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Chapter 1

Introduction

This Master’s dissertation is based mainly on the work done by Per-Erik Austrell
[1]. Some text and figures are copied from [1] to give a background for used models.

1.1 Background

Rubber bushings can be found in all vehicle suspension systems. The suspension
components are connected to each other, to the subframe, and to the body structure
via rubber bushings. They are a key element in designing desired quasi-static and
dynamic behaviour of suspension systems. The dynamic characteristics of a rubber
bushing are often very complex in nature, due to the fact that the response is depen-
dent on several variables, such as frequency, amplitude, preload, and temperature.
The displacement dependence is predominant, but the other dependencies can be
absolutely critical in capturing the mechanical behaviour.

Multi-body simulations (MBS) of complete vehicles or subsystems are performed
on a daily basis in the automotive industry for analysis of durability, handling, and
ride comfort. At Volvo Car Corporation the general MBS code ADAMS is used.
To achieve a high level of confidence in the MBS simulations, accurate component
models of rubber bushings are crucial. The basic bushing model in ADAMS is simple
and lacks frequency and amplitude dependence. In order to refine in-house bushing
models and to develop more advanced models it is of greatest interest to perform
systematic studies of the dynamic behaviour of rubber bushings.

1



2 CHAPTER 1. INTRODUCTION

1.2 Objective

This Master’s thesis work addresses the non-linear dynamic behaviour of rubber
bushings and methods to model dynamically loaded rubber components.

The main objectives of this project are to:

• Gain further insight in material characteristics and dynamic properties of rub-
ber components.

• Analyse and determine the validity of different bushing models.

• Evaluate a methodology for model parameter identification from physical com-
ponent tests.

• Give directions for rubber bushing modelling in MBS models.

The ultimate objective is to establish a methodology/work flow for rubber bush-
ing modelling and parameter identification, which can be implemented into a com-
mercial MBS code and used in the product development of new cars.

1.3 Project overview

The project is conducted in cooperation between Volvo Car Corporation, Lund Insti-
tute of Technology and Forsheda rubber company. The studied approach for bushing
modelling is based on model parameter identification from physical component tests.

Major activities:

• Create and study different 1-D bushing models in MATLAB:

-Viscoelastic models including Kelvin-Voigt, Zener, and Generalized Maxwell

(no amplitude dependence).

-Elastoplastic models (no frequency dependence).

-Generalized viscoplastic models (both frequency and amplitude depen-

dence).

• Evaluate a methodology for model parameter identification from physical com-
ponent tests.

• Validate the bushing models by comparison with component testing.

The viscoelastic models are unable to model amplitude dependence and the
elastoplastic models are unable to model frequency dependence. The generalized vis-
coplastic (viscoelastic elastoplastic) models describe both amplitude and frequency
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dependence. Therefore are the generalized viscoplastic models more carefully stud-
ied.

Three rubber components have been used to validate the bushing models for
harmonic behaviour. Two of the components are geometrically simple model com-
ponents and the third is an actual component used in a Volvo car. The first model
component is a double shear specimen giving an almost homogeneous state of shear
strain. This state of strain is advantageous because rubber is almost linear in sim-
ple shear, making it possible to avoid non-linear elastic behaviour and isolate the
non-linear dynamic behaviour that originates from the filler induced damping. The
second model component is a cylindrical bushing with simple geometry (i.e. no cav-
ities). The third component is a hydrobushing ’taken from the shelf’ with material
and geometry as specified for the Volvo car.

Two materials with different dynamic characteristics have been chosen for the
two model components, which are manufactured by Forsheda rubber company. One
material with low filler content, corresponding to what is normally used in the
automotive industry, and one material with high content of filler have been studied.

1.4 Dynamic modulus and phase angle

The dynamic modulus and phase angle are used here to characterize the dynamic
properties. The definition of these parameters has its origin in linear dynamic be-
haviour of viscoelastic materials.

o

εo

σo2

εo2

Uc
Edyn

EdyncU
1

σ

ε

σ

1

ε

σ

dyn

(a)

E

(b)

dyn
E

Figure 1.1: Linear viscoelastic (a) and general (b) hysteresis loop for harmonic
excitation.

