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Abstract

A structural design process may include various load cases for which a sufficient load-bearing
capacity must be demonstrated. In addition to static load cases, a verification of dynamic
loads, e.g. accidental loads such as blast and impact loading, may be required. To this end,
the response may be estimated using a computational model representing an idealized struc-
ture. Particularly in the conceptual design phase, a time-efficient and straightforwardmodeling
approach can be of great utility, allowing for an interactive design process where alternative
designs may be tested. Furthermore, a dynamic response analysis often requires some form of
time (or frequency) discretization and can therefore become computationally expensive com-
pared to the corresponding static analysis. The balance between performance and accuracy
as well as the purpose, i.e. the output quantities of interest, are thus important aspects in a
dynamic response analysis.

A structural dynamics analysis typically requires a model being accurate as well as computa-
tionally efficient. The model accuracy is particularly important in a verification of structures
characterized by brittle failuremodes, i.e. that do not deform plastically before failure. Further-
more, to avoid a too conservative design and to ensure sufficient accuracy, it can be necessary
to consider the nonlinear response of a structure, e.g. due to contact interactions or nonlinear
material behavior. However, a nonlinear structural dynamic problem often requires compu-
tationally expensive solution methods. Consequently, there is a need for modeling strategies
that enable time-efficient, accurate analyses and a straightforward modeling approach, appro-
priate in a structural design process. To achieve this, a reduced order model can be established
providing an accurate prediction of important output quantities.

Dynamic substructuring turns out to be an important aspect in the process of developing
reduced order models. By subdivision of the structure into substructures, dynamic substruc-
turing can be employed to effectively adjust the level of accuracy for different parts of the
structure. For example, substructures that remain linear elastic can typically be modeled using
mode-superposition methods whereas substructures which exhibit a nonlinear behavior can be
represented by a refined submodel.

In the dissertation, strategies for reduced order modeling are investigated on the basis of struc-
tural engineering applications within two different areas, namely concrete structures subjected
to blast loading and glass structures subjected to soft-body impact. Interestingly, however,
some of the challenges with regard to the structural dynamics problems are similar. In par-
ticular, the response of higher order modes may be of importance and, moreover, an accurate
representation of the structural behavior may necessitate a model considering local nonlinear-
ities.



By means of dynamic substructuring, computationally efficient analysis techniques are de-
veloped for evaluating concrete structures subjected to blast loading, appropriate for use in a
structural design process. In particular, a comparison to commonly used modeling strategies,
using equivalent single-degree-of-freedom systems, suggests that the developed models provide
an increased accuracy of the shear force. Brittle failure modes such as shear failure are typically
critical for concrete structures subjected to blast loading.

Furthermore, reduced order models are established for verification of glass panels subjected
to soft-body impact. In particular, a non-linear viscous single-degree-of-freedom system is
proposed for reduced modeling of the standardized EN 12600 impactor. Further, the response
of higher order modes is considered using a set of load-dependent mode shapes. The developed
models are validated by experimental tests of impact on glass panels.

Finally, a review of various reduced order modeling techniques is presented which, in a broader
perspective, provide a basis for developing reduced order models in various structural engin-
eering applications.
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Part I

Introduction and Overview





1 Introduction

1.1 BACKGROUND

A structural design process or verification of an existing structuremay include various load cases
for which a sufficient load-bearing capacity must be demonstrated. The response may then
be estimated using a computational model representing an idealized structure. Developing a
suitable model by means of modeling abstractions is, thus, an important step in a structural
design process—the model should capture the governing structural behavior and provide a
sufficiently accurate prediction of important output quantities. Furthermore, particularly in
the conceptual design phase, a time-efficient and straightforward modeling approach can be of
great utility, allowing for an interactive design process where alternative designs may be tested.

In addition to static load cases, verification of dynamic loads, e.g. accidental loads such as blast
and impact loading, may be required. An inherent problem in structural dynamic modeling,
however, is the uncertainty related to simplifications and modeling abstractions, which can
lead to an overestimation of the response for one load case but an underestimation for another.
Therefore, one often seek a “best estimate” model. Hence, to ensure an adequate design and an
accurate prediction of the dynamic response the model should be made as simple as possible,
but no simpler.

A dynamic response analysis in general requires some form of time (or frequency) discretiz-
ation and can therefore be expected to be computationally more expensive compared to the
corresponding static analysis. The balance between performance and accuracy as well as the
purpose, i.e. the output quantities of interest, are thus key aspects in structural dynamic mod-
eling. A detailed analysis, aiming to mimic the response of the real structure, may be useful for
analyzing complicated structures and can provide further insight into the structural behavior.
In contrast, a simplified, approximate model may be beneficial for analyzing the governing
structural behavior or evaluating certain failure modes being known“a priori”, e.g. as stated in
the applicable design code or based on knowledge acquired from previous analyses of similar
structures.

The model accuracy is particularly important in a verification of structures characterized by
brittle failure modes, i.e. that do not deform plastically before failure. For example, the re-



2 1 Introduction

Figure 1.1: Principal differences between various models.

sponse of higher order modes may be of considerable importance. Furthermore, to avoid a too
conservative design and to ensure sufficient accuracy, it can be necessary to consider the non-
linear response of a structure, e.g. due to contact interactions or nonlinear material behavior.
However, a nonlinear structural dynamic problem often requires computationally expensive
solution methods. Hence, there is a need for modeling strategies that enable time-efficient, ac-
curate analyses and a straightforward modeling approach. To this end, a reduced order model
may be established, developed to provide an accurate prediction of important output quantit-
ies.

The principal idea is illustrated in Figure 1.1. A simplifiedmodel typically consider the governing
structural behavior and provide a rough estimate of the response in a time-efficient manner
whereas a detailed model provide a “best estimate” representation of the structural behavior of
the underlying system. In contrast, using a detailed model as a starting point, a reduced model
may be formed, providing a sufficiently accurate prediction of important output quantities,
while being computationally efficient.

Dynamic substructuring (DS) can be an important aspect in the process of developing reduced
order models. By subdivision of the structure into substructures, DS can be employed to effect-
ively adjust the level of accuracy for different parts of the structure. For example, substructures
that remain linear elastic can typically be modeled using mode-superposition methods whereas
substructures which exhibit a nonlinear behavior can be represented by a refined submodel.
An approach being particularly suitable for structures with local nonlinearities.

In the dissertation, strategies for developing reduced order models are investigated on the basis
of structural engineering applications within two different areas, namely concrete structures
subjected to blast loading and glass structures subjected to soft-body impact. Interestingly,
however, some of the challenges with regard to the structural dynamics problems are similar.
In particular, the response of higher order modes may be of importance and, moreover, an
accurate representation of the structural behavior may necessitate a model considering local
nonlinearities.
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1.2 AIMS AND OBJECTIVES

The aim of this research is to facilitate a broadened use of interactive structural design processes,
where different designs can be tested in a time-efficient and convenient manner. The long-term
aim is that methods are available that can be used in accurate and computationally efficient
design tools for structural dynamic applications, suitable for such design processes.

The objectives are to develop accurate and computationally efficient modeling strategies ap-
propriate for implementation in such specialized design tools. In particular, various reduced
order modeling techniques are evaluated and exemplified on the basis of the aforementioned
structural engineering applications. In the broader perspective, a review of the available re-
duced order modeling methods provide a basis for further investigations. Apart from various
numerical studies, the objectives include investigations of experimental methodologies for val-
idating reduced order models employed for analyzing glass structures subjected to soft-body
impact.

1.3 LIMITATIONS

In this work, focus is on investigating computationally efficient modeling techniques, appro-
priate for use in a structural design process. Accordingly, the models are evaluated based on
output quantities typically used in a structural verification. However, a detailed investigation
with regard to design code requirements, e.g. related to the reinforcement arrangement in
concrete structures or allowable stress levels in glass structures, are not within the scope of this
dissertation.

On the basis of the aforementioned applications, various reduced order modeling techniques
and DS methods are investigated. However, the presented review is by no means exhaustive.
In particular, focus is on reduced order modeling techniques in structural dynamics, applied
in time domain analyses. Similar methods have been developed in other fields, e.g. system
and control, where focus often is on single input–output relations. Here, however, a structural
dynamics approach is considered where typically output for the whole structure is of interest.

Numerical models in structural dynamics applications are often established by means of the
finite element (FE) method. However, using the methods studied herein, a numerical model is
typically the starting point, which is then further modified to obtain a computational efficient
reduced model. Therefore, only a brief review of the FE method is presented. Thus, details
regarding numerical methods for discretizing continuous systems are not within the scope of
this dissertation.
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1.4 OUTLINE OF DISSERTATION

This dissertation is divided into two parts:

Part I contains an introduction to reduced order modeling in structural dynamics, dynamic
substructuring, and the applications further investigated in the appended papers. Starting with
the equations of motion, Chapter 2 introduces various mode-superposition methods. Further-
more, a brief overview of damping models for time domain analyses and dynamic response
analysis techniques are presented. In Chapter 3, dynamic substructuring is introduced. In
particular, various assembly methods and component mode synthesis methods are discussed.
Moreover, a brief overview of interface reduction techniques are presented. In Chapter 4, civil
engineering applications using the concepts introduced in Chapter 2 and 3 are discussed. In
particular, an overview is presented of reduced order modeling techniques applied to concrete
and glass structures subjected to blast and impact loading, respectively.

Part II contains the appended papers. Papers A and B considers concrete structures subjected to
blast loading and Paper C considers glass structures subjected to soft-body impact. In Paper A,
reduced order models are developed providing an increased response accuracy compared to the
simplified models commonly used for design of concrete beams and slabs subjected to blast
loading. Paper B presents strategies for analyzing concrete frame structures subjected to blast
loading in a computationally efficient manner. In Paper C, reduced order models for verifying
glass panels subjected to soft-body impact are presented. In particular, the models are validated
using a detailed reference model as well as experimental tests.



2 Reduced order modeling in structural
dynamics

A structural dynamics analysis differs from the corresponding static analysis in some import-
ant aspects. Firstly, the structure is subjected to a time-varying excitation and, secondly, the
accelerations of the structure give rise to inertia forces. Consequently, both the stiffness and
mass distribution of the structure affect the structural dynamic behavior. Moreover, the load
characteristics, not only the load magnitude, affect the dynamic response.

In a structural verification, the real structure (or design) must be idealized to obtain a suitable
analytical model. In general, the analytical model must be discretized in some manner, e.g. by
means of the finite element (FE) method or by an assumed-mode approach [1]. In particular,
the model should provide a sufficiently accurate response prediction and be computationally
efficient, both aspects being particularly important in a structural dynamics problem.

Starting with the equations of motion, this chapter introduces various mode based model-
ing approaches in structural dynamics. In particular, strategies for reducing the system size by
means of subspace projections are investigated. In general, linear elastic systems are considered.
In Chapter 3, however, dynamic substructuring is introduced, allowing for a mode based re-
duced modeling of linear substructures interacting with nonlinear subsystems, expressed in
terms of physical displacements.

2.1 EQUATIONS OF MOTION

2.1.1 Single-degree-of-freedom systems

The simplest possible model is a lumped mass system with a massless supporting structure.
Such a system can be modeled by a single-degree-of-freedom (SDOF) system having only
one system variable, a degree-of-freedom (DOF), representing the movement of the lumped
mass. The equation of motion for an SDOF system can be derived from Newton’s second
law of motion. Hence, the inertia force acting in the opposite direction of the acceleration is
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k

u(t)

f(t)

c

f(t)
cu

ku
m

Figure 2.1: Single-degree-of-freedom system.

balanced by the external load and the force imposed by the supporting structure, e.g. expressed
as

f(t)− fS(t, u)− fD(t, u̇) = mü(t) (2.1)

where u is the displacement, m is the lumped mass, f is the external force, fS is the elastic
(or inelastic) resisting force and fD is the damping resisting force (dot notation is used for
differentiation with respect to time). If assuming linear elastic behavior and linear viscous
damping, Eq. 2.1 can be rewritten to obtain the equation of motion for a linear elastic SDOF
system, a second-order differential equation of the form:

mü(t) + cu̇(t) + ku(t) = f(t) (2.2)

where c is the damping coefficient and k is the linear spring stiffness (see Figure 2.1). Further-
more, in many applications it is convienent to rewrite Eq. 2.2 such that:

ü(t) + 2ζωnu̇(t) + ω2
nu(t) =

f(t)

m
(2.3)

where

ωn =

√
k

m
(2.4)

is the natural frequency, or eigenfrequency, and

ζ =
c

2mωn
(2.5)

is the damping ratio.

Despite its simple form, the SDOF system turns out to be useful in several structural dynamic
applications. Apart from a wide range of applications in which the governing structural beha-
vior can be well-represented by an SDOF system it is the basis in response analyses methods
based on modal expansion techniques (see further Section 2.2.2).

Furthermore, in some applications, continuous structures may be well-represented by a so-
called generalized SDOF system. For example, consider a simply supported beam subjected to
an external point load, as shown in Figure 2.2a. The vertical displacement at midspan may be
considered a degree-of-freedom. A linear spring stiffness representing the load–displacement
relation at midspan can readily by derived using standard static load cases found in textbooks
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Figure 2.2: Example of approximate, generalized SDOF systems for a elastic (a) and elasto-
plastic (b) response. f(t) is the external force and u(t) is the vertical displacement
at midspan.

(see e.g. [2]). The mass associated to the vertical displacement may be determined based on
the assumed mode shape or, as a rough estimate, say 50% of the beam mass, which is referred
to as a lumped mass model. The beam’s dynamic response, in terms of the midspan displace-
ment, is thus represented by a generalized SDOF system. More specifically, the SDOF system
represents the motion of both the midspan displacement and the amplitude of the mode, cor-
responding to the static deflection of the external force. It should be emphasized that the mode
shape is constant whereas the mode amplitude varies through time.

In more general form, the generalized mass and stiffness for a linear elastic beam, assuming
small displacements, can be written as:

k =

∫ L

0
EI(ψ′′)2dx

m =

∫ L

0
ρAψ2dx

(2.6a)

(2.6b)

whereL is the beam length,E is Young’s modulus, I is the area moment of inertia, ρ is themass
per unit volume, A is the cross-sectional area , and ψ is an admissible function, meaning that it
is continuous, satisfies geometric boundary conditions, and possesses derivatives of sufficient
order [1]. Further, ψ is in general normalized such that a value of one is provided in a suitable
position (e.g. at midspan).

In the specific case of a linear elastic simply supported beam, it turns out that a lumped mass
model can be employed for a fairly accurate prediction of the fundamental natural frequency.
However, the accuracy of this simplified model can be expected to decrease with an increasing
forcing frequency, because the response of higher order modes is neglected. Moreover, note
that a generalized SDOF system may also be utilized for modeling the nonlinear response of a
structure, at least in an approximate manner. Consider, for example, a simply supported beam
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(a) Shape function 1 (b) Shape function 2

(c) Shape function 3 (d) Shape function 4

Figure 2.3: Beam element shape functions corresponding to transversal (1 and 3) and rota-
tional (2 and 4) displacements at beam ends.

where a plastic hinge may developed at midspan, modeled by means of the assumed mode
shape shown in Figure 2.2b. This model can e.g. be employed for estimating the inelastic
dynamic response of a concrete beam—a frequently used approach in blast loading design of
concrete structures [3].

2.1.2 Multi-degree-of-freedom systems

To compute the response of complex structures some form of discretization is in general re-
quired, e.g. by means of the FE method [4,5]. The structure is then idealized as an assemblage
of elements representing subsystems, e.g. bars, beams, shells or a continuum, for which the
stiffness and mass distribution are easier to define. Using the FE method, the displacement
field within each element is expressed in terms of generalized coordinates, having a physical
meaningful interpretation as the displacements in a set of element DOFs. A global assembly
can then be formed by interconnecting the element DOFs in nodal points.

Consider, for instance, a special type of element, namely a linear elastic Bernoulli beam ele-
ment. Further, let the transverse and rotational motion of the beam ends constitute a set of
four DOFs. Then, the transverse displacement of the beam element can be approximated by
a superposition of cubical shape functions (see e.g. [1] for further details), thus

u(x, t) =

4∑
j=1

ψj(x)uj(t) (2.7)

where ψj is a shape function corresponding to a unit displacement/rotation at DOF j while
the other DOFs are held fixed (see Figure 2.3).
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Moreover, the beam element stiffness matrix can be derived by means of Lagrange’s equations
[1]. Then, the stiffness matrix entries are given by

kij =

∫ L

0
EIψ′′

i ψ
′′
j dx (2.8)

where ψ′′ is the second derivative of the shape functions with respect to the beam longitudinal
coordinate x. Further, the consistent mass matrix is given by

mij =

∫ L

0
ρAψiψjdx (2.9)

(notice the similarity to Eqs. 2.6a and 2.6b, respectively). In contrast to a lumped mass matrix,
which is diagonal, a consistent mass matrix may include coupling terms, e.g. a coupling of the
beam element’s translational and rotational DOFs.

Other element types may be derived in a similar manner using shape functions representing
the displacement within an element due to the displacements in the element DOFs. Note
also that the entry kij is in fact the static reaction force in DOF i due to a unit displace-
ment in DOF j, while the other DOFs are held fixed. Thus, the stiffness matrix for a linear
elastic Bernoulli beam element may be established, as an alternative approach, using stand-
ard load cases found in textbooks. Furthermore, notice that the linear elastic beam element
(assuming small displacements) is a special case being “exact” for static load cases where dis-
placements/rotations are enforced at the beam ends. In general, however, the shape functions
constitute an approximation of the displacement field within the element.

The assemblage of element system matrices forms a linear multi-degree-of-freedom (MDOF)
system. In matrix form, the linear equations of motion can be expressed as:

Mü(t) +Cu̇(t) +Ku(t) = f(t) (2.10)

whereM,C andK are the n× n mass, damping and stiffness matrices, n being the number
of global DOFs. The damping matrix can be constructed in several ways, as further discussed
in Section 2.3. In general, coupling terms are present in the C and K matrices whereas M
is diagonal if the mass is lumped to the global DOFs. It should also be noted that, with an
appropriate DOF numbering, the system matrices will be narrowly banded, which in turn
enables efficient solution methods. This is one reason why the FE method is one of the most
important methods in applied mechanics and extensively used in a wide range of applications.

2.2 REDUCED ORDER MODELING USING SUBSPACE
PROJECTION

In structural dynamics applications, many of the commonly used modeling techniques for
linear elastic continuous structures are based on approximations using some form of shape
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functions, also referred to as mode shapes. In particular, a set of modes form a basis in which
the response, i.e. the mode amplitudes, may be represented by coordinates, often referred to
as generalized coordinates. Furthermore, a mode-superposition approach can be employed for
reducing the number of variables in a system expressed in terms of physical displacements—the
system is then said to be projected onto a reduced basis. Note that, in contrast to a generalized
SDOF system, a mode-superposition method is, in general, only applicable to linear elastic
systems.

2.2.1 Rayleigh–Ritz method

As mentioned in Section 2.1.1, a linear elastic continuous system may be represented by an
assumed mode shape to form a generalized SDOF system. Using the Rayleigh–Ritz method,
this approach can be extended further such that the displacements is approximated by a super-
position of k linearly independent mode shapes, satisfying the geometric boundary conditions.
Thus, the displacement vector in Eq. 2.10 can be expressed as:

u(t) =
k∑

j=1

ψjqj(t) (2.11)

where qj is the generalized coordinate corresponding to the amplitude of mode shape ψj and k
is the number of mode shapes, e.g. generated using a set of assumed load patterns (henceforth,
the time dependence of variables is omitted for compactness). Note that the FE method uses
a similar technique applied on the element level, where the shape functions are constructed
such that the generalized coordinates instead are the displacements of the nodal DOFs. Here,
however, the Rayleigh–Ritz method is applied on the global discretized structure, e.g. obtained
in a previous stage by means of the FE method.

Further, the relation between the generalized coordinates and the physical DOFs can be ex-
pressed as a transformation:

u = Ψq (2.12)

whereΨ =
[
ψ1 ψ2 . . . ψk

]
is a transformation matrix with the corresponding set of

generalized coordinates q =
[
q1 q2 . . . qk

]⊤.
Furthermore, the Rayleigh–Ritz method, as introduced above, can be employed for reducing
the global system size by letting the number of modes be less than the number of physical
DOFs, thus, k ≪ n. By inserting Eq. 2.12 in Eq. 2.10 and pre-multiplying with Ψ⊤ the
reduced system is given by:

M̃q̈+ C̃q̇+ K̃q = f̃ (2.13)

where
M̃ = Ψ⊤MΨ, C̃ = Ψ⊤CΨ, K̃ = Ψ⊤KΨ, f̃ = Ψ⊤f .

Here, M̃, C̃ and K̃ are the k × k reduced system matrices and f̃ is a k × 1 reduced load
vector. The linearly independent mode shapes form a reduced basis. Hence, the reduction
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can be interpreted as a projection of the system equations onto a subspace, thus, the reduction
is achieved be means of a subspace projection. This principal idea is employed in most of the
reduction techniques discussed in this dissertation.

2.2.2 Modal decomposition

The equation of motion for free-vibration of an undamped MDOF system is given by:

Mü+Ku = 0 (2.14)

where M and K are the n × n mass and stiffness matrices, respectively, and u is a n × 1
displacement vector including generalized and/or physical displacement coordinates.

By assuming harmonic motion, u = ϕ cos(ωt−θ), where ϕ is a vector constant through time
and θ is the phase angle, and substituting into Eq. 2.14, the following nth-order generalized
eigenvalue is obtained [1]: (

K− ω2
jM
)
ϕj = 0 j = 1, 2, . . . , n. (2.15)

where ϕj is the eigenvector for mode j and ωj is the corresponding eigenfrequency.

The amplitudes of the eigenmodes are arbitrary, thus, the modes may be scaled in any con-
venient manner. For example, in many applications it is convenient to scale the eigenmodes
such that the modal mass is one unit of mass, i.e.

ϕ⊤
j Mϕj = 1. (2.16)

By pre-multiplying with ϕ⊤
j in Eq. 2.15, it follws that the corresponding modal stiffness is

given by
ϕ⊤
j Kϕj = ω2

j . (2.17)

Furthermore, an important property of the eigenmodes is the orthogonality property, namely
that

ϕ⊤
i Mϕj = 0 if i ̸= j (2.18)

ϕ⊤
i Kϕj = 0 if i ̸= j. (2.19)

Similarly to the Rayleigh–Ritz approach described in Section 2.2.1, a transformation can be
expressed as:

u = Φq (2.20)

where Φ =
[
ϕ1 ϕ2 . . . ϕn

]
is the modal matrix and q =

[
q1 q2 . . . qn

]⊤ is
the corresponding set of modal coordinates.

In contrast to a Rayleigh–Ritz approach using assumed mode shapes, however, the orthogon-
ality property of the eigenmodes implies that the modal mass matrix and modal stiffness matrix
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are diagonal. Thus, by setting Ψ = Φ in Eq. 2.13 the modal mass and stiffness matrices are
given by:

M̃ = Φ⊤MΦ = I (2.21)

K̃ = Φ⊤MΦ = Λ = diag(ω2
1, ω

2
2, . . . , ω

2
n). (2.22)

Hence, if neglecting damping, a set of n uncoupled second-order differential equations, which
can be solved independently, is obtained, e.g. expressed as:

q̈j + ω2
j qj = ϕ

⊤
j f j = 1, 2, . . . , n. (2.23)

If using a modal basis including all n eigenmodes, a pure transformation from physical to
modal coordinates is obtained. Hence, the systems expressed in terms of modal and physical
coordinates, respectively, are equivalent. However, a set of n eigenmodes is rarely used in
practice. Instead, a reduced system is commonly established using a truncated modal basis.
The benefit of using modal coordinates is thus two-fold—the orthogonality property of the
modes enables a set of uncoupled differential equations and the number of system variables
are decreased.

2.2.3 Krylov-subspace methods

Despite the great utility of modal expansion techniques and the wide range of applications,
there are some drawbacks when employed for reducing the number of system variables. Firstly,
solving an eigenvalue problem for large structures can be computationally expensive and,
secondly, information related to the spatial distribution of the load is not considered. Hence,
the modal basis may include eigenmodes that are not important for the specific load case. For
example, consider again the simply supported beam in Figure 2.2a. Indeed, anti-symmetric
eigenmodes, having zero displacement at midspan, cannot be excited by the external pressure
and, consequently, nothing is gained by including these eigenmodes in the reduction basis.

An alternative to a reduction using a modal truncation is the so-called Krylov-subspace meth-
ods, which do consider the spatial distribution of the load and, moreover, are computationally
efficient. As shown in the derivation below, the basis vectors can be computed by matrix–
vector multiplications. In contrast, a eigenvalue problem must be solved when computing the
eigenmodes.

In a structural dynamics context, the Krylov-vectors can be interpreted as the displacement due
to quasi-static loads and, accordingly, the modes are sometimes referred to as static correction
modes [6]. As discussed further in Sections 2.2.4 and 2.2.5, this naming convention is also
useful in an attempt to demonstrate how the Krylov-subspace methods are related to the static
correction method, which is commonly employed in modal analyses to consider the quasi-
static response of higher order modes excluded in a modal truncation. In the following, the
static correction modes are derived based on the approach presented in [7].
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Neglecting damping, the equation of motion can be written as:

Mü+Ku = f . (2.24)

Further, the displacement can be split into a static and dynamic part:

u = ustat + y. (2.25)

By setting the acceleration to zero in Eq. 2.24, the static response is given by ustat = K−1f .
Further, substituting Eq. 2.25 into Eq. 2.24 an expression similar to Eq. 2.24 is obtained for
y, namely

Mÿ +Ky = −MK−1f̈ . (2.26)

This procedure can be continued by splitting y into a static and dynamic part z, i.e.

y = ystat + z. (2.27)

The quasi-static solution is then given by

ystat = K−1
(
−MK−1

)
f̈ . (2.28)

In a similar manner, substituting Eq. 2.27 into Eq. 2.26 yields:

Mz̈+Kz =
(
−MK−1

)2 d4f
dt4

. (2.29)

Thus, the response is given by a sequence of quasi-static solutions:

u = ustat + ystat + zstat + . . . (2.30)

Hence, a recursive procedure is obtained, indicating that the dynamic response can be approx-
imated as

u ≈
k∑

j=1

K−1
(
−MK−1

)j−1 d2(j−1)f

dt2(j−1)
(2.31)

where k is the number of static corrections. Furthermore, the higher order derivatives can
be treated as separate DOFs. Hence, instead of computing a sequence of static corrections, a
dynamic response analysis is conducted by means of generalized coordinates representing the
amplitudes of the quasi-static modes. However, for this technique to be meaningful, the spatial
variation of the load must be time-independent in some manner. For example, the external
load may be decomposed into a set ofm spatial load vectors such that

f =
m∑
j=1

fjαj(t) = Fα(t) (2.32)

where F is a n ×m matrix containing the spatial load vectors and α(t) contains the corres-
ponding time functions. Then, the set of j-th order static correction modes are given by:

xcor,j = K−1
(
MK−1

)j−1
F. (2.33)
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(a) 1st static correction mode (b) 2nd static correction mode

Figure 2.4: Example of static correction modes and corresponding load distributions, derived
from an uniform external pressure.

Further, the generated correction modes can be collected in a matrix:

Ψcor =
[
xcor,1 xcor,2 . . . xcor,k

]
(2.34)

whereΨcor is a n×(k ·m)matrix including static correction modes. Due to the consideration
of the external force in the derivation, the static correction modes are often referred to as load-
dependent vectors. Further, by means of mode superposition, the physical displacements are
given by:

u = Ψcorη (2.35)

where η =
[
η1 η2 . . . ηk

]⊤ are the generalized coordinates, corresponding to the cor-
rection mode amplitudes. A reduced system is then obtained by setting Ψ = Ψcor in Eq.
2.13. However, to avoid numerical round-off errors, the correction modes may be generated
using the modified Gram–Schmidt orthogonalization procedure [8, 9]. Moreover, by solving
a small eigenvalue problem, the basisΨcor can be replaced by a corresponding set of mass- and
stiffness-orthogonal basis vectors (see further [6]).

The first order correction modes simply correspond to the static displacement of the external
force patterns. As indicated by Eq. 2.33, the jth-order static modes can be interpreted as
displacements due to inertia forces associated to the set of (j − 1)th-order static modes (cf.
Figure 2.4). Furthermore, note that the sequence of correction vectors form a so-called block-
Krylov subspace, given by:

Kr(K
−1M;K−1F) = span

(
K−1F, (K−1M)K−1F, . . . , (K−1M)r−1K−1F

)
. (2.36)

Krylov subspace methods originating from system and control (see e.g. [10,11]) are thus closely
related to the technique using higher-order static corrections, as introduced above.
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2.2.4 Generalized mode acceleration method

As discussed in Section 2.2.2, the dynamic response can be approximated by means of a modal
truncation, i.e.:

u(t) ≈
k∑

j=1

ϕjqj(t). (2.37)

Hence, using this approach, the responses of the discarded modes ϕj (j = k+1, k+2, . . . , n)
are neglected. If the eigenfrequencies of the discarded modes ωj is much higher than the for-
cing frequency ω (which in general is the case), it is reasonable to assume that the responses of
these modes are essentially static. Hence, if ωj ≫ ω the response of mode j can be approx-
imated by a static analysis (for comparison, consider an SDOF system subjected to a forcing
frequencymuch lower than the natural frequency). This is the essence of the mode-acceleration
(MA) method [9].

The equation of motion for an undamped system may be written as:

MΦq̈(t) +Ku(t) = f(t) (2.38)

where q̈ are the modal accelerations. Further, if the eigenmodes are mass-normalized, the
spectral expansion of the inverse stiffness matrix is given by:

K−1 = ΦK̃−1Φ⊤ =
n∑

j=1

ϕjϕ
⊤
j

ω2
j

. (2.39)

This is a very useful expression which will be used in several techniques investigated herein (see
Sections 2.2.5 and 3.2.3). Furthermore, Eq. 2.38 may be rewritten as:

u(t) = K−1 (f −MΦq̈) (2.40)

substituting Eq. 2.39 in Eq. 2.40 and rearranging the terms yields:

u(t) = K−1f −ΦK̃−1Φ⊤MΦq̈ = K−1f −ΦK̃−1q̈ = K−1f −
n∑

j=1

q̈j(t)

ω2
j

ϕj . (2.41)

Now, assume that the dynamic response is only computed for the first k modes, then

u(t) ≈ K−1f −
k∑

j=1

q̈j(t)

ω2
j

ϕj . (2.42)

The above expression is thus employed in the MA method, where the first term in Eq. 2.42
can be interpreted as the pseudo-static response modified by the second term to obtain the
dynamic response. Note that the above procedure indeed implies that the response due to static
loading in general cannot be resolved by a truncated modal basis. In an approach using Krylov-
subspace methods, however, the static solution is by definition included in the reduction basis.
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The mode-acceleration method may be derived in a slightly different manner using an ap-
proach referred to as the static correction method. Even though both methods are referred to
in the literature, the MD method and the static correction method are in fact equivalent, i.e.
both methods provide the exact same results [9]. The only difference lies in how the expres-
sions are derived (except for, possibly, differences due to round-off errors in a computational
implementation). Here, however, the alternative formulation employed in the static correction
method will be useful in Section 2.2.5, being the starting point in a derivation of the modal
truncation augmentation method as well as certain dynamic substructuring methods discussed
in Chapter 3.

In the static correction method, the displacement is expressed as:

u(t) ≈
k∑

j=1

(ϕjqj) + ucor (2.43)

where ucor is a static correction term. Furthermore, by substituting the inverse stiffness matrix
in Eq. 2.42 with its spectral expansion (see Eq. 2.39), and separating the summation, the
following expression is obtained:

u(t) ≈

 k∑
j=1

ϕjϕ
⊤
j

ω2
j

+

n∑
j=k+1

ϕjϕ
⊤
j

ω2
j

 f −
k∑

j=1

q̈j
ω2
j

ϕj (2.44)

further, recall that q̈j + qjω
2
j = ϕ⊤j f , thus:

k∑
j=1

ϕjqj =

k∑
j=1

ϕjϕ
⊤
j

ω2
j

f −
k∑

j=1

q̈j(t)

ω2
j

ϕj . (2.45)

By substituting Eq. 2.45 in Eq. 2.44 the following expression is obtained:

u(t) ≈
k∑

j=1

ϕjqj +
n∑

j=k+1

ϕjϕ
⊤
j

ω2
j

f (2.46)

thus, by comparing Eq. 2.46 and Eq. 2.43, it follows that the correction term is given by:

ucor =
n∑

j=k+1

ϕjϕ
⊤
j

ω2
j

f . (2.47)

In general, however, the above expression cannot be used in practice, because a computation
of all the n eigenmodes is not feasible. Therefore, using Eq. 2.39, the following alternative
expression may be utilized:

ucor =

K−1 −
k∑

j=1

ϕjϕ
⊤
j

ω2
j

 f . (2.48)
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Figure 2.5: Example of static correction vector, ucor, for a 2DOF system.

The static correction vector ucor is illustrated in Figure 2.5 for a 2DOF system. As shown in
the figure, both eigenmodes are required to resolve the static displacement due to the external
point load. Further, the dashed gray line correspond to the solution provided by the full model,
i.e. where both eigenmodes are considered. Moreover, note that the response of the second
mode is indeed essentially static for a forcing frequency close to the first resonance.

The MA method may be generalized to include higher order corrections, referred to as the
generalized MA method [6]. In fact, the higher order corrections can be derived in a manner
similar to the force-dependent modes discussed in Section 2.2.3. Notice that setting k = 1 in
Eq. 2.31 correspond to the pseudo-static solution, which in turn is equal to the static correction
provided by Eq. 2.48 if the modal responses are neglected. Furthermore, if including k modal
responses, it follows that the higher order corrections can be computed as:

ucor, j =

K−1 −
k∑

j=1

ϕjϕ
⊤
j

ω2
j

(−MK−1
)j−1 d2(j−1)f

dt2(j−1)
. (2.49)

Hence, the response is approximated as

u(t) ≈
k∑
s

ϕsqs(t) +

l∑
j

ucor, j (2.50)

where l is the static correction order. Note that setting l = 1 in Eq. 2.50 indeed provides and
expression equivalent to the static correction method.
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2.2.5 Generalized modal truncation augmentation

Using a procedure similar to the Krylov-subspace method discussed in Section 2.2.3, the trun-
cated modal matrix can be augmented by higher order correction modes. Hence, the idea is
to utilize higher order correction vectors as additional Ritz-vectors instead of computing the
higher order derivatives in Eq. 2.49. This approach is often referred to as a generalized Modal
Truncation Augmentation (generalized MTA) [6].

The set of jth-order correction modes are then given by:

xcor,j =

K−1 −
k∑

j=1

(
ϕjϕ

⊤
j

ω2
j

)

(MK−1
)j−1

F (2.51)

which are both mass- and stiffness orthogonalized with repsect to the retained eigenmodes. A
reduction basis is then formed including the eigenmodes as well as the higher order correction
modes, e.g. expressed as:

ΨMTA =
[
ϕ1 ϕ2 . . . ϕk xcor,1 xcor,2 . . . xcor,l

]
(2.52)

where l is the number of higher order corrections. A reduced system may then be formed
using Eq. 2.13. As discussed in Section 2.2.3, the basis vectors may be orthogonalized to avoid
numerical round-off errors.

2.3 DAMPING MODELS FOR TIME DOMAIN ANALYSES

As discussed in Section 2.2.2, the orthogonality property of the eigenmodes result in a diag-
onal modal mass and stiffness matrix. Accordingly, a modal transformation can be utilized
for diagonalizing the system matrices and, consequently, a solution can be obtain by a mode
superposition, where each modal response is obtained by solving the corresponding uncoupled
differential equation. So far, however, damping has been neglected.

For structures subjected to free vibration, a steadily diminishing displacement amplitude is
observed. Hence, energy is dissipated due to various mechanisms, such as opening/closing
of small cracks, friction between structural members etc, which is referred to as damping [9].
It turns out that a viscous damping model is convenient in linear analyses because it enables
analytical solutions. However, it should be emphasized that, in most structural engineering
applications, this model is unphysical. Thus, it is merely a mathematical model that can be
calibrated to mimic the damping of the real structure. In particular, a viscous damping model
is frequency dependent, as e.g. indicated by Eq. 2.10 where the damping force correspond
to the damping coefficient c multiplied with the velocity. Nonetheless, the viscous damping
model has several benefits regrading computational aspects that, in most engineering applica-
tions, far outweighs the gain of using a more realistic and complex damping model, requiring
computational expensive solution methods.
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Figure 2.6: Rayleigh damping: variation of modal damping ratios ζn with natural fre-
quency ωn.

2.3.1 Rayleigh damping

Because both the modal mass and stiffness matrix are diagonal, one way to ensure that also the
viscous damping matrix C is diagonalized is to construct the damping matrix as a weighted
sum of the mass and stiffness matrix, thus

C = αM+ βK. (2.53)

This dampingmodel is referred to as Rayleigh damping or proportional damping [9]. The damp-
ing coefficients α and β, thus, determine the contribution of mass- and stiffness-proportional
damping, respectively.

If the eigenmodes are mass normalized, the set of uncoupled differential equations including
viscous damping can be expressed as:

q̈ + 2ζjωj q̇ + ω2
j q = ϕ

⊤
j f j = 1, 2, . . . , n (2.54)

then, it follows that the Rayleigh damping coefficients can be expressed as

2ζjωj = α+ ω2
jβ ⇒ ζj =

1

2

(
α

ωj
+ ωjβ

)
j = 1, 2, . . . , n (2.55)

where ζj is themodal damping ratio for mode j. As discussed further below, a useful property of
the Rayleigh damping model is that the mass-proportional damping is inversely proportional
to the eigenfrequency, whereas the stiffness-proportional damping is linearly proportional to
the eigenfrequency.
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Figure 2.7: Mass-proportional (left) and stiffness-proportional damping (right).

For many materials, experimental data typically suggests that the damping ratio is frequency-
independent [9]. Nonetheless, a viscous damping model where the amount of damping in-
creases linearly with the forcing frequency (cf. Eq. 2.54) is often employed due to its utility
in time domain analysis of linear systems. Using the Rayleigh damping model, however, the
coefficients α and β can be adjusted such that the desired modal damping ratio is fulfilled for
two eigenfrequencies [9]. Assuming that the desired damping ratio is equal for all modes, fre-
quencies in-between the selected eigenfrequencies will then be slightly underdamped whereas
frequencies below and above the selected eigenfrequencies will be overdamped, as shown in
Figure 2.6.

To ensure that the damping is not overestimated for modes significantly contributing to the re-
sponse, the set of eigenmodes used for calibrating the Rayleigh coefficients may be chosen such
that the frequency of important eigenmodes lies in-between the eigenfrequencies of the selec-
ted modes. Furthermore, it should be noted that the Rayleigh damping model is applicable
in mode superposition methods as well as in a direct time-integration of systems expressed in
terms of physical displacements being one of the main advantages using this damping model.

The implication of prescribing a mass- and stiffness-proportional damping is shown in Fig-
ure 2.7 [9]. Clearly, the mass-proportional part, corresponding to dashpots connected to
ground, is unphysical. For example, a mass-proportional damping associates damping to rigid
body modes. Nonetheless, a pure stiffness-proportional viscous damping being linearly pro-
portional to the forcing frequency is in general not appropriate. Thus, a mass-proportional part
is useful in practical applications. For structures having a irregular mass distribution, however,
a mass-proportional damping model might not be appropriate and should be used with care.

2.3.2 Modal damping

As discussed in Section 2.3.1, the frequency dependency of a viscous damping model can be
somewhat controlled by combining a mass- and stiffness proportional damping. An alternat-
ive, however, is to explicitly prescribe modal damping in the modal domain [9]. Recall that
a modal transformation decouples the modal responses, as shown in Eq. 2.54. Thus, the de-
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sired modal damping ratio may be prescribed explicitly in Eq. 2.54. In a modal analysis, this
approach is obviously advantageous compared to Rayleigh damping. The drawback, however,
is that this damping model is in principle only applicable in modal domain analyses, whereas
the Rayleigh damping model can also be employed for systems expressed in terms of phys-
ical DOFs. It should be mentioned, however, that it is actually possible to expand the modal
damping matrix to obtain a corresponding damping matrix in the physical domain. Such an
approach should be used with great care, however—in general the resulting damping matrix
will be full and, moreover, may be physically impossible requiring external as well as negative
damping elements. Thus, the Rayleigh damping model is in general the preferred choice in
time domain analysis of systems formulated in the physical domain.

2.3.3 Modal strain energy method

An approach using modal damping requires proportional, also referred to as classical, damping.
However, in several practical applications the damping is non-proportional, e.g. in models
representing buildings having a lower part made of concrete and an upper part made of steel
or rubber components interacting with steel or glass structures. A Rayleigh dampingmodel can
be employed for such systems. Then, the Rayleigh damping coefficients are derived for each
subsystem, respectively, by means of the global undamped eigenfrequencies and the desired
damping ratios [9].

However, because the damping matrix is not proportional, the corresponding generalized
damping matrix may not be diagonal. For solving the response of such MDOF systems either
a direct time-integration of the coupled equations of motion or a mode superposition using
the complex modes of the damped system is required [12]. However, there is another approx-
imate strategy for solving for the response of non-proportional MDOF systems, namely the
modal strain energy (MSE) method [13,14]. As e.g. shown by the numerical studies presented
in [14], this approach is sufficiently accurate for lightly damped structures having a damping
below approximately 20%. In practical applications, damping ratios are often below this level,
at least considering civil engineering structures. Using this approach a direct time-integration,
which can be computationally expensive and requires an appropriate time discretization, can
be avoided. Moreover, a solution strategy using the damped eigenmodes requires a state-space
formulation, that doubles the number of system variables, which, in addition, are complex.
Moreover, an evaluation of the undamped eigenmodes can be of great utility, to get further
insight into the structural behavior. A corresponding physical interpretation of the damped
eigenmodes, consisting of complex displacements as well as velocities, is less straightforward,
however.

In the following, the MSE method is presented using the approach in [14]. The damping ratio
of an SDOF system representing a modal coordinate can be expressed as:

ζ =
ED

4πES
(2.56)
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where ED is is the one-cycle modal energy loss due to viscous damping and ES is the modal
strain energy amplitude, given by:

ES =
1

2
ϕ⊤
j Kϕj (2.57)

whereK is the global stiffness matrix for a structure with non-proportional damping, and ϕj

is the global eigenmode for mode j.

In accordance with the MSE method, the modal energy loss is computed as:

ED = πωjϕ
⊤
j Cϕj (2.58)

where ωj is the eigenfrequency for mode j andC is the global damping matrix containing the
damping submatrices related to the substructures having different levels of damping. Assuming
that the modal basis is mass-normalized, it follows that the modal damping ratio for mode j
can be estimated as:

ζj =
ϕ⊤
j Cϕj

2ωj
(2.59)

Using the above procedure, a solution can be obtained by means of mode superposition of the
undamped eigenmodes even though a non-proportional damping is considered. It should be
emphasized, however, that the MSE method is indeed an approximation due to that possible
off-diagonal terms in the modal damping matrix is not considered.

2.4 DYNAMIC ANALYSIS

In general, the following strategies may be employed for solving for the response of MDOF
systems in the time domain:

• mode superposition using the undamped eigenmodes,

• mode superposition using the complex damped eigenmodes, or

• by direct time-integration of the coupled system equations.

Here, only the first and third methods are considered. The damping levels for the structures
considered (see further Chapter 4) are fairly low, hence, an approximate mode-superposition
approach using the undamped eigenmodes are sufficiently accurate. Moreover, it should be
noted that, in addition to the time domainmethods listed above, the response can be computed
using a frequency domain approach, by establishing complex frequency response functions
(FRF) (see further [9]). Frequency domain methods are, however, not within the scope of this
dissertation.
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2.4.1 Mode superposition methods

Each modal response can be represented by a corresponding SDOF system, i.e. Eq. 2.2. and
Eq. 2.54 are equivalent. It follows that all the methods available for computing the dynamic
response of SDOF systems can be utilized for computing the modal responses. In particular,
a closed-form solution can be established for computing the damped free vibration response:

qj(t) = e−ζjωjt

(
qj(0) cos(ωjDt) +

q̇j(0) + ζjωjqj(0)

ωjD
sin(ωjDt)

)
(2.60)

where ωjD = ωj

√
1− ζ2j is the jth natural frequency with damping [9].

A time discretization is clearly needed to consider a load varying arbitrary through time. Non-
etheless, for such load cases, highly efficient numerical procedures are available that provides
the “exact” response of a load varying linearly between a range of time increments, i.e. the
accuracy merely depend on the time discretization of the problem. Moreover, a closed-form
solution can be established for certain pulse loads, periodic loads and, in particular, harmonic
loads, which in turn may be utilized for solving for arbitrary loading by means of frequency
domain methods [9].

2.4.2 Direct time-integration methods

The computationally efficient analytical solution methods discussed in Section 2.4.1 require
that the system equations are linear. For nonlinear problems, however, a direct time integration
of the equations of motion is required. Several time-stepping methods can be found in the
literature (see e.g. [15]), which can be divided into one-step and multi-step methods, where the
former implies that only two time increments are involved in the computations at a given time,
whereas the latter may include several time increments. In structural dynamics applications
the most common time-integration methods are one-step methods.

Furthermore, a time-stepping scheme may be implicit, which implies knowledge of the accel-
erations in the computation of the velocity and displacements at a given time step, or explicit,
if the displacements and velocities are computed without prior knowledge of the accelerations.

One of the most important time stepping methods is the Newmark method—a one-step
method based on the following equations [15]:

u̇n+1 = u̇n + (1− γ)hün + γhün+1

un+1 = un + hu̇n + h2
(
1

2
− β

)
ün + h2βün+1

(2.61a)

(2.61b)

where h is the time increment (i.e. tn+1 = tn+h), and γ and β are parameters that defines the
variation of acceleration over a time step. In particular, setting γ = 1

2 and β = 1
4 correspond
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to constant average acceleration, which result in an unconditionally stable scheme, meaning
that the time increment size only have to be adjusted to obtain sufficient accuracy [15].

Another important time-stepping technique is the central difference method (CDM), where
the velocity and accelerations are expressed as [9, 15]:

u̇n =
un+1 − un−1

2h

ün =
un+1 − 2un + un−1

h2
.

(2.62a)

(2.62b)

In fact, the above expressions can be derived from Newmark’s formula by setting γ = 1
2 and

β = 0. The CDMmethod is a second order accurate explicit scheme, i.e. it can be formulated
such that the displacements and velocities can be computed without prior knowledge of the
accelerations. In particular, a computationally efficient implementation of the CDM method
can be achieved for undamped systems having a diagonal lumped mass matrix, an approach
commonly employed in highly nonlinear and transient problems, such as crash simulations and
impact loading. The CDMmethod is conditionally stable, however, requiring that ωcrh ≤ 2,
where ωcr is the highest eigenfrequiency of the system [15].

Using an explicit time-stepping scheme, such as the CDM method, for solving nonlinear sys-
tems is straightforward, because the nonlinear forces may be computed explicitly (however, a
stable time increment must be ensured). In an implicit time integration scheme, however, the
nonlinear equilibrium equations typically requires an iterative solution method, such as the
modified Newton–Raphson method (see e.g. [9]).
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The dynamic response of linear systems can be efficiently computed by use of modal dynamics;
the system matrices are diagonalized and reduced by projecting the system equations onto a
truncated modal basis. However, for large systems it can be beneficial to divide the system
into substructures and employ dynamic substructuring (DS) to perform a reduction on the
substructure level, e.g. as a preconditioning in the process of computing the global eigen-
modes. Solving several substructures can be computationally less expensive than solving one
large system.

Moreover, DS can be employed for reducing linear structures interacting with nonlinear struc-
tures or having nonlinear boundary conditions. In particular, local nonlinearities can be con-
sidered, such as plastic hinges in concrete structures or local contact interactions, as illustrated
by various applications in Chapter 4. The parts of the structure that remain linear elastic are
then represented by a reduced set of generalized coordinates, whereas the nonlinear parts are
expressed in terms of physical displacements.

Several DS methods have been developed since the late 1960s, extensive reviews of existing
methods are e.g. presented in [1, 16]. In particular, DS may be applied in both time domain
and frequency domain analyses. Here, however, focus is on DS for time domain analysis.

Section 3.1 presents assembly methods, which is an important aspect of DS. To this end, the
fundamental equilibrium and compatibility conditions are introduced, as formulated in [16],
which then provide a basis in a derivation of various assembly techniques. In particular, a
global assembly may be formed such that a unique set of DOFs or, in contrast, dual DOFs are
retained at interfaces.

In most DS methods a reduction is performed on the substructure level using some form
of mode superposition approach. Hence, the substructure response is expressed in terms of
generalized coordinates representing the amplitudes of a specific set of component modes (in the
following, the terms substructure and component are used interchangeably). This class of DS
approaches are often referred to as component-mode synthesis (CMS) and is further discussed
in Section 3.2. In particular, CMS methods may be formulated using a so-called free- or
fixed-interface approach. In the applications discussed in Chapter 4, it turns out that a fixed-
interface approach is often advantageous. For the sake of completeness, however, both free-
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and fixed-interface methods are considered here. Further, an investigation of the principal
differences between the fixed- and free-interface methods provide a basis for determining the
preferred modeling approach in specific applications.

3.1 ASSEMBLY METHODS

The equations of motion for a structure consisting ofN substructures and the associated com-
patibility and equilibrium conditions may be written as [16]:

Mü+Cu̇+Ku = f + g

Bu = 0

L⊤g = 0

(3.1a)
(3.1b)

(3.1c)

where
M = diag

(
M(1),M(2), . . . ,M(N)

)
C = diag

(
C(1),C(2), . . . ,C(N)

)
K = diag

(
K(1),K(2), . . . ,K(N)

)
u =

[
u(1)⊤ u(2)⊤ . . . u(N)⊤ ]⊤

f =
[
f (1)⊤ f (2)⊤ . . . f (N)⊤ ]⊤

g =
[
g(1)⊤ g(2)⊤ . . . g(N)⊤ ]⊤

.

Here,M,C, andK are the global mass, damping and stiffness matrices, respectively, u is the
global displacement vector and f and g are the external and interface force vectors, respectively.
Furthermore, note that the global system equations (Eq. 3.1a) are written in block-diagonal
form which implies that dual DOFs are present at interfaces between substructures.

Eq. 3.1b considers the compatibility condition. More specifically, it includes equations describ-
ing how DOFs are constrained. For example, consider the constraint equation ui − uj = 0,
i.e. the displacement in DOF i is equal to the displacement in DOFj. This correspond to B
being a row vector of the form:

B =
[
0 1 −1 0

ui uj

]
(3.3)

Hence, if assuming conforming discretizations on interfaces,Bwill be a signed nc×n Boolean
matrix, where nc is the number of constraints and n the number of DOFs in the dually as-
sembled global system.

Eq. 3.1c considers the equilibrium condition where, in the case of a conforming interface
discretization, L is a Boolean localization matrix. For example, consider again the constraint
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equation ui−uj = 0 and the associated equilibrium condition gi+ gj = 0. This correspond
to L being a n× (n− 1) matrix given by (with blank entries being zero):

L =



1

1
1 ui

1

1 uj

1


(3.4)

The global displacement vector may be partitioned into a set of unique uu and redundant ur

DOFs. Hence, the unique DOFs include one set of interface DOFs and, possibly, interior
DOFs being substructure DOFs that are not part of the substructure boundary (a selection of
interface DOFs is thus required). Then, the compatibility condition can be expressed as:

[
Brr Bru

] [ ur

uu

]
= 0. (3.5)

Further, by rewriting Eq. 3.5, the redundant DOFs can be expressed in terms of the unique
DOFs:

ur = −B−1
rr Bruuu. (3.6)

Hence, the following transformation may be defined:

u = Luu =

[
−B−1

rr Bru

Iuu

]
uu. (3.7)

Thus, the Boolean localization matrixL, that transforms the unique set of DOFs to dual form,
can readily be obtained if B is available.

Furthermore, substituting Eq. 3.7 into Eq. 3.1. and pre-multiplying with L⊤ yields:

MP üu +CP u̇u +KPuu = fP (3.8)

where
MP = L⊤ML, CP = L⊤CL, KP = L⊤KL, fP = L⊤f .

Here,MP ,CP andKP are nP ×nP systemmatrices and fP is a nP ×1 external force vector,
where nP is the number of unique DOFs in a so-called primal formulation. Notice that this
primal approach correspond to the assembly procedure commonly employed in standard FE
modeling, i.e. the original displacement vector is replaced by a set of unique DOFs. Moreover,
substituting Eq. 3.7 into the compatibility condition yields Bu = BLuu = 0. Hence, the
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Boolean localization matrix L represents the null-space of B, i.e. BL = 0 [16]. Accordingly,
a primal assembly is actually obtained by projecting the system equations onto the null-space
of B (cf. Eqs. 2.13 and 3.8). Furthermore, it follows that (BL)⊤ = L⊤B⊤ = 0, i.e. B⊤ is
the null-space of L⊤.

Instead of using a primal formulation, the compatibility and equilibrium conditions (Eqs.
3.1b and 3.1c) can be enforced such that dual DOFs are retained at interfaces, e.g. by means
of Lagrange multipliers [16]. Then, the interface forces may be selected such that:

g = −B⊤λ (3.9)

where λ is a nc × 1 vector containing Lagrange multipliers. Further, by substituting Eq. 3.9
into the equilibrium equation (Eq. 3.1b) one obtains:

L⊤g = −L⊤B⊤λ = 0. (3.10)

Hence, because B⊤ is the null-space of L⊤ the equilibrium condition is always satisfied. It
then remains to enforce the compatibility condition, i.e. Bu = 0. In matrix form, the dually
assembled system can thus be written as:[

M 0
0 0

] [
ü
λ

]
+

[
C 0
0 0

] [
u̇
λ

]
+

[
K B⊤

B 0

] [
u
λ

]
=

[
f
0

]
(3.11)

where both the equilibrium and compatibility conditions are satisfied.

Furthermore, a dually assembled system can be enforced in an approximate manner using a
penalty formulation, e.g. expressed as:

Mü+Cu̇+
(
K+ αB⊤B

)
u = f (3.12)

where α is a penalty stiffness being sufficiently large such that Bu ≈ 0 [4]. Again, consider
the constraint equation ui − uj = 0 and the corresponding signed Boolean matrix B (cf.
Eq. 3.3). It follows that:

αB⊤B =



0 0

0 α −α 0 ui

0 −α α 0 uj

0 0
ui uj


(3.13)

hence, using the penalty formulation, the constraint is indeed enforced by means of a spring
element having stiffness α.
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The preferred assembly method depend on the specific application. A primal formulation
where the number of global DOFs are reduced can be cumbersome in some applications. On
the contrary, it can be problematic to ensure stability in direct time-integration schemes for
systems including Lagrange multipliers [17]. Even thoughmethods to ensure stability exist, the
available time-integration schemes are at least limited (for example, a standard Newmark time-
integration, assuming constant average accelerations, is in this case unconditionally unstable).
If using the penaltymethod, a suitable penalty stiffnessmust be determined—if it is too low, the
constraint equations might not be enforced properly and if it is too large, the system equations
can be ill-conditioned with respect to inversion. Moreover, if using a conditionally stable time-
integration scheme, such as the central difference method, a large penalty stiffness might result
in a very small critical time increment (see Section 2.4.2).

3.2 COMPONENT MODE SYNTHESIS

On the substructure level, the linear system equations are expressed in terms of the substructure
displacements u(s), which can be replaced by a reduced set of generalized coordinates q(s).
The transformation can be expressed as

u(s) = Tq(s) (3.14)

where superscript s is the substructure label and T is a n(s) × m(s) transformation matrix
representing a reduction basis. Here, n(s) and m(s) are the number of variables in the un-
reduced and reduced subsystem, respectively. Typically,m(s) ≪ n(s).

A FE formulation of a substructure leads to a linear equation of motion of the following form:

M(s)ü(s) +C(s)u̇(s) +K(s)u(s) = f (s) (3.15)

where M(s),C(s) and K(s) are the n(s) × n(s) substructure mass, damping and stiffness
matrices, respectively, and f (s) is a n(s) × 1 substructure load vector. By inserting Eq. 3.14 in
Eq. 3.15 and pre-multiplying with T⊤ a reduced subsystem is given by:

M̃(s)q̈(s) + C̃(s)q̇(s) + K̃(s)q(s) = f̃ (s) (3.16)

where

M̃(s) = T⊤M(s)T, C̃(s) = T⊤C(s)T, K̃(s) = T⊤K(s)T, f̃ (s) = T⊤f (s).

Here, M̃(s), C̃(s) and K̃(z) are them(s)×m(s) reduced systemmatrices and f̃ (s) is am(s)×1
reduced load vector (henceforth, the superscript s will be left out to simplify the notation).

In most CMS methods, a reduction basis is constructed using some form of pseudo-static and
vibrational modes [7]. In particular, a set of pseudo-static modes may be constructed such
that the generalized coordinates correspond to the physical displacements in the substructure
boundary DOFs. This is convenient when enforcing intercomponent compatibility, i.e. the
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components can be assembled in a standard fashion as superelements. Accordingly, the reduced
coordinate vector q(s) may include both physical DOFs, referred to as master or boundary
DOFs, and generalized coordinates representing the amplitudes of component modes.

3.2.1 Condensation methods

Neglecting damping, the equation of motion in partitioned form for a substructure can be
written as: [

Mii Mib

Mbi Mbb

] [
üi

üb

]
+

[
Kii Kib

Kbi Kbb

] [
ui

ub

]
=

[
fi
fb

]
(3.17)

where the subscripts i and b denotes the interior and interface boundary DOFs, respectively.
If assumed force-free, the interior DOFs can be expressed as:

ui = −K−1
ii (Miiüi +Mibüb +Kibub) . (3.18)

Using a CMS approach, the inertia effects related to the interior DOFs are considered by a
component mode superposition according to Eq. 3.14. In particular, CMS methods where q
only contains physical master DOFs are often referred to as condensation methods, which are
arguably the most straightforward techniques.

The most common condensation method is Guyan reduction [18], where the inertia terms in
Eq. 2.7 are ignored. This leads to the following transformation matrix:[

ui

ub

]
=

[
Ψib

Ibb

]
ub = TGq (3.19)

where Ibb is am×m identity matrix,Ψib = −K−1
ii Kib is the interior part of the component

modes, andTG is then×mGuyan transformationmatrix. The columns of the transformation
matrix are the so-called constraint modes, obtained by prescribing a unit displacement for a
boundary DOF, while the interior DOFs are force-free and the other boundary DOFs are held
fixed. Thus, for a beam element, the constraint modes correspond to the mode shapes shown
in Figure 2.3. Further, note that if retaining only one boundary DOF, the reduced system is
in fact a generalized SDOF system, as discussed in Section 2.1.1.

Using condensation methods, the displacement of the boundary nodes is related to a set of
component modes. In the Guyan reduction technique, these modes are based on the static
displacement of the boundary, and accordingly “exact” results are achieved for static loading
on the substructure boundary. For dynamic loading, however, the accuracy is highly dependent
on the forcing frequency and the selected master DOFs.

Other condensation methods have been developed where the component modes are chosen
differently. For example, the stiffness matrix can be replaced by the dynamic stiffness matrix,
often referred to as dynamic reduction. Using this approach ”exact” results can be obtained in
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(a) Fixed-interface mode 1 (b) Fixed-interface mode 2

(c) Fixed-interface mode 3 (d) Fixed-interface mode 4

Figure 3.1: First four fixed-interface normal modes for beam element, with rotational and
transversal DOFs at beam ends being boundary DOFs.

a steady state analysis for a certain forcing frequency. However, such a system is not “statically
complete”, i.e. the set of component modes does not span the possible displacements of the
interior DOFs due to static loading on the boundary (note that the Guyan reduction can be
interpreted as a dynamic reduction being evaluated at zero frequency). Other more sophistic-
ated condensation methods have been developed, such as Improved Reduction System (IRS)
and System Equivalent Reduction Expansion Process (SEREP) [11]. However, the number of
exact resonances is always less or equal to the number of boundary nodes.

3.2.2 Fixed-interface methods

Thecomponentmodes associated to the boundaryDOFs, employed in the condensationmeth-
ods, can be complemented by additional modes which enables reduced models that are both
statically complete and that compensates for the neglected inertia terms related to the interior
DOFs (cf. Eq. 3.18). These reduction methods, where the reduced coordinate vector includes
both physical and/or generalized coordinates, may be divided into fixed- and free-interface
methods [1]. The most common method is a fixed-interface method, namely the Craig–
Bampton (C-B) method developed in the late 1960s [19], where the constraint modes are
augmented by a set of fixed-interface normal modes (see Figure 3.1).

By setting the boundary displacements to zero in Eq. 3.17, the fixed-interface normal modes
are obtained by the generalized eigenvalue problem:(

Kii − ω2
jMii

)
{ϕi}j = 0 (3.20)

where Kii and Mii are the interior stiffness and mass matrices, respectively. The transforma-
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tion matrix is then given by:[
ui

ub

]
=

[
Φik Ψib

0bk Ibb

] [
qk

ub

]
= TC−Bq (3.21)

where the subscript k denotes the retained fixed-interface normal modes, TC−B is the Craig-
Bampton transformation matrix, and Φik and Ψib are the interior part of the set of fixed-
interface normal modes and constraint modes, respectively. By setting k ≪ ni, a reduction is
achieved in terms of a truncated fixed-interface modal basis. In contrast, if all fixed-interface
modes are included in the basis, one obtain a pure transformation, without reducing the num-
ber of variables. Moreover, an important property of the C-B method is that the portion of
the reduced system matrices related to the fixed-interface normal modes will by diagonal, thus,
the reduced system matrices will in general be sparse (see further [1]).

A transformation according to Eq. 3.21 is employed in the standard C-B approach. In the
early 2000s, an extension of the C-B method was proposed where the set of fixed-interface
normal modes is augmented by higher order static correction modes [6]. The approach is
similar to the generalized MTA method, discussed in Section 2.2.5. In particular, loading on
the substructure boundary is considered in the derivation and, moreover, the static modes can
be generated in a computationally efficient manner by means of matrix–vector multiplications.

If assuming that the external forces only act on boundary DOFs, the top row of Eq. 3.17 can
be rewritten as:

Miiüi +Kiiui = −Mibüb −Kibub. (3.22)

Hence, the substructure interior DOFs can be considered excited by imposed displacement on
its boundary. Similarly to the derivation in Section 2.2.3, a recursive procedure can be derived
such that the displacement of the interior DOFs can be approximated as:

ui ≈ −K−1
ii Kibub +

k∑
j=1

(
−K−1

ii Mii

)j−1
K−1

ii Y
d2jub

dt2j
(3.23)

whereY = MiiK
−1
ii Kib−Mib. As in the generalizedMTAmethod, the higher order derivat-

ives may be replaced by generalized coordinates in a dynamic response analysis. Moreover, the
static corrections may be computed using the residual flexibility, as discussed in Section 2.2.5
(recall that the inverse of the stiffness matrix can be expressed in terms of a spectral expansion,
cf. Eq. 2.39). Then, a set of jth-order corrections modes are given by:

ψi,cor.j =

(
K−1

ii −
k∑

r=1

ϕrϕ
⊤
r

ω2
r

)(
MiiK

−1
ii

)j−1
Y. (3.24)

The resulting set of correction modes are mass- and stiffness-orthogonal to the fixed-interface
normal modes. Similarly to the generalized MTA method, the correction modes can be made
mutually orthogonal by solving a small eigenvalue problem. Then, a transformation matrix of
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the following form can be obtained:

[
ui

ub

]
=

[
Φik Ψ̃il,cor. Ψib

0bk 0bl Ibb

] qk

ql

ub

 = TC−B,cor.q (3.25)

where the columns of the matrix Ψ̃il,cor. are the total set of l pseudostatic modes andTC−B,cor.
is the transformationmatrix where the fixed-interfacemodal basis is augmented by higher order
static modes.

The higher order static modes, as introduced above, are force-dependent in the sense that
loading on the substructure boundary DOFs is considered. However, it should be noted that
the above procedure implies that the number of pseudo-staticmodes generated in each iteration
correspond to the number of boundary DOFs. Hence, if the number of boundary DOFs is
large, this methodology is best used in combination with a interface reduction technique, as
further discussed in Section 3.2.4.

In both the standard C-B method and in an approach where the fixed-interface modal basis
is augmented by higher order static modes, the physical boundary DOFs are retained in the
reduction process. Hence, a global assembly can be formed in a straightforward manner using
any of the assembly methods discussed in Section 3.1.

3.2.3 Free-interface methods

In the 1970s, so-called free-interface methods where developed by MacNeal, Rubin, and Craig
and Chang [20–22]. Instead of fixed-interface component modes, these methods uses a re-
duction basis including free-interface normal modes and, possibly, rigid body modes.

The free-interface normal modes ϕj (cf. Figure 3.2) are obtained by the generalized eigenvalue
problem: (

K− ω2
jM
)
{ϕ}j = 0 (3.26)

where K and M are the component stiffness and mass matrices, respectively. Note that these
matrices, in contrast to the system matrices in Eq. 3.20, include partitions related to both the
interior and boundary DOFs (cf. Eq. 3.17).

Further, using a free-interface approach, the constraint modes employed in the fixed interface
methods are replaced by attachment modes, corresponding to unit loading on the boundary
DOFs. More specifically, an attachmentmode correspond to a unit load applied on a boundary
DOF while the other DOFs are force-free.

Moreover, the attachment modes can be computed based on the component residual flexibility,
i.e. similar to what is done in the generalized MTA method as well as the fixed-interface
CMS approach including higher-order static modes (see Sections 2.2.5 and 3.2.2, respectively).
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(a) Free-interface flex mode 1 (b) Free-interface flex mode 2

(c) Free-interface flex mode 3 (d) Free-interface flex mode 4

Figure 3.2: First four free-interface flex modes for beam element with free-free boundary con-
ditions.

Then, the residual attachment modes can be expressed as:

Ψnb =

[
Ψib

Ψbb

]
= Gres

[
0ib
Ibb

]
(3.27)

whereGres is the components residual flexibility matrix. Hence, in accordance with Eq. 3.27,
the residual attachment modes correspond to columns of the residual flexibility matrix.

Furthermore, the residual flexibility matrix can be expressed in terms of the spectral expansion
of the inverse stiffness matrix (cf. Section 2.2.5):

Gres =

n∑
j=k+1

ϕjϕ
⊤
j

ω2
j

=

K+ −
k∑

j=1

ϕjϕ
⊤
j

ω2
j

 (3.28)

where, k is the number of retained free-interface eigenmodes ϕj (excluding rigid body modes),
with the corresponding eigenfrequency ωj . Further,K+ is a pseudo-inverse of the component
stiffness matrix. Here, it should be noted that a computation of Gres based on the discarded
modes, i.e. using the summation from k + 1 to n in Eq. 3.28, is in general not feasible,
because it necessitates a computation of all free-interface eigenmodes. Therefore, the second
expression in Eq. 3.28 is used in practice.

For components constrained such that there are no rigid body modes, the component stiffness
matrix is invertible and the residual attachment modes can be computed in a straightforward
manner (i.e. K+ = K−1). However, if rigid body modes are present, which in general is the
case, the stiffness matrix will be singular and a pseudo-inverse of the stiffness matrix is required.

Recall that the attachment modes correspond to unit loading on the boundary DOFs (cf. Eq
3.27). It follows that the problem of finding a pseudo-inverse can in principle be replaced by
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(a) Attachment mode 1 (b) Attachment mode 2

(c) Attachment mode 3 (d) Attachment mode 4

Figure 3.3: Inertia-relief attachment modes corresponding to loading at transversal (1 and 3)
and rotational (2 and 4) DOFs at beam ends.

the problem of finding self-equilibrated force systems replacing the unit forces on the boundary
DOFs (cf. Figure 3.3). A detailed description of how to compute a pseudo-inverse using this
approach can e.g. be found in [1]. In summary, a pseudo-inverse, referred to as the constrained
flexibillity matrix, is first computed by constraining suitable DOFs. Then, a projection matrix
termed inertia-relief projection matrix is constructed which converts a given force vector to a
self-equilibrated force system. Further, by post-mutiplying the constrained flexibillity matrix
with the inertia-relief projection matrix one obtain a matrix whose columns correspond to
modes of self-equilibrated force systems. Finally, by pre-multiplying with the transpose of
the inertia-relief projection matrix the corresponding modes are made orthogonal to the rigid
body modes. The pseudo-inverse obtained using this procedure actually correspond to the
elastic flexibility matrix, i.e. a spectral expansion of the inverse of the stiffness matrix where
the rigid body modes are excluded (indeed, including rigid body modes in Eq. 3.28 would
imply division by zero).

Now, a transformation matrix can be defined based on the rigid body modes, free-interface
eigenmodes, and the residual-flexibility attachment modes, i.e.

[
ui

ub

]
=

[
Φir Φik Ψib

Φbr Φbk Ψbb

] qr

qk

gb

 = TRFAq. (3.29)

Here, r denotes the rigid body modes, gb contain the generalized coordinates representing the
amplitude of the residual attachmentmodes, andTRFA is the so-called augmented free-interface
transformation matrix [1].

In a CMS technique where the boundary DOFs are kept as physical DOFs, an assembly can
be formed in a straightforward manner using any of the assembly methods discussed in Sec-
tion 3.1. Using a transformation according to Eq. 3.29, where the constraint modes are re-
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placed by attachment modes, this approach is not feasible. Instead, a global assembly has to
be formed using alternative procedures, as further discussed below.

Using Eq. 3.1b, it follows that the compatibility condition can be expressed as:

Bu = BT̂q̂ = Bqq̂ = 0 (3.30)

where

T̂ = diag
(
T(1),T(2), . . . ,T(N)

)
q̂ = diag

(
q(1),q(2), . . . ,q(N)

)
.

Furthermore, a matrix Lq = null(Bq) may be formed. It follows that a global assembly may
be enforced using e.g. a primal formulation according to Eq. 3.8 (recall that a primal assembly
is enforced by projection onto the null-space of B). Here, Bq and Lq are in general non-
Boolean.

However, to further simplify the assembly process, it is convenient to formulate the reduced
components such that the boundary DOFs are available on the substructure level, i.e. so that
each component can be treated as a superelement. This can be achieved using MacNeal’s and
Rubin’s methods, being free-interface methods that keeps the physical boundary DOFs.

By rearranging the terms in the bottom row of Eq. 3.29, the generalized coordinates gb can be
expressed as:

gb = Ψ−1
bb (ub −Φbrqr −Φbkqk) . (3.31)

Then it follows that an additional transformation may be defined, i.e.: qr

qk

gb

 =

 Irr 0 0
0 Ikk 0

−Ψ−1
bb Φbr −Ψ−1

bb Φbk Ψ−1
bb

 qr

qk

ub

 . (3.32)

Finally, by using both transformations, given by Eq. 3.29 and Eq. 3.32, a reduced substructure
can be constructed such that the physical boundary DOFs are kept in the coordinate vector.
Accordingly, a global assembly can be formed in a straightforward manner in terms of physical
coordinates using any of the assembly methods in Section 3.1. This procedure is employed in
the Rubin method. TheMacNeal approach is very similar—an alternative approach is used for
constructing a diagonal mass matrix, whereas the reduced stiffness matrix is identical in both
methods (see e.g. [7] for further details).

In the Craig–Chang (C-C) method, the compatibility and equilibrium conditions are enforced
in a slightly different manner. In particular, two assumptions regarding the generalized co-
ordinate gb are made, namely (1) that the inertia terms related to the corresponding residual
attachment modes can be neglected and (2) that the interface forces alone drive the residual at-
tachment modes [1]. To illustrate the assembly approach, consider two substructures, labeled
1 and 2, which are to be connected. Then, using the C-C approach, the compatibility and
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equilibrium condition, respectively, are expressed as:u
(1)
b − u

(2)
b = 0

g
(1)
b + g

(2)
b = 0.

(3.33a)

(3.33b)

Further, Eq. 3.33 can be written in matrix form

BC−Cq =

[
Φ

(1)
br Φ

(1)
bk Ψ

(1)
bb −Φ

(2)
br −Φ

(2)
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=

[
0
0

]
.

(3.34)
Now, a transformation matrix LC−C may be formed using Eq. 3.7, by settingB = BC−C. It
follows that a primal assembled system can be obtained using Eq. 3.8. Here, the matrixBC−C

is in general non-boolean.

Using the C-C method, the generalized coordinates gb corresponding to the residual attach-
ment modes can be reduced out such that only the free-interface normal modes of the sub-
structures are retained in the global coordinate vector. This may be advantageous in some
applications, i.e. to keep the number of system variables to a minimum. A drawback, how-
ever, is that the physical boundary DOFs are not available in the assembled coordinate vector
and, consequently, the reduced substructures cannot be coupled to e.g. nonlinear substruc-
tures being modeled in terms of physical displacements. Moreover, it should be noted that the
interface forces are not required to be equal to the generalized coordinates gb if using a C-C
approach [1] (Eq. 3.33b actually states that the residual attachment mode coordinates should
be equal, not the interface forces).

In contrast to the fixed-interface methods, the sparsity of the system matrices are in general
lost when using the free-interface approaches discussed above. However, another free-interface
method was developed in the early 2000s, referred to as the dual C-B method [23] which,
unlike the other free-interface methods, preserves the sparsity of the system matrices. It does
not employ a true Rayleigh–Ritz transformation, however, and the compatibility condition is
enforced in a weakened sense. In particular, it requires special techniques to ensure stability in
direct time-integration schemes [24].

Finally, it should be mentioned that also the free-interface reduction bases discussed above can
be augmented by higher order quasi-static modes, see e.g. [25]. This is, however, not further
investigated herein.
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3.2.4 Interface reduction

In practical applications, the number of physical interface DOFs can often be very large and,
therefore, much can be gained if an interface reduction is performed. In both the free- and
fixed-interface CMS approaches the sparsity is lost in the parts of the system matrices related
to interface DOFs. Hence, models including a large number of boundary DOFs can become
computationally expensive.

Various approaches can be used for reducing the number of interface DOFs (see e.g. [26,27]).
In general, the preferred interface reduction approach depend on the specific application. In
particular, a reduction may be performed on the substructure level, before the substructures
are assembled or, in contrast, on the global assembled structure.

The simplest interface reduction approach is obtained by assuming rigid interfaces, i.e. by
constraining the interface DOFs to the motion of a virtual master node, having three transla-
tional and three rotational DOFs (in a three-dimensional domain). Using a similar approach,
the displacement of a virtual node may be defined as the weighted mean value of the interface
DOFs, a constraint referred to as a distributed coupling (see e.g. [28,29]). In particular, it turns
out that the interface-forces on the interface DOFs are related to the weights. Accordingly,
the sum of the weights is related to the interface force acting on the virtual node (also referred
to as condensation node or master node). Hence, a distributed coupling can be employed for
establishing a coupling with an arbitrary interface-force distribution (see further Paper C).

Furthermore, a reduction may be performed using a secondary eigenvalue analysis on the bb-
partitions of the assembled system [1]. Thus, the interface DOFs are replaced by a truncated
set of interface eigenvectors. Using this approach, however, the physical interface DOFs are
lost in the reduction process.



4 Applications: structures with local
nonlinearities

This chapter presents examples of structural engineering applications in which computation-
ally efficient models can be of great utility in the design process, allowing for an interactive
workflow where different design concepts may be tested. In particular, the structural dynam-
ics problems involve transient loading and various forms of local nonlinear behavior, e.g. due
to a nonlinear material behavior or local contact interactions. Consequently, a reduced order
model cannot be established in a standard fashion using modal expansion techniques. How-
ever, since the nonlinear behavior is limited to certain spatial locations, reduced order models
may be formulated using DS. Hence, the parts of the structures that remain linear-elastic may
be represented by a reduced set of generalized coordinates, whereas the nonlinear parts are
expressed in terms of physical displacements.

Strategies for establishing computationally efficient models are investigated in the appended
papers using the methods discussed in Chapters 2 and 3. In particular, the developed models
are suitable for implementation in user-friendly design tools, being streamlined for specific
applications. For example, a parametric modeling process may be adopted, allowing for a
time-efficient evaluation of modified parameters, such as dimensions and material properties.

Structural engineering applications within two relatively different areas are investigated, namely
the design of concrete structures subjected to blast loading (Papers A and B) and glass panels
subjected to impact loading (Paper C). Interestingly, however, some of the challenges with
regard to the structural dynamics problems are similar. In particular, the response of higher
order modes can be of considerable importance to achieve an accurate prediction of important
output quantities. Furthermore, an accurate response prediction often necessitates a structural
model that considers local nonlinearities, such as plastic hinges or local contact interactions.
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(a) Flexural failure

(b) Diagonal shear failure

(c) Direct shear failure

Figure 4.1: Example of failure modes for reinforced concrete beam subjected to uniform im-
pulse pressure.

4.1 CONCRETE STRUCTURES SUBJECTED TO BLAST
LOADING

Several aspects in the structural design of concrete structures subjected to blast loading are
fundamentally different compared to a verification of static loads. Not only the load-bearing
capacity, but also the ductility of the structure is of considerable importance. To ensure that
the structure can withstand the external pulse, it must be designed such that the induced
kinetic energy can be absorbed. For example, the kinetic energy may be converted into elastic
and plastic strain energy. Thus, the ductility of the structure, i.e. the capability to deform
plastically without failure, is of importance. In particular, concrete members, such as beams
and plates, must be designed to resist brittle failure modes.

With regard to the semi-global response (i.e. the global response of an individual member,
such as beams and slabs) at least three failure modes must be considered to ensure an adequate
design—flexural failure, diagonal shear failure, and direct shear failure, as shown in Figure 4.1
[3]. If designed using a bending reinforcement with sufficient ductility and an appropriate
reinforcement arrangement, a flexural failure mode is typically desirable, while brittle failure
modes, such as shear failure, should be avoided. Further, if a flexural failure mode can be
ensured, the elastic strain energy upon failure is often significantly smaller than the plastic
dissipation. Consequently, a model that considers the nonlinear structural behavior is required
to avoid a too conservative design.

Generalized SDOF systems (cf. Section 2.1.1) are frequently used for evaluating concrete mem-
bers, such as beams and slabs, subjected to blast loading. More specifically, a so-called equi-
valent SDOF system is formulated by means of an assumed shape function and a physical
reference point, e.g. located at midspan. Then, equivalent stiffness, mass, and load are com-
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(a) Progressive collapse (b) Lateral stability

Figure 4.2: Example of failure modes for concrete frame structure subjected to blast loading.

puted such that the internal energy, kinetic energy, and external work is equivalent for the
SDOF system and the continuous structure (see e.g. [30]). In particular, this approach allows
for estimating the nonlinear elasto-plastic response of beams or slabs where plastic hinges/yield
lines may develop, at least in an approximate manner. However, the locations of the plastic
hinges are then predefined, e.g. at midspan for a simply supported beam. Further, the assumed
mode shape is no longer continuous. Instead, a shape function is often obtained by neglecting
the elastic deformation and only consider the plastic rotation at the plastic joints. Hence, the
shape function correspond to a rigid body mode of the system, assuming free-rotation at the
predefined joints (however, a combined elastic and plastic shape function can be considered in
an approximate manner using weight factors). This methodology, proposed already in the mid
1960s [31], can be very useful, particularly in the conceptual design phase. In fact, if assuming
that the pulse time is negligible, which is reasonable in many practical applications, a peak
response can be estimated without conducting a response analysis, simply by considering the
kinetic energy induced in the system due to the external impulse pressure.

Despite its utility, the approach using an equivalent SDOF system have several limitations. In
particular, the response of higher order modes is neglected. For a concrete member subjected
to blast loading, resulting in a very large pressure with short duration, the influence of higher
order modes can, however, have a significant influence on the response. For example, the shear
force close to supports might not be accurately represented by an SDOF model (see e.g. [32]).
Particularly for concrete members without shear reinforcement, brittle failure modes such as
shear failure can be of considerable importance.

In Paper A, the influence of higher order modes on the shear force close to supports is further
investigated. More specifically, reduced models of beams with predefined plastic joints were
developed by use of DS. The rotational DOFs at the plastic joints were selected as bound-
ary DOFs, while the remaining structure being linear elastic was represented by a few fixed-
interface eigenmodes. It should be emphasized, however, that a model having predefined
plastic hinges only considers the ductility of flexural failure modes. Thus, any ductile behavior
related to the shear failure modes is not considered. In practical applications, however, this is
in general a reasonably conservative assumption.
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Figure 4.3: Example of predefined plastic hinges in an approximate model.

Moreover, using an SDOF model, a proper representation of the interaction between struc-
tural members and/or the global load-bearing structure is in general not attainable. Instead,
the global structure is often considered rigid in the response analysis of an individual member.
In many applications, this simplified approach can be sufficiently accurate, because the mass
of the adjacent structure is often large compared to the effective mass of the individual mem-
ber. However, in some applications a more refined representation of the interaction can be of
importance. For example, consider the concrete frame in Figure 4.2, subjected to a uniformly
distributed horizontal impulse pressure on the left column. Indeed, a verification of the failure
modes shown in the figure, related to the lateral stability and progressive collapse, generally
requires an integrated analysis, where the response of the frame columns and the horizontal
beam are computed simultaneously (i.e. to consider mixed failure modes).

In Paper B, strategies are presented for modeling concrete-frame structures with an arbitrary
number of predefined plastic joints. Furthermore, to enable computationally efficient mod-
els parts remaining linear elastic were reduced by means of DS. Considering the frame in
Figure 4.2, an approximate model, being suitable at least in a conceptual design phase, can
be established by allowing plastic hinges to be developed at five positions, as marked in Fig-
ure 4.3. Furthermore, a more accurate model can be obtained by including additional joints,
e.g. by adding multiple joints at the frame corners, such that the mass of the frame corners are
considered.

4.2 SOFT-BODY IMPACT ON GLASS PANELS

Building regulations in most countries prescribes that glass barriers, such as full-height façades
and parapets for balconies or interior level changes, must be designed to withstand accidental
impact of humans, if it constitutes a safety risk for building occupants. Accordingly, a verific-
ation of the load-bearing capacity with regards to soft-body impact may be required. To this
end, a structural verification is often conducted by means of experimental tests using a stand-
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ardized impactor described in EN 12600 [33]. Alternatively, the structural dynamic response is
evaluated using dynamic calculations methods. In general, a simplified approach is employed
where the response of higher order modes is neglected. Similarly to the methodology used for
design of concrete members, a generalized SDOF system is established. Here, however, an
integrated analysis of the glass panel and the soft impact body is in general necessary, thus, the
glass panel is represented by a SDOF model which interacts with the soft impact body being
modeled by a (linear or nonlinear) SDOF system. Hence, the structural dynamics problem at
hand consist of a 2DOF system subjected to an initial velocity (see e.g. [34]).

The simplified modeling approach for verifying glass panels is similar to the approximate ap-
proach commonly used for concrete members in two ways—firstly, higher order modes of the
glass panel/concrete member is neglected and, secondly, the adjacent structure is considered
rigid. However, glass is a very brittle material, being essentially linear elastic before failure [35],
while the steel reinforcement in a concrete structure can be arranged to obtain a ductile be-
havior. Hence, a nonlinear material description is often necessary in an analysis of concrete
members while a glass panel can be considered linear elastic before failure. However, the load–
displacement response of the standardized impactor, consisting of two pneumatic tires and
steel weights, is nonlinear. Moreover, the contact interaction between the glass panel and the
impactor gives rise to a nonlinear response. Thus, local nonlinearities are involved in both
structural dynamics problems; local plastic hinges and local contact interactions, respectively.
In addition, the response of glass panels, having a small thickness compared to the span width,
can be nonlinear due to second order effects (i.e. membrane action). In many practical ap-
plications, however, the influence of geometric nonlinearity, being especially pronounced for

Main frame

Clamping frame

Impactor

Figure 4.4: Standardized soft-body pendulum for glass classification according to the
European Standard EN 12600 [33].
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large glass panels with certain support conditions, can be neglected to obtain a reasonably
conservative estimation of the glass strain.

In Paper C, experimental as well as numerical studies of simply-supported monolithic glass
panels subjected to soft-body impacts are presented. In particular, the pre-failure elastic glass
strain was measured on simply supported monolithic glass panels subjected to impact load-
ing. The glass panels were mounted in a steel frame and impact loads were generated by
releasing the standardized EN 12600 impactor from various drop heights. Furthermore, a de-
tailed investigation was conducted to characterize the dynamic behavior of the standardized
EN 12600 impactor. Moreover, a nonlinear viscous SDOF model representing the impactor
was developed. The linear elastic response of the glass panel was represented by a reduced basis
including a set of force-dependent Krylov-vectors (see Sections 2.2.3 and 3.2.2). A coupled
system, including the impactor SDOF model as well as the reduced model representing the
glass panel, was established by means of DS. For the load cases studied, it was shown that
a 2DOF model can be fairly accurate. However, the problem of identifying an appropriate
shape function for the glass panel is conveniently solved using a small reduction basis using a
Krylov-subspace approach. Moreover, the influence of higher order modes can be expected to
be more pronounced for larger glass panels or glass panels with other fixing methods.
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PAPER A

Reduced order modeling for the dynamic analysis of structures with nonlinear interfaces.

Linus Andersson, Peter Persson, Per-Erik Austrell, Kent Persson

In proceedings of COMPDYN 2019, 7:th International Conference on Computational Meth-
ods in Structural Dynamics and Earthquake Engineering, pp. 2395–2406, Crete, Greece,
2019.

Abstract

In the present paper, linear substructures with nonlinearities localized at their interfaces, such
as the joints in a beam structure, are studied. By subdivision of the total structure into substruc-
tures, reduced subsystems are obtained by component mode synthesis. Nonlinear elements are
introduced at supports or between substructures. A numerical example is presented where a
beam subjected to blast loading is studied. The influence of the nonlinear behavior as well as
the number of retained fixed-interface normal modes in the reduced subsystems are evaluated.
The response is also compared to the response of equivalent single-degree-of-freedom systems,
which are frequently employed in blast load design calculations. For the load cases studied,
the displacement computed from an equivalent single-degree-of-freedom system correspond
fairly well to the displacement given by a refined two-dimensional beam model, reduced by
substructuring. In contrast, the shear force differs significantly due to that higher order modes
are neglected in the single-degree-of-freedom system.

Contributions by Linus Andersson

Main author of the paper and wrote the manuscript. He formulated research aims, developed
the modeling strategies, implemented the models and performed the simulations as well as
synthesized the results and drew conclusions.
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PAPER B

Model reduction for structures subjected to blast loading by use of dynamic substructuring.

Linus Andersson, Peter Persson, Kent Persson

In proceedings of EURODYN 2020, XI International Conference on Structural dynamics,
pp. 2544–2564, Streamed from Athens, Greece, 2020.

Abstract

In the present study, strategies are developed to enable time-efficient models for structures sub-
jected to blast loading, appropriate for use in a structural design process. Dynamic substruc-
turing is employed to obtain reduced models with localized nonlinearities, such as predefined
plastic hinges in a beam–column structure. The parts of the substructures that remains lin-
ear elastic are modeled by Ritz-vectors whereas parts with a nonlinear response are retained as
physical degrees-of-freedom. Furthermore, a time-stepping method is presented that is shown
to be suitable for reduced models including local and predefined rigid–plastic behavior. The
proposedmethodology is applied and demonstrated in a numerical example of a concrete frame
structure. Both the well-established Craig-Bampton method and reduction bases enriched by
so-called correction modes are evaluated. For the load case studied, it is shown that the stand-
ard Craig-Bampton technique is suitable for reducing the substructures. Furthermore, it is
shown that only a few Ritz-vectors are needed to sufficiently describe the deformation of the
structure. However, additional modes are needed to ensure an accurate representation of the
interface forces between the substructures.

Contributions by Linus Andersson

Main author of the paper and wrote the manuscript. He formulated research aims, developed
the modeling strategies, implemented the numerical models and performed the simulations.
He synthesized the results and contributed to the conclusions drawn.
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PAPER C

Reduced order modeling of soft-body impact on glass panels.

Linus Andersson, Marcin Kozłowski, Peter Persson, Per-Erik Austrell, Kent Persson

Submitted for publication in international journal.

Abstract

In the paper, strategies for reduced order modeling of glass panels subjected to soft-body im-
pact are developed by means of dynamic substructuring. The aim is to obtain accurate and
computationally efficient models for prediction of the pre-failure elastic response. More spe-
cifically, a reduction basis for the subsystem representing the glass panel is established us-
ing correction modes, being fixed-interface component modes that considers loading on the
substructure boundary. The soft-body impactor is effectively modeled by a nonlinear single-
degree-of-freedom system, calibrated by experimental data. Furthermore, a simplified and
computationally efficient modeling approach is proposed for the contact interaction between
the glass panel and the impact body. An experimental campaign was carried out to validate
the developed models. In particular, the glass strain was measured on simply supported mono-
lithic glass panels subjected to soft-body impact. Additional impact tests were performed to
determine the dynamic characteristics of the impactor. Moreover, a detailed numerical refer-
ence model was developed to evaluate the discrepancy between the experimental tests and the
results provided by the reduced order models. The developed models show good agreement
with the experimental results. For the studied load cases, it is shown that an accurate predic-
tion of the pre-failure glass strain can be obtained by systems including only a few generalized
degrees-of-freedom.

