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Abstract

A geometry model for three dimensional fibre networks is proposed. The geometry
model is intended to be a part of a system, where data from a computer tomography
of a fibre material can be fitted to the geometry model and from there, be evaluated
according to key parameters such as fibre length, fibre orientation angles and radii
of curvature. The model is also intended to give the geometry foundation for a
FE-model. The model uses several linked circle arcs to describe a fibre, which
accommodates for modelling varying degrees of out of plane curl and kinks. A
program has been developed that, from distributions of the aforementioned key
parameters, generates a periodic network according to the model which can be
visualised by the output of two different file formats, vrml and a specialised format
for the fibre network viewing program, FibreScope. Comparisons have been made
between microscope photographs of several different fibre materials, including paper
and cellulose fibre fluff, and visualisations of generated networks showing versatility
in the model to describe a wide variety of fibre material types.

Keywords: fibre network, cellulose fibres, 3D model, visualisation, micro structure,
geometry
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1 Introduction

1.1 Background

Never before has the importance of developing the right material for every use
been as great as now. Fibre materials are found everywhere around us. From the
fabrics we wear, paper we write on or use as packages to the insulation in our walls.
Traditionally, only organic fibres such as wood or wool have been used, but technical
progress has allowed us to create fibres out of materials such as plastic, carbon or
glass, which has widened the uses for fibre materials.

As with any other material, we want to know what properties we can expect from
it before we put it to use. Aspects that are of interest are for example chemical,
thermodynamic, mechanical and geometrical properties, the last being of interest in
this work. One characteristic of fibre materials is the complexity of its microstruc-
ture. Therefore there is a need for geometry models that can as closely as possible
describe the material in order to predict the behaviour of a fibre material in various
situations.

Conditions for developing reliable micro-mechanical material models have lately
improved significantly. Technical advances in the field of computer tomography
(CT), i.e. three dimensional x-ray scans, make it possible to scan a fibre network
in a large enough resolution to be able to make out individual fibres and their
orientation. This opens for a possibility to transfer this data to a geometry model.
Another important factor in the realization of a material model is that computer
capacity has increased drastically allowing us to handle the vast amounts of data
that will be needed.

1.2 Objectives

The objective of this thesis is to develop a general approach to the modelling of the
geometry of fibre networks that can describe most naturally found 3-dimensional
geometric constellations. A schematic diagram of the problem is presented in fig-
ure 1.1. The shadowed boxes symbolize the parts that are covered in this study.
Further work is needed on the rest of the parts to complete the system.

1. CT-scan

This work is carried out bearing in mind that it will be possible to receive data
from a CT-scan. From the CT-scan, a 3-dimensional matrix of the density
of the tested material is acquired. From this information the positions of
the fibres can be reconstructed. This technique is under development. The
reconstructed geometry can then be fitted into the geometry model. This is
further discussed in chapter 3.2.

2. Network Representation

A fibre material can be characterized by the distributions of a few key param-
eters such as fibre length, curl, cross-section properties and orientation. By
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Figure 1.1: Components in a general modelling concept for fibre materials. Shadowed
boxes are treated in this work.

doing a CT-scan of a piece of material and analysing the extracted model,
all parameters of interest can be found. Knowing the distributions of these
parameters opens several interesting options.

• By statistic evaluation of a scanned network, it can be reproduced as
randomly generated networks with the same average properties as the
real network.

• Different scanned networks can be compared with each other on a pa-
rameter level.

• Purely hypothetical networks can be generated.

3. Geometry Model

The backbone of the system, a 3-dimensional geometry model which can either
be randomly generated from the distributions in (2) or acquired from a CT-
scan (1). It can be processed into an FE-model (5) and/or visualized (4). The
basis of the model is that each individual fibre is represented as a series of linked
circle arcs. Modelling a fibre in this manner gives us the possibility to describe
out of plane curl and kinks. If it is a generated network, the individual fibres
are placed into a unit-cube of a periodic network. An in-depth description on
the fibre and network models are given in chapters 4 and 5, respectively.

4. Visualization

When dealing with a complex structure such as a fibre network it is of great
help if it can be visualized in three dimensions, giving more understanding
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of the structure. Visualization of deformation or contact points can be done
after an FE-analysis. Also, during the development of the model visualizing
is needed as a tool in the validating process. In this work, the programs
FibreScope [9, 10] and 3ds maxTM [1] are used for visualization.

5. Finite element model

Differential equations are used to model many physical phenomena. Usually,
the problems are far too complicated to solve using analytical methods. The
finite element method (FEM) is an effective method for obtaining numerical
approximate solutions to general differential equations.

To make an FE-model from the geometry model (3) several steps are needed.
Firstly, parallel to the geometry information, material properties need to be
defined. Depending on what type of elements will be used the required param-
eters may vary. As an example, for a network made of beam elements we would
need Young’s modulus (E), shear modulus (G), fracture related properties and
in some cases, dependency on external influences such as temperature or hu-
midity have to be taken into account. If the size and shape of the cross-section
is known, parameters linked to this, such as area (A), moments of inertia (Ix,
Iy) and torsional stiffness (Kv) can be computed. Dealing with fibre networks,
and fibre fluff in particular, the weak points of the structure are the bonds
between fibres. In order to complete the FE-model these need to be identified
and modelled. Also, topological information on fibres connected on either side
of a periodic network cell must be retained. When this is done, unconnected
fibres must either be forced to connect or removed, or else the system will
become unsolvable.

1.3 Previous Work

Much work has been done in the modelling of fibre materials, the greater part focus-
ing on planar geometry such as paper. Hamlen [3] and Kallmes & Corte [7] developed
and analysed models for two-dimensional structures. Studies on three-dimensional
planar network models, where fibres are allowed to stretch out-of-plane to account
for the interwoven geometry of paper have been done by KCL-PAKKA [14] and
Wang & Shaler [19]. A full three-dimensional model, which is required for analysing
fibre fluff materials, and which this thesis is a further development of, has been
proposed by Heyden [5]. In this model, every fibre is represented by a single circle
arc and placed in a bounding box for a periodic network. The advantage of the arc
model is that it is relatively easy to work with mathematically at the same time as
it can describe the natural curl of fibres.

For viewing purposes, Lindemann [9, 10] has developed FibreScope, a visualiza-
tion program specialized in fibre networks. Exported files from this model will be
aimed at this program.
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2 Fibre Materials

2.1 General Remarks

What makes fibre materials special is their geometric structure. They are built up
of a complex network of arranged or randomly oriented fibres. A single fibre has
load bearing capacity almost only in tension, so the stability of a composite material
structure depends on the matrix material. In the case of low density fibre materials,
which this thesis focuses on, the contact points are decisive. A variety of different
fibre types are used to make materials of fibre network character. The demands on
the network model depend on what type of fibre is used.

2.2 Material

The extent of the demands on the network model depends strongly on what type
of material we are trying to describe. As the goal is to be able to describe all
3-dimensionally built fibre structures in a satisfactory way, we must look at the
different behaviours we will expect.

In terms of geometry, we can coarsely divide fibre materials into two groups:
natural and man made fibres, see comparison in figure 2.1.

Figure 2.1: Microscope photographs of wood (left) and rayon fibres (right)[13].

Fibres extracted from natural materials often show an erratic shape with high
curvature and many sharp turns along the length of the fibre called kinks. A cellulose
fibre has a nearly quadratic, hollow cross-section when it is in the living wood. When
dried, it collapses into a more rectangular, flat box shape. The size and mechanical
properties of the fibre depends on the species of wood it is taken from.

Man made fibres such as glass-fibre and polymeric fibres display a quite different
behaviour. They are often smooth and flowing in the length of the fibre. The
cross-section shape is often regular and constant along the fibre length.

As well as setting up demands on the modelling of the fibre, the choice of material
will have an influence on the modelling of inter-fibre bonds, a subject not covered
in this study.
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2.3 Manufacturing Process

This thesis focuses on three-dimensional low density networks. This definition in-
cludes a range of different materials, both man-made and natural fibre materials.
This means that a variety of different production and extraction methods are used,
which is the cause of the differences in geometric properties.

In the extraction of natural fibres [2], several steps are needed that change the
shape and properties of the fibres. Although different methods are used for every
fibre source, the general extraction steps include chemical treatment, mechanical
separation of unwanted material and drying, which each affect the geometry of the
fibres. Therefore, natural fibres often display traces of these treatments in the form
of high curvature and kinks.

Man-made materials are not exposed to the same harsh treatment. They are
mostly produced by melting the desired material and pressing the molten mass
through small holes in a plate after which the extruded fibres are solidified through
cooling. This process produces relatively straight fibres with little variation in cur-
vature and cross-section shape. Of course, handling after production can also affect
the geometry of the fibres.
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3 Computer Tomography

Given the goal to make an as realistic model as possible from any fibre material, we
need to know certain characteristic parameters of the network, such as density, fibre
length, curvature, orientation etc. The geometry of a fibre, i.e. length, width and
shape factor, which is a measure of the curl of a fibre, can be determined for free
fibres, i.e. fibres not yet incorporated in a network or removed from a network, by
methods like the STFI FiberMaster [17]. This method uses advanced image analysis
of a fibre suspension passing a video camera to determine the parameters of interest.
However, this method has a few limitations. It can not analyse the fibre geometry
in its original network environment, which is needed to create a correct model of the
material. Also, the parameters are determined through analysis of a two-dimensional
projection, which is fine for long, planar fibres, but results will be misleading for
fibres with high curvature in three dimensions. A solution to this could be the use of
an industrial CT-scan (Computed Tomography), also called CAT-scan (Computer
Aided Tomography), which produces a 3-dimensional image of the subject. This
could then be analysed to acquire the network geometry needed.