Linear dynamic is characterized by sinusoidal response to sinusoidal excitation.
The response is of the same frequency but shifted by a phase angle δ. Figure
1.1(a) corresponds to linear (viscoelastic) behaviour, which is characterized by a
pure elliptical form. Figure 1.1(b) is more general where non-linearities are present.
The non-linear behaviour appears as a distortion of the hysteresis loop. These non-
linearities are due to non-linear elasticity and/or frictional damping (filler structure
breakdown and reforming).
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On the basis of a steady state harmonic excitation the dynamic modulus is defined
according to Figure 1.1 as

Edyn =
σ0

ε0

(1.1)

Note that the dynamic modulus for the non-linear case is not unambiguous by this
definition since the same dynamic modulus can be achieved with different hysteresis
(if σ0 and ε0 is the same).

The dissipated energy Uc for each strain cycle is related to the phase angle δ
according to Uc = πσ0ε0 sin(δ). This expression is derived in connection with linear
viscoelastic models in Appendix B and is only valid for linear viscoelastic materials.
The normalized damping d is defined according to

d = sin(δ) =
Uc

πσ0ε0

(1.2)

For moderate damping, sin(δ) ≈ δ , it is concluded that the normalized damping d
will coincide with the phase angle (loss angle).

1.5 Summary of harmonic dynamic properties

Deviations from linear dynamic behaviour are caused by the underlying non-linear
elastic properties and/or by the damping mechanisms introduced by the filler.

For unfilled rubbers, a linear viscoelastic behaviour can be observed in simple
shear, which is a linear mode of deformation if the strains are not too large. In the
case of filled rubbers, non-linear dynamic behaviour is present even for simple shear
due to breakdown and reforming of the carbon-black structure.

Important dynamic properties of carbon-black-filled natural rubbers are summa-
rized here.

• In harmonic loading it can be observed that the dynamic modulus shows a
considerable amplitude dependence. The modulus declines with amplitude
towards an asymptotic value for large amplitudes. The damping represented
by the equivalent phase angle reaches a maximum where the decline in modulus
is the greatest (cf. Figure A.8).

• Payne [10] interpreted the decline in dynamic modulus for increasing strain
amplitude as a result of breaking of the filler structure. Payne found that the
modulus is almost recoverable upon return to small amplitudes, i.e. the filler
structure largely reforms for an amplitude cycle.

• Mullins’ effect is attributed to breaking of the cross-links between the filler
and elastomeric material, which results in decline in dynamic modulus for
increasing strain amplitude. This breaking of cross-links between the filler
and elastomeric material has a recovery time of less than 24 hours.
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• The dynamic modulus is almost recoverable for a strain cycle with increasing
amplitude followed by decreasing amplitude in harmonic testing. The mech-
anisms on microstructural level involved must therefore be different from the
mechanisms involved in the Mullins’ effect. The explanation lies in the break-
down and quick reforming of the carbon-black structure.

• In quasi-static loading it can be observed that a difference between loading
and unloading curves is present irrespective of how low the loading rate is, ac-
cording to [1]. It can also be observed that the hysteresis loop in quasi-static
loading for heavily filled rubber takes the approximate shape of a parallelo-
gram, according to [1].

• The shape of the strain history in quasi-static loading does not appreciately
influence the shape of the hysteresis loop. Triangular shaped periodic shear
strain and sinusoidal shear strain in quasi-static loading gives almost the same
hysteresis loops, according to [1].

• The shape of the decline of the dynamic modulus with amplitude is insen-
sitive to frequency. Experiments indicate that the amplitude and frequency
dependence are separable (cf. Figure A.9).

1.6 Material model for rubber

A starting point for the modelling of filled rubbers is the simple one-dimensional
model of elastic and damping properties shown in Figure 1.2. The elastic behaviour
is provided by the spring element, which is assumed to be non-linear. Damping is
modelled by the rate-dependent viscous damper and the rate-independent frictional
element. The frictional element makes it possible to model hysteresis in quasi-static
load cases, i.e. when the strain rate approaches zero.

v

ε

σ σ+ σσ= e f+

Figure 1.2: Simple one-dimensional rheological model including non-linear elastic,
viscous, and frictional properties.