Contributions by Linus Andersson

Main author of the paper and wrote the manuscript. He contributed to the conceptualization
of ideas and experimental methodologies. He developed the numerical modeling strategies,
implemented the numerical models and performed the simulations. He synthesized the results
and contributed to the conclusions drawn.
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6.1 CONCLUSIONS

Reduced order models were developed for use in structural engineering applications within
two different areas, namely concrete structures subjected to blast loading and glass structures
subjected to soft-body impact. In particular, modeling strategies were developed that are suf-
ficiently accurate, computationally efficient and suitable for use in a structural design process.
Moreover, the models consider the response of higher order modes as well as local nonlinear-
ities. The main contributions to the research field are:

• Time-efficient and accurate modeling strategies for estimating the shear force in concrete
structures subjected to blast loading (see Papers A and B).

• A time-stepping scheme for systems with local rigid–plastic behavior was proposed (see
Paper B).

• Modeling strategies considering the response of higher order modes of glass panels sub-
jected to soft-body impact (see Paper C).

• An experimental methodology for estimating the damping of the standardized EN 12600
impactor (see Paper C).

• A novel nonlinear viscous SDOF model was proposed for reduced modeling of the
standardized EN 12600 impactor. In particular, amethodology for calibrating themodel
based on detailed FE models was presented (see Paper C).

Furthermore, a review of various reduced order modeling techniques is presented which, in a
broader perspective, provide a basis for developing reduced order models in various structural
engineering applications.
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6.2 FURTHER RESEARCH

As mentioned in Chapter 4, the pre-failure elastic response of glass panels, having a small
thickness compared to the span width, can be nonlinear due to second order effects (i.e. mem-
brane action). Even though the influence of geometric nonlinearity is often negligible, it can
be of importance in certain applications, e.g. for large four-sided, continuously supported
glass panels. In fact, an SDOF model where the influence of second order effects is considered
can be established in a straightforward manner. Because the model only include one gener-
alized DOF, clearly, an arbitrary load-dependency may be defined. However, if the response
is represented using a mode-superposition approach, this is no longer possible, at least not
in a straightforward manner. Hence, a mode-superposition method requires a set of linearly
independent mode shapes such that the total response can be obtained by summation of the
modal contributions.

However, in the case of geometric nonlinearity, the polynomial structure of the nonlinear
forces can be utilized to obtain a nonlinear reducedmodel. In particular, so-called nonintrusive
methods have been developed during the last decades [36, 37]. The name nonintrusive refers
to that the method can be employed without detailed knowledge of the source code of an FE-
solver. More specifically, the nonlinear stiffness coefficients are determined using several static
test cases. Using this methodology, reduced models that considers geometric nonlinearity may
be developed, applied for analyzing glass panels as well as concrete structures.
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Abstract 

In the present paper, linear substructures with nonlinearities localized at their interfaces, such 

as the joints in a beam structure, are studied. By subdivision of the total structure into substruc-

tures, reduced subsystems are obtained by component mode synthesis. Nonlinear elements are 

introduced at supports or between substructures. A numerical example is presented where a 

beam subjected to blast loading is studied. The influence of the nonlinear behavior as well as 

the number of retained fixed-interface normal modes in the reduced subsystems are evaluated. 

The response is also compared to the response of equivalent single-degree-of-freedom systems, 

which are frequently employed in blast load design calculations. For the load cases studied, 

the displacement computed from an equivalent single-degree-of-freedom system correspond 

fairly well to the displacement given by a refined two-dimensional beam model, reduced by 

substructuring. In contrast, the shear force differs significantly due to that higher order modes 

are neglected in the single-degree-of-freedom system.  
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1 INTRODUCTION 

Design of structures subjected to accidental loading, such as impact and blast loading, can 

be challenging compared to the design of static loading. As for dynamic loading in general, the 

structure mass, stiffness and strength affect the response and must be considered to determine 

whether a certain design fulfill the design code requirements. Consequently, it is often neces-

sary to consider accidental loads in both the conceptual and detailed design phase and, therefore, 

it is important to employ simplified, conservative and computationally efficient models to esti-

mate the structure response in a time-efficient manner. Moreover, the response computed from 

a large complex nonlinear model can be difficult to interpret and verify, hence, a smaller and 

less complex model simplifies the result evaluation.  

In the present paper, linear substructures with nonlinearities localized at their interfaces, such 

as the joints in a beam structure, are studied. By subdivision of the total structure into substruc-

tures, reduced subsystems are obtained by dynamic substructuring [1]. Nonlinear elements are 

introduced at supports or between substructures [3]. The concept is presented in a numerical 

example in which a simply supported beam subjected to blast loading is studied. The influence 

of the nonlinear behavior as well as the number of retained fixed-interface normal modes in the 

reduced subsystem are evaluated. The response is also compared to the response of equivalent 

single-degree-of-freedom (SDOF) systems which are frequently employed in blast load design 

calculations. 

2 REDUCED ORDER MODELING OF BEAMS SUBJECTED TO BLAST 

LOADING 

The response of a linear structural dynamic system can be analyzed in a computationally 

efficient manner by considering an approximate reduced order model. For example, the re-

sponse of a few important eigenmodes can form a reduced model. However, in analyses related 

to blast loading it is important to include the nonlinear behavior to ensure a model that predicts 

a realistic structural response. The material nonlinearities are often localized to certain areas 

such as plastic hinges in heavily loaded beams and plates. Hence, the structure can be subdi-

vided into substructures with a linear response, connecting the nonlinear elements introduced 

at the supports or between substructures. Since each subsystem is linear, dynamic substructur-

ing can be employed to form a reduced model.  

2.1 Impulse pressure due to unconfined explosion 

An unconfined explosion results in a shock wave that moves radially away from the center 

of the explosion [6]. Upon impact, the initial wave is reinforced and reflected. The reflected 

impulse acting on the structure is characterized by a very large pressure and short duration. For 

design purposes, the reflected impulse can, in general, be replaced by an equivalent triangular 

pulse where the actual duration is replaced by a fictitious duration, calculated based on the peak 

reflected pressure and reflected impulse. Moreover, if the explosion is unconfined and the ex-

plosion center is reasonable far from the structure considered, the pressure acting on a structure 

member can, in general, be approximated by a uniform pressure. 

2.2 Single-degree-of-freedom systems 

Equivalent SDOF systems are frequently employed for the design of the semi-global re-

sponse of structural members subjected to blast loading, e.g. as proposed in [4]. This is a well-

established approach compatible with the requirements in several design codes, e.g. UFC [6]. 
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Equivalent SDOF systems can be derived for structures idealized as either beams or plates. In 

the study presented here only beams are considered.  

The main assumption when developing an equivalent SDOF system is that the member de-

forms according to an assumed shape, φ(x), which is constant through time. Hence, the member 

deflection u(x,t) can be expressed as φ(x)us(t), where us is the displacement of a reference point, 

e.g. the point of maximum displacement, see Figure 1. The shape function φ(x) is often chosen 

as a Ritz vector corresponding to the static deflection of the external pressure. Note that, as for 

the deformed shape, the load distribution is assumed constant through time. The beam model is 

then transformed into a SDOF system by calculating an equivalent mass, stiffness and load in 

terms of the reference point displacement.  

The equation of motion for an equivalent SDOF system can be expressed as: 

κmmü + κkR(u) = κFp(t) (1) 

where κm, κk and κF  are dimensionless transformation factors for the mass (m), resistance (R) 

and load (p), respectively. The mass factor, by which the total distributed mass of an element 

is multiplied to obtain an equivalent lumped mass, is derived by assuming conservation of ki-

netic energy [4]. If the mass is uniformly distributed, the mass factor for a beam with length L 

is given by: 

κm = 
1

L
∫

φ(x)
2

us
2

dx

L

0

 (2) 

The load factor, by which the total pressure on the element is multiplied to obtain an equivalent 

concentrated force, is derived by assuming conservation of external work [4]. If the external 

pressure is uniformly distributed, the load factor for a beam with length L is given by: 

κF = 
1

L
∫

φ(x)

us

dx

L

0

 (3) 

The resistance factor, by which the resistance of the structural element is multiplied to obtain 

the equivalent resistance of the SDOF system, is derived by assuming conservation of strain 

energy for the structural member, computed based on the assumed deformed shape. According 

to [4], it can be shown that the resistance-factor must always be equal to the load-factor, i.e.: 

κk = κF (4) 

Hence, the equation of motion (1) for the SDOF system can be rewritten as 

κm

κF

mü + R(u) = p(t) (5) 

Consequently, the beam can be transformed into an equivalent SDOF system by scaling the 

mass only and, therefore, it is convenient to define a load-mass factor κmF = κm κF⁄ . 
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Figure 1: Assumed shape for elastic (a) and plastic (b) response. 

When the ultimate moment capacity of a beam member is reached, in general, a plastic hinge 

is developed, which indeed affect the shape of the deflection. Hence, the assumed deflection 

shape considered for an elastic response, reasonable in the initial stage, differ significantly from 

the assumed plastic deflection shape which is reasonable in the second stage where a plastic 

hinge has been developed, cf. Figure 1. Moreover, the transformation factors given by Eqs. (2) 

and (3), which are constant through time, depend on the assumed shape φ(x). Consequently, the 

equivalent SDOF system must be derived based on either an elastic or plastic deflection shape. 

For example, the κmF factors corresponding to a simply supported beam subjected to a uniform 

pressure are 0.787 and 0.667 for an elastic and plastic deflection shape respectively.  

For a simply supported beam subjected to a uniform pressure the ultimate resistance can be 

calculated as: 

Ru = 
8Mu

L
 (6) 

where Mu is the ultimate moment capacity, which implies that the maximum shear force at the 

supports can be calculated as V = Ru/2. Hence, the ultimate moment capacity has, in general, a 

large impact on the shear force magnitude and clearly a larger moment capacity is not beneficial 

(however, the moment capacity must be sufficiently large to ensure that the plastic rotation is 

smaller than the rotation capacity). For example, if the amount of bending reinforcement in a 

concrete member is increased the amount of shear reinforcement due to blast loading must be 

increased accordingly. Since both the mass, stiffness and ultimate capacity affect the response, 

the design often requires iterative design calculations where simplified models, as the equiva-

lent SDOF system, are important.  

However, it should be noted that the shear force given by an equivalent SDOF system is 

computed with the assumption that the beam deflection shape is constant through time and, 

consequently, higher order modes are neglected. Furthermore, the shear forces are in general 

large at the initial stage, due to that higher order modes are excited. As e.g. observed in [7], the 

neglection of higher order modes indeed affect the precision of the shear force computed from 

an equivalent SDOF analysis.  

For concrete members, a shear failure at the initial stage is referred to as a direct shear failure 

and is characterized by a rapid propagation of a vertical crack, located at the supports. Unlike 

diagonal shear failure, shear reinforcement perpendicular to the beam axis does not prevent 

this type of failure, instead inclined bars may be needed to ensure an adequate design. However, 
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it is in general not possible to determine the actual magnitude of the maximum shear force based 

on the response computed from an equivalent SDOF system. 

2.3 Substructuring of beam model with plastic hinges 

The response of a beam subjected to blast loading is, in general, elastic in a first stage and a 

mixture of both elastic and plastic in a second stage. Furthermore, in contrast to the response 

computed from an equivalent SDOF system, the fundamental mode as well as higher order 

modes are excited. To fully capture the structural behavior, it is therefore necessary to employ 

a nonlinear multi-degree-of-freedom (MDOF) model. Nonlinear analyses of large systems are, 

however, time consuming and might not be suitable in a design calculation. Nevertheless, a 

more refined model, compared to an equivalent SDOF system, might be necessary to enable 

accurate predictions of both the maximum displacement and shear force. 

If the material nonlinearities are localized to certain areas, such as plastic hinges in heavily 

loaded beams, the total structure can be subdivided into substructures. Each substructure then 

consists of a subsystem with a linear response, connecting the nonlinear elements introduced at 

interfaces, i.e. at the supports or between substructures. Since each subsystem is linear, it is 

straight-forward to employ component mode synthesis (CMS) to form a reduced model [3]. 

Hence, a reduced model that captures a combined elastic and plastic response as well as includ-

ing higher order modes can be derived. This procedure can be extended further to include both 

material and geometrically nonlinearities, i.e. to allow for large translations and rotations of the 

substructures. However, in the study presented here only material nonlinearities are considered. 

The substructures can for example be reduced by condensation methods, such as Guyan re-

duction [2], where only physical DOFs are involved or by hybrid methods, such as component 

mode synthesis by Craig-Bampton or Krylov subspace component mode synthesis, where both 

physical and generalized DOFs are considered [8]. 

A finite element formulation of a subsystem leads to a linear equation of motion of the fol-

lowing form: 

Mü + Cu̇ + Ku = p (7) 

Neglecting damping the partitioned mass and stiffness matrices can be written as: 

[
Mii Mib

Mbi Mbb
] [

üi

üb
]  + [

Kii Kib

Kbi Kbb
] [

ui

ub
]  = [

p
i

p
b
] (8) 

where the subscripts i and b denotes the interior and interface boundary DOFs, respectively. If 

assumed force-free, the interior DOFs can be expressed as: 

ui = -Kii
-1(Miiüi + Mibüb + Kibub) (9) 

By neglecting the inertia terms this leads to the following transformation matrix: 

[
ui

ub
]  = [

-Kii
-1

Kib

Ibb

] ub = [
Ψib

Ibb
] ub = TGub (10) 

where TG is the Guyan transformation matrix. By applying the transformation matrix to Eq. (7) 

a reduced system is given by: 

MGüb + CGu̇b + KGub = p
G (11) 
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where, 

MG = TG
T
MTG 

CG = TG
T
CTG 

KG = TG
T
KTG 

p
G

 = TG
T
p 

(12) 

The Craig-Bampton method combines the retained physical DOFs with fixed-interface normal 

modes, obtained by the generalized eigenvalue problem: 

(Kii - ωj
2Mii){ϕ

i
}

j
 = 0 (13) 

The eigenvectors are then normalized in order that 

Φii
T
MiiΦii = Iii (14) 

where Φii is the complete set of fixed-interface normal modes. The physical coordinates can be 

represented as: 

[
ui

ub
]  = [

Φik Ψib

0bi Ibb
] [

q
k

ub
]  = TC-B [

q
k

ub
] (15) 

where the subscript k denotes the retained (kept) fixed-interface normal modes, TC-B is the 

Craig-Bampton transformation matrix, q
k
 is the generalized DOFs and [Ψib Ibb]Tis the inter-

face constraint mode matrix, equal to the Guyan transformation matrix. Hence, the Craig-

Bampton method can be interpreted as an extension of the Guyan reduction where the neglected 

inertia terms are compensated by including a set of fixed-interface normal modes.  

By applying the transformation matrix to Eq. (7) a reduced system is given by: 

MC-B [
q̈

k

üb

]  + CC-B [
q̇

k

u̇b

]  + KC-B [
q

k
ub

]  = p
C-B

 (16) 

where, 

MC-B = TC-B
T
MTC-B 

CC-B = TC-B
T
CTC-B 

KC-B = TC-B
T
KTC-B 

p
C-B

=TC-B
T
p 

(17) 

Note that each constraint mode is the deflection shape due to a unit displacement of a bound-

ary DOF, while the interior DOFs are force-free and the other boundary DOFs are held fixed, 

i.e. 

[
Kii Kib

Kbi Kbb
] [

Ψib

Ibb
] = [

0ib

Rbb
] (18) 

where Rbb is the reaction forces acting on the substructure. 

By using a similar procedure as presented above, the fixed-interface normal modes employed 

in the Craig-Bampton method can be replaced by other Ritz vectors, e.g. Krylov subspace vec-

tors derived from a suitable load distribution, see for example [5]. 
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3 NUMERICAL EXAMPLE: SIMPLY SUPPORTED CONCRETE BEAM 

SUBJECTED TO BLAST LOADING 

3.1 Reduced two-dimensional beam model 

The effect of higher order modes on the displacement and shear force is studied by evaluating 

the response for a simply supported concrete beam subjected to a uniform distributed impulse 

pressure. The beam length is L = 3 m and the cross-section width and height is 1000 mm and 

200 mm respectively. The load consists of a uniform reflected impulse pressure of 1500 Pa∙s. 

Two load cases are studied with a peak reflected pressure of 1000 kPa in Load Case 1 and 

300 kPa in Load Case 2, respectively. The pulse is approximated by an equivalent triangular 

pulse, hence, a fictitious duration can be calculated to 3 ms and 10 ms for Load Cases 1 and 2 

respectively. 

The beam is assumed to consist of concrete C30/37 with reinforcement Ø16s200 K500C-T. 

The modulus of elasticity for concrete and reinforcement steel is 32 GPa and 200 GPa respec-

tively and the density for reinforced concrete is set to 2500 kg/m3. The ultimate moment capac-

ity is set to Mp = 80 kNm. The response is calculated with a two-dimensional beam model with 

a total of 20 Euler-Bernoulli two-node beam elements, as shown in Figure 2. Due to symmetry, 

only half of the beam is included in the FE model. Furthermore, small deformations are con-

sidered and the axial DOFs of the beam elements are neglected. It is assumed that a plastic 

hinge can appear at the beam midspan only. The plastic hinge is modelled by adding a rigid-

perfectly plastic rotational spring to the rotational DOF at the symmetry line, as shown in Fig-

ure 2. Several effects are neglected in the model, e.g. catenary effects, reduced stiffness due to 

concrete cracking, concrete spalling etc. Nevertheless, the beam model is appropriate for eval-

uating the influence of higher order modes on the shear force and midspan displacement.  

The beam model consists of a linear elastic subsystem, namely the beam element assemblage, 

which is connected to a nonlinear element. As discussed in Section 2, a reduced model can 

therefore be obtained by substructuring, e.g. by Guyan reduction or CMS by Craig-Bampton. 

Only one boundary DOF is kept, i.e. the rotational DOF at the beam symmetry line, denoted 

with superscript b in Figure 2. All other DOFs are internal DOFs and denoted with superscript 

i in Figure 2. Accordingly, the fixed-interface normal modes are calculated with fixed bounda-

ries, i.e. with fixed rotation at the symmetry line. Hence, the substructure normal modes corre-

spond to the symmetric eigenmodes for a simply supported beam, which are also the only modes 

that are excited by a uniform load. Thus, for an elastic response the system response is equiva-

lent to the response of a linear elastic simply supported beam analyzed with modal truncation. 

Figure 2: Two-dimensional beam model with nonlinear rotational spring at the symmetry line. 
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Figure 3: First four fixed-interface normal modes. 

  

Figure 4: Constraint mode. 

3.2 Structural analysis and results 

In Figure 3 the first four fixed-interface normal modes are shown, which correspond to the 

first, third, fifth and seventh eigenmodes for a simply supported beam. Hence, by employing a 

symmetry model instead of a full model both the number of physical DOFs and modal coordi-

nates are halved. 

The constraint mode is shown in Figure 4 and correspond to a unit rotation of the boundary 

DOF, i.e. a unit rotation of the rotational DOF at the symmetry line. Hence, the constraint mode 

corresponds to a rigid body mode of the beam element assemblage which in turn correspond to 

the plastic deflection shape considered for an equivalent SDOF system, cf. Figure 1b. 

The nonlinear dynamic response is calculated using the Newmark β-method with γ = ½ and 

β = ¼ (constant average acceleration) combined with the modified Newton-Raphson method. 

The total analysis time is 50 ms and the time-stepping is performed with very fine time incre-

ment < 0.01 ms to ensure sufficient resolution of the shear force. 
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The midspan displacement and shear force at the supports are evaluated for the beam model 

reduced by both Guyan reduction and the Craig-Bampton method for Load Cases 1 and 2 re-

spectively. The response is compared to the response computed from an equivalent SDOF sys-

tem. The stiffness of the SDOF system is calculated based on an uncracked cross section and 

the ultimate resistance is computed from the ultimate moment capacity, according to Eq. (6). A 

plastic deflection shape in accordance with Figure 1b is considered when determining the load-

mass factor. 

Figure 5: Midspan displacement vs. time for Load Case 1. 

Figure 6: Midspan displacement vs. time for Load Case 2. 
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As shown in Figure 6, the midspan displacement for Load Case 2 calculated by the two-

dimensional beam model is close to the displacement computed from an equivalent SDOF sys-

tem. However, for Load Case 1 the response somewhat differs due to a larger influence of 

higher order modes, see Figure 5. Furthermore, as shown in Figures 5 and 6, only two fixed-

interface normal modes need to be retained to obtain a response very close to the response for 

the full unreduced model.  

  

Figure 7: Shear force at supports for Load Case 1. 

  

Figure 8: Shear force at the supports for Load Case 2. 
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The response obtained with Guyan reduction is included for comparison only. Additional 

boundary (or master) DOFs must be added to increase the precision of the Guyan reduction. As 

shown in Figures 5 and 6, a Guyan reduction where only the rotational DOF at the symmetry 

line is kept correspond to an equivalent rigid-plastic SDOF system, i.e. only the rigid mode of 

the beam assemblage is activated and the external work is dissipated by plastic deformation of 

the rigid-perfectly plastic rotational spring alone. 

The shear force at the supports for Load Cases 1 and 2, computed from both an equivalent 

SDOF system and the two-dimensional beam model, are shown in Figures 7 and 8, respectively. 

As shown in the figures, the shear force computed from the two-dimensional model is, as ex-

pected, much larger due to that higher order modes are considered. The difference is greater for 

Load Case 1, where the impulse duration is shorter. As shown in Figure 7, at least four fixed-

interface normal modes need to be included to capture the peak shear force. For Load Case 2, 

however, the shear force computed from a reduced model with two to three fixed-interface 

normal modes is fairly close to the peak shear force given by the full model.  

Note that the shear force is V ≠ 0 at t = 0. This is due to the discretization of the beam 

substructure. Half of the pressure on the beam element connected to the vertical support is in-

stantaneously transferred to the support. Hence, the shear force/reaction force at t = 0 due to 

discretization can be calculated as V(0) = p(0)∙L/(2∙2∙n), where n is the number of beam ele-

ments in the symmetry model. Since a Guyan reduction only includes a rigid body mode of the 

beam elements the shear force should clearly be equal to zero, thus, the shear force shown in 

the diagrams is only due to the discretization of the beam assemblage. For Load Cases 1 and 2 

the shear force due to discretization is calculated to 38 kN and 11 kN, respectively, i.e. in ac-

cordance with the response shown in Figures 7 and 8. 

4 CONCLUSIONS 

In the present paper, linear substructures with nonlinearities localized at their interfaces, such 

as plastic hinges in a beam member, are studied. By subdivision of the structure into substruc-

tures, reduced subsystems are obtained by use of the Craig-Bampton method. A numerical ex-

ample is presented where a simply supported beam subjected to blast loading is studied. 

For the Load Cases studied, the midspan displacement computed from an equivalent SDOF 

system, which are frequently employed in blast load design calculations, correspond fairly well 

to the displacement computed from a refined two-dimensional beam model, reduced by sub-

structuring. In contrast, the shear force computed from an equivalent SDOF systems differ sig-

nificantly from the peak shear force given by a refined two-dimensional beam model. This is 

due to that higher order modes are neglected in the equivalent SDOF system. As expected, the 

difference is greater for Load Case 1, where the beam is subjected to a pulse with higher peak 

pressure and shorter duration. To capture the peak shear force at least the first three to four 

fixed-interface normal modes need to be included in the reduced model. However, one bound-

ary DOF and three to four generalized DOFs result in a MDOF system with five DOFs, which 

is still a very small system appropriate for time efficient iterative design calculations in both 

the conceptual and detailed design phase. 

For a simply supported beam with a plastic hinge at the midspan the boundary DOFs in the 

Craig-Bampton method can be selected so that the linear response is equivalent to a linear elas-

tic beam analyzed by modal truncation. Furthermore, the fixed-interface normal modes em-

ployed in the Craig-Bampton method can be replaced by other Ritz vectors, such as Krylov 

subspace vectors, which are derived from the current load configuration. Krylov subspace com-

ponent mode synthesis can be expected to be efficient if the load configuration does not match 

the first normal modes. 
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MODEL REDUCTION FOR STRUCTURES SUBJECTED TO BLAST 
LOADING BY USE OF DYNAMIC SUBSTRUCTURING 

Linus Andersson, Peter Persson, Kent Persson 

Keywords:

Abstract. In the present study, strategies are developed to enable time-efficient models for
structures subjected to blast loading, appropriate for use in a structural design process. Dy-
namic substructuring is employed to obtain reduced models with localized nonlinearities, such 
as predefined plastic hinges in a beam–column structure. The parts of the substructures that 
remains linear elastic are modeled by Ritz-vectors whereas parts with a nonlinear response are 
retained as physical degrees-of-freedom. Furthermore, a time-stepping method is presented 
that is shown to be suitable for reduced models including local and predefined rigid–plastic 
behavior. The proposed methodology is applied and demonstrated in a numerical example of a 
concrete frame structure. Both the well-established Craig-Bampton method and reduction ba-
ses enriched by so-called correction modes are evaluated. For the load case studied, it is shown
that the standard Craig-Bampton technique is suitable for reducing the substructures. Further-
more, it is shown that only a few Ritz-vectors are needed to sufficiently describe the deformation
of the structure. However, additional modes are needed to ensure an accurate representation
of the interface forces between the substructures. 
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2.1 Impulse pressure due to unconfined explosion

2.2 Reduced models for design of concrete members

3 DYNAMIC SUBSTRUCTURING OF STRUCTURES WITH PLASTIC HINGES
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3.3 Substructure coupling procedures
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4.1 Time-stepping algorithm
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4.2 Remarks on performance and accuracy 
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5 NUMERICAL EXAMPLE: CONCRETE FRAME SUBJECTED TO BLAST 
LOADING
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5.1 Frame structure model reduced by dynamic substructuring
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5.2 Dynamic response analysis and results
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Abstract

In the paper, strategies for reduced order modeling of glass panels subjected to soft-body impact are developed by

means of dynamic substructuring. The aim is to obtain accurate and computationally efficient models for predic-

tion of the pre-failure elastic response. More specifically, a reduction basis for the subsystem representing the glass

panel is established using correction modes, being fixed-interface component modes that considers loading on the

substructure boundary. The soft-body impactor is effectively modeled by a nonlinear single-degree-of-freedom

system, calibrated by experimental data. Furthermore, a simplified and computationally efficient modeling ap-

proach is proposed for the contact interaction between the glass panel and the impact body. An experimental

campaign was carried out to validate the developed models. In particular, the glass strain was measured on sim-

ply supported monolithic glass panels subjected to soft-body impact. Additional impact tests were performed to

determine the dynamic characteristics of the impactor. Moreover, a detailed numerical reference model was de-

veloped to evaluate the discrepancy between the experimental tests and the results provided by the reduced order

models. The developed models show good agreement with the experimental results. For the studied load cases, it

is shown that an accurate prediction of the pre-failure glass strain can be obtained by systems including only a few

generalized degrees-of-freedom.
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damping, finite element analysis.

Preprint submitted to Elsevier April 16, 2021



1. Introduction

During the last few decades, glass has become an increasingly common building material in modern architec-

ture. Glass is not only used for building enclosures and translucent facades allowing sunlight into the building,

but also in load-bearing structures and glazed barriers, such as full-height façades and parapets for balconies or

interior level changes.

If the glass barrier constitutes a safety risk for building occupants, building regulations in most countries pre-

scribes that the glazing must be designed to withstand accidental impact of humans. A dynamic verification is then

required, usually performed by experimental testing using the standardized soft-body pendulum for glass classifi-

cation according to the European Standard EN 12600 [1]. The test arrangement used for glass classification, shown

in Figure 1, consists of a glass panel fixed in a steel frame and a soft impact body on a pendulum, representing a

human body falling towards the glass panel.

Impact tests can be very costly, especially for large and complex glass structures. Furthermore, it can be

difficult to set-up a test arrangement that accurately capture the structural behavior of the underlying load-bearing

structure. Moreover, a structural verification using tests applied to the real structure can be both costly and requires

a re-design of the existing structure if the load-bearing capacity turns out to be inadequate. Therefore, it can be

preferable to instead perform the verification by means of dynamic calculation methods. Beside a reduced cost

and the possibility to easily evaluate different design concepts, numerical analyses enable an increased insight into

the structural behavior and additional control of e.g. structural and material parameters. In a physical impact test,

however, the material parameters can vary depending on the specific glass specimen, why several tests are needed

to adequately account for statistical variations. The validity of using numerical simulations for strength evaluation

of glass structures have been shown by several researchers, see e.g. [3–6].

Static load cases are often verified by means of a commercial finite element (FE) software. For this purpose, a

specialized FE tool ClearSight [7] has been developed at the Department of Construction Science, Lund University,

being streamlined for an interactive and efficient verification of glass panels subjected to static load cases. However,

using a FE analysis to calculate the dynamic response due to impact can be time-consuming and computationally

expensive. In general, a nonlinear transient response analysis is required, and the FE model should include the glass

panel and its fixings, the impactor, and a suitable description of the contact interaction between the impactor and

the glass structure. To set up and perform such an analysis can be time-consuming and often requires a relatively

advanced FE software and extensive user knowledge.

To enable a more time-efficient and straightforward approach for evaluating dynamic load cases, reduced mod-

eling techniques specialized for glass panels subjected to impact loading have been proposed by several researchers,

see e.g. [8–13]. For instance, in [8], reduction bases were successfully constructed using predefined load patterns,

employed for reduced modeling of glass panels in a Rayligh-Ritz fashion. In [13], various reduced models of un-

supported glass panels subjected to low-velocity impact are investigated. For example, a three degree-of-freedom

(DOF) spring-mass model is proposed, constructed by calibrating the system matrices to the strain energies and

eigenfrequencies of the fundamental flexural modes of a glass panel in free–free conditions. Thus, the mode shapes
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Main frame

Impactor

Clamping frame

Figure 1: Test frame with impactor according to the European Standard EN 12600 [1].

are used implicitly for identifying eigenfrequencies and energies, which are then employed in a second stage for

calibrating the lumped-mass systems. Furthermore, a lumped mass model based on Hertz contact law (see e.g.

[14]) is proposed for modeling the impactor. However, the low-velocity impacts studied in [13] were generated us-

ing a specialized spherical impactor, particularly suitable for approximation using Hertz law. Further, the reduced

models were successfully validated by experimental studies, suggesting that the importance of higher order modes

increases for larger glass panels and a stiffer impactor. In [10], a simplified engineering model based on equivalent

static loads is presented, which enables a very quick and straightforward verification of impact loading. However,

because the response of higher order modes is neglected, it is only applicable for two- and four-sided rectangular,

continuously supported glass panels within a limited range of dimensions.

In the present paper, strategies for reduced order modeling of soft-body impact are developed by means of

dynamic substructuring (DS). The aim is to achieve an accurate prediction of the pre-failure elastic response while

significantly reducing the computational cost. More specifically, a reduction basis for the subsystem representing

the glass panel is established using correction modes, being fixed-interface component modes that considers load-

ing on the substructure boundary [15, 16]. Because information related to the loading pattern is considered in the

derivation, all the generated correction modes will, by definition, be excited by the applied load. In contrast, a re-

duced basis established using eigenmodes may include redundant modes, e.g. anti-symmetric modes that cannot be

excited by a centric impact. The soft impact body is effectively modeled by a nonlinear viscous single-degree-of-

freedom (SDOF) system, calibrated by experimental data. Furthermore, a simplified and computationally efficient

modeling approach, assuming a constant contact area, is employed for modeling the contact interaction between

the glass panel and the impact body.

An experimental campaign was carried out to validate the developed models. In particular, the glass strain

was measured on simply supported monolithic glass panels subjected to impact loading. The test arrangement was

similar to the standardized impact test for glass classification described in EN 12600 [1]—the glass panels were

mounted in a steel frame and impact loads were generated by releasing the standardized EN 12600 impactor from
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various drop heights. Additional impact tests on a very stiff steel column (which was considered rigid) were also

performed to determine the dynamic characteristics of the impactor. The test arrangement and the standardized

impactor employed in the experimental campaign are shown in Figures 2a and 2b, respectively.

To evaluate the differences between the measured glass strain and the strain provided by the reduced models,

a detailed FE model, herein referred to as a reference model, was established using the commercial FE software

Abaqus [17]. The reference model includes a penalty contact formulation to consider the interaction between the

impactor and the glass panel, geometric nonlinearity, hyperelastic constitutive models for rubber, and a sophisti-

cated modeling of the tire air pressure, aiming to mimic the impact tests. Evaluating the deviation between the

response computed with the reduced models, the reference model and the experimental tests makes it possible to

distinguish between errors related to modeling abstractions and simplifications employed in the reduced models

and other, unknown error-sources.

To summarize, the aim of the paper is to:

• develop accurate reduced order models for computation of the pre-failure glass strain, suitable for imple-

mentation in user-friendly design tools,

• validate the developed models by experimental data,

• set up a detailed numerical reference model to get further insight into the structural behavior and to evaluate

the discrepancy between measurements and the response computed with the reduced order models.

The paper is structured as follows. In Section 2, reduced modeling concepts for simulating soft-body impact are

presented, including techniques for reduced modeling of the impactor, the glass panel, and the contact interaction.

In Section 3, a detailed FE model of the standardized impactor is presented, herein referred to as the reference

model, being used for calibration as well as validation of the reduced models. Experimental tests are presented and

discussed in Section 4—both experiments involving testing of glass panels subjected to soft-body impact as well

as tests to characterize the dynamic properties of the impactor. In Section 5, calibrations of the impactor models

as well as a validation of the assembled reduced models are presented, both by comparison to experimental results

and the response computed with the numerical reference model. Finally, the results are discussed in Section 6 and

conclusions are presented in Section 7.

2. Reduced order models for analysis of soft-body impact on glass panels

Upon impact, contact is established between the glass panel and the impactor. Hence, a coupled system is

formed consisting of the glass structure and the impacting body. Glass is a brittle material that is essentially linear

elastic before failure [2]. Hence, at least if neglecting geometric nonlinearity, the pre-failure structural response

of monolithic glass panels can be accurately represented by a linear model. However, a nonlinear model may be

required to properly describe the contact interaction between the soft impact body and the glass panel, as well as

the nonlinear behavior of the pneumatic tires. Nonetheless, the coupled system can be reduced by means of DS,
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(a) (b)

Figure 2: Experimental set-up for glass impact tests (a) and impactor (b).

allowing for a reduction of the linear glass substructure while retaining the physical DOFs interacting with the soft

impact body.

Several DS methods have been developed since the late 1960s, extensive reviews can be found in [18–20]. We

base our approach on the Craig-Bampton (C-B) method [21], which preserves the physical boundary DOFs of the

substructures. However, instead of using the fixed-interface normal modes, employed in the standard C-B method,

a reduction basis for the glass substructure is established using correction modes that considers loading on the

substructure boundary, see further Section 2.1. Furthermore, the impactor is effectively modeled by a nonlinear

single-degree-of-freedom (SDOF) system, see Section 2.2.

Interface reduction is applied, as further discussed in Section 2.3, such that only one boundary DOF is retained

for the glass substructure, corresponding to the mean vertical displacement of a group of nodes located at the center

of the glass panel. The reduced substructures are then assembled in a standard manner to form a reduced model of

the coupled system. Strategies for computing the dynamic response of the assembled system is further discussed

in Section 2.4.

2.1. Reduced order modeling of glass panels

A reduction of a system including local nonlinearities, such as the coupled impactor-glass system, necessitates

a DS technique that preserves the physical boundary DOFs. For example, the standard C-B method [21] or the

MacNeal/Rubin approaches [22, 23], which uses the fixed- and free-interface normal modes, respectively, are

suitable methods. The preferred method can be due to both accuracy and computational efficiency, which in turn

considers both the computational cost of establishing the reduction basis and the number of variables required in

the final system.

In the present study, a DS method that uses fixed-interface correction modes is employed for reducing the glass

panel, an approach first proposed in [15] and later extended in [16] to enable a mixed usage of normal modes

and correction modes (this method was also employed in [24] for establishing reduced models of concrete frame
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structures, where plastic joints were treated as local nonlinearities). For the glass-impactor system, this type of

reduction basis turns out to be favorable both regarding the system size and the computational cost related to the

computation of the reduction basis vectors. As shown in the derivation below, the correction modes are generated

by a sequence of matrix-vector multiplications, whereas the fixed- or free-interface normal modes are computed by

solving an eigenvalue problem. Furthermore, information related to loading on the substructure boundary DOFs

is considered in the derivation of the correction modes and, consequently, redundant modes that cannot be excited

by loads applied on the substructure boundary are automatically excluded. Reduction bases including correction

modes, also referred to as block-Krylov subspaces, can be derived in several ways. Following Rixen in [16], but

excluding the fixed-interface normal modes in the reduction basis, the derivation is as follows.

Neglecting damping, the equation of motion for the glass substructure in partitioned form can be written as: Mii Mib

Mbi Mbb

 üi

üb

+

 Kii Kib

Kbi Kbb

 ui

ub

 =

 pi

pb

 (1)

where the subscripts i and b denotes the interior and interface boundary DOFs, respectively (the number of interior

and boundary DOFs is henceforth denoted ni and nb, respectively, and the total number of DOFs is thus n =

ni + nb). Notice that the interface DOFs includes the glass panel DOFs interacting with the impactor model.

Furthermore, if the external forces on the interior DOFs are zero, the top row of Eq. 1 can be rewritten as:

Miiüi + Kiiui = −Mibüb − Kibub. (2)

Hence, the substructure can be considered excited by imposed displacements on its boundary. Further, the internal

displacements can be split into a static part and a dynamic correction

ui = ui, stat + y (3)

where ui, stat = −K−1ii Kibub is the quasi-static solution, obtained from Eq. 2 assuming üi and üb are zero. The

dynamic part, y, is added to the quasi-static solution to provide the dynamic response. Further, by inserting Eq. 3

into Eq. 2 and rearranging the terms, the dynamic response of y can be expressed as

Miiÿ + Kiiy = −Miiüi,stat − Mibüb = Yüb (4)

where Y = MiiK
−1
ii Kib − Mib can be interpreted as inertia forces associated to static modes [16]. Thus, the

acceleration of the boundary DOFs, the mode shapes and the mass distribution determines the forces applied in

Eq. 4. This procedure can be continued by replacing y with a quasi-static solution and a dynamic correction z:

y = ystat + z (5)

where ystat = K−1ii Yüb is the static solution obtained from Eq. 4, assuming ÿ is zero. By inserting Eq. 5 into
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Eq. 4, and rearranging the terms, the dynamic response of z can be expressed as

Miiz̈ + Kiiz = −MiiK
−1
ii Y

d4ub
dt4

. (6)

Thus, the response of the interior displacements is given by a sequence of quasi-static solutions:

ui = ui, stat + ystat + zstat + . . . (7)

where, in a similar manner, zstat = −K−1ii MiiK
−1
ii Y d4ub

dt4 is the quasi-static solution of Eq. 6. Hence, a recursive

procedure is obtained, indicating that the dynamic response can be approximated as

ui ≈ −K−1ii Kibub +

l∑
j=1

(
−K−1ii Mii

)j−1
K−1ii Y

d2jub
dt2j

(8)

where l is the number of static corrections. Furthermore, the higher order derivatives d2jub

dt2j can be treated as

separate DOFs. Hence, instead of computing a sequence of static corrections, a dynamic response analysis is

conducted by means of generalized coordinates representing the amplitudes of the correction modes. The set of

j-th order correction modes are then given by:

xcor,j =
(
K−1ii Mii

)j−1
K−1ii Y (9)

where xcor,j is a ni × nb matrix, containing the correction modes generated in iteration j. Notice that each

correction mode is associated to a boundary DOF. Consequently, a large number of boundary DOFs result in a

large number of correction modes being generated in each iteration, why this method is best used in combination

with an interface reduction technique (see further Section 2.3).

To avoid numerical round-off errors, the correction modes are generated using the modified Gram–Schmidt

orthogonalization procedure [25, 26]. Furthermore, the static correction modes are not mutually mass- and stiffness

orthogonal. This can e.g. be achieved by solving a small eigenvalue problem:

(
X>ik,corKiiXi,cor

)
Z =

(
X>i,corMiiXi,cor

)
ZΛ (10)

where Xik,cor =
[

xcor,1 xcor,2 . . . xcor,l

]
is the ni × k correction mode matrix, Λ is a diagonal matrix

containing pseudo-frequencies and Z contains the corresponding eigenvectors, which are normalized such that

Z>
(
X>ik,corMXik,cor

)
Z = I. An orthonormal basis of the correction modes is then provided by X̃ik,cor =

Xik,corZ, and the relation between the substructure physical DOFs and the generalized coordinates q is given by ui

ub

 =

 X̃ik,cor Ψib

0bk Ibb

 qk

ub

 = TC−B,corq (11)

where qk is the amplitudes of the (orthonormal) correction modes and Ψib = −K−1ii Kib is the internal part of

the constraint modes, corresponding to the static displacement of a unit displacement on a boundary node while

the other boundary nodes are held fixed. Using the transformation matrix TC−B,cor, the system equations for the
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(a) constraint mode (b) 1st fixed-interface normal mode

(c) 2nd fixed-interface normal mode (d) 3rd fixed-interface normal mode

Figure 3: Constraint mode and first three fixed-interface normal modes.

un-reduced substructure are projected onto the reduction basis in a standard manner, see e.g. [20]. Further, the

reduction basis is established using a reduced set of generalized coordinates, i.e. k � n.

Notice that the generated correction modes are in fact forming a Krylov sequence [26], why these are also

referred to as Krylov modes. As indicated by Eq. 9, the modes can be generated by matrix–vector multiplications.

Furthermore, the generated modes, as derived above, are force dependent in the sense that the substructure is

considered loaded by imposed displacements on its boundary.

An example is presented in Figure 3 showing the constraint mode and the first three fixed-interface normal

modes for a simply supported 1000 mm × 800 mm glass panel. Further, Figure 4 shows the constraint mode and

the first three correction modes. One boundary DOF is considered, corresponding to the mean vertical displacement

of a group of nodes positioned at the center of the glass panel. As shown in Figure 3, two of the fixed-interface

normal modes are anti-symmetric and cannot be excited by a vertical force applied at the center of the panel. On

the contrary, all the correction modes will, by definition, be excited.

2.2. Reduced order modeling of the impactor

The standardized impactor, described in EN 12600 [1], consist of two pneumatic rubber tires and steel weights,

as shown in Figure 2b. The impactor mass is almost entirely concentrated to two rigid solids (i.e. the steel weights),

positioned symmetrically around the impactor centroid. Consequently, the impactor can, when in contact with

the glass panel, be well-represented by a generalized SDOF system. Hence, the impactor mass is lumped to a
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(a) constraint mode (b) 1st correction mode

(c) 2nd correction mode (d) 3rd correction mode

Figure 4: Constraint mode and first three correction modes.

single DOF. However, due to the contact interaction between the tire and the glass panel, and the behavior of the

pneumatic tires, the SDOF model can be expected to be nonlinear.

With inspiration from Hertz contact law [14], a nonlinear load–displacement relation of the following form

was assumed:

fs(u) = k0u+ k1u
α (12)

Hence, a SDOF model consisting of a linear spring in parallel with a nonlinear spring. Furthermore, a stiffness-

proportional viscous damping model was adopted, such that the damping force fd is proportional to the secant

stiffness, i.e.:

fd(u, u̇) =
(
β0k0 + β1k1u

α−1) u̇ (13)

where β0 and β1 are factors that determines the amount of damping (i.e. a nonlinear Rayleigh β-damping). The

damping factors and the unknown factors k0, k1, and α were calibrated using experimental data as well as results

provided by the numerical reference model, see further Sections 4 and 5.

Notice that a linear dashpot model, independent of the displacement, result in an unrealistic damping force

having its peak value just upon impact, when the impactor mass velocity has its peak value. Nonetheless, it is

of interest to investigate the accuracy of a linear approximate model for the impactor, which enables the use of

computationally efficient analysis techniques. Approximate linear models representing the impactor are further
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Figure 5: Example of contact area, shown in dark-gray color, provided by the reference models.

discussed in Section 5.1.

2.3. Coupling procedures and interface reduction

The impactor is modeled by a SDOF system, thus, only one DOF is to be connected to the glass panel substruc-

ture. Furthermore, the nonlinearity introduced due to contact between the impactor and the glass panel is partly

integrated in the nonlinear impactor model, as described in Section 2.2. However, the distribution of the contact

stresses determines which DOFs on the glass panel that should be included in the coupling.

Upon impact, contact is established and a small contact area is formed which gradually increases when the

impactor kinetic energy is transformed into strain energy (and damping energy dissipation). Consequently, the

contact area varies significantly during impact. Nonetheless, an approximate modeling approach assuming a con-

stant contact area can be reasonably accurate, as e.g. shown in [8]. Hence, instead of including a full description

of the contact interaction the contact stress distribution θ(x, y) is assumed constant while the total contact force

Fc(t) varies through time, i.e.

Fc(t) =

∫
σc(t, x, y)dA = Fc(t)

∫
θ(x, y)dA (14)

where σc is the contact stress and
∫
θ(x, y)dA = 1.

Furthermore, it is reasonable to assume that an approximation that underestimates the contact area in general

overestimates the peak-strain in the glass panel, since the contact pressure can then be expected to be larger.

Accordingly, a more realistic peak-strain can be obtained if a somewhat larger “best-estimate” contact area is

chosen, assuming that the peak-strain occur at a point in time when the contact area is relatively large.

An example of the shape and size of the contact area computed with the numerical reference model (see further

Section 3.1) is shown in dark-gray color in Figure 5. Based on the results provided by the reference model, the

contact area in the reduced models is assumed to have the shape of two ellipses, shown with purple dashed lines

in Figure 6. The major and minor radius of the ellipses is set to 90 mm and 50 mm, respectively. These values

are assumed to correspond to the contact area developed when the glass strain reaches a peak value. However, the
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master node

impactor mass

Figure 6: Distributed coupling between a master node and the glass panel slave nodes. The interface forces acting on the slave nodes and the
master node are shown in blue and red color, respectively. The SDOF system representing the impactor is shown by the black dashed line. Note
that the arrow length is not to scale.

contact area varies both in time and for different load cases, thus, the specified values should only be regarded as

rough estimations. Furthermore, a uniform contact stress is assumed within the predefined contact area.

The simplified modeling approach described above was implemented by means of a multi-point constraint

(MPC) where the interface forces between a master DOF and a group of slave DOFs are controlled using weight

factors. This type of constraint can e.g. be found in Abaqus [17], where it is referred to as a distributed coupling.

However, since no detailed information describing the implementation have been found, a proposal of how to

enforce such a MPC constraint is presented herein. For simplicity, and the fact that only one master DOF is

present, a one-dimensional MPC is considered (i.e. only interface forces perpendicular to the glass panel are

considered). The MPC constraint, as described below, was implemented in Matlab.

The basis in the MPC method is the requirement that the sum of the interface forces acting on the slave DOFs

is equal to the interface force acting on the master DOF, cf. Figure 6. This requirement is not that restrictive and

can in principle be fulfilled by any interface force distribution, as long as equilibrium is maintained. As shown

further below, this is also why this method allows for customized interface force distributions.

Assume that a set of weight factors wi, related to the MPC slave DOFs, are normalized such that

ŵi =
wi

Σkj=1wj
(15)

where k is the number of slave DOFs (which should be distinguished from k used in the previous sections, denoting

the number generalized coordinates). Further, the constraint is enforced so that the displacement of the master DOF
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is the weighted mean value of the slave DOFs [17], i.e.:

u(m) =
k∑
j=1

ŵju
(s)
j (16)

which implies that the displacement associated to slave DOF i can be expressed as:

u
(s)
i =

1

ŵi

u(m) −
k∑

j=1,j 6=i

ŵju
(s)
j

 . (17)

Hence, one DOF is redundant and can be calculated based on the displacements of the other DOFs included in the

MPC. Further, Eq. 17 can be expressed in matrix form

Bu = 0 (18)

where B is a vector containing the normalized weight factors ŵi at entries corresponding to slave DOFs, a negative

one at the entry corresponding to the master DOF and zeros in the remaining entries. The size of B is 1× ñ, where

ñ = n+ 1 (thus, one master DOF is added to the glass panel substructure having n DOFs).

The displacement can be partitioned in a set of unique uu and redundant ur DOFs [18]. If slave DOF k is

chosen as the redundant DOF, then ur = u
(s)
k and uu =

[
0 u(m) u

(s)
1 . . . u

(s)
k−1

]
. Hence,

B =
[

Bu Br

] uu

ur

 = 0 (19)

where Bu =
[

0 −1 ŵ1 . . . ŵk−1

]
and Br = ŵk. By rewriting Eq. 19, the redundant displacement can

be expressed as

ur = −B−1r Buuu (20)

Thus, the displacement vector can be expressed in terms of the unique displacements, uu

ur

 =

 Iuu

−B−1r Bu

uu = Luu (21)

where L is a ñ× n transformation matrix.

The equation of motion for a linear system, including the redundant DOFs, can be written as:

Mü + Cu̇ + Ku = f + g (22)

where M, C and K are the ñ× ñ mass, damping and stiffness matrix, u is the ñ× 1 displacement vector, f is the

ñ× 1 external force vector and g is a ñ× 1 interface force vector, which is included due to the presence of MPCs.

Now, inserting the transformation according to Eq. 21 in Eq. 22 and pre-multiplying with L> yields:

L>MLüu + L>CLu̇u + L>KLuu = L>f (23)
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thus,

L>g =



I 0 0 · · · 0 0

0 1 0 · · · 0 1
ŵk

0 0 1 · · · 0 − ŵ1

ŵk

...
...

...
. . .

...
...

0 0 0 · · · 1 − ŵk−1

ŵk





0

g(m)

g
(s)
1

...

g
(s)
k−1

g
(s)
k


= 0 (24)

where we use that −B−1r Bu = − 1
ŵk

[
0 −1 ŵ1 . . . ŵk−1

]
.

As indicated by Eq. 24, the weight factors control the distribution of the interface forces acting on the slave

DOFs. For example, Eq. 24 implies that g(s)k = −ŵkg(m), g
(s)
1 = ŵ1

ŵk
g
(s)
k = −ŵ1g

(m) and, in general, g(s)i =

ŵi

ŵk
g
(s)
k = −ŵig(m). Further, according to Eq. 15, the weight factors are normalized, which implies that

k∑
j=1

g
(s)
j =

k∑
j=1

g(m)ŵj = g(m)
k∑
j=1

ŵj = g(m). (25)

Hence, equilibrium is maintained. Moreover, it should be noted that the above formulation allows for arbitrary

weight factors, e.g. to consider a non-uniform interface force distribution or a non-uniform element mesh.

2.4. Dynamic response analysis

In the experimental tests, the pendulum impactor is released from a specific drop height and starts a swing

motion until, at its lowest point, impact with the glass panel. The numerical analyses are initiated just upon impact.

Thus, the dynamic response of the impactor-glass system is obtained by solving an initial value problem—the

external forces are zero and an initial velocity is prescribed to the impactor. The initial velocity u̇0,imp is computed

based on the pendulum drop height:

u̇0,imp =
√

2gh (26)

where g is the gravitational acceleration and h is the drop height. Solution methods for both linear and nonlinear

systems are investigated. Furthermore, only the first phase, when there is contact between the impactor and the

glass panel, is considered.

2.4.1. Linear systems with nonclassical damping

If the coupled impactor–glass structure is approximated using a linear model with classical damping, a closed-

form solution is straightforward to obtain by means of modal expansion techniques applied to the assembled

system [25]. However, this approach is in general not feasible for systems with non-classical (also referred to as

non-proportional) damping since a projection of the system equations onto a modal basis would then not result

in a diagonal damping matrix. According to Section 5.1, the damping ratio of a linear impactor model can be

estimated to be about 5%, whereas the damping ratio of the simply supported glass panels is approximately 1.7%,

as discussed further in Section 4. Thus, the damping of the assembled system is indeed non-proportional and,

consequently, a traditional modal analysis cannot be utilized. Nonetheless, a closed-form solution can be achieved.
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For example, by means of the complex damped eigenmodes using a state space formulation (see e.g. [27]) or

by use of the so-called modal strain energy (MSE) method, which is an approximate method to account for non-

proportional damping [28, 29]. An advantage using the MSE method compared to a state space formulation is

that the number of system variables are halved and that imaginary variables can be avoided. Furthermore, the

numerical investigations presented in [28] suggests that the MSE method is accurate for systems with damping

less than approximately 20%, thus, it can be assumed sufficiently accurate for the studied glass-impactor system.

The damping ratio of a SDOF system representing a modal coordinate can be expressed as:

ζ =
ED

4πES
(27)

where ED is is the one-cycle modal energy loss due to viscous damping and ES is the modal strain energy ampli-

tude, given by:

ES =
1

2
φ>j K̂φj (28)

where K̂ is the m̂ × m̂ global stiffness matrix, representing the coupled impactor–glass system, and φj is the

eigenvector for mode j, obtained by solving the generalized eigenvalue problem:(
K̂ − ω2

jM̂
)
φj = 0 (29)

where ωj is the corresponding eigenfrequency. Notice that the elements of the eigenvectors includes physical as

well as generalized DOFs.

In accordance with the MSE method, the modal energy loss is computed as:

ED = πωjφ
>
j Ĉφj (30)

where ωj is the eigenfrequency for mode j and Ĉ is the m̂ × m̂ global damping matrix, containing the damping

submatrices related to the glass and impactor, respectively. It follows that the modal damping ratio for mode j can

be computed as:

ζj =
φ>j Ĉφj

2ωjφ
>
j M̂φj

(31)

where M̂ is the m̂× m̂ global mass matrix.

As in a traditional modal decomposition applied to systems expressed in terms of physical DOFs, a linear

system reduced by means of DS can be expressed in modal coordinates:

q =
∑
j

φjηj (32)

where ηj is the modal coordinate for mode j.

If neglecting damping, the system equations can be diagonalized by projecting the system onto the modal basis:

Φ>M̂Φη̈ + Φ>K̂Φη = Φ>p̃ (33)
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where Φ =
[
φ1 φ2 . . . φm̂

]
is the modal matrix and η =

[
η1 η2 . . . ηm̂

]>
is the modal ampli-

tudes. Hence, a set of m̂ uncoupled differential equations, which can be solved independently, is obtained.

Now, by introducing the modal damping ratios determined by means of the MSE method, and assuming that

the external force is zero, each modal response is given by:

ηj(t) = e−ζjωjt

(
ηj(0) cos(ωjDt)) +

η̇j(0) + ζjωjηj(0)

ωjD
sin(ωjDt)

)
(34)

where ζj is the damping ratio for mode j and ωjD = ωj
√

1 − ζ2j is the jth natural frequency with damping [25].

In contrast to a traditional modal response analysis, which commonly uses a truncated modal basis, it is in this

case reasonable to include all m̂ modes in the modal basis because a reduction has already been performed on the

substructure level. Hence, the modal analysis is primarily employed for diagonalizing the system matrices, not for

reducing the system size.

In a standard modal analysis, the modal damping matrix is in general constructed directly in the modal domain

by means of modal damping ratios, e.g. provided by experimental tests. However, using the MSE method, the

global damping matrix Ĉ, containing the damping submatrices, is required. The SDOF model representing the

impactor uses stiffness-proportional damping, as discussed in Section 2.2. Hence, if considering a linear impactor

model, viscous damping is modeled by a ordinary dashpot. The damping matrix related to the glass panel is

constructed by means of Rayleigh-damping, i.e.

C = αM + βK (35)

where α and β are the Rayleigh damping parameters [25]. The glass panel damping is further investigated in

Section 4 and the calibration of the Rayleigh parameters are discussed in Section 5.

By using the above methodology, a closed-form solution is obtained for initial value problems of linear sys-

tems even though non-proportional damping is present. Notice, however, that the above procedure is indeed an

approximation due to that possible off-diagonal terms is not considered in the modal damping matrix given by

Φ>ĈΦ.

2.4.2. Direct time-integration of nonlinear systems

The dynamic response of the nonlinear systems is solved using implicit direct time-integration. For the reduced

models, direct time-integration is performed using Newmark’s method [25]. The Newmark parameters are set to

β = 1
4 and γ = 1

2 resulting in a unconditionally stable system, which is convenient when solving a nonlinear

system. Further, force equilibrium in each time increment is established by means of Newton-Raphson iterations

[25].

3. Numerical reference model

A detailed FE model of the impactor was established using the commercial FE analysis software Abaqus [17].

The response computed with the reference model complements the experimental results in a validation of the

15



reduced models (see further Section 5.3). Furthermore, the FE model provides insight into the impactor structural

behavior and its interaction with the glass panel, which is vital knowledge in the process of deriving and evaluating

a reduced model.

Furthermore, a FE model of the glass panel was developed, employed both in the Abaqus analyses including the

impactor reference model and for generating system matrices, which are necessary in the process of establishing

reduced models representing the glass panel. The FE model of the glass panel was modeled in Abaqus. However,

to get full access to the FE procedures a separate, but in practice equivalent, FE model was made using Matlab.

3.1. Impactor

The impactor rubber tires are pneumatic bias-ply tires which consist of rubber reinforced by nylon ply-cords,

usually in an angle ± 30°–40° from the direction of travel, with each additional ply positioned in opposite direction

[6].

In Abaqus, the nearly incompressible rubber material was modeled using a hyperelastic model. The strains

in the rubber turns out to be relatively small (< 20 %), why a Neo-Hooke model, with parameters according to

Table 1, is judged to be sufficiently accurate. The rubber tires were modelled by four-node shell elements and the

nylon cords were modelled using so-called rebar layers, a feature in Abaqus that allows for specifying orthogonal

or skew reinforcement embedded in shell or membrane elements. Hence, the nylon cords are not modeled by

separate elements, but is rather modeled as a smeared rebar layer positioned at the shell element reference surface.

The cords diameter was set to 0.45 mm with a spacing 1.6 mm, in accordance with [5]. By an optical investigation

of a cut of a tire, the thickness of the rubber was estimated to 5 mm.

An accurate model of the stiffness distribution of the nylon ply-cords is important for a realistic behavior of

the tire model. The pressure exerted by the contained air is mainly balanced by tensile stresses in the nylon cords

having a stiffness several order of magnitude larger than the rubber (even when considering the difference in cross-

section area). Therefore, the stiffness of the inflated tires is primarily due to prestressing of the nylon ply-cords and,

consequently, the angle of the nylon cords have a relatively large effect on the structural behavior. However, data

for the nylon cord angle for the specific tires used in this study was not available. Instead, the angle was determined

by comparison of the deformed shape of the actual tire, when inflated and non-inflated, with the deformed shape

given by a quasi-static analysis of the tire inflation. Based on this comparison, the angle was estimated to be 40°.

The tire air pressure was modeled using a feature in Abaqus denoted fluid cavity, which considers the coupling

between the deformation of the tire structure and the pressure exerted by the contained air. Using this modeling ap-

proach, only the quasi-static air pressure is considered, whereas the dynamic pressure is ignored. An overpressure

of 4.07 bar was prescribed in the undeformed configuration to obtain an air pressure of 3.5 bar in the deformed

configuration.

The steel weights, rims, and the screw spindle (the axis connecting the two weights) were modeled using linear

elastic material properties according to Table 1. In principle, the weights can be modeled as rigid bodies since these

are much stiffer than the tires. However, the deformation of the rim and the screw spindle might not be negligible.

Also, the off-center location of the weights causes the screw spindle to bend, which in turn effects the deformation
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Table 1: Material models employed in the reference model.

Material Material model Material parameters
Rubber Hyperelastic, Neo-Hookean G = 1.2 MPa, K = 2 GPa, ρ = 1100 kg/m3 [5, 6]
Nylon Linear elastic E = 3 GPa, ν = 0.3, ρ = 1100 kg/m3 [5, 30]
Steel Linear elastic E = 210 GPa, ν = 0.3, ρ = 7830 kg/m3 [5]
Glass Linear elastic E = 72 GPa, ν = 0.23, ρ = 2500 kg/m3 [31]

Figure 7: Undeformed (left) and inflated (right) configuration. The rubber/nylon and steel are shown in dark-gray and gray color, respectively.

of the tires. To consider a possible influence of these effects the steel weights and the screw spindle were modeled

by eight-node solid elements, whereas the rim was modeled with four-node shell elements. The impactor model

mesh, for both the un-inflated and inflated configuration, is shown in Figure 7.

A viscous stiffness-proportional damping was calibrated to the energy loss measured in the impact tests, as

discussed in Sections 4 and 5.1. Moreover, a contact interaction was prescribed between the tires, with a friction

coefficient of µ = 0.7 in accordance with [6].

3.2. Glass panel

The glass panel was modeled with solid shell elements, which uses an assumed strain distribution for an

enhanced modeling of bending [32]. An advantage using these elements compared to conventional shell elements

is that no special treatment is needed to consider offsets of loads or prescribed boundary conditions. An evaluation

of using solid shells for modeling glass panels is e.g. presented in [33].

The supporting steel frame was assumed rigid and the EPDM rubber strips positioned between the glass and

the steel were modeled by linear elastic spring beds. In the experimental set-up, the rubber along the supports
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(a) (b)

Figure 8: Soft-body impact test set-up (a) and strain gauge on the rear side of the glass panel (b).

were prestressed due to bolting of the glass panels, which affect the rubber stiffness. Therefore, the stiffness

of the spring beds were calibrated based on the fundamental frequencies as measured for the 8, 10 and 12 mm,

respectively, simply supported glass panels. Using this approach, the stiffness of the rubber strips was estimated

to 10 MPa (the glass geometry, density, and stiffness, which also affect the fundamental periods, are thus regarded

as relatively well-known parameters). The in-plane stiffness of the rubber strips was modeled in a similar manner

using elastic springs.

In accordance with the measurements discussed in Section 4, a damping ratio of 1.7% was assumed for the

glass panels being modeled by means of Rayleigh α- and β-damping. The derivation of the Rayleigh parameters

is further discussed in Section 5 and the prescribed values are presented in Table 4.

4. Experimental testing

Experimental tests were performed to validate the reduced models. In particular, the strain was measured on

simply supported monolithic glass panels with dimensions 1000 mm×800 mm, made of regular soda-lime silicate

toughened glass. The glass panel impact tests were part of an experimental campaign summarized in [34, 35],

which includes additional tests of glass panels mounted with various fixing methods, such as linear clamps, local

clamp fixings and point fixings. Moreover, glass with different heat treatment as well as glass laminated with

different materials were also tested.

Additional measurements were performed to identify the dynamic characteristics of the impactor. The dynamic

properties of the impactor, such as the dynamic stiffness and damping turn out to have a large impact on the

dynamic behavior of the coupled impactor–glass system. Also, an increased insight into the structural behavior is

essential in the process of developing reduced models, to ensure that no significant characteristics of the system

are lost in the reduction process.

18



Table 2: Impactor rigid impact energy loss.

Test No Drop height (h0) [mm] Height diff. (∆h = h0 − h1) [mm] Energy loss (∆ h
h0

)[%] Mean [%]
1 100 20 20 202 100 20 20
3 200 55 27.5 284 200 55 27.5
5 300 80 26.7 276 300 80 26.7
7 450 140 31.1 308 450 130 28.8
9 700 230 32.9 3210 700 220 31.4

4.1. Dynamic characteristics of impactor

The impactor design is described in [1], where the impactor parts are specified in detail. The tires should be of

the type 3.50-R8 4PR (by Vredestein) or tires that are demonstrated equivalent. In the present study, two Michelin

3.50-S83 tires were used (see Figure 8 b), which were also used in the experimental tests presented in [5]. The

inflation pressure is 3.5 bar and the total weight of the impactor is 50 kg.

The impactor damping and stiffness were evaluated based on impact with a very stiff steel column, which can

be considered rigid. The impactor acceleration was measured at several locations on the impactor weights, as

shown in Figure 2b. Similar tests were also performed in [5]. However, the tests performed in the present study

also included an estimation of the impactor damping. More specifically, the difference between the maximum

height of the impactor after impact h1 and the initial drop height h0 was measured. Hence, the energy loss during

impact (∆E) was estimated as

∆E = mg (h0 − h1) . (36)

The measurement of the impactor position was performed by recording the impact sequence on video at a

frame rate of 240 frames per second, sufficiently high to enable a smooth slow-motion video. Before the impact

tests were performed, a physical measurement-grid was positioned in the plane of the pendulum, filmed at the

same angle and position as the impact tests. This measurement grid was then used to calibrate the measurements

performed directly in the slow-motion videos. Tests were preformed with an impactor drop height of 100, 200,

300, 450 and 700 mm, respectively.

The estimated energy loss, which in turn determines the damping, is presented in Table 3. Notice that the

experimental methodology implies that the mass of the impactor weights can be assumed sufficiently large so that

the system can be well-represented by a SDOF system when in contact with the rigid wall and a rigid mass floating

in space when contact is not established.
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Figure 9: Decay of motion in terms of glass strain for test with a drop height of 500 mm and a glass thickness of 10 mm (a) and estimated
damping ratios (b). The strain ε1 is the strain measured at cylce i, corresponding to ui in Eq. 37. The mean damping ratio for measurements
with ε1 > 0.1 mm/m is equal to 1.7% and is shown by the black dashed line.

4.2. Soft-body impact on glass panels

Experimental results from impact tests of two-sided simply supported glass panels, as shown in Figure 8a,

was used for validation of the reduced order models. The glass panels consist of toughened monolithic glass with

nominal thickness 8, 10 and 12 mm, respectively. As described in [35], the horizontal strain was measured by a

strain gauge bonded at the rear side (tensile side) of the glass panels at the point of impact, see Figure 8b. Impact

tests were conducted with a drop height of 100, 200, 300, 400 and 500 mm, respectively.

The signal from the strain gauge was logged at a frequency of 600 Hz for a few seconds. However, the impactor

contact time is typically less than 80 milliseconds. Hence, the logged strain data includes the decay of motion after

impact, which was utilized for estimating the damping of the glass panels and its fixings. An example of the logged

strain data is shown in Figure 9a. Further, the logarithmic decrement is given by:

δ =
1

n
ln

(
ui
ui+n

)
=

2πζ√
1 − ζ2

(37)

where ui is the amplitude measured at cycle i, n is the number of cycles between the measured amplitudes and

ζ is the damping ratio. If assuming linear elasticity, the displacement amplitudes in Eq. 37 can be replaced by

the measured strain amplitude. The estimated damping for some of the tests is presented in Figure 9b. The x-axis

denotes the strain amplitude measured at cylce i, corresponding to ui in Eq. 37. As shown in the figure, the

damping ratio does not vary much with neither the glass thickness nor the amplitude. However, it should be noted

that the strain amplitude is fairly low in all the measurements, i.e. less than 0.25 mm/m. Based on the data from

the impact tests, the damping ratio of the glass and its fixings was estimated to 1.7 %. This is slightly larger than

the damping ratios reported in e.g. [36, 37] where, however, different test arrangements were used.