Figure 3.1: A Computer Aided Tomography scanner [6].
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3.1 Description

Industrial tomography is analogous to medical tomography. Gamma or X-rays are
passed through the tested object, higher doses than in medical tomography are often
used as the attenuation coefficients of observed objects usually are higher than in the
human body. Radiation detectors mounted on the opposite side from the radiation
source register the remaining radiation after passing through the object. From this
data, by mathematical reconstruction, a picture of the attenuation (proportional
to the density) can be created. All of the objects that the x-ray passes through
overlap on the image, making it hard to isolate different elements. A CT scan works
around this limitation by capturing only one very narrow slice of the object at a
time. These slices can be viewed two-dimensionally or added back together to create
a three-dimensional image of a structure.

Figure 3.2: Schematic diagram over a CT-scanner [6].

The CT scanner moves around the object on a circular gantry passing x-ray beams
and taking thousands of pictures as it rotates.

3.2 Reconstruction of Network Geometry

According to [4], the data that the CT-scanner outputs is a 3-dimensional density
map of the test piece, where the density in a point of the matrix is given as a value
between 0 and the specified density-depth.

The problem of reconstruction involves isolating the voxels, i.e. three dimen-
sional pixels, that belong to one fibre. Having done this, the isolated fibre can be
approximated by fitting of a fibre model to the extents of the real fibre.
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4 Fibre Model

Chapters 4 and 5 deal with the contents of the box ”Random Generation” in fig-
ure 1.1, that is, generating a geometry model of a fibre network from distributions
of key parameters. In the process of making a geometrical model of a low-density
fibre material we first have to consider the geometry of a single fibre.

As discussed in chapter 2.2, the geometry of a fibre varies distinctly depending
on the fibre material. We want to be able to model both the sharp kinks of fibres
originating from wood and the smooth flowing of an industrially manufactured poly-
mer fibre. These demands determine the modelling procedure. We want a model
which is as general as possible to make it useful in a wide variety of cases.

In [5] the approach chosen was to model every single fibre as a circle arc. This
approach approximates the natural curl of a fibre. However, a single fibre can in
real life have a varying curvature and also out of plane curvature. This could be
modelled by giving the fibre a higher order curvature. But a simpler approach,
which also is the method used here, is to link several arcs with different orientation
and radii together to approximate the shape of a natural fibre.

The benefits of this model is that each fibre segment is planar, even though the
complete fibre displays a complex geometry. This simplifies the algebra used for
generation and in computing points along the fibre. Also, using this method, it
becomes quite easy to vary the complexity of the fibre geometry by simply changing
the number of fibre segments used. Using several linked segments to model a fibre
also opens the possibility of modelling kinks by aligning the segments so that the
tangent is not continuous. Linking together segments this way also proves to be
effective when generating controlled, specific fibre geometries, see figure 7.7.

4.1 Fibre segment

��

��

�

�
�

�

Figure 4.1: Parameters defining a fibre segment.

The basic unit of a fibre is the fibre segment, which is defined as a single circle
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Table 4.1: Input data and their descriptions.
Parameter Description Comment

lseg length of fibre segment independent
rseg radius of curvature of fibre

segment
independent

θ orientation angle relative to previous segment
θk1 kink angle 1 relative to previous segment
θk2 kink angle 2 relative to previous segment

tec,prev unit vector pointing from
the end point to the centre

belongs to previous segment

nprev segment plane normal belongs to previous segment
de,prev ending tangent vector belongs to previous segment
pe,prev segment end point belongs to previous segment

arc. To define this we need several parameters, as seen in figure 4.1: centre point of
circle c, radius rseg, unit base vectors u and v, and the angles between the u vector
and the start and end point of the arc, α1 and α2, respectively. Note that these
parameters only apply to the geometrical model of the fibre segment. For a FE-
model a number of additional properties are needed. Also, for visualizing purposes,
parameters describing the cross-section of the fibre segment may be needed.

This choice of parameters is made because of the simplicity of the mathematics
and programming needed and the ease with which the points of the fibre segment
can be determined by use of equation 4.1.

x = c+ r · cosα · u+ r · sinα · v α2 ≤ α ≤ α1 (4.1)

The input for generating a fibre segment are quite different, however. Firstly,
it is more natural to specify a fibre segment’s length lseg and radius of curvature,
rseg than vectors and angles. As we wish to be able to join together several fibre
segments into a complete fibre we also need input data specifying the position of
the fibre segment relative to the previous segment. These data are θ, defining the
relative orientation of the fibre planes, kink angles θk1 and θk2 as well as data on the
position and orientation of the previous fibre segment, see table 4.1.

The first five input parameters in table 4.1 are for every fibre segment determined
from the given distributions mentioned in step (2) in figure 1.1. The rest of the
parameters derive from the previously generated segment. The previous ending
point is needed to ensure that the following segment is connected in that point,
while the vectors serve as a reference when using the relative angles θ, θk1 and θk2.
If the segment is the first of the fibre, no previous segment exists and values of these
are given arbitrarily. This has no effect on the end result as the final orientation and
placement of the fibre is determined at a later point. Figure 4.2 shows the definition
of the aforementioned parameters.

The orientation of a fibre segment in relation to its neighbouring segments is
described by the angle θ. This is defined as the angle between the segments own
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plane and the previous segment plane. To be able to control in which direction
a fibre is curled, θ is defined between 0 and 2π, positive direction being from the
previous plane to the current, positive rotation around the common starting/ending
vector d in the case that there is no kink. The orientation parameter has a strong
influence on the final shape of the fibre. The distribution of θ controls both the
planarity of the fibre as well as its extension. Figure 7.7 shows a variety of shapes
controlled by θ.

�

��

��

��	


�	

�	�

�
���

�	�

Figure 4.2: Definition of fibre segment parameters used during the generating process.

As will be seen later in this chapter, a large part in the process of generating
fibre segments is rotating vectors in space around a specified axis. To rotate a vector
(x1, x2, x3) φ radians around an axis defined by a unit vector (a1, a2, a3) the following
equation is used.

x′ = R(a, φ) · x (4.2)

where R and A are given by

R(a, φ) = I − sinφ · A+ (1− cosφ) ·A2 (4.3)

A =




0 −a3 −a2

−a3 0 a1

a2 −a1 0


 (4.4)

From the nine input parameters listed in table 4.1 the fibre segment parameters
defined in figure 4.1 can be calculated. A graphical overview of the calculations is
shown in figure 4.4. In the figure, solid boxed parameters refer to those that define
the fibre segment while parameters that are marked with dashed boxes are used in
the generation of the following segment. The numbers specified in each calculation
step refer to the equation in which the calculation is carried out.
First, the opening angle of the circle arc is calculated.
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α = lseg/r (4.5)

The starting point of the currently generated segment is always identical to the
ending point of the previous segment.

ps = pe,prev (4.6)

The starting direction, ds, however, is not always the same as the previous ending
direction. Adjustments have to be made first according to a possible kink. Two
angles θk1 and θk2 are needed to describe an arbitrary kink. The angle θk1 is defined
as the angle between the projection of ds onto the previous segment plane and
the vector de,prev of the previous segment while θk2 is the angle between ds and the
previous segment plane. The following steps are shown in figure 4.3. Two temporary
vectors, t′ and d′ are created by rotating tec,prev and de,prev θk1 around the previous
segment plane normal.

t′ = R(nprev, θk1) · tec,prev (4.7)

d′ = R(nprev, θk1) · de,prev (4.8)

Now, rotating d′ θk2 radians around t′ will give us the starting direction of the new
segment.

ds = R(t′, θk2) · d′ (4.9)

When the starting direction ds has been calculated the plane of the new segment is
determined by rotating t′ an angle θ around ds. This gives tsc.

tsc = R(ds, θ) · t′ (4.10)

If θk2 = 0, an angle θ = 0 implies that the fibre segment lies in the same plane as
the previous segment. We now have two unit vectors in the fibre segment plane,
which means that the normal to this plane can be calculated.

n = tsc × ds (4.11)

Knowing the fibre plane normal, we can now calculate the base vectors u and v for
the fibre segment plane. The vectors u and v are chosen so that they, together with
n make an orthonormal basis. Further, u is chosen so that its projection onto the
xy-plane is parallel with the x-axis. We have

n · u = 0 (4.12)

u–u·(0,0,1)(0,0,1) must be of the form (a,0,0), a arbitrary. This yields

u =
[1 0 −nx

nz
]√

1 + (nx

nz
)2

(4.13)
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Figure 4.3: Definition and usage of the orientation angle θ and the kink angles θk1

and θk2.
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unless the normal is in the xy-plane. In this case u is chosen as

u = [ny − nx 0] (4.14)

The last unit vector of the orthonormal basis, v is simply the cross-product of n
and u.

v = n × u (4.15)

Also, knowing tsc, we can derive the centre point of the segment.

c = ps + r · tsc (4.16)

Rotating tsc around the segment normal α radians gives us a unit vector pointing
from the end point in the direction of the centre point.

tec = R(n, α) · tsc (4.17)

The same rotation of ds returns the outgoing direction de.

de = R(n, α) · ds (4.18)

and thus, we have the end point as

pe = c − r · tec (4.19)

Finally, the opening angles α1 and α2 are calculated as the angles between u and
tsc and tec, respectively.

α1 = π − arccos(tsc · uT ) (4.20)

and

α2 = π − arccos(tec · uT ) (4.21)

We now have all the desired parameters that were defined in figure 4.1.