The elastic, viscous, and frictional forces act in parallel, and the total stress is
the sum of the stresses in the elements, i.e. σ = σe + σv + σf . The viscous stress
σv corresponds to dissipative stresses in the rubber network. Stresses in the filler
phase and in the rubber-filler interfaces are responsible for the rate-independent
contribution σf .
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This model incorporates some important aspects of the mechanical behaviour of
filled rubbers. Frequency dependence, effects of static load on the dynamic modulus,
distortion of the elliptic shape of the hysteresis loop, and amplitude dependence are
properties of the simple model. However, it has some unphysical properties, e.g.
discontinuous stress response for continuous strain and inability to exhibit relaxation
behaviour. More sophisticated models are therefore needed.

1.7 Other work within this field

Here follows a discussion of experimental investigations and modelling of dynamic
properties of rubber. These properties are dependent on frequency, temperature,
static load, and amplitude. Special emphasis will here be on strain amplitude de-
pendence.

The dynamic modulus is seen to decrease with increasing strain amplitude. This
effect is sometimes denoted the Payne effect due to investigations of reinforced elas-
tomers made by Payne [10]. He interpreted the decline in modulus for increasing
strain amplitude as a result of breaking of the filler structure. The structure is
composed of aggregates held together by van der Waals bonds. Payne found that
the modulus is almost recoverable upon return to small amplitudes, i.e. the filler
structure largely reforms for an amplitude cycle.

Payne also observed that the shape of the decline in modulus for increasing
strain amplitude was almost independent of frequency for low frequencies, and he
also refers to Warnaka [21] who observed the same frequency independence for higher
frequencies, up to 1500 Hz.

A comprehensive review of dynamic properties of carbon-black-filled rubbers and
the amplitude dependence can be found in the often-cited article by Medalia [18].

Experimental investigations suggest that unfilled rubbers can be modelled by
viscoelastic models, whereas the behaviour of filled rubbers can not, according to
Stevenson [5] and other researchers. The amplitude dependence of the dynamic
modulus is significant for filled rubbers and is in general more important than the
influence of frequency and temperature. It should be observed that the amplitude
dependence is not included in the viscoelastic models.

A one-dimensional model of the amplitude dependence for periodic sinusoidal
loading was suggested by Kraus [17]. This model explains the amplitude dependence
by continuous breaking and reforming of van der Waals bonds between carbon-
black aggregates. The Kraus model has been investigated and evaluated by many
researchers, see for example Ulmer [19] and Vieweg [20]. The latter finds that the
sigmoidal decline (in logarithmic coordinates) of the dynamic modulus does not
depend on frequency for the investigated range 0.06 − 20 Hz.

Rate-independent damping mechanisms have been employed to model the am-
plitude dependence of the dynamic stiffness for lumped damper models, usually
expressed in terms of force and displacement relations as is also employed here. It
will be argued that viscoplasticity is necessary to explain the non-linear dynamic
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behaviour of rubbers with filler.
One-dimensional models of the type discussed here have been used as models of

dampers, often described in terms of a force and displacement relationship. Gregory
[15] and Coveney [14] have modelled the rate-independent damping of rubber by
using frictional elements.

Similar models have been used for example in vehicle dynamics or earthquake
protection applications. Berg [12] has proposed a five-parameter rubber spring
model with elastic, frictional, and viscous forces in parallel, for dynamic analysis
of rail vehicles.

This model has been assimilated by Kari and Sjöberg [16] who used the frictional
part in the model by Berg together with a rate-dependent part using fractional
derivatives. This approach yields a very elegant solution to the problem of the weak
rate-dependence of most rubbers. The rate-dependent part can be modelled by only
two parameters by using fractional derivatives. The essential drawback is that the
numerical evaluation requires a large portion of the strain history to be stored and
used in each increment.

A so-called stress fraction model is the basis of this work and it originates from
a constitutive model, i.e. a multiaxial model of rubber behaviour on a material
level. It relies on summing stress contributions obtained from simple constitutive
models for each fraction. This model was originally proposed by Besseling [13]. The
basic concept of this model is that the material is thought to be subdivided into a
number of parallel fractions, each with simple conventional properties. The more
complicated behaviour of real materials is approximated by choosing a number of
parallel fractions with suitable models and model parameters. The original fraction
model was formulated for small strains, and it has been applied to metal plasticity
and creep phenomena in metals.

This model has been adopted by Austrell and Olsson [4] in the context of finite
element analysis. Here it is used as a lumped model on a structural level to model
the dynamic behaviour of rubber bushings. Basic features of the model is that
it contains three major branches, i.e. a non-linear elastic, a viscoelastic, and an
elastoplastic (frictional) branch. The viscoelastic and the elastoplastic branches are
then in turn divided into smaller fractions. The basic viscoelastic fraction is the
Maxwell modell and the basic elastoplastic fraction is the von Mises model without
any hardening behaviour.

A major advantage with this approach is that each fraction can be expressed
in a very simple format giving a numerically efficient evaluation of general strain
histories. The rate-dependent (viscoelastic) branch of stress (or force) is evaluated
by simple time-stepping where only the previous time step needs to be stored. The
elastoplastic branch is also evaluated with a simple algorithm for each fraction.
The main drawback is the large number of parameters required. However, the
determination of model parameters is in this work made by utilising an automatic
procedure due to Olsson and Austrell [3].



Chapter 2

Generalized material models for

rubber

σ + + σfve= σσ

elastic part

ε

frictional part

viscous part

Figure 2.1: One-dimensional model including elastic, viscous, and friction proper-
ties.

A generalized material model with several Maxwell and frictional elements con-
nected in parallel according to Figure 2.1 is discussed in this chapter. The model
has an elastic part that can be non-linear elastic. This model is used later in terms
of force and displacement for modelling the three test specimens. This chapter also
includes the stress response algorithm for the basic elements used in the generalized
one-dimensional material models. Most of the figures and text in this chapter are
copied from the PhD thesis by Per-Erik Austrell [1].

2.1 Generalized Maxwell model

The generalized Maxwell model (Figure 2.2) is discussed in terms of complex mod-
ulus and also its response to a general strain history.

8
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o

σ

Eo

η2 E2

ηn E

1η

ε

E1

n

Figure 2.2: The generalized Maxwell model.

The Zener model in Appendix B can be generalized by adding more Maxwell
elements in parallel with the linear spring c.f. Figure 2.2. This yields a so-called
generalized Maxwell model with properties qualitatively the same as the Zener model
but with better ability to accurately fit experimental data.

We denote the stress in the spring component with σ∞ and the stress in the first
Maxwell element with σM1, etc. The total stress σ in the generalized model is

σ = σ∞ + σM1 + σM2 + . . . σMn (2.1)

with
σ∞ = E∞ε (2.2)

By using (B.51) it is concluded that the differential equation for one Maxwell
element is given by

σ̇Mj +
Ej

ηj

σMj = Ej ε̇ (2.3)

Solving (2.3) for all elements and summing stresses according to (2.1) defines the
stress-strain relation for the generalized Maxwell model.

Solving equation (2.3) for a step strain history yields

σR(t) = E∞ε0 + ε0

n
∑

j=1

Eje
−Ej

ηj
t

t > 0 (2.4)

The relaxation modulus for the generalized model is consequently established by
summing the individual Maxwell modulis, giving a so called Prony series

ER(t) = E∞ +
n

∑

j=1

Eje
−t/trj (2.5)

The complex modulus for the generalized Maxwell model can be derived in a
similar manner, i.e. by summing the complex modulis,

E∗(ω) = E∞ +
n

∑

j=1

Ej
iωtrj

1 + iωtrj
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giving the complex modulus for the generalized model.
Another way to determine the complex modulus, is as mentioned in Appendix

B, by Fourier transforming the dimensionless relaxation modulus.

2.2 Stress response algorithm for the Maxwell model

Consider the hereditary integral which was derived in Appendix B that defines the
linear viscoelastic stress response for an arbitrary strain history

σ(t) =
∫ t

−∞

ER(t − τ)
dε

dτ
dτ

The relaxation modulus for a Maxwell element is expressed according to ER(t) =
Ee−t/tr where tr = η/E. Inserting this expression in the above hereditary integral
gