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Abstract 
Within the automotive industry today, companies save significant amounts of money 
through computer simulations. Mathematics through numerical methods becomes 
important when as in this case the investigation is done with the Finite Element Method 
(FEM). A self-pierced rivet (SPR) joint specimen in a T-peel case is studied. The specimen 
consists of 1.15 mm thick steel sheets with a rivet of 5 mm in waist-diameter. 
 
The simulations are performed with the finite element software ABAQUS/Explicit, and 
involve dynamic inertia effects. The Johnson-Cook plasticity model is used to describe the 
materials, a deep drawing quality (DDQ) and a dual phase (DP600) steel. 
 
Different parameter variations are made. These are for example velocity, friction and 
material. Displacement velocities of 1, 10, 25 and 100 m/s are evaluated. The results are 
compiled and assembled to load- and energy-curves. The curves are then compared with 
the visual deformation process of the specimen. Comparisons with spot- and laser-welded 
joints are also done. 
 
Some results are: 
• The deformation process was more or less similar at 1, 10 and 25 m/s. 
• Higher velocity results in higher load levels, higher energy and larger failure 

displacement. 
• The DDQ steel shows lower load levels and larger failure displacement than the DP600 

steel at all velocities. 
• The load-displacement curves are quite similar for the spot-welded and SPR cases, 

except for the oscillating amplitudes where SPR is larger. 
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1. Introduction 
Within the automotive industry today, companies save significant amounts of money 
through computer simulations. Computer simulations are used for example to test 
crashworthiness, with a goal to increase the safety in cars. This is done because it is 
cheaper to crash a car “inside” the computer than in reality. This has lead to great 
concentration on numerical calculations. 
 
Essentially all phenomena, which describe a process that involves some kind of variation, 
can be described by means of differential equations. Mathematics becomes then the natural 
means to understand and describe such a phenomenon, and to interpret and solve them. 
Effective and reliable numerical models are necessary to be able to optimize weight, 
production costs and structural strength. 
 
The joints that join different parts in a car body are often the weakest points as regards to 
structural strength. They can break due to fatigue or by extreme forces, like a crash. A car 
body contains many joints, so a full car model must be simple enough to give reasonable 
demands on the computers’ memory and speed. 
 
Self-piercing rivets (SPR) are becoming more and more common as joining method in 
cars. For frame structures of aluminium SPR is already the dominant joining technique, see 
Audi A2 and A8. It is important that the rivet joints don’t separate while submitted to crash 
load so that an unstable collapse of the car body structure can be avoided. 
 
In this report an advanced numerical calculation is done on a single rivet to give 
information that makes it possible to make simplified but yet realistic models on full car 
structures. It is investigated how SPR deform with crash load. The influence of material 
parameters on load-response and energy-consumption is studied. This is done on a T-peel 
specimen. The studies have, among other things, lead to a good understanding of what 
parameters that are crucial for the structural strength. 
 
The finite element method (FEM) is today the most widely used technique for computer-
based analysis of problems within mechanics of materials. The method started to develop 
in the 50’s and has developed ever since. Today it is possible to analyse three-dimensional 
geometry with consideration of both large deformations and non-linear material behaviour 
(e.g. plasticity). In this work, finite element calculations are performed using the software 
ABAQUS/Explicit. 
 
To carry out a complete FEM-calculation the following steps must be taken. 
• Create appropriate geometry. 
• Meshing and specify elements. 
• Apply loads and boundary conditions. 
• Perform solution. 
• Study and estimation/evaluation of the results. 
• Documentation. 
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2. Self-piercing riveting 
Self-piercing riveting (SPR) is a method of joining two pieces of material using a rivet (see 
figure 2.1 and 2.2). Unlike conventional riveting, self-piercing riveting does not require a 
pre-drilled hole, because the rivet makes its own hole as it is being inserted. This brings 
great benefits in terms of production cost reduction and ease of use compared to 
conventional riveting. 
The increasing use of coated, lightweight and high-strength materials, such as galvanised 
or pre-painted steel and aluminium has led industries to re-examine traditional methods of 
assembling components. As welding of these materials is difficult or impossible, and 
assembly using conventional rivets is slow and costly, the benefits of a process that 
combines high joint integrity with rapid assembly times become obvious [9]. 
 

 
 

 
 

Figure 2.1. T-peel specimen of SPR-joints. Figure 2.2. A self-pierced rivet in cross section. 
 
Self-piercing riveting has a number of advantages over more conventional joining 
techniques, such as spot welding and blind riveting: 
 
• Joins a range of materials such as steel, aluminium and plastics. 
• No hole required. 
• No heat, fumes, dust or swarf given off. 
• Doesn’t burn zinc or painted coatings. 
• Fast cycle time. 
• Low noise operation. 
• Repeatable quality, visually checkable joint with one shot operation. 
• Automatic rivet feed for continuous production. 
• Compatible with adhesives and lubricants. 
 
Self-piercing rivets are, for example, used for 70% of the single point fastenings on the 
Audi A8, due to superior fatigue and crash worthiness of the joints compared with spot 
welding. 
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2.1 The rivet process 
 
The self-piercing rivet is squeezed at high force into the material to be joined, piercing the 
top sheets of material and spreading outwards into the bottom sheet of material, under the 
influence of an upsetting die, to form a strong joint. Also see figure 2.2 and 2.3 below. 
 

1. Material in position on the 
upsetting die, ready to rivet. 

2. Rivet setter nose advances to 
clamp the material against the die.

3. Riveting punch advances, 
pushing the rivet from the tape. 

4. Rivet is inserted into the 
material, flaring out into the die. 

5. Rivet setter retracts and next 
rivet is fed under the punch. 

6. Cycle is complete. 

Figure 2.2. Description of a rivet setting operation with the Henrob process [9]. 
 
The rivet setting tool is powered hydraulically from a separate power pack, which also 
controls the tool sequencing. Rivets are fed automatically into the setting tool on a plastic 
belt, thus allowing automated, high volume production. 
 
The rivet in this report is a countersunk rivet. In figure 2.3 there is another description of 
the rivet setting process. 
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Figure 2.3. A simple general description of a countersunk rivet process. 

 
 

2.2 Joint requirements 
 
In order to have a satisfactory rivet joint, the requirements specified below must be 
complied with. The requirements apply to each individual self-piercing rivet in the joint. 
 
For the punch side: 
 
• the surface of the rivet head shall be parallel with the sheet metal surface 
• in the case of countersunk rivets, the rivet head may be max. 0.2 mm above the sheet 

metal surface 
• in the case of countersunk rivets, the rivet head may be max. 0.1 mm below the sheet 

metal surface. 
 
For the die side: 
 
• a fully shaped button shall show an outer diameter corresponding to the inside 

dimension of the die tool 
• no breakthrough of the rivet permitted 
• no cracks in the sheet permitted 
• the remaining sheet thickness shall be min. 0.2 mm. 
 
All this requirements are fulfilled in this investigation. 
 
Above requirements according to VCS [10]. 
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3. Background to numerical solution 
procedures and FE simulations 

3.1 The finite element method 
 
Most physical phenomena encountered in engineering mechanics are modelled by 
differential equations, and usually the problem is too complicated to be solved by classical 
analytical methods. The finite element method (FEM) is a numerical approach by which 
general differential equations can be solved in an approximate manner. 
The differential equation or equations, which describe the physical problem considered, are 
assumed to hold over a certain region. This region may be one-, two- or three-dimensional, 
and in this investigation it’s a three-dimensional problem. It is a characteristic feature of 
the finite element method that instead of seeking approximations that hold directly over the 
entire region, the region is divided into smaller parts, so-called finite elements, and the 
approximation is then carried out over each element. The elements may be all of the same 
size or all different. The collection of all elements is called a finite element mesh. The 
elements are interconnected only at nodes or nodal points. The nodal points are the ends of 
the element, and each node has a number of degrees of freedom (DOF). The DOF’s 
represent in this report the displacement in all directions (x, y, z), i.e. three degrees of 
freedom at each node. 
When the type of approximation that is to be applied over each element has been selected, 
and the mechanical behaviour of the material is known, the corresponding mechanical 
behaviour of each element can be determined. This can be performed because the 
approximation made over each element is quite simple. Having determined the behaviour 
of all elements, these elements are then patched together, using some specific rules, to 
form the entire region, which eventually enables us to obtain an approximate solution for 
the behaviour of the entire body [1]. 
The finite element method can accordingly be applied to obtain approximate solutions for 
arbitrary differential equations. 
 
 

3.2 Explicit method 
 
Analytical solutions of the equation of motion, equation (3.1) below, are usually not 
possible if the excitation varies arbitrarily with time or if the system is non-linear, like this 
case. Such problems can be tackled by numerical time-stepping methods for integration of 
differential equations. Ordinary differential equations can be numerically integrated with 
either an implicit or an explicit method. Both can be used in static and dynamic analyses, 
but the present case is treated as being dynamic. 
 
The differences between the methods make them suitable at varying situations. Explicit 
methods demand less storage capacity and computer-time as compared to implicit method, 
which is due to the following: 
 
• Explicit methods use diagonal, lumped mass matrices, so that the system to be solved is 

uncoupled. 
 



14 

• In the explicit method, no equilibrium iterations like Newton-Raphson are needed. 
 
The convergence problem that emerges using implicit methods can often be avoided with 
an explicit method. The explicit method is suitable for fast dynamic processes and non-
linear analyses such as crash simulations, i.e. perfect for the simulation in this report. 
 
 
3.2.1 Central difference method 
 
The explicit time integration method used in ABAQUS/Explicit is the central difference 
method [4]. The equilibrium is expressed at an instant when the displacements are known. 
By using this information, new equilibrium data can be calculated for the next time step. 
The implication of the method is that known information between the previous time step 
and the current are used to calculate the equilibrium at current time step. For a short 
derivation, see below. 
 
The equation of motion can be written: 
 

iiii pkuucum =++ &&&     (3.1) 
 
m, c and k are mass, damping and stiffness matrices and p is the applied force vector. u, u&  
and u&&  are displacement, velocity and acceleration vectors respectively. For the next step 
the equation reads: 
 

1111 ++++ =++ iiii pkuucum &&&     (3.2) 
 
This method is based on a finite difference approximation of the time derivatives of 
displacement (u&  and u&& ). Taking constant time steps, tti ∆=∆ , the central difference 
expressions for velocity and acceleration at time i are 
 

t
uuu ii

i ∆
−

= −+

2
11&     (3.3) 

 

( )2
11 2

t
uuuu iii

i ∆
+−

= −+&&     (3.4) 

 
Substituting these approximate expressions for velocity and acceleration into eq. (3.1) 
gives 
 

( ) ii
iiiii pku

t
uuc

t
uuum =+

∆
−

+
∆

+− −+−+

2
2 11

2
11    (3.5) 

 
In this equation iu  and 1−iu  are assumed known (from the preceding time steps). 
Transferring these known quantities to the right-hand side leads to 
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or 
 

ii puk ˆˆ
1 =+  ⇒       1

1
ˆˆ −

+ ⋅= kpu ii    (3.7) 
 
The solution ui+1 at time i+1 is determined from the equilibrium condition, eq. (3.1), at 
time i without using the equilibrium condition, eq. (3.2), at time i+1. Such a method is 
called an explicit method and is especially easy to implement on the computer [2]. 
 
Other methods are for example Newmark and Wilson’s method. 
 
The size of a time step, or a time increment (∆t), is of importance in terms of stability 
demands. If ∆t is larger than the time for a dilatational wave to cross any of the elements, 
errors will appear. It can even stop the simulation. The mesh density is therefore very 
important. Smaller element sizes leading to smaller time steps and thus larger number of 
increments and computational cost. 
 

3.3 The FE program - ABAQUS 
 
The simulations are performed using ABAQUS (version 6.2), a finite element software. 
The ABAQUS finite element system includes: 
 
• ABAQUS/CAE, an interactive pre-processor that can be used to create finite element 

models, the input file for ABAQUS/Standard and ABAQUS/Explicit, 
• ABAQUS/Standard, a general-purpose finite element solver-program, 
• ABAQUS/Explicit, an explicit dynamic finite element solver-program, and 
• ABAQUS/Viewer, a menu-driven interaction post-processor that provides xy-plots, 

animations, contour plots and tabular output data of results. 
 
In the present study all these program modules, except Standard, have been used to 
investigate the self-piercing rivet joints. 
 

3.4 Johnson-Cook plasticity model 
 
In order to describe the plastic and rate dependent hardening of the material the Johnson 
Cook model is used. 
 
The Johnson-Cook plasticity model [4]: 
• Is a particular type of Mises plasticity model with analytical forms of the hardening law 

and rate dependence, 
• Is suitable for high-strain-rate deformation of many materials, including most metals, 

and 
• Is typically used in adiabatic transient dynamic simulations. 
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When a material is loaded beyond its elastic limit, plastic deformation, an irreversible 
process, ensues. A yield criterion is required to assess whether or not yielding or plastic 
deformation is imminent or has occurred. One of the most widely used yield criteria is the 
von Mises yield condition, which is applied in ABAQUS. Its yield function is dependent 
upon the strain history for a work hardening material. 
 
The yield stress is expressed as 
 

( ) ( )321
44 344 21
&

&

43421
etemperatur

m

dynamic

pl

static

n
pl CBA θ

ε
ε

εσ ˆ1ln1
0

−⋅

















⋅+⋅⋅+=   (3.8) 

 
This model is uncoupled, i.e. it deals with ε , ε&  and θ̂  independent of each other. A, B, n, 
C and m are constants that are determined from experiments. The temperature parameter is 
further explained below. 
 

0ˆ =θ   for transitionθθ <  
 

transitionmelt

transition

θθ
θθ

θ
−

−
=ˆ  for melttransition θθθ ≤≤  

 
1ˆ =θ   for meltθθ >  

 
θ  is the current temperature of the specimen. The temperature parameter ( )mθ̂1−  is in this 
investigation equal to one, thus the model is simulated in normal temperature, and has 
thereby no effect in the material model. To simulate this, the transition temperature is set 
high which makes the temperature to always be lesser than the transition temperature. The 
yield stress can then be written: 
 

( ) 

















⋅+⋅⋅+=

0

ln1
ε
ε

εσ
&

&
pln

pl CBA    (3.9) 

 
=σ Yield stress (Pa)  =C Strain rate-hardening coefficient 

 
=A Initial yield stress at 0ε&  (Pa) =plε& Time derivative of effective plastic strain 

 
=B Strain hardening coefficient (Pa) =0ε& Reference strain rate sensitivity constant 

 
=plε Effective plastic strain 

 
=n Strain hardening exponent 

 
The stresses and strains refer to von Mises effective values. 
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4. FE model - input data 
To create a model of the peel specimen ABAQUS/CAE was used [3]. This chapter 
describes the different steps in the creating process. The model consists of one rivet with 
its surroundings. 
 

4.1 Geometry and mesh 
 
4.1.1 Geometry model 
 
The geometry of the rivet region was made in another report [8] from an image. 
Measurements were done and imported to ABAQUS/CAE. The image represents a result 
from a FE simulation done in the software tool DEFORM-2D and can be seen in figure 4.1 
[5]. The figure is only 2-dimensonal but it is rotational symmetric which contributes to the 
3-dimensional model. 
The sheets were then made to fit the peel specimen model. To simplify the model, a 
symmetry plane along the specimen was used, which splits the rivet in the middle. This 
procedure will reduce the number of elements and also decrease the computer-time (CPU-
time), when solving. 
 
 

 
Figure 4.1. Image of rivet region, which is the base-model of the geometry. [5] 
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The total length of the specimen is 90 mm, and the height is 23.15 mm. The total width of 
the model is 45 mm but due to symmetry the specimen width becomes 22.5 mm. The rivet 
has a waist-diameter of 5 mm and a head-diameter of 7 mm. The sheets are 1.15 mm thick. 
The inner bending radius is 2 mm and the centre of the rivet is placed 13.15 mm from the 
lower side of the specimen. The measurements are chosen according to other reports on 
crash simulations at SIMR [6,7,8] and according to Volvo corporate standard (VCS 
5601,029). For the final geometry model, see figure 4.2 and 4.3 for an overview. 
 

 
Figure 4.2. Geometry of model specimen. Sheet thickness is 1.15 mm. 

 
The right sheet is referred as the top sheet or the right sheet in the report. 
 

 
Figure 4.3. Overview of model. 

 
 
4.1.2 Mesh 
 
The mesh procedure is used to divide the model into small elements. The smaller these are 
the more accurate the simulation will be. The disadvantage with smaller elements is the 
time to calculate and the input file-size which both increases.  
 
Different meshes were tested to find an optimal mesh density. The mesh in figure 4.4 and 
4.5 was finally chosen, with enough elements to provide adequate precision in the 
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calculations. The mesh consists of 8642 elements to cover the whole model, with a higher 
density around the rivet region. 
 

 
Figure 4.4. Mesh of the specimen. 

 

 
Figure 4.5. Mesh in close-up of rivet region. 

 
Simulations of crash testing normally give large deformations, which can give distorted 
elements. When elements become distorted the calculation time increases due to the 
explicit procedure and in the worst case the calculation can be prevented. To minimize the 
distortion of elements there is a facility tool in ABAQUS named adaptive mesh [4]. This 
tool makes it possible to maintain a high-quality mesh throughout an analysis, even when 
large deformations occur, by allowing the mesh to move independently of the material and 
rebuilding the mesh in a defined area during the simulation. Adaptive mesh is not 
necessary in this investigation due to the relative small plastic strains. Another reason is 
that the deformation plots show no obvious distorted elements. 
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4.1.3 Choice of element 
 
Experience from earlier work [7,8] shows that the most well suited type of element for 
these analyses is the solid element type C3D8R; a three-dimensional eight-node linear 
brick element with reduced integration and hourglass control. Eight-node element means 
that each element consists of 8 nodes as in figure 4.6. This element type gives 12246 nodes 
in the whole model. 
 

 
Figure 4.6. Eight-node brick 

element. 
 
Reduced integration means that the order of integration is lower than that of full 
integration. The order of integration is here only one point in each element and this is 
placed in the centroid. This may result in spurious zero-energy modes that destroy the FE 
solution. Zero-energy modes means that in spite of the deformation of the element the 
integration point doesn’t experience any strain, i.e. no energy is registered (see figure 4.7). 
If spurious zero-energy modes are not created, reduced integration may increase the 
accuracy of the FE solution, since it tends to soften the stiffness of the model [1]. 
Hourglass control is a control of these zero-energy modes. 
 

 
Figure 4.7. Elements  showing a deformation (dashed line) but the integration point ( cross) isn’t moving. 
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4.1.4 Contact interaction 
 
All surfaces, with potential contact, have been assigned contact interactions. The surfaces 
are shown in figure 4.8 with table (4.1) belonging to it. 
 

 
Figure 4.8. Close-up of rivet region showing different contact surfaces. 

 
Table 4.1 

Number Master Slave 
1 Rivet Bottom sheet 
2 Rivet Top sheet 
3 Top sheet Bottom sheet 

 
The contact interaction is a so-called Master-Slave, which means that Master-nodes can 
penetrate a Slave-surface, but a Slave-node can’t penetrate a Master-surface. 
 
All contact surfaces have a initial clearance gap of 1 µm between each other, in order to 
simplify the calculation. The coefficient of friction (µ) was estimated to 0.2. This 
parameter will be investigated later in the report. 
 
 

4.2 Material data 
 
Two materials were used in the sheets; 
• A deep drawing quality steel (DDQ), and 
• A dual phase steel, with ultimate strength of 600 MPa (DP600). 
 
The rivet material is a martensite boron steel. 
 
These materials were used in earlier investigations of SPR and other joining methods at 
SIMR [6,7,8]. The materials were assumed to have an elasto-plastic response with the 
elastic parameters Young’s modulus (E) of 210 GPa and a Poisson’s ratio (ν) of 0.3. The 
materials are isotropic and have a mass density (ρ) of 7900 kg/m3 which is assumed to 
correspond to steel. The mass of the simulated model, figure 4.3, is then about 27 g. 
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The Johnson-Cook plasticity model of ABAQUS/Explicit [4] was used to describe the 
plastic constitutive material behaviour and is described in chapter 3.4. The Johnson-Cook 
plastic and rate dependent parameters are shown in table 4.2 below. 
To be able to use the Johnson-Cook plasticity model, some assumptions and estimations 
were done. A strain rate sensitivity (C) of 0.01 was used as a reference and in most of the 
simulations. Because of numerical reasons and to correspond with earlier work, done at 
SIMR [7,8], the material constant A will be equal to 1. This means that the initial yield 
strength is 1 MPa. 
 

Table 4.2. Johnson-Cook parameters for the consisting materials. 
Steel A (MPa) B (MPa) n C 0ε& (s-1)
DDQ 1 550 0.25 0.01 0.001 

DP600 1 1000 0.15 0.01 0.001 
Rivet 1 2000 0.05 0.01 0.001 

 
Figure 4.9 illustrates the true stress-true plastic strain curves for the rivet, DDQ and DP600 
steel. Figure 4.10 shows a close-up on the DDQ and DP600 steels. Both figures represent 
the static part of the Johnson Cook model. Note that especially the failure strain of the rivet 
material is smaller than that appears in the figure. Both figures have just an illustrating 
purpose, to show the difference in strength between the steels. 
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Figure 4.9. Stress-plastic strain diagram for the materials. 
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Figure 4.10. Stress-plastic strain diagram for the sheet materials. 

 
The chosen material parameters result in Rp0.2 – values of 117, and 395 MPa for the DDQ 
and DP600 steel respectively. 
 
 

4.3 Boundary conditions and loading 
 
4.3.1 Boundary conditions 
 
In figure 4.11 the boundaries are shown. The left-hand border surface is constrained in all 
directions. Along the symmetry plane all nodes are constrained in the Z-direction and the 
right-hand border surface is constrained in the X- and Z-direction. A table (4.3) is also 
presented to simplify the understanding. Constrained means that the displacement is 
prevented in a certain direction. 
 

 
Figure 4.11. Explanation of the boundaries. 
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Table 4.3. Boundaries with zero-valued BC’s. 

 X Y Z 
Left-hand border ✔ ✔ ✔ 
Symmetry plane   ✔ 
Right-hand border ✔  ✔ 

 
 
4.3.2 Loading 
 
A constant velocity is applied in the Y-direction at the right-hand border surface, i.e. a pull 
load. See figure 4.12 below. 
 

 
Figure 4.12. Velocity is applied at the right-hand border surface. 

 
The velocity was applied in different ways by an amplitude code in ABAQUS [4]. The 
amplitude curves allow arbitrary time variation of load. Three different types of 
approaches (figure 4.12) were tested: 
 
• Direct load, applied instantaneously at the beginning of the step, which is used in most 

of the simulations, 
• Tabular step, which has a constant slope to the final velocity and 
• Smooth step, which applies the load smoothly by a non-linear interpolation. 
 

 
Figure 4.12. Direct load, tabular-step load and smooth-step load. The y-axis defines relative magnitude. 

 
Simulations were done with 1, 10, 25 and 100 m/s (3.6, 36, 90 and 360 km/h), which are 
the amplitude velocities. There are no gravity forces involved in any of the simulations. 
A simulation with opposite load condition, i.e. pulling at the left-hand border, was done 
with similar results as for the right-hand load condition. 
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5. Results from FE simulation 
In this chapter the influence of different parameters are evaluated and discussed. In table 
5.1 and 5.2 a summary of the results from the simulations are shown. Due to oscillation of 
the curves it is not easy, in some cases, to see exactly were failure occurs. Failure is 
defined as the instant of complete separation of the parts in the model. 
The loads reported were obtained by summation of the reaction forces at the right-hand 
border and combining these with the corresponding displacement. The results are 
multiplied by two to get the result for the whole model. This gives the load-displacement 
curves, from which the failure displacement, peak load and maximum load after oscillation 
are extracted. 
To get the energy curves the load-displacement curves are integrated. The energy is then 
measured at failure displacement. Another option would be to let the program report the 
external work as a history output, which was done in some cases. 
 

Table 5.1. Result information, with parameters according to chapter 4. 
Velocity 

(m/s) 
Material Energy 

(Nm) 
Failure displacement 

(m) 
Peak load 

(N) 
Max. load after 
oscillations (N) 

DDQ 13.5 0.016 2130 1166 1 DP600 29.3 0.0155 2377 2700 
DDQ 18.0 0.018 9011 1198 10 DP600 34.2 0.0165 19354 2697 
DDQ 32.4 0.020 14721 1635 25 DP600 49.7 0.018 30007 3620 
DDQ 279.9 0.027 26502 * 100 DP600 297.4 0.023 47331 * 

* = Difficult to measure. 
 

Table 5.2. Result information, the alteration is represented in the column “Parameter changed”. 
Velocity 

(m/s) 
Material Parameter 

changed 
Energy 
(Nm) 

Failure displ. 
(m) 

Peak load 
(N) 

Max. load after 
oscillations (N) 

µ = 0.0 13.7 0.0155 9011 1052 
µ = 0.4 21.1 0.020 9011 1322 

CDDQ= 0.05 23.4 0.018 11431 1606 
Brivet=1GPa 18.4 0.019 9011 1197 
Reverse b.c. 17.6 0.018 9008 1208 
Tabular, λ 17.3 0.018 7144 1201 
Tabular, 3λ 17.4 0.018 3113 1218 
Smooth, λ 17.7 0.018 8506 1215 
Smooth, 3λ 17.3 0.018 4108 1211 
Length x 2 19.5 0.018 9310 1192 
Sym. x 2 17.8 0.0175 9801 1218 

Shear failure 16.9 0.0195 9008 1195 

10 DDQ 

Double prec. 18.8 0.020 9008 1195 
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5.1 Reference case 
 
The reference case is chosen with respect to earlier work of finite element simulation of 
crash testing [6,7,8]. The reference case in this report is a self-piercing rivet peel specimen 
with a deep drawing quality sheet steel (DDQ). The velocity is 10 m/s and the coefficient 
of friction is 0.2. For other material data see chapter 4.2. No adaptive meshing and no shear 
failure criterion have been used. 
 
