains how a flaw is capable to prompt failure for farfield
stresses well below the theoretical bond strength.

The three modes of cracking denoted by mode I, II, and III, respectively, are illus-
trated in Fig. 2.7 (Irwin 1958). Mode I refers to crack opening due to displacements
normal to the crack plane surfaces. Mode II and III describe in-plane and out-of-
plane shearing displacement cracking (Broek 1983). The Inglis solution pertains to
pure mode I crack opening.

Griffith (1920) adopted Inglis’ (1913) solution and developed a fracture condition
based on a consideration of the elastic energy released upon crack growth. The
condition for crack growth is expressed in terms of a reversible thermodynamic
process. The rate of elastic energy release, typically denoted by G in most liter-
ature, is balanced by the energy consumed during crack propagation. The critical
energy release rate which can be determined experimentally, is a measure of ma-
terial toughness. In the case of the elliptical crack subjected to uniform uniaxial
stress that was studied by Inglis (1913) and further adopted by Griffith (1920), a
fracture criterion is

G ≥ GIc (2.4)

where GIc denotes the mode I critical energy release rate.

Another way of representing the fracture condition, and in fact an equivalent one,
is provided by a characterization of the elastic stress field near the crack tip (Broek
1983). A solution in rectangular coordinates was found by Westergaard (1939) for
a sharp through-the-thickness crack in an infinite plate subjected to uniform bi-
axial tension. By use of the Euler identity, Irwin (1957) showed that the following
expressions for the stress field near the crack tip approximate those of Wester-
gaard (1939). Expressed in polar coordinates, the stresses near the crack tip were
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calculated to be

σx = σ

√
a

2r
cos

θ

2

(
1− sin
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2
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2
(2.5)

σy = σ

√
a

2r
cos

θ

2

(
1 + sin

θ

2

)
sin

3θ

2
(2.6)

τ = σ

√
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2
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2
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2
(2.7)

where a is the semi-crack length. Irwin (1957) introduced the stress intensity factor
(SIF) which is denoted by KI in the case of mode I opening displacements, based
on the fact that from Eq. (2.5), (2.6), and (2.7), we have

σij =
KI√
2πr

fij(θ) (2.8)

where KI = σ
√
πa. The SIF completely determines and characterizes the stress

field at the crack tip (Broek 1983). A pure mode I fracture condition is given by

KI ≥ KIc (2.9)

where KIc denotes the critical SIF, i.e. the fracture toughness. It can be shown
(Broek 1983) that in the case of plane stress

K2
I

E
= GI (2.10)

while in the case of plane strain

(1− ν2)
K2

I

E
= GI (2.11)

2.5.2 Surface flaws

As a more realistic representation of surface flaws in glass, we consider mainly two
types of part-through flat edge cracks, viz. the long straight-fronted plane edge
crack and the semi-circular edge crack. In addition, the quarter circle corner crack
was used in a strength model by Porter (2001). The semi-circular edge crack is
also known as the half-penny crack. It is assumed that the crack is contained in a
semi-infinite specimen. The mode I SIF for a straight-fronted edge crack is (Tada
et al. 2000)

KI = 1.12σ
√
πa (2.12)

The SIF at the deepest point on the crack contour of a semi-circular edge crack
can be approximated as (Newman & Raju 1981)

KI = 1.14σ
2

π

√
πa (2.13)
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For other crack shapes, however, it is possible to define a geometry factor Y asso-
ciated with the crack shape such that

KI = Y σ
√
πa (2.14)

Suppose that the edge crack is subjected to a biaxial stress field with the crack
plane inclined at an angle θ in the coordinate system of the principal stresses σ1

and σ2. Then, the stress acting normal to the crack plane is

σn = σ1 cos2 θ + σ2 sin2 θ (2.15)

and the shear stress is

τ =
1

2
|σ1 − σ2| sin 2θ (2.16)

The mode II SIF for the straight-fronted edge crack is (Tada et al. 2000)

KII = 1.12
√
πaτ (2.17)

while the mode II SIF for the semi-circular edge crack can be approximated as
(Thiemeier et al. 1991)

KII = 1.14
4

π

1

2− ν
√
πaτ (2.18)

There exist a range of mixed mode fracture criteria and a number of them were
compared in Thiemeier et al. (1991). We consider a mixed mode fracture criterion
based on the maximum noncoplanar energy release rate (Hellen & Blackburn 1975)
which was found to be relatively shear sensitive compared to criteria based on e.g.
the coplanar energy release rate, the maximum hoop stress factor, and the minimum
strain-energy density (Thiemeier et al. 1991). The fracture condition based on the
maximum noncoplanar energy release rate is√

K4
I + 6K2

I K
2
II +K4

II ≥ K
2
Ic (2.19)

In Eq. (2.19), the right-hand side means that it is assumed that the mode I fracture
toughness characterizes the material resistance against unstable crack propagation
even though it is a mixed mode condition.

Flaw location distribution is generally assumed to be uniform in the plane of the
surface. In Wereszczak et al. (2014), an empirical flaw location distribution is in-
dicated in the measurement results using optical scanning techniques. Wereszczak
et al. (2014) has already been cited extensively by those who recently have attemp-
ted to model glass strength with a flaw size approach in Monte Carlo simulations,
see further Chap. 6. However, due to the low resolution of the diagram in the
journal article print (Wereszczak et al. 2014), it is hardly possible to extract a
spatial distribution. Nevertheless, the investigation in Wereszczak et al. (2014)
was limited to an examination of two panes of glass comprising four surface sides.
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Hence, the conclusions drawn from this study are suggestive but require further
experimentation to be corroborated.

Regarding the representation of the surface flaws condition in glass, the following
can be noted. A single population concept was used by a number of researchers.
Freudenthal (1968) assumed a Cauchy distributed flaw size distribution. Poloniecki
& Wilshaw (1971) and Poloniecki (1974) proposed a flaw size density function in the
form of Eq. (5.44) which was based on empirical results and which was subsequently
adopted in the strength model by De Jayatilaka & Trustrum (1977). Yankelevsky
(2014) assumed a flaw size distribution function that can be interpreted as a trun-
cated exponential distribution. Osnes, Hopperstad & Børvik (2018) discretized the
Yankelevsky (2014) flaw size distribution in the following way

ai = amax

(
1− lnNi

lnN0

)
(2.20)

where N0 is the total number of flaws, amax is the upper boundary on flaw size,
and Ni is the number of flaws with a depth larger than ai with

Ni = R1(N0 − 1) + 1 (2.21)

where R1 is a uniformly distributed random variable on [0, 1]. Haldimann (2006)
adopted a Pareto flaw size distribution which by the way is implicit in an adoption
of the Weibull distribution if it is assumed that the stress state is uniform uniaxial
and the flaws are oriented perpendicular to the stress. A number of researchers im-
plement into their strength models a right-truncated flaw size distribution. Pisano
& Royer-Carfagni (2017), e.g., assume the following argument: Due to optical and
aesthetic performance requirements on commercial glass, strict production controls
“usually assure that glass with large defects are discarded and not placed on the
market.” (Pisano & Royer-Carfagni 2017) In fact, this was the same kind of argu-
ment adopted by Yankelevsky (2014) for a right-truncated flaw size distribution.
However, does this assumption agree with what happens in reality, i.e. can it really
be assured that glass with large defects are simply discarded in the production?
And are there test results available that corroborate such an assumption? As a
matter of fact there is a need for greater insight into the surface condition in glass.
At present, however, there is a lack of methods and technology available by which
to probe the surface flaws.

Several authors have considered dual flaw populations concepts. In fact, the em-
pirical data suggests that flaw size in glass is bimodal. Consider e.g. Krohn et al.
(2002) who performed fractographic analyses of broken glass plates which had been
subjected to double ring bending tests. It was concluded that “there is some evid-
ence for a second flaw population to be contributing to the low strength of the float
glass specimens.” A statistical model for characterizing glass strength when two
flaw populations are superimposed due to abrasive phenomena was proposed by
Pisano & Royer-Carfagni (2017) and Bonati et al. (2018). Pathirana et al. (2017)
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implemented a dual population of lognormally distributed flaw sizes in Monte Carlo
simulations of Griffith flaws. Kinsella & Persson (2018b), see Paper B, implemen-
ted a dual flaws population concept consisting of a Pareto flaw size distribution
corresponding to large, “rogue” flaws of which there were assumed to be only a
small number on a given plate, and a Fréchet flaw size distribution corresponding
to numerous small flaws according to an argument based on extreme value theory.

Mencik (1992) distinguishes betwen four surface flaw populations according to their
supposed origin. There are large cracks caused by contact damage which limits the
strength to 20-60 MPa. Then, there are microscopic and submicroscopic cracks
smaller than 100 microns in size whose origin lie in the glass formation process
as well as in contact damage. The small flaws are numerous. On a given square
centimeter there may be hundreds or even tens of thousands. Then, there are flaws
that arise due to foreign microscopic particles that adhere firmly to the surface
at higher temperatures during manufacturing in the glassworks. Such flaws act
as fracture initiators for failure at several hundred or thousands of MPa of tensile
stress. Their effect is generally overlapped by flaws of the first two categories
of origin. Finally, there are flaws occurring during manufacture and subsequent
heat-treatment due to changes in the surface resulting from reactions with the
environment, e.g. in the form of volatilization. Again, their effect is generally
overlapped by the more severe flaws in the first two categories of origin.

When it comes to the representation of flaws in glass, it can be said in general that
it is assumed that the effect of bulk flaws, if they are present at all, is overlapped by
the effect of surface flaws. By the same token, this is an argument for neglecting
bulk flaws in the strength modelling. Glass is mostly loaded in bending which
results in the surface stresses being larger than the stresses in the bulk.

When you consider the recorded values for the fracture stress from a given exper-
iment, you cannot know exactly what shape of flaw that prompted the observed
fracture, nor are you able to tell what orientation the hypothetical crack plane
had with respect to the stress field. A thorough fractographical investigation may
provide some insight into the fracture process but such detailed investigation is
rare. Lindqvist (2013) attempted to measure the critical flaw size by performing
fractographical studies of the failure origin before and after destructive testing but
was ultimately unable to establish a relationship between the observed strength
and the measured flaw depth. What you sometimes encounter in the literature
are measurements of the socalled mirror zone radius which are obtained in fracto-
graphic studies. It is usually possible to identify a smooth mirror-like zone around
the flaw that prompted failure using an optical microscope, see e.g. Calderone
(1999), Johar (1981), Lindqvist (2013), Yankelevsky et al. (2017). The mirror zone
is surrounded by the socalled mist and hackle regions, cf. Fig. 2.8 for an illus-
tration. There exist empirical relations between the critical stress and the mirror
zone radius, although such formulae do not always produce reliable results when
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Figure 2.8: Mirror, mist, and hackle zones which surround the failed flaw. Ad-
apted from Lawn (1993).

comparisons are made with the calculated fracture stress (Johar 1981).

Edge vs surface condition

When glass is tested using the double ring bending device, then due to the emergent
stress field, edge fractures are extremely unlikely to occur. For practical purposes
therefore, it can be assumed that only surface failures are produced. So is not the
case for other commonly employed testing devices. When the testing is performed
using a three or four-point bending device and the bending takes place in-plane,
then one edge is positioned in the tension zone which makes the fracture prone
to occur along this edge. However, from a theoretical point of view of course, a
pure surface failure is still possible during this kind of bending. See Fig. 2.9 for
an illustration of the possible failure origins near the edge in the case of a beam
tested in four-point bending with in-plane loading. With reference to Fig. 2.9, we
next consider the case when the failure origin is located at points S1 or S5, i.e.
one of the main surfaces of the glass specimen. Vandebroek et al. (2014) appear
to be the only ones who have stringently examined the rate of surface failures in
the case of glass beam tests with in-plane bending. According to their research, on
average 13% of ground and 20% of cut specimen failures occurred from either of
the main surfaces of the glass. This was according to fractographic analysis of the
failed specimens. Hence, even in practice, some of the failures during in-plane beam
bending can occur away from the edge itself. However, it may be the case that
these fracture sites are located very close to the edge. We do not know this from the
source, viz. Vandebroek et al. (2014). Nonetheless, the majority of failures clearly
occur at the edge when the beam is subjected to in-plane bending and it is assumed
that the error involved in taking all such failures to be edge failures is small. In
other words, we assume that the bending type itself is a proxy for the edge type
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Figure 2.9: Possible fracture sites for the edge in the tension zone when a beam
is tested in four-point bending with in-plane loading of the specimen.
(a) cut edge, (b) ground edge.

of failure in this case. Without this assumption, it would generally not be possible
to analyse the difference in condition between edge failures and surface failures in
glass. This is so because the bulk of experiments that produce the results on the
edge condition were performed using the four-point bending device with in-plane
loading, cf. Chap. 4. Generally speaking, there was no researcher who provided a
fractographic analysis of the kind that would allow us to differentiate between these
types of failure origin. In fact, Vandebroek et al. (2014) proceed to examine the
edge strength and to draw conclusions about e.g. edge size effects while including
data results from failures that were determined as originating from the surface as
per fractographic analysis. Based on this data they write that “the test results
demonstrate that there is a considerable size effect for the edge strength of glass”
(this author’s emphasis), (Vandebroek et al. 2014). Hence, the test results are
considered to be edge failures whether the failure originates from one of the edge
corners or from the surface near the edge in the case of in-plane loading of beams
in four-point bending.

In the case of glass beams subjected to out-of-plane bending, the research shows
that on average half of the failures occurred from the edge, although the results
on this vary a lot between the individual experiments. In some cases over 90% of
failures were from the edge while in other cases the majority were from the surface.
See also Paper D.

In the case of laterally supported plates subjected to uniform out-of-plane pressure,
the research shows that on average 30% of failures occur from the edge. These
results are much more consistent across the experiments in spite of the fact that
the boundary conditions vary significantly. In some cases the support conditions
were very flexible, the glass being more or less simply supported on neoprene gaskets
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(Kanabolo & Norville 1985). In other cases the glass was fixed between neoprene
gaskets (Johar 1981, 1982). In yet another case the glass was firmly fixed between
continuous strips of 20 mm thick nylon (Calderone 1999).

Based on the findings from experiments on glass as well as numerical studies, it can
be concluded that the edge condition cannot be neglected for any real structure
under practical circumstances. This is so because in practice, the structure is
never supported and loaded under such extraordinary conditions like those that are
produced with the double ring bending device. In practice, the glass is usually like
a linearly supported plate subject to out-of-plane loading or like a slender beam or
pillar element. If it is the latter, i.e. a slender beam or pillar, then it follows directly
that some part of the edge is subject to significant tensile stress in the design state.
If it is the former, i.e. a laterally supported plate, then the edge parts are evidently
prone to fail for two reasons. First, because the experiments on laterally supported
plates which comprise the results from hundreds of tests demonstrate that this is
the case. Second, because finite element analyses of square plates, see e.g. Kinsella
& Persson (2018a), Paper C, demonstrate that the tension near the edges can reach
significant magnitudes even when the support conditions are relatively flexible, i.e.
the glass is fixed between soft neoprene gaskets. When the supports are rigid, the
maximum principal tensile stress on the compression side near the edges was found
to be comparable to the maximum principal tensile stress at the centre point on
the tension side, at moderate to high magnitudes of lateral pressure.

The production method which includes scribing, cutting and grinding operations
alters the condition of the edge in glass. According to Veer & Rodichev (2011),
even when the grinding is done to produce an edge that appears to be free from
defects, there may still remain hidden damage. This is so because the lateral cracks
that are introduced by scribing can extend so far that they are not removed entirely
by grinding operations.

2.5.3 Subcritical crack growth

As was noted early on by researchers, glass subjected to stress in normal atmo-
spheres, i.e. in environments containing water vapour, is prone to fatigue at ordin-
ary temperatures, see Sec. 2.4. Present theories that explain glass fatigue are based
on the concept of preexisting cracks that grow subcritically, i.e. at a rate much
smaller than at catastrophic failure. Subcritical crack growth can be characterized
by velocities of the order µm s−1 to mm s−1 while crack velocity at rupture is of
the order km s−1 (Lawn 1993).



2.5 Fracture mechanics 27

Stress corrosion

Charles (1958a) proposed an explanation for glass fatigue based on the assumption
of a pre-existing flaw that propagates subcritically until fracture. The subcritical
crack growth is due to a corrosive mechanism, like a chemical attack by water
vapour that is activated by crack tip stress and temperature. The chemical process
was termed stress corrosion. There has been much debate over the chemical reaction
that supposedly takes place at the crack tip. A brief discussion of a chemical
reaction model is given in the next subsection. Charles (1958b) supposed that the
corrosion rate conforms to an arbitrary power function of the crack tip stress, i.e.

v ∝ σ̂n (2.22)

where v denotes the corrosion rate, σ̂ denotes the crack tip stress, and n is the
stress corrosion parameter. The crack tip stress σ̂ was estimated by Charles (1958b)
through adoption of the Inglis (1913) solution of the stress at the tip of an elliptical
flaw, Eq. (2.3). Charles (1958b) obtained the value n = 16 through analysis of
experimental data results from four-point bending tests carried out on 3000 glass
rods, 100 mm long and 2.5 mm in diameter, while using a dead-weight loading
system. The tests were performed at various temperatures between -170 ◦C and
242 ◦C in an atmosphere at 100% relative humidity. Moreover, Charles (1958b)
assumed the temperature dependence to be a simple Arrhenius one (Arrhenius
1889), i.e.

v ∝ e
(
− 1
T

)
(2.23)

where T denotes the absolute temperature.

Wiederhorn (1967) found that the corrosion rate in soda-lime-silicate glass is ap-
proximately proportional to the relative humidity, i.e.

v ∝ RH (2.24)

The validity of Eq. (2.24) was demonstrated using the double-cantilever cleavage
arrangement in tests on microscope slide specimens into which cracks with a pre-
determined length were introduced (Wiederhorn 1967).

Brown (1972) developed an equation which states that the cumulative effect of an
arbitrary stress history on a given crack is constant. This equation was integrated
into a theory sometimes referred to as Brown’s Load Duration Theory. The works
by Charles (1958a,b) and Wiederhorn (1967) form a basis for the understanding of
the theory. Brown (1972) assumed that

v ∝ RH e

(
− σ̂
T

)
(2.25)

The dependence on stress in Eq. (2.25) was approximated by a power term. After
carrying out an integration and substituting the crack tip stress for the farfield
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stress, Brown (1972) obtained the following formula which is given below in original
notation ∫ tf

0
RH · exp

(
− γ0

RT

)(σ
T

)n
dt = constant (2.26)

where γ0 and R are constants, tf is the time until failure, and n is the stress
corrosion parameter. The right-hand side of Eq. (2.26) contains various constants
including the distance traversed by the subcritically propagated crack. However,
when the stress intensity is below a certain threshold limit, no stress corrosion can
be observed in experiments (Wiederhorn & Tornsend 1970). With Eq. (2.26), the
threshold limit value for the stress corrosion is neglected.

Consider now a given crack which has been subjected to a certain amount of stress
corrosion, the corrosion being measured in terms of the distance traversed by the
growing crack. If the environmental conditions are assumed to be the same, we
find with Eq. (2.26) that it provides for an equivalence class of stress histories.
Specifically, we derive from Eq. (2.26) that∫ t1,f

0
σn1 (τ) dτ =

∫ t2,f

0
σn2 (τ) dτ (2.27)

where (σ1,t1,f ) and (σ2,t2,f ) correspond to a pair of stress histories and load-
durations until fracture.

Eq. (2.27) has been employed by various researchers to calculate 3 s and 60 s
constant stress-equivalent strength values, see e.g. Beason (1980), Mencik (1992)
and Calderone (1999). It is the constant stress that when applied during 3 s or
60 s, respectively, would produce the same amount of stress corrosion assuming
the environmental conditions are identical. More specifically, the t-sec constant
stress-equivalent strength is

σt,const =

(∫ tf
0 σn(τ)dτ

t

) 1
n

(2.28)

For a linear stress rate σ̇ at the crack tip, the stress history is given by

σ(t) = σ̇t (2.29)

from which it follows that the fracture stress at time tf is

σf = σ̇tf (2.30)

Hence, ∫ tf

0
σn(τ) dτ =

∫ tf

0
(σ̇τ)n dτ =

σ̇ntn+1
f

n+ 1
=

σn+1
f

σ̇(n+ 1)
(2.31)



2.5 Fracture mechanics 29

where Eq. (2.30) was used in the last step. For two constant rate stress histories,
σ1(t) and σ2(t), Eq. (2.31) can be rewritten

σn+1
1,f

σ̇1
=
σn+1

2,f

σ̇2
(2.32)

As a matter of fact, many experiments on glass are conducted using a load rate
that produces a constant rate of stress at the location where fracture subsequently
occurs. A 2 MPa s−1 stress rate is frequently adopted, probably because this
rate is given in various standards, see e.g. EN 1288-2:2000 to EN 1288-5:2000.
A convenient characterization of the strength is thus provided by the 2 MPa s−1

constant stress rate-equivalent strength, i.e. the strength that would have been,
were the crack subjected to a constant stress rate of 2 MPa s−1 until failure. This
choice of metric is convenient because in the case of much experimental data, 1)
a test arrangement that produces a constant rate of stress is adopted and 2) it
enables one to operate directly on the nominal or received values in many cases.
Suppose an experiment is conducted while subjecting a glass specimen to a loading
that produces a constant stress rate of σ̇ at the fracture location until failure at the
stress σf . From Eq. (2.32), we find the 2 MPa s−1 constant stress rate-equivalent
strength to be

σ2,f =

(
2

σ̇

) 1
1+n

σf (2.33)

with the stress and rate values given in units of MPa and MPa s−1, respectively,
and where σf and σ̇ are the recorded fracture stress and stress rate, respectively.

Stress corrosion can be divided into four regions according to the rate of crack
propagation. We consider now the logarithm of crack growth velocity as function
of mode I SIF, see Fig. 2.10 for an illustration of this in the form of a graph (Freiman
et al. 1985, Wiederhorn 1967, Wiederhorn & Tornsend 1970). In region I, the crack
growth velocity is generally modelled with Eq. (2.22) as a basis. Region 0 denotes
the domain in which no stress corrosion is observable. The threshold limit value
for detectable stress corrosion is about 0.25 MPa m−

1
2 , however, the estimates

for this parameter value vary somewhat, see e.g. Freiman et al. (1985), Gehrke
et al. (1991), Wiederhorn & Tornsend (1970). Regions II and III are generally
not relevent for the strength design of glass structures because once the mode I
SIF enters these regions, the time scale is very short and catastrophic failure is
imminent (Fischer-Cripps & Collins 1995).

Based on the test results which produced the general appearance of the crack
growth velocity curve as function of the mode I SIF in region I, cf. Fig. 2.10, Evans
(1974) proposed the following expression for the crack growth velocity.

v = AKn
I (2.34)
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Figure 2.10: General shape of the subcritical crack growth velocity as function
of mode I SIF. Adapted from Evans (1974).

Eq. (2.34) represents an empirically based approximation of the crack growth ve-
locity which is valid for region I. In Eq. (2.34), A and n are crack growth velocity
parameters and n is moreover identical to the stress corrosion parameter in Charles
(1958b) stress corrosion theory. Eq. (2.34) can be reformulated as

v = v0

(
KI

KIc

)n
(2.35)

The benefit of Eq. (2.35) is that the crack growth velocity parameter v0 has the
same unit as the velocity v.

Chemical reaction model

A classical explanation for the chemical reaction that takes place during stress
corrosion is given by Charles & Hillig (1962). It is supposed that stress enhanced
hydrolysis happens at the crack tip according to the following formula

Si−O−Si + H2O −−→ Si−OH + HO−Si

and this represents stress corrosion in region I, cf. Fig. 2.10. Fig. 2.11 illustrates
the hydrolysis near the crack tip. In region II, it is believed that the rate of stress
corrosion depends strongly on the environment since it is limited by the transport
of reactants to the crack tip (Le Bourhis 2008). However, no general consensus
exists so far about the exact reaction that happens during stress corrosion, see e.g.
Haldimann (2006) for a discussion of this.
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Figure 2.11: Representation of water-induced bond rupture in silica glass.
Dashed line corresponds to the elliptical crack contour. Environ-
mental water species are shown in grey colour. Adapted from Lawn
(1993).
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Calculating the strength

3.1 DEFINING THE STRENGTH

The strength of glass is a property that can only be revealed by destroying the
sample specimen. Glass is much stronger in compression than in tension so that in
practice, only the tensile strength is considered. One way to evaluate the strength
would be to grip the specimen at two ends and pull it thus subjecting the surface to
uniform stress. However, for practical reasons, this arrangement is usually avoided
because of the risk that the specimen would either slip or else fail at the grips. In
practice, glass plates are usually put to the test in a bending device that subjects
part of the specimen to significant tensile stress. The four most common bending
arrangements are detailed in Sec. 3.2 and comprise the following setups, viz. the
three-point bending device, the four-point bending device, the co-axial double ring
bending device, and the device that allows for four-sided laterally supported panes
to be subjected to uniform pressure.

The strength is defined as the maximum principal tensile stress at the fracture
location. The strength determined from a bending test is sometimes defined as
the maximum tensile stress that is reached within some predefined area of the
specimen, e.g. within the load span in the case of four-point bending, irrespective
of whether the fracture site was contained in the same area or not. For convenience,
we refer to this as the apparent strength.

For instance, in a three-point bending setup, the apparent strength is determined
by the stress at the midpoint where the load is introduced, cf. Sec. 3.2. Hence, the
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strength is generally smaller than the apparent strength because it is not unusual
for the fracture origin to be located some distance away from the midpoint. Fur-
thermore, there are reports in the literature of a substantial proportion of fractures
occurring from outside the loading ring area in some double ring bending tests
(Reid 2007). In a four-point bending test it is not unusual for fracture to occur
outside the load span. In fact, not every experimenter records the fracture location.
Others simply discard the data point when the fracture origin was located outside
the predefined loading area. However, simply discarding observations like that is
not necessarily sound practice. Speaking of the double ring bending device, Reid
(2007) notes that “failure outside the loading ring is a real physical phenomenon
that cannot be eliminated by any experimental technique, because it is an inescap-
able consequence of the spatial variability of glass strength.” In the case of laterally
supported plates subjected to uniform pressure, the stress distribution is nonlinear
and very much dependent on the boundary conditions, cf. e.g. Kinsella & Persson
(2018a) which can also be found in Paper C. According to a recent review of the
test results from hundreds of large laterally supported panes subjected to uniform
pressure, it was found that none failed at the location of maximum principal tensile
stress (Natividad et al. 2016).

3.1.1 Time-dependent strength

In an ordinary environment with a normal atmosphere, the strength cannot be
revealed without intervening with the glass so as to alter the strength significantly.
Hence, what might have been the strength at the onset of testing, the so-called inert
strength, is reduced while putting the specimen to the test. Ultimately, delayed
fracture might happen, e.g. when the specimen breaks under a static load that was
sustained to begin with. Measurements of the strength carried out at different load
rates and in different environments produce results that can differ substantially
even when the test setup, specimen dimensions, and fracture location are exactly
the same.

In order for the strength to be well defined in the time domain, there exist al-
ternative routes. One way is to employ a purely empirical model for the effect of
glass fatigue to enable a comparison of strength measurements made at different
load-histories. As an example of this we have the universal static fatigue curve of
Mould & Southwick (1959) who carried out experiments on glass rods subjected to
static loads, see also Varshneya (1994)

σ

σN
= −A log

(
t

t0.5

)
+B (3.1)

In Eq. (3.1) which is valid in the linear portion in the plot of the time to fracture,
σN is the strength of pristine glass rods immersed in liquid nitrogen, B is a term
dependent on the manner of abrasion of the rod while using different grits, log t0.5
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is the time corresponding to σ/σN = 0.5 and A is the slope in the plots, the slopes
of which were found to be approximately the same according to the experiment in
Mould & Southwick (1959).

Another way to account for glass fatigue is to adopt the theory of stress corrosion
and employ the logical model that follows, i.e. a crack growth velocity described by
an Arrhenius process that is stress and temperature-activated. This is frequently
done by various researchers at present. As a consequence, the following technique
is established. The measured strength is transformed into the 3 second or 60
second-equivalent constant stress. This transformation enables the comparison of
test results carried out at different load-rates and with different load-durations, as
was shown in Sec. 2.5.3. In the remainder of this section however, it is explained
how to calculate the strength without consideration of glass fatigue.

3.2 TEST DEVICES

In the following, four bending devices are considered, viz. the three-point bending
device, the four-point bending device, the co-axial double ring bending device, and
the device that allows for four-sided laterally supported panes to be subjected to
uniform lateral pressure. These are the most common devices employed to measure
the strength of float glass panes for use in structures. A schematic view of the
three-point bending arrangement is given in Fig. 3.1 where l denotes the distance
between the supports. A schematic of the four-point bending arrangement is shown
in Fig. 3.2 where l1 denotes the distance between the inner loads and outer supports.
Fig. 3.3 shows a schematic of the double ring bending arrangement which uses two
opposing coaxial rings of unequal diameters, one loading ring and one reaction
ring. The test specimen is positioned between the rings and a load is transmitted
through the smaller concentric loading ring. r0 and r1 denote the radii of the inner
and outer rings, respectively. Fig. 3.4 illustrates the general test arrangement for
the application of uniform pressure to laterally supported plates. The boundary
conditions vary substantially between experiments with laterally supported plates
subjected to uniform pressure. The rigidness in the supports varies depending on
the gasket material in use and the clamping force applied along the edges as well
as the stiffness of the surrounding frame.

3.3 CALCULATION METHODS

The methods employed by various researchers and experimenters to calculate the
strength comprise the following, viz. analytical formulae, the finite element method,
and interpolations and extrapolations from strain gauge measurements. Sometimes,
these methods are used in combination.
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3.3.1 Analytical methods

The bending strength can be determined according to the Bernoulli beam bending
theory

σf =
M

W
(3.2)

where M is the maximum bending moment and W is the section modulus of the
specimen, see e.g. Mencik (1992). The contribution of self-weight is neglected.
While using Eq. (3.2), it is assumed that the cross-sections remain even and per-
pendicular to the deflected axis of the bent beam. For a rectangular cross-section

W =
bh2

6
(3.3)

where b denotes the cross-sectional width and h the height. In Eq. (3.3), it is
assumed that bending takes place around an axis parallel to the cross-sectional
width. The largest bending moment in three-point bending is Fl/4 with F the
fracture load, cf. Fig. 3.1. With Eq. (3.2) and (3.3) the bending strength is
determined as

σf =
3

2

Fl

bh2
(3.4)

The largest bending moment in four-point bending is Fl1/2, cf. Fig 3.2. The
bending strength in four-point bending is similarly found to be

σf = 3
Fl1
bh2

(3.5)

In the double ring bending setup, a uniform biaxial tensile stress is produced in
the surface of the sample plate within the loading ring area. The stresses on the
tensile surface of the specimen have radial and circumferential components, σr and
σθ, and are given by a set of approximate analytical solutions (Kirstein & Woolley
1967). The uniform biaxial stress within the loading ring area is

σr = σθ =
3F

2πb2

(
(1 + ν) ln

r1

r0
+ (1− ν)

r2
1 − r2

0

2r2
2

)
, r ≤ r0 (3.6)

where r2 is the equivalent outer radius used for a square shaped specimen with side
length 2L, viz.

r2 = L(1 +
√

2) (3.7)

The radial stress outside the loading ring area at the distance r from the centre
point is

σr =
3F

2πb2

(
(1 + ν) ln

r1

r
+ (1− ν)

r2
0(r2

1 − r2)

2r2r2
2

)
, r > r0 (3.8)

while the circumferential stress is

σθ =
3F

2πb2

(
(1 + ν) ln

r1

r
− (1− ν)

r2
0(r2

1 + r2)

2r2r2
2

+ 2(1− ν)
r2

1

r2
2

)
, r > r0 (3.9)
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Figure 3.1: Three-point bending test setup.
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Figure 3.2: Four-point bending test setup.

In the case of laterally supported plates subjected to uniform pressure, cf. Fig. 3.4,
analytical formulae based on plate equations are not generally used. The reason for
this is the difficulty to accurately determine the stresses at some arbitrary point on
the plate surface while employing approximate solutions due to nonlinearities and
elastic boundary conditions. However, simplified formulae for the determination of
the maximum principal tensile stress at the plate centre point are sometimes given
in standards, see e.g. the prEN 16612:2017.

3.3.2 Numerical solutions

In Blank et al. (1994), the stress distribution in slender glass beams subjected
to out-of-plane four-point bending was analyzed using the finite element method
with nonlinear shell theory and comparisons were made with the Bernoulli beam
theory. In practice, deviations from the Bernoulli beam theory can be expected
due to the emergence of shear forces and membrane stresses as the deflections
exceed about half the specimen thickness. In such case, the cross-sections initially
perpendicular to the longitudinal axis start to curve and the stresses get biaxial, see
Fig. 3.5. There no longer exists a linear relationship between bending force, stress,
strain and deflection. The conclusion from Blank et al. (1994) who investigated
thicknesses of 3, 4, 5, 6, 8, 10, 12, 15, and 19 mm, was that the Bernoulli beam
bending theory is sufficient for practical requirements. However, the beam theory
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Figure 3.3: Co-axial double ring bending test setup.
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Figure 3.4: Laterally supported plate subjected to uniform lateral pressure.
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underestimates the true edge stress, the deviation of which can amount to 11%
depending on the centre deflection and plate thickness.

The stresses in laterally supported plates subjected to double ring bending or uni-
form pressure can be accurately calculated with the finite element (FE) method,
see e.g. Haldimann (2006). The general problem of determining the stresses at an
arbitrary location on the surface of a laterally supported plate which is subjected
to uniform loading does not have a tractable solution when using analytical for-
mulae except for some elementary cases with special boundary conditions. With
the finite element method, approximate solutions are obtained to partial differen-
tial equations that arise in the modelling of structures. However, the solutions are
highly dependent on the boundary conditions.

Equations of motion

Here follows an outline of the differential equations of motion with respect to the
current or spatial configuration. The presentation follows the format found in
Holzapfel (2000). A continuum body in Euclidian space is considered. The body
contains a set of particles that occupy an arbitrary region Ω with boundary surface
∂Ω at time t. The spatial mass density is ρ. Suppose a motion that generates a
spatial displacement field u. We adopt the balance of linear momentum according
to the generalized form of Newton’s principles of motion, i.e.

D

Dt

∫
Ω
ρu̇ dv = F(t) (3.10)

where we assume that the structure of forces, F(t), acting on the body are such
that they can be separated into traction and body forces, respectively, i.e.

F(t) =

∫
∂Ω

t ds+

∫
Ω

b dv (3.11)

where t is the Cauchy traction vector and b = ρg with g the constant gravitational
acceleration. It is supposed that there exists a spatial tensor field σ with the
property that t = σn where n is an outward normal vector of unit length to the
surface. It can be shown that σ is symmetric. Cauchy’s first equation of motion
is derived from Eq. (3.10) and (3.11) while applying Cauchy’s stress theorem and
Gauss’ divergence theorem, i.e.∫

Ω
(divσ + b− ρü) dv = 0 (3.12)

Since Eq. (3.12) holds for any volume v, we deduce

divσ + b = ρü (3.13)
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which is the strong form of the equation of motion. Providing that the problem is
static, we have the boundary conditions{

u = ū on ∂Ωu

t = t̄ on ∂Ωσ
(3.14)

where displacement ū and load t̄ are prescribed functions on the boundary.

The strong form, Eq. (3.13), contains functions whose derivates might not be
defined. We develop the weak form while noting that functions have well-defined
integrals even when the derivative is undefined thus allowing for us to access the
underlying solution. An arbitrary test function v is introduced with the property
that v = 0 on the boundary surface ∂Ω. The test function represents a virtual dis-
placement field on the current configuration. After multiplication by v, integration
over Ω, and application of Gauss’ divergence theorem, it can be shown that∫

Ω
(σ : gradv + ρü · v) dv =

∫
Ω

b · v dv +

∫
∂Ω

t · v ds (3.15)

Eq. (3.15) is the weak form with the natural and essential boundary conditions,
respectively, which for the case of a static problem are the same as in Eq. (3.14).
Henceforth, a quasi-static condition is assumed which implies that the second term
vanishes in Eq. (3.15).

Finite Element Method

The finite element formulation is based on the weak form of the equation of motion,
Eq. (3.15), and Galerkin’s method (Ottosen & Petersson 1992). In the following,
we use matrix notation so that the stress tensor in Sec. 3.3.2 is understood to be

σ =



σxx
σyy
σzz
τxy
τxz
τyz

 (3.16)

and the vector differential operator is

∇ =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


(3.17)
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The independent displacement vector field u is discretized at the nodes in a finite
element mesh and a shape function is associated with each unique node. The
displacement field is approximated throughout the body by

u = Na (3.18)

where N is a matrix that represents a global shape function. The vector a represents
the nodal displacements and is a vector of size equal to the total number of degrees
of freedom. Following Galerkin’s method, test functions are selected according to

v = Nc (3.19)

where c is an arbitrary constant vector. Combining Eq. (3.18) and (3.19) with
Eq. (3.15) yields∫

Ω
c>(∇N)>σ dv =

∫
∂Ω

c>N>t ds+

∫
Ω

c>N>b dv (3.20)

which can be simplified to∫
Ω

(∇N)>σ dv =

∫
∂Ω

N>t ds+

∫
Ω

N>b dv (3.21)

since c is arbitrary and constant. In the special case of a linear elastic material we
derive from Eq. (3.18) while assuming σ = D∇u that∫

Ω
(∇N)>D(∇N)a dv =

∫
∂Ω

N>t ds+

∫
Ω

N>b dv (3.22)

Eq. (3.22) can be rewritten in a compact form as

Ka = fl + fb (3.23)

with

K =

∫
Ω

(∇N)>D(∇N) dv (3.24)

fl =

∫
Ω

N>b dv (3.25)

fb =

∫
∂Ω

N>t ds (3.26)

where K represents the stiffness matrix, fl is the body force vector, and fb is the
boundary force vector. Also, the essential boundary conditions must be specified
in the nodes.

The assumption of material linear elasticity is insufficient for the modelling of non-
linearly elastic and viscoelastic materials such as are present in e.g. the interlayers
in laminated glass and in certain types of gasket in laterally supported plates. For
a further treatment of hyperelastic material modelling the reader is referred to
Holzapfel (2000).
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F/2
εx

εy

εx

εy

Figure 3.5: Cross-section of a specimen under four-point bending where the
double curvature is indicated. Adapted from Blank et al. (1994).

3.3.3 Combination of methods

In practice a combination of calculation methods is sometimes employed. As an
example of this we take Vandebroek et al. (2014) who calculates the stress due
to four-point bending based on Eq. (3.5). The beam is subdivided into 10 equal
bins along the longitudinal axis. The stress values in the bins closest to the load
introduction points are corrected based on calculations with the FEM. This is
done in order to obtain a more accurate measure of the stress concentration that
occurs due to nonlinearities at the load introduction points. Blank et al. (1994)
recommends to use a weighted mean value to take into account the variations in
stress in the transversal direction due to double curvature of the bent beam, cf.
Fig. 3.5.
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4.1 INTRODUCTION

In the year 1990, Dalgliesh & Taylor (1990) wrote that “[t]est results available
from around the world refer to about 5000 panes broken in total.” The tests in
reference were not exclusively performed on the float type of glass. Moreover, some
experiments involved glass panes which were submerged in water while testing.
About 500 of the tests in reference were on weathered glass, i.e. glass exposed to
service conditions in buildings. Additionally, all test results were not such that
a value for the fracture stress could be given. In many cases, only a fracture
load or fracture pressure was available. In the case of laterally supported plates
subjected to lateral loading, a fracture load does not easily translate into a value
for the fracture stress, even when the precise fracture origin is known. For all these
reasons, most of the tests mentioned by Dalgliesh & Taylor (1990) are not directly
useful for an estimation of the fracture stress of new annealed float glass tested in
ambient conditions.

There is no up-to-date record of the test results available for the strength of glass
panes. However, a survey (Kinsella 2018) was carried out of the experimental data
on the strength of annealed float glass panes in the as-recieved condition which
were tested in an ambient environment, see also Paper D. Tab. 4.1 contains a list
of references for tests that record the bending strength of new annealed float glass
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tested in ambient conditions which were carried out over the past four decades. The
sources consist of journal articles, dissertations, and conference proceedings. The
list of references in Tab. 4.1 is not exhaustive, however. The tests involve either
the three-point or four-point bending device, or the co-axial double ring bending
device, or the setup that allows for a uniform pressure to be applied to a laterally
supported plate.

Many of the tests were conducted using a loading device that generated a constant
stress rate at the fracture location. These tests which are interesting for the sake
of performing a normalization of the fracture stress using Brown’s (1972) Load
Duration Theory, are further identified in Tab. 4.1.

The fracture stress may depend on a range of factors. With the data recorded in
the experiments which are cited in Tab. 4.1, it is possible to analyze the strength as
function of the edge processing, the edge thickness, the surface area under tension,
the glass supplier, the stress rate, the bending mode, and the individual experi-
mentor. It is moreover possible to consider potential interaction effects between
certain factors.

4.2 PROBABILITY THEORY AND METHODS OF
STATISTICAL INFERENCE

This section provides some of the background to the theories of probability and
statistical inference and it is based on the textbook presentations by Gut (1995)
and Young & Smith (2005). In probability theory, one assumes a sample space, Ω,
which contains the set of elementary events ω. For any collection of such events, A,
its probability is defined, P (A), so that it satisfies the three Kolmogorov axioms.
The first axiom states that P (A) ≥ 0 while the second axiom states that P (Ω) = 1.
The third axiom states that for any countable collection of pairwise disjoint events

P

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

P (Ai) (4.1)

where Ai are the events.

A random variable X is a function from the probability space to the real numbers

X : Ω→ R (4.2)

The collection of events in the sample space are induced by the random variable in
the sense that

P (X = x) = P ({x : X(w) = x}) (4.3)
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Table 4.1: List of references that contain the strength of new monolithic an-
nealed float glass tested in ambient conditions. ULP=Plate bending
due to uniform lateral pressure, CDR=Co-axial double ring bending,
4PB=Four-point bending, 3PB=Three-point bending.

Reference No. of No. of Bending Const.
samples observations mode stress rate

Johar (1981) 9 78 ULP No
Johar (1982) 5 106 ULP No
Simiu et al. (1984) 2 85 CDR Yes
Carre (1996) 5 81 4PB Yes
Calderone (1999) 32 195 ULP No
Hess (2000) 3 15 4PB No
Fink (2000) 2 127 CDR Yes
Haldimann (2006) 2 20 CDR Yes
Veer et al. (2006) 3 32 4PB Yes
Sglavo et al. (2007) 8 115 3PB Yes
Veer et al. (2009) 2 54 4PB Yes
Postigo (2010)∗ 1 41 CDR Yes
Veer & Rodichev (2011) 2 177 4PB Yes
Veer & Rodichev (2012) 2 60 4PB Yes
Vandebroek et al. (2012) 4 77 4PB Yes
Lindqvist (2013) 32 478 4PB Yes
Vandebroek et al. (2014) 8 202 4PB Yes
Kozlowski (2014) 1 6 4PB Yes
Kleuderlein et al. (2014) 33 830 4PB Yes
Schula (2015) 1 15 CDR Yes
Kinsella & Persson (2016) 2 58 4PB Yes
Muniz-Calvente et al. (2016) 2 73 CDR 4PB Yes
Navarrete et al. (2016) 8 69 CDR Yes
Yankelevsky et al. (2017) 1 56 4PB Yes
Osnes, Hopperstad & Børvik (2018) 3 93 4PB Yes
Total: 173 3143
∗ Obtained from Huerta et al. (2011)

The cumulative distribution function (CDF) FX provides a complete description
of a random variable and it is defined by

FX(x) = P (X ≤ x) for x ∈ R (4.4)

For a discrete distribution the probability function, pX , is defined by

pX(x) = P (X = x) for x ∈ Z (4.5)

For a continuous distribution the density function, fX , has the property that

FX(x) =

∫ x

−∞
f(y)dy for x ∈ R (4.6)
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A random variable can be characterized by its moments. The kth moment, mk, is
defined by

mk =


∑
i

xki pX(xi) if X is discrete∫
R
xkfX(x)dx if X is continuous

(4.7)

provided that the sum or integral is absolutely convergent. The first moment is
the mean denoted by E(X), i.e. the expected value. The variance, V ar(X), is a
measure of dispersion

V ar(X) =


∑
k

(xk − E(X))2pX(xk) if X is discrete∫
R

(x− E(X))2fX(x)dx if X is continuous
(4.8)

In statistical inference, the objective is to draw conclusions of the underlying dis-
tribution of a random variable X on the basis of its observed value x. Typically, we
have a number of n observations so that the data has the form x = (x1, . . . , xn) ∈
Rn. In a parametric model, the distribution of X is of known analytic form, but
involves a finite number, d, of real unknown parameters θ = (θ1, θ2, . . . , θd). The
parameter space is defined by the region Θ ⊆ Rd of possible values of θ.

In a hypothesis test, we consider

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 (4.9)

where Θ0 and Θ1 are two disjoint subsets of Θ that possibly, but not necessarily,
satisfy the condition that Θ0 ∪Θ1 = Θ. The unknown parameter value θ is the
quantity we wish to make inference about. According to the likelihood principle,
the general problem of inference for θ is solved by examining the likelihood func-
tion, L(θ). In the case when X = (X1, X2, . . . , Xn) is an independent identically
distributed sample, and after observing x, the likelihood function is defined by

L(θ) =
∏
i

f(xi,θ) (4.10)

In Eq. (4.10), L(θ) is viewed as a function of θ for the fixed value x. The max-
imum likelihood estimate, θ̂(x), is defined to be the value of θ that maximizes the
likelihood function.

When parametric models are applied to find solutions to real-world problems, the
question arises if this distribution adequately fits the sampled data. It is a matter
of determining the potential of a statistical model. A goodness-of-fit test is one way
of measuring the potential. The general test of fit is a test of the null-hypothesis

H0 : A random sample of n observations of X comes from F0(x,θ) (4.11)
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where F0(x,θ) is the hypothetical distribution under consideration.

Next, we consider tests based on the empirical cumulative density function. The
empirical cumulative density function (EDF) is a step function that estimates the
CDF that generated the observed data points. Suppose we have a random sample
X1, . . . , Xn drawn from a distribution with CDF FX . The EDF is defined by

F̂n(x) =


0 for x < X(1)
i
n for X(i) ≤ x < X(i+1), i = 1, . . . , n− 1

1 for x ≥ X(n)

(4.12)

where X(i) denotes the ith order statistic. An EDF statistic measures the discrep-
ancy between the EDF and a hypothetical distribution. A classic EDF statistic is
the Kolmogorov-Smirnov statistic defined by

D = sup
x

{
|F̂n(x)− F0(x,θ)|

}
(4.13)

and it measures the largest vertical difference between F̂n(x) and F0(x,θ). A
generally superior set of EDF statistics are based on the class of quadratic statistics
of the form (D’Agostino & Stephens 1986)

Q = n

∫
R

(
F̂n(x)− F0(x,θ)

)2
ω(x)dF0(x,θ) (4.14)

where ω(x) is a weight function. The Anderson-Darling (Anderson & Darling 1952)
statistic is obtained by choosing

ω(x) = (F0(x,θ)(1− F0(x,θ)))−1 (4.15)

For a further description of some of the ways to visualize statistics, see Paper D.

4.3 STATISTICAL OUTLIERS

While analyzing the individual sources that were listed in Tab. 4.1 and after making
comparisons, three data samples emerged which may be considered as statistical
outliers for reasons as follow. The three samples provided by Overend (2002) give
exceptionally high values for the bending strength of annealed glass. The tests
were carried out using the co-axial double ring bending device. A comparison of
all experiments using the same bending device is given in Fig. 4.1 in the form of
a boxplot. For an explanation of the boxplot including the meaning of the box,
whiskers, and symbols, see Paper D. The specimen thickness and test rig setup in
Overend (2002) is very similar to e.g. Simiu et al. (1984) and more or less identical
to Haldimann (2006). Both Overend (2002) and Haldimann (2006) conducted a
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series of 10 tests on 6 mm thick plates with loading and reaction ring diameters
of 51 mm and 127 mm. The failure loads reported in both references are similar
in range (about 2-10 kN) except for a single outlier at 17 kN in Overend (2002).
However, the recorded values for the deflection at fracture at the centre point differ
significantly between the sources, as though the specimens in Overend (2002) were
much less stiff for some reason. This might indicate an error in the measurements
by Overend (2002) since the recorded stiffness of glass is low. Seeing as the data in
Haldimann (2006) appears to agree generally with the rest of the available data, cf.
Fig. 4.1, it was decided to exclude from the analysis the data in Overend (2002).

4.4 ANALYSIS

The strength of monolithic panes of annealed float glass which are tested in ambient
conditions scatters much. The overall strength ranges from a little under 20 MPa
to well over 200 MPa. The strength may be separated according to the type
of bending device employed, cf. Fig. 4.2a. The strength in co-axial double ring
bending appears to be higher than in other types of bending. However, this effect
may not be statistically significant because it depends on a range of factors as was
already mentioned in Sec. 4.1. The value for the fracture stress may be further
analyzed with respect to the fracture origin type, i.e. edge or surface, cf. Fig. 4.2b.
The values included in Fig. 4.2b correspond to results that could be determined
uniquely as edge failures or surface failures, respectively. In the case of laterally
supported plates subjected to out-of-plane pressure, this means that there was
no ambiguity involved in the detection of the fracture origin mode. Sometimes,
there was a potential fracture origin at the edge and another one on the surface
simultaneously (Calderone 1999, Johar 1981, 1982). In the case of three and four-
point bending tests subjected to out-of-plane bending, this means that the edge
and surface failure origins were determined by the author who recorded these by
fractographic analysis. If no such fractographic analysis was performed, then the
test results were not included in Fig. 4.2b. In the case of three and four-point
bending tests subjected to in-plane bending, this means that it was assumed that all
failures originated from the edge. In the latter case, this is a simplifying assumption
because according to one study (Vandebroek et al. 2014), the fractographic analyses
of the beam specimens that failed due to in-plane loading revealed that in some
cases the fracture origin was located at one of the main surfaces. See Sec. 2.5.2
for a further discussion of this including details from the experiment conducted by
Vandebroek et al. (2014). In summary then, the extreme values do not necessarily
agree between the two boxplots in Fig. 4.2. It appears at first sight as though
the surface strength is greater than the edge strength. Again, however, this effect
may not be statistically significant due to the potentially confounding effect of the
various factors that are known to influence the recorded strength.
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Figure 4.1: Boxplot of the strength of annealed float glass in tests using the CDR
bending device. The data in Postigo (2010) was obtained from Huerta
et al. (2011). Comb=Combined data set.
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Detailed information about each experiment in Tab. 4.1 including an overview of
each sample is given in Kinsella (2018) which can be found in Paper D. In those
cases where the stress rate was constant, the fracture stress was normalized using
Brown’s (1972) Load Duration Theory. Most data samples were fitted by this
author to a normal, lognormal, and Weibull distribution and the probability plots
are available in Paper D. In these plots, the data points that correspond to edge
failures are identified with solid marks. In some cases, however, it was not recorded
if the failure occured at the edge or on the surface. Moreover, some data samples
were too small to admit a fitting to a standard distribution.
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Figure 4.2: On the left: Boxplot of the strength of annealed float glass in tests
divided according to the type of bending device employed. To the
right: Boxplot of the strength of annealed float glass in tests separated
according to the recorded type of fracture origin. Comb=Combined
data set.
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Strength prediction models and

design rules

Glass strength prediction models are numerous. A subset of the models are selected
and reviewed in the following. Tab. 5.1 provides a summary of the selection. The
models were selected either because 1) they were specifically devised with struc-
tural glass engineering in mind, or 2) because they are representative of a range
of similar models, the similarity having to do with fundamental assumptions such
as the way of representing individual flaws, or 3) they were influential and became
well-established. However, the review does not claim to be comprehensive. In fact,
there is no exhaustive and comprehensive overview of glass failure prediction models
that is up to date. Nevertheless, the following references do provide a useful back-
ground, viz. Haldimann (2006), Lamon (2016), Rinne (2009). Haldimann (2006)
provides some of the references to the strength models and moreover performs a
comparative analysis of the European and North American structural standards.
Lamon (2016) examines strength models for application on brittle materials in
general and considers statistical-probabilistic theories based on flaw size density as
well as flaw strength density. Following Lamon (2016), a distinction can be made
between models that are fundamentally based on the existence of flaws which de-
termine the strength in glass on one hand, and on the other hand models that
take a macroscopic or phenomenological approach to glass strength. Rinne (2009)
provides an in-depth treatment of the Weibull distribution.

In the sections that follow, the original notation is adopted so far as possible for the
sake of transparency and simplicity. In structural standards generally, the strength
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Table 5.1: Overview of glass strength prediction models selected for the review.
GFPM=Glass Failure Prediction Model of Beason (1980) and Beason
& Morgan (1984)

Flaw-based approach (microscopic) Phenomenological (macroscopic)

Matthews et al. (1976) Normal distribution
Batdorf & Crose (1974) Lognormal distribution
Weibull distribution (Weibull distribution)
De Jayatilaka & Trustrum (1977) GFPM
Gumbel distribution
Haldimann (2006)
Yankelevsky (2014)
Kinsella & Persson (2018b)

model is implemented and applied according to some design philosophy to come
up with a set of design rules.

5.1 STRENGTH MODELS

5.1.1 Normal and lognormal distributions

The normal distribution was employed early in e.g. Pilkington design charts as-
suming a coefficient of variation of 0.20 (Calderone 1999). A number of researchers
have recently either recommended to base failure predictions for glass on the nor-
mal or lognormal distributions or else called into question the superiority of the
Weibull distribution over the normal and lognormal distributions (Calderone et al.
2001, Huerta et al. 2011, Kinsella & Persson 2016, Lü 1997, Veer et al. 2009). The
normal distribution has the probability density function (Forbes et al. 2011)

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 (5.1)

where µ and σ2 refer to the mean and variance, respectively. If Y denotes a
normally distributed random variable, then

X = eY (5.2)

is lognormally distributed with the probability density function

f(x) =
1

x
√

2πσ2
e−

(lnx−µ)2

2σ2 (5.3)

In Eq. (5.3), µ and σ2 refer to the mean and variance of the corresponding normal
distribution, Eq. (5.1).
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The use of a normal distribution as a standard model for data is due to the Central
Limit Theorem (Beirlant et al. 2004) which states that averages of many samples
will tend to follow a normal distribution. By the same token, the lognormal distri-
bution would be a natural model for geometric means.

5.1.2 Gumbel distribution

The Gumbel extreme value distribution in the form of Eq. (5.4) is associated with
the minimum value among a large set of independent and identically distributed
random variables. The Gumbel distribution is the limiting distribution in the case
of sampling distributions which decay exponentially (Forbes et al. 2011). The
density function is

f(x) =
1

b
exp

(
x− a
b

)
exp

(
− exp

(
x− a
b

))
(5.4)

where a and b signify the location and scale parameters, respectively.

5.1.3 Weibull (1939)

The Weibull distribution can be expressed in the following way

Pf = 1− e−
(
σ
k

)m
(5.5)

where k and m are the scale and shape parameters, respectively. This is the
functional form that is adopted elsewhere, e.g. in Forbes et al. (2011), Rinne
(2009). However, note that in Weibull (1939), the distribution was introduced in
the following format, viz.

S = 1− e
−V

(
σ
σ0

)m
(5.6)

where S denotes the failure probability, V denotes the volume of material, and σ0

and m represent two parameters. Note also that Weibull used the letter k in the
following way, viz.

S = 1− e−V kσ
m

(5.7)

where k represents a parameter. In this thesis, we adopt the format in Eq. (5.5).

Weibull distribution from a phenomenological/macroscopic point of view

Weibull (1939) derived a fundamental equation for the failure probability of a brittle
isotropic material of volume V subject to uniaxial stress σ. The fundamental form
is expressed in

S = 1− e−B (5.8)
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where B denotes the risk function. The risk function is supposed to depend on the
uniaxial stress and the volume according to

B =

∫
n(σ) dv (5.9)

for some function n(σ). For a uniform stress field this amounts to

Pf = 1− e−V n(σ) (5.10)

where the frequently encountered notation Pf is used to signify the failure probabil-
ity. A convenient derivation of Eq. (5.10) which is mainly due to Freudenthal (1968)
is as follows. Let PS denote the survival probability. Supposing that the events of
survival of the non-overlapping volumes V and ∆V at stress σ are independent, it
follows that the joint survival probability is

PS(V + ∆V, σ) = PS(V, σ) · PS(∆V, σ) (5.11)

Taking the logarithms and dividing throughout by ∆V yields, after some rearrange-
ment

lnPS(V + ∆V, σ)− lnPS(V, σ)

∆V
=
PS(∆V, σ)

∆V
(5.12)

In Eq. (5.12), the right-hand side is independent of V and hence may be rewritten
as −n(σ) where it is understood that n(σ) = |n(σ)|. As ∆V → 0, the left-hand
side of Eq. (5.12) tends to d

dV lnPS(V, σ). Hence, after integration we obtain

lnPS(V, σ) = −V n(σ) (5.13)

which can be rewritten as
PS(V, σ) = e−V n(σ) (5.14)

Finally, the failure probability is given by Eq. (5.10). Weibull (Weibull 1939, ?)
postulated that n(σ) is a simple function such as

n(σ) = kσm (5.15)

which inserted into Eq. (5.14) yields Eq. (5.7). Alternatively, n(σ) can be expressed
as in

n(σ) =

(
σ

σ0

)m
(5.16)

which inserted into Eq. (5.14) yields Eq. (5.6). The standard two-parameter
Weibull distribution function, Eq. (5.5), with scale and shape parameters k and
m, is obtained e.g. from Eq. (5.6) by combining the volume factor V and the scale
factor σ0 into a single scale parameter.



5.1 Strength models 57

z

σn

x

y

ψ

φ

Figure 5.1: Solid angle in the unit sphere. One half-quadrant shown. Adapted
from Weibull (1939).

Weibull offered an expression for a polyaxial stress state if it is assumed that only
the normal component of stress contributes to failure. The normal stress component
in 3D is determined by the principal stresses σ1, σ2, and σ3, and is given by

σn = cos2 ϕ
(
σ1 cos2 ψ + σ2 sin2 ψ

)
+ σ3 sin2 ϕ (5.17)

where ϕ and ψ are angles in the unit sphere according to Fig. 5.1. The differential
solid angle, do, indicated in the figure is

do = cosϕdϕdψ (5.18)

Hence, the failure probability is

Pf (σ) = 1− e−
∫
V

∫
Ω n (σ(x, y, z)) cosϕdϕdψ dV (5.19)

where the integration domain Ω is over the part of surface of the unit sphere where
σ contributes to failure, i.e. where σ is tensile (Lamon 2016).

Weibull distribution from a flaw-based approach/microscopic point of view

The following derivation can be found in Lamon (2016) although it exists elsewhere
too. Suppose there is a flaw density function f(a) where a denotes the flaw size and
let ac denote the critical flaw size that prompts catastrophic failure in a differential
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volume element ∆V containing the flaw. The probability that the volume element
contains the critical flaw is

Pf (∆V, ac) = ∆V

∫ ∞
ac

f(a) da (5.20)

Assuming that the material of volume V is subdivided into a number N of non-
overlapping volumes ∆V , each of which fail independently of another, the weakest-
link principle gives that the global survival probability is

1− Pf (V, ac) =

(
1−∆V

∫ ∞
ac

f(a) da

)N
(5.21)

Substituting ∆V for V/N in Eq. (5.21) while comparing with the standard expres-
sion

lim
N→∞

(
1− x

N

)N
= e−x (5.22)

leads to the following expression for the survival probability

1− Pf (V, ac) = e
−V

∫∞
ac
f(a) da

(5.23)

It follows that the global failure probability is (Lamon 2016)

Pf (V, ac) = 1− e−V
∫∞
ac
f(a) da

(5.24)

Let f(a) be the density of a Pareto distributed random variable. Then, (Forbes
et al. 2011)

f(a) = cac0x
−(c+1) (5.25)

where a0 and c denote the scale and shape parameters, respectively. Substition of
Eq. (5.25) into Eq. (5.24) and integration yields

Pf (V, ac) = 1− e
−V

(
a0
ac

)c
(5.26)

In the case of a uniform uniaxial tensile stress, linear elastic fracture mechanics
dictates that the remote stress is inversely proportional to the square of the critical
crack size, cf. Eq. (2.5) to (2.7). By substituting for this in Eq. (5.26), an expression
emerges that is of identical form as the ordinary Weibull distribution, Eq. (5.5). It
is readily verified that

m = 2c (5.27)

and

k =
KIc

Y

√
πa0V

1
c

(5.28)
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5.1.4 Matthews et al. (1976)

Suppose there exists a flaw strength density function g(S) where S denotes the
strength such that g(S)dS is the number of flaws per unit area with a strength in
the range S to S+ dS. Then, by application of the postulates for a spatial Poisson
process,

∫ S1

0 g(S) dS represents the average number of flaws per unit area that give
a strength smaller than S1. See further about the Poisson process in Sec. 6.3.2.
Moreover, the probability that a flaw with strength smaller than S1 occurs in δA
is

δφ(S1) = δA

∫ S1

0
g(S) dS (5.29)

where δφ denotes the failure probability. By application of the weakest-link prin-
ciple and while assuming independence of flaws’ action, it is seen that the differen-
tial survival probability is

1− δφ(S1) = 1− δA
∫ S1

0
g(S) dS (5.30)

which can be approximated by

1− δφ(S1) = e−δA
∫ S1

0 g(S) dS (1 +O(δA2)
)

(5.31)

where O is the big-O Landau symbol (LeVeque 1977). Assuming that the total
area is divided into many small regions, i.e.

A = nδA (5.32)

it is found that the probability of global survival at stress Sm is

1− Φ(Sm) = e−nδA
∫ Sm

0 g(S) dS (1 + nO(δA2)
)

(5.33)

which can be rearranged, while noting Eq. (5.32), into

1− Φ(Sm) = e−A
∫ Sm

0 g(S) dS (1 +O(δA)) (5.34)

Hence,

lim
δA→0

1− Φ(Sm) = e−A
∫ Sm

0 g(S) dS (5.35)

and the global failure probability is

Pf (A,Sm) = 1− e−A
∫ Sm

0 g(S) dS (5.36)

Matthews et al. (1976) attempt to estimate the density function g(S) based on
experiments on plate and window glass, as well as other materials.
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5.1.5 Batdorf and Crose (1974)

It is assumed that there exists a flaw strength density function N(σcr) where the
subscript signifies the critical stress. The number of cracks in volume ∆V with a
strength between σcr and σcr + dσcr is

dN = ∆V
dN(σcr)

dσcr
dσcr (5.37)

Let Ω represent the solid angle containing the normals to all orientations of the
applied stress for which the component of stress normal to the crack plane, i.e. σn,
would prompt failure, i.e. all orientations for which σn > σcr. For a single crack
then, the probability of failure is

Pf =
Ω(Σ, σcr)

4π
(5.38)

where Σ denotes the applied stress state. Hence, the probability of failure in volume
∆V for stresses in the range σcr to σcr + dσcr is

Pf (∆V, dσcr) = ∆V
dN(σcr)

dσcr
dσcr

Ω(Σ, σcr)

4π
(5.39)

It is noted that the survival probability of a volume V in the same stress state is the
product of the probabilities of survival of each element ∆V . Then from Eq. (5.39),
after integrating over critical stresses and operating on the survival probability
instead of failure probability, we arrive at

PS(V,Σ) =

(
1−∆V

∫ ∞
0

Ω(Σ, σcr)

4π

dN(σcr)

dσcr
dσcr

) V
∆V

(5.40)

Eq. (5.40) can be rewritten in the limit by observing the standard relation

lim
h→0

(1 + xh)
1
h = ex (5.41)

so

PS(V,Σ) = e
−V

∫∞
0

Ω(Σ,σcr)
4π

dN(σcr)
dσcr

dσcr (5.42)

from which the failure probability valid for a uniform state of stress, is

Pf = 1− e−V
∫∞

0
Ω(Σ,σcr)

4π
dN(σcr)
dσcr

dσcr (5.43)

In the case of uniaxial tension, the solid angle Ω is given by two cones as illus-
trated in Fig. 5.2. In Fig. 5.2, θcr denotes the critical angle within which failure is
prompted.

Batdorf & Crose (1974) assumed that the flaw strength density function had a
lower bound σu. They approximated the density function by carrying out a Taylor
series expansion about the boundary value while maintaining only the first order
terms in the series.
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σ θcr

Figure 5.2: Solid angle represented by two cones in the case of uniaxial tension.
Adapted from Batdorf & Crose (1974).

5.1.6 De Jayatilaka and Trustrum (1977)

It is assumed that there exists a flaw size density function f(a). Through Hertzian
indentation fracture tests, it was proposed by Poloniecki & Wilshaw (1971) and
Poloniecki (1974) that f(a) can be closely fitted by an inverse gamma distribution

f(a) =
cn−1

(n− 2)!
a−ne−

c
a (5.44)

where c and n denote a pair of scale and shape parameters. De Jayatilaka &
Trustrum (1977) considered an inclined crack in a uniform uniaxial tensile stress
field and applied strain energy concepts to derive the critical crack size as function
of fracture toughness and applied stress. It was assumed that any crack angle is
equally likely. Then, the failure probability associated with a single crack at stress
σ is

F (σ) =

∫ ∞
K2

Ic
πσ2

(
1−

K2
Ic

πaσ2

)
f(a) da (5.45)

Supposing that there are N cracks, the probability of global failure is

Pf = 1− (1− F (σ))N (5.46)

which in the case of large N and small σ, i.e.

σ
√
πc

KIc
� 1 (5.47)
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leads to the following approximation

Pf ≈ 1− e−NF (σ) (5.48)

Based on Eq. (5.45) and Eq. (5.48), it can be shown that

Pf ≈ 1− e
−N cn−1

n!

(
πσ2

K2
Ic

)n−1

(5.49)

Since the number of cracks is proportional to the volume of material, Eq. (5.49)
can be reformulated as Eq. (5.6) with

m = 2n− 2 (5.50)

In such case, σ0 in Eq. (5.6) is a parameter dependent on n.

5.1.7 The GFPM

The socalled Glass Failure Prediction Model (GFPM) was first developed by Beason
(1980). It takes as its starting point the fundamental equation of Weibull (1939),
i.e. Eq. (5.8). It is proposed that the risk function B in Eq. (5.8) be taken as

B = k

∫ a

0

∫ b

0
(c(x, y)σ̃max(x, y))m dx dy (5.51)

which is valid for a rectangular plate of dimensions a and b. In Eq. (5.51), k
and m are the socalled surface flaw parameters, c is a correction factor for the
case of biaxial stresses, and σ̃max is the socalled maximum equivalent principal
tensile (MEPT) stress. In principle, the equivalent stress, σ̃, is obtained through
application of Brown’s (1972) Load Duration Theory in the form of Eq. (5.52), viz.

σ̃ =


∫ tf

0 RH
(
σ(t)
T

)n
e−

γ0

RT dt

trRHre
− γ0

RTr T−nr


1
n

(5.52)

In Eq. (5.52), tr, RHr, and Tr are the reference load duration, relative humidity,
and temperature. Moreover, n is Charles’ (1958b) stress corrosion parameter, the
value of which is supposed to equal 16. However, the special choice of equivalent
stress made in Beason (1980), is the constant stress of 60 second duration which
would have the same effect on a surface flaw as an arbitrary time-dependent stress
σ(t), i.e.

σ̃60 =

(∫ 60
0 σ(t)n dt

60

) 1
n

(5.53)
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The risk function B is integrated numerically in a particular procedure based on
a nonlinear plate analysis solution. The surface flaw parameters are subsequently
determined in a number of steps. In Beason & Morgan (1984), the method was
modified in significant ways. It incorporates the Vallabhan & Wang (1981) finite
difference plate solution to the von Karman nonlinear plate equations. The fail-
ure probability of a laterally supported plate subject to out-of-plane loading is
expressed in terms of the surface flaw parameters, k and m, and the load, q, in
a procedure as follows. The magnitudes of surface tensile stresses are calculated,
given the load q, and the maximum principal tensile stress is converted to equivalent
stress. The risk function is evaluated and the failure probability is determined. For
the estimation of the surface flaw parameters, an original method was developed.
It involves an iterative procedure in which the following property of the exponen-
tial distribution is exploited, viz. that the coefficient of variation equals to 1. The
iterative process involves calculating a set of socalled risk factors for a wide range
of assumed values of m. The optimal pair of surface flaw parameter values are
determined by choosing the value of m such that the coefficient of variation of the
risk factor is closest to 1, thus obeying the governing property of the underlying
exponential distribution. The value of k is subsequently calculated for it depends
on the value of m.

5.1.8 Haldimann (2006)

Haldimann (2006) presents the socalled Lifetime Prediction Model. It is assumed
that there exists a flaw size density function fa(a) which is supposed to be Pareto
distributed, i.e.

fa(a) = (r − 1)ar−1
0 a−r (5.54)

where a0 and r denote the scale and shape parameters, respectively. Hence, the
probability of failure for a single crack is

P
(1)
f,inert = 1−

∫ ac

0
fa(a) da (5.55)

where ac denotes the critical crack depth that prompts failure. Assuming the
existence of k flaws, the survival probability in inert conditions is

P
(k)
s,inert = (1− P (1)

f,inert)
k (5.56)

In Eq. (5.57), the global failure probability is expressed. It can be derived from
Eq. (5.56) by applying the Poisson postulates and by expressing the exponential
function as an infinite series.

Pf,inert = 1− e−M · P
(1)
f,inert (5.57)



64 5 Strength prediction models and design rules

In Eq. (5.57), M denotes the total number of flaws. Assume next that the crit-
ical crack depth ac is related to applied stress normal to the crack plane through
Eq. (5.58),

ac =

(
KIc

σnY
√
π

)2

(5.58)

where Y is the crack geometry factor. After substituting for Eq. (5.58) in Eq. (5.57),
it can be shown that

Pf,inert(σn) = 1− e−
(
σ
θ

)m0

(5.59)

which is valid for a uniform and uniaxial state of tensile stress. In Eq. (5.59),

m0 = 2r − 2 (5.60)

and

θ =
KIc

M
1
m0 Y
√
πa0

(5.61)

The socalled lifetime prediction model is obtained through extension to account
for subcritical crack growth. In this case, subcritical crack growth is modelled by
the ordinary differential equation

v =
da

dt
(5.62)

where v is given by Eq. (2.35). Assuming Eq. (5.62) to be valid over the whole
range of KI and that n in Eq. (2.35) is time-independent, it can be shown that
the inital depth of a crack that fails at time τ , i.e. ãc(τ), when exposed to stress
history σn(τ) acting normal to the crack plane, is

ãc(τ) =

((
σn(τ)Y

√
π

KIc

)n−2

+
n− 2

2
v0K

−n
Ic (Y

√
π)n

∫ τ

0
σnn(τ̃) dτ̃

) 2
2−n

(5.63)

The time-dependent failure probility of a single crack can then be shown to be

P
(1)
f (t) =

(
a0

minτ ãc(τ)

)m0
2

(5.64)

which substituted into Eq. (5.57) gives the time-dependent failure probability while
taking subcritical crack growth into account. The model can be extended to non-
uniform polyaxial stress states.

5.1.9 Yankelevsky (2014)

Yankelevsky (2014) assumes the existence of a flaw size distribution function of
exponential shape that can be expressed analogous to Mott’s law, i.e.

Nf

N0
= e
− δ
µ (5.65)
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where δ is the flaw size and Nf is the number of flaws that are larger than or equal
in size to δ. In Eq. (5.65), µ is a scaling parameter and N0 is the total number of
flaws. The parameter µ can be derived as

µ =
δmax

| lnN0|
(5.66)

because at δ = 0, Nf = N0, and at δ = δmax, Nf = 1. Hence, it is assumed that
there exists an upper bound on the flaw size. It is assumed that flaw size δ relates
to critical stress σc according to

KIc = 1.12σc
√
πδ (5.67)

A base sheet of glass of standard size is considered over which a population of flaws
are uniformly distributed in unit cells of 1 cm2 each. The flaw size in each cell is
sampled from the flaw size distribution which is similar to a truncated exponential
distribution, cf. Eq. (5.65). A plate is cut out from the base sheet and subjected
to loading. The resulting stress distribution is compared with the critical stresses
on the plate. A search method is conducted to detect the location and stress
magnitude at which the applied stress first reaches the critical stress. The procedure
is repeated in Monte Carlo simulations to obtain a large sample of fracture stress
and failure location.

5.1.10 Kinsella and Persson (2018b)

Based on the numerical method in Yankelevsky (2014), Kinsella & Persson (2018b)
develops a failure model for glass plates in co-axial double ring bending. Kinsella &
Persson (2018b) can also be found in Paper B. The plate surface area is subdivided
into 1 mm2 unit cells. Two types of representations for the surface flaw condition
are implemented based on a single population and a dual population of half-penny
shaped cracks which have a uniformly distributed crack plane orientation. The
single population was given a Pareto distributed flaw size. The dual population
comprised one Pareto and one Fréchet distribution of flaw sizes, each corresponding
to a large and a small flaws population concept, respectively. The relative frequency
of large flaws on a specimen were estimated based on the results from investigations
to reveal the flaw size density using image scanning techniques on a pair of soda-
lima silicate glass panes (Wereszczak et al. 2014). The Pareto flaws assumption was
based on the Hertzian fracture indentation tests by Poloniecki & Wilshaw (1971)
and Poloniecki (1974). The number of small flaws in any unit cell was assumed
to be numerous thus motivating the Fréchet flaws assumption as follows. It is
supposed that the fracture mechanical behaviour in a unit cell due to the small
flaws population is governed by the largest small flaw. Assuming that the small
flaws population has a Pareto size distibution, the limiting distribution for the
largest small flaw would be Fréchet according to extreme value theory.
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Three different fracture criteria were employed and compared based on the sim-
ulated strength and fracture location distributions. The model was calibrated to
data from an experiment with the double ring bending device conducted by Simiu
et al. (1984).

5.2 DESIGN RULES

5.2.1 prEN 16612:2017

The prEN 16612:2017 gives a method for determining the strength of linearly sup-
ported glass elements due to lateral loading. The method given is a draft in com-
pliance with EN 1990: Basis of structural design. The design value of bending
strength for annealed glass is

fg;d =
kekmodkspfg;k

γM ;A
(5.68)

where fg;k is the characteristic, i.e. 5%-fractile, value in the distribution of bending
strength, viz. 45 MPa. This value was determined by fitting a two-parameter
Weibull distribution to co-axial double ring bending test results of 741 panes of 6
mm float glass. The tests were carried out according to EN 1288-2. In Eq. (5.68),
γM ;A is the material partial factor and for annealed glass in the ultimate limit
state it equals to 1.8. With γM ;A = 1.8, the characteristic bending strength is
reduced from 45 MPa to 25 MPa which agrees with the 0.0005%-fractile in the
strength distribution of predamaged glass according to experiments with the co-
axial double ring bending device carried out by Blank. prEN 16612:2017 does
not provide a more detailed reference to Blank except for the following document:
CEN/TC129/WG8-N88E. This author was unable to obtain a copy of the said
document. In Eq. (5.68), ksp is the factor for the glass surface profile and it
depends on the surface condition. For as-produced float glass its value equals to
1.0 while for sandblasted glass, e.g., it is 0.6. In Eq. (5.68), kmod is the factor for
load duration according to

kmod = 0.663t−
1
16 (5.69)

where t is the load duration in hours. However, 0.25 ≤ kmod ≤ 1.0 for normal
building loads and 0.25 ≤ kmod ≤ 1.1 for exceptional loads of very short duration,
e.g. explosions. The factor for the load duration is based on the formula

σnT = constant (5.70)

where T is the duration of stress and n = 16. Hence, in applying Eq. (5.69) it
is assumed that the long-term strength is no smaller than 25% of the short-term
strength where “short-term” is 83 ms. Moreover, Eq. (5.69) is assumed to be valid
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for load durations down to 20 ms. However, according to a list of pre-calculated
values of kmod provided in a table, the word “short-term” can be assumed to apply
to load durations of 5 sec or less which would be representative of wind gust actions.
Furthermore, seeing as the long-term strength is no smaller than 25% of the short-
term strength, it is implied that the threshold limit value for stress corrosion is 25%
of the short-term strength. However, the threshold limit value for stress corrosion,
cf. Sec. 2.5.3, is otherwise usually represented in terms of the stress intensity factor.

In Eq. (5.68), ke is the reduction factor for edge bending strength which considers
that the edge strength is less than the surface strength. For float glass, the value
of ke ranges between 0.8-1.0 and depends on the edge processing method, viz. as-
cut, arrised, ground, polished, and on the abrasive action, viz. across the edge or
along the length of the edge. Notably, the polished edge corresponds to ke = 1.0.
Finally, the maximum bending stress calculated for the design load shall not exceed
the design value for the bending strength, i.e.

σmax ≤ fg;d (5.71)





6
Discussion of strength models

The strength prediction of a glass structure is a complex task which may depend
on a range of theories and techniques. Fig. 6.1 presents an overview of the models
involved in this discussion including some references. The shaded gray box in
Fig. 6.1 corresponds to models that implement stress corrosion theory. This chapter
contains a comparative discussion of the benefits and drawbacks of various strength
models some of which were covered in Chap. 5. The strength models are generally
divided into those that take a phenomenological approach towards failure at the
macroscopic level, and those that assume the preexistence of material flaws at the
microscopic level from which failure is derived. In the latter case the models can
be separated into those with a flaw size approach and those with an elemental
strength approach. The flaw size approach depends on a more or less rigorous
representation of the surface flaws in terms of a flaw size distribution, a flaw shape,
and an orientation of the flaw in the plane. The elemental strength approach
does not depend on a direct representation of the flaw geometry. Instead, it is
based on the isotropic material resistance to uniaxial tension. As indicated in
Fig. 6.1, there are also flaw-based models that position themselves in between
the flaw size approach and the elemental strength approach. Sec. 6.2 contains a
discussion of the models with a macroscopic/phenomenological approach towards
failure while Sec. 6.3 contains a discussion of the models with a microscopic/flaw-
based approach. In Sec. 6.1, the Weibull distribution is given a separate treatment
due to the central position it takes in glass strength modelling at present. Strictly
speaking, the Weibull distribution can be associated with both a macroscopic and
a microscopic approach towards failure. Much of what is said about the Weibull
distribution in Sec. 6.1 would however fit into Sec. 6.3. There is a vast amount of
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literature that considers the Weibull distribution for application on glass. Sec. 6.4
and 6.5 consider aspects of the treatment of edge and surface failure origins in
the strength modelling, and the dealing with stress corrosion. Sec. 6.6 contains a
discussion of the sources of error that may be involved when glass strength data is
considered.

6.1 THE WEIBULL MODEL

In the literature on glass, the Weibull distribution is the most commonly employed
model for the fracture stress obtained in test results. The Weibull distribution
has descriptive virtue (Weibull 1959). According to a recent survey (Rinne 2009),
there are a great number of papers and monographs that demonstrate the successful
application of the Weibull model in some 180 distinct topics that encompass nearly
all scientific disciplines. However, the descriptive virtue can become a liability when
the sample sizes are small because the Weibull model maintains its flexibility all
the same; in such case, the better fitting means nothing (Danzer et al. 2001). The
are multiple explanations for this. According to Danzer (1994), the size difference
between the smallest and the largest critical defect is expected to be small for a
data set of limited size, e.g. 30 specimens. Fig. 6.2 illustrates the part of the flaw
size distribution that is probed with a small sample. In Fig. 6.2, g(a) denotes the
flaw size density function whose graph corresponds to a multimodal distribution.
Considering this multimodal shape and the limited range of flaw size that is probed,
Danzer (1994) makes the following remark: “Over a small interval, g(a) can always
be approximated by a power law. This explains the good description of small sets of
data by the Weibull distribution.” This may be related to the findings in Kinsella
et al. (2018) where the standard distributions including the Weibull distribution
were fitted to samples of varying minimum size. Kinsella et al. (2018) can be found
in Paper A. It was found that when the minimum sample size was small, then it
was impossible to properly judge the performance of the Weibull distribution.

Errors can emerge when making extrapolations from a limited data set with the
Weibull model. This poses a challenge to the way that design rules are set up. In
the case of prEN 16612:2017, the value of the factor for the load duration, kmod,
depends on extrapolating data results into a smaller probability domain. However,
as the authors of the draft standard admit: “Attempts to analyse the distribution of
results as a two-parameter Weibull distribution to obtain an estimate of the stress
at a probability level around 1 x 10−4 lead to values much lower than are viable for
glass design.” This is a testimony to the fact that even though the Weibull model
has descriptive virtue, it is not a model with great enough potential to be used while
setting up design rules. This conclusion is emphasized by the fact that the data
sample analysed by the authors of the draft comprised some 741 specimens which
represents a particularly large data sample in this research field. It can therefore be
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Figure 6.1: Overview of strength models.
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Figure 6.2: Sketch of a bimodal flaw size density function (solid curve) superposed
by two different flaw population densities (dashed lines). The shaded
area represents the probability range probed by a small sample of
measurements. Adapted from Danzer (1994).

said, that the Weibull distribution has limited predictive capacity for glass strength.
The multimodal behaviour of the strength distribution is clearly indicated when the
draft authors conclude that extrapolations are not viable. In an effort to remedy
this, some researchers have attempted to employ another Weibull distribution in
the high reliability domain, i.e. low probabilities of failure, the distribution of
which was fitted to glass specimens with artificially induced flaws. The artificial
damage was performed by e.g. dropping sand particles onto the glass surface from a
predefined height (Blank 1993). However, it remains to be demonstrated that such
artificially treated glass properly represents the condition of the surface in the low
probability domain. If the low probability domain is thought of as corresponding
to the state of the surface when it is used and weathered, then there is definitely a
need for more empirical data on the strength of glass which has been subjected to
in-service conditions. The importance of this has been emphasized before, e.g. in
Dalgliesh & Taylor (1990). The practical issues involved in gaining access to used
glass in buildings can be an obstacle towards acquiring specimens of glass from
in-service conditions.

Given a data set of N observations of the strength, the estimate of the failure
probability for a specimen can be based on its rank n as follows, see also Paper D.

P = 1−
n− 1

2

N
(6.1)

The value of P in Eq. (6.1) ranges from (2N − 1)/2N for the specimen with the
smallest defect, to 1/2N for the specimen with the largest defect (Danzer 1992).
These values are located along the ordinate in a probability plot. Hence, the
number of specimens required to probe the strength value at the probability level
1 · 10−4 amounts to 5000. This is obviously not a practicable number of tests to be
performed.
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Figure 6.3: Sketch of the probability plot for three sets of specimens with dif-
ferent size. The shaded area corresponds to the probability range
probed with a given number of specimens. Adapted from Danzer
et al. (2001).

Rather than to increase the sample size, Danzer et al. (2007) proposes to test spe-
cimens of varying sizes as a means for appraising the nonlinearity in the strength
distribution. In this way, it may be feasible to probe a greater range of the un-
derlying flaw size distribution. See also Fig. 6.3 which contains a sketch of three
bimodal strength distributions. Suppose that you probe the probability range with
N specimens corresponding to the shaded region in the figure. By employing three
different sizes of surface area, it would be possible to detect a greater portion of
the total curve. This could offer a more economical way of appraising the strength
distribution than to carry out large sample experiments. According to Danzer et al.
(2001), there is a “great chance to discover multimodal structure in the distribution
by choosing at least five samples of 30 specimens or more which cover a volume
range of several orders of magnitude.” Danzer et al. (2001) speaks here in terms
of volume of material, however, the line of reasoning is applicable to surface area
as well.

What is the minimum sample size necessary to obtain reliable information on the
distribution of strength in glass? And furthermore, under which conditions can
extrapolations be made safely? Danzer et al. (2001) sample artificial Weibull dis-
tributions in Monte Carlo simulations in an attempt to answer these questions. To
begin with, it is found that statistical artefacts arise in the probability plots, the
artefacts of which can be misinterpreted as e.g. bimodalities. In fact, when the
sample size is small, e.g. 30 specimens, it is hardly possible to distinguish real
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structures in the distribution from artefacts. This pertains to e.g. “bends” in the
tails of the probability plot. The origin of artefacts involves the frequent grouping
or “lumping” together of some ranked observations while other data points con-
sequently become more separated. All of this further complicates the analysis of
the fracture data. It means, for instance, that if a researcher claims to have de-
tected a nonlinearity in the strength distribution based on the Weibull probability
plot, and the sample size is limited, then it cannot be ruled out that it is simply a
statistical artefact. This insight might cast into doubt a range of analyses of glass
fracture data made by various researchers. The strength distribution is most surely
nonlinear, so making a claim to that end is not controversial. It is the evidence
put forward in support of such a claim that may be suspicious when the sample
size comprises only some 30-50 specimens.

What attitude should we adopt towards the Weibull model? There are multiple
reasons to be sceptical of its potential as a strength model for glass as has been
mentioned already, e.g. due to its limited capacity for prediction-making. If one
suspects that glass failure is influenced by the presence of shear stress such as
Reid (2007) suggests, then one has another reason to object to the Weibull model
because with this model it is assumed that fracture is independent of shear stress.
Objections to the Weibull model from the point of view of other subject areas
exist too, e.g. a critique in terms of reliability analysis can be found in Robins
(1962). The most blunt critique of the application of the ordinary Weibull model
was probably delivered by Gorski (1969) who had to say the following under the
heading “Beware of the Weibull Euphoria”: “The unpretentious freehand curve
fitting exceeds the usefulness of the Weibull function if only because the freehand
curve is taken at its face value.” Gorski (1969) may be correct about the ultimate
lack of utility of the Weibull model in some cases, however, he is unaware of the
logical basis for the application of the Weibull distribution to model brittle material
fracture in general and glass fracture in particular. For the sake of this logical basis
which we shall now consider, it is not easy to dismiss the Weibull model.

There have been experiments conducted to detect the surface flaw size density in
glass using methods of Hertzian indentation fracture. The empirical density func-
tion is given in Eq. (5.44) and is furthermore similar to a Pareto distribution in
the tail. In fact, the Weibull functional form was derived by De Jayatilaka & Trus-
trum (1977) based on Eq. (5.44). Hence, a strong case can be made for applying
the Weibull distribution to model glass strength, at least when the stress state is
uniform and uniaxial at each flaw. Compared to the normal and lognormal distri-
butions, there is no similar failure-based logic in favour. The normal distribution is
associated with the average of a large set of identically and independently distrib-
uted random variables as expressed in the Central Limit Theorem. By the same
token, the lognormal distribution can be associated with the geometrical mean
value.
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6.2 MACROSCOPIC/PHENOMENOLOGICAL
APPROACHES

Strength prediction models are generally of the macroscopic/phenomenological
type, or the microscopic/flaw-based failure type. The first category includes the
application of various standard statistical distributions such as the normal and
Weibull distributions. As a matter of fact, the Weibull distribution as it was con-
ceived by Weibull (1939), is phenomenological because it depends on a heuristical
argument for the functional form of the socalled “risk function”, see Eq. (5.8)
(Gumbel 1954). Eq. (5.8), however, is logical and depends solely on statistical ar-
guments, viz. the subdivision of a material body into non-interacting regions with
independent probabilities of failure and the application of a weakest-link principle.
Alternatively, there is a complete analogy here with a homogeneous spatial Poisson
process with random sized events, see further Sec. 6.3.2. Nevertheless, the benefit
with the macroscopic/phenomenological approach is the simplicity in the model
fitting, for which there is usually a standard procedure, e.g. using the maximum
likelihood method, cf. Sec. 4.2.

In the literature on glass, there emerges mainly three standard statistical distribu-
tions for use with glass, viz. the normal, the lognormal, and the Weibull distribu-
tions. These models were analyzed and compared with respect to their perfomance
based on a survey of the empirical data for the strength which is available in the
open literature, cf. Kinsella et al. (2018) and Kinsella (2018) which can also be
found in Paper A and D. According to the survey, most of the data on the strength
of glass pertains to the edge type of fracture origin. This is so because the most
common type of testing device employed was the four-point bending device with
in-plane loading. This testing device naturally promotes edge fractures. It was
found that when the failure is restricted to the edge, then the Weibull distribution
outperforms the normal and lognormal distributions as a model for the strength.
When the failure is restricted to the surface of the glass, however, there was no
standard distribution that was capable of modelling the strength.

In the course of analysis by Kinsella et al. (2018), the Gumbel distribution emerged
as an interesting object to study because it is the extreme value distribution as-
sociated with a whole range of standard-type distributions which lie in its domain
of attraction, including the exponential, normal and lognormal distributions. If
Yankelevsky (2014), Pathirana et al. (2017), and Osnes, Børvik & Hopperstad
(2018a), Osnes, Hopperstad & Børvik (2018), who model glass failure, are essen-
tially correct in their respective approaches towards the underlying flaw size dis-
tribution, with it having a density that decays exponentially, then it may indeed
be warranted to consider the Gumbel distribution as a model for glass strength,
at least for a uniform uniaxial state of stress at each flaw with a unimodal flaw
population. However, the data does not favour with a Gumbel distribution for the
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surface strength. Hence, there is an empirically based objection raised against the
aforementioned authors’ assumptions about flaw size distribution in glass when a
unimodal flaw population is considered. Nevertheless, when the edge strength of
glass is examined, the empirical data shows that both the extreme value Weibull
and Gumbel distributions perform better than the normal and lognormal models,
although it is indicated that the Weibull model is the best of them all (Kinsella
et al. 2018), see Paper A.

In spite of the convenience of the standard distributions, there are serious objections
that can be raised against their application to model glass fracture. Bearing in
mind that these distributions generally do not perform satisfactory, one might
agree with Lamon (2016) who says that they focus on the symptoms instead of
the causes of fracture. In fact, the physical processes underlying fracture as we
know it, including the presence of microcracks of stochastic nature which prompt
failure (Griffith 1920), become masked and concealed when applying a standard
statistical distribution. For instance, there can be no notion of size effects in glass
with the normal and lognormal distributions. But, should the failure phenomenon
not be represented in a rigorous strength prediction model? The mere simplicity
and convenience of standard models of the macroscopic/phenomenological type
should not be exploited as an argument for their utility, when the performance is
poor; and testimony to the latter may be found in multiple references, among them
Veer et al. (2009) and prEN 16612:2017. Hence, we should abandon the standard
statistical distributions as potential models for use with glass and focus our efforts
instead on more rigorous kinds of approach.

The Glass Failure Prediction Model (GFPM)

The GFPM can be located among the macroscopic/phenomenological models.
While the adoption of the fundamental Eq. (5.8) is stringent, the particular se-
lection and further treatment of the socalled risk function is heuristical. Fracture
in glass is said to depend on the existence of surface microcracks and it is assumed
that a biaxial stress correction factor can be applied to account for random crack
plane orientations. More specifically, an equivalent stress is calculated “which acts
normal to the axis of a flaw” (Beason 1980). But as a matter of fact, the GFPM
does not directly deploy a flaw size density function nor an elemental strength
distribution. The GFPM relies on a sophisticated procedure for the estimation of
the socalled surface flaw parameters which unfortunately cannot be measured dir-
ectly at present. In what sense then, do the surface flaw parameters represent the
surface flaws? The relationship between surface flaws and surface flaw parameters
is obscured by the complexity inherent in the method. The unit of the surface
flaw parameter which is denoted by k depends on the value for m and hence var-
ies from one model fit to another. For instance, with the Dallas glass plates that
were extracted from the Johnson Chevrolet Building and subsequently analyzed
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by Beason (1980), the value of k including its unit was estimated at 3.01 · 10−15

mm10 N−6 (Beason & Morgan 1984). The surface flaw parameters appear to be
intricate and the question is whether the sophisticated procedure involved in their
estimation is warranted? Another question is whether the biaxial correction factor
used by Beason (1980) is suitable? See Haldimann (2006) for a discussion of this.
Haldimann (2006) also performs a thorough comparison of the ASTM E-1300 with
the various European counterparts including the prEN 13474 which is an early ver-
sion of prEN 16612. Note that the GFPM was implemented in the ASTM E-1300.
Further points of critique include the following: It might not seem consistent to
adopt an equivalent load level for an entire plate and the surface flaw parameter
which is usually denoted by m is assumed to be time-independent which is hardly
realistic (Reid 1991).

6.3 MICROSCOPIC/FLAW-BASED FAILURE
APPROACHES

What remain to be considered are various types of models that are based on some
concept which takes into account the microscopic aspect of brittle material fail-
ure, by assuming the existence of flaws which are understood to be real physical
entities that are operated upon by stresses. We are able to distinguish between
two approaches that have been termed the elemental strength approach, and the
flaw size approach, respectively (Lamon 2016). In between, we find the Batdorf
& Crose (1974) model that incorporates parts of both approaches. In Pisano &
Royer-Carfagni (2017) and Bonati et al. (2018), the Batdorf & Crose (1974) model
was adapted to incorporate a left-truncated flaw size distribution and a dual flaw
population concept.

6.3.1 Elemental strength approach

The elemental strength approach supposes that fracture is governed by the exist-
ence of microscopic flaws in the material. However, no specific representation of
the flaws’ geometry is necessary, nor is it needed to directly represent crack plane
orientations. The material strength is based on the elemental strength distribu-
tion which represents the isotropic material resistance to uniaxial tension (Lamon
2016), see Fig. 6.4 for an illustration. As a representative of this class of model, we
have the Matthews et al. (1976) model. The main issue with this class of model is
how to properly deal with failure when it is supposed that the elemental strength
is dependent on a multiaxial state of stress. The elemental strength corresponds
to a density function g(S), where S denotes the elemental strength. But, S is a
scalar and hence the orientation of S with respect to the stress field is ignored. A
usual way to deal with this is to calculate an equivalent normal stress which is then
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Figure 6.4: Material flaws with corresponding uniaxial elemental strengths. Ad-
apted from Lamon (2016).

compared with the uniform uniaxial resistance. This is, for instance, done in the
principle of independent action of stresses, which by the way is a rough approxim-
ation, see Lamon (2016) and Rufin et al. (1984). However, there are different ideas
for how to properly represent the equivalent normal stress which lead to different
results. There appears to be no consensus on this, see e.g. Lamon (2016) for a
recent discussion.

Can the stress state be neglected for glass? It is sometimes assumed that flaws in
glass are always oriented perpendicular to the maximum in-plane principal tensile
stress on the grounds that this is conservative for design purposes. So far, the
literature says that glass is stronger in uniaxial tension than in biaxial stress, see
Haldimann (2006) for a discussion of this. This result is logical if it is assumed that
the flaws are oriented randomly in the plane. In a future project, the data that
was surveyed as part of this research project might be used to further investigate
the strength dependence on the stress state, cf. Sec. 4 and Paper D.

The advantage of the elemental strength approach compared to the flaw size ap-
proach is that the former more readily conforms to the kind of information that
is acquired from experimental tests on glass which measure the fracture stress.
In other words, when the strength is measured experimentally, it is actually the
strength due to some stress state that is measured. Hypothetical cracks with a size
and crack plane orientation are not directly measured with common test setups,
although these entities may be inferred from the fracture stress data based on
fracture mechanical concepts.

Veer (2007) developed a rudimentary model for the edge strength of glass based
on two superposed flaw strength distributions with normally distributed elemental
strengths. The concept was based on test results from plates which were machine
cut and ground, measuring 1000x125x10 mm3, and subjected to in-plane four-point
bending tests. Veer (2007) selected a subset of the data sample which he associated
with one type of defect denoted Q and which was supposed to occur once in every
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two meters of edge length with a mean failure stress of 30 MPa and a coefficient of
variation of 7 %. The other type of defect denoted N, had a frequency of once in
every millimeter with a mean failure stress of 60 MPa and a coefficient of variation
of 12%.

6.3.2 Flaw size approach

The flaw size approach assumes an explicit representation of the flaws so that they
are given a shape as well as an orientation of the crack plane with respect to the
stress field. Hence, if the flaws have different orientations with respect to a given
uniaxial stress state, then some flaws will be severe, while others are innocous and
yet others are intermediate, cf. Fig. 6.5. Interestingly, the Weibull distribution is an
example of a strength model that can be deductively derived based on the flaw size
approach as was demonstrated by e.g. Freudenthal (1968), see Sec. 5.1.3. However,
such closed form expressions as Eq. (5.5) are available only for uniform uniaxial
stress states over the cracks where it is assumed that the crack plane orientations are
normal to the stress. Recently, the flaw size approach has gained in popularity as
numerical techniques have been employed to model brittle fracture in Monte Carlo
simulations with Griffith flaws, see e.g. Kinsella & Persson (2018a,b), Osnes, Børvik
& Hopperstad (2018b), Pathirana et al. (2017), Yankelevsky (2014), Yankelevsky
et al. (2017). A major objection to this approach is the limited information which
is available today on the surface condition in glass. The glass surface condition
has been probed by means of Hertzian indentation fracture methods in the past
(Poloniecki 1974, Poloniecki & Wilshaw 1971) and recently by using image scanning
techniques (Wereszczak et al. 2014). In the case of the Hertzian indentation fracture
method, it is destructive and requires a large number of tests and involves much
time and effort. With the image scanning techniques on the other hand and to
this date, it has not been demonstrated that these are capable of detecting all
pertinent flaws. There is for instance the issue of optically closed crack surfaces
(Mencik 1992). With regards the image scanning techniques, the question emerges
as how to define the flaw size (Lamon 2016)? In fact, flaws can appear to have
curved shapes and the diameter was used as a simple metric in one experimental
investigation (Wereszczak et al. 2014). However, it is not self-evident that this is
the proper metric. And what would the hypothetical crack plane orientation be?
These are some of the issues facing the flaw size approach. Hence, methods for
measuring the surface flaws would be beneficial for the flaw size theory approach.

De Jayatilaka & Trustrum (1977)

The model proposed in De Jayatilaka & Trustrum (1977) and which is based on
strain energy considerations for the fracture criterion, gives some justification for
the Weibull distribution as a model for glass strength because it is derived from an
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Figure 6.5: Inclined cracks in a uniaxial stress field. Due to the variation in crack
plane orientation, some cracks become severe while others remain
innocuous. Adapted from Lamon (2016).

empirical flaw size density function, Eq. (5.44). It also provides physical meaning to
the Weibull shape parameter which is directly related to the shape of the flaw size
distribution according to Eq. (5.50). However, flaw size may not in general be dis-
tributed according to Eq. (5.44). In a subsequent paper, Trustrum & De Jayatilaka
(1983) investigated the ramifications of assuming flaw size distributions other than
the empirical one in Eq. (5.44). It was shown that the Pareto, Cauchy, t, and F
distributions, result in a Weibull distribution for the strength. The resulting shape
parameter is given by Eq. (5.50) when the flaw size density f(a) ∝ κa−n where
n is the shape parameter in the flaw size distribution and κ is a constant. How-
ever, assuming that the flaw size distribution is governed by a normal, lognormal,
exponential, gamma, or χ2 distribution results instead in a Gumbel distribution
for the strength. The results in Trustrum & De Jayatilaka (1983) are based on
a theorem that contains the sufficient conditions for the convergence of the min-
imum of a set of identically and independently distributed random variables to a
given limit distribution. The results can also be found in standard textbooks on
extreme value theory, see e.g. Beirlant et al. (2004). The conclusion is that if the
flaw size distribution decays like a−n for large a, then the Weibull distribution is
justified. This is what is meant when Trustrum & De Jayatilaka (1983) write that
“the distribution of failure stress is insensitive to the flaw size distribution.”

The Lifetime Prediction Model

The Lifetime Prediction model that was advanced in Haldimann (2006), incor-
porates subcritical crack growth but neglects the crack growth threshold limit, cf.
Sec. 2.5.3. The model is extended to multiaxial states of stress, however, this exten-
sion suffers from the same drawbacks as the Weibull multiaxial model, Eq. (5.19).
The derivation of the Lifetime Prediction Model is based on the Poisson postu-
lates which are also referenced as a basis in Matthews et al. (1976). However,
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Table 6.1: Analogy between the fundamental form, Eq. (5.8), and a spatial Pois-
son process. Adapted from Mesarovic et al. (1992).

Homogeneous spatial Poisson process
with random sized events

Derivation of Eq. (5.8)

Homogeneous increments with
mean occurrence rate λ

A constant flaw density

Independent increments
Subdivision of material into linked
regions with independent strengths

No simultaneous occurrences
Each subdivided region contains
one flaw only

For small volume increment ∆V ,
the probability of an occurrence
is λV

No flaw interaction

The distribution of random sized
events is the same for all events

All subdivided regions have
the same strength distribution

neither Haldimann (2006) nor Matthews et al. (1976) explain the background to or
motivation for involving a Poisson process. According to Mesarovic et al. (1992),
there is a complete analogy between the assumptions that result in the funda-
mental Eq. (5.8), and the assumptions of a homogeneous spatial Poisson process
for flaw occurrence with random sized events. Given the relationship between a
crack in terms of its shape, and the mode I SIF, see e.g. Eq. (2.12), the spatial
Poisson process of crack occurrences induces a Poisson process of KI-occurrences.
The complete analogy was laid out by Mesarovic et al. (1992) and is summarized
in Tab. 6.1. For its implementation, the Lifetime Prediction Model is dependent
on the determination of two socalled surface condition parameters, as well as two
crack growth velocity paramaters, and the geometry factor that corresponds to the
supposed crack shape. Compared to the GFPM, the latter does not depend on an
explicit representation of flaw shapes, as is the case with the Lifetime prediction
model. Moreover, to determine the surface condition parameters stringently is a
challenge. The estimates for the crack velocity parameter that is usually denoted
v0 vary a lot, see Sec. 6.5. Compared with the GFPM, the latter has the benefit of
not depending directly on the value for v0 because the GFPM treats the effect of
stress corrosion differently. In the GFPM, the stress is normalized with respect to
an equivalent constant stress of standard duration, e.g. 3 s or 60 s, the equivalent
stress of which would have produced the same amount of corrosion as the actual
stress. In the Lifetime Prediction Model, the subcritical crack growth is imple-
mented rigorously through employment of the crack growth velocity parameter v0.
So far, the Lifetime Prediction Model has not been implemented in any structural
standards. Finally, notice that the definition of the Pareto distribution which was
employed in Sec. 5.1.8 is different from the definition introduced in Sec. 5.1.3 insofar
as r = c+ 1.
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Is the flaw size approach viable?

The question is whether the attempt to represent the surface flaws condition is
too demanding? Given the lack of methods and techniques by which to effectively
probe the surface condition, it is hardly possible to represent the flaws with the sort
of realism that is involved in the flaw size approach, i.e. representing the crack size
and shape, the crack location on the surface, and the crack plane orientation. What
can be done is of course to attempt to find a representation that performs well in
a strength model. But which representation would that be? There are already a
multitude of representations proposed for use with glass. Just consider the flaw
size representations in various strength models. Yankelevsky (2014) proposes to
use a sort of truncated exponential distribution for the flaw size. Pathirana et al.
(2017) assumes lognormally distributed flaw sizes. Kinsella & Persson (2018b),
see Paper B, assumes both Pareto and Fréchet distributed flaw sizes. There is an
element of speculation involved in this type of modelling and it is the flaw size
approach in combination with the lack of knowledge of the surface condition that
is conducive to this.

Perhaps then, it is best to abandon the flaw size approach? At least the Pareto
distribution has the merit of being supported by experiments that detect flaw size
distribution in glass (Tandon et al. 2013). Nevertheless, a Pareto-type distribution
may be easy to fit to a limited range of the flaw size domain, as was demonstrated
by Danzer et al. (2001). It may then be naive to employ a Pareto distribution for
the whole range of flaw size. As a matter of fact, the fitting of a Weibull distribution
to glass fracture data on the grounds that there is thus a logical failure-mechanical
basis, logically implies a Pareto distribution for the whole tail in the flaw size
range. Moreover, with the ordinary Weibull distribution, a uniform uniaxial stress
state over the cracks with mode I crack opening is implicit. In this case then, the
models in Kinsella & Persson (2018a,b), Paper B and C, although assuming Pareto
flaw sizes, are at least not so simplistic in the treatment of the stress state and
crack plane orientations as would be the case with the casual fitting of an ordinary
Weibull distribution. In Kinsella & Persson (2018a,b), Paper B and C, the proper
stress state is accounted for and random crack plane orientations are considered.
But how should crack plane orientation be distributed? Again, there may be an
element of speculation involved in the models. Assuming that there is no tendency
for the flaws to be oriented in any particular direction, it is reasonable to assume
a uniform spatial distribution. However, for various reasons flaws may tend to be
oriented in certain directions. For instance, the production method which involves
transportation on rollers and edge processing may promote flaws with a certain
orientation.
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6.4 EDGE AND SURFACE FAILURE ORIGINS

The structural standards, e.g. the draft prEN 16612:2017 which de facto is used
by structural engineers today, see e.g. Vasilchenko-Malishev & Chesnokov (2018),
and DIN 18008-1:2010, apply different representations for the strength depending
on whether the strength design considers the surface or the edge. The question
is whether data from edge failures can be safely combined with data from surface
failure origins? Or is a special treatment warranted when mixed failure origins are
present in the data sample? According to the study that was performed on the
performance of standard statistical distributions for modelling the strength of glass,
cf. Kinsella et al. (2018) which can also be found in Paper A, there is a fundamental
difference between the surface condition and edge condition in glass. The study was
based on a large collection of experimental test results. The results showed that
none of the standard statistical distributions in consideration were able to properly
model the surface strength. Hence, it is not self-evident that edge and surface
failure data can be combined in an analysis of the strength. Moreover, the edge
length and surface area of a given specimen do not scale uniformly, indicating that
size effects might not be treated properly when combining edge and surface failure
data. In fact, size effects have generally not been examined in this thesis although
this is an important topic. Moreover, the distribution of edge strength may depend
significantly on the edge treatment in question. This was not directly considered
in the comparison of model performance of standard statistical distributions that
was conducted in Kinsella et al. (2018), see Paper A.

6.5 STRESS CORROSION

Regarding the implementation of stress corrosion into the strength models, there
are only three of the reviewed models that account for it, viz. the GFPM (Beason
1980, Beason & Morgan 1984), the Lifetime Prediction Model (Haldimann 2006),
and the numerical model in Pathirana et al. (2017). In the case of the GFPM, the
account for stress corrosion is based on Eq. (2.28) which is due to Brown (1972).
In the case of the Lifetime Prediction Model and the numerical model in Pathirana
et al. (2017), the account is based on Eq. (2.35) which is an empirically based
approximation that was proposed in Evans (1974). In either case, the threshold
limit for subcritical crack growth is neglected which means that predictions based
on these models become conservative, i.e. they underestimate the strength. On the
other hand, non-conservative results will be obtained for calibration purposes. A
problem with the implementation of Brown’s (1972) Load Duration Theory involves
the inconsistencies that emerge when the failure time is either very long or very
short. For very long time periods, the equivalent strength, Eq. (5.53), tends towards
zero which is not realistic due to crack arrest at the threshold limit. For very short
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time periods, the equivalent strength tends to infinity which is unrealistic. As
a consequence, the implementation of Brown’s (1972) Load Duration Theory is
not valid at near-inert conditions. Nevertheless, the way in which Beason (1980)
implements Brown’s (1972) Load Duration Theory by application of an equivalent
stress is very useful because compared to the implementation with the empirical
formulation, Eq. (2.35), we have one less parameter to be concerned with, viz. the
crack growth velocity parameter v0. While the literature is generally in agreement
that the stress corrosion parameter value can be estimated at about n = 16 for soda-
lime-silicate glass in ambient conditions, there is no consensus on the value of the
crack growth velocity parameter v0. As a matter of fact, even if we restrict ourselves
to an atmosphere of 50% RH, the various estimates for the velocity parameter
span more than two orders of magnitude. This conclusion is based on a range of
experiments which were reviewed in Schula (2015). Haldimann (2006) claims that
v0 = 6 mm s−1 is a conservative estimate for design purposes. The argument for
this is based on an enveloping curve that was fitted to a set of empirical results for
the crack growth velocity curve. There are two problems with this estimate. To
begin with, it is not useful for calibration purposes. Secondly, it is probably overly
conservative. Nevertheless, the value v0 = 6 mm s−1 was adopted by Pathirana
et al. (2017).

Reid (1991) compared two different implementations of stress corrosion, viz. the
one in the GFPM and the one in the socalled Crack Growth Model which is esssen-
tially a precursor to the Lifetime Prediction Model. For the simple ramp loading
case, it was found that the failure probability of flaw strengths

FS(t)(σ) ∝ σm+ 3m
n−2 (6.2)

when the loading rate is slow to moderate, while

FS(t)(σ) ∝ σm (6.3)

when the loading rate is very fast. Here, m and n refer to the corresponding Pareto
flaw size distribution shape parameter and the stress corrosion parameter, respect-
ively. It was found that the GFPM “grossly underestimates” the probability of
failure compared to the Crack Growth Model. Hence, different implementations
of Charles’ (1958b) Stress Corrosion Rate Theory do not produce comparable res-
ults. This highlights the complexity involved in the modelling of subcritical crack
growth.

In Reid (2006), the performance of the GFPM when applied to sinusoidal load cases
was investigated. The conclusion was drawn that the GFPM “does not provide a
dependable basis for assessing the effects of dynamic wind loading.” This result
is directly connected to the methodology by which stress corrosion is implemented
in the GFPM. Hence, it can be said that the GFPM “can give dependable results
only for standardized load conditions.” (Reid 2007)
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6.6 ERROR SOURCES

Concerning the measurements of strength, there can be a range of error sources
that impact the results recorded in the various experiments other than errors in the
measurement devices and setups, cf. Chap. 4. In a three-point bending setup, the
fracture stress at the failure origin is generally smaller than the maximum bending
stress. This is so because generally speaking, the fracture origin is located at some
distance away from the midpoint where the load is introduced and the bending
stress is the greatest. The results from three-point bending tests do therefore not
record the strength in a way that is directly comparable to other common testing
devices. The utility of the three-point bending device as a tool for appraising the
strength of glass is questioned.

In the case of four-point bending, the stress concentration that occurs under the
load introduction points was sometimes taken into account (Vandebroek et al.
2014), but most often not. When the stress concentration was not taken into
account in the in-plane bending mode, an error at about 5% can be assumed for
the recorded value. There can be an error of up to 11% in the out-of-plane bending
mode, depending on the thickness, when the fracture origin is located along the
edge and the Bernoulli beam theory is employed, Eq. (3.5), according to Blank
et al. (1994). Moreover, when the deflections become large in four-point bending,
the inner rollers that transmit the loading shift outwards and the outer rollers shift
inwards, supposing that rollers are used at the supports. This produces an error of
less than 1% (Munz & Fett 1999).

The float process allows for the production of flat glass panes with a very smooth
and flat surface. The value of the section modulus is proportional to the width and
to the square of the thickness of the rectangular cross section. When the thickness
was recorded by the experimenter, it was usually determined by taking the average
of several measurements along the length and width of the specimen. In doing so,
the error was minimized. In the case of tempered glass, however, there can be small
warping of the sheet and uneveness to the thickness. In this work only annealed
float glass was considered. The error involved in estimating the section modulus is
assumed to be negligible.

When the fracture stress is calculated based on strain gauge measurements or
with the finite element method, knowledge is required of the material properties,
viz. the Young’s modulus E and the Poisson’s ratio ν. There are uncertainties
in the value of the elastic constants, mainly of the Young’s modulus. In some
experiments, the elastic constants were estimated based on dedicated measurements
of the compliance of glass plates obtained from the same supplier. In this way, e.g.
Carre (1996) arrived at the mean value of E = 70.7 GPa for the test specimens.
However, in other experiments, the elastic constants were not measured directly
but were assumed based on values obtained from the literature. According to the
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various sources in the literature that were surveyed by this author, the value for
the Young’s modulus ranges from 68.9 GPa to 75 GPa (Le Bourhis 2008, Simiu
et al. 1984). The value of ν is either 0.22 or 0.23.

It is assumed that there exists a small error due to uncertainties in the applied
load and in the dimensions of the bending rig fixture, e.g. in the dimensions of the
loading rings in the case of the ring-on-ring device. It is assumed that these errors
amount to no more than 5%.

The calculation method governs, to some extent, which strength value is produced.
Compared to the analytical formulae, Eqs. (3.4) to (3.9), the finite element method
is able to better model the geometrically nonlinear effects that can occur especially
due to plate bending when membrane stresses are activated. It can be assumed that
membrane stress activation becomes significant when the deflection exceeds half the
specimen thickness. Sometimes, a mixture of methods were used, such as when the
stress concentrations under the load introduction points in four-point bending were
estimated with the finite element method while in general, the bending stress was
calculated with the analytical formula, Eq. (3.5).

In practice, deviations from the assumption of a ramp stress history can occur. For
instance, it was reported in several references (Calderone 1999, Johar 1982) that
the electronics of the hydraulically controlled loading device that was designed to
apply a linearly increasing load in fact caused harmonic oscillation toward the load
history. This could have a bearing on the calculation to adjust for static fatigue,
Eq. (2.28). The possible deviations, however, are minor and are assumed to have
only a negligible effect on the calculated “equivalent” strength.

In most of the reviewed experiments, bending was applied with deformation control.
However, in a few cases, the bending was produced using force control. It is not
believed that this difference in setup would cause any significant error since the
nonlinear effects are small.

There could be variations to the strength depending on the manufacturing site in-
cluding variations in surface precompression from one batch to another. This effect
is hard to quantify a priori, but it might be substantial. Even in float glass which
has been annealed there can be small amounts of compressive residual stresses on
the surface. This could have an impact on the measured fracture stress. When
compressive residual stresses are present on the surface, the strength increases.

Some experiments (Krohn et al. 2002, Tummula & Foster 1975) indicate that the
tin side of the float glass contains more severe flaws than the air side. This could
have an impact on the measured strength. It may be that data recorded from
fractures originating on the tin side are not directly comparable to the air side.
However, it may be that this effect is limited and moreover overlapped by other
uncertainties. The float process production method causes the diffusion of tin into
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the surface that was in contact with the molten tin bath. The depth of the tin
penetration layer is generally accepted to range from 10 to 40 microns (Krohn et al.
2002). However, whether it is the tin diffusion or the contact damage caused by the
rollers as the glass exits the float that is responsible for the difference in strength
that is sometimes observed between the air and tin sides is an unresolved question.
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7.1 PAPER A

Performance of standard statistical distributions for modelling glass fracture
David Kinsella, Johan Lindström, Kent Persson.
Accepted for publication in the International Journal of Structural Glass and Ad-
vanced Materials Research.

Summary

A comparison was made between four standard distributions, the normal, lognor-
mal, Gumbel and Weibull, with respect to the performance in modelling the strength
of new annealed float glass. The performance was evaluated based on experimental
data on the strength of glass plates tested in an ambient environment. The Weibull
distribution outperforms the normal and lognormal distributions and is at least as
good as the Gumbel distribution as a model for glass strength when the fracture
data is selected to comprise edge only failure origins. In the case of surface only
failure origins, it is indicated that the extreme value distributions perform worse
than the normal and lognormal distributions. However, the surface strength is
complicated to model and none of the standard distributions which were examined
are capable of producing a proper model. The sample size also has a profound
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impact on the performance of the surface strength models.

Contributions by David Kinsella

David Kinsella was the main author of the paper and he planned the research tasks,
surveyed the literature for experimental data, performed the statistical analysis,
and drew the conclusions that were presented.

7.2 PAPER B

A numerical method for analysis of fracture statistics of glass and simulations of a
double ring bending test.
David Kinsella, Kent Persson.
In: Glass Structures & Engineering, Vol. 3(2): 139-152. Springer, 2018.

Summary

The fracture stress and failure locations of small glass plates subjected to double
ring bending are calculated with a numerical method that considers the stochastic
properties of surface microcracks. The method involves the weakest-link principle
and a fracture mechanics approach to brittle failure. The results are compared
with experimental data from a double ring bending test. The numerical method is
dependent on a representation of the surface flaws condition in glass. Two types of
flaw distribution are considered in this paper. First, a Pareto distributed flaw size
distribution is implemented. Second, two populations of flaws are implemented as
a combination of a Pareto flaw size distribution and a Fréchet size distribution.
The logical basis for the selected flaw size distributions depend on empirical results
as well as extreme value theoretical arguments. However, depending on the chosen
representation of the surface flaws condition, a number of parameter values have
to be estimated in order for the model to work. There is a need for more data on
the surface condition in glass. A distribution for the strength that is indistinguish-
able from a Weibull distribution is obtained when a single population of Pareto
distributed crack sizes are implemented. This distribution, however, makes a poor
fit with the experimental data that was compared with. With the dual popula-
tions concept a model for the strength is obtained that better fits the apparent
bimodality in the empirical data set. The effect of using different fracture criteria
is investigated. However, the incorporation of mode II shearing displacement into
the fracture criterion has only a minor impact on the simulated strength distribu-
tion when the glass is subjected to double ring bending. When new and improved
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techniques become available for examining the surface characteristics of glass, this
type of numerical simulation tool can lead to improved strength models.

Contributions by David Kinsella

David Kinsella was the main author of the paper and he planned the research
tasks, performed the finite element modelling and analyses, implemented the nu-
merical procedure for the statistical evaluation, and drew the conclusions that were
presented.

7.3 PAPER C

An analysis of glass fracture statistics
David Kinsella, Kent Persson.
In: The proceedings of the Challenging Glass Conference 6, Delft. 2018.

Summary

A numerical method is applied to model the fracture stress and failure location
in glass panes subjected to various forms of loading. The method is based on a
stochastic approach to brittle failure in glass assuming the weakest-link principle
and a Pareto distributed flaw size distribution. The fracture stress and failure origin
are revealed through a search algorithm. The stresses in large laterally supported
plates which are subjected to uniform pressure are modelled and the distribution
of fracture location is determined. Two types of gasket support materials are
considered, neoprene and nylon. The softer gasket material produces a greater
number of fractures nearer the corners of the plate. A comparison is made with
the recorded fracture locations according to various experiments. In addition, a tall
vertical panel of laminated glass subjected to dynamic impact loading is modelled
and the distribution of fracture location is determined.

Contributions by David Kinsella

David Kinsella was the main author of the paper and he planned the research
tasks, performed the finite element modelling and analyses, implemented the nu-
merical procedure for the statistical evaluation, and drew the conclusions that were
presented.
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7.4 PAPER D

Survey of experimental data on the strength of annealed float glass panes in the
as-received condition tested in an ambient atmosphere
David Kinsella.
In: Report TVSM-7166, published on the website of the Division of Structural
Mechanics in July 2018.

Summary

A survey of the literature was performed in order to collect and organize the ex-
perimental data that is available on the strength of ordinary annealed float glass
that is in the as-received condition and which was tested in an ambient environ-
ment. A detailed overview is provided which comprises experiments conducted in
the past four decades. The experiments were conducted with the coaxial double
ring bending device, the three-point bending device, the four-point bending device,
and the arrangement that allows for laterally supported plates to be subjected to
uniform pressure. When the stress history was linear, the 2 MPa s−1 stress rate-
equivalent strength was calculated and compared with the nominal value of the
strength. The strength is visualized in the form of boxplots and probability plots.
The following three types of probability plots were considered, viz. the Weibull,
the normal, and the lognormal. The goodness-of-fit was tested numerically with
the Anderson-Darling statistic.

Contributions by David Kinsella

David Kinsella was the author of the report and he planned the research tasks,
collected the data and organized the results.
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research needs

The following conclusions can be drawn.

• The edge strength warrants special consideration because in most practical
situations, the boundary conditions cause significant tensile stresses to act
along the edges.

• The experimental data from laterally supported plates subjected to uniform
pressure demonstrate that on average about one in every third fracture oc-
curred along one of the edges.

• The Weibull distribution provides a basic model for the edge strength that
performs better than the normal and lognormal distributions and at least as
well as the extreme-value Gumbel distribution.

• In the case of surface fractures in glass, neither the extreme-value Weibull
and Gumbel distributions nor the normal and lognormal distributions are
able to model the strength.

• In the case of monolithic annealed float glass in the as-received condition
that was tested in an ambient environment, a record for the strength could
be obtained from the scientific literature published over that past 40 years
for nearly 200 samples comprising some 3100 individual test specimens.
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• There exist a multitude of strength models which have been used on glass
and these can be divided into 1) models with a phenomenological approach
towards failure where failure is considered at the macroscopic level and no
particular representation of the surface condition is assumed, and 2) models
which consider fracture at the microscopic level by supposing the preexistence
of material flaws from which failure is derived.

• Flaws in glass can be represented more or less rigorously with stochastic
cracks of a certain shape, size and orientation, or flaws can be represented by
an elemental strength distribution.

• The flaw size approach is currently an emerging trend magnified by the com-
putational power that is available and which makes it feasible to determine
the strength in Monte Carlo simulations with stochastic Griffith flaws.

• The models based on a flaw size approach are challenged by the fact that the
knowledge about the surface condition in glass is very limited and moreover,
there is a lack of methods by which to investigate the flaws.

• The flaw size approach can be used to model the strength of small plates in
double ring bending with a dual flaw population concept.

• With a numerical method based on the flaw size approach, it is possible to
model the fracture stress and failure origins in glass articles with complex
geometries and which are subject to static loads as well as dynamic impact
loads.

The following should be considered in future research.

• An in-depth investigation and analysis of the edge strength and its depend-
encies. This involves studying the effect of factors such as the thickness, the
type of edge processing, the load rate and duration, and the edge support
span.

• It is relevant to further consider size effects in glass, both how the various
models that were investigated in this work relate to size effects and what the
combined set of empirical data on the strength of glass has to tell about size
effects.

• The elemental strength approach emerges as an interesting approach for fur-
ther investigation. The flaw size approach is more stringent when it comes to
representing the surface condition rigorously. This turns into a liability due
to the lack of techniques by which to probe the surface flaws. The elemental
strength approach is more stringent than the application of standard statist-
ical distributions, but it is somewhat less stringent in terms of realism in the
representation of flaws than the flaw size approach.
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• There is a need for greater insight into the surface condition in glass. This
would involve new methods and improved technology by which to probe the
surface flaws.

• None of the strength models covered in this work have so far been applied to
model glass edge and surface strength simultaneously while considering the
potential differences in condition between edge and surface. This is a topic
for future research.
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Abstract: Experimental data on the strength of new annealed float glass 

tested in an ambient environment was collected. A comparison was made 

between four standard distributions, the normal, lognormal, Gumbel and 

Weibull, with respect to the performance in modelling the strength. The 

Weibull distribution outperformed the normal and lognormal distributions 

when the data contained edge only failure origins. When the data was 

selected to contain surface only failure origins it is indicated that the 

extreme value distributions performed poorly. The Weibull model is known 

to have a basis in a failure-mechanism concept based on the weakest-link 

principle. The Gumbel distribution can also be derived from failure-based 

mechanics and be associated with certain types of flaw size distribution. 

The Weibull model, however, is a better choice for a failure model of glass 

edge strength compared to the normal and lognormal distributions and at 

least as good as a Gumbel distribution. The surface strength is complicated 

to model and none of the standard distributions which were examined are 

capable of producing a proper model. The sample size also has a profound 

impact on the performance of the surface strength models. 

 

Keywords: Glass, Strength, Fracture statistics, Weibull distribution 

 

Introduction 

The normal distribution was previously used by 

glass manufacturers to model the fracture stress. In e.g., 

the early Pilkington design charts, the design stress was 

based on the 1%-fractile of a normal distribution with a 

coefficient of variation of 0.20 (Calderone, 1999). 

Today, the Weibull distribution is commonly used to 

model the fracture stress data from experiments on 

glass. However, a number of researchers have 

questioned whether the Weibull distribution is in fact 

superior to an ordinary normal or lognormal 

distribution as a model of the fracture stress in glass. 

Based on the test results of a large set of full-size 

rectangular plates of both new and old annealed float 

glass, Calderone (1999) found that the lognormal 

distribution provided a better fit with the experimental 

data than the Weibull distribution. The lognormal 

distribution has support on the right half axis only and 

that gives it a logical advantage over the normal distribution 

because the strength is a positive number. Later studies by 

Calderone et al. (2001) and Calderone et al. (2005) 

recommended that the Weibull distribution should in fact 

not be used to predict the strength of window glass 

panels. However, the 32 samples of data in Calderone 

(1999) were of limited size ranging from 5 to 9 

specimens each. Lü (1997) carried out tests on glass in 

three-point and four-point bending and concluded, based 

on the correlation coefficient of the fitted line in the 

probability plots, that all three standard distributions, i.e., 

the normal, lognormal and Weibull, were applicable as 

failure models. Veer et al. (2009) carried out tests on glass 

beams in four-point bending and concluded that on the 

one hand, the lognormal distribution provided a fit that 

was at least as good as the Weibull model. On the other 

hand, it was concluded that none of the standard 

distributions properly modelled the data on annealed glass. 

So far and to the best of our knowledge, no one has 

made a comparison of the standard distributions based 

on a comprehensive survey of the published data results 

that are available in the open literature. In fact, a 

substantial portion of the total number of experiments 

that have been reported were conducted only recently 

within the last decade. 
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Moreover, it is sometimes believed that the edge 

strength in glass differs from the surface strength. This 

is reflected in the structural standards in different ways. 

For example, DIN 18008:2010 gives a reduction factor 

to be applied when calculating the edge strength, the 

factor of which is 0.8. Hence, the edge condition is 

always considered to be inferior to the surface 

condition. On the other hand, prEN 16612:2017 

provides a different set of reduction factors for the edge 

strength depending on the edge treatment, i.e., cut, 

arrised, ground, or polished. In the case of the polished 

edge, the edge reduction factor is unity which amounts 

to no reduction at all. This implies that the polished 

edge condition is considered to be equal to the pristine 

surface. In summary it is possible then, but not self-

evident perhaps, that different models should be used 

for the edge and surface fractures in glass. 

The question of which standard distribution that 

provides the best fit has important implications. 

Currently, there is a draft for a European standard for 

strength of glass in building, prEN 16612:2017, that 

bases its estimate of the characteristic value of the 

strength of glass on test results that were fitted with a 

Weibull distribution. The characteristic value of the 

bending strength is defined from the 5% fractile in the 

distribution for monolithic panes of annealed float glass. 

In this study, the performance of the following four 

standard statistical distributions is examined, viz. the 

normal, lognormal, Gumbel and Weibull distributions. 

Standard Distributions 

A Weibull distribution with the parameter values 
m = 6 and k = 74 MPa was fitted to test results on 
annealed float glass specimens that were performed as 
a basis for the DIN 1249-10:1990 (Haldimann, 2006). 
The tests were carried out using the R400 double ring 
bending device at a stress rate of approximately 
2 MPa s

−1
. The characteristic value of the bending 

strength was estimated at 45 MPa which was the 5% 
fractile in the distribution. This value was subsequently 
adopted in the draft standard which currently is referred 
to as prEN 16612:2017. 

The Weibull distribution (Weibull, 1939) has the 

cumulative distribution function: 

 

( ) 1 exp

m

F
k

σ

σ

  
= − −     

 (1) 

 

where, k and m>0 denote the scale and shape parameters, 

respectively. Glass strength is governed by the existence 

of surface flaws which magnify the stresses locally 

(Griffith, 1920). The stress-raising property of a given 

flaw can be determined from the associated crack size 

and shape using fracture mechanics (Mencik, 1992). Let 

f(a) denote the flaw size density function with a 

signifying the flaw size. Suppose ac denotes the critical 

crack size that prompts failure of the crack. In the case of 

a plane crack with geometry factor Y that is subjected to 

a uniform uniaxial stress σ, it can be shown that: 
 

2

2 2

Ic

c

K
a

Y σ π

=  (2) 

 
where, KIc represents the fracture toughness (Mencik, 

1992). Let Pf(∆A, ac) denote the failure probability in the 

small region ∆A at the critical crack depth ac. It can be 

shown that (Lamon, 2016): 
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c

f c
a

P A a A f a da
∞

∆ = ∆ ∫  (3) 

 

Suppose the total area is: 
 
A N A= ∆  (4) 
 
for some number N. By application of the weakest link 

principle while assuming that the regions are non-

interacting it is found that the survival probability is: 

 

( ) ( )( )1 , 1 ,
N

f c f cP A a P A a− = − ∆  (5) 

 

Substituting for Equation 3 and 4 in Equation 5 while 

observing the standard limit: 

 

lim 1

N

x

N

x
e
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 
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 (6) 

 

it follows after some rearrangement that: 

 

( ) ( ), 1 exp ( )
c
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Suppose f(a) is a Pareto density function, i.e.: 

 

( ) ( )1
0

cc

f a ca a
− +

=  (8) 

 

where, c and a0 are scale and shape parameters 

(Forbes et al., 2011). Inserting Equation 8 into Equation 

7 while substituting for Equation 2 yields the Weibull 

distribution, Equation 1, with: 
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and: 
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In fact, for reasons of extreme value theory 

(Beirlant et al., 2004), the Weibull distribution is the 

limiting distribution when the flaw size distribution 

decays like a power-law in the tail. This means that the 

Weibull distribution emerges for the strength model 

when the flaw size distribution is e.g., Pareto, Cauchy, t, 

or F. Another common extreme value distribution is the 

Gumbel distribution which has the density function: 

 

( )
1
exp exp expf

s s s

σ µ σ µ
σ

 − −   
= −    

    
 (11) 

 

where, µ and s signify the location and scale parameters, 

respectively. It is the limiting distribution when the flaw 

size distribution decays exponentially in the tail. This 

includes flaw size distributions such as the normal, 

lognormal, exponential, gamma and χ
2
 (Trustrum and De 

Jayatilaka, 1983). 

The normal distribution has the probability density 

function (Forbes et al., 2011): 

 

( )
( )

2

22

1
exp

22
f

ss

σ µ
σ

π
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 (12) 

 

where, µ and s
2
 are the mean and variance, respectively. 

The use of a normal distribution as a standard model for 

data is due to the Central Limit Theorem (Beirlant et al., 

2004) which states that averages of many samples will 

tend to follow a normal distribution. 

The lognormal distribution arises from the normal 

distribution through a change of variables transformation. If 

Y is a random variable with a normal distribution, then X 

= exp(Y) has a lognormal distribution with the density 

function (Forbes et al., 2011): 
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log1
exp
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f
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 (13) 

 

In Equation 13, µ and s
2
 denote the mean and 

variance of the related normal distribution. By token of 

the Central Limit Theorem, the lognormal distribution 

would be a natural model for geometric means. 

Method 

Data on the strength of annealed float glass was 
collected from a set of references, see Table 1 for the 
complete list including details on the experimental 
setups. The strength was the maximum principal tensile 
stress at the fracture origin location. Only those data 
samples were extracted from the references and included 
in the analysis which fulfilled the following conditions: 
the glass was monolithic annealed float glass in the as-

received condition that was tested in an ambient 
environment. The experiments were conducted using 
either the double ring bending device, the three or four-
point bending device, or the setup that allows for a 
uniform pressure to be applied to a laterally supported 
plate. In the case of four-point bending tests, the 
recorded strength value was discarded in case the failure 
origin was located outside the load span. In one case of 
double ring bending tests, viz. Simiu et al. (1984), the 
fracture stress values that corresponded to failure origins 
outside the loading ring area were adjusted using 
Equation 14 in order to reflect the maximum principal 
tensile stress at the failure origin. This was possible to 
do because the fracture origins were recorded by   
Simiu et al. (1984). Otherwise, all the recorded strength 
values were taken as-received. The radial stress outside 
the loading ring area in a double ring bending setup at 
the distance r from the centre point is: 
 

( ) ( )
( )2 2 2

0 1
1

02 2 2

2

3
1 ln 1 ,

2 2
r

r r rF r
v v r r

b r r r
σ

π

 −
 = + + − >
 
 

 (14) 

 

where, r2 is the equivalent outer radius used for a square 

shaped specimen with side length 2L, viz: 

 

( )2
1 2r L= +  (15) 

 

In Equation 14, F is the failure load, b is the plate 

thickness, v is Poisson's ratio, r0 is the loading ring 

radius and r1 is the support ring radius. 

An overview of the experiments including a more 

detailed presentation of each data sample can be found 

in Kinsella (2018). All data samples that were larger 

in size than 5, 15, 30 and 45, respectively, were fitted 

with the four standard probability distributions. The 

parameter estimation was performed with the 

maximum likelihood method. The goodness-of-fit was 

calculated with the Anderson-Darling statistic 

(D'Agostino and Stephens, 1986) and a set of four p-

values were derived for each sample, the p-values 

being associated with the normal, lognormal, Gumbel 

and Weibull distributions, respectively. 

The float process production method causes the 

diffusion of tin into the surface that was in contact with 

the molten tin bath and this side is termed the tin side. 

The other side is the air side. When the statistical models 

were fitted to the data samples, it was not taken into 

account whether the fracture origin was located on the 

tin side of the glass or on the air side. 

The method used to measure and compare the potential 

of various statistical models allows for the effect of 

different surface area size or edge length and different 

stress state to be taken into account by adaptation of the 
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two parameter values. This is done in the maximum 

likelihood estimation. However, the method of analysis 

used in this study does not take into account that the 

strength in e.g., uniaxial stress states is of one type of 

distribution, e.g., Weibull, while in biaxial stress states is 

of a different type of distribution, e.g., normal. 

In some experiments the fracture origin mode was not 

recorded while the data contained a mixture of surface 

and edge fractures or there was an ambiguity towards 

the fracture origin due to multiple potential fracture 

locations. Hence only a mixed failure origin mode 

could be determined in those cases. This pertains to a 

number of cases with the four-point bending device 

with the loading taking place out-of-plane and with 

laterally supported plates subjected to uniform 

pressure. In the examination that follows, it was 

assumed that when a glass beam was tested in the four-

point bending device with in-plane loading, then the type 

of fracture produced was an edge failure origin. For an 

illustration of the meaning of in-plane and out-of-plane 

loading with the four-point bending device, see Fig. 1. The 

model fitting was performed in the following three cases, 

viz. mixed failure origins, edge only failure origins and 

surface only failure origins. 

In a first procedure, the resulting measures of 

performance were visualized in the form of boxplots. 

Subsequently, the multiple models over multiple data 

sets were compared in a Friedman test (Friedman, 1937; 

1940) under the null-hypothesis that all models perform 

equally. In case the null-hypothesis was rejected, a post-

hoc test was performed to determine which of the 

models that were significantly different. For this, the 

Wilcoxon signed-rank test (Wilcoxon, 1945) was used 

and the family-wise error was controlled with the 

Bonferroni-Holm method (Holm, 1979). 

 

 

 
Fig. 1: Illustration of the (a) out-of-plane loading of a beam in 

four-point bending and the (b) in-plane loading 

Friedman Test 

The Friedman test is a non-parametric test for 

comparing models over multiple data sets. The performance 

of the m models is calculated for each of the n data sets and 

then ranked with rank 1 corresponding to the best 

performance. The ranks can be organized in a matrix: 

 

11 12 1

21 22 2

1 2

n

n

m m mn

R R R

R R R
R

R R R

 
 
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⋯

⋯

⋮ ⋮ ⋮ ⋮

⋯

 (16) 

 

where, Rij is the rank of model i in data set j (Benavoli et al., 

2016). Under the null-hypothesis, there is no difference in 

performance between the models, in which case the average 

value of each row in R is 
( )1

2

n m +

. The test statistic is: 

 

( )

( )
2

1 1

112

1 2

n n

jk

j k

n m
T R

nm m
= =

 + 
= − 

+  
∑ ∑  (17) 

 

which under the null-hypothesis is χ
2
-distributed with m-

1 degrees of freedom. 

Wilcoxon Signed-Rank Test 

The Wilcoxon signed-rank test is a non-parametric 

test for comparing the performance of two models over 

multiple data sets. Under the null-hypothesis, both 

models perform equally and hence the distribution of the 

pairwise difference is symmetrical about the value 0. Let 

di denote the difference in performance between the two 

models for data set number i among n sets when the first 

model outperforms the second. In case di = 0, i.e., a tie, 

one has to exclude observations. Suppose there are an 

odd number of ties. Then one tie is excluded and half of 

the remaining ties are included. Suppose there are an 

even number of ties. Then half of the ties are included. 

The rank sum R is calculated: 

 

( ) ( )
0 0

1

2
i i

i i

d d

R rank d rank d

> =

= +∑ ∑  (18) 

 

The test statistic is: 

 

( )
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z

n n n
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 (19) 

 

which for a large number of samples is approximately 

normally distributed under the null-hypothesis 

(Demsar, 2006). 
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Bonferroni-Holm Method 

When making multiple comparisons between pairs of 

models, the Bonferroni-Holm method (Holm, 1979) can 

be used to adjust the significance level to control the 

family-wise Type 1 error, i.e. the probability of making at 

least one Type 1 error in any of the comparisons (Demsar 

2006). Suppose the desired significance level is α. Then, 

with the Bonferroni method, the corrected significance 

level is simply 
m

α

. However, this is very conservative. 

Holm (1979) provided a sequentially rejective version of 

the Bonferroni method that has larger probability of 

rejecting the false hypothesis. The hypotheses are ordered 

by their significance levels p1, p2,... with p1≤p2≤...≤pm. 

Starting with the most significant p-value, p1 is compared 

with 
m

α

 and if it is greater than so, the procedure stops 

and no p-values are significant. If, however, 
1
p

m

α

≤ , the  

corresponding hypothesis is rejected and the second p-

value is compared with 
1m

α

−

. If the corresponding 

hypothesis is also rejected, the third p-value is compared 

with 
2m

α

−

, etc. Hence, pi is compared sequentially to 

m i

α

−

 in a step-down procedure that stops when there is 

failure to reject the hypothesis. 

Limitations 

The glass included in the investigation was new and 
in the as-received condition when it was tested. 
Moreover, the glass was stressed in an ambient 
atmosphere, typically represented by an indoor 
temperature of about 20°C and a relative humidity 
between 40-70%. Only monolithic panes of annealed 
float glass was considered. Static fatigue was not taken 
into account in the analysis of the data.

 
Table 1:  List of references which were the basis for an investigation. ULP = Plate bending due to Uniform Lateral Pressure, CDR = 

Co-axial Double Ring bending, 4PB = Four-Point Bending, 3PB = Three-Point Bending 

Reference No. samples No. observations Bending mode 

Johar (1981) 9 78 ULP 

Johar (1982) 5 106 ULP 

Simiu et al. (1984) 2 85 CDR 

Carre (1996) 5 81 4PB 

Calderone (1999) 32 195 ULP 

Hess (2000) 3 15 4PB 

Fink (2000) 2 127 CDR 

Haldimann (2006) 2 20 CDR 

Veer et al. (2006) 3 32 4PB 

Sglavo et al. (2007) 8 115 3PB 

Veer et al (2009) 2 54 4PB 

Postigo (2010)* 1 41 CDR 

Veer and Rodichev (2011) 2 177 4PB 

Veer and Rodichev (2012) 2 60 4PB 

Vandebroek et al. (2012) 4 77 4PB 

Lindqvist (2013) 32 478 4PB 

Vandebroek et al. (2014) 8 202 4PB 

Kozlowski (2014) 1 6 4PB 

Kleuderlein et al. (2014) 33 830 4PB 

Schula (2015) 1 15 CDR 

Kinsella and Persson (2016) 2 58 4PB 

Muniz-Calvente et al. (2016) 2 73 CDR 4PB 

Navarrete et al. (2016) 8 69 CDR 

Yankelevsky et al. (2017) 1 56 4PB 

Osnes et al. (2018b) 3 93 4PB 

Total: 173 3143 ULP CDR 3PB 4PB 
*Obtained from Huerta et al. (2011) 

 

Table 2: Friedman test p-values based on the samples that contained at least 15 observations of the strength 

 Edge fail. origins Surf. fail. origins 

p-value 0.0000 0.0104 
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Fig. 2: Boxplots for the p-values from the Anderson-Darling tests that measured the goodness-of-fit of various standard statistical 

models of the fracture stress of annealed float glass. The results are separated according to the failure origin mode as well as 

according to the minimum number of observations per sample included in the analysis. W = Weibull, N = normal, L = 

lognormal and G = Gumbel distribution  
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Fig. 3: p-values for the pairwise comparison of model performance with the signed-rank test. (*) indicates that the p-value was 

significant while controlling for the family-wise type I error. A plus sign in front indicates that the row had a higher rank 

while a minus sign indicates that the column had a higher rank. Analysis comprises all samples of size 15 or greater. W = 

Weibull, N = Normal, L = Lognormal and G = Gumbel distribution 

 

Results 

The samples from the references in Table 1 which 

fulfilled the limitations, see Sec. Limitations, were 

modelled using the normal, lognormal, Gumbel and 

Weibull distributions. The goodness-of-fit was tested with 

the Anderson-Darling statistic. The models were fitted in 

the following three cases, viz. mixed failure origins, edge 

only failure origins and surface only failure origins. An 

overview of the performances is provided in Fig. 2 which 

contains a set of boxplots separated according to the 

failure origin mode as well as according to the minimum 

sample size in the analysis. Note that under the null-

hypothesis the p-values are uniformly distributed between 

0 and 1. Fig. 2 only contains the results from pure edge 

and surface failures, i.e., not mixed failure origins. Due to 

the fundamental difference that is apparent in the 

behaviour between edge and surface failure mode, it is not 

effective to combine the results in an analysis, see further 

the Discussion section. 

A further investigation was performed based on all 

samples that included at least 15 observations of the 

strength, the results of which follow. Similar features 

were exhibited when the analysis was selected to 

comprise minimum sample sizes of 30 and 45 

observations, respectively. A Friedman test was 

performed to make multiple comparisons over the data 

sets and the null-hypothesis was rejected in both cases 

corresponding to edge only failure origins and surface 

only failure origins, see further Table 2 for the p-values. 

Finally, pairwise comparisons were made between the 

models using the Wilcoxon signed-rank test and the 

family-wise Type I error was controlled using the 

Bonferroni-Holm correction method, see Fig. 3. The 

results show that in the case of edge failure origins, the 

normal and lognormal distributions did not perform as 

well as the Weibull distribution. In the case of surface 

only failure origins, however, none of the pairwise 

comparisons rendered a statistical significance. 

Discussion 

The Weibull model has been praised for its utility in 

a wide range of applications (Weibull, 1959). 

According to a recent survey (Rinne, 2009), there are a 

great number of papers and monographs that 

demonstrate the successful application of the Weibull 

model in some 180 distinct topics that encompass 

nearly all scientific disciplines. Part of the reason for 

the versatility may lie in the fact that the Weibull 

distribution is one of the three extreme value distributions. 

It emerges naturally as the limiting distribution of the 

minimum or maximum value in a sample. 

The utility of the Weibull model has been called into 

question, however, both from within the structural glass 

engineering community and from outside. As was noted 

in the Introduction section, certain experiments on glass 

have indicated that the Weibull model does not perform 

better than a normal or lognormal distribution. These 

experiments have included laterally supported plates 

subjected to uniform loading as well as beams in three-

point and four-point bending. However, the fact that the 

Weibull model does not appear to outperform other 

standard models may be due to the sample sizes being 

too limited. In order to illustrate this, consider Fig. 4 

which illustrates the results when drawing 1000 random 

samples from a Weibull distribution with different 

sample sizes and fitting the standard distributions to the 

drawn samples. The Weibull parameter values were 

selected as m = 6 and k = 74 MPa, i.e., the same 

distribution as was mentioned already in Sec. Standard 

Distributions. The figure indicates that it may be hard or 

indeed impossible to distinguish properly between a 

Weibull model and models based on other standard 

distributions when the sample sizes are limited. In 

particular this applies to detecting a difference in 

performance between the Weibull model with these 

parameter values and the model based on a normal 

distribution. 
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Fig. 4: Simulations of the p-values based on 1000 random samples from a Weibull distribution of varying sample size 
 

From the point of view of structural glass 

engineering, however, the Weibull model has a logical 

basis. According to experiments with Hertzian 

indentation fracture (Poloniecki and Wilshaw, 1971; 

Poloniecki, 1974), flaw size in glass can be closely fitted 

by an inverse gamma distribution: 
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which is like a Pareto distribution in the tail. In Sec. 

Standard Distributions, it was shown that the Weibull 

distribution can be derived from the weakest-link 

principle when supposing a Pareto flaw size density 

function, see Equation 3 to 10. Hence, a strong case 

can be made for applying the Weibull distribution to 

model glass strength when the stress state is uniform 

and uniaxial over each crack (De Jayatilaka and 

Trustrum, 1977). Notwithstanding, a number of 

studies have questioned the utility of the Weibull 

distribution while noting that it does not perform 

better than a normal or lognormal distribution. In fact, 

some studies have recommended to abandon the 

Weibull model altogether and use a normal or 

lognormal distribution instead. However, when one is 

unable to distinguish between fitted distributions, 

preference should be given to the model that has a 

physical and theoretical foundation, in this case a 

model that is logically based on fracture mechanics. 

In recent attempts to model glass surface fracture 

in Monte Carlo simulations with distributed Griffith 

flaws, it was assumed by some researchers that flaw 

size is governed by a density function that decays like 

an exponential distribution (Yankelevsky, 2014; 

Pathirana et al., 2017; Osnes et al., 2018a; 2018b). 

Assuming a single population of flaws with a size 

distribution that decays exponentially would naturally 

lead to Gumbel-like distributions for the strength in the 

limit, assuming a uniform and uniaxial stress normal to 

the crack planes. However, a Gumbel-like distribution 

for the strength model of the surface of glass is not 

supported by the empirical data. 

In connection with this study, a comprehensive 

survey of the data on annealed glass strength was 

performed (Kinsella, 2018). Based on the results it was 

noted that when taking the whole collection of empirical 

data into account, the Weibull distribution turns out to be 

a better model for the strength than the normal and 

lognormal distributions in the case of edge failure 

origins. The performance was investigated in a statistical 

testing procedure and found to be significant, see Fig. 3, 

with the following exception: The Weibull distribution 

was not found to be significantly better than a Gumbel 

distribution. Nevertheless, it is indicated in Fig. 2 and 3 

that the Weibull model is at least as good as the Gumbel 

distribution. The test procedure was based on the 

Friedman non-parametric method and a post-hoc test 

with the Wilcoxon signed-rank test. In the case of 

surface only failure origins, the multiple comparisons 

using the Friedman test rendered a rejection of the null-

hypothesis meaning that it can be concluded that there 

are significant differences in performance between the 

four standard models in this case. In fact, the boxplots in 

Fig. 2 clearly suggest that the extreme value Weibull and 

Gumbel distributions can be dismissed as a model for the 

surface strength of glass. However, the number of 

relevant data samples is limited in the case of surface 

failure origin data. 
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The analysis depends on a choice for the minimum 

sample size to be included. In this study, the main 

analysis considered samples of size 15 or greater, cf. Fig. 

3. It might be argued that even greater sample sizes are 

needed to distinguish properly between the different 

models when only a limited or moderate number of 

samples are available, such as is typically the case in the 

respective experimental campaigns considered in this 

study. The dependence on sample size is clearly 

indicated in Fig. 4 which contains simulation results of 

the goodness-of-fit while varying the underlying sample 

size. However, the empirical data only provides a limited 

number of samples when the sample size is 30 or greater. 

Nonetheless, the following conclusions can be drawn 

from Fig. 2 while noting the effect of the minimum 

sample size upon the results. When all samples are 

included which contain at least five observations, no 

particular effect can be seen between the different 

models for the surface strength. However, as the 

minimum sample size increases, the Weibull distribution 

performs poorly while the normal and lognormal 

distributions appear to perform better. In order to address 

this phenomenon properly, an investigation was carried 

out into the properties of the underlying samples. Fig. 5 

illustrates the results from this investigation in the form 

of three diagrams. The top diagram shows the size of 

surface area in maximum tension as a function of the 

minimum sample size. The y-axis scaling is logarithmic 

for the sake of visual clarity. The surface areas were not 

included in Fig. 5 in the case of laterally supported plates 

subjected to uniform pressure because of the difficulty 

associated with assigning a value to the size of surface 

area in maximum tension. The diagram shows that the 

whole range of surface sizes are present at the first two 

levels, i.e., sample sizes greater than or equal to 5 and 

15. However, already as the sample sizes are restricted to 

15 or greater, the extreme value Gumbel distribution is 

clearly performing poorly as can be seen in Fig. 2. The 

extreme value Weibull distribution seems to be 

performing worse than at the first level, i.e. for sample 

sizes restricted to 5 or greater. Furthermore, a 

considerable portion of the whole range of surface sizes 

is still present at the third level, i.e., for sample sizes 

restricted to 30 or greater. However, both the extreme 

value distributions perform poorly as can be seen in Fig. 2. 

Finally, at the last level, i.e., for sample sizes restricted to 

45 or greater, the surface area sizes that remain are the 

following, viz. approx. 2000, 2400 and 3800 mm
2
. The 

extreme value distributions perform poorly again. The 

conclusion is that the poor performance of the extreme 

value distributions cannot simply be explained as a 

consequence of the surface size converging towards a 

small size or a large size. In other words, it is not simply 

the surface size that governs the features of Fig. 2. Next, 

consider the middle diagram in Fig. 5 which shows the 

bending modes of the underlying samples. Here, ULP 

refers to the setup that allows for a uniform lateral 

pressure to be applied to linearly supported plates, CDR 

refers to the coaxial double ring bending device, while 

3PB and 4PB refer to the three and four-point bending 

devices, respectively. The diagram shows that both a 

uniaxial stress state from the four-point bending device 

and an equibiaxial stress state from the double ring 

bending device are present at all levels of samples sizes. 

Hence, the attributes of Fig. 2 cannot be explained as a 

consequence of the stress state converging towards one or 

the other configuration. Rather, there is a mixture of stress 

states present at each level. Next, the bottom diagram in 

Fig. 5 shows whether the fracture origin was located on 

the tin side, air side, or whether it was unknown because 

it was not recorded in the publication. With many of the 

samples, the publication did not record the configuration 

of the glass specimens in terms of the tin and air side 

being in the tension zone. This likely implies that there 

was a mixture of tin and air side failures. This would be 

so, because if the experimentor made the effort to 

identify the tin and air side of each specimen properly 

and configure them accordingly in the testing device, 

then this would probably have been recorded or at least 

mentioned in the ensuing publication. Hence, the 

conclusion can be drawn that a mixture of tin and air 

side failures are present at all levels of sample size. 

This demonstrates that the features of the surface origin 

failures in Fig. 2 probably cannot be explained as a 

consequence of the configuration of the test specimens 

in the testing device with respect to the air or tin side 

in tension. In other words, it is probably not the case 

that the fracture origins converge towards either pure 

tin side or pure air side failures as the sample sizes are 

restricted to at least 15, 30 and 45, respectively.  

The following explanation for the features of the 

surface origin failures in Fig. 2 is suggested. When the 

surface condition in glass is considered, there is no 

single population of flaws that govern the failure because 

if so were the case, then the Weibull and Gumbel 

distributions would have performed much better. Hence 

it is indicated that multiple flaw populations are present 

on the surface. If the underlying flaw size distribution is 

governed by multiple unimodal populations which are 

superposed, it is natural to expect a more symmetrical 

and “rounded out" shape for the extreme value such as 

would correspond better with a normal distribution. By 

the same token, when the minimum sample sizes are 

small, then it would be logical that the Weibull and 

Gumbel models perform better because the probability 

decreases that you sample all the underlying flaw 

populations hence resulting in a better fit. 
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Fig. 5: Properties of the underlying samples that generated the surface origin boxplots in Fig. 2 

 
On the other hand, the generally equal performance 

of the models in the case of ≤5 sample size may just as 
well be attributed to small-sample effects, i.e., the 
difficulty of detecting any effects when the sample sizes 
are small. Moreover, the fact that the normal distribution 
performs better when the sample sizes increase should 
not be taken as argument for adopting this distribution as 
a model for the surface strength. From a weakest-link 
perspective, the normal distribution is not suitable. As 
already mentioned, there may be a logical explanation 
for the better performance of the normal distribution 
compared to the extreme value distributions that has to 
do with the presence of multiple flaw populations. 

However, attempts to address the presence of 
multiple flaw populations may lead to more or less 
exotic distributions for the flaw size. So far, attempts 
have been made by Pathirana et al. (2017), Kinsella and 
Persson (2018b) and Pisano and Royer-Carfagni (2017) 
to model surface failure in glass with a multimodal flaw 
size distribution approach. 

With the edge strength data, the conclusions are 

different. Here, it is readily seen that the Weibull 

distribution overall performs better than the normal and 

lognormal distributions and at least as well as the 

Gumbel distribution, irrespective of the minimum 

sample size in the analysis. This indicates that when the 

edge strength is considered, there is a tendency towards a 

unimodal flaw size distribution that governs the failure. 

This may be logical when you consider the mechanical 

treatment of the edge which undergoes various operations 

such as scoring and machining. As a comparison, consider 

when the glass surface is artificially scratched by 

sandblasting (Blank, 1993; Schula, 2015). Then the 

result is generally to produce a better Weibull fit 

compared with the original pristine surface. 

In summary then, it can be concluded that the edge 

and surface condition in glass differ fundamentally. A 

proper analysis of the strength has then to discriminate 

between these failure origins. However, it may be that 

certain kinds of testing device can be used as a proxy for 

either the edge of the surface condition. In other words, 

when a given test device produces failures with the 

majority of one kind, then it may be that this data can be 

combined without producing significant errors. This 

proxy-effect has not been quantified in the present study 
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but it will be considered in a future investigation. In a 

recent paper (Yankelevsky et al., 2018), it was examined 

whether edge failures should be excluded from the 

analysis of the data sample that is produced with the four-

point bending device with out-of-plane loading or whether 

they may be included. The examination was based on a 

reference sample of 83 specimens that were tested in 

accordance with ASTM C158-02. The results from the 

investigation were not conclusive with regards the 

possible proxy-effect of the bending device, nevertheless 

the authors recommended to exclude edge failures. 

The majority of experimental data points included in 

this investigation pertain to the edge strength of glass. As 

a matter of fact, the edge strength is of great importance 

for the strength design of a structural glass component. 

The edge is thought to contain more weaknesses than the 

surface, probably due to machining operations done to the 

edge while scoring, cutting and processing (Veer and 

Rodichev, 2011; Vandebroek et al., 2014). When a 

laterally supported plate is subject to uniform pressure, 

significant tensile stresses occur near the edges, see e.g., 

Kinsella and Persson (2018a) which contains an analysis 

of the fracture origins in laterally supported plates 

subject to uniform pressure. For glass beams and pillars, 

the edges are always subject to significant tensile stress 

in the design state. Hence, in practical situations the edge 

strength can hardly be neglected for most types of 

structural units, including laterally supported plates. Also 

during handling, transportation and maintenance, the 

edge is prone to damage. The fact that the Weibull 

distribution outperforms the normal and lognormal 

distributions in the case of edge only failure origins is an 

argument for adopting this model rather than the others. 

The lognormal distribution might seem like a better 

candidate than the normal distribution because the strength 

is a positive number and the lognormal model lacks support 

on the left-hand side of the real axis. Nevertheless, a better 

fit was indicated using the normal distribution. 

In summary, the Weibull distribution is 

recommended as a basic model for the edge strength of 

glass for reasons of empirical evidence and physics. The 

empirical evidence is that the Weibull model is generally 

superior to a normal and lognormal distribution and at 

least as good as a Gumbel distribution in the case of 

edge failure origins. For physics-based reasons, the 

extreme value Weibull and Gumbel models are 

preferable because they derive from the weakest-link 

principle and thus harmonize with an essential brittle 

material concept. In fact, assuming a population of 

material flaws with a unimodal crack size distribution that 

is Pareto, F, Cauchy, or t in the tail, the Weibull 

distribution can be deductively derived from the weakest-

link principle. This supposes that the stress state is 

uniform and uniaxial over each crack. In the case of the 

normal and lognormal distributions, however, there is no 

such failure-mechanism basis. However, the Weibull and 

Gumbel models are unsuited to represent the strength of 

glass when the fracture originates from the surface. 

Finally, there exist numerous strength prediction 

models for use with glass. For example, Monte Carlo 

simulations of glass fracture with stochastic Griffith flaws 

have recently been performed by Yankelevsky (2014), 

Pathirana et al. (2017), Yankelevsky et al. (2017),     

Osnes et al. (2018a; 2018b) and Kinsella and Persson 

(2018b). In such case, no closed form exists for the 

probability distribution. It could be an interesting future 

research project to compare the performance of a larger 

set of models over a comprehensive set of data samples. 

Conclusion 

Based on a large set of empirical data, the Weibull 

distribution outperforms the normal and lognormal 

distributions and is at least as good as a Gumbel 

distribution as a model for glass strength when the 

fracture data is selected to comprise edge only failure 

origins. In the case of surface only failure origins, it is 

indicated that the normal and lognormal distributions 

perform better than the extreme value distributions. The 

analysis of the surface strength is dependent on the 

sample size. A proper distinction between the tentative 

models is more straight-forward to make, the greater the 

sample sizes that are included in the analysis. It is 

suggested that when the minimum sample size is much 

smaller than 15 then no distinction is possible to make. 

The Weibull and Gumbel models have a logical basis in 

a failure-mechanism that applies to brittle glass 

behaviour assuming a weakest-link argument. The 

Weibull model is therefore recommended instead of a 

normal or lognormal distribution to model glass fracture 

when the edge strength is considered. The analysis of the 

surface strength distribution is complicated. This is 

probably due to the presence of multiple flaw 

populations. Neither extreme value Weibull or Gumbel 

nor normal or lognormal distributions are able to 

properly model the surface strength of glass. 
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Abstract The results from a new numerical method
for simulating the strength and fracture locations of
small glass specimens subjected to double ring bend-
ing are compared with experimental data. The method
implements the weakest-link principle while assuming
the existence of Griffith flaws. A Weibull distribution
for the strength is simulated based on a single popula-
tionofPareto distributed crack sizes. The effect of using
different fracture criteria is investigated. An alternative
distribution is simulated based on two populations of
flaws. This distribution models the apparent bimodal-
ity in the empirical data set. The numerical method is
dependent on a representation of the surface flaws con-
dition in glass. As new techniques become available
for examining the surface characteristics, this numeri-
cal method is promising as a means for modelling the
strength better than current methods do.
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1 Introduction

In order to explain and predict the strength of annealed
glass a range of concepts and methods have been
applied with mixed results. Typically, the strength is
explained assuming the existence of Griffith flaws and
supposing the weakest-link principle. Predictions are
based either on some standard distribution or on tables
and diagrams obtained using a modelling tool such
as the Glass Failure Prediction Model (GFPM) (Bea-
son and Morgan 1984). There is disagreement among
researchers as to which prediction model is the correct
one to use (Fischer-Cripps and Collins 1995). A range
of experiments have shown a consistent bilinearity in
the probability plots when the Weibull distribution is
used for modelling the strength of annealed glass (Veer
2007; Veer et al. 2009). As regards the GFPM, it has
been said that it “is best suited to representing glass
strength for specific test conditions.” (Reid 2007) Nei-
ther the standard distributions nor theGFPMare able to
consistently provide for an acceptable goodness-of-fit
whilemodelling data from experiments, something that
is called for in a predictionmodelwith true potential. At
the same time, structural glass is gaining in popularity
among designers and units are being installed in build-
ings and public spaces worldwide at an increasing rate.
The search for a failure prediction model is therefore
as topical as ever. Moreover, a study has indicated that
shear stress might affect the observed strength of glass
in double ring bending tests (Reid 2007). Shear stress
is generally not considered in current failure models
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for glass. In this article, a numerical method for pre-
dicting the failure of glass is investigated and applied
to double ring bending tests. The method is general
and can be applied to a range of specimen geome-
tries, loading setups and support conditions. The results
are compared with experimental data. The presented
method depends on a model that is based on fracture
mechanics and theweakest-link principle while assum-
ing a preexisting population of surface cracks. Stress
corrosion is not directly considered in this study. The
presented method should not be taken as a complete
and final strength design tool. The aim is to promote
a failure model for glass that is based on a logical and
tractable representation of the surface condition in glass
with a suitable consideration of the fracture mechanics.
With further research, this could in the end lead to an
improved strength design tool for use with glass.

2 Background

Flaws in glass are capable of promoting brittle failure
due to the lack in capacity for plastic flow.While assum-
ing that the surface contains a large number of minute
flaws that act like cracks, so-called Griffith flaws, it
is possible to explain the scatter in fracture location
observed in experiments. It also helps to explain the
variation in failure stress observed and the relatively
low strength attained in practice. Surface flaws arise
in the production line during manufacture as well as
in subsequent handling, transportation, assembly, use,
and maintenance. Bulk flaws are disregarded in the fol-
lowing, cf. Bourhis (2008). Griffith (1920) modelled
crack growth as a reversible thermodynamical process.
For a crack subjected to mode I opening displacement,
fracture is governed by the following criterion

KI ≤ KIc (1)

where KI is the Stress Intensity Factor (SIF) and
KIc denotes the fracture toughness (Irwin 1957). The
value of KIc for glass has been estimated at about
0.75 MPa m1/2 (Mencik 1992). It is assumed that the
individual cracks do not interact with each other. The
shape of a surface crack in glass is typically conceived
of as being either a long, straight-fronted plane crack
or a semi-circular crack (Haldimann 2006). There exist
several solutions to the calculation of the SIF for a semi-
circular crack subjected to a uniform tensile stress field
σn oriented perpendicular to the crack plane. Accord-

σ1

σ2
θ

Fig. 1 A plane crack subjected to a biaxial stress field with the
crack plane inclined at an angle θ in the coordinate system of the
principal stresses σ1 and σ2

ing to one solution the SIF at the deepest point on the
crack contour is (Newman and Raju 1981)

KI = 1.14 × 2

π

√
πa × σn (2)

where a denotes the crack depth, see also Thiemeier
et al. (1991). Figure 1 illustrates a crack subjected to
a biaxial stress field with the crack plane inclined at
an angle θ in the coordinate system of the principal
stresses σ1 and σ2. If the crack plane is oriented per-
pendicular to the Maximum Principal Tensile Stress
(MPTS) σ1 then

σn = σ1 (3)

is substituted into Eq. (2). Otherwise, the tensile stress
acting normal to the crack plane can be calculated as

σn = σ1 cos
2 θ + σ2 sin

2 θ (4)

The presence of shear stress does not have any effect in
a pure mode I fracture criterion. There exists a range of
fracture criteria for a crack subjected to both normal and
shear stresses while assuming mode I crack opening
andmode II in-plane shearing displacements. One such
mixed mode fracture criterion which is based on the
maximumnon-coplanar energy release rate (Hellen and
Blackburn 1975) is given by the following inequality

4
√
K 4
I + 6K 2

I K
2
II + K 4

II ≤ KIc (5)
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where the left-hand side of inequality (5) is a mode I-
equivalent SIF, cf. Thiemeier et al. (1991). For a semi-
circular crack KII can be approximated as (Thiemeier
et al. 1991)

KII = 1.14 × 4

π

1

2 − ν

√
πa × τ (6)

In Eq. (6) ν is Poisson’s ratio. τ is the shear stress in the
crack plane which can be calculated from the in-plane
principal stresses as

τ = 1

2
|σ1 − σ2| sin 2θ (7)

The idea that you can calculate the distribution of
macroscopic strength of a stressed solid by starting
from an analysis of the microscopic defects dates back
at least to Peirce (1926). Peirce (1926) formulated the
Weakest-Link Principle (WLP), i.e. that the strength of
a chain is governed by its weakest link, and applied it
in the study of the tensile strength of cotton yarn. Also
using the WLP, Weibull (1939) came up with the fol-
lowing distribution function for the strength of a brittle
solid

S = 1 − e−B , B ≥ 0 (8)

where B, denoted “the risk of rupture”, is a function
of body size and tensile stress. According to Weibull
(1939), a simple mathematical form that is in general
accord with experimental data is

B =
(σ

k

)m
, σ ≥ 0 (9)

where k and m denote the scale and shape parame-
ters, respectively. Inserting Eq. (9) into Eq. (8) gives
the standard two-parameter Weibull distribution func-
tion where k is also the 63rd percentile (Wachtman
et al. 2009). Various derivations of the strength dis-
tribution function for a brittle solid are offered by
e.g. Freudenthal (1968), Matthews et al. (1976), Bat-
dorf and Heinisch (1978), Evans and Jones (1978)
and Danzer (1992). In general, the derivation is based
on a subdivision of the stressed solid into regions.
It is assumed that there exists a population of non-
overlapping cracks which are distributed among the
regions. Each crack is associated with a critical stress.
It is assumed that the stress state varies slowly so that
all cracks within a subdivided region are subjected to
the same nominal stress. The solution methods, which
are analytical, vary. Also varying are certain assump-
tions, such as whether or not it is supposed that the
fracture of the crack depends only on the compo-
nent of stress normal to the crack plane, whether or

not there exist multiple crack populations, etc. Essen-
tially, the analytical expression for the strength distri-
bution is obtained through a limit operation in which
the region size shrinks infinitesimally while the num-
ber of subdivided regions increases indefinitely. All
these solution methods are capable of producing the
fundamental Eq. (8). However, the mathematics soon
become intractable when all but the simplest assump-
tions are made for the stress state, fracture criterion,
crack size distribution, flaw density, crack plane orien-
tation, and the existence of multiple flaw populations.
Yankelevsky (2014) offers a numerical solutionmethod
to the problem of determining the strength distribution
of a brittle solid while building upon the same gen-
eral ideas as in the aforementioned studies except that
the limit operation is not carried out. In other words, it
is not necessary to assume that a crack of some finite
size is contained within an infinitesimally small space,
cf. Afferrante et al. (2006). Yankelevsky illustrates the
method in a study of a glass square plate subjected to
bending. He neglects bulk flaws and considers failures
starting from the surface area only. The surface area of
the plate is subdivided into unit cells measuring 1 cm2.
One crack is distributed into each cell. The flaw size
density function proposed by Yankelevsky (2014) and
which is motivated for use with glass material can be
interpreted as a truncated exponential distribution. The
square plate is laterally supported along two opposite
edges and subjected to a line-load at midspan produc-
ing a uniaxial state of stress in the plane of the ten-
sioned surface. A Monte Carlo simulation is carried
out for a large sample of thousands of virtual speci-
mens. This numerical method offers a tractable way
of calculating the strength distribution as well as the
fracture location distribution for arbitrary stress states,
fracture criteria, crack plane orientations, crack size
distributions, and multiple flaw populations. However,
in Yankelevsky (2014), only a uniaxial tensile stress
field is considered where the cracks are stressed nor-
mal to their crack planes. Subcritical crack growth is
not considered. Nor is the method applied to a double
ring bending test which is quite a common and rela-
tively inexpensive method to evaluate the strength of
small glass plates (Dalgliesh and Taylor 1990).

Based on Hertzian indentation tests it has been sug-
gested that flaw size in glass can be closely fitted by
a Pareto distribution (Poloniecki and Wilshaw 1971;
Poloniecki 1974; Tandon et al. 2013). The Pareto dis-
tribution has the scale and shape parameters a0 > 0
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and c > 0 and the distribution function is (Forbes et al.
2010)

F(x) = 1 −
(a0
x

)c
, x ≥ a0 (10)

It has moreover been shown that the Weibull distribu-
tion function is derived from the WLP if it is assumed
that the surface flaws condition is represented by a sin-
gle population of crackswhose size is Pareto distributed
in the tail (Jayatilaka and Trustrum 1977). In this view
the Weibull shape parameter is a true material parame-
ter. Then, the relation between the shape parameters m
and c of the Weibull and Pareto distributions, respec-
tively, is found to be

m = 2c (11)

When stressed in an ambient atmosphere, glass
strength is reduced over time due to a process known
as static fatigue which is due to subcritical crack
growth, the effects of which are only observed when
the mode I SIF lies above a threshold limit value at
about 0.25 MPa m1/2 (Wiederhorn and Bolz 1970). In
Charles’ stress corrosion rate theory (Charles 1958a, b),
subcritical crack growth is explained as a thermally
activated chemical process whereby water moisture
interacts with tensile stress at the crack tip. Equa-
tion (12), however, often approximates observed values
of subcritical crack growth (Mencik 1992)

v = AKn
I (12)

where v is the subcritical crack growth velocity, A is a
constant, and n is the stress corrosion parameter. While
the value of n was repeatedly estimated at about 16 for
soda-lime glass in ambient conditions, the value of A at
50% relative humidity was estimated in a range span-
ning more than two orders of magnitude, see Schula
(2015) for an overview of those experiments. Hence,
it is generally challenging to predict subcritical crack
growth in ambient conditions.

3 Surface flaws concept

For the representationof the surfaceflaws condition,we
consider two models. The first one comprises a single
population of semi-circular edge cracks with a Pareto
distributed crack size. The second model comprises a
dual population of semi-circular edge cracks with a
Pareto and Fréchet distributed crack size, respectively.

In both cases, a choice of crack density at 2 cm−2 is
made. The purposewith the dual populationmodel pre-
sented here is to provide a logical basis for a strength
distributionwith a bimodality. The choice of crack den-
sity at 2 cm−2 is guided by the following observa-
tion. Based on optical scanning techniques applied to
a pair of small soda-lime silicate glass plates in the as-
received condition there were 632 flaws observed and
it was noted that the flaw mean density varied between
1.2 and 2.6 cm−2 for flaw sizes greater than approxi-
mately 8 microns (Wereszczak et al. 2014).

3.1 Single population model

For the single population model, it is assumed that the
cracks are uniformly distributed over the surface area of
the original plate and that the crack planes are oriented
between [0, π) according to a uniform distribution.

The logical basis for the selected choice of single
population model are the Hertzian indentation tests
that have been carried out in the past (Poloniecki and
Wilshaw 1971; Poloniecki 1974; Tandon et al. 2013)
and which have provided data that could be closely fit-
ted by a Pareto distribution, see Sect. 2.

3.2 Dual population model

For the dual populationmodel it is assumed that it com-
prises two populations of semi-circular edge cracks
with a Pareto and Fréchet distributed crack size, respec-
tively. All cracks are uniformly distributed over the sur-
face area of the original plate and the crack planes are
oriented perpendicular to the MPTS. The Pareto popu-
lation cracks represent large surface flaws. The Fréchet
cracks represent small surface flaws. It is assumed that
the number of Pareto cracks is a small fraction of the
total number of cracks. It is assumed that the fraction
is 0.002.

The logical basis for the dual populationmodel is the
following. First, glass fracture statistics tend to produce
bimodalities in the probability plots according to e.g.
Veer et al. (2009). In fact, the experiment considered
in Sect. 5 is no exception because the histogram of
the data appears to exhibit two modes, see also Fig. 3.
Other researchers have suggested to represent the sur-
face cracks using two populations. Mencik (1992) dis-
tinguishes between several populations of surface flaws
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according to their origin. In doing so, Mencik (1992)
distinguishes between a large flaws and a small flaws
population of cracks with relevance for the practical
engineering strength of glass. Mencik (1992) charac-
terizes the large flaws population as being responsible
for the tensile stress to decrease to 20–60 MPa. Sub-
stituting these values into Eq. (2) while assuming that
the SIF equals to 0.75 MPa m1/2, the corresponding
crack depth is found to be 94–850 microns. Mencik
(1992) characterizes the small flaws population as con-
taining cracks smaller than a hundredth of a millimeter
in depth. He associates this with a strength reduced
to 60–200 MPa. Substituting these values into Eq. (2)
yields a corresponding crack depth of 8–94 microns.
A statistical model for characterizing glass strength
when two flaw populations are superimposed due to
abrasive phenomena has been proposed in Pisano and
Carfagni (2017). Pathirana et al. (2017) implemented
a dual population of cracks in a numerical model for
the evaluation of the strength distribution in panels sub-
jected to point contact actions. Second, the choice for
the value of the fraction of large cracks, i.e. 0.002,
is guided by the following observation. Out of the
total number of flaws detected in the investigations by
Wereszczak et al. (2014), the proportion of large flaws
greater in size than or equal to about 200 microns was
approximately 0.002. This corresponds with a crack
depth of 100 microns assuming that the flaws are semi-
circular surface cracks. Taking a crack depth of about
100 microns as a value that separates large flaws from
small flaws is through adoption of the line of reason-
ing in Mencik (1992). Third, the logical basis for the
Pareto distribution are the Hertzian indentation tests
that have been carried out in the past and which have
beenmentioned earlier in this paper already. Fourth, the
logical basis for the Fréchet distribution is motivated
as follows. Assuming that small flaws are exceedingly
numerous, onemight select only the greatest small flaw
in a given region and let this one determine the fracture
mechanical behaviour of the small flaws population in
that region (Freudenthal 1968). Because it is assumed
that the cracks in the small population are abundant,
it is supposed that the selected crack plane is oriented
approximately normal to the maximum principal ten-
sile stress. If the numerous small flaws have an indepen-
dent Pareto size distribution then in the limit the largest
flaw size is Fréchet distributed (Beirlant et al. 2004).
For extreme-value theoretical reasons the greatest flaw
size among a large set of flaws whose size is iden-

tically and independently distributed is approximately
Fréchet distributed if the following holds (Horst 2009);
the sampled distribution has a range which is unlimited
from above and its distribution function F is such that
there exist some positive numbers k, A such that

lim
x→∞ xk(1 − F(x)) = A (13)

Hence, the Pareto distribution lies in the domain of
attraction of the Fréchet distribution (Beirlant et al.
2004).

4 Numerical modelling tool

Here follows a description of a numerical modelling
tool for the strength of glass plates in bending based
on an implementation of the weakest-link principle
and some concept for the surface flaws condition. The
numerical method adopted in this study is based on
the Monte Carlo simulation method carried out by
Yankelevsky (2014). The most important difference
between the present study and Yankelevsky (2014) is
that the present study considers multiple flaw popu-
lations with arbitrary crack plane orientations and a
mixed mode fracture criterion.

Float glass is usually produced and shipped in a stan-
dard size so-called jumbo plate with the dimensions
3.21 × 6.00 m2. Taking the standard jumbo plate as
a starting point, the plate is subdivided into unit cells
of 1 mm2. This cell size provides a reasonable com-
promise between resolution and computational cost.
A set of flaws are randomly scattered across the cells
according to a uniform distribution, although in gen-
eral another spatial distribution could be adopted. It is
supposed that the stochastic orientation of the crack
planes is uniformly distributed. This assumption might
not be conservative, however, if there is a tendency for
the flaws to lie in some particular direction due to e.g.
machining abrasion or contact with the rollers during
manufacture. The total number of flaws on the jumbo
plate is fixed and depends on the flaw density. It is
assumed that the flaw density is 2 cm−2 yielding a total
of 385,200 flaws on either face of the plate. Each flaw is
independently assigned a size based on some statistical
distribution function which depends on the particular
flaws concept that is adopted. The random flaws are
resampled in each new simulation of the jumbo plate.
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a b c

Fig. 2 Main steps leading up to the creation of the SIF envelope.
a Random flaws are sampled and located across the unit cells.
b The bending stresses are determined and compared with the
flaws. c The resulting SIFs with magnitudes illustrated by discs

are calculated based on one of the fracture criteria. The large
white disc represents the critical event that the SIF exceeds the
fracture toughness

The stochastics of the flaws are the location, the orien-
tation in the plane, and the size. Next, a specimen of
given dimensions is extracted and separated from the
jumbo plate. In the following the cut out specimen is
analysed.

The cut out specimen is subjected to an arbitrary
loading in increments and the stress field history at the
centre of each flaw-containing unit cell determined. It
is supposed that the load type is such that tensile stress
actually develops on the face of the cut out specimen
otherwise failure will not be detected based on fracture
mechanics. In general the stress response is non-linear.
The loading increment is chosen so as to produce a ten-
sile stress increase of nomore than 1MPaper increment
anywhere on the specimen. However, if the response is
linear then it suffices with one increment and to scale
the results. The complete stress history needs only to be
calculated once for a given loading type and specimen
geometry because the stochastics of the cracks do not
affect the distribution of nominal bending stresses. It is
assumed that the sum of load increments is sufficiently
large in relation to the given flaw characteristics, i.e.
flaw density, flaw size distribution, etc., to prompt frac-
ture. Otherwise, failure might not have been detected
by the end of the last load increment. There exists a
SIF envelope that meets with the fracture toughness at
some point in time, the smallest of which is identified
as the time of failure. If the crack planes are always
oriented perpendicular to the MPTS then the SIF enve-
lope is calculated using Eqs. (2) and (3). For reference,
this case is denoted MPTS mode I fracture criterion.
If the crack planes are inclined at an oblique angle in

the coordinate system of the principal stresses while
mode I opening displacement is considered then the
SIF envelope is calculated using Eqs. (2) and (4). This
case is denoted oblique angle mode I fracture criterion.
If both mode I opening and mode II shearing displace-
ments are accounted for then the SIF envelope is cal-
culated using the left-hand side of inequality (5). This
is the mixed mode fracture criterion. By token of the
WLP, the fracture origin is determined from the first
unit cell that contains a flaw with a SIF exceeding the
fracture toughness. A search algorithm is used to detect
this cell. By carrying out simulations on a whole series
of cut out specimens it is possible to obtain a sample of
the fracture stress which is defined as the MPTS at the
failure origin. In this study the number of cut out spec-
imens in a simulation series is 5,000. This sample size
offers a reasonable compromise between precision and
computational cost. Figure 2 illustrates the main steps
leading up to the creation of the SIF envelope; (a) the
flaw stochastics are sampled, (b) the in-plane principal
stresses are determined at each load increment and (c)
the SIF envelope is calculated per load increment based
on either of the fracture criteria. Failure is prompted
at the first instance of intersection between SIF enve-
lope and fracture toughness (white disc). Likewise, the
failure origin is determined by the first unit cell that
contains a SIF which exceeds the fracture toughness.
The so-called critical stress is the uniform tensile stress
perpendicular to a given crack plane that would bring
about failure with a pure mode I fracture criterion. The
critical stress can be calculated with Eqs. (1) and (2).

123



A numerical method for analysis of fracture

5 Experimental data comparison

Double ring bending tests are frequently carried out to
evaluate the strength of glass. In this testing device a
glass plate is supported on a reaction ring and subjected
to an applied loading through a smaller concentric ring
on its opposite side.An equibiaxial state of stress is pro-
duced within the loading ring. Failures that start from
edges are eliminated because tensile stress diminishes
near the edges. Some experimenters discard any obser-
vation associatedwith a failure originating fromoutside
the loading ring radius. Simiu et al. (1984) carried out
experiments on 56 small square glass plates in double
ring bending. The plates had the nominal dimensions
179× 179× 6 mm3. The mean thickness was 5.4 mm.
The glass was new in the as-received condition and
it had been obtained from the same manufacturer and
batch. The loading ring radius was 25.4 mm and the
segmented reaction ring radius 60.3 mm. All speci-
mens were subjected to ramp loads that generated an
average rate of stress of 0.8 MPa/s inside the loading
ring. The load-duration until failure ranged from 48 to
117 s. It is not known whether it was the tin side or
air side of the glass plates that was subjected to tensile
stress. The tin side is defined as the side of the glass
that was in contact with the molten tin bath in the float
process production method.

This experiment is selected for a number of reasons.
The data report is complete with values for the fracture
stress even when the failure originated from outside
the loading ring. Because Simiu et al. (1984) reported
the fracture locations it is possible to make compar-
isons with the simulated failure origin data. The data
is challenging to model. A Weibull distribution for the
strength can be rejected, cf. Sect. 6.1. The modelling
of the surface flaws condition is simplified when edge
failures are eliminated.

Using a formula for a flat circular plate of constant
thickness, Simiu et al. (1984) calculated the in-plane
MPTS for each fractured specimen. The stress was cal-
culated at the centre of the plate, evenwhen the fracture
origin was not located within the loading ring radius.
Twelve of the data points, however, were associated
with failures originating from outside the loading ring.
Those values have been readjusted by this author in
order to reflect the MPTS at the actual failure loca-
tion rather than the MPTS inside the loading ring. The
adjustments were made based on finite element cal-
culations with the computer software ABAQUS/CAE

(2013). The loading rings were modelled by analytic
rigid surfaces. The glass part was modelled with 20-
node quadratic solid elementswith reduced integration,
although it would also be possible to use continuum
shell elements. The number of through-the-thickness
elements was 5 and the number of elements in the
plane was about 9500. Only a quarter of the plate was
modelled for symmetry reasons. It was assumed that
Young’s modulus is 70 GPa and Poisson’s ratio is 0.23
(Bourhis 2008). A friction coefficient of 0.1 was used
inmodelling the contact between loading ring and glass
parts.

6 Results

Virtual glass specimenswere tested until failure in dou-
ble ring bending and the results were compared with
data from the experiment conducted by Simiu et al.
(1984). The analysis was carried out using the software
ABAQUS/CAE (2013) andMATLAB (2016). The fol-
lowing cases were investigated, viz. a single population
of Pareto distributed flaw sizes using either the MPTS
mode I fracture criterion or oblique angle mode I crite-
rion or the mixed mode criterion, and a two-population
concept for the flaw sizes using only the MPTS mode I
fracture criterion.

6.1 Single population of flaws

A fracture stress distribution was simulated based
on the oblique angle mode I fracture criterion, cf.
Eqs. (1), (2) and (4) while supposing that the sur-
face condition is characterized by a single population
of Pareto distributed flaw sizes. This is illustrated in
Fig. 3a and the values shown are the MPTS at the fail-
ure origins. The histogram in Fig. 3a is normalized so
as to reflect a probability density function. The area of
each bar is the relative number of observations. The
total sum of the bar areas is less than or equal to 1
depending on whether or not some of the data lies out-
side the bin limits. The sampled distribution was com-
pared with a Weibull distribution and the goodness-of-
fit was tested using the Anderson–Darling (AD) statis-
tic (D’Agostino and Stephens 1986). No significance
was obtained in a test at the 5% level. The simulated dis-
tribution appears to be indistinguishable fromaWeibull
distribution. An ordinary Weibull distribution was fit-
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Fig. 3 Simulated and
empirical fracture stress
and failure location
distributions. Semi-
transparent (red) histograms
represent the empirical data.
Opaque (black) histograms
represent the simulated data.
Overlapping histograms are
dark red. Sturges binning
method was used for the
simulated data sets
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ted to the empirical data set using the maximum likeli-
hood method and the estimated parameter values were
k = 78 MPa and m = 3.8. Using the AD statistic
it could be rejected at the 0.4% level that the empiri-
cal data set is Weibull distributed. The simulated dis-
tribution was optimized so as to match the ordinary
Weibull model which was fitted to the empirical data.
The optimization was carried out by varying the under-
lying Pareto distribution parameters until the simulated
strength distribution was similar to the Weibull distri-
bution that was fitted to the empirical data. The sim-
ilarity was measured by fitting a Weibull distribution
to the simulated sample and comparing the so fitted
Weibull parameters with the parameter estimates of
the Weibull model that was fitted to the empirical data
set. See Fig. 3a where both the empirical data set (red
bars), the fittedWeibull density function (solid line) and
the simulated distribution (black bars) are illustrated.

Table 1 Pareto parameter values that generated an estimated
Weibull distribution with the scale and shape parameters k =
78 MPa and m = 3.8 while using the numerical method

Fracture criterion Scale param. (µm) Shape param.

MPTS 8.4 2.34

Oblique angle 8.3 2.13

Mixed mode 8.8 2.26

The strength distribution was further simulated using
the MPTS mode I criterion and the mixed mode crite-
rion. The Pareto parameters were selected so that the
strength distribution could be fitted by a Weibull dis-
tribution with scale and shape parameters k = 78 MPa
and m = 3.8. Table 1 contains the Pareto parameter
values so far discussed according to the three fracture
criteria.
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Fig. 4 Left: Simulated
fracture locations. Right:
Critical stresses in a single
cut out specimen
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In Fig. 3b the simulated fracture locations in the
radial direction are shown together with the empiri-
cal for the oblique angle mode I case. Using a two-
sample AD test (Scholz and Stephens 1987; Trujillo
et al. 2007), a significant deviation between the pair of
data sets could be detected. The spatial distribution of
failures is further illustrated in Fig. 4a.

The critical stresses in a single cut out specimen are
obtained by solving for σn in Eq. (2) after substituting
for the fracture toughness value in Eq. (1) as illustrated
in Fig. 4b.

Considering the various fracture criteria, the follow-
ing was noted while using identical Pareto parame-
ter values for generating the strength distribution. The
mode I fracture criterion in the oblique angle case pro-
duced only a very small difference in the strength data
sample compared with the mixed mode criterion, cf.
Eqs. (1), (2), (4) and (5). The 63rd percentiles deviated
by less than 3%. However, taking mode II shearing dis-
placement into consideration increased the proportion
of failures originating from outside the loading ring
by 20%. Comparing the flaw-orientation independent
MPTSmode I criterion, Eqs. (1), (2) and (3), with either
of the two other criteria yielded a significant difference
in the data samples; the 63rd percentile of the simu-
lated strength was more than 10% lower while using
the MPTS case. The proportion of failures originating
from outside the loading ring increased by over 60%.
The results are illustrated in Fig. 5.

6.2 Two populations of flaws

It is possible to obtain a simulated distribution like the
one shown in Fig. 3c while assuming that the flaws

originate from two different populations, see Sect. 3.
The flaw model parameters are given in Table 2. The
resulting distribution could not be distinguished from
the empirical data set with any statistical significance
at the 5% level judging from the two-sample AD test
statistic (p = 0.64). In Fig. 3d the simulated fracture
locations are shown together with the empirical. It was
found using the same test statistic that a significant
departure exists from the hypothesis that the experi-
mental and simulated fracture location data sets come
from equal distributions.

7 Discussion

Providing for consistency in a glass failure prediction
model calls for its foundation to be laid on physically
sound concepts such as the WLP. The WLP captures
an essential feature of brittle material failure. The exis-
tence of Griffith flaws is another physical concept to
build upon. The Weibull distribution implements the
WLPwhichmakes it an attractive choice for a glass fail-
ure predictionmodel, at least from a theoretical point of
view. All major standards including the European draft
of aEurocode of glass acknowledgeWeibull’s Eq. (8) in
one form or another (prEN 16612:2013). A number of
studies, however, have indicated that theWeibull distri-
bution does not provide a superior fit compared with a
lognormal or normal distribution (Lü 1997; Calderone
et al. 2001; Veer et al. 2009; Huerta et al. 2011; Kin-
sella and Persson 2016). It has been noted that the
estimated value of the Weibull shape parameter varies
quite significantly from one sample to another in exper-
iments (Ritter et al. 1985; Carre 1996; Huerta et al.
2011). Some researchers have called for abandoning
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Fig. 5 Left: Oblique angle
versus MPTS mode I
fracture criterion. Right:
Oblique angle mode I
versus mixed mode fracture
criterion. Semi-transparent
(red) bars indicate the
oblique angle mode I data.
Overlapping histograms are
dark red
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Table 2 Pareto and Fréchet parameter values used in the dual
population model that was implemented with the numerical
method

Pareto Fréchet

Scale (μm) Shape Scale (μm) Shape

130 4.0 11 3.0

the Weibull model altogether in favour of a normal or
lognormal distribution (Calderone et al. 2001). But to
adopt a normal distribution in this case is to favour with
a model lacking in failure-based physical concept. In
contrast, by using the numerical method in this paper it
is possible to keep intact the WLP as well as the Grif-
fith flaws assumption while producing data fits equal
or superior to the Weibull model. Figure 3a illustrates
that it is possible to simulate a Weibull distribution
using this numerical tool while assuming that the sur-

face flaws are sampled from one single population of
Pareto distributed sizes. In keeping with recent exper-
imental findings using optical scanning techniques, cf.
Wereszczak et al. (2014), it was assumed that the flaw
density is 2 cm−2. From a theoretical point of view, the
shape parameter of the simulated Weibull distribution
should relate with the Pareto shape parameter accord-
ing to Eq. (11) if the stress state is uniform uniaxial.
At any rate, the Weibull distribution doesn’t actually
model the experimental data that was compared with.

While exploring the possibility of implementing two
flaw populations, the idea is to distinguish between one
large flaws population of flaws greater in depth than
about 100 microns and one smaller flaws population.
An idea along a similar line was proposed by Mencik
(1992), cf. Sect. 3. The purpose is tomodel the bimodal-
ity that is frequently encountered in the strength distri-
bution from practical experiments. Turning to Fig. 3c
it is evident that an acceptable fit can be achieved with
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Table 3 Weibull shape parameter estimates from 16 experiments on new annealed glass plates in double ring bending, tested in ambient
conditions

Reference Load. ring diam. (mm) Approx. stress rate (MPa/s) Sample size Weib. shape param.

Peeken (1982)a 600 2 97 10.1

Peeken (1982)a 600 2 99 11.3

Simiu et al. (1984) 51 0.8 56 4.0

Simiu et al. (1984) 51 1.0 29 3.6

Mellmann and Maultzsch (1989)a 600 2 113 5.1

Mellmann and Maultzsch (1989)a 600 2 108 3.9

Fink (2000) 55 2 20 3.5

Fink (2000) 55 2 107 5.9

Overend (2002) 51 0.7 10 2.4

Overend (2002) 51 0.9 10 1.8

Overend (2002) 51 0.6 10 4.9

Haldimann (2006) 51 0.2 10 3.7

Haldimann (2006) 51 21 10 4.2

Postigo (2010)b 180 2.4 41 2.9

Schula (2015) 80 2 15 7.8

Muniz et al. (2016) 60 2 28 4.5

aObtained from Sedlacek et al. (1999)
bObtained from Huerta et al. (2011)

a two-population flaws concept. Moreover, this fit is at
least as good as thefittedWeibullmodel inFig. 3a as can
be seen by comparing the p-values from the AD tests.
Moreover, the tail of the distribution is important when
calculating the design value. Therefore, when choosing
between the simulated distributions as seen in Fig. 3a
and c, as a matter of fact, the ordinaryWeibull distribu-
tion appears to provide themost conservative approach.

With a two-parameterWeibull distribution, only two
parameters are fitted to the data. With the numerical
model presented in this paper, the Pareto and Fréchet
distributions each require two parameters. As the num-
ber of parameters increase, it is only logical that a better
fit might be produced. Therefore, the outcome while
comparing Fig. 3a with c is rather predictable. How-
ever, if it were possible to estimate some of the surface
flaw parameters a priori, the numerical modelling tool
would gain in potential. Then, these parameter esti-
mates would be based on the material physics. There
is a need for more data on the surface flaws condition
in glass. Up to date, the published data is scarce. As
new techniques become available for examination and
assessment of the surface condition in glass, more reli-
able input data will likely become available for use in
this kind of numerical prediction tool.

Moreover, with this numerical tool it is possible to
simulate the distribution of fracture locations. The sim-
ulations were not quite able to model the empirical dis-
tribution of fracture location. This is due to the lower
mean value in the simulations as well as the longer tail,
cf. Fig. 3b and d. However, it may also be due to the fact
that a large number of fractures in the empirical data set
occured at the loading ring contact circle. About one
in five specimens failed under the loading ring. This
could have an impact not only on the failure location
statistics but also on the fracture stress statistics.

The Weibull shape parameter value that was esti-
mated based on the double ring bending experiment
carried out by Simiu et al. (1984), i.e. m = 3.8, might
indicate a high dispersion for the experimental data
because the value is quite low. The data refers to an
experimental campaign carried out almost 40years ago.
In order to investigate the dispersion, a table was orga-
nized, cf. Table 3,which contains the estimatedWeibull
shape parameter values from a range of experiments
with the double ring bending device. All listed items
in Table 3 refer to experiments on new, annealed glass
that was tested in ambient conditions. The experiment
carried out by Simiu et al. (1984) is included in Table 3
where the estimated shape parameter value was based
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on the original data, unadjusted with respect to the true
stress at the fracture origin, see also Sect. 5. The results
found in Table 3 show clearly that there appears to
be nothing unusual about the estimated Weibull shape
parameter value in the experimental data of Simiu et al.
(1984). However, it is possible that the estimated shape
parameter values in Table 3 were affected by the fol-
lowing circumstances. The table comprises both the
results from glass tested with the tin side in tension
and glass tested with the air side in tension. It has been
noted that some experimentswith the double ring bend-
ing device generate a substantial number of fractures
near the loading ring contact area, see e.g. Simiu et al.
(1984).

Reid (2007) studied the proportion of failures occur-
ing inside and outside the loading ring in coaxial double
ring bending tests and compared the observed results
with what might be expected based on theoretical con-
siderations using Weibull statistics. He found that a
series of 59 small specimens of annealed plates 6 mm
in thickness produced anomalous results. The propor-
tion of failures occuring outside the loading ring was
substantially greater than expected. Reid hypothesized
that this might be related to the glass having to with-
stand shear stresses outside the loading ring. Due to
the equibiaxial state of stress within the loading ring,
shear stresses are not present there. Our results show
that if a uniformly distributedflaworientation is consid-
ered in the fracture criterion, then there is a significant
effect on the observed proportion of failures originat-
ing from outside the loading ring while taking mode II
shearing displacement into consideration. The propor-
tion increases by 20% with the mixed mode failure
criterion. However, disregarding flaw orientation alto-
gether in the fracture criterion, i.e. considering only the
MPTS, yields the highest proportion of failures orig-
inating from outside the loading ring. Our results are
therefore not conclusive with respect to Reid’s hypoth-
esis. It depends on whether or not it is assumed that
flaw orientation matters. More experiments need to be
carried out in order to verify or disprove this hypothe-
sis while taking note of the fracture statistics of failures
occuring outside the loading ring.

Although the simulations are more time-consuming
than fitting a standard statistical distribution, signifi-
cant improvements in computational efficiency can cer-
tainly be made. There is mounting evidence in the lit-
erature, see e.g. Veer (2007), that the fitted models for
glass fracture data in general are lacking in potential

when using a standard distribution such as the Weibull
or Normal distributions. The present study was under-
taken in order to explore a novel approach towards the
failure prediction of glass. In order to further validate
thismethod,more experiments could be carried out and
the surface condition of glass should be investigated
further.

The effects of stress corrosion on the strength of
glass were neglected in this study. In a future paper,
the implementation of subcritical crack growth into the
numerical method will be considered.

8 Conclusions

Using anumerical simulation tool basedon theweakest-
link principle and assuming the existence of Griffith
flaws it is possible to simulate a Weibull distribution
for the strength of glass. The incorporation of mode II
shearing displacement into the fracture criterion has
only a very small impact on the simulated strength dis-
tribution when the glass is subjected to double ring
bending. In the case of small plates in double ring bend-
ingwhere edge failures can be neglected, it is feasible to
model the strength based on a large-flaws and a small-
flaws concept while capturing a bimodality in the data
set. There is a need for more knowledge and data on
the surface condition in glass.
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An Analysis of Glass Fracture Statistics 
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A numerical method is applied to model the fracture stress and failure location in glass panes subjected to various 
bending arrangements. The method assumes the weakest-link principle and the existence of surface microcracks. The 
fracture stress and failure origin are revealed through a search algorithm. The magnitude of strength and the location of 
fracture are stochastic in nature and can be predicted based on a suitable representation of the surface flaws condition. 
When the crack size distribution is assumed to be Pareto, the strength distribution is found to be very similar to a 
Weibull distribution. The stresses in large laterally supported plates which are subjected to uniform pressure are 
modelled and the distribution of fracture location is determined based on a single population of cracks with a Pareto 
distributed crack size. Two types of gasket support materials are considered, neoprene and nylon. The softer gasket 
material produces a greater number of fractures nearer the corners of the plate. A comparison is made with the 
recorded fracture locations according to various experiments. In addition, a tall vertical panel of laminated glass with a 
complex geometry and which is subjected to dynamic impact loading is modelled and the distribution of fracture 
location is determined based on a single population of cracks with a Pareto distributed crack size. 

Keywords: Glass, fracture statistics, fracture mechanics, Monte Carlo 

1. Introduction 
Various models for predicting the fracture stress have been proposed for use on glass (Beason and Morgan 1984, 
Sedlacek et al. 1999). Some of the models have been implemented in national building codes (DIN 18008-1, ASTM 
E 1300-04). The failure models proved to have potential for prediction-making within limited domains. However, 
making accurate predictions of the strength remains a challenge to the general design case of a glass structure with 
varying boundary conditions and loading types. In fact, large safety factors are implemented in the building codes. 
Until recently, little attention was paid to the prediction of fracture location. In the following, a method for 
predicting the failure stress as well as the failure origin of a glass plate subjected to both static and dynamic loading 
is investigated. The method which assumes the existence of surface microcracks and the governing principle of the 
weakest-link is applied to different specimen geometries and loading setups. The results are compared with 
experimental data. 

2. Background 
The strength of a glass pane can be revealed by subjecting it to bending until it breaks while noting the fracture load 
(or pressure). The fracture stress at the origin of failure can be calculated assuming that the fracture location is 
known. The observed fracture stress varies generally within a large range of about 20-200 MPa and is further 
dependent on a number of factors including the load history, the surface condition (new or weathered or artificially 
scratched), the size of surface area in tension, the environmental conditions in particular the relative humidity, and 
the origin of failure, i.e. edge or surface (Mencik 1992). 

It has been suggested to use a Weibull distribution for predicting the strength of a structural unit made from 
annealed float glass (Weibull 1939; prEN 16612:2017). In Eq. (1), the Weibull distribution function for the strength 
σ is given where k and m denote the scale and shape parameters, respectively.  

𝐹(𝜎) = 1 − 𝑒)
*
+

,

 (1) 

It has also been suggested to make predictions of the strength based on the Glass Failure Prediction Model (GFPM) 
(Beason and Morgan 1984). The GFPM was calibrated with experiments in which uniform lateral pressure was 
applied to full-scale plates with continuous lateral support along all four edges. The American building code ASTM 
E 1300 implements the GFPM. 

The scatter in failure stress magnitude can be explained by assuming that fracture is governed by microscopic 
surface flaws. Tensile stress is magnified in a localized region near the flaw tip (Griffith 1920). Flaws in glass can 
cause brittle failure because of the lack in capacity for plastic flow. Surface flaws arise in the production line during 
manufacture as well as in subsequent handling, transportation, assembly, use, and maintenance. Bulk flaws are 
disregarded as potential fracture sites in the following. 
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Variations in the surface condition of glass causes the observed strength to scatter, in general, for some given set of 
glass specimens, even when identical testing arrangements and specimen geometries are maintained. In fact, 
experiments have shown that even when the specimens are extracted from the same original standard size plate, the 
so-called jumbo plate, significant variations in the observed strength remain (Veer et al. 2009; Veer and Rodichev 
2011; Vandebroek et al. 2014). Hence, surface flaw characteristics vary significantly not just between plates from 
different manufacturing batches but also between plates in the same batch. 

In this paper, we consider semi-circular cracks that are uniformly distributed over the surface of some glass 
specimen. The corresponding mode I stress intensity factor (SIF) is determined using the following equation with a 
referring to the crack depth (Irwin 1957; Newman and Raju 1981) 

nI aK sp
p
214.1=  (2) 

In Eq. (2), σn is the tensile stress normal to the crack plane. The mode I fracture criterion is 

IcI KK £  (3) 

and it is assumed that the fracture toughness KIc equals to 0.75 MPa m½ (Mencik 1992). It is assumed that the 
individual cracks do not interact with each other. As a mixed mode criterion we take 

IcIIIIII KKKKK £+++4 4224 )(6  (4) 

which is based on the maximum non-coplanar energy release rate (Hellen and Blackburn 1975), see also Thiemeier 
et al. (1991). In Eq. (4), KII can be approximated as (Thiemeier et al. 1991)  

tp
np

aKII -
=

2
1414.1  (5) 

with ν referring to Poisson's ratio and τ the shear stress in the crack plane. 

According to experimens with Hertzian indentation fracture in glass, flaw size can be closely fitted by a Pareto 
distribution (Poloniecki and Wilshaw 1971; Tandon et al. 2013). The Pareto distribution is (Forbes et al. 2010)  

c

a
aaF ÷
ø
ö

ç
è
æ-= 01)(  (6) 

where the scale and shape parameters are a0 and c, respectively. It has been demonstrated that the Weibull 
distribution function can be derived from the WLP while assuming that the surface flaws condition is represented by 
a single population of cracks with a crack depth that is Pareto distributed (Jayatilaka and Trustrum 1977). It is then 
supposed that the stress state is uniform tensile and that the crack planes are oriented normal to the uniaxial stress. 
Let f(a) denote the probability density function of the crack depth. Then the probability of failure at stress σ for a 
single crack is 

ò
¥

=
ca

daafF )()(s  (7) 

where ac is the critical crack depth that prompts failure for a crack subjected to tensile stress perpendicular to the 
crack plane. The critical crack depth is obtained through combination of Eqs. (2) and (3) 

22

2

psY
Ka Ic

c =  (8) 

where for the sake of convenience, the geometry factor Y has been substituted for. The geometry factor is in this 
case given by 
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p
214.1=Y  (9) 

Supposing that crack depth is Pareto distributed, we derive from Eqs. (6) and (7) while substituting for Eq. (8) that 
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For N cracks, the probability of failure, Pf, is given by the following equation, supposing the WLP 

( )Nf FP )(11 s--=  (11) 

When N is large, Eq. (11) can be approximated by the following equation which can be shown by performing a 
Taylor series expansion 

( ))(exp1 sNFPf --=  (12) 

so that for large N, we have approximately 
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Eq. (13) can be simplified to Eq. (1), i.e. the Weibull distribution function, with the scale parameter 

c

Ic

NaY

Kk
2
1

0p
=  (14) 

and the shape parameter 

cm 2=  (15) 

Hence, it is possible to calculate the distribution of macroscopic strength of a stressed solid by starting from an 
analysis of the microscopic defects and applying the WLP. Others who have considered this include e.g. Matthews 
et al. (1976) and Batdorf and Heinisch (1978). However, the mathematics soon become intractable as various 
assumptions are made for the stress state, fracture criterion, crack size distribution, flaw density, crack plane 
orientation, and the existence of multiple flaw populations.  

Stress corrosion causes subcritical crack growth when the glass is stressed in tension in an ambient atmosphere 
which relates, in particular, to the relative humidity being greater than zero (Charles 1958a, 1958b). However, 
subcritical crack growth is only observed when the mode I SIF exceeds a threshold limit value estimated at about 
0.25 MPa m1/2 (Wiederhorn and Bolz 1970). In this paper the effect of stress corrosion is neglected. 

3. Numerical method 
Yankelevsky (2014) proposed a numerical solution method for calculating the strength distribution of a brittle solid 
that starts from an analysis of the microscopic defects. The weakest-link principle was applied in Monte Carlo 
simulations with Griffith flaws to model the fracture stress and fracture location of square glass plates subjected to 
bending. In Yankelevsky (2014), the plates were laterally supported along two opposite edges and subjected to a 
line-load at midspan. A Monte Carlo simulation was carried out for a large sample of 5000 virtual specimens. The 
method offers a tractable way to calculate the distribution of strength and fracture location for arbitrary stress states, 
fracture criteria, crack plane orientations, and crack size distributions, while allowing for the implementation of 
multiple flaw populations. The standard size so-called jumbo plate which measures 3.21x6.00 m2 is taken as a 
starting point. The surface area is divided into unit cells and cracks are distributed over the cells according to a 
uniform distribution. It is supposed that the orientation of the crack plane is uniformly distributed. In this study, the 
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total number of cracks on the jumbo plate is fixed and depends on the flaw density. It is assumed for the model that 
the flaw density is 2 cm-2 (Wereszczak et al. 2014). The sampled crack size is based on some statistical distribution, 
e.g. the Pareto distribution. The random flaws are resampled each time a new jumbo plate is modelled. In summary, 
the stochastics of the flaws comprise the location, the crack plane orientation, and the size. A specimen is extracted 
from the jumbo plate and analyzed. The analysis depends on a comparison of the cracks with the time-dependent 
stress field using fracture mechanics. However, the stress distribution over time only needs to be calculated once for 
any given specimen type and bending arrangement. It is the distributed set of cracks that is resampled in each new 
simulation of the glass fracture. Fracture is prompted when the SIF envelope for the first time intersects with the 
fracture toughness. When this happens, the fracture stress and location can be determined based on the first unit cell 
that contains a failing crack. 

In a recent paper (Kinsella and Persson 2018), this type of numerical method was applied to model the fracture 
stress and failure location of small glass plates subjected to double ring bending. The results allowed for making 
comparisons between different fracture criteria. Furthermore, a dual population concept of flaws was fitted to model 
the fracture stress in an empirical data set, the purpose of which was to model the apparent bimodality in the fracture 
stress distribution (Simiu et al. 1984). Glass fracture data tends to exhibit bimodalities (Veer et al. 2009). 

This kind of numerical method was also used by Pathirana et al. (2017) who implemented a dual population concept 
in Monte Carlo simulations of Griffith flaws for the determination of the strength distribution in panels subjected to 
point contact actions. 

4. Application to laterally supported plates subjected to uniform pressure 
In this paper, the results from new simulations are presented that were carried out using the numerical method 
described in Sec. 3. The results pertain to laterally supported plates subjected to uniform pressure. As a background, 
the following is noted. Bending tests that record the fracture location in new full-scale plates which are laterally 
supported along all four edges and subjected to uniform pressure have previously been carried out by Johar (1981, 
1982), Kanabolo and Norville (1985), and Calderone (1999). In Johar’s and Kanabolo and Norville’s experiments, 
the glass plates were supported between (approximately) 6 mm wide neoprene gaskets. In Calderone’s experiment, 
20 mm thick nylon gaskets were used. The plate nominal thickness was 6 mm in all experiments whereas the 
average thickness was 5.8 mm. Tab. 1 lists the sample sizes as well as the relative frequency of surface failures to 
edge failures. In Tab. 1, only those failures which were unambiguously identified as originating from either the 
surface or the edge were included in the statistics. In other words, when there was recorded multiple potential 
fracture origins which included a mixture of surface and edge sites, these were not counted and included in the Tab. 
1 statistics. This was done for the sake of consistency because it is generally believed that the edge condition and 
hence the edge strength differs from the surface condition. Fig. 1 shows the recorded fracture locations and depicts 
the various plate dimensions that were used in the experiments. 

Two square plates measuring 1200x1200 mm2 and with a thickness of 5.8 mm were modelled using the FEM with 
ABAQUS/CAE (2013). The plates were laterally supported along all four edges between continuous 6 mm wide 
gaskets which were 6 mm in thickness. In one case the gasket material was neoprene (Shore A55) and in the other 
case it was nylon. The neoprene was modelled as an incompressible Neo-Hookean hyperelastic material with shear 
modulus G=1 MPa (Gent 2012). The nylon was modelled as an isotropic linear elastic material with Young’s 
modulus E=3 GPa and Poisson’s ratio ν=0.34. The gaskets were rigidly supported on the side opposite to the contact 
surface with the glass. A friction coefficient of 0.19 was adopted for the contact between gasket and glass. The glass 
material was assumed to have a Young’s modulus E=72 GPa and a Poisson’s ratio ν=0.23. Solid-shell elements 
were used for the glass part while employing a quadrilateral mesh generator. Hybrid elements were used for the 
hyperelastic material parts. In the case of the neoprene material, an adaptive meshing technique was employed for 
the gasket parts to improve the convergence. For symmetry reasons only one quarter of the plate was modelled. The 
plate was subjected to uniform lateral pressure. Fig. 2 shows the deformed state of the plate as seen from one corner 
when the gasket material was neoprene. Figs. 3 and 4 show the maximum in-plane principal stresses on the “tension” 
and “compression” sides of the plate, respectively, for both plates at a pressure magnitude of 40 kPa. The maximum 
tensile stress at this pressure was 97 MPa (nylon) and 164 MPa (neoprene), respectively, on the “tension” side, and 
165 MPa (nylon) and 48 MPa (neoprene), respectively, on the “compression” side. The “tension” side refers to the 
side of the plate that is in tension at the centre point. The results show that with the softer gasket material, the tensile 
stresses concentrated nearer towards the edges of the plate. In fact, on the “tension” side, the maximum tensile stress 
was also significantly greater in this case. However, with the harder gasket material, it was observed that on the 
“compression” side, there is a very high build-up of tensile stress near the edges. 
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The strength and fracture locations were simulated using the numerical method that was described in Sec. 3. It was 
assumed that the surface condition is characterized by a single population of semi-circular cracks with a Pareto 
distributed crack depth. The Pareto scale and shape parameter values were chosen as a0=4 µm and c=3.0, 
respectively, cf. Eq. (6). The cracks were uniformly distributed over the surface area and the unit cell size was 5x5 
mm2. The crack density was 2 cm-2. The motivation behind the choice of Pareto distribution parameter values comes 
from assuming a Weibull distribution for the strength with the parameter values k=74 MPa and m=6. Eq. (14) and 
(15) then give (approximately) the said Pareto parameter values with N=5655. In fact, this Weibull distribution gives 
a characteristic value of the bending strength σb,ch=45 MPa defined as the 5% fractile, cf. Sedlacek et al. (1999). 
According to Haldimann (2006), this Weibull distribution represents the breakage stress of new glass plates in R400 
double ring bending tests at a stress rate of 2 MPa s-1 the tests of which were conducted as a basis for the DIN 1249-
10:1990. With an assumed flaw density of 2 cm-2 the number N=5655 is obtained because the stressed area within 
the loading ring is 0.2827 m2. 

Figs. 5 and 6 show the simulated fracture locations based on a series of 5000 simulations each for the two types of 
gaskets, i.e. neoprene and nylon. In Fig. 5, the fracture criterion that was used assumes that the crack planes are 
oriented normal to the maximum principal stress, whereas in Fig. 6, the mixed mode fracture criterion, Eq. (4), was 
used. In this case, it was assumed that the crack plane angles were uniformly distributed in [0,p). 

Fig. 7 depicts the distribution in fracture stress for both types of gasket materials while assuming a mode I criterion 
with the crack planes oriented perpendicular to the maximum principal tensile stress. A two-parameter Weibull 
distribution was fitted to the data samples and is also shown in the diagrams. It can be noted that the mean fracture 
stress is slightly lower with the mixed mode fracture criterion. 

5. Application to tall panels subjected to impact load 
The dynamic impact load case is often relevant when performing a strength design of a glass structure. With an 
accurate description of the stress distribution in the impacted pane, it is possible to predict the likely fracture 
location. However, it is not necessarily the case that the failure location coincides with the maximum principal 
tensile stress (Natividad et al. 2016). By implementing the numerical method described in Sec. 3 it is possible to 
model the distribution of fracture location. The European standard EN-12600 details a method for testing glass to 
classify it in terms of impact strength.  

The distribution in fracture location was studied for a tall vertical panel subjected to an impact load. The panel 
consists of a laminated unit with two glass plies. The panel measures approximately 1x4 m2 in surface area and each 
ply has a thickness of 10 mm. The full transient FE simulation of the panel and impactor were based on a previous 
model which is described in Fröling et al. (2014). The panel was supported on two sides (top and bottom edges) and 
it had a 6x6 array of ventilation holes near the bottom edge, cf. Fig. 8a for an illustration. The impactor consists of a 
weight encased in two tyres, the weight of the impactor being 50 kg according to standard (EN-12600). The tyre was 
swung into the panel in a pendulum motion thus generating a soft impact with a long pulse time. The glass and PVB 
interlayer parts were modelled by means of a hexahedral solid-shell element. The rubber supports were modelled 
using a solid element. The glass, interlayer and supports were modelled as linear elastic materials and the material 
parameters which were adopted from Persson and Doepker (2009) and prEN 16612:2017 are shown in Tab. 2. The 
initial velocity of the impactor was 2.97 m s-1 which corresponds to a fall height of 0.450 m. The centrical impact 
occurred at a height of 1.2 m. 

 

 

 

Table 1: Sample size and relative frequency of surface to edge failure in experiments with laterally supported plates subjected to uniform pressure. 
Some data points were excluded in the case of multiple potential fracture locations which contained a mixture of surface and edge failure sites. 

Reference Total no. of failures No. of surface fail’s Rel. freq. of surf. fail’s 

Johar (1981) 78 54 0.69 

Johar (1982) 106 71 0.67 

Kanabolo and Norville (1985) 206 152 0.74 

Calderone (1999) 195 152 0.78 
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(a)  

 

(b)  

(c)  

(d)  
Fig. 1 Fracture origins according to four experiments (a) Johar (1981), (b) Johar (1982), (c) Kanabolo and Norville (1985), and (d) Calderone 

(1999). 
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Fig. 4 Stress contours (maximum in-plane principal) on the “compression” side of the plate with (left) nylon gaskets and with (right) neoprene 

gaskets at the lateral pressure magnitude 40 kPa. 

 
Fig. 2 Deformed state of a plate which is supported laterally between neoprene gaskets and subjected to uniform pressure. As seen from one corner. 

For symmetry reasons only one quarter of the plate is visible. 

  
Fig. 3 Stress contours (maximum in-plane principal) on the “tension” side of the plate with (left) nylon gaskets and with (right) neoprene gaskets at 

the lateral pressure magnitude 40 kPa. 
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Fig. 5 Simulated fracture locations in the case of (left) nylon gaskets and (right) neoprene gaskets with a pure mode I fracture criterion assuming all 

crack planes to be oriented perpendicular to the max. princ. stress. 

 

  
Fig. 7 Simulated fracture stress in the case of (left) nylon gaskets and (right) neoprene gaskets with the MPTS fracture criterion, i.e. assuming all 

crack planes to be oriented perpendicular to the max. princ. stress. Solid line corresponds to a fitted Weibull distribution. The histograms are 
normalized to reflect a probability density. 

 

  

  
Fig. 6 Simulated fracture locations in the case of (left) nylon gaskets and (right) neoprene gaskets with a mixed mode fracture criterion. 
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Fig. 8b shows the maximum in-plane principal stress contours at time equal to 15 ms when the maximum stress was 
about 45 MPa. Fig. 8c shows the stress contours at time equal to 30 ms when the maximum stress had reached about 
82 MPa. The greatest stress (82 MPa) was located near the top row of ventilation holes. Fig. 9a shows the 
distribution of fracture location using a mode I fracture criterion without consideration of crack plane orientation, i.e. 
assuming that all crack planes are oriented normal to the maximum principal tensile stress. It was assumed that the 
surface condition is represented by a single population of cracks with a Pareto distributed depth with parameter 
values a0=4 µm and c=3.0, and that the crack density is 2 cm-2. Fig. 9a depicts in total 989 fractures which occurred 
during the simulation of 5000 virtual panel impacts. About 40% of the failures in total occurred near one of the 
ventilation holes. The area near a ventilation hole was in this case defined by a bounding box around the whole 6x6 
array. Fig. 9b shows the resulting strength distribution which is not necessarily in agreement with a Weibull 
distribution. 

Discussion 
In theory, brittle fracture in glass is promoted by the existence of a large set of surface microcracks with a location 
and size distribution that can be described using some random variable. Because of the limited capacity for plasticity 
in glass, the failure mode is governed by the WLP, i.e. the first fracturing flaw prompts global breakage. A failure 
prediction model that is consistent with theory must therefore take into account the existence of surface microcracks 
including the stochastics of these, and the WLP. The Weibull model adopts the WLP and can, in theory, be 
associated with a single population of surface cracks having a Pareto distributed crack size. The Weibull model is 
preferred in major standards including the European draft prEN 16612:2017. However, the Weibull models that are 
fitted to empirical data are so different in scale and shape that is hard to predict the strength in general while 
adopting this type of distribution. A similar limitation appears to apply to the GFPM of which it has been said that it 
“is best suited to representing glass strength for specific test conditions.” (Reid 2007) As a matter of fact, it is not 
just the fracture stress magnitude that scatters, the failure location is also variable. It has been shown that the 
fracture origin rarely occurs at the point of MPTS in laterally supported plates subjected to uniform out-of-plane 
loading (Natividad et al. 2016). 

The method which was investigated in this paper offers a promising alternative to the ordinary Weibull model for 
use in failure prediction of structural glass units. Firstly, the method is based on the physics of brittle fracture. A 
representation of the surface condition is implemented and fracture mechanics are combined with the WLP to reveal 
the breakage stress and location. By assuming that the surface condition is represented by a single population of 
cracks with a Pareto size distribution, it is possible to obtain a Weibull distribution for the strength. The new model 
differs from the Weibull model in that a greater freedom is afforded towards the representation of the surface 
condition in glass. Now, the available data on the surface condition is scarce. As current techniques are improved, 
and new methods are developed to probe the surface condition, more reliable data can be supplied as input to this 
kind of failure model. It is moreover possible to evaluate failure based on different fracture criteria including mixed 
mode criteria in a way that would be more tractable than while using the ordinary Weibull distribution. The 
mathematics soon become intractable when evaluating the analytical expressions necessary to implement different 
fracture criteria, cf. e.g. Batdorf and Heinisch (1978). With the new method, it is possible to control the crack plane 
orientations in a way that would not be feasible using the ordinary Weibull distribution. If one for instance assumes 
that the crack planes lie in some particular direction on certain parts of the surface due to, for example, mechanical 
abrasion, then it would be quite possible to implement this in the new model through a suitable setup of the surface 
condition. It is also possible to implement multiple flaw populations. The new method offers the possibility to 
predict the fracture location which can be useful in certain situations. For example, glass structures with more 
complicated geometry containing corners and holes, and glass structures subjected to more advanced loading 
situations such as uneven static loading and dynamic loading. 

 

Table 2: Material parameters 

Material E (MPa) ν ρ (kg m-3) 

Glass 70000 0.2 2500 

PVB interlayer 180 0.49 1250 

Rubber support 15 0.44 1250 

Impactor 2 0.3 900 
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(a) 

 
(b) 

Fig. 9 (a) Simulated fracture origins. (b) Strength distribution. 

In the present study, a method was applied to model the strength and fracture location of laterally supported plates 
subjected to uniform pressure. The comparison of the empirical data appears to indicate that a significant portion of 
failures in tests of large plates occur near or on the edges. This might indicate that failure is sensitive to shear stress. 
According to one study (Reid 2007), a series of 59 small specimens of annealed glass plates generated unexpected 
results when tested in a double ring bending device. The proportion of failures outside the loading ring was much 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 (a) Tall panel and soft impactor. (b) Stress contours (max. in-plane princ.) when the max stress had reached 45 MPa at time 15 ms. (c) Stress 
contours when the max stress had reached 82 MPa at time 30 ms. NB, maximum stress in (c) is near the edges of the top row of ventilation holes. 

Red colour corresponds to tensile stress. 
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greater than expected based on Weibull statistics which do not factor shear stress into the failure criterion. There is 
no shear stress in the loading ring area because the stress state is equibiaxial. In the case of a large laterally 
supported plate subjected to uniform pressure, there emerges shear stress near the corners of the plate. In this paper, 
such large plates were investigated while using both a mode I fracture criterion and a shear sensitive mixed mode 
criterion. However, from the simulation results, it is hard to see a significant impact on the fracture location due to 
the presence of shear stress near the corners of the plate. Nevertheless, the fracture origin was increasingly located 
nearer the corners when the support gaskets were made from a softer material, i.e. neoprene. As the Figs. 3 and 4 
show, the tensile stress on the “compression” side of the plates are significant, especially in the case with the nylon 
gaskets. At the applied pressure 40 kPa, the maximum tensile stress on the “compression” side of the nylon 
supported plate was in fact on par with the maximum tensile stress on the “tension” side of the neoprene supported 
plate. This implies that a thorough analysis of the failure of laterally supported plates subjected to uniform pressure 
should consider both faces of the plate. This was not done in the present study but could be conducted in a future 
investigation. However, according to one study on large plates subjected to uniform loading (Calderone 1999), there 
were only two fractures occurring from the “compression” side of 195 specimens tested in total corresponding to a 
relative frequency of about 1%. In that study, nylon gaskets were used and the glass was fixed firmly between the 
nylon supports. This indicates that failures from the “compression” side are unlikely in practical situations. However, 
further investigation is required in order to verify this. More important perhaps, is the fact that a significant 
proportion of failures occur from the edges according to experimental data, cf. Tab. 1. In the modelling that was 
done in connection with this paper, only the surface condition in glass was considered. The edge condition was not 
represented separately. This is an important issue, however, that might be considered in future research work.  

The case with the vertical panel impacted by a soft body illustrates how the new method can be applied to model 
specimens with a more complex geometry subjected to dynamic loading. This loading leads to a time-dependent 
stress distribution that initially affects a relatively large portion of the glass surface to moderate tensile stress and 
subsequently a much smaller portion is affected, in particular at the ventilation holes, to higher tensile stress. Even if 
the strength distribution is known a priori, i.e. a Weibull distribution, the question remains as to how the fracture 
location is distributed. The simulations which were carried out show that ultimately about 40% of the failures 
occurred near the holes. However, the edge condition in glass is very relevant in this case and should perhaps be 
represented differently than the surface condition. Further research needs to be conducted in order to properly model 
this load case while taking the edge condition into consideration. In the simulation of the panel, stress corrosion was 
not considered. However, in this particular case, the dynamic impact load produces a very high stress rate. In fact, 
the overall maximum tensile stress was reached within about 30 ms which corresponds to an average stress rate of 
approximately 2700 MPa s-1. Presumably, any effects of static fatigue would be limited because there would be very 
little time for stress corrosion to take place. It is therefore believed that stress corrosion in this case would have only 
a negligible effect on the results. Interestingly, Haldimann (2006) carried out experiments on glass plates which 
were loaded at both low and very high stress rates (0.2 MPa s-1 and 21 MPa s-1, respectively) and compared the 
results. His findings seemed to indicate that the behaviour of a specimen subjected to a stress rate of as much as 21 
MPa s-1 in ambient conditions nearly approaches that of a specimen in inert conditions. 

6. Conclusions 
The distribution of fracture stress and failure location in glass can be modelled using a numerical method that is 
based on well-established concepts including the WLP and the existence of surface microcracks. The method is 
applied to model the strength and fracture origin in large laterally supported plates subjected to uniform pressure and 
in a tall panel with a complex geometry that is subjected to impact loading. By assuming that the surface condition 
is represented by a single population of cracks with a Pareto distributed crack size it is possible to obtain a strength 
distribution that is similar to a Weibull distribution. As current methods are refined and new techniques are 
developed to probe the surface condition of glass, this new numerical tool has potential for greater versatility in 
modelling glass fracture statistics since it allows for various surface flaws conditions and fracture criterions to be 
used.  
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David Kinsella 
david.kinsella@construction.lth.se 

A detailed overview is provided for the strength of monolithic annealed float glass panes according to experiments 
carried out over the past four decades. The experiments were conducted with the coaxial double ring bending device, 
the three-point bending device, the four-point bending device, and the arrangement that allows for laterally supported 
plates to be subjected to uniform pressure. When the stress history was linear, the 2 MPa s-1 stress rate-equivalent 
strength was calculated and compared with the nominal value of the strength. The data was obtained from the open 
literature. Only new glass in the as-received condition was considered. Only glass that was tested in an ambient 
environment was included in the survey. The strength is visualized in the form of boxplots and probability plots. The 
three following types of probability plots were considered, viz. the Weibull, the normal, and the lognormal. The 
goodness-of-fit was tested numerically with the Anderson-Darling statistic.  

Keywords: Glass, fracture data 
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1. Introduction 
Glass in structures is commonly formed by monolithic, laminated, or insulated units of annealed, 
heat-strengthened or toughened float glass panes. According to the codes, e.g. DIN 18008-
1:2010 and prEN 16612:2017, the strength design is based on the characteristic value of the 
fracture stress of a monolithic pane of annealed float glass. Hence, the distribution of strength in 
monolithic panes of annealed float glass is of paramount importance. In the open literature and 
up to date, there has been no comprehensive survey providing a detailed overview of the 
experimental results on the strength of monolithic panes of annealed float glass. This report was 
put together to provide such a detailed overview. The purpose is furthermore to enable an in-
depth analysis of the most important statistics such as the characteristic value of the strength, the 
difference in strength between edge and surface failures, the goodness-of-fit for standard 
distributions, etc. The aim is moreover to enable a general assessment of phenomena such as 
static fatigue and the size effect. The investigation is restricted to new glass in the as-received 
condition that was tested in an ambient environment. The examined experiments were conducted 
with the following testing devices, viz. the coaxial double ring bending device, the three-point 
bending device, the four-point bending device, and the device that enables the application of 
uniform lateral pressure to plates that are continuously supported along all four edges. The 
empirical data was obtained from original articles, conference proceedings, reports, and 
dissertations from the following sources, viz. scientific publishers, societies, organizations, and 
universities. According to all accounts, great care was taken in the handling of the glass prior to 
testing and during mounting of the specimens into the respective testing rigs. The glass was 
always stored for some time before testing. 

2. Environmental conditions 
The ambient environment is somewhat represented by an indoor climate. The ambient 
temperature is about 20 ºC and the relative humidity ranges between 40-70%. However, due to 
regional as well as seasonal differences and variations, the ambient temperature and relative 
humidity in the examined experiments was sometimes found to deviate significantly from these 
values. For instance, during the tests carried out in Australia (Calderone 1999), the relative 
humidity once reached 99%. And while tests were conducted in Canada (Johar 1982), the 
measured temperature dropped to 16 ºC. 

3. Bending test arrangements and strength calculations 
The surveyed experiments were conducted using one of the following bending arrangements, viz. 
the three-point bending device, the four-point bending device, the coaxial double ring bending 
device, and the device that allows for four-sided laterally supported panes to be subjected to 
uniform lateral pressure. The bending strength was determined either using an analytical formula, 
with the use of the finite element method, or based on strain gauge measurements combined with 
some extrapolation method. Here follows a description of the analytical formulae used for 
calculating the ultimate stress at failure. The bending strength σ୤  is generally determined 
according to 

𝜎௙ =
ெ

ௐ
 (1) 

where 𝑀 is the maximum bending moment and 𝑊 is the section modulus of the specimen. For a 
rectangular cross-section 

𝑊 =
௛௕మ

଺
 (2) 
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where 𝑏 denotes the thickness and ℎ the width of the specimen. In the case of the three and four-
point bending setup, the terms in-plane and out-of-plane bending, respectively, refer to the 
orientation of the specimen in the cross-sectional plane, i.e. whether the specimen is lying down 
or standing up on its edge. The difference is illustrated in Fig. 1. 

 
Fig. 1 (a) Out-of-plane (specimen lying down) and (b) in-plane (specimen standing on its edge) bending in a four-point setup. 

 

Three-point bending 
A schematic view of the three-point bending arrangement is given in Fig. 2. The largest bending 
moment is 𝐹𝑙/4 where 𝐹 is the fracture load and 𝑙 is the distance between the supports. With 
reference to Eqs. (1) and (2), the bending strength is found to be 

𝜎௙ =
ଷ

ଶ

ி௟

௛௕మ
 (3) 

 
Fig. 2 The three-point bending arrangement. 

 

Four-point bending 
A schematic of the four-point bending arrangement is shown in Fig. 3. The bending strength is 
calculated with 

𝜎௙ = 3
ி௟భ

௛௕మ
 (4) 

where 𝑙ଵ is the distance between the outer and inner supports. In the case of four-point bending 
tests, only the data was included that corresponds to fracture within the load span limits. In some 
experiments, the analytical formula, Eq. (4), was combined with finite element calculations in 
the calculation of the bending strength in the following way. When taking into account the stress 
concentration that occurs at the points where the load is introduced and supposing that fracture 
occurs under the loading points, the fracture stress increases by about 5%, see e.g. Vandebroek et 
al. (2014). As a matter of fact, it was not unusual for the fracture origin to be located at the load 
introduction points in four-point bending tests (Vandebroek et al. 2014). 
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Fig. 3 The four-point bending arrangement. 

 

Coaxial double ring bending 
Fig. 4 shows a schematic of the double ring bending arrangement which uses two opposing 
coaxial rings of unequal diameters, one loading ring and one reaction ring. The test specimen is 
positioned between the rings and a load is transmitted through the smaller concentric loading 
ring. A uniform biaxial tensile stress is produced in the surface of the sample plate within the 
loading ring area. The stresses on the tensile surface of a specimen in coaxial double ring 
bending have radial and circumferential components and are given by a set of approximate 
analytical solutions (Kirstein and Woolley 1967). Geometrical nonlinearity is not accounted for 
by Eq. (5), (7), and (8). In the case of bending of thin plates, membrane stresses are activated and 
become significant when the deflection exceeds about half the plate thickness. The uniform 
biaxial stress within the loading ring area is 

𝜎௥ = 𝜎ఏ =
ଷி

ଶగ௧మ
ቆ(1 + 𝜈) 𝑙𝑛 ቀ

௥భ

௥బ
ቁ + (1 − 𝜈)

௥భ
మି௥బ

మ

ଶ௥మ
మ ቇ , 𝑟 ≤ 𝑟଴ (5) 

where 𝜈 is Poisson’s ratio, 𝑟଴ and 𝑟ଵ are the radii of the inner and outer supports, respectively. 𝑟ଶ 
is the equivalent outer radius used for a square shaped specimen with side length 2𝐿 and is given 
by 

𝑟ଶ = 𝐿(1 + √2) (6) 

The radial stress outside the loading ring area at the distance 𝑟 from the plate centre point is 

𝜎௥ =
ଷி

ଶగ௧మ
ቆ(1 + 𝜈) 𝑙𝑛 ቀ

௥భ

௥
ቁ + (1 − 𝜈)

௥బ
మ൫௥భ

మି௥మ൯

ଶ௥మ௥మ
మ ቇ , 𝑟 > 𝑟଴ (7) 

while the circumferential stress is 

𝜎ఏ =
ଷி

ଶగ௧మ
ቆ(1 + 𝜈) 𝑙𝑛 ቀ

௥భ

௥
ቁ − (1 − 𝜈)

௥బ
మ൫௥భ

మା௥మ൯

ଶ௥మ௥మ
మ + 2(1 − 𝜈)

௥భ
మ

௥మ
మቇ , 𝑟 > 𝑟଴ (8) 

When the fracture occurred outside the loading ring area in coaxial double ring bending tests and 
provided that the fracture location was recorded, the test results were recalculated by this author 
with Eq. (7) to reflect the maximum principal tensile stress at the fracture location rather than the 
stress within the loading ring. This applies only in one case, viz. Simiu et al. (1984), and as a 
matter of fact, Simiu et al. (1984) used the analytical formula, Eq. (5), to calculate the fracture 
stress. Hence, our calculation method for the adjustment of the fracture stress harmonizes well 
with the original method. 
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Fig. 4 The coaxial double ring bending arrangement. 

 

Uniform pressure applied to laterally supported plates 
In the case of laterally supported plates subjected to uniform pressure, analytical formulae based 
on plate equations were not used in any of the examined experiments. Instead, the fracture stress 
was determined with the finite element method or based on strain gauge measurements. Fig. 5 
illustrates the general test arrangement. The boundary conditions in the experiments varied 
substantially. The rigidness in the supports varied depending on the gasket material in use and 
the clamping force applied along the edges as well as the stiffness of the surrounding frame. 

 
Fig. 5 The arrangement with a laterally supported plate subjected to uniform pressure. 

 

4. Stochastic models 
The following three probability distributions are considered as models for the fracture stress in 
glass, viz. the Weibull distribution, the normal distribution and the lognormal distribution. The 
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distribution parameters are estimated using the maximum likelihood method. It is supposed that 
the fracture stress, x, is an observation of some random variable X. 

Weibull distribution 
The Weibull distribution (Weibull 1939) has the cumulative distribution function 

𝐹(𝑥) = 1 − 𝑒𝑥𝑝 ቀ− ቀ
௫

௞
ቁ

௠

ቁ (9) 

where 𝑘 and 𝑚 > 0 denote the scale and shape parameters, respectively.  

Normal distribution 
The normal distribution has the probability density function (Forbes et al 2011) 

𝑓(𝑥) =
ଵ

√ଶగఙమ
𝑒𝑥𝑝 ቀ−

(௫ିఓ)మ

ଶఙమ
ቁ (10) 

where 𝜇 and 𝜎ଶ are the mean and variance, respectively. 

Lognormal distribution 
The lognormal distribution is related to the normal distribution in the following way. If 𝑌 
denotes a normally distributed random variable, then 𝑋 = exp(𝑌) is lognormally distributed with 
the probability density function (Forbes et al 2011) 

𝑓(𝑥) =
ଵ

௫√ଶగఙమ
𝑒𝑥𝑝 ቀ−

(௟௢௚(௫)ିఓ)మ

ଶఙమ
ቁ (11) 

In Eq. (11), 𝜇 and 𝜎ଶ denote the mean and variance of the associated normal distribution, Eq. 
(10). 