4.2 Fibre

The complete fibre consists of one or more fibre segments. They will either be joined
together so that they are continuous in tangent in the connecting joint or kinked,
i.e. discontinuous in tangent. The input data for generating a fibre are: number of
segments, nseg and vectors of length nseg containing the parameters in table 4.1 for
all the segments that make up the fibre.

The most important characteristics of the individual fibre are fibre length and
curl. The length of a fibre is easy to control. With segment length as an input data
for the fibre segments, the total fibre length is simply split between its segments.
Distributions of fibre length needs to be handled in a slightly different way, which
is further discussed in chapter 5.3.
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Figure 4.4: Flowchart showing the calculations of the parameters defining a fibre
segment from the input parameters. Solid boxes denote segment-defining parameters,
dashed boxes, parameters needed for the generation of the next segment.

Curl is here defined by the relationship between a fibre’s length and its maximum
extent, i.e. the diameter of the smallest sphere that the fibre can fit into, see
figure 4.5 and equation 4.22.

C =
l

d
− 1 (4.22)

If a fibre is straight the curl is zero, otherwise the curl increases with the curvature.
The curl value of a fibre depends on segment-to-segment orientation θ, θk1 and θk2,
segment opening angles α, number of segments and ratio between the segments
radii. Figure 4.6 shows the curl value of a two-segment fibre as a function of α and
θ, where α and rseg are the same for both segments. Figure 4.7 shows the influence
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Figure 4.5: Parameters used in the definition of curl.

of the number of fibre segments on curl.
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Figure 4.6: Fibre curl as a function of α and θ for a two-segment fibre with identical
radii and α and no kink.

It would be desirable to be able to generate a fibre based solely on a specified fibre
curl C. However, due to the complexity of curl dependencies when more than one
fibre segment is used as seen in the numerical example above, it can not be used as
an input parameter, since there is no unique way of generating a fibre with a certain
curl value. For single-segment fibres curl depends only on α and thus is easily
controllable. When using more than one segment, one can use the trial-and-error
method to generate a number of typical fibres with a certain curl or, alternatively,
simply see the curl as an output data.
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Figure 4.7: Curl as a function of θ with α = π. The influence of the number of
segments used is shown.

When the fibre is complete it must be prepared for insertion into the network. To
control the placement of the fibre, a centre point and orientation in local coordinates
needs to be defined. The fibre is shifted so that the end points centre around the
local origin (step 2 in figure 4.8 and rotated so that the end points lie on the local
x-axis c.f. figure 4.8, step 3.

+,

�,

�,

+,

�,

�,

+,

�,

�,

 

!

"

Figure 4.8: Normalization of generated fibre.
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5 Network Model

The top level of the generation process is the network generation. While the fibre
and segment-level generations work with specific input data, the network model
deals with distributions of variables. Input data for a fibre is picked from these
distributions and a fibre is generated. It is then placed into the network according to
orientation and position picked from distributions of these. The fibre is then trimmed
and modified to comply with the specified dimensions of the periodic network. This
process is continued until the desired network density is reached.

Table 5.1: Table of input parameters.
Input parameter Description

Lx, Ly, Lz Unit cell dimensions in x, y and z directions
ρ Network density. Total fibre length per unit volume

f(φ1), f(φ2) Fibre orientation. Distributions of two angles

f(lfib) Distribution of fibre length
nseg Number of segments per fibre
f(r) Distribution of fibre segment radii
f(θ) Distribution of relative fibre segment orientation

f(θk1), f(θk2) Distribution of kink angles
Pkink Probability of kink at a segment-to-segment contact

point

5.1 Fibre placement

When placing the fibres into the network model, the centre point between the end-
points of the fibre is positioned randomly into the unit cell. No consideration is
taken to fibres already in the network. This implies that two or more fibres can take
up the same space. Adjusting every fibre individually according to the presence
of other fibres would, however, be a difficult and time-consuming task. Also, in
low-density three-dimensional networks, the expected low occurrence of this duality
would not be a very big problem.

A desired fibre orientation vector is created by rotating a unit vector pointing in
the direction of the x-axis first by the angle φ1 around the y-axis, then φ2 around
the z-axis, the angles defined as in figure 5.1. By choosing the distributions of these
angles a preferred fibre orientation can be modelled. By choosing φ2 as a constant
value, the fibres will be placed so that a certain plane is favoured.

As described in chapter 4.2, the generated fibre is, prior to insertion, oriented
along the local x-axis and centred around the local origin. By vector multiplication
of the desired orientation and the local orientation, i.e. the x-axis, a vector perpen-
dicular to these is obtained to rotate the fibre around into position. Figure 5.2 shows
the placement routine. The centre points are transposed according to the desired
position of the fibre (step 1). In step 2, a rotation matrix R is created according to
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Figure 5.1: Definition of the fibre orientation angles φ1 and φ2.

equation 4.3 after which the centre point and base vectors of every fibre segment are
rotated to the desired orientation. A random rotation is given to the fibre around
its own axis in step 3. As this orientation angle is not specified, this is done to avoid
similarity.
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Figure 5.2: Placement of a fibre into the network.
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5.2 Periodic Networks

When dealing with large fibre networks, during generation of geometry and especially
the analysis of an FE-model, computing time will become a limiting factor. A way of
minimizing the size of the computed network is to model a relatively small periodic
cube of fibres, where each fibre is trimmed to fit into the box and the trimmings
are replaced so that the original fibre will be complete and unbroken when several
identical cubes are placed around the first one. Examples of this are shown in
figures 5.3 and 5.4.

Figure 5.3: Example of a periodic network.

To achieve this, every fibre has to be checked along its entire length if it is
partially outside the defined unit cube. Also, if the fibre part checked is further
away than another unit cubes’ length from the perimeter, it has to be trimmed once
more.

The trimming procedure is done segment-wise and works by redefining the open-
ing angles α1 and α2 and the centre point of the arc. First the fibre segment is
checked using equation 4.1 to see if and what planes it passes, and thus is to be
trimmed at. The angle α at which the segment crosses the plane at is calculated
whereby a new segment is created for each plane crossed. For example the segment
in figure 5.4 has its original opening angles α1 and α2. After controlling which boxes
it passes through, it is determined that control of crossing points needs to be done
along the planes y = Ly, x = Lx and x = 2Lx. Control of these planes gives us the
angles β1 through β4 where the cuts will take place. The original fibre segment will
be replaced by five new segments identical to the original save for the modifications
given in the table below.

When the network is generated as a periodic cube, the size of the unit cell will
become an important parameter which affects the properties of the network. For
computational reasons, the cell should be as small as possible. However, if the cell is
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Table 5.2: Modifications to the created fibre segments during trimming.
Fibre segment α1 α2 cx cy

1 — β1 — —
2 β1 β2 cx,orig − Lx —

3 β2 β3 cx,orig − Lx cy,orig − Ly

4 β3 β4 cx,orig − 2Lx cy,orig − Ly

5 β4 — cx,orig − 2Lx —
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Figure 5.4: Example of the cutting procedure on a fibre segment.

too small in relation to fibre length it may affect the results. Heyden [5] found that,
for straight fibres, the relationship between cell size and fibre length L/lfib should
be no less than 1 to 1.2, for calculation of elastic stiffness, using periodic boundary
conditions.

5.3 Distributions

The distribution function used for distributed parameters is the beta distribution.
It is used due to the its versatility and to the fact that it is defined within specified
limits, unlike the normal distribution which can give negative values. This would
not work on distributions of the length parameters lfib and rseg. The distribution is
given by the four parameters a, b, q, and r, where a and b denote the interval of the
distribution and q and r determine the shape [12].

The beta distribution is given as

f(X) =
1

β(q, r)
· (X − a)q−1(b−X)r−1

(b − a)q+r−1




a ≤ X ≤ b;
0 < q;
0 < r;

(5.1)

Where the Beta function β(q, r) is given by

β(q, r) =
∫ 1

0
xq−1(1− x)r−1dx (5.2)
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Figure 5.5: Standard beta distribution probability density function for different pa-
rameters.

If a = 0 and b = 1, the standard beta distribution fS(s) is obtained. As seen
in figure 5.5, the shape of the distribution can vary from a rectangular distribution
to different forms of symmetrical and asymmetrical shapes. Using q = r gives a
symmetrical distribution.

When a distribution for fibre length is given, it is advantageous to translate this
to a distribution of segment length so as the segments of a fibre are not simply a
division of a fibre length into nseg equal parts. To do this, we must see to that the
mean and standard deviation of the fibre length distribution is preserved. When
adding distributions the following rules apply:
for mean µ

µtot = µ1 + µ2 + µ3 + . . . (5.3)

and standard deviation

σtot =
√
σ2

1 + σ2
2 + σ2

3 + . . . (5.4)

The fibre segment length distributions are chosen to be the same, which leaves

µseg =
µfib

nseg

(5.5)

and

σ2
seg =

σ2
fib

nseg

(5.6)

The mean and variance of the beta distribution are given by
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µX = a+
q(b− a)

q + r
(5.7)

and

σ2
X =

qr(b − a)2

(q + r)2(q + r + 1)
(5.8)

Using only symmetric distributions (q = r) and with aseg = afib/nseg and bseg =
bfib/nseg equations 5.6 and 5.8 gives

qseg = rseg =
2qfib − nseg + 1

2nseg

(5.9)

This equation solves our problem of segment length distribution but also imposes
limitations on the distribution of fibre length. For the summation of the segment
length distributions to work, qseg must per definition be larger than zero. This
implies that

qfib >
nseg − 1

2
(5.10)

Using this rule will give the fibre length distribution combined from the segment
distributions the correct mean value and standard deviation, however, numerical
tests have showed that for the shape of the distribution to resemble the one specified,
qseg should be equal to or larger than one, which gives a stricter condition to be
fulfilled:

qfib >
3nseg − 1

2
(5.11)

Even when 5.11 is fulfilled one may not expect the shape of the distribution for the
total fibre length to exactly match that of a beta distribution.

As for the distribution of the network orientation angles φ1 and φ2, if an isotropic
is desired, special attention has to be paid to these. To achieve this, φ1 should be
distributed as a cosine function, while φ2 is defined as a rectangular distribution
between 0 and 2π. The beta distribution comes in handy in this case also, as it can
very closely approximate the cosine shape using q = r ≈ 3.4.

5.4 Input combinations

As mentioned earlier, it is conceivable to implement several different varieties of
input/output combinations using the proposed fibre model. The network can be
governed by specifying fibre density, i.e. length of fibre per volume unit, or total
fibre length. To save computing time, one might also prefer to generate just a few
fibres, which are then reused and placed in the network several times. The different
generated fibres can then be chosen based on a percentage belonging to the fibre,
representing the part of the network consisting of this fibre type.
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Two different approaches have been looked at in this work. The input data
specified in table 5.1 is aimed at a program generating random fibres according to
those distributions specified. The other method uses a ”library” of fibres as input
data, which are then picked and placed into the network. This method might be
preferred when a certain appearance of the fibres, which can not be quantified in
the distributions of the previous method are desired.
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6 Computer Implementation

6.1 Overview

Programming has been done to implement the creation of periodic network cubes
of fibres from statistic distributions. All programming has been done in Matlab

r©

[18], a program for numerical computation. The Matlab
r© developing environment

has been chosen for various reasons; it is advantageous to have a platform indepen-
dent program so as to not have to reprogram for different operative systems, it is
a simple and effective environment for testing, and also, earlier work [5] has been
done in this environment. The most important programs can be found in appendix
A of this report.

Table 6.1: Descriptions of the functions developed for creating three dimensional
periodic fibre networks.

Function name Description
gennetbeta.m Main program. Generates a periodic fibre network

based on beta distributions of various parameters.
gennetlib.m Main program. Generates a periodic fibre network

based on specific fibre types.
genfib3.m Generates a single fibre.
genfibseg.m Generates a single fibre segment.
modfibseg.m Modifies a placed fibre segment to fit in the peri-

odic network.
curl.m Calculates the curl and length of one fibre.

place.m Places a fibre into the periodic network.
rot3daxl.m Rotates a vector around a specified axis.
asort3d.m Sorts crossing angles from α1 to α2

cross c p3d.m Returns crossing point(s) between segment circle
and specified plane.

cuttingplanes.m Returns planes that the fibre crosses.

isonarc.m Checks if crossing point from cross c p3d is on
the fibre segment.

fibre2vrml.m Generates a vrml-file of the network.
fibre2scope.m Generates a nef-file of the network for viewing in

FibreScope.
plotfibre.m Test plot of fibre.
plotbox.m Test plot of bounding box.
plotnet.m Test plot of fibre network.

The program is built up of several specialized functions shown in table 6.1
which can be used individually or as a complete main program as gennetbeta.m or
gennetlib.m. The generating functions on segment and fibre-level use exact input
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of all parameters, while distributions are handled on the network-level. The rea-
son for this is, apart from the benefit of having a well-structured program is that,
for example, genfib3.m can be used stand-alone to generate a specific fibre, where
the exact parameters for all segments are specified without having to use different
functions. Also, other input combinations than those used in gennet.m might be
interesting to use. In that case, only the main program needs to be altered, as the
versatility of the subfunctions allow for usage in other variants.

A few visualizing functions are included in the list above. They have been used
in the verifying process during programming. They are very time-consuming when
plotting normal sized networks, but are quite effective for viewing the appearance
of single fibres or small networks.

A simplified schematic diagram of gennetbeta.m is shown in figure 6.1. The
logical structure of gennetlib.m is much the same.

6.2 Data Storage

The segment-defining parameters introduced in chapter 4.1 are stored in a vector
segdat which genfibseg.m returns.

segdat = [r cx cy cz α1 α2 ux uy uz vx vy vz] (6.1)

During generation of a fibre, segdat for each segment is added to a matrix
fibdat containing the data of all the included segments.

sizefibdat = nfibresegments · 12 (6.2)

Finally, fibdat of all the fibres in the network are added to a three-dimensional
matrix netdat containing all fibre segments of all the fibres in the network. As
clipping of the fibres occur to fit them into the periodic network, new fibres are
formed from the original. These clipped fibres are not necessarily made up of the
specified number of segments. If this is the case, the remaining parts of the fibre
matrix, where the following segments normally would be found are filled with zeros.

6.3 Performance

The following tests have been done on an AMD 1700+ processor with 524 MB of
RAM. Table 6.3 shows a summary of one execution of one of the main programs
gennetbeta.m. The generated network had a density of ρ = 0.01 in a cube of side
length 100 and consisted of three-segment fibres. The total time for the execution
was 13.23 seconds and the number of fibres generated was 200, which can be seen in
the number of calls to the fibre-generating function genfib3.m. The time column
shows the number of seconds that have been spent inside a function, that is, also
counting the time of included functions. Self-time depicts the time of a function
without included functions. The summary of the self-time percentage does not
accumulate to 100%. This is because functions that are built in to Matlab

r© ,
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Figure 6.1: Flowchart of the program structure.
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Table 6.2: Table of developed functions used in gennetbeta and their performance.
Name Time (s) (%) Calls Time/call (s) Self time (s) (%)
gennetbeta.m 13.23 100.00% 1 13.23400 0.08 0.60%
genfib3 9 68.00% 200 0.04498 0.17 1.30%

curl.m 7.95 60.10% 200 0.03975 7.95 60.10%
modfib.m 1.25 9.40% 200 0.00625 0.02 0.10%
cuttingplanes.m 1.11 8.40% 600 0.00185 1.11 8.40%
genfibseg.m 0.66 4.90% 600 0.00109 0.11 0.80%
rot3daxl.m 0.56 4.30% 7600 0.00007 0.56 4.30%
place.m 0.22 1.60% 200 0.00109 0.04 0.30%
modfibseg.m 0.13 1.00% 600 0.00021 0.08 0.60%

isonarc.m 0.03 0.20% 298 0.00011 0.03 0.20%
cross c p3d.m 0.02 0.10% 149 0.00011 0.02 0.10%
asort3d.m 0 0.00% 600 0.00000 0 0.00%∑

— — — — 10.17 76.8%

for example the function that picks random numbers from the beta distribution, are
not included.

It is clear that one of the most computational intensive functions is the curl.m
command, which uses more than 60% of the total time. This percentage also in-
creases with the number of fibre segments used. This is because the function com-
pares a specified number of points along the fibre with all other points to obtain
the largest inter-fibre distance. The curl can be calculated with a fewer number of
points per segment to make it faster, though this also increases the error in the re-
sult. There may be more effective algorithms for the curl computation, but this has
not been looked into. Instead, to save time, if the curl is not needed, gennetbeta.m
can also be executed without curl calculation, which makes it subsequently faster.

Table 6.3 shows the equivalent summary of one execution of gennetlib.m. Keep-
ing in mind that curl is not calculated, the program is still considerably faster than
its counterpart. This is due to the fact that no fibres are generated in the program,
but picked from the library of fibres specified in the input data.

A comparison of computing time dependency on the number of fibre segments
and network density has also been done. Figure 6.2 shows that the relationship
between the network density and execution-time is linear, which implies that the
same counts for the number of fibres. For higher densities, though, the effect of the
number of segments on time has an increasing tendency.



6.3 Performance 31

Table 6.3: Table of developed functions used in gennetlib and their performance.
Name Time (s) (%) Calls Time/call (s) Self time (s) (%)
gennetlib 2.984 100.00% 1 2.984 0.063 2.10%
modfib 1.093 36.60% 200 0.005465 0.079 2.60%
cuttingplanes 0.828 27.70% 600 0.00138 0.828 27.70%

place 0.501 16.80% 200 0.002505 0.249 8.30%
rot3daxl 0.301 10.10% 4000 0.00007525 0.301 10.10%
modfibseg 0.186 6.20% 600 0.00031 0.092 3.10%
asort3d 0.064 2.10% 600 0.000106667 0.064 2.10%
isonarc 0.03 1.00% 192 0.00015625 0.03 1.00%
cross c p3d 0 0.00% 96 0 0 0.00%∑

— — — — 1.706 57.00%
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Figure 6.2: Comparison of the effects of varying number of segments and network
density on execution-time of the main program.
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7 Applications

This chapter demonstrates the versatility of the developed fibre network model by
showing various examples. It is also an excellent way of showing how the input
parameters affect the final shape of the fibre or network.

7.1 Visualization software

For visualizing the generated networks, mainly two programs have been used, Fi-
breScope and 3ds maxTM . However, the geometry can be imported into almost any
3D modelling program by the file format vrml c.f. figure 6.1.

VRML (Virtual Reality Modelling Language)[20] is a file format with the extension
.wrl describing three dimensional content. Once developed as an ISO-standard
(VRML97) to facilitate for 3d on the world wide web, complying to a set of
requirements: platform independence, extensibility and the ability to work
over low-bandwidth connections. The awaited explosion of virtual worlds on
the net failed to come, but the format is widespread as an interface between
competing formats as most programs can import and export it. This is also
the main argument for choosing vrml as an export option in this project.

3ds maxTM [1], or 3D Studio MAX, is a widely used program for three dimensional
modelling, animation and rendering. In this work, it has been used to import
vrml files for final rendering. Most of the figures showing generated networks
are rendered with 3ds maxTM . The only retouching applied to the generated
vrml models are material application, where a bitmap picture is applied to the
surface of the model, and lighting, which simulates highlights and shadows
from a light source.

FibreScope is a program developed by Lindemann [9, 10] specifically for viewing
fibre networks. Unlike 3ds maxTM which is used to produce rendered pictures
and animations, FibreScope can in real-time rotate and manoeuvre through the
network for easy examination. Figure 7.1 shows the FibreScope environment.
There is also an option to view fibre networks in 3D with special goggles.

7.2 Examples of single fibres

On segment-level, all that can be varied is the opening angle and radius of curvature.
Setting a very large radius in proportion to opening angle will approximate straight
fibre segments. As is shown in figure 7.2, the model can handle this well. The ”cuts”
in the straight fibre segment are due to problems in the importing of the vrml-file
when large radii are used. The geometry in the model is not affected by this.

Fibre-level parameters leave more options to be explored and parameters to be
varied. Figure 7.7 shows the effects on otherwise identical parameter set-ups when
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Figure 7.1: Screenshot of FibreScope with generated network.

Figure 7.2: Examples of fibre segment shapes.

the segment orientation angle θ is set to different values. Opening angles of all
segments are π and the number of segments per fibre is five. The angle θ is defined
in figure 4.3 as a relative angle between two fibre segments. For θ = 0 successively
shorter radii were used to avoid the fibre curling into itself. The fibres on the edges
of the figure are three dimensional renderings of generated fibres using the specified
θ angle and its projection on a plane. The centre diagram shows how θ affects the
fibre shape when it is constant over all fibre segments. If θ is close to zero, the
fibre will curl inwards to a C- or spiral shape while an angle closer to π will curl
the segments away from each other, resulting in the S-shape shown. These angles
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will also produce fibres in one plane. Angles between these values will give the fibre
an out of plane shape which is a cross between the spiral and S-shapes. Special
cases are the angles π/2 and 3π/2 where the fibre in profile will take on the form
of a flight of stairs, the step-shape. If the value of θ is between 0 and π the fibre
will form a right handed helix, that is, the twist of the fibre will be the same as
the thread of a screw. Between π and 2π a left handed helix will be formed. This
example illustrates the importance of θ in deciding the shape of the fibre and also
gives a hint to the hypothetical fibres which can be generated using the model.

An example of kinked fibres can be seen in figure 7.4. The left hand figure
displays how fibres with 100% kink probability look. To the right are fibres which
are generated with a parameter set-up to resemble cellulose fibre fluff. The kink
probability is set to 60%.
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Figure 7.3: Examples of the influence of the orientation angle θ. For the fibre
examples, shadows are also showed.

7.3 Network Examples

The most interesting experiments can be done on network-level. Adjusting the input
parameter distributions opens many possibilities to shape the generated network in
the desired way. An example of this, figure 7.6, shows the effects of changing the
position of the distribution of θ. The left column shows a θ-distribution centred
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Figure 7.4: Example fibres with kink probability Pk set to 1 (left) and, to the right,
fibres resembling cellulose fibre fluff (Pk = 0.6). In both cases, rectangular distribu-
tions between −π/2 and π/2 are used for the kink angles.

Figure 7.5: An example of a generated thread made up of three fibres.

around π, favouring the S-shape while the right column distribution, with the same
q-value, is centred around 0 which will produce more spiral shapes. Two networks
were generated using identical set-ups, save θ and the renderings of them can be
seen under the distributions. It appears as if the fibres on the left-hand picture are
slightly straighter, which we would expect from the generation set-ups. Analysing
the curl of each fibre in the two networks, it is clear that the right-hand side shows
a significantly higher curl value than its counterpart. Although these results are
precisely what was expected from the definition of θ, it shows in a concrete way
the actual impact on generated network geometry of changes in input parameter
distributions.

The fibre orientation angles φ1 and φ2 are important parameters as they strongly
affect the appearance and also the mechanical properties of a fibre network. As
discussed in chapter 5.3, if an isotropic network is wanted, one of the angles should be
a rectangular distribution and the other distributed as a cosine shape. Figures 7.7(a)
and (b) show a rendering of a network with these settings. A more paper-like
appearance with the fibres lying in planar layers can be modelled by setting one
angle as a constant (in this case 0) while the other is rectangularly distributed.
Figures 7.7(c) and (d) shows an example of this. Figures 7.7(e) and (f) show an
extreme, where both angles are constant (here both are set to 0). This is not a
very natural appearance, however, it clearly shows that modelling a preferred fibre
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Figure 7.6: Example of the influence of segment-level parameter θ on network curl
distribution.
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orientation which can be found in for example paper, is possible.
So far, all networks have been generated using gennetbeta.m. If designed fibres

are wanted in a network, gennetlib.m should be used instead. Figure 7.8 shows
a network generated using this. Two different fibre types are used, an almost full
circle, and a three segment pure S-shape. For clarity the different fibre types have
been given different colours.

7.4 Networks similar to real materials

To evaluate the developed geometry model photographs of real fibre materials were
used to try and duplicate the appearance with a generated network. A number of
different types of fibre materials have been looked at. A number of figures following
show different fibre materials along with attempts to create generated networks
resembling the real materials on the right. It should be taken into account when
studying these pictures that, since the system described in figure 1.1 is incomplete,
no knowledge of actual parameter distributions in the actual materials exists. Thus
the parameters used when generating the networks are simply guesses from studying
the photographs of the materials. Deeper knowledge of the materials would no doubt
give better resemblance.

Although the coating applied to the paper in figure 7.9 hides the structure of the
fibres on the surface of the paper, the generated network displays a dense paper-
like network where the the fibres lie in planar layers. It must be stressed though,
especially for dense networks such as this, that the developed model does not take
into account fibres occupying the same space. The photograph also shows that the
fibres are not circular in cross section, instead a more elongated, flattened shape is
displayed. This also points to a weakness of the model, which assumes only circular
cross sections.

Figure 7.10 shows a highly magnified photograph of carded polyamide-6 fibres
and a generated network. The smooth and seemingly circular shape of the fibres
makes it quite suitable to model. The appearance of the generated network also has
a striking resemblance to the original.

Figure 7.11 shows a close-up of an acoustic board made of wood wool fixated
by cement. The structure of the material resembles that of paper products in its
layered build up, except on a larger scale. Also in this case, the resemblance of the
generated network is good.

So far, we have only looked at surface structures and extreme close-ups of fibre
materials when evaluating the model. A photograph of a thin slice of three-layered
paper can be seen in figure 7.4. The bottom picture is a section of generated network
produced in 3ds maxTM . At a quick glance, resemblance is fair, however, the
comparison shows that fibre cross section shape plays a large role in the appearance
of the material. There is also a large variation in cross section shape. The varying
density of the three different layers in the paper is not modelled in the generated
network.

Finally, the complicated geometry of fibre fluff was reproduced. With fibres as
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(a) Isotropic network. Left: top view, Right: front view.

(b) φ1 = const. Left: top view, Right: front view.

(c) φ1 = φ2 = const. Left: top view, Right: front view.

Figure 7.7: Example networks with varying input for the fibre orientation angles φ1

and φ2.
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Figure 7.8: Example of network generated with gennetlib.m.

long and crooked as those in figure 7.4 and with many kinks, the model must be
made with many fibre segments. In the accompanying modelled network, seven
segments were used per fibre and also a somewhat different distribution of segment
radii. In the beta function, using a q-value of 0.7 gives a distribution that favours
values of rseg close to the specified distribution limits. This was used to resemble
the appearance of the real fibres where often long straight parts are followed by
extremely curled areas on the same fibre. The middle picture shows a generated
network with a circular cross-section. This gives a satisfactory likeness to the real
material, however, to show the effects of having a more representative cross-section
shape, a network was visualised using rectangular cross-section. It must be kept in
mind though, that the orientation of the cross section cannot be controlled in the
model. The likeness to the real material is substantially improved.
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Figure 7.9: Coated paper seen from an angle (top) and generated network (bottom).
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Figure 7.10: Carded polyamide-6 fibres, diameter 50µm (top) and generated network
(bottom).
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Figure 7.11: Wood wool acoustic board ”T-Akustik Diskret” (top) and generated
network (bottom).
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Figure 7.12: Photograph of a section slice of a three-layered paper seen from the side
(top) and a section created from a generated network (bottom).
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Figure 7.13: Microscope photograph of cellulose fibre fluff (top) and generated net-
works (middle and bottom).
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8 Conclusions

A geometry model for describing any fibre material has been proposed and imple-
mented according to the goals specified in figure 1.1. Although further work needs
to be done to complete the system, the applications section of this work has shown
that the geometry part of the system works well. It can model most fibres in a
satisfactory way and the likeness of the visualized networks to existing materials is
good though it lacks cross-section handling.

8.1 Further work

As mentioned in the introduction, the work done in this thesis is thought to form
the foundation of a larger system where finite element models can be made from the
original geometry of a fibre material. To complete this, further work must be done.
A connection between a three dimensional computer tomography and the geometry
model must be established. Also, routines for generating the finite element model
are needed before the system is finished.

As was shown in chapter 7.4 the fibre cross-section shape and its orientation has
an evident effect on network appearance, an effect which also will have consequences
for the future finite element model realism. Therefore, it it of interest to look at
the implementation of the handling of these variables in future work. For further
realism, allowing for a varying cross-section along the length of a fibre might be of
interest.
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gennetbeta.m

function [netdat,rho,curl,length]=...

gennetbeta(bounds,rho,fphi1,fphi2,flfib,nseg,fr,ftheta,fthetak1,fthetak2,pk)

% Generates periodic fibre network

%

% [netdat,rho,curl,length]=...

% gennetbeta(bounds,rho,fphi1,fphi2,flfib,nseg,fr,ftheta,pk)

% [netdat,rho]=gennetbeta(bounds,rho,fphi1,fphi2,flfib,nseg,fr,ftheta,pk)

%

% INPUT:

% bounds - network boundingbox widths [Lx Ly Lz]

% rho - network density (fibrelength/volume)

% nseg - number of segments used per fibre

% pk - probability of kink between segments

%

% Distribution inputs, for beta distribution [a b q] where

% a and b are lower resp. upper limits and r=q (symmetric)

%

% fphi1 - distribution of fibreorientation angle phi1

% fphi2 - distribution of fibreorientation angle phi2

% flfib - distribution of fibre length

% fr - distribution of segment radii

% ftheta - distribution of segment orientation angle

% fthetak1 - distribution of kink angle 1

% fthetak2 - distribution of kink angle 2

%

% OUTPUT:

% netdat - 3d matrix containing radius of curvature,

% centre point, alfa1, alfa2, u and v for all

% fibres dim: [nfib nseg 12]

% rho - network density (fibrelength/volume)

% curl - vector containing curl of all fibres

% length - vector containing length of all fibres

nfib=floor(rho*prod(bounds)/(flfib(1)/2));

n=1;

flseg=[flfib(1)/nseg flfib(2)/nseg (2*flfib(3)-nseg+1)/(2*nseg)];

h=waitbar(0,’Generating Network. Please wait...’);

for fibnr=1:nfib

waitbar(fibnr/nfib);

A–51
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for segnr=1:nseg

R(segnr)=betarnd(fr(3),fr(3))*(fr(2)-fr(1))+fr(1);

THETA(segnr)=betarnd(ftheta(3),ftheta(3))*(ftheta(2)-ftheta(1))+ftheta(1);

lseg=betarnd(flseg(3),flseg(3))*(flseg(2)-flseg(1))+flseg(1);

ALFA(segnr)=lseg/R(segnr);

if rand<pk

THETAK1(segnr)=betarnd(fthetak1(3),fthetak1(3))...

*(fthetak1(2)-fthetak1(1))+fthetak1(1);

THETAK2(segnr)=betarnd(fthetak2(3),fthetak2(3))...

*(fthetak2(2)-fthetak2(1))+fthetak2(1);

else

THETAK1(segnr)=0;

THETAK2(segnr)=0;

end

end

if nargout==4

[fibdat,curl(fibnr),length(fibnr)]=genfib3(nseg,R,THETA,ALFA,THETAK1,THETAK2);

else

[fibdat]=genfib3(nseg,R,THETA,ALFA,THETAK1,THETAK2);

end

mp=[rand*bounds(1) rand*bounds(2) rand*bounds(3)];

phi1=betarnd(fphi1(3),fphi1(3))*(fphi1(2)-fphi1(1))+fphi1(1);

phi2=betarnd(fphi2(3),fphi2(3))*(fphi2(2)-fphi2(1))+fphi2(1);

fibdir=rot3daxl([0 1 0],phi1,[1 0 0]);

fibdir=rot3daxl([0 0 1],phi2,fibdir);

[fibdat]=place(fibdat,fibdir,mp);

[fibdatmod]=modfib(fibdat,bounds);

for i=1:size(fibdatmod,1)

netdat(n,:,:)=fibdatmod(i,:,:);

n=n+1;

end

end

if nargout==4

rho=sum(length)/prod(bounds);

end

close(h);

gennetlib.m

function [netdat]=gennetlib(bounds,nfib,fiblib,fibpart,fphi1,fphi2)
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% Generates periodic fibre network

%

% [netdat]=gennetlib(bounds,nfib,fiblib,fibpart,fphi1,fphi2)

%

% INPUT:

% bounds - network boundingbox widths [Lx Ly Lz]

% nfib - number of fibres

% fiblib - library of fibres to be placed into the network

% dim: [number of fibretypes, 12]

% fibpart - part of network using fibretype (index)

% sum(fibpart)=1

%

% Distribution inputs, for beta distribution [a b q] where

% a and b are lower resp. upper limits and r=q (symmetric)

%

% fphi1 - distribution of fibreorientation angle phi1

% fphi2 - distribution of fibreorientation angle phi2

%

% OUTPUT:

% netdat - 3d matrix containing radius of curvature,

% centre point, alfa1, alfa2, u and v for all

% fibres dim: [nfib nseg 12]

fib=0;

n=1;

h=waitbar(0,’Generating Network. Please wait...’);

for fibtypenr=1:size(fiblib,1)

for fibnr=1:round(fibpart(fibtypenr)*nfib)

fib=fib+1;

waitbar(fib/nfib);

mp=[rand*bounds(1) rand*bounds(2) rand*bounds(3)];

phi1=betarnd(fphi1(2),fphi1(2))*fphi1(1);

phi2=betarnd(fphi2(2),fphi2(2))*fphi2(1);

fibdir=rot3daxl([0 1 0],phi1,[1 0 0]);

fibdir=rot3daxl([0 0 1],phi2,fibdir);

[fibdat]=place(squeeze(fiblib(fibtypenr,:,:)),fibdir,mp);

[fibdatmod]=modfib(fibdat,bounds);

for i=1:size(fibdatmod,1)

netdat(n,:,:)=fibdatmod(i,:,:);

n=n+1;

end

end

end
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% rho=sum(length)/prod(bounds);

close(h);

genfib3.m

function [fibdat,crl,l]=genfib3(nseg,rvect,thetavect,alfavect,thetak1vect,thetak2vect)

% Subroutine used in gennetbeta and gennetlib

% Generates one fibre

%

% [fibdat,crl,l]=genfib3(nseg,rvect,thetavect,alfavect,kinkprob)

%

% INPUT:

% nseg - number of segments

% rvect - vector containing segment radii

% thetavect - vector containing segment orientation angles

% alfavect - vector containing segment opening angles

% kinkprob - probability of kink between segments

%

% OUTPUT:

% fibdat - vector containing radius of curvature,

% centre point, alfa1, alfa2, u and v for

% all fibre segments

% crl - fibre curl value

% l - fibre length

fibdat=zeros(nseg,12);

outdir=[1 0 0]; n=[0 1 0];

l=0; ep=[0 0 0]; tec=[0 1 0];

%--- generering av fibern ---

for segnr=1:nseg

[fibdat(segnr,:),outdir,ep,n,tec]=genfibseg(ep,rvect(segnr),alfavect(segnr)...

,thetavect(segnr),thetak1vect(segnr),thetak2vect(segnr),outdir,tec,n);

end

%--- fiberdata ---

if nargout==3

[crl,l]=curl(fibdat,20);
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end

spep=ep;

% %--- centrering av fibern ---

newc=ep/2;

for segnr=1:nseg

fibdat(segnr,2:4)=fibdat(segnr,2:4)-newc;

end

%-------------------------------

fibn=cross(spep,[1 0 0]);

fibn=fibn./(sqrt(fibn*fibn’));

spep=spep./sqrt(spep*spep’);

alfa=acos([1 0 0]*spep’);

for i=1:nseg

r=fibdat(i,1);c=fibdat(i,2:4);alfa1=fibdat(i,5);alfa2=fibdat(i,6);u=fibdat(i,7:9);v=fibdat(i,1

%steg 3

fibdat(i,2:4)=rot3daxl(fibn,alfa,c);

fibdat(i,7:9)=rot3daxl(fibn,alfa,u+c);

fibdat(i,10:12)=rot3daxl(fibn,alfa,v+c);

fibdat(i,7:9)=fibdat(i,7:9)-fibdat(i,2:4);

fibdat(i,10:12)=fibdat(i,10:12)-fibdat(i,2:4);

if i==1

sp=c+r*(cos(alfa1)*u+sin(alfa1)*v);

end

end

%------------------------------------------------------------------

genfibseg.m

function [fibdat,outdir,ep,n,tec]=...

genfibseg(sp,r,beta,theta,thetak1,thetak2,indir,tec,nprev)

% Subroutine used in genfib3

% Generates one fibresegment

%
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% [fibdat,outdir,ep,n,tec]=...

% genfibseg(sp,r,beta,theta,thetak1,thetak2,indir,tec,nprev)

%

% INPUT:

% sp - startingpoint of fibre segment

% r - radius of curvature

% alfa - angle between starting and ending tangents

% theta - rotationangle of fibresegment

% indir - startingtangent

%

% OUTPUT:

% fibdat - vector containing radius of curvature,

% centre point, alfa1, alfa2, u and v

% outdir - endtangent

% ep - endpoint

% n - fibre segment normal vector

% tec - vector pointing from endpoint to centrepoint

alfa=pi-beta;

b=r*beta;

x=2*r*sin(beta/2);

l=x/(2*sin(alfa/2));

indir=rot3daxl(nprev,thetak1,indir);

tsc=rot3daxl(nprev,thetak1,tec);

indir=rot3daxl(tsc,thetak2,indir);

tsc=rot3daxl(indir,theta,tsc);

n=cross(indir,tsc);

n=n/sqrt(sum(n*n’));

outdir=rot3daxl(n,pi/2,indir);

outdir=rot3daxl(n,pi/2-alfa,outdir);

outdir=outdir/(sqrt(outdir*outdir’));

cp=sp+l*indir;

ep=cp+l*outdir;

%BASE VECTORS IN THE FIBRE PLANE U V

%if n is in the xy-plane

if (n(3)<l/10000)

u=[n(2) -n(1) 0];

if (u(1)<0)

u=-u;
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end

else

u=(1+(n(1)^2/n(3)^2))^-0.5*[1 0 -n(1)/n(3)];

end

u=u/sqrt(sum(u*u’));

v=cross(n,u);

v=v/sqrt(sum(v*v’));

rv=cross(n,indir);

c=sp+rv*r;

tec=c-ep; tec=tec./sqrt(tec*tec’);

%ANGLES ALFA1, ALFA2

ts=sp-c;

ts=ts/sqrt(ts*ts’);

alfa1=acos(ts*u’);

if acos(ts*v’)>pi/2

alfa1=2*pi-alfa1;

end

alfa2=alfa1+beta;

if (alfa1<0)

alfa1=alfa1+2*pi;

end

if (alfa2>2*pi)

alfa2=alfa2-2*pi;

end

fibdat=[r c alfa1 alfa2 u v];

place.m

function [fibdat]=place(fibdat,fibdir,mp)

% Places one fibre into a network

%

% [fibdat]=place(fibdat,fibdir,mp)

%

% INPUT:
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% fibdat - vector containing radius of curvature,

% centre point, alfa1, alfa2, u and v for the fibre

% fibdir - specified orientation of the fibre in the network

% mp - specified midpoint of fibre in network

%

% OUTPUT:

% fibdat - modified fibre data

nseg=size(fibdat,1);

fibdir=fibdir/sqrt(fibdir*fibdir’);

fibn=cross(fibdir,[1 0 0]); %normal till planet som spänns upp av fiberns önskade riktning och ak

fibn=fibn/sqrt(fibn*fibn’);

alfa=-acos(fibdir*[1 0 0]’);

beta=rand*2*pi;

%steg 1

for i=1:nseg

r=fibdat(i,1);c=fibdat(i,2:4);alfa1=fibdat(i,5);alfa2=fibdat(i,6);u=fibdat(i,7:9);v=fibdat(i,10:12

%steg 3

fibdat(i,2:4)=rot3daxl(fibn,alfa,c);

fibdat(i,7:9)=rot3daxl(fibn,alfa,u+c);

fibdat(i,10:12)=rot3daxl(fibn,alfa,v+c);

fibdat(i,7:9)=fibdat(i,7:9)-fibdat(i,2:4);

fibdat(i,10:12)=fibdat(i,10:12)-fibdat(i,2:4);

%Tranposing of ceter points

fibdat(i,2:4)=fibdat(i,2:4)+mp;

%Random rotation around own axis

fibdat(i,2:4)=rot3daxl(fibdir,beta,fibdat(i,2:4));

fibdat(i,7:9)=rot3daxl(fibdir,beta,fibdat(i,7:9));

fibdat(i,10:12)=rot3daxl(fibdir,beta,fibdat(i,10:12));

end

modfibseg.m

function [segdatmod]=modfibseg(segdat,cutplanes,cut,bounds)



Appendix A A–59

% Subroutine used in modfib

% Modifies one fibre segment according to network boundaries

%

% [segdatmod]=modfibseg(segdat,cutplanes,cut,bounds)

%

% INPUT:

% segdat - vector containing radius of curvature,

% centre point, alfa1, alfa2, u and v

% cutplanes - matrix of planes to be controlled

% example: plane x=100 [1 0 0 100]

% cut - boolean vector: 1 if fibre is to be cut at actual plane

% bounds - network boundingbox widths [Lx Ly Lz]

%

% OUTPUT:

% segdatmod - vector containing modified values for

% radius of curvature, centre point,

% alfa1, alfa2, u and v

ind=2;

alfavect(1)=segdat(5);

alfavect(2)=segdat(6);

if cut==1

for plane=1:size(cutplanes,1)

[x1,x2,found]=cross_c_p3d(segdat,cutplanes(plane,1),cutplanes(plane,2),cutplanes(plane,3),

if (found==1)

[onarc,alfa]=isonarc(segdat,x1);

if(onarc==1)

ind=ind+1;

alfavect(ind)=alfa;

end

[onarc,alfa]=isonarc(segdat,x2);

if(onarc==1)

ind=ind+1;

alfavect(ind)=alfa;

end

end

end

end

[alfavect]=asort3d(alfavect,ind);

for i=2:length(alfavect)

shift=[0 0 0];
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if alfavect(i-1)>alfavect(i)

alfac=alfavect(i-1)+.5*(2*pi-alfavect(i-1)+alfavect(i));

if alfac>2*pi

alfac=alfac-2*pi;

end

else

alfac=alfavect(i-1)+.5*(alfavect(i)-alfavect(i-1));

end

p=segdat(2:4)+segdat(1)*(cos(alfac)*segdat(7:9)+sin(alfac)*segdat(10:12));

shift(1)=bounds(1)*floor(p(1)/bounds(1));

shift(2)=bounds(2)*floor(p(2)/bounds(2));

shift(3)=bounds(3)*floor(p(3)/bounds(3));

segdatmod(i-1,:)=segdat;

segdatmod(i-1,2:4)=segdatmod(i-1,2:4)-shift;

segdatmod(i-1,5)=alfavect(i-1);

segdatmod(i-1,6)=alfavect(i);

end

cross c p3d.m

% cross_c_p3d.m

function [x1,x2,found]=cross_c_p3d(fibdat,A,B,C,D)

% Function used by modfib3d in program fibre3d.

% Calculate crossings of a plane and a circle in space.

% Circle x(theta)=c+r*cos(theta)*u+r*sin(theta)*v

% Plane ax+by+cz+d=0

% u and v must be of length 1.

% Susanne Heyden 970911

r=fibdat(1); c=fibdat(2:4); u=fibdat(7:9); v=fibdat(10:12);

found=1;

x1=-1;

x2=-1;



Appendix A A–61

c1=A*r*u(1)+B*r*u(2)+C*r*u(3);

c2=A*r*v(1)+B*r*v(2)+C*r*v(3);

c3=A*c(1)+B*c(2)+C*c(3)+D;

c4=sqrt(c1^2+c2^2);

%If plane and plane of circle are parallel

if (abs(c4)<(r/20))

found=0;

break

end

if (c2/c4>0)

phi=asin(c1/c4);

elseif (c1/c4>0)

phi=acos(c2/c4);

else

phi=acos(c2/c4)-2*asin(c1/c4);

end

theta1=asin(-c3/c4)-phi;

theta2=pi-asin(-c3/c4)-phi;

%If no crossings

if (abs(imag(theta1))>0)

found=0;

break

end

%If circle is tangent to plane

if (abs(theta1-theta2)<0.01)

found=0;

break

end

x1=zeros(3,1);

x1(1)=c(1)+r*cos(theta1)*u(1)+r*sin(theta1)*v(1);

x1(2)=c(2)+r*cos(theta1)*u(2)+r*sin(theta1)*v(2);

x1(3)=c(3)+r*cos(theta1)*u(3)+r*sin(theta1)*v(3);

diff1=A*x1(1)+B*x1(2)+C*x1(3)+D;

x2=zeros(3,1);

x2(1)=c(1)+r*cos(theta2)*u(1)+r*sin(theta2)*v(1);
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x2(2)=c(2)+r*cos(theta2)*u(2)+r*sin(theta2)*v(2);

x2(3)=c(3)+r*cos(theta2)*u(3)+r*sin(theta2)*v(3);

diff2=A*x2(1)+B*x2(2)+C*x2(3)+D;

fibre2vrml.m

function fibre2vrml(filename,fibdat,prec,t)

% Exports fibre network geometry to vrml file format

%

% fibre2vrml(filename,fibdat,prec,t)

%

% INPUT:

% filename - location and name of exported file

% fibdat - vector containing radius of curvature,

% centre point, alfa1, alfa2, u and v for the network

% prec - number of straight lines to represent one fibre segment

% t - diameter of the fibres circular ross-section

nfibs=size(fibdat,1);

narcs=size(fibdat,2);

%------------------------------

%---- VRML post processing ----

%------------------------------

options = [0]; % No global transform;

%-----------------------------------

%---- Create model for geometry ----

%-----------------------------------

fid=vrmlcreate(filename,options);

%---- Define geometry

vrmlbegin(fid,’Transform’);

vrmlbeginarr(fid,’children’);

%---- Define circular cross section
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i=0;

for angle=0:pi/5:2*pi

i=i+1;

sec(i,1)=t*cos(angle);

sec(i,2)=t*sin(angle);

end

for fib=1:nfibs

n=0;

for arc=1:narcs

r=fibdat(fib,arc,1);

c=fibdat(fib,arc,2:4);

alfa1=fibdat(fib,arc,5);

alfa2=fibdat(fib,arc,6);

u=fibdat(fib,arc,7:9);

v=fibdat(fib,arc,10:12);

if r==0

break

end

for i=1:prec

n=n+1;

if alfa1>alfa2

a2=alfa1+i*(2*pi-alfa1+alfa2)/prec;

if a2>2*pi

a2=a2-2*pi;

end

else

a2=alfa1+i*(alfa2-alfa1)/prec;

end

points(n,:)=c+r*(cos(a2)*u+sin(a2)*v);

end

end

vrmlextrusion(fid,points(1:n,:),sec);

end

vrmlendarr(fid);

vrmlend(fid);

vrmlclose(fid,options);
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fibre2scope.m

function fibre2scope(filename,fibdat,prec,t)

% Exports fibre network geometry to nef file format

%

% fibre2scope(filename,fibdat,prec,t)

%

% INPUT:

% filename - location and name of exported file

% fibdat - vector containing radius of curvature,

% centre point, alfa1, alfa2, u and v for the network

% prec - number of straight lines to represent one fibre segment

% t - diameter of the fibres circular ross-section

nfibs=size(fibdat,1);

maxarcs=size(fibdat,2);

fid=fopen(filename,’w’);

fprintf(fid,’%12f\n’,t);

for fib=1:nfibs

n=0;

for arc=1:maxarcs

r=fibdat(fib,arc,1);

c=fibdat(fib,arc,2:4);

alfa1=fibdat(fib,arc,5);

alfa2=fibdat(fib,arc,6);

u=fibdat(fib,arc,7:9);

v=fibdat(fib,arc,10:12);

if r==0

arc=arc-1;

break

end

for i=0:prec

n=n+1;

if alfa1>alfa2

a2=alfa1+i*(2*pi-alfa1+alfa2)/prec;

if a2>2*pi

a2=a2-2*pi;

end

else
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a2=alfa1+i*(alfa2-alfa1)/prec;

end

points(n,:)=c+r*(cos(a2)*u+sin(a2)*v);

end

end

fprintf(fid,’%12f\n’,arc*(prec+1));

for j=1:n

fprintf(fid,’%12.8f %12.8f %12.8f\n’,points(j,:));

end

end

fclose(fid);

cuttingplanes.m

function [planes,cut]=cuttingplanes(segdat,bounds)

% Returns the planes that a fibre segment passes through

%

% [planes,cut]=cuttingplanes(segdat,bounds)

%

% INPUT:

% segdat - vector containing radius of curvature,

% centre point, alfa1, alfa2, u and v for the segment

% bounds - vector containing unit cell dimensions in x, y, and z

%

% OUTPUT:

% planes - passed planes, in the form [1 0 0 100] (meaning the plane

% x=100)

% cut - vector of same length as planes. value 1 if the plane is to

% be cut, otherwise 0

r=segdat(1);

c=segdat(2:4);

alfa1=segdat(5);

alfa2=segdat(6);

u=segdat(7:9);
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v=segdat(10:12);

seg=20;

index=0;

index2=0;

index3=0;

cut=1;

for i=0:seg

if alfa1>alfa2

alfa=alfa1+i*(2*pi-alfa1+alfa2)/seg;

if alfa>2*pi

alfa=alfa-2*pi;

end

else

alfa=alfa1+i*(alfa2-alfa1)/seg;

end

p=c+r*(cos(alfa)*u+sin(alfa)*v);

for j=1:3

boxtemp(j)=floor(p(j)/bounds(j));

end

if i==0

index=index+1;

box(index,:)=boxtemp;

elseif sum(box(index,:)~=boxtemp)~=0

index=index+1;

box(index,:)=boxtemp;

end

for j=1:index-1

a=box(j,1:3)~=box(j+1,1:3);

if a(1)==1

index3=index3+1;

planetemp(index3,:)=[1 0 0 max(box(j,1),box(j+1,1))*bounds(1)];

end

if a(2)==1

index3=index3+1;

planetemp(index3,:)=[0 1 0 max(box(j,2),box(j+1,2))*bounds(2)];

end

if a(3)==1

index3=index3+1;

planetemp(index3,:)=[0 0 1 max(box(j,3),box(j+1,3))*bounds(3)];
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end

for j=1:index3

if exist(’planes’,’var’)==0

index2=index2+1;

planes(index2,:)=planetemp(index3,:);

else

add=0;

for s=1:index2

if sum(planes(s,:)==planetemp(index3,:))==4

add=1;

end

end

if add==0

index2=index2+1;

planes(index2,:)=planetemp(index3,:);

end

end

end

end

end

if exist(’planes’,’var’)==0

planes=0;

cut=0;

end

isonarc.m

% isonarc3d.m

function [onarc,alfa]=isonarc3d(fibdat,x)

% Function used by modfib3d.m in program fibre3d.

% Onarc is true if the point (xyz) which is on the circle is

% also on the circle arc defined by center x0, radius r, and

% situated between angles alfa1, alfa2. Alfa is the angle of

% point x.
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r=fibdat(1); x0=fibdat(2:4)’; alfa1=fibdat(5); alfa2=fibdat(6);

u=fibdat(7:9)’; v=fibdat(10:12)’;

cxv=sum((x-x0).*v);

alfa=acos(sum((x-x0).*u)/r);

if (sign(cxv)<0)

alfa=2*pi-alfa;

end

if (alfa1<alfa2)

if((alfa1<alfa)&(alfa<alfa2))

onarc=1;

else

onarc=0;

end

else

if ((alfa>alfa1)|(alfa<alfa2))

onarc=1;

else

onarc=0;

end

end

plotfibre.m

function plotfibre(fibdat,color)

for s=1:min(size(fibdat))

r=fibdat(s,1);

c=fibdat(s,2:4);

alfa1=fibdat(s,5);

alfa2=fibdat(s,6);

u=fibdat(s,7:9);

v=fibdat(s,10:12);

n=cross(u,v);

seg=20;

a1=alfa1;
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for i=1:seg

if alfa1>alfa2

a2=alfa1+i*(2*pi-alfa1+alfa2)/seg;

if a2>2*pi

a2=a2-2*pi;

end

else

a2=alfa1+i*(alfa2-alfa1)/seg;

end

X1=c+r*(cos(a1)*u+sin(a1)*v);

X2=c+r*(cos(a2)*u+sin(a2)*v);

line([X1(1) X2(1)],[X1(2) X2(2)],[X1(3) X2(3)],’Color’,color);

a1=a2;

pause(.001);

hold on

axis equal;

end

end

plotbox.m

function plotbox(bounds,col)

line([0 bounds(1)],[0 0],[0 0],’Color’,col);

line([0 0],[0 bounds(2)],[0 0],’Color’,col);

line([0 0],[0 0],[0 bounds(3)],’Color’,col);

line([bounds(1) bounds(1)],[0 bounds(2)],[bounds(3) bounds(3)],’Color’,col);

line([bounds(1) bounds(1)],[0 0],[0 bounds(3)],’Color’,col);

line([0 bounds(1)],[0 0],[bounds(3) bounds(3)],’Color’,col);

line([0 bounds(1)],[bounds(2) bounds(2)],[bounds(3) bounds(3)],’Color’,col);

line([0 0],[0 bounds(2)],[bounds(3) bounds(3)],’Color’,col);

line([0 0],[bounds(2) bounds(2)],[0 bounds(3)],’Color’,col);

line([0 bounds(1)],[bounds(2) bounds(2)],[0 0],’Color’,col);

line([bounds(1) bounds(1)],[0 bounds(2)],[0 0],’Color’,col);
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line([bounds(1) bounds(1)],[bounds(2) bounds(2)],[0 bounds(3)],’Color’,col);

axis equal

plotnet.m

function plotnet(fibdat,bounds)

figure

axis off

set(gcf,’Color’,’w’)

plotbox(bounds,’r’);

for i=1:size(fibdat,1)

temp=squeeze(fibdat(i,:,:));

plotfibre(temp,’b’);

title(num2str(i));

end

asort3d.m

% asort3d.m

function [vect]=asort3d(vect,n)

% Function used by modfib3d in program fibre3d.

% Sorts the angles in vect in their order along

% the circle arc.

alfa1=vect(1);

for i=1:n-1

minv=1e10;

for k=i:n

if (vect(k)<minv)

minv=vect(k);

index=k;

end
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end

vect(index)=vect(i);

vect(i)=minv;

end

while (abs(vect(1)-alfa1)>1e-5)

a=vect(1);

for i=1:n-1

vect(i)=vect(i+1);

end

vect(n)=a;

end

rot3daxl.m

function [v]=rot3daxl(a,theta,u)

% Rotates the vector u theta radians around the axel a

%

% [v]=rot3daxl(a,theta,u)

%

% INPUT:

% a - axel of rotation

% theta - angle of rotation

% u - vector to rotate

%

% OUTPUT:

% v - rotated vector

A=[0 a(3) -a(2);-a(3) 0 a(1);a(2) -a(1) 0];

R=eye(3)-sin(theta)*A+(1-cos(theta))*A^2;

% if nargin==3

v=R*u2’;

v=v’;

% elseif nargin==4

% v2=R*u2’;

% v1=R*u1’;

% v=v2-v1;

% v=v/sqrt(v’*v);
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% v=v’;

% end

curl.m

function [curl,length]=curl(fibre,prec)

% Subroutine used in genfib3

% Calculates the curl of a fibre

%

% [curl,length]=curl(fibre,prec)

%

% INPUT:

% fibre - vector containing radius of curvature,

% centre point, alfa1, alfa2, u and v

% prec - precision of calculation, specifies the number of points

% along each segment controlled

%

% OUTPUT:

% curl - curl value of fibre

% length - length of fibre

nseg=size(fibre,1);

length=0;

for i=1:nseg

alfa=fibre(i,6)-fibre(i,5);

if alfa<0

alfa=2*pi+alfa;

end

l=alfa*fibre(i,1);

length=length+l;

end

n=1;

points(1,:)=fibre(1,2:4)+fibre(1,1)*(cos(fibre(1,5))*fibre(1,7:9)+sin(fibre(1,5))*fibre(1,10:12));

for i=1:nseg

alfa1=fibre(i,5); alfa2=fibre(i,6);

for j=1:prec
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n=n+1;

if alfa1>alfa2

a2=alfa1+j*(2*pi-alfa1+alfa2)/prec;

if a2>2*pi

a2=a2-2*pi;

end

else

a2=alfa1+j*(alfa2-alfa1)/prec;

end

points(n,:)=fibre(i,2:4)+fibre(i,1)*(cos(a2)*fibre(i,7:9)+sin(a2)*fibre(i,10:12));

end

end

lmax=0;

for i=1:n

for j=i+1:n

v=points(i,:)-points(j,:);

l=sqrt(v*v’);

lmax=max(l,lmax);

end

end

curl=length/lmax-1;