5.1.1 Load 
 
See figure 5.1 for load result. As the velocity is applied a large peak occurs due to the 
response of the specimen. This first and largest peak is the “Peak load” and approximately 
around 9 kN. The following peaks are reduced, due to damping and the oscillation stops. 
These oscillations are due to structural dynamic effects. The maximum load after 
oscillation is slightly above 1 kN. From the start to the top at 11 mm displacement, a 
separation process of the initially vertical legs is performed. After this and to the load drop 
at 18 mm, the right sheet is pulled over the rivet head as been shown in figure 5.2. A 
noticeable load drop shows the failure of the joint at approximately 18 mm. 
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Figure 5.1. Load-displacement curve for the reference case. 

 
 
The wavelength (λ), in the oscillations, is from this figure calculated to about 370 µm. This 
value is then transformed into time with the velocity of 10 m/s. The result is then 37 µs, 
which is used later in the report in load application, chapter 5.7. 
 
Figure 5.2 represents a number of plots from ABAQUS, showing the von Mises stress in 
Pascal [Pa] and the effective plastic strain [ε] (PEEQ), at different displacements. The joint 
is disintegrated by the top-sheet peeling itself over the rivet. For the von Mises cases the 
blank part is removed to get a better view of the rivet. The blank part takes practically no 
stress. In the PEEQ cases the rivet and blank are removed for a better view of the sheets, 
which are the mostly affected parts. 
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15 mm 15 mm 

18 mm 18 mm 
Figure 5.2. ABAQUS pictures. Mises equivalent stress [Pa] and equivalent plastic strain [ε] (PEEQ) at 3, 6, 

9, 12, 15 and 18 mm of displacement. Some parts are removed for a better view. 
 
 
5.1.2 Energy 
 
The energy (total) in the model, which also can be named external work, is composed of 
different energies. The most interesting energies are shown below; 
 
• ALLAE: “Artificial” strain energy associated with constraints used to remove singular 

modes (such as hourglass control), 
• ALLFD: Total energy dissipated through frictional effects, 
• ALLKE: Kinetic energy, 
• ALLPD: Energy dissipated by rate-independent and rate-dependent plastic deformation 

and 
• Other energies. 
 
The energy magnitudes are shown in figure 5.3-5.6. The sum of these energies is 
represented in figure 5.7. 
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Figure 5.3. ALLAE, artificial energy. Figure 5.4. ALLFD, friction energy. 

 
The artificial energy (unphysical) is about 10 % of the plastic energy, which is perhaps 
slightly more than recommended. It could however perhaps be lesser with a different mesh 
or if the hourglass stiffness is reduced. The frictional energy is small in the beginning and 
starts to rise quickly after about half of the failure displacement. When a plateau is reached 
failure has occurred. 
 

Kinetic (ALLKE)

0

0,5

1

1,5

2

2,5

0 0,005 0,01 0,015 0,02 0,025

Displacement (m)

En
er

gy
 (N

m
)

Plastic deformation (ALLPD)

0
2
4
6
8

10
12
14
16

0 0,005 0,01 0,015 0,02 0,025

Displacement (m)

En
er

gy
 (N

m
)

 
Figure 5.5. ALLKE, kinetic energy. Figure 5.6. ALLPD, plastic deformation energy. 

 
The kinetic energy curve shows a typical dynamic response result with the oscillating 
variations. After the failure there is still quite large kinetic energy variations due to the 
failure of the joint starting a secondary, transient, chock wave. For this case there are no 
other important energies. 
The total energy is shown in figure 5.7 below. 
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Figure 5.7. Energy-displacement curves for the reference case. Total energy as external work and integrated. 
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The external work is 1-2 % larger than the integrated energy due to rounding error and 
accuracy. The integrated value should be the most accurate. 
As can be seen, the oscillations in figure 5.7 are due to the kinetic behaviour. The total 
energy mostly consists of the plastic deformation energy. When a plateau is reached, 
failure in the joint has occurred, i.e. no more energy is added to the model. When the 
energy curve drops, in the beginning, it indicates that the load has changed direction during 
the deformation lapse. 
 
 

5.2 Influence of velocity 
 
In this chapter different velocities are simulated. The applied velocity load is not equal to 
the velocity of the car. In fact in most cases the car velocity is much higher than the 
velocity that affects the joint, due to different kind of damping in the car structure. 
Figure 5.8 illustrates how the loading rate velocity influences the load curve for the four 
simulated velocities with the DDQ steel. The load is measured at the same border were the 
velocities are, i.e. the right hand border. 
The velocity has a significant influence on the structural dynamic response. One cause is 
that the material behaves differently as the strain rate changes with velocity. 
The oscillations are dependent of the acceleration of the applied velocity load. As it is 
applied instantaneously it creates a very high acceleration, which starts a longitudinal 
transient chock wave. This wave propagates back and forth through the specimen. The 
damping in the model decreases the amplitude until the oscillating disappear. 
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Figure 5.8. Load-displacement curves for different velocities with DDQ steel. 

 
The load curve for the 100 m/s case shows a different behaviour compared to the other 
cases. A significant difference is that the load curve has a very long plateau and only a few 
peaks when oscillating. The failure process is extended and smooth, i.e. it is hard to see 
where failure occurs in the curve. Figure 5.9 shows an enlargement of the first 5 mm. 
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Figure 5.9. Load-displacement curves for different velocities with DDQ steel, close-up. 

 
To be able to make a frequency analysis, the load curve was plotted against time. Figure 
5.10 displays the result and shows that 1, 10 and 25 m/s has nearly the same frequencies. 
The frequency is about 27 kHz for the DDQ material. The 100 m/s plot has too few peaks 
to get a good estimation of the frequency. 
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Figure 5.10. Load-time curves for different velocities with DDQ steel. 

 
After the first peak, in the 10, 25 and 100 m/s cases, a kind of plateau is created. This 
plateau is explained later in this chapter. 
 
Figure 5.11 shows the energy-displacement curve with all four velocities and DDQ 
material. 
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Figure 5.11. Energy-displacement curves for different velocities with DDQ steel. 

 
The 100 m/s curve shows a strange behaviour with increase in energy after failure, which 
appears at 27 mm. 
As explained earlier the energy consists of different kind of energies. A magnitude table is 
presented in table 5.3. 
 

Table 5.3. Magnitudes of energy parts, measured at failure displacement. DDQ material. 
Velocity (m/s) ALLAE (%) ALLFD (%) ALLKE (%) ALLPD (%) OTHER (%) 

1 9.8 6.8 0.2 82.5 0.7 
10 8.5 6.2 9.6 75.7 0 
25 5.2 4.0 30.5 60.3 0 

100 1.6 1.1 53.1 44.2 0 
 
The column “other” can also involve accuracy and rounding error. 
 
Figure 5.12 shows deformed specimens at different velocities but with same 
displacements, except for the 1 m/s case that almost has the same displacement. 
 

 
Figure 5.12a. 1 m/s with a displacement of 7.425 mm, DDQ. 
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Figure 5.12b. 10 m/s with a displacement of 7.5 mm, DDQ. 

 
Figure 5.12c. 25 m/s with a displacement of 7.5 mm, DDQ. 

 
Figure 5.12d. 100 m/s with a displacement of 7.5 mm, DDQ. 

 
It can be seen that the sheets take a quite symmetrical shape during deformation at 1 and 
10 m/s. For the 100 m/s it is clear that the right hand sheet becomes deformed before the 
left-hand sheet. The 25 m/s case is somewhere in between the other cases. 
In the 100 m/s case, necking has occurred close to the right-hand border. This is due to the 
very high deformation speed and the dilatational wave that doesn’t reach the rivet region to 
transfer the plastic deformation. As the wave reaches the rivet region, the necking stops 
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and the deformation is concentrated to the rivet region. This is the explanation of the early 
plateau, after the first peak that is found in the load-displacement plots. 
The dilatational wave is the same for all models. It is related to density, Young’s modulus 
and Poisson ratio, which are the same in all simulations/models. The dilatational wave 
speed is calculated in another report [8], done at SIMR, to 6995 m/s. 
 
Maximum stress (Von Mises) for all four velocities is shown in table 5.4, for both 
materials and with appertaining displacements. Total equivalent plastic strain (PEEQ) is 
also presented. The maximum stress appears in the rivet head close to the sheet and the 
highest value of PEEQ in the top sheet at the curvature that surrounds the rivet close to the 
rivet head, see figure 5.2. 
 

Table 5.4. Maximum Von Mises stress and total equivalent plastic strain. 
Material Parameter 1 m/s 10 m/s 25 m/s 100 m/s 

1865 1934 1936 2073 Max. stress (MPa) 
Displacement (mm) 15.975 16.125 16.875 26.250 DDQ 
Total PEEQ 0.58 0.61 0.60 0.83 

2164 2213 2230 2182 Max. stress (MPa) 
Displacement (mm) 14.625 15.750 16.875 18.750 DP600 
Total PEEQ 0.45 0.46 0.45 0.63 

 
The response for the DP600 steel is principally the same as for the DDQ steel. The curves 
for the DP600 steel are shown in figure 5.13 and an enlargement of the first 5 mm is shown 
in figure 5.14. The differences with DDQ are that the failure displacement is smaller and 
the loads are higher for the DP600 steel. This is the case for all velocities and more 
discussed later in the report. 
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Figure 5.13. Load-displacement curves, different velocities and DP600 steel. 
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Figure 5.14. Load-displacement curves for different velocities with DP600 steel, close-up. 

 
A frequency analysis is also made for the DP600 steel. A load-time curve is plotted below 
in figure 5.15. 
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Figure 5.15. Load-time curves for different velocities with DP600 steel. 

 
The frequencies in the DP600 case are calculated to 25-29 kHz. The 100 m/s case differs a 
little bit from the other cases. 
 
The total energies for the different velocities are shown in figure 5.16. 
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Figure 5.16. Energy-displacement curves, different velocities and DP600 steel. 

 
A magnitude table (table 5.5) of the consisting energies is shown below. 
 

Table 5.5. Magnitudes of energy parts, measured at failure displacement. DP600. 
Velocity (m/s) ALLAE (%) ALLFD (%) ALLKE (%) ALLPD (%) OTHER (%) 

1 5.4 10.2 0.2 80.8 3.4 
10 5.9 7.9 5.3 75.3 5.6 
25 4.8 5.6 22.3 67.3 0 

100 1.8 1.5 50.4 46.3 0 
 
 

5.3 Influence of friction 
 
To determine the influence of friction, the coefficient of friction (µ) was changed. Two 
other coefficients were tested besides the reference case (0.2); 0 and 0.4. The results can be 
seen in figure 5.17 and 5.18. 
The load-displacement curve in figure 5.17 shows that the friction changes the failure 
displacement, where a higher coefficient gives larger failure displacement. This is due to 
the fact that more friction can hold the specimen together more efficient. The maximum 
load after oscillation increases slightly with higher coefficient. 
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Figure 5.17. Load-displacement curves with different coefficient of friction. The velocity is 10 m/s and DDQ 

steel is used. 
 
The PEEQ values increase with increased friction. For µ = 0, 0.2 and 0.4 the PEEQ is 0.60, 
0.61 and 0.63 respectively. 
The energy-displacement curve in figure 5.18 shows that the energy increases with higher 
coefficient of friction, because it’s harder for the deformation process to proceed with 
higher friction. The change consists mostly of friction energy. 
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Figure 5.18. Energy-displacement curves with different coefficient of friction. 
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5.4 Influence of material 
 
In this chapter the influence of changing some material parameters is investigated. 
 
 
5.4.1 Comparison of the sheet steels DDQ and DP600 
 
Figure 5.19 shows a comparison between load curves for the two different sheet materials. 
The velocity is 10 m/s and the material data is presented in chapter 4.2. 
DP600 shows a higher load level and a smaller failure displacement. The load level is more 
than twice as large for the DP600 material. This is due to the higher yield strength and 
strain hardening coefficient (B). 
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Figure 5.19. Load-displacement curves for DDQ and DP600 sheet steels at 10 m/s. 

 
An energy plot is shown in Figure 5.20. The energy for the DP600 is almost twice as large 
as for the DDQ material. Most of the extra energy comes from the plastic deformation 
energy. 
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Figure 5.20. Energy-displacement curves for DDQ and DP600 sheet steels at 10 m/s. 
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Figure 5.21 shows the von Mises stress at equal displacements for the two different 
materials. The DP600 has higher stress in the model. 
 

 

 
Figure 5.21. Von Mises stress [Pa] at 6 mm of displacement at 10 m/s. DDQ (top) and DP600 (bottom). 

 
Figure 5.22 shows the same as figure 5.21 with the exception of the displacement, which is 
12 mm instead of 6 mm. The result is the same. 



40 

 

 
Figure 5.22. Von Mises stress [Pa] at 12 mm of displacement at 10 m/s. DDQ (top) and DP600 (bottom). 

 
The maximum stress is presented in figure 5.23 for the DDQ steel and in figure 5.24 for 
the DP600. The maximum value, for DDQ steel, is found on the rivet on the other side of 
its head by the orange colour. For the DP600 steel, the maximum value is defined by the 
red colour on the rivet as shown. 
 

 
Figure 5.23. Von Mises stress [Pa] at 16.125 mm 

displ.. Max value: 1.934 GPa. DDQ at 10 m/s. 
Figure 5.24. Von Mises stress [Pa] at 15.750 mm 
displ.. Max value: 2.213 GPa. DP600 at 10 m/s. 
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5.4.2 Influence of strain rate sensitivity 
 
The strain rate sensitivity is a parameter that influences the material when it’s exposed to 
dynamic loads. Figure 5.25 illustrates how the load curve is influenced by the strain rate 
sensitivity of the reference steel DDQ at 10 m/s. 
The load curve for the high strain rate sensitivity (0.05) shows a slightly higher load level, 
and a load drop that occurs a half-mm before the reference case. 
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Figure 5.25. Load-displacement curves for different strain rate sensitivities. 

 
The equivalent plastic strain (PEEQ) is slightly lower for the 0.05 case. 
 
Due to higher load levels the energy of the 0.05 case becomes higher. The energy 
represented in figure 5.26 shows that a higher C-value gives higher energy. 
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Figure 5.26. Energy-displacement curves for different strain rate sensitivities. 
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5.4.3 Influence of rivet strength 
 
In this test the rivet strain hardening coefficient (B) was set to half of its original value, i.e. 
the parameter was set to 1000 MPa. 
There was practically no different behaviour in the result curves. In the load curve the 
failure displacement was barely 1 mm longer for the 1000 MPa case, which makes the 
energy top-level value a little bit higher compared to the reference case. There is however a 
big change in the rivet. When the strain hardening coefficient is decreased to half, the von 
Mises stress decreases to approximately half. This has a significant effect on the PEEQ 
value, which increases from 0.05 to 0.43 (se figure 5.27) 
 

Figure 5.27. Rivet with B=1000 MPa. Maximum PEEQ. 
 
 

5.5 Influence of cracking 
 
In order to consider cracking, a shear failure criterion can be used in combination with the 
Johnson-Cook plasticity model. In ABAQUS/Explicit [4] it is possible to model/simulate a 
fracture process by giving an element a zero value of stiffness when a certain criterion has 
been reached at the corresponding integration point. The criterion is based on the value of 
the equivalent plastic strain (PEEQ). The maximum value of PEEQ in the reference case is 
0.61. A value of εe=0.5 was tested but with very similar result as the reference case. A 
smaller value was then tested. Figure 5.28 shows a load curve for the reference case when 
element deletion was activated at the effective plastic strain of εe=0.3. This analysis was 
only successful when performed in double precision and is therefore also compared with a 
double precision reference case. The influence of solver precision is evaluated in chapter 
5.9. An energy-displacement curve is shown in figure 5.29. 
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Figure 5.28. Load-displacement curve. Figure 5.29. Energy-displacement curve. 
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Figure 5.28 shows that something happens at around 12.5 mm of displacement. The load 
drops due to a crack that appears in the top sheet. This crack is shown as the red, severely 
disorted elements in figure 5.30. 
 

Figure 5.30. Shear failure criterion of 0.3. PEEQ. 
 
 

5.6 Influence of specimen length 
 
To investigate the influence of specimen length, the model was made twice as long. This 
means that the each sheet now is 90 mm instead of 45 mm. 
As can be seen in figure 5.31 the oscillations have a longer duration as compared to the 
reference case, which is expected. The dilatational wave has a longer way to travel. 
The maximum load and the failure displacement are about the same. Figure 5.32 shows 
that the energy levels are slightly higher for the long case. 
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Figure 5.31. Load-displacement curve Figure 5.32. Energy-displacement curve 
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5.7 Influence of double symmetry 
 
Double symmetry means that the same boundary condition that is put on the symmetry 
plane in figure 4.11 also is put on the opposite side. This corresponds to a multiple joint 
specimen, with rivets placed at 45 mm distance. Figure 5.33 and 5.34 show the load 
response and energy plotted against the displacement. 
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Figure 5.33. Load-displacement curve. Figure 5.34. Energy-displacement curve. 

 
As shown in figure 5.33 and 5.34 there is not much difference between the curves. The 
“double symmetry” has a shorter failure displacement, which contributes to the decreased 
energy. Maximum stress occurs at 16.5 mm with 1947 MPa and the PEEQ is the same as 
the reference case. 
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5.8 Influence of load application 
 
To investigate the response of a different load application, two other applications were 
tested in addition to the direct approach. These two are the tabular and the smooth 
approach, which are investigated below. These kinds of load applications could be more 
realistic, than the direct approach, in a car crash. 
 
5.8.1 Tabular 
 
This approach is ramped from zero to the maximum velocity with a straight line, see figure 
4.12. The time between zero and max velocity was set to be equal to the time for one and 
three wavelength, λ and 3λ. The time of one wavelength is evaluated in chapter 5.1.1 and 
has a value of 37 µs. 
The results are shown in figure 5.35-5.38. The main change is that the amplitude of the 
oscillations decreases in the load-displacement curves, which means that the peak load 
becomes lesser. Other results are similar to the reference case, which can be seen in figures 
5.43 and 5.44. 
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Figure 5.35. Tabular load application. Time step λ. Figure 5.36. Tabular load application. Time step λ. 
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Figure 5.37. Tabular load application. Time step 3λ. Figure 5.38. Tabular load application. Time step 3λ. 
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5.8.2 Smooth 
 
Here the load is ramped with a function, a non-linear interpolation, with the goal to smooth 
the load application. The result is about the same as for the tabular case. The results are 
presented in figure 5.39-5.42. 
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Figure 5.39. Smooth load application. Time step λ. 

Load-displacement curve. 
Figure 5.40. Smooth load application. Time step λ. 

Energy-displacement curve. 
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Figure 5.41. Smooth load application. Time step 3λ. Figure 5.42. Smooth load application. Time step 3λ. 

 
With the smooth approach, and a time step of 3λ, the oscillations almost disappear. 
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Figure 5.43. Load-displacement curve, ref. case. Figure 5.44. Energy-displacement curve, ref. case. 
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5.9 Influence of solver precision 
 
In ABAQUS it is possible to chose between single or double precision in the solver. The 
single precision is faster but sometimes less accurate. Lesser accuracy can be of 
importance for simulations involving a large number of increments. The status file (.sta) 
makes a warning like: “The analysis may need a large number of increments (more than 
300000), and it may be affected by round-off errors. It is recommended to run the job in 
double precision”. In this report there is one parameter that gives more than 300000 
increments and a warning, when simulating at 1 m/s. The figures (5.45 and 5.46) show the 
different results with single or double precision. 
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Figure 5.45. Single and double precision at 10 m/s with DDQ steel. Load and energy. 

 
The result is exactly the same until the point of failure displacement. The double precision 
gives 2 mm longer displacement, which contributes to the increased energy at the end. The 
double precision gives the model a smoother failure process. 
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Figure 5.46. Single and double precision at 1 m/s with DDQ steel. Load and energy. 