5. Adjusting for static fatigue 
Following the theory of stress corrosion (Charles 1958a, 1958b) and the Load Duration Theory 
(Brown 1972), the nominal value of the strength can be associated with a 2 MPa s-1 stress rate-
equivalent strength providing that the stress history is known. In other words, the recorded value 
of the fracture stress is associated with an equivalent strength value that would have been, were 
the specimen subjected in an identical environment to a ramp stress until failure at a rate of 2 
MPa s-1. Supposing that the actual stress history was linear, i.e. σ̇ = constant, the transformation 
is carried out using the following equation 

𝜎௙,௘௤ = 𝜎௙ ⋅ ට
ఙ̇೐೜

ఙ̇

೙శభ
 (12) 

where σ୤,ୣ୯ is the 2 MPa s-1 stress rate-equivalent strength, σ୤ is the nominal or received strength, 
σ̇ୣ୯ is 2 MPa s-1, and 𝑛 is the static fatigue parameter. It is assumed that 𝑛 = 16 (Mencik 1992). 
In the experiments considered in this report, the stress history at the fracture location was linear 
in nearly all cases. Typically, the experimenter recorded the calculated rate of stress or else 
recorded the rate of deflection. In the latter case when the four-point bending test rig was used, 
the stress rate was determined by this author using the following equation 

𝜎̇ = 𝑢̇
ଷா

௟భ(ଷ௟బାଶ௟భ)
 (13) 

where 𝑢̇ is the rate of deformation, see also Fig. 3. The stress rate together with the fracture 
stress are used to adjust the value of strength for the effect of static fatigue. When Eq. (13) is 
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used, it is assumed that Young’s modulus 𝐸 = 72 GPa. With the 2 MPa s-1 stress rate-equivalent 
strength, Eq. (12), it is possible in theory to benchmark various measurements of the strength 
when the glass material was exposed to different levels of static fatigue due to different rates of 
stress. The word nominal is used to denote the as-received strength value which has not been 
adjusted with respect to static fatigue. 

6. Graphical description 
The histogram, the empirical cumulative distribution function (ECDF), the boxplot, and the 
probability plot are frequently employed in descriptive statistics to depict a data set graphically. 
Graphical techniques are useful because of their ease and informality while providing for 
powerful analyses in conjunction with formal numerical techniques (D’Agostino and Stephens 
1986). 

Histogram 
The histogram is a bar graph that reflects the probability distribution of a continuous random 
variable. The range of sample values is grouped into 𝑚  contiguous intervals, each interval 
having the length 𝑚ିଵ. The intervals are usually called bins. The number of observations falling 
into each bin is counted. A bar is constructed over each bin the height of which is proportional to 
the frequency (Sheshkin 2004). The bin width is selected to cover the data range and reveal the 
shape of the underlying distribution. 

Empirical distribution function 
The empirical cumulative distribution function (ECDF) is a step function that estimates the 
cumulative distribution function (CDF) that generated the observed data points. Suppose we 
have a random sample 𝑋ଵ, … , 𝑋௡  drawn from a distribution with CDF 𝐹(𝑥) . The ECDF is 
constructed by plotting 𝑖/𝑛 on the 𝑦-axis against the 𝑖th ordered value of the sample, i.e. 𝑋(௜), on 
the x-axis (Forbes et al 2011). The ECDF 𝐹෠௡(𝑥) is defined as (Wasserman 2006) 

𝐹෠௡(𝑥) =
ଵ

௡
∑ 𝐼(𝑋௜ ≤ 𝑥)௡

௜ୀଵ  (14) 

where 𝐼 is the indicator function defined by  

𝐼(𝑋௜ ≤ 𝑥) = ൜
1 𝑖𝑓 𝑋௜ ≤ 𝑥
0 𝑖𝑓 𝑋௜ > 𝑥

 (15) 

Boxplot 
The boxplot provides a visual summary of batches of data through their quartiles (McGill et al. 
1978). The central mark on each box represents the second quartile, i.e. the median, while the 
bottom and top edges of the box represent the first and third quartiles, i.e. the 25th and 75th 
percentiles. The whiskers extend to 1.5 times the Interquartile Range (IQR) which is the distance 
between the first and third quartiles. Hence, the whiskers indicate variability outside the upper 
and lower quartiles. Data points that are located beyond the ends of the whiskers are indicated by 
a plus sign. Variability of the median value between samples is indicated by triangular markers. 
If the interval between the triangles in a boxplot does not overlap with the interval from another 
boxplot, then the samples have different medians at the 5% significance level, assuming 
normally distributed data. In fact, comparisons of medians are reasonably robust even for other 
distributions than the normal (Mathworks 2018). The interval endpoint lies at the centre of the 
triangle marker. The endpoints are calculated from 

𝑞ଶ ±
ଵ.ହ଻(௤యି௤భ)

√௡
 (16) 
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where qଶ is the second quartile, i.e. the median, and qଵ and qଷ are the first and third quartiles, 
respectively. 𝑛 is the number of observations in the sample. The boxplot is useful for depicting a 
range of statistics, including the IQR, the range, the mid-range, the skewness, etc. 

Probability plot 
The classic form of the probability plot assumes a parameter model that can be written as  

𝐹(𝑥) = 𝐹଴(
௫ି௔

௕
) (17) 

where 𝑏 > 0 is a scale parameter, and −∞ < 𝑎 < ∞ is a location parameter. Suppose 𝑥(ଵ) <

𝑥(ଶ) < ⋯ < 𝑥(௡) are the order statistics in a random sample of size 𝑛 from the distribution of 𝑋. 
In the probability plot, the 𝑥(௜)  are plotted against 𝐹଴

ିଵ(𝑢௜) where 𝑢௜  are termed the plotting 
positions. The most common choice of plotting position is (Lawless 2003, Mathworks 2018) 

𝑢௜ =
ቀ௜ି

భ

మ
ቁ

௡
 (18) 

The plot of the points ቀ𝑥(௜), 𝐹଴
ିଵ(𝑢௜)ቁ should be approximately linear if the choice of model is 

reasonable. In the probability plot, the scale of the 𝑦-axis is based on the values of 𝐹଴
ିଵ(𝑢). A 

reference line that goes through the first and third quartiles is superimposed (Mathworks 2018). 
In the case of the Weibull distribution, Eq. (9), the distribution function can be rewritten to 
conform with the location-scale parameter model, Eq. (17). From Eq. (9) we deduce that 

𝑙𝑛൫1 − 𝐹(𝑥)൯ = − ቀ
௫

௞
ቁ

௠

 (19) 

from which it follows that 

𝑙𝑛൫− 𝑙𝑛൫1 − 𝐹(𝑥)൯൯ = 𝑚 𝑙𝑛(𝑥) − 𝑚 𝑙𝑛(𝑘) (20) 

Hence, in a Weibull probability plot, the 𝑥-axis scaling is logarithmic and the 𝑦-axis scaling is 
such that it maps the function 𝑦 = ln(− 𝑙𝑛(1 − 𝑢)). In the lognormal probability plot, the 𝑥-axis 
scaling is also logarithmic. With the normal distribution, the 𝑥-axis scaling is linear. 

7. Goodness-of-fit 
The experimental data was compared with standard distributions and the goodness-of-fit was 
evaluated in a formal numerical test using the Anderson-Darling statistic. Suppose the sample 
𝑥ଵ, 𝑥ଶ, … , 𝑥௡ contains 𝑛 observations of a set of independent and identically distributed random 
variables 𝑋. The general test of fit is a test of the null hypothesis 

H0: a random sample of 𝑛 observations of 𝑋 comes from 𝐹൫𝑥; 𝜃⃑൯ (21) 

where 𝜃⃑ is a vector of parameters associated with the continuous distribution F. An empirical 
distribution function statistic measures the vertical difference between 𝐹෠௡(x)  and 𝐹(𝑥) . The 
quadratic class of EDF statistics is based on the class of measures with the following functional 
form (D’Agostino and Stephens 1986) 

𝑄 = 𝑛 ∫ ቀ𝐹෠௡(𝑥) − 𝐹(𝑥)ቁ
ଶ

𝜓(𝑥)𝑑𝐹(𝑥)
ஶ

ିஶ
 (22) 
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where 𝜓(𝑥)  is a weighting function. The Anderson-Darling (1952) statistic is obtained by 
choosing 

𝜓(𝑥) =
ଵ

ி(௫)൫ଵିி(௫)൯
 (23) 

8. Supplementary data 
In a few cases, viz. Veer et al. (2006), Muniz-Calvente et al. (2016), Navarrete et al. (2016) and 
Osnes and Börvik (2018), supplementary information about the experiment was obtained 
through private correspondence with the respective author. The displacement rate that was used 
in the in-plane four-point bending tests as reported by Veer et al. (2006) was 1 mm s-1. The 
fracture origin mode, i.e. edge or surface, in the out-of-plane four-point bending tests were 
recorded but not published by Muniz-Calvente et al. (2016). The loading ring and support ring 
diameters in the double ring bending tests conducted by Navarrete et al. (2016) was 51 mm and 
127 mm, respectively. The data on the edge failures in the out-of-plane four-point bending tests 
in the experiment conducted by Osnes et al. (2018) was recorded but not published.  
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9. General overview 
Tab. 1 contains a list of the experiments included in the survey. Also indicated in Tab. 1 are the 
total number of test specimens per experiment, the type of test device, the type of stress history 
at the fracture origin, and the edge condition of the glass as reported by the respective author. 

Table 1: Summary of surveyed experiments. 4PB=Four-point bending, 3PB=Three-point bending, CDR=Coaxial double ring, ULP=Uniform 
lateral pressure, C=As-cut, A=Arrised, G=Ground, P=Polished, W=Water-jet cut. 

Reference No. of spec’s Testing device Stress history Edge proc. 

Johar (1981) 78 ULP Nonlinear Not recorded 

Johar (1982) 106 ULP Nonlinear Not recorded 

Simiu et al. (1984) 85 CDR Linear Not recorded 

Kanabolo and Norville (1985) 206 ULP Nonlinear Not recorded 

Carre (1996) 81 4PB Linear P 

Calderone (1999) 195 ULP Nonlinear Not recorded 

Hess (2000) 15 4PB Nonlinear G 

Fink (2000) 127 CDR Linear Not recorded 

Overend (2002) 30 CDR Linear Not recorded 

Haldimann (2006) 20 CDR Linear Not recorded 

Veer et al. (2006) 32 4PB Linear G 

Sglavo (2007) 115 3PB Linear CAGP 

Veer et al. (2009) 54 4PB Linear P 

Veer and Rodichev (2011) 177 4PB Linear C 

Consuelo-Huerta et al. (2011) 66 CDR, 4PB Linear Not recorded 

Veer and Rodichev (2012) 60 4PB Linear W 

Vandebroek et al. (2012) 77 4PB Linear CP 

Lindqvist (2013) 478 4PB Linear CAGPW 

Vandebroek et al. (2014) 202 4PB Linear CG 

Kozlowski (2014) 6 4PB Linear P 

Kleuderlein et al. (2014) 830 4PB Linear CAG 

Schula (2015) 15 CDR Linear Not recorded 

Kinsella and Persson (2016) 58 4PB Linear P 

Muniz-Calvente et al. (2016) 73 CDR, 4PB Linear P 

Navarrete et al. (2016) 69 CDR Linear C 

Yankelevsky et al. (2017) 56 4PB Linear C 

Osnes et al. (2018) 93 4PB Linear C 

Sum: 3404    

 

10. Experiments 
Here follows a detailed summary of the experiments in the survey. The summary contains a 
description of the testing device employed with information about the specimen geometry and 
edge condition. The fracture stress data is represented graphically in the form of boxplots. 
Triangular markers indicate the inter-sample variation of the median only when the average 
sample sizes were large enough, i.e. usually greater than 7. The sample data is also visualized in 
the form of probability plots for the Weibull, normal, and lognormal distributions, but only when 
the sample size was deemed sufficiently large. Edge failures in the data are marked with a 
crossed circle in the probability plots. All other types of failure, i.e. surface failure or failures 
that were ambiguous with respect to the origin, are marked with an empty circle. When 
applicable, the stress rate-equivalent data is also depicted.  
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Johar (1981) 
The experiment was conducted using a setup that enabled a monotonically increasing uniform 
lateral pressure to be applied to laterally supported plates. The glass panels were mounted 
vertically between continuous 12.7 mm wide neoprene gaskets in the front face of the testing rig. 
The front face was hinged and could be opened like a door to reveal the test chamber. Inside the 
chamber a negative pressure was produced. The specified loading rate was achieved by 
controlling the rate of movement of a hydraulically driven piston. Three different pressure rates 
were employed, viz. 0.15 kPa s-1, 1.5 kPa s-1, and 15 kPa s-1. The panels were supported on two 
150 mm long neoprene setting blocks at the quarter points of the bottom edge. The outside 
surface, i.e. the compression side, was taped with polypropylene tape. A distributed clamping 
force of 1 kN m-1 was applied along the four edges. The lateral support was continuous along the 
entire perimeter. The glass plates were cut out from panes with the nominal thickness 6 mm. The 
mean thickness was found to be 5.8 mm. The glass was obtained from three different 
manufacturers denoted by M1, M2, and M3. It was not specified if the glass edges were 
processed in any way. Presumably, the edge condition was as-cut. The tin side was always 
placed in the tension side. During the experiments, the temperature was maintained at 20-25 ºC 
and the relative humidity was 28-55%. The length of load-duration ranged from 0.2 to 53 
seconds. Nondestructive tests were carried out on a strain-gauged and tempered glass panel 
having 41 strain gauges bound to its surface. The fracture stress, i.e. the maximum principal 
tensile stress at the fracture origin, was determined based on the nondestructive tests. However, 
the calculation method used was not detailed in the report. Dalgliesh and Taylor (1990) discuss 
the Ontario Research Foundation test results and indicate that a power law relation was fitted in 
order to interpolate the stresses, 𝜎, for pressures, 𝑃, up to failure using the following equation 

𝜎 = 𝐾𝑃ఉ (24) 

where K is a constant and β varies with the failure location. In most cases, β was in the range 
0.85-0.95. In fact, β is also a function of aspect ratio and thickness. A summary of details on the 
experiment is given in Tab. 2. In Fig. 6, a set of boxplots depict the fracture stress characteristics 
for the nominal strength data. Fig. 7 shows the recorded fracture origins. NB., in some cases, 
there was an ambiguity as to the specific fracture origin due to the existence of multiple potential 
fracture sites, including, in a few cases, a mixture of potential surface and edge failures. Fig. 7 
shows the primary choice of origins according to the reference in the case when the fracture 
origin could be uniquely determined as being either an edge failure or a surface failure. 

Table 2: Details on the experiment as reported by Johar (1981). L=Low, M=Medium, H=High loading rate, ULP=Uniform lateral pressure. 

Sample ID No. of spec’s No. of unamb. 
edge fail’s 

No. of unamb. 
surf. fail’s 

Bending mode Dimensions 
(mm3) 

Pressure rate 
(kPa s-1) 

L-M1 9 3 5 ULP 6x1525x2440 0.15 

L-M2 9 4 5 ULP 6x1525x2440 0.15 

L-M3 10 1 9 ULP 6x1525x2440 0.15 

M-M1 8 0 8 ULP 6x1525x2440 1.5 

M-M2 7 4 2 ULP 6x1525x2440 1.5 

M-M3 9 1 8 ULP 6x1525x2440 1.5 

H-M1 9 1 6 ULP 6x1525x2440 15 

H-M2 9 2 6 ULP 6x1525x2440 15 

H-M3 8 0 7 ULP 6x1525x2440 15 
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Fig. 6 Boxplots of the strength according to Johar (1981). 

 

 
Fig. 7 Fracture locations according to Johar (1981). 
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Johar (1982) 
The experiment was conducted with the same test rig and specimen geometry as in Johar (1981). 
In the following, the main differences are mentioned. The glass was obtained from one 
manufacturer only. During the experiments, the temperature was maintained at 16-24 ºC and the 
relative humidity was 26-57%. A summary of details on the experiment is given in Tab. 3. In Fig. 
8, a set of boxplots depict the fracture stress characteristics for the nominal strength data divided 
into the following categories, viz. 1) all failures irrespective of failure mode, i.e. surface or edge 
origin, 2) only edge failures that were unambiguously identified as such, and 3) only surface 
failures that were unambiguously identified as such. A set of three probability plots for each 
sample is shown in Fig. 10 including the respective maximum-likelihood parameter estimates 
and the Anderson-Darling goodness-of-fit statistic. Fig. 9 shows the recorded fracture origins. 

Table 3: Details on the experiment as reported by Johar (1982). 

Sample ID No. of spec’s No. of unamb. 
edge fail’s 

No. of unamb. 
surf. fail’s 

Bending mode Dimensions 
(mm3) 

Pressure rate 
(kPa s-1) 

1 21 4 15 ULP 6x1525x2440 0.0025 

2 21 7 13 ULP 6x1525x2440 0.025 

3 22 5 16 ULP 6x1525x2440 0.25 

4 23 5 18 ULP 6x1525x2440 2.5 

5 19 2 13 ULP 6x1525x2440 25 

 

   
Fig. 8 Boxplots of the strength according to Johar (1982). Left: both edge and surface failures. Middle: only edge failures that were unambiguously 

identified as such. Right: only surface failures that were unambiguously identified as such. 
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Fig. 9 Fracture locations according to Johar (1982). 
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Fig. 10 Probality plots for the data samples in Johar (1982). Edge failures are marked with a crossed circle. 
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Simiu et al. (1984) 
The experiment was conducted with a coaxial double ring bending device in combination with a 
Universal Testing Machine. The loading ring diameter was 51 mm and the support ring diameter 
was 121 mm. The support ring consisted of a segmented circular ring. The loading ring consisted 
of a closely wound coil. The load was transmitted to the coil by a rubber diaphragm covering a 
circular groove filled with water, the purpose of which was to equalize the loading along the 
coils. Two types of plate geometries were employed corresponding to two samples. In data 
sample 1, the plates were square specimens. In sample 2, the plates were circular discs. All 
specimens were cut out from panes with the nominal thickness 6 mm and the glass was obtained 
from the same manufacturer and batch. The overall mean thickness of the plates was found to be 
5.44 mm. The square plate dimensions were 179x179 mm2. The round plates measured 178 mm 
in diameter. The applied loading produced a linear stress rate with the average values 0.8 MPa s-1 
and 1.1 MPa s-1, respectively. The load-duration until failure ranged from 31 sec to 1 min and 57 
sec. It was not recorded which of the tin versus air side of the glass that was placed in the tension 
zone. The fracture stress was calculated using Eqs. (5) and (6). During the experiments, the 
temperature was maintained at room temperature and the relative humidity was 60-74%. A 
summary of details on the experiment is given in Tab. 4. In Fig. 11, a set of boxplots depict the 
fracture stress characteristics for the nominal and stress rate-equivalent strength data. A set of 
three probability plots for each sample is shown in Fig. 12 including the respective maximum-
likelihood parameter estimates and the Anderson-Darling goodness-of-fit statistic. Fig. 13 
illustrates the recorded failure origins in the radial direction from the centre point of the plate. 

Table 4: Details from the experiment of Simiu et al. (1984). 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3/mm2) 

Load. ring diameter 
(mm) 

Stress rate (MPa s-1) 

Square 56 CDR 6x179x179 51 0.8 

Circular 29 CDR 6x178 51 1.1 

 

 
Fig. 11 Boxplots of the nominal fracture stress values and the stress rate-equivalent values for the data samples in Simiu et al. (1984). 
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Fig. 12 Probability plots for each data sample in Simiu et al. (1984). 

 

 
Fig. 13 Fracture locations in the radial direction from the centre point of the plate specimen, according to Simiu et al. (1984). Histogram (left) and 

empirical distribution function (right). NB., loading ring radius was 25.4 mm. 
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Kanabolo and Norville (1985) 
The experiment was conducted using a setup that enabled a monotonically increasing uniform 
lateral pressure to be applied to laterally supported plates. The test rig consisted of a plywood 
deck to which a base structure of steel channels was mounted. Neoprene strips were set onto the 
base structure. The test specimens were mounted on the base structure and clamped between two 
neoprene gaskets to form an air-tight chamber. The testing procedure provided boundary 
conditions similar in concept to those in actual window installations. With a vacuum 
accumulator a negative pressure was applied to the glass surface in the test chamber. The 
compression surface, i.e. the surface outside the test chamber, of the specimens was taped to 
enable an identification of the fracture origin. The tin side of the glass was always placed in the 
tension side. It was not specified if the edges were processed in any way. Presumably, the edge 
condition was as-cut. The specimens were cut out from panes with the nominal thickness 6 mm. 
The overall mean thickness was 5.8 mm. The panes were obtained from two different 
manufacturers. A set of seven different plate dimensions were used. The various plate 
dimensions are detailed in Tab. 5 which also includes a summary of details on the experiment. 
The load-duration until failure ranged from about 0.5 sec to almost 25 min. The fracture stress 
was not calculated. However, Natividad (2014) calculated the MPTS at the fracture locations 
based on the 60 second-equivalent failure loads. Fig. 14 depicts the recorded fracture locations. 

Table 5: Details on the experiment as reported by Kanabolo and Norville (1985). 

Sample ID No. of spec’s No. of edge fail’s Bending mode Dimensions (mm3) Pressure rate  
(kPa s-1) 

w-1 – w-24 20 3 ULP 6x965x1930 60.2 

w-25 – w-48 18 6 ULP 6x 965x1930 17.7 

w-49 – w-70 15 7 ULP 6x 965x1930 1.9 

SS 19 2 ULP 6x 838x1676 87.7 

SL 16 8 ULP 6x 1118x2362 33.6 

Z 19 5 ULP 6x 1372x1372 50.1 

SQ 18 6 ULP 6x 1181x1181 87.7 

V 12 8 ULP 6x 1930x1930 37.6 

H 15 9 ULP 6x 1524x2438 35.1 

 

Fig. 14 Fracture locations according to Kanabolo and Norville (1985). 
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Carre (1996) 
The experiment was conducted with the four-point bending arrangement. The load span 
dimension was 125 mm. The specimens were cut out from glass panes with the thickness 19 mm. 
Two different specimen dimensions were employed, viz. 37.5x250 mm2 and 300x2000 mm2. 
Moreover, two different edge polishing machines were utilized corresponding to the sample ID’s 
A and B, respectively. The beams were subjected to in-plane loading generating an approximate 
stress rate of 0.05 MPa s-1, 0.5 MPa s-1, and 5.0 MPa s-1, respectively. Failures that occurred 
outside the load span or outside the polished edge (i.e. on the surface) were excluded from the 
data. During the experiment, the temperature ranged between 15-20 ºC while the relative 
humidity was 40-70%. The length of load-duration ranged from about 9 sec to over 20 min 
according to calculations. A summary of details on the experiment is given in Tab. 6. In Fig. 15, 
a set of boxplots depict the fracture stress characteristics for the nominal and stress rate-
equivalent strength data. A set of three probability plots for the samples is shown in Fig. 16 
including the respective maximum-likelihood parameter estimates and the Anderson-Darling 
goodness-of-fit statistic. The last sample was not included in the probability plot due to its 
limited size. The data results were extracted from the digitized graphs by this author. 

Table 6: Details on the experiment as reported by Carre (1996). L=Low, M=Medium, H=High stress rate, 4PB=Four-point bending, IP=In-plane. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge proc. Load. span (mm) Stress rate (MPa 
s-1) 

M-A 28 4PB IP 19x37.5x250 Polished 125 0.5 

L-A 14 4PB IP 19x37.5x250 Polished 125 0.05 

H-B 9 4PB IP 19x37.5x250 Polished 125 5.0 

M-B 15 4PB IP 19x37.5x250 Polished 125 0.5 

L-B 12 4PB IP 19x37.5x250 Polished 125 0.05 

L 3 4PB IP 19x300x2000 Polished 667 0.05 

 
Fig. 15 Boxplots for the nominal fracture stress and the stress rate-equivalent strength according to Carre (1996). 
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Fig. 16 Probability plots for the data sets according to Carre (1996). 
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Calderone (1999) 
The experiment was conducted using a setup that enabled a uniform lateral pressure to be applied 
to laterally supported plates. The glass panes were mounted with their plane horizontally in the 
test rig. Water was used for applying the load to the glass. The test rig had the form of a 
horizontal table on legs. The tabletop was formed from a flat steel plate. A supporting structure 
was used below the table. A base frame was constructed above the tabletop and bolted to the 
structure below. The tabletop and the base frame formed the water reservoir. Hence, the loading 
was applied to the bottom surface of the glass. The specimens were mounted on continuous 20 
mm thick nylon blocks which were set on the base frame. The blocks had a groove at the edge 
forming a support rebate. An upper frame was constructed above the base frame and bolted to it. 
The upper frame provided support for the glass edges from the top between a set of continuous 
20 mm thick nylon in-fills. The flow of inlet and outlet water was controlled using butterfly 
valves. The water was supplied from a large tank which was six meters high. The water was 
retained within the test rig without leakage upon fracture using a soft plastic bag. The stresses at 
the observed fracture origins were calculated with FE software while assuming that the glass 
edges were restrained so that they remained in plane. However, no measurements were made on 
any plates using strain gauges. The specimens were cut out from panes with the nominal 
thickness 6 mm. The overall mean thickness was measured to be 5.9 mm. Eight different 
specimen dimensions were employed providing a range of different aspect ratios. The loading 
was applied in four different ways producing either a slow ramp pressure, a medium ramp 
pressure, a fast ramp pressure, or a cyclic loading. The tin surface of the glass was always placed 
in the tension zone, i.e. upwards. During the experiments, the temperature ranged between 12-31 
ºC and the relative humidity was 39-99%. The length of load-duration ranged from 48 sec to 
over 23 min. A summary of details on the experiment is given in Tab. 7. In Fig. 17, a set of 
boxplots depict the fracture stress characteristics for the nominal strength data. Fig. 18 shows the 
recorded fracture origins. NB. in some cases there was an ambiguity as to the specific fracture 
origin due to the existence of multiple potential fracture sites. Fig. 18 shows the primary choice 
of origins according to Calderone (1999). 

 
Fig. 17 Boxplots of the fracture stress according to Calderone (1999). 

 

Table 7: Details on the experiment reported by Calderone (1999). S=Slow, M=Medium, F=Fast, C=Cyclic loading, ULP=Uniform Lateral 
Pressure. 
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Sample ID No. of spec’s No. of unamb. 
edge fail’s 

No. of unamb. 
surf. fail’s 

Bending mode Dimensions 
(mm3) 

Edge proc. Pressure rate 
(kPa s-1) 

1S 6 1 5 ULP 6x400x2000 Unknown Slow ramp 

1M 5 0 5 ULP 6x400x2000 Unknown Med. ramp 

1F 5 0 5 ULP 6x400x2000 Unknown Fast ramp 

1C 9 0 9 ULP 6x400x2000 Unknown Cyclic loading 

2S 6 0 6 ULP 6x500x2000 Unknown Slow ramp 

2M 7 0 7 ULP 6x500x2000 Unknown Med. ramp 

2F 5 0 5 ULP 6x500x2000 Unknown Fast ramp 

2C 7 0 7 ULP 6x500x2000 Unknown Cyclic loading 

3S 5 0 5 ULP 6x670x2000 Unknown Slow ramp 

3M 5 0 5 ULP 6x670x2000 Unknown Med. ramp 

3F 5 0 5 ULP 6x670x2000 Unknown Fast ramp 

3C 9 0 9 ULP 6x670x2000 Unknown Cyclic loading 

4S 5 1 4 ULP 6x1000x2000 Unknown Slow ramp 

4M 6 2 4 ULP 6x1000x2000 Unknown Med. ramp 

4F 5 0 5 ULP 6x1000x2000 Unknown Fast ramp 

4C 9 1 8 ULP 6x1000x2000 Unknown Cyclic loading 

5S 6 3 3 ULP 6x1335x2000 Unknown Slow ramp 

5M 5 3 2 ULP 6x1335x2000 Unknown Med. ramp 

5F 5 0 5 ULP 6x1335x2000 Unknown Fast ramp 

5C 6 3 3 ULP 6x1335x2000 Unknown Cyclic loading 

6S 6 2 4 ULP 6x1600x2000 Unknown Slow ramp 

6M 6 1 5 ULP 6x1600x2000 Unknown Med. ramp 

6F 5 2 3 ULP 6x1600x2000 Unknown Fast ramp 

6C 7 3 4 ULP 6x1600x2000 Unknown Cyclic loading 

7S 5 1 4 ULP 6x2000x2000 Unknown Slow ramp 

7M 5 1 4 ULP 6x2000x2000 Unknown Med. ramp 

7F 6 3 3 ULP 6x2000x2000 Unknown Fast ramp 

7C 9 3 5 ULP 6x2000x2000 Unknown Cyclic loading 

8S 6 1 4 ULP 6x2000x3000 Unknown Slow ramp 

8M 6 3 3 ULP 6x2000x3000 Unknown Med. ramp 

8F 6 3 3 ULP 6x2000x3000 Unknown Fast ramp 

8C 7 3 4 ULP 6x2000x3000 Unknown Cyclic loading 
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Fig. 18 Fracture locations according to Calderone (1999). 
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Hess (2000) 
The experiment was conducted with a four-point bending device. The loading rate was 
controlled using a hand-driven hydraulic piston. Hence, a strictly linear stress rate could not be 
produced. The load span and support span were varied between 1400 mm and 4200 mm, 
respectively, and 200 mm and 1000 mm, respectively. All glass specimens were cut out from 10 
mm thick panes except for the small set of large specimens which measured 12 mm in thickness. 
The glass edge was ground. Two different specimen dimensions were employed, viz. 400x4500 
mm2 and 360x1100 mm2. Three samples of specimens were subjected to in-plane and out-of-
plane loading. In one of the samples with in-plane loading, however, the stress history between 
the load span was nonlinear due to the high ratio of cross-sectional height to beam length. In the 
case of the beams which were subjected to out-of-plane loading, the type of failure, i.e. edge 
failure or surface failure, was not recorded. During the experiment, the temperature was 
maintained at 23 ºC. The relative humidity was not recorded but can be assumed to be the same 
as in room conditions. A summary of details on the experiment is given in Tab. 8. The length of 
load-duration ranged from about 17 sec to 6 min and 23 sec according to calculations. Fig. 19 
shows a set of boxplots for the fracture stress. Fig. 20 shows a set of probability plots for some of 
the data samples. 

Table 8: Details on the experiment as reported by Hess (2000). 4PB=Four-point bending, IP=In-plane. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge proc. Load. span (mm) Approx. stress 
rate (MPa s-1) 

1 4 4PB IP 12x400x4500 Ground 1400 0.13 

2 10 4PB IP 10x360x1100 Ground 200 N/A 

3 11 4PB OP 10x360x1100 Ground 200 3.0 

 
Fig. 19 Boxplots for the fracture stress according to Hess (2000). 

 
Fig. 20 Probability plots for the strength according to Hess (2000). 
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Fink (2000) 
The experiment was conducted with the coaxial double ring bending device. The loading ring 
diameter was 55 mm and the support ring diameter was 145 mm. The specimens were cut out 
from panes with the nominal thickness 4 mm and obtained from two different suppliers in this 
report denoted by M1 and M2. The specimens had the dimensions 225x225 mm2. The applied 
loading generated an approximate stress rate of 2 MPa s-1. In the case of the M1 sample data, the 
tin side of the plates was placed in the tension zone. However, for the M2 sample, it was not 
recorded which of the tin versus air side that was placed in the tension zone. A piece of machine 
writing paper was applied to the contact surface between the glass and steel parts. The 
temperature during testing was 23 ºC and the relative humidity was 60%. The load-duration until 
failure ranged from about 28 sec to 1 min and 41 sec according to calculations. A summary of 
details on the experiment is given in Tab. 9. In Fig. 21, a set of boxplots depict the fracture stress 
characteristics for the nominal strength data. A set of three probability plots for each sample is 
shown in Fig. 22 including the respective maximum-likelihood parameter estimates and the 
Anderson-Darling goodness-of-fit statistic. 

Table 9: Details on the experiment as reported by Fink (2000). 

Sample ID No. of spec’s Bending mode Dimensions (mm3) Load. ring diameter 
(mm) 

Stress rate (MPa s-1) 

M1 20 CDR 4x225x225 55 2 

M2 107 CDR 4x225x225 55 2 

 
Fig. 21 Boxplots of the nominal fracture stress according to Fink (2000). 

 
Fig. 22 Probability plots for each data sample in Fink (2000). 
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Overend (2002) 
The experiment was conducted with the coaxial double ring bending setup using a Satec 
Universal testing machine under displacement control. The loading ring diameter was 51 mm 
and the support ring diameter was either 65 mm, 127 mm or 200 mm, corresponding to three 
samples of tests. The specimens were cut out from panes with a thickness of 6 mm. The 
specimen dimensions were 300x300 mm2. The out-of-plane loading generated an approximate 
stress rate of 0.65 MPa s-1, 0.90 MPa s-1, and 0.64 MPa s-1, respectively. Transparent adhesive 
tape was applied to the compression side. One specimen in each sample was strain gauged using 
two rosettes located at the center on the tension side of the glass and directly under the loading 
ring. It was not recorded which of the air versus tin side of the glass that were placed in the 
tension zone. The load-duration until failure ranged from about 1 min to 8 min and 43 sec. The 
temperature and relative humidity during testing was not specified but it can be assumed that an 
indoor environment represents the climatic conditions. A summary of details on the experiment 
is given in Tab. 10. In Fig. 23, a set of boxplots depict the fracture stress characteristics for the 
nominal and stress rate-equivalent strength data. The fracture stress values are the experimental 
values recorded by Overend (2002) which were based on strain gauge measurements and 
extrapolation methods. A set of three probability plots for each sample is shown in Fig. 24 
including the respective maximum-likelihood parameter estimates and the Anderson-Darling 
goodness-of-fit statistic. The recorded fracture origins are depicted in Fig. 25. 

Table 10: Details on the experiment as reported by Overend (2002). S=Small, M=Medium, L=Large reaction ring diameter, CDR=Coaxial double 
ring, 

Sample ID No. of spec’s Bending mode Dimensions (mm3) Load. ring diameter 
(mm) 

Stress rate (MPa s-1) 

S 10 CDR 6x300x300 51 0.65 

M 10 CDR 6x300x300 51 0.90 

L 10  CDR 6x300x300 51 0.64 

 

  
Fig. 23 Boxplots of the (left) nominal and (right) stress rate-equivalent fracture stress for the data in Overend (2002). Comb.=Combined data set. 
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Fig. 24 Probability plots for the data samples in Overend (2002). 

 
Fig. 25 Fracture locations in the radial direction from the centre point of the plate specimen, according to Overend (2002). Histogram (left) and 

empirical distribution function (right). NB., loading ring radius was 25.4 mm. 
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Haldimann (2006) 
The experiment was conducted with a coaxial double ring bending setup using a universal testing 
machine. The loading ring diameter was 51 mm and the support ring diameter was 127 mm. The 
specimens were cut out from panes with the nominal thickness 6 mm. The specimen dimensions 
were 200x200 mm2. Two different loading rates were employed which produced stress rates of 
approximately 0.21 MPa s-1 and 21.2 MPa s-1, respectively. The temperature during testing was 
23-24 ºC and the relative humidity varied between 51-55%. The load-duration until failure 
ranged from approximately 6 sec to 6 min and 59 sec. A summary of details on the experiment is 
given in Tab. 11. In Fig. 26, a set of boxplots depict the fracture stress characteristics for the 
nominal and stress rate-equivalent strength data. A set of three probability plots for each sample 
is shown in Fig. 27 including the respective maximum-likelihood parameter estimates and the 
Anderson-Darling goodness-of-fit statistic. 

Table 11: Details on the experiment as reported by Haldimann (2006). L=Low stress rate, H=High stress rate, CDR=Coaxial double ring. 

Sample ID No. of spec’s Bending mode Dimensions (mm3) Load. ring diameter 
(mm) 

Stress rate (MPa s-1) 

L 10 CDR 6x200x200 51 0.21 

H 10 CDR 6x200x200 51 21.2 

 

 
Fig. 26 Boxplots of the nominal and stress rate-equivalent fracture stress according to Haldimann (2006). 

 

 
Fig. 27 Probability plots for the data samples in Haldimann (2006). 
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Veer et al. (2006) 
The experiment was conducted with a four-point bending arrangement under displacement 
control using a Zwick Z100 universal testing machine. The load and support span were 230 mm 
and 850 mm, respectively. The specimens were cut from a single pane with the thickness 10 mm. 
The specimen dimensions were 125x1000 mm2. The edges were machine ground on three 
different lines. On each line, the specimens were processed in one whole set, i.e. continuosly 
without interruption. In fact, prior to processing the grinding lines were inspected to ensure the 
proper cleaning and the due replacement of grinding heads. One set of plates, Sample 1, had 
edges ground on a twelve years old manually controlled line. A second set, Sample 2, had edges 
ground on an eight year old manually controlled lone. Finally, a third set, Sample 3, had edges 
ground on a new computer controlled line less than three months old. The specimens were 
subjected to in-plane loading generating an approximate stress rate of 1.0 MPa s-1. The 
specimens were mounted in the test rig using an anti-buckling support at the centre of the 
support span. The temperature and relative humidity during testing was not specified but it can 
be assumed that an indoor environment represents the climatic conditions. The range of load-
duration was approximately 26 sec to 1 min and 4 sec. No fractures occurred from outside the 
load span. A summary of details on the experiment is given in Tab. 12. In Fig. 28, a set of 
boxplots depict the fracture stress characteristics for the nominal strength data as well as the 
stress rate-equivalent data. A set of three probability plots for each sample is shown in Fig. 29 
including the respective maximum-likelihood parameter estimates and the Anderson-Darling 
goodness-of-fit statistic.   

Table 12: Details on the experiment as reported by Veer et al. (2006). 4PB=Four-point bending, IP=In-plane, L=Line no. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge proc. Load. span (mm) Stress rate (MPa 
s-1) 

gro-L1 10 4PB IP 10x125x1000 Ground 230 1.1 

gro-L2 11 4PB IP 10x125x1000 Ground 230 1.1 

gro-L3 11 4PB IP 10x125x1000 Ground 230 1.1 

 
Fig. 28 Boxplots for the nominal fracture stress and the stress rate-equivalent strength according to Veer et al. (2006). 

 



SURVEY OF EXPERIMENTAL DATA ON THE STRENGTH OF ANNEALED FLOAT GLASS 

32 
 

 
Fig. 29 Probability plots of the data sets according to Veer et al. (2006). 
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Sglavo et al. (2007) 
The experiment was conducted with a three-point bending arrangement using displacement 
control. The support span was 280 mm. The specimens were cut from a set of panes with the 
thickness 4 mm on an industrial process line. The specimen dimensions were 200x300 mm2. The 
edge processing types were the following, viz. as-cut, manually arrised through abrasion by 
traditional hand tools, machine ground, and machine polished. The specimens were subjected to 
out-of-plane loading producing a stress rate of approximately 3.5 MPa s-1. Half of the out-of-
plane loaded specimens were mounted with the mechanically scribed edge placed in the 
compression zone while half were positioned with the scribed edge in the tension zone. It was 
not recorded which of the tin side and air side that was placed in the tension zone. The 
compression side of the specimens were covered in adhesive transparent tape. The temperature 
and relative humidity during testing was estimated at about 25 ºC and 40%, respectively. The 
range of load-duration was approximately 17 sec to 55 sec. The fracture origin mode, i.e. edge or 
surface, was recorded. A summary of details on the experiment is given in Tab. 13. In Fig. 30, a 
set of boxplots depict the fracture stress characteristics for the nominal strength data. A set of 
three probability plots for each sample is shown in Fig. 31 including the respective maximum-
likelihood parameter estimates and the Anderson-Darling goodness-of-fit statistic. 

Table 13: Details on the experiment as reported by Sglavo et al. (2007). The mechanically scribed edge was alternatively positioned Up in the 
compression zone and Down in the tension zone. Legend: 3PB=Three-point bending, OP=Out-of-plane. 

Sample ID No. of spec’s No. of edge fail’s Bending mode Dimensions 
(mm3) 

Edge proc. Stress rate (MPa 
s-1) 

cut-down 12 5 3PB OP 4x200x300 Cut 3.5 

cut-up 15 13 3PB OP 4x200x300 Cut 3.5 

arr-down 13 4 3PB OP 4x200x300 Arrised 3.5 

arr-up 14 11 3PB OP 4x200x300 Arrised 3.5 

gro-down 16 7 3PB OP 4x200x300 Ground 3.5 

gro-up 15 14 3PB OP 4x200x300 Ground 3.5 

pol-down 15 5 3PB OP 4x200x300 Polished 3.5 

pol-up 15 15 3PB OP 4x200x300 Polished 3.5 

 
Fig. 30 Boxplots of the nominal fracture stress for each data sample in Sglavo et al. (2007). Legend: Comb=Combined data set. 
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Fig. 31 Probability plots of the data samples in Sglavo et al. (2007). Edge failures are marked with a crossed circle. 
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Veer et al. (2009) 
The experiment was conducted with a four-point bending arrangement under displacement 
control using a Zwick Z100 universal testing machine. The load and support span were 230 mm 
and 850 mm, respectively, according to private correspondence. The specimens were cut from a 
single pane with the thickness 10 mm using an automated cutting machine. The specimen 
dimensions were 100x1000 mm2. The edges were processed on a single line by automated 
grinding and polishing. Some of the specimens were subjected to in-plane loading whereas 
others were subjected to out-of-plane loading generating an approximate stress rate of 0.8 MPa 
s-1 and 0.1 MPa s-1, respectively. The in-plane loaded specimens were mounted in the test rig 
using a 1 mm thick Teflon sheet as an intermediary at the support locations. Anti-buckling 
supports were employed at five locations along the length of the beam. It was not recorded which 
of the tin side and air side that was placed in the tension zone. The specimens were wrapped in 
PET foil. The temperature and relative humidity during testing was not specified but it can be 
assumed that an indoor environment represents the climatic conditions. The range of load-
duration was approximately 26 sec to 8 min and 51 sec. The fracture origin mode, i.e. edge or 
surface, was not recorded in the case of the out-of-plane loaded specimens. Fractures that 
initiated from outside the load span were not reported so it was assumed that all fractures 
occurred within the load span. A summary of details on the experiment is given in Tab. 14. In 
Fig. 32, a set of boxplots depict the fracture stress characteristics for the nominal strength data as 
well as the stress rate-equivalent data. A set of three probability plots for each sample is shown 
in Fig. 33 including the respective maximum-likelihood parameter estimates and the Anderson-
Darling goodness-of-fit statistic.  

Table 14: Details on the experiment as reported by Veer et al. (2009). Legend: 4PB=Four-point bending, IP=In-plane, OP=Out-of-plane. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge proc. Load. span  

(mm) 

Stress rate  

(MPa s-1) 

pol-IP 30 4PB IP 10x100x1000 Polished 230 0.9 

pol-OP 24 4PB OP 10x100x1000 Polished 230 0.1 

 

 
Fig. 32 Boxplots of the (left) nominal and (right) stress rate-equivalent fracture stress for each data sample in Veer et al. (2009). Legend: 

Comb=Combined data set. 
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Fig. 33 Probability plots of the data sets in Veer et al. (2009). 
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Consuelo-Huerta et al. (2011) 
In a conference article from 2011 following the proceedings of the Glass Processing Days, Maria 
Consuelo-Huerta and co-workers published the results from two series of tests, one of them was 
conducted with the four-point bending device and the other was conducted with the double ring 
bending device. The details regarding the specimen dimensions, loading rates, and so forth, are 
given in Tab. 15. Garcia-Prieto (2001) was cited as the source of the test results using the four-
point bending device while Postigo (2010) was cited as the source of the results using the double 
ring bending device. However, upon acquiring a copy of Garcia-Prieto (2001), this author was 
unable to locate the original data in that reference (a PhD thesis). This author was unable to 
obtain a copy of Postigo (2010). Nevertheless, the experiments were detailed well enough by 
Consuelo-Huerta and co-workers. In the case of the specimens subjected to four-point bending, it 
was not recorded whether the fracture originated with the edge or the surface area of the glass. 
The load-durations for the two samples can be calculated to be approximately 47 secs to 1 min 
and 11 secs, and 15 secs to 1 min and 2 secs, respectively. Fig. 34 shows a set of boxplots for the 
data samples both in the case of the nominal fracture stress values and in the case of the stress 
rate-equivalent values. Figs. 35 and 36 show a set of probability plots for each data sample. The 
data results were extracted from the digitized graphs by this author. 

Table 15: Details from the experiments reported of in Consuelo-Huerta et al. (2011). 4PB=Four-point bending, OP=Out-of-plane, CDR=Coaxial 
double ring. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge proc. Load. span/Load. 
ring diam. (mm) 

Stress rate (MPa 
s-1) 

4PB 25 4PB OP 10x100x300 Unknown 150 1 

CDR 41 CDR 5x300x300 Unknown 180 2.4 

 

 
Fig. 34 Boxplot of the nominal and stress-rate equivalent fracture stress values according to the four-point bending experiment (Garcia-Prieto 2001) 

and the double ring bending experiment (Postigo 2010)  as reported by Consuelo-Huerta et al. (2011). 
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Fig. 35 Probability plots including estimated parameter values for the four-point bending experiment (Garcia-Prieto 2001) as reported by Consuelo-

Huerta et al. (2011). 

 

 
Fig. 36 Probability plots including estimated parameter values for the double ring bending experiment (Postigo 2010) as reported by Consuelo-

Huerta et al. (2011). 
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Veer and Rodichev (2011) 
The experiment was conducted with a four-point bending arrangement under displacement 
control using a Zwick Z100 universal testing machine. The load and support span were 175 mm 
and 350 mm, respectively. The specimens were cut from a single jumbo pane with the thickness 
6 mm using an automated cutting table. The specimen dimensions were 50x400 mm2. The edge 
condition was as-cut. Some of the specimens were subjected to in-plane loading whereas others 
were subjected to out-of-plane loading generating an approximate stress rate of 2.1 MPa s-1 and 
1.3 MPa s-1, respectively. The in-plane loaded specimens were mounted in the test rig with 
frictionless anti-buckling supports. Half of the out-of-plane loaded specimens were mounted 
with the mechanically scribed edge placed in the compression zone and half were positioned 
with the scribed edge in the tension zone. It was not recorded which of the tin side and air side 
that was placed in the tension zone. The specimens were wrapped in self-adhesive foil. The 
temperature and relative humidity during testing was not specified but it can be assumed that an 
indoor environment represents the climatic conditions. The tests were carried out in a single 
week. The range of load-duration was approximately 15 sec to 1 min and 18 sec. The fracture 
origin mode, i.e. edge or surface, was recorded. Fractures that initiated from outside the load 
span were noted when occurring. A summary of details on the experiment is given in Tab. 16. In 
Fig. 37, a set of boxplots depict the fracture stress characteristics for the nominal strength data as 
well as the stress rate-equivalent data. A set of three probability plots for each sample is shown 
in Fig. 38 including the respective maximum-likelihood parameter estimates and the Anderson-
Darling goodness-of-fit statistic.  

Table 16: Details on the experiment as reported by Veer and Rodichev (2011). Legend: 4PB=Four-point bending, OP=Out-of-plane. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge condition Load. span  

(mm) 

Stress rate  

(MPa s-1) 

cut-IP.1 44 4PB IP 6x50x400 As-cut 175 2.9 

cut-IP.2 44 4PB IP 6x50x400 As-cut 175 2.9 

cut-OP.1 50 4PB OP 6x50x400 As-cut 175 1.8 

cut-OP.2 39 4PB OP 6x50x400 As-cut 175 1.8 

 
Fig. 37 Boxplots of the (left) nominal and (right) stress rate-equivalent fracture stress values for each data sample in Veer and Rodichev (2011). 
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Fig. 38 Probability plots for the data samples in Veer and Rodichev (2011).  
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Veer and Rodichev (2012) 
The experiment was conducted with a four-point bending arrangement under displacement 
control using a Zwick Z100 universal testing machine. The load and support span were 190 mm 
and 380 mm, respectively. The specimens were cut from panes with the thickness 6 mm using a 
water-jet cutting machine. The specimen dimensions were 40x400 mm2. The water-jet cutting 
line was new and was optimized prior to the processing of the specimens. The specimens were 
subjected to out-of-plane loading generating an approximate stress rate of 1.1 MPa s-1. Half of 
the specimens were mounted with the water-jet cut face placed in the compression zone (cut face 
up) and half were positioned with the cut edge in the tension zone (cut face down). It was not 
recorded which of the tin side and air side that was placed in the tension zone. The specimens 
were wrapped in self-adhesive foil. The temperature and relative humidity during testing was not 
specified but it can be assumed that an indoor environment represents the climatic conditions. 
The tests were carried out in a single day. The range of load-duration was approximately 20 sec 
to 33 sec according to calculations. The fracture origin mode, i.e. edge or surface, was recorded. 
The fractured specimens were inspected with respect to the breakage occurring between the load 
span. A summary of details on the experiment is given in Tab. 17. In Fig. 39, a set of boxplots 
depict the fracture stress characteristics for the nominal strength data as well as the stress rate-
equivalent data. A set of three probability plots for each sample is shown in Fig. 40 including the 
respective maximum-likelihood parameter estimates and the Anderson-Darling goodness-of-fit 
statistic.  

Table 17: Details on the experiment as reported by Veer and Rodichev (2012). Legend: 4PB=Four-point bending, OP=Out-of-plane. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge condition Load. span  

(mm) 

Stress rate  

(MPa s-1) 

cut-up 30 4PB IP 6x40x400 As-cut 190 1.5 

cut-down 30 4PB IP 6x40x400 As-cut 190 1.5 

 

 
Fig. 39 Boxplots of the (left) nominal and (right) stress rate-equivalent fracture stress values for each data sample in Veer and Rodichev (2012). 
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Fig. 40 Probability plots for the data samples in Veer and Rodichev (2012).  
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Vandebroek et al. (2012) 
The experiment was conducted with a four-point bending arrangement using a universal UTS 
testing machine. The load and support span were 250 mm and 500 mm, respectively. The 
specimens were cut from panes with the thickness 4 mm. The specimen dimensions were 50x550 
mm2. Two types of edge condition were included, viz. the as-cut edge and the polished edge. The 
specimens were subjected to in-plane loading generating an approximate stress rate of 55 MPa 
s-1 and 0.55 MPa s-1, respectively. The temperature and relative humidity during testing was not 
specified but it can be assumed that an indoor environment represents the climatic conditions. 
The specimens that fractured outside the load span were identified and excluded from the 
analysis. The range of load-duration was approximately 1 sec to 2 min and 26 sec. A summary of 
details on the experiment is given in Tab. 18. In Fig. 41, a set of boxplots depict the fracture 
stress characteristics for the nominal strength data as well as the stress rate-equivalent data. A set 
of three probability plots for each sample is shown in Fig. 42 including the respective maximum-
likelihood parameter estimates and the Anderson-Darling goodness-of-fit statistic.  

Table 18: Details on the experiment as reported by Vandebroek et al. (2012). Legend: 4PB=Four-point bending, OP=Out-of-plane. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge condition Load. span  

(mm) 

Stress rate  

(MPa s-1) 

pol-High 20 4PB IP 4x50x550 Polished 250 55 

cut-High 19 4PB IP 4x50x550 As-cut 250 55 

pol-Low 19 4PB IP 4x50x550 Polished 250 0.55 

cut-Low 19 4PB IP 4x50x550 As-cut 250 0.55 

 

 
Fig. 41 Boxplots of the (left) nominal and (right) stress rate-equivalent fracture stress values for each data sample in Vandebroek et al. (2012). 
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Fig. 42 Probability plots for the data samples in Vandebroek et al. (2012).  
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Lindqvist (2013) 
The experiment was conducted with a four-point bending arrangement using a UTS test system 
and an Instron 5948 MicroTester. In most cases the testing was performed under displacement 
control or else under force control. The load span varied from 40 mm to 50 mm while the 
support span was maintained at 100 mm. The glass was obtained from seven different suppliers 
in total. The specimens were cut from panes with the nominal thickness 4 mm and 8 mm. The 
specimens were cut out manually or with a water-cutting machine to the approximate dimensions 
10x110 mm2. Five types of edge condition were included, viz. the as-cut edge, the arrised edge, 
the ground edge, the polished edge, and the water-jet cut edge. The specimens were subjected to 
in-plane loading, the generated stress rate ranging from low, i.e. 0.1 MPa s-1 to 2 MPa s-1, to high, 
i.e. 15 MPa s-1 to 55 MPa s-1. However, the stress rate could not be accurately determined in 
some cases. This is reflected in Fig. 43 below where a number of stress rate-equivalent data 
samples could not be computed and displayed. The surfaces of the glass (edges excluded) were 
covered in a transparent and highly plastic tape. The temperature ranged between 18-23 ºC while 
the relative humidity was between 23-69%. The range of load-duration was approximately 1 sec 
to 8 min and 57 sec according to calculations. A summary of details on the experiment is given 
in Tab. 19. The dimensional measurements and stress rates given in Tab. 19 represent the mean 
values. In Fig. 43, a set of boxplots depict the fracture stress characteristics for the nominal 
strength data as well as the stress rate-equivalent data. A set of three probability plots for each 
sample is shown in Figs. 44 to 47 including the respective maximum-likelihood parameter 
estimates and the Anderson-Darling goodness-of-fit statistic.  
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Table 19: Details on the experiment as reported by Lindqvist (2013). Legend: 4PB=Four-point bending, IP=In-plane, H=High stress rate, L=Low 
stress rate. 

Sample ID No. of 
spec’s 

Bending mode Supplier ID Dimensions 
(mm3) 

Edge condition Load. span  

(mm) 

Stress rate  

(MPa s-1) 

cut-M1.H:4mm 20 4PB IP M1 3.83x10.20x110 As-cut 40 17.2 

cut-M1.L:4mm 20 4PB IP M1 3.83x10.11x110 As-cut 40 1.4 

cut-M2.H:4mm 19 4PB IP M2 3.78x10.00x110 As-cut 40 18.1 

cut-M2.L:4mm 16 4PB IP M2 3.78x9.97x110 As-cut 40 N/A 

cut-M3.H:4mm 17 4PB IP M3 3.86x12.75x110 As-cut 50 49.3 

cut-M3.L:4mm 19 4PB IP M3 3.85x12.65x110 As-cut 50 2.0 

cut-M4.H:4mm 20 4PB IP M4 3.83x12.41x110 As-cut 50 53.3 

cut-M4.L:4mm 20 4PB IP M4 3.84x12.33x110 As-cut 50 2.1 

arr-M4.H:4mm 20 4PB IP M4 3.82x12.40x110 Arrised 50 49.3 

arr-M4.L:4mm 24 4PB IP M4 3.83x12.29x110 Arrised 50 2.0 

arr-M5.H:4mm 20 4PB IP M5 3.74x12.13x110 Arrised 50 49.5 

arr-M5.L:4mm 26 4PB IP M5 3.74x12.15x110 Arrised 50 2.0 

gro-M3.H:4mm 16 4PB IP M3 3.80x12.13x110 Ground 50 50.3 

gro-M3.L:4mm 21 4PB IP M3 3.82x12.17x110 Ground 50 2.0 

gro-M5.H:4mm 11 4PB IP M5 3.80x12.24x110 Ground 50 50.0 

gro-M5.L:4mm 23 4PB IP M5 3.79x12.24x110 Ground 50 2.0 

gro-M6.H:4mm 16 4PB IP M6 3.82x12.19x110 Ground 50 48.6 

gro-M6.L:4mm 23 4PB IP M6 3.82x12.09x110 Ground 50 2.0 

wat-M7.H:4mm 20 4PB IP M7 3.82x10.44x110 Water-cut 40 20.9 

wat-M7.L:4mm 19 4PB IP M7 3.81x10.42x110 Water-cut 40 0.16 

pol-M1.H:4mm 37 4PB IP M1 3.82x9.93x110 Polished 40 20.6 

pol-M1.L:4mm 33 4PB IP M1 3.82x10.04x110 Polished 40 0.15 

pol-M2.H:4mm 19 4PB IP M2 3.78x10.80x110 Polished 40 N/A 

pol-M2.L:4mm 20 4PB IP M2 3.78x10.92x110 Polished 40 N/A 

cut-M3.H:8mm 20 4PB IP M3 7.84x12.00x110 As-cut 50 N/A 

cut-M4.H:8mm 21 4PB IP M4 7.83x12.16x110 As-cut 50 N/A 

arr-M4.H:8mm 23 4PB IP M4 7.83x12.16x110 Arrised 50 N/A 

arr-M5.H:8mm 21 4PB IP M5 7.86x12.64x110 Arrised 50 53.8 

arr-M5.L:8mm 22 4PB IP M5 7.84x12.64x110 Arrised 50 2.2 

gro-M3.H:8mm 20 4PB IP M3 7.86x12.35x110 Ground 50 N/A 

gro-M5.H:8mm 18 4PB IP M5 7.81x12.56x110 Ground 50 N/A 

gro-M6.H:8mm 23 4PB IP M6 7.71x12.32x110 Ground 50 N/A 
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Fig. 43 Boxplots of the nominal and stress rate-equivalent fracture stress values for the data samples in Lindqvist (2013). NB. in some cases the 
stress rate-equivalent strength was not available in which case only the received (nominal) values are shown. 
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Fig. 44 Probability plots for the data samples in Lindqvist (2013).  
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Fig. 45 Probability plots for the data samples in Lindqvist (2013).  
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Fig. 46 Probability plots for the data samples in Lindqvist (2013).  
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Fig. 47 Probability plots for the data samples in Lindqvist (2013).  
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Vandebroek et al. (2014) 
The experiment was conducted with a four-point bending arrangement using an Instron 3369 
testing machine. The load and support span were either 250 mm and 500 mm, respectively, or 
500 mm and 1000 mm, respectively. The specimens were cut from panes with the thickness 4 
mm and 8 mm. The specimen dimensions were 62.5x550 mm2 and 125x1100 mm2. The edge 
condition was either as-cut or ground. The machine cutting and grinding was carried out by a 
qualified glass processor. The scoring of the specimens was consistently performed on the air 
side. The edge processing took place on the same day with the same machine and with the same 
processing parameters for each set of glass thickness, i.e. 4 mm and 8 mm, and edge type, i.e. as-
cut and ground. At least 30 days elapsed from the processing of the edge until the destructive 
testing. The specimens were subjected to in-plane loading generating an approximate stress rate 
of 2 MPa s-1. The specimens were mounted using rubber intermediates at the load and support 
contact surfaces. Buckling supports with a Teflon interlayer were employed at mid-span. The 
temperature and relative humidity during testing was about 25 ºC and 65%, respectively. The 
specimens that fractured outside the load span were identified and excluded from the analysis. 
The range of load-duration was approximately 14 sec to 33 sec according to calculations. A 
summary of details on the experiment is given in Tab. 20. In Fig. 48, a set of boxplots depict the 
fracture stress characteristics for the nominal strength data. A set of three probability plots for 
each sample is shown in Fig. 49 including the respective maximum-likelihood parameter 
estimates and the Anderson-Darling goodness-of-fit statistic. In the probability plots, all points 
have been marked as edge failures. However, according to the reference, 13% of the ground and 
20% of the cut specimen failures on average were identified as originating with either of the 
surface sides of the glass. These specimens were not identified in the reference.  

Table 20: Details on the experiment as reported by Vandebroek et al. (2014). Legend: 4PB=Four-point bending, OP=Out-of-plane. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge condition Load. span  

(mm) 

Stress rate  

(MPa s-1) 

gro-short:4mm 29 4PB IP 4x62.5x550 Ground 250 2 

gro-long:4mm 26 4PB IP 4x125x1100 Ground 500 2 

gro-short:8mm 27 4PB IP 8x62.5x550 Ground 250 2 

gro-long:8mm 28 4PB IP 8x125x1100 Ground 500 2 

cut-short:4mm 24 4PB IP 4x62.5x550 As-cut 250 2 

cut-long:4mm 20 4PB IP 4x125x1100 As-cut 500 2 

cut-short:8mm 27 4PB IP 8x62.5x550 As-cut 250 2 

cut-long:8mm 21 4PB IP 8x125x1100 As-cut 500 2 
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Fig. 48 Boxplots of the fracture stress values for each data sample in Vandebroek et al. (2014). 
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Fig. 49 Probability plots for the data samples in Vandebroek et al. (2014).  
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Kozlowski (2014) 
The experiment was conducted with a four-point bending arrangement under displacement 
control. The load and support span were 500 mm and 1500 mm, respectively. The specimens 
were cut from panes with the thickness 8 mm. The specimen dimensions were 200x1800 mm2. 
The edge was machine ground and polished. The specimens were subjected to in-plane loading 
generating an approximate stress rate of 0.3 MPa s-1. The specimens were mounted into the test 
rig using rubber pads applied at the steel roll contact surfaces at the supports and load 
introduction points. Two lateral supports were employed at a distance of about 100 mm from the 
load introduction points. The temperature and relative humidity during testing was not specified 
but it can be assumed that an indoor environment represents the climatic conditions. The range 
of load-duration was approximately 2 min and 6 sec to 3 min and 37 sec according to 
calculations. A summary of details on the experiment is given in Tab. 21. In Fig. 50, a set of 
boxplots depict the fracture stress characteristics for the nominal strength data as well as the 
stress rate-equivalent data. 

Table 21: Details on the experiment as reported by Kozlowski (2014). Legend: 4PB=Four-point bending, IP=In-plane. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge condition Load. span  

(mm) 

Stress rate  

(MPa s-1) 

pol:8mm 6 4PB IP 8x200x1800 Polished 500 0.3 

 

 
Fig. 50 Boxplots of the fracture stress values in Kozlowski (2014). 
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Kleuderlein et al. (2014) 
The experiment was conducted with a four-point bending arrangement. The load and support 
span were 200 mm and 1090 mm, respectively. The specimens were cut from panes with the 
thickness 4 mm, 6 mm, and 8 mm. The glass was obtained from six different suppliers in total. 
The specimen dimensions were 125x1100 mm2. The edge condition was either as-cut, arrised, or 
ground. The glass manufacturers processed the edges with their usual settings of production 
parameters. All arrising, grinding, and polishing operations were done by machine. However, the 
production methods differed between the suppliers. For instance, edging machines with cup 
wheels were used by half of the manufacturers to arrise the edges while belt edging machines 
with manual feed were used by the others. Nevertheless, a cup wheel edging machine was used 
by all manufacturers for the grinding operation. The specimens were subjected to in-plane 
loading generating an approximate stress rate of 2 MPa s-1. The specimens were mounted with 
four synthetic-coated lateral supports to prevent from tilting. The temperature and relative 
humidity during testing was not specified but it can be assumed that an indoor environment 
represents the climatic conditions. Only the specimens that fractured within the load span were 
considered. The range of load-duration was approximately 17 sec to 45 sec according to 
calculations. A summary of details on the experiment is given in Tab. 22. In Fig. 51, a set of 
boxplots depict the fracture stress characteristics for the nominal strength data. A set of three 
probability plots for each sample is shown in Figs. 52 to 55 including the respective maximum-
likelihood parameter estimates and the Anderson-Darling goodness-of-fit statistic. The data 
results were extracted from the digitized graphs by this author. 

 
Fig. 51 Boxplots of the nominal fracture stress values for each data sample in Kleuderlein et al. (2014). 
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Table 22: Details on the experiment as reported by Kleuderlein et al. (2014). Legend: 4PB=Four-point bending, IP=In-plane. 

Sample ID No. of spec’s Bending mode Supplier ID Dimensions 
(mm3) 

Edge condition Load. span  

(mm) 

Stress rate  

(MPa s-1) 

cut-M1:4mm 18 4PB IP M1 4x125x1100 Cut 200 2 

cut-M2:4mm 19 4PB IP M2 4x125x1100 Cut 200 2 

cut-M5:4mm 17 4PB IP M5 4x125x1100 Cut 200 2 

arr-M3:4mm 22 4PB IP M3 4x125x1100 Arrised 200 2 

arr-M4:4mm 22 4PB IP M4 4x125x1100 Arrised 200 2 

arr-M5:4mm 23 4PB IP M5 4x125x1100 Arrised 200 2 

gro-M2:4mm 23 4PB IP M2 4x125x1100 Ground 200 2 

gro-M3:4mm 26 4PB IP M3 4x125x1100 Ground 200 2 

gro-M6:4mm 24 4PB IP M6 4x125x1100 Ground 200 2 

cut-M3:6mm 28 4PB IP M3 6x125x1100 Cut 200 2 

cut-M4:6mm 20 4PB IP M4 6x125x1100 Cut 200 2 

cut-M6:6mm 22 4PB IP M6 6x125x1100 Cut 200 2 

arr-M1:6mm 19 4PB IP M1 6x125x1100 Arrised 200 2 

arr-M2:6mm 20 4PB IP M2 6x125x1100 Arrised 200 2 

arr-M6:6mm 26 4PB IP M6 6x125x1100 Arrised 200 2 

gro-M1:6mm 27 4PB IP M1 6x125x1100 Ground 200 2 

gro-M4:6mm 24 4PB IP M4 6x125x1100 Ground 200 2 

gro-M5:6mm 24 4PB IP M5 6x125x1100 Ground 200 2 

cut-M1:8mm 19 4PB IP M1 8x125x1100 Cut 200 2 

cut-M2:8mm 27 4PB IP M2 8x125x1100 Cut 200 2 

cut-M3:8mm 20 4PB IP M3 8x125x1100 Cut 200 2 

cut-M4:8mm 21 4PB IP M4 8x125x1100 Cut 200 2 

cut-M5:8mm 46 4PB IP M5 8x125x1100 Cut 200 2 

arr-M1:8mm 26 4PB IP M1 8x125x1100 Arrised 200 2 

arr-M2:8mm 48 4PB IP M2 8x125x1100 Arrised 200 2 

arr-M3:8mm 20 4PB IP M3 8x125x1100 Arrised 200 2 

arr-M4:8mm 23 4PB IP M4 8x125x1100 Arrised 200 2 

arr-M5:8mm 26 4PB IP M5 8x125x1100 Arrised 200 2 

gro-M1:8mm 22 4PB IP M1 8x125x1100 Ground 200 2 

gro-M2:8mm 26 4PB IP M2 8x125x1100 Ground 200 2 

gro-M3:8mm 53 4PB IP M3 8x125x1100 Ground 200 2 

gro-M4:8mm 28 4PB IP M4 8x125x1100 Ground 200 2 

gro-M5:8mm 21 4PB IP M5 8x125x1100 Ground 200 2 
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Fig. 52 Probability plots for the data samples in Kleuderlein et al. (2014).  
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Fig. 53 Probability plots for the data samples in Kleuderlein et al. (2014).  
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Fig. 54 Probability plots for the data samples in Kleuderlein et al. (2014).  



SURVEY OF EXPERIMENTAL DATA ON THE STRENGTH OF ANNEALED FLOAT GLASS 

61 
 

 
Fig. 55 Probability plots for the data samples in Kleuderlein et al. (2014).  



SURVEY OF EXPERIMENTAL DATA ON THE STRENGTH OF ANNEALED FLOAT GLASS 

62 
 

Schula (2015) 
The experiment was conducted with a coaxial double ring bending setup using a Zwick Z050 
THW Allround-Line testing machine. The loading ring diameter was 80 mm and the support ring 
diameter was 160 mm. The specimens were cut out from panes with a thickness of 6 mm. The 
specimen dimensions were 250x250 mm2. The specimens were subjected to out-of-plane loading 
generating a stress rate within the loading ring area of approximately 2 MPa s-1. The tin side of 
the glass was positioned in the tension zone. The specimens were covered in self-adhesive foil 
on the compression side. The temperature during testing was 27 ºC while the relative humidity 
was 50%. The time-duration until failure ranged from approximately 25 sec to 51 sec. A 
summary of details on the experiment is given in Tab. 23. In Fig. 56, a set of boxplots depict the 
fracture stress characteristics for the nominal strength data. A set of three probability plots for 
each sample is shown in Fig. 57 including the respective maximum-likelihood parameter 
estimates and the Anderson-Darling goodness-of-fit statistic. 

Table 23: Details from the experiment of Schula (2015). CDR=Coaxial double ring bending. 

Sample ID No. of spec’s Bending mode Dimensions (mm3) Load. ring diameter 
(mm) 

Stress rate (MPa s-1) 

1 15 CDR 6x250x250 80 2.0 

 

 
Fig. 56 Boxplots of the nominal fracture stress according to the experimental data in Schula (2015). 

 

 
Fig. 57 Probability plots of the data sample in Schula (2015). 
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Muniz-Calvente et al. (2016) 
The experiment was conducted with a coaxial double ring bending device and a four-point 
bending setup using an MTS Bionix uniaxial 100 kN testing machine. The loading and support 
ring diameters in the double ring bending test were 60 mm and 160 mm, respectively, whereas 
the load and support span dimensions in the four-point bending test were 200 mm and 1000 mm, 
respectively. All specimens in the double ring bending test were cut from the same glass pane 
with a thickness of 5 mm and all specimens in the four-point bending test were cut from the 
same pane with the thickness 5 mm. The plates in the double ring bending test measured 
250x250 mm2 in surface area while the specimens in the four-point bending test measured 
360x1100 mm2. The type of edge processing was polished according to personal correspondence 
with one of the authors. All specimens were subjected to out-of-plane loading generating an 
approximate stress rate of 2 MPa s-1. The type of fracture origin, i.e. edge fracture or surface 
fracture, in the case of four-point bending was recorded but not detailed in the journal article. 
The time-duration of loading ranged from approximately 23 secs to 67 secs. A summary of 
details on the experiment is given in Tab. 24. In Fig. 58, a set of boxplots depict the fracture 
stress characteristics for the nominal strength data. A set of three probability plots for each 
sample is shown in Fig. 59 including the respective maximum-likelihood parameter estimates 
and the Anderson-Darling goodness-of-fit statistic. 

Table 24: Details on the experiment as reported by Muniz-Calvente et al. (2016). 4PB=Four-point bending, OP=Out-of-plane, CDR=Coaxial 
double ring. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge proc. Load. span/Load. 
ring diam. (mm) 

Stress rate (MPa 
s-1) 

CDR 28 CDR 5x250x250 Polished 60 2 

4PB 30 4PB OP 5x360x1100 Polished 200 2 

 
Fig. 58 Boxplots of the nominal fracture stress values in Muniz-Calvente et al. (2016). 
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Fig. 59 Probability plots for the data samples in Muniz-Calvente et al. (2016). 
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Kinsella and Persson (2016) 
The experiment was conducted with the four-point bending setup using an MTS 810 universal 
testing machine under displacement control. Two different load spans were employed, viz. 300 
mm and 450 mm. The support span was 900 mm. All specimens were cut out from the same 
glass pane with the thickness 8 mm. The specimen dimensions were 100x1000 mm2. The edges 
were machine ground and polished. The specimens were subjected to out-of-plane loading 
generating an approximate stress rate of 0.31 MPa s-1. All specimens were wrapped in self-
adhesive plastic foil in order to control the post-fracture behavior. The fracture origin type, i.e. 
edge or surface, was not recorded. The load-duration ranged from about 1 min and 24 sec to 4 
min and 30 sec. The temperature and relative humidity during testing were not recorded but it 
can be assumed that an indoor environment represents the climatic conditions. A summary of 
details on the experiment is given in Tab. 25. In Fig. 60, a set of boxplots depict the fracture 
stress characteristics for the nominal and stress rate-equivalent strength data. A set of three 
probability plots for each sample is shown in Fig. 61 including the respective maximum-
likelihood parameter estimates and the Anderson-Darling goodness-of-fit statistic. 

Table 25: Details on the experiments as reported by Kinsella and Persson (2016). 4PB=Four-point bending, OP=Out-of-plane. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge condition Load. span  

(mm) 

Stress rate (MPa 
s-1) 

pol-short 44 4PB OP 8x100x1000 Polished 300 0.32 

pol-long 29 4PB OP 8x100x1000 Polished 450 0.36 

 
Fig. 60 Boxplots of the (left) nominal and (right) stress rate-equivalent fracture stress values for the data samples in Kinsella and Persson (2016). 

 
Fig. 61 Probability plots for the data samples in Kinsella and Persson (2016). 
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Navarrete et al. (2016) 
The experiment was conducted with the double ring bending setup using an Instron 5500R 
universal testing machine with a constant load rate of 79 kN min-1. The load and support ring 
diameters were 51 mm and 127 mm, respectively. All specimens were cut out from glass panes 
using industrial automated cutting. The pane thicknesses were 3, 4, 5, 6, 8, 10, 12, and 19 mm, 
respectively. The specimen dimensions were 200x200 mm2. The specimens were subjected to 
out-of-plane loading generating an approximate stress rate according to Tab. 26. All specimens 
were wrapped in PET foil to control the post-fracture behavior. The load-duration ranged from 
about 1 sec to 55 sec according to calculations. The average temperature during testing was 
20 ºC. The relative humidity during testing was not recorded but it can be assumed that an indoor 
environment represents the climatic conditions. The specimens were tested with the tin side 
downwards, i.e. in the tension zone. A total number of 8 specimens were excluded from the 
record for reasons including the following: the fracture origin could not be determined, the 
fracture origin was found to lie outside the load ring, the rings were non-coaxial after the test. A 
summary of details on the experiment is given in Tab. 26. In Fig. 62, a set of boxplots depict the 
fracture stress characteristics for the nominal and stress rate-equivalent strength data. The failure 
stress was calculated according to ASTM C 1499-05. A set of three probability plots for each 
sample is shown in Fig. 63 including the respective maximum-likelihood parameter estimates 
and the Anderson-Darling goodness-of-fit statistic. 

Table 26: Details on the experiments as reported by Navarrete et al. (2016). CDR=Co-axial double ring. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge condition Load. span/Load. 
ring diam. (mm) 

Stress rate (MPa 
s-1) 

3mm 8 CDR 3x200x200 As-cut 51 86.0 

4mm 8 CDR 4x200x200 As-cut 51 48.4 

5mm 8 CDR 5x200x200 As-cut 51 31.0 

6mm 9 CDR 6x200x200 As-cut 51 21.5 

8mm 9 CDR 8x200x200 As-cut 51 12.1 

10mm 8 CDR 10x200x200 As-cut 51 7.74 

12mm 9 CDR 12x200x200 As-cut 51 5.37 

19mm 10 CDR 19x200x200 As-cut 51 2.14 

 
Fig. 62 Boxplots of the (left) nominal and (right) stress rate-equivalent fracture stress values for the data samples in Navarrete et al. (2016). 
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Fig. 63 Probability plots for the data samples in Navarrete et al. (2016). 
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Yankelevesky et al. (2017) 
The experiment was conducted with the four-point bending setup under displacement control at 
about 0.012 mm s-1. The load and support span were 100 mm and 200 mm, respectively. All 
specimens were cut out from glass with a thickness of about 12 mm. The specimen dimensions 
were 38x250 mm2. The specimens were subjected to out-of-plane loading generating an 
approximate stress rate of 1.1 MPa s-1. The scored edge was placed upwards, i.e. in the 
compression zone. The origin of failure was identified for each specimen. The load-duration 
ranged from about 48 sec to 1 min and 58 sec according to calculations. The temperature and 
relative humidity during testing were 24 ºC and 32%, respectively. A summary of details on the 
experiment is given in Tab. 27. In Fig. 64, a set of boxplots depict the fracture stress 
characteristics for the nominal and stress rate-equivalent strength data. A set of three probability 
plots for the sample is shown in Fig. 65 including the respective maximum-likelihood parameter 
estimates and the Anderson-Darling goodness-of-fit statistic. 

Table 27: Details on the experiment as reported by Yankelevsky et al. (2017). 4PB=Four-point bending, OP=Out-of-plane. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge condition Load. span  

(mm) 

Stress rate (MPa 
s-1) 

 4PB 56 4PB OP 12x38x250 As-cut 100 1.1 

 
Fig. 64 Boxplots of the (left) nominal and (right) stress rate-equivalent fracture stress values for the data sample in Yankelevsky (2017). 

 
Fig. 65 Probability plots for the data sample in Yankelevsky (2017). 
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Osnes et al. (2018) 
The experiment was conducted with a four-point bending device. The loading span varied 
between 40 mm, 90 mm, and 140 mm, corresponding to three different samples of specimen 
dimensions. The support span dimensions were 80 mm, 180 mm, and 280 mm, respectively. All 
specimens were cut out of panes with the nominal thickness 4 mm. The edge condition was as-
cut. The specimen dimensions were 20x100 mm2, 40x200 mm2, and 60x300 mm2. The 
mechanically scribed edge was always placed on the compression side. The specimens were 
subjected to out-of-plane loading and the loading was applied using displacement control 
generating an average strain rate of 10 ⋅ 10ିହ s-1. With the estimation of Young’s modulus at 
𝐸 = 70 GPa, it follows that the stress rate was approximately 7 MPa s-1. The fracture origin type, 
i.e. edge or surface, was recorded. It was not recorded which of the tin versus air side that was 
placed in the tension zone. The length of load-duration ranged from approximately 5 sec to 30 
sec according to calculations. A summary of details on the experiment is given in Tab. 28. In Fig. 
66, a set of boxplots is given for the nominal fracture stress values as well as the stress rate-
equivalent values.  

Table 28: Details on the experiments as reported by Osnes et al. (2018). Legend: 4PB=Four-point bending, OP=Out-of-plane. 

Sample ID No. of spec’s Bending mode Dimensions 
(mm3) 

Edge proc. type Load. span (mm) Approx. stress 
rate (MPa s-1) 

cut-short 31 4PB OP 4x20x100 As-cut 40 7 

cut-medium 31 4PB OP 4x40x200 As-cut 90 7 

cut-long 31 4PB OP 4x60x300 As-cut 140 7 

 

 
Fig. 66 Boxplots of the nominal and stress rate-equivalent fracture stress values for each data sample in Osnes et al. (2018). Surface failures only. 
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