In addition to the estimation of the glass panel damping ratio, the measured strain due to free vibration after

impact was used for estimation of the fundamental periods of the simply supported glass panels. Note that the glass

strain, which is measured in the center of the glass panel, is mainly due to vibration of the fundamental mode. For

glass panels with thickness 8, 10 and 12 mm, respectively, the fundamental period was estimated to 46, 37 and 31
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Figure 10: Horizontal strain measured on the rear side of the glass panel with thickness 8 mm for the double impact test. The initial drop height
was 200 mm.

milliseconds, respectively.

Finally, the strain was measured for a double impact test, as shown in Figure 10. This was done for one impact

test: the 8 mm glass panel subjected to an impact corresponding to a drop height of 200 mm. The measured strain

was exploited to implicitly estimate the energy loss during impact for the whole system. This includes energy

dissipation due to deformation of the impactor (e.g. frictional or viscous damping), through frictional effects due

to contact, and deformation of the glass panel and its fixings.

If assuming linear elastic behavior, the response can be obtained by solving an initial value problem of a linear

system. As implied by Eqs. 32 and 34, the displacements of such a system is linearly dependent on the initial

velocity. Accordingly, the displacements are quadratically dependent on the initial kinetic energy of the impact

body EK,0, given by

EK,0 =
mimpu̇

2
0,imp

2
. (38)

It follows that the square of the ratio between the peak strain in the first and second impact is proportional to the

ratio between the kinetic energies induced in the system upon the first and second impact, respectively. Hence,(
ε(2)

ε(1)

)2

=
EK,0

(2)

EK,0
(1)

(39)

where ε(1) and ε(2) are the strains measured for the first and second impact, and EK,0(1) and EK,0(2) are the

kinetic energy just before the first and second impact, respectively. From the measured peak strains according to

Figure 10 (red and green circle), the ratio between the kinetic energy in the first and second impact can be estimated

to (1.386/1.616)2 = 0.74. Thus, the energy induced in the system upon the second impact is 74% of the impact

energy in the first impact and, accordingly, the energy loss is approximately 26%. This is fairly close to the energy

loss measured in the rigid impact tests, shown in Table 3, which may indicate that the energy dissipation related

to the deformation of the glass panel is fairly small. However, it should be noted that the energy loss computed
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(a) Load Case A (b) Load Case B

Figure 11: Position of impactor in load case A and B. The glass panel dimensions are h = 1000 mm and w = 800 mm. Spring beds are applied
on the parts of the glass panels marked with light gray color.

from a double impact test using the above procedure is in principle only valid for linear systems, why it should

only be regarded as a rough estimate. Moreover, some of the induced energy is not dissipated during the impact

but instead causes the glass panel to oscillate after impact. The glass panel strain energy is related to the square

of the glass strain. Accordingly, a strain energy ratio can be estimated based on the peak strain during impact and

the peak strain after impact. Using the measured strains according to Figure 10 for the first impact (red and blue

circle), the strain energy ratio is (0.1925/1.616)2 = 1%, which principally is negligible.

5. Model validation

In order to validate the reduced models, the computed response is compared to both experimental results and the

response provided by the reference model. Two load cases are evaluated where the point of impact is centric (load

case A) and eccentric (load case B), respectively. In both load cases impact loading of a two-sided continuously

supported monolithic glass panel, with width 1000 mm and height 800 mm, is studied. The position of the impactor

for load case A and B, respectively, is shown in Figure 11.

Calibrations of the impactor reference model and the developed SDOF models, representing the impactor,

are presented in Section 5.1. In Section 5.2, the response computed with the reference model and the reduced

models are compared and evaluated based on load case A and B. Furthermore, in Section 5.3, a validation based

on experimental results is presented for load case A.

5.1. Calibration of impactor models

A calibration of the numerical reference Abaqus model of the impactor was conducted based on the rigid

impact tests discussed in Section 4. Numerical analyses of impact with a rigid surface was performed to simulate

the experimental tests. The analyses were initiated just upon impact by prescribing an initial velocity to the

impactor. The model was calibrated in the sense that a stiffness-proportional viscous damping was prescribed
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Table 3: Impactor energy loss due to impact with rigid beam.

Drop height [mm] Experiment [%] FE model1[%] SDOF model [%]
100 20 24 22
200 28 26 25
300 27 28 27
450 30 30 30
700 32 32 32
1 Viscous dissipation and frictional damping due to contact interaction.
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Figure 12: Comparison of impactor acceleration according to reference model (solid line) and experiments (dashed line).

to match the energy loss obtained in the experimental tests, see Table 3. Based on this calibration, a damping

parameter of β = 0.022 was prescribed to the rubber, proportional to the strain-free elastic stiffness. The other

material parameters was set according to Table 1.

The impactor acceleration is shown in Figure 12 for a drop height of 100, 200, 300, 450, and 700 mm, respec-

tively. The dashed lines are the accelerations measured in the impact tests and the solid lines are the accelerations

provided by the numerical simulations, extracted from a node close to the position of the accelerometer in the

experimental test. As shown in the figure, the computed accelerations show good agreement with the experimental

results for drop heights 450 and 700 mm. However, the measured peak acceleration is higher, and the measured

pulse time is shorter for drop heights 100, 200, and 300 mm. It may be that some of the discrepancy is due to that

the damping of the impactor is in fact frictional rather than viscous for lower amplitudes; a coulomb type damping

would result in an unsymmetrical and shorter acceleration pulse with a larger peak acceleration. Notice that even

though friction is considered in the contact interactions in the reference model, this has a small impact on the total

energy dissipation, which is mainly due to viscous damping.

The nonlinear SDOF model, presented in Section 2.2, was calibrated to the impactor reference model. More

specifically, a hysteresis loop, representing the behavior of a generalized SDOF system, was obtained from the

reference model by plotting the movement of the impactor mass centroid and the total contact force between the
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Figure 13: Example of calibration of nonlinear SDOF model from the hysteresis loop provided by the reference model.

impactor and the rigid surface. The total contact force is equal (but with opposite sign) to the sum of the impactor

damping force and elastic force. To distinguish the total elastic force from the total internal force, the elastic force

was approximated as the derivative of the total strain energy with respect to the displacement of the impactor mass

centroid, as shown by the green curve in Figure 13. In a similar manner, the damping force was estimated as the

derivative of the viscous dissipation. Hence, the sum of the derivatives, shown by the yellow curve in Figure 13,

represent the total internal force, which is very close to the total contact force shown by the dashed red curve. The

unknown stiffness factors in the generalized SDOF model (i.e. k0, k1 and α in Eq. 12) was then computed from

the load–displacement curve in a least-square sense. More specifically, the factors k0, k1 were determined by a

least-squares problem for a given α value. By traversing a sequence of α values, a best estimate was obtained. For

instance, the blue dashed curve in Figure 13 correspond to the nonlinear SDOF model calibrated to the data pairs

marked by blue circles. Note that the derivatives are ill-conditioned close to the peak displacement, why these are

only computed for displacements less than approximately 35 mm.

The acceleration given by the nonlinear SDOF model, with factors calibrated to k0 = 1.59·105, k1 = 1.25·107,

and α = 2.242, respectively, is shown for various drop heights in Figure 14a. The damping parameters in Eq. 13

were calibrated to β0 = 8 ·10−4 and β1 = 4 ·10−3, respectively, based on the shape of the hysteresis loop provided

by the reference model and the measured energy loss, presented in Table 3. The hysteresis loop for various drop

heights are shown in Figure 15, computed with the reference model and the nonlinear SDOF system, respectively.

As discussed in Section 2.4, a linear system can be solved using modal expansion techniques and, in particular,

a closed-form solution can be achieved for initial value problems. A linear model of the assemble system implies

the use of a linear impactor model. However, as shown in Figure 12, the pulse time vary with the impact energy,

which is expected for a nonlinear system. The system appears stiffer, i.e. the pulse time is shorter, for an increas-

ing drop height, which is also consistent with the nonlinear system discussed above. Nonetheless, a simplified

approximate model can be derived using the measured pulse time.
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Figure 14: Comparison of impactor acceleration according to reference model (solid), nonlinear (dotted) and linear (dashed) SDOF model.
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Figure 15: Comparison of total contact force and centroid displacement computed using the reference model and SDOF system, respectively.

When contact is established, the movement of the impactor mass centroid can be represented by a SDOF

system subjected to free vibration. It then follows that the pulse time, which corresponds to half the natural period

of the system, can be employed for estimating a linear stiffness. Using this approach, a pulse time of 38 ms was

considered for estimating an approximate stiffness, which is close to the pulse time measured for a drop height of

450 mm. Hence, the natural period of the system can be approximated as T = 2 · 38 = 76 ms, corresponding

to an angular frequency of ω = 82.7 rad/s. Accordingly, the stiffness is given by k = mω2 = 342 kN/m.

Similar to the nonlinear system, a stiffness-proportional damping was considered (i.e. a ordinary dashpot) with a

damping coefficient calibrated to c = 445 Ns/m (corresponding to a damping ratio of ζ = 5.4%). The acceleration

computed with the linear SDOF model is shown in Figure 14b. Notice that there is an instantaneous acceleration

in the acceleration curves, which is a consequence of the initial damping force being linearly proportional to the
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Table 4: Rayleigh parameters for the glass panel substructure and natural periods and damping ratios
for the assembled system.

Glass thickness α β T1 [ms] T2 [ms] ζ1
1[%] ζ2

1[%]
8 mm 1.25 1.21 · 10−4 144.8 26.6 1 9.4
10 mm 1.49 1.14 · 10−4 117.6 25.7 1.6 9.1
12 mm 1.67 1.07 · 10−4 103.1 24.5 2.3 8.1
1 Damping ratio computed by means of the MSE method, as described in Section 2.4.
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Figure 16: Displacement of glass panel mid-point computed with the linear model. The modal contributions for the first three global modes are
plotted separately.

prescribed initial velocity. Also, the computed pulse time is, as expected for a linear system, not dependent on the

impact energy.

5.2. Evaluation of reduced order models

One of the benefits of the reduced linear model is the possibility to perform a modal decomposition of the

coupled system. Beside the possibility to perform computationally efficient modal analyses, the eigenfrequencies,

eigenmodes, and modal responses can be investigating to get further insight into the structural behavior. Moreover,

the eigenfrequencies of the global system can be used for calibrating the Rayleigh damping model employed for

constructing a damping matrix for the glass panel substructure. The Rayleigh damping parameters can then be

utilized in the linear as well as the nonlinear analyses.

Figure 16 shows the glass panel mid-point displacement provided by the linear reduced order model, includ-

ing six component modes in the glass panel reduction basis. Furthermore, the mid-point displacement has been

decomposed into the contributions from the first three global modes, shown by separate curves in the figure. As

shown, the response can be almost entirely represented by the first two modes, this is true for all the thicknesses

studied. In the fundamental global mode, the displacement of the impactor DOF and the glass panel have the same

sign, i.e. they are oscillating in-phase as shown in Figure 18. The second mode, however, is an “out-of-phase”-

mode, where the displacement of the impactor and the glass panel have opposite signs. For higher order modes,

it turns out that the impactor deformation is very small. This is due to that the impactor mass is large compared

to the effective mass in the out-of-plane direction for higher order modes—for anti-symmetric modes the effective

mass is zero, and for symmetric modes the effective mass decreases rapidly with the mode order.
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Figure 17: Horizontal strain computed with the linear and nonlinear reduced order models for various reduction basis. The label “Cor. i”
denotes the order of the correction modes, where i = 0 implies that only constraint modes are considered.

The Rayleigh damping parameters for the glass panel were calibrated to match a “best-estimate” damping of

1.7% (c.f. Section 4) for the eigenfrequency of the first and second global mode, respectively [25]. The damping

parameters, the corresponding natural periods, and the modal damping ratios are presented in Table 4. Notice that

the modal damping ratios for the assembled system, computed by means of the MSE method, considers both the

Rayleigh-damping prescribed to the glass panel substructure as well as the viscous damping model employed in

the impactor SDOF model, which is linearly proportional to the frequency. Consequently, the computed global

damping ratios will be frequency dependent, as shown in Table 4.

As further discussed in Section 4, the energy loss of the impactor-glass system was estimated to be around

26% for a glass panel thickness of 8 mm and a drop height of 200 mm. The corresponding energy loss provided

by the linear model is approximately 18%, indicating that the damping prescribed to the assembled system is

somewhat low. However, as discussed in Section 4, the energy loss estimated based on a double impact test should

be regarded as a rough estimation due to limitations in the experimental methodology; for example, energy loss

related to the motion of the pendulum is not considered, and a linear elastic behavior is assumed.

Figure 17 shows the horizontal strain on the rear side of the glass panel at the point of impact for various
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(a) Global Mode 1 (b) Global Mode 2 (c) Global Mode 3

(d) Global Mode 4 (e) Global Mode 5

Figure 18: First five global modes for assembled reduced system consisting of a linear impactor SDOF model and a reduction basis for the
glass panel including a total of six component modes. The impactor mass is shown by the black square.

reduction bases applied to the glass substructure. As shown in the figure, the peak-strain is similar for all the

models. However, a refined reduction basis is required for the glass substructure to capture the shape of the strain

curve, in particular for the eccentric load case. Notice that the reduction basis employed for reducing the glass

substructure should be sufficiently large so that the deformed shape of the glass panel for the important global

modes can be resolved. Hence, the number of component modes required may be larger than the number of global

modes needed for an accurate representation of the global response.
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(c) h = 100 mm, t = 12 mm
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(d) h = 200 mm, t = 8 mm
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(e) h = 200 mm, t = 10 mm
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(f) h = 200 mm, t = 12 mm
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(g) h = 300 mm, t = 8 mm
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(h) h = 300 mm, t = 10 mm
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(i) h = 300 mm, t = 12 mm
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(j) h = 400 mm, t = 8 mm
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(k) h = 400 mm, t = 10 mm

0 20 40 60 80

Time [ms]

0.0

0.5

1.0

1.5

2.0

S
tr

a
in

 [
m

m
/m

]

(l) h = 400 mm, t = 12 mm
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(m) h = 500 mm, t = 8 mm

0 20 40 60 80

Time [ms]

0.0

0.5

1.0

1.5

2.0

2.5

S
tr

a
in

 [
m

m
/m

]

(n) h = 500 mm, t = 10 mm
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Figure 19: Comparison between the measured and computed glass strain on the rear side of the glass panel at the center of impact. The impactor
drop height, h, is 100 to 500 mm and the glass panel thickness is 8, 10 and 12 mm, respectively.
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5.3. Validation of numerical models using experimental data

The measured horizontal strain on the rear side of the glass panels are shown for various drop heights and glass

thicknesses in Figure 19, together with the corresponding strain given by the reference model and the reduced linear

and nonlinear model, respectively. In the reduced models, the glass panel was reduced using six component modes

(i.e. five fixed-interface correction modes and a constraint mode). As shown in the figure, the strain computed with

the reference model and the reduced nonlinear model corresponds well to the measured strains for impact tests

with a drop height 100 mm. However, the differences are amplified for impact tests with an increasing drop height.

The deviation is especially pronounced for the glass panels with thickness 12 mm. Furthermore, it is of interest to

evaluate not only the peak strain (even though this, in general, is the governing parameter in a design calculation)

but also the shape of the strain curves indicating how well the models capture the structural behavior. As shown in

the figure, the shape of the strain curves is relatively close for glass panels with thickness 8 mm, whereas the shape

of the computed strain curves somewhat differ for glass panels with larger thickness.

The strain provided by the linear model is very close to the response computed with the nonlinear reduced

model for the cases with a drop height of 500 mm. This is due to that the stiffness prescribed to the linear model

fits better for larger amplitudes, as manifested by the acceleration curves in Figure 14. Accordingly, the pulse time

is slightly underestimated by the linear model for lower drop heights .

6. Discussion

When verifying the load-bearing capacity of glass structures subjected to impact loading, time efficient and

user-friendly design tools can be of great utility, allowing for an interactive design process where alternative designs

may be tested. In the present study, an approach using DS have been employed for developing reduced order

models that are computationally efficient while providing an accurate prediction of the pre-failure elastic response.

For the studied load cases, the coupled impactor-glass system can be well-represented by only two global modes.

However, it should be noted that the influence of higher order modes might not be negligible for larger glass panels

or panels with other boundary conditions. Moreover, it was shown that up to four component modes may be

required to resolve the displacement of the glass panel in the global modes.

A reduction basis for the glass panel was constructed using correction modes, as further discussed in Section

2.1. An alternative could be to construct a reduction basis by means of the traditional C-B or Rubin approaches,

that uses the fixed- and free-interface normal modes, respectively. However, not much would be gained if these

methods were applied to linear systems, i.e. where linear subsystems are used for modeling the glass panel as well

as the impactor. The assembled system includes m + 1 DOFs, i.e. the glass panel has a total of m DOFs and an

additional DOF is added representing the displacement of the lumped impactor mass. Clearly, the computational

cost for generating a set of component normal modes or global eigenmodes is in practice identical. On the contrary,

an approach using correction modes replaces the eigenvalue problem by a number of matrix-vector multiplications.

Furthermore, the set of correction modes, by definition, excludes redundant modes, which cannot be excited by
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loading on the substructure boundary. Accordingly, there are no anti-symmetric mode shapes in the global modal

basis, as shown in Figure 18.

As discussed in Section 2.4, linear systems can be solved by means of modal dynamics, which in turn enables a

closed-form solution for initial value problems. However, a time discretization is required for identifying the peak

glass strain during impact. Moreover, the generalized coordinates must be transformed to physical displacements

in each time increment, which in turn can be used for computing the glass strain. Consequently, the post-processing

of the dynamic response can become computationally expensive. An approach using modal summation techniques

can be employed to overcome this problem. For example, a conservative evaluation can be made by means of an

absolute summation of the modal responses. Since only one set of data needs to be evaluated in the physical domain

the computational effort in the post-processing stage is reduced significantly. However, it should be noted that the

modal phase information is lost in a modal summation, why an absolute summation may be too conservative in

some applications.

In general, the developed models show good agreement with the experimental results. However, there are

some discrepancies, which are especially pronounced for glass panels with a nominal thickness of 12 mm (see

Figure 19). The deviation can be due to errors/imperfections in the experimental set-up and/or inadequate modeling

abstractions, such as the assumption of a constant contact area, neglection of geometric nonlinearity (i.e. membrane

action), and an assumed viscous damping model. Notice, however, that the glass strain curves provided by the

reduced models and the numerical reference model are very similar, suggesting that the deviations are due to

simplifications made in both models. Recall that both the reduced models and the numerical reference model uses

a viscous damping model (in contrast to e.g. a frictional modal) and, furthermore, ignores the dynamic air pressure

in the impactor tires. One can thereby assume that these simplifications, or other unknown errors, are the reason

for the deviations.

The damping matrix of the glass substructure was constructed by means of Rayleigh-damping, using both mass-

and stiffness-proportional damping. This damping model is convenient since it can be utilized in the physical as

well as the modal domain. Notice, however, that a damping model being proportional to the structure mass is

clearly unphysical (see e.g. [25]). A more refined damping model may be developed. Moreover, by means of

further experimental studies, the frequency dependency of the glass panel as well as the impactor damping can be

investigated.

For the glass panel with thickness 8 mm, the shape of the strain curve given by the numerical reference model

deviates from the curves obtained with the other models. The pulse is shorter whereas the peak strain is fairly

close to the peak strain of the other curves. Since the deviation is pronounced for the 8 mm glass panel, having a

bending stiffness considerably lower than the thicker panels, it is reasonable to claim that this discrepancy is due to

membrane action being manifested by a stiffer response (i.e. shorter pulse). Recall that geometric nonlinearity is

considered in the numerical reference model, while these effects are ignored in the reduced order models. However,

one would then expect the measured strains to be closer to the strain provided by the reference model, which is

not what the experimental data suggests. Nonetheless, the influence of membrane action can still be one of the
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reasons for the discrepancy. The stiffness of the rubber strips along the supports, modeled by means of elastic

spring beds, affects the influence of membrane action. The stiffness of the rubber strips (and the in-plane stiffness,

in particular) can be regarded as a particularly uncertain parameter, which is influenced by the prestressing force

due to bolting of the glass panels. Hence, the influence of membrane action might not be accurately captured by the

reference model, even though geometric nonlinearity is considered. Furthermore, it is plausible that the stiffness

of the rubber strips are in fact nonlinear, e.g. due to friction between the rubber and the glass/steel surface.

7. Conclusions

The paper presents strategies for reduced order modeling of glass panels subjected to soft-body impact. The

aim was to develop accurate reduced order models for computation of the pre-failure elastic response, suitable for

implementation in user-friendly interactive design tools. Concepts for reduced modeling of the glass panel, the

impactor and the contact interaction between the glass panel and the impact body were investigated. In particular,

a methodology is proposed for calibrating a nonlinear SDOF model representing the impactor. Furthermore, a

model validation was performed based on experimental tests and a detailed numerical reference model. Moreover,

a fixed-interface DS method that uses correction modes was successfully employed for developing computationally

efficient models of the coupled impactor–glass system. The following conclusions can be drawn:

• The measured glass strains and the strains provided by the numerical models are fairly close. The discrep-

ancy is similar for the reduced models and the reference model, suggesting that the deviations are due to

inadequate modeling abstractions applied in both models.

• The impactor acceleration measured during impact with a very stiff steel column (which can be considered

rigid) is close the the acceleration provided by the numerical reference model.

• A nonlinear SDOF model representing the impactor was successfully calibrated to the reference model. In

particular, the acceleration computed for impact with a rigid surface with the nonlinear SDOF model showed

very good agreement with the acceleration provided by the numerical reference model.

• The evaluation of the reduced order models suggests that a simplified modeling approach assuming a con-

stant contact area is fairly accurate.

• Reduction bases including correction modes turn out to be particularly suitable for implementation in design

tools, such as ClearSight, where a manual selection of component modes should be avoided. The set of cor-

rection modes automatically excludes redundant modes that cannot be excited by loading on the substructure

boundary.

• If the impactor is approximated by a linear modal, a closed-form solution can be obtained by means of

the modal strain energy method, which enables the use of modal expansion techniques for lightly damped

systems with non-proportional damping. For the studied load cases, the coupled impactor-glass system can

be well-represented by only two global modes.
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• A very computationally efficient approximate evaluation of the glass strain can be obtained if a closed-form

modal solution is combined with a modal summation technique, e.g. an absolute summation of the peak

modal responses. Using this approach, a time discretization in the physical domain is avoided.
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