 
The 1 m/s case shows the about same result as for the 10 m/s case, except that here it is 1-
1.5 mm longer failure displacement and that the load drop is more direct. 
 
With the DP600 at 1 m/s, single and double precision gave practically the same result all 
the way. 
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6. Comparison with other joints 
This chapter shows a comparison with spot- and laser-welded joints and some static tests. 
The main difference between the rivet joint and the spot- and laser welded joints is the 
failure process. In the rivet case the parts separate due to some plastic deformation. For the 
welded cases it is due to a large plastic deformation which contributes to necking and 
cracks. 
 

6.1 Comparison with spot welded joints 
 
Below are reported results by N. Saleh [7], who performed similar simulations on a spot 
welded specimen. Table 6.1 shows some of the results and figure 6.1 shows the geometry 
and mesh. 
 

Table 6.1. Results on the spot-welded case. 
Velocity (m/s) Material Energy (Nm) Failure displ. (mm) Peak load (N) 

DDQ 29.2 23.5 2400 1 DP600 52 23.0 4200 
DDQ 33 25.1 6940 10 DP600 57 24.2 15000 
DDQ 45 27.2 12000 25 DP600 67 25.1 25800 
DDQ 258 30.9 19340 100 DP600 270 25.0 40000 
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Figure 6.1. Geometry of the spot-welded case. Sheet thickness is 1 mm. 
 
As shown in table 6.1 the energy, except for the 100 m/s case, and failure displacement is 
larger for the spot welded case, see table 5.1 for comparison. The peak load however is 
only larger for the 1 m/s case. The higher energy values on 1, 10 and 25 m/s may be due to 
higher plastic energy. For load comparison, with the DDQ sheet-steel, see figure 6.2 and 
6.3. 
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Figure 6.2. Load-displacement curves, spot-weld. This plot shows half of the load-amplitude. Multiply with 

two to compare with figure 6.3. 
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Figure 6.3. Load-displacement curves, SPR. 

 
 
The behaviour of the curves is the same as for the SPR, except for the oscillating 
amplitudes, which are higher for the SPR case. 
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Figure 6.4. Comparison with maximum energy values. 

 
In figure 6.4 an energy comparison is made. It shows that the spot-welded joint demands 
more energy. This is due to the fact that the spot-welded case has a quite large plastic 
deformation. The PEEQ shows a value above 1.5 in the 10 m/s case compared to 0.61 in 
the SPR case. 
 
 
 
Figures 6.5 and 6.6 are taken from reference [11] and show static tests of spot-welds 
(Punktschweissen) and self-pierced rivets (Stanznieten). The results in figure 6.5 are 
compared with the 1 m/s simulation, from the present report. Figure 6.6 can not be 
compared with the results of the present report due to lack of the geometry dimensions of 
the German model. It shows however some differences in spot-welded and SPR joints. 
 
Figure 6.5 shows curves related to maximum loads and Rp0,2. If considering the results 
from the 1 m/s cases, they agree with the static test. 
 

Comparing data: 
1 m/s case 
s = 1.15 mm 
 
DDQ 
Rp0,2 = 117 MPa 
Fm = 1.2 kN 
 
DP600 
Rp0,2 = 395 MPa 
Fm = 2.7 kN 

Figure 6.5. Static test of joints. s = sheet thickness.  
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A comparison shows that the 1 m/s case is 14 % lower with DDQ and 4 % higher with 
DP600. See table 6.2. 
 

Table 6.2. Comparing results from figure 6.5. 
Material Rp0,2 (MPa) Maximalkraft (kN) Maximum load, present report (kN) 
DDQ 117 1.4 1.2 
DP600 395 2.6 2.7 

 
 
Figure 6.6 shows load-displacement curves for two different materials and joining 
methods. The oscillations do not occur, due to the non-dynamic process. This figure shows 
the differences between SPR- and spot-welded joints. It can not be compared to the results 
of this report due to different geometry. 
 

 
Figure 6.6. Load-displacement curves for spot welds and SPR. Thickness = 1.0 mm.
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6.2 Comparison with laser welded joints 
 
A. Melander has done a simulation on laser welded specimen [6]. Some of the results are 
represented below in figures 6.8 and 6.9. The geometry is the same as for the spot welded 
case and the laser weld runs through the entire width of the specimen. Maximum load, for 
a 10 m/s case with DDQ material, is around 18 kN. To compare with the SPR case, two 
figures (6.10 and 6.11) are presented. 
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Figure 6.8. Load-displacement curves with all four 
velocities. Laser weld [6]. DDQ. 

Figure 6.9. Load-displacement curves. Comparison 
of DDQ and DP600 material. Laser weld [6]. 

 
As the figures show, the failure displacement is quite long. The strong joint makes the 
initially vertical legs, below the weld, to straighten out totally. Failure occurs then 
dependent on the velocity as necking. 
The main difference between the laser-weld and SPR cases is the loads after oscillations. 
In the laser case the load increases slowly due to separation of the legs. The load starts to 
rise rapidly when the specimen is straightened out and the sheets are elongated. The load 
drops as necking occurs. The big difference is therefore the plastic deformation, which is 
very high for the laser case. 
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Figure 6.10. Load-displacement curves, SPR. DDQ. Figure 6.11. Load-displacement curves, SPR. 
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7. Conclusions 
It was found that: 
 
1. When making a finite element model, a number of parameters can be changed or 

introduced. This makes it time-consuming and difficult to get the most suitable model. 
 
2. All the cases studied shows a model deformation process with the top (right-hand) 

sheet peeling itself over the rivet head and cause by that a failure in the model. 
 
3. Higher velocity results in higher load levels, higher energy and therefore also larger 

failure displacement. 
 
4. The DDQ steel showed lower load levels and larger failure displacement than the 

DP600 steel at all four velocity loads. 
 
5. The deformation process was more or less similar at 1, 10 and 25 m/s. For these cases 

the rivet and the bottom sheet around it is quite still. For the 100 m/s case the rivet is a 
little bit drawn out from the bottom sheet and there is necking in the sheet nearby the 
right-hand border. 

 
6. Direct application of the velocity load gives very large peak loads, which isn’t a 

realistic behaviour. A ramped or smooth approach decreases these peak levels. 
 
7. The load-displacement curves are quite similar for the spot-welded and SPR cases, 

except for the oscillating amplitudes. 
 
8. Simulations at 1 m/s can be compared with static tests. 
 
 
 
 

8. Further work 
Further work on this model could be the investigation of: 
 
• The influence of rivet size and geometry. 
• The influence of thickness of sheets. 
• The influence of other type of materials. 
• The influence of cracks. 
• The influence of internal stress from the rivet process. 
 
A comparison with real tests, using the new equipment at SIMR that can perform tests at 
high displacement velocities. 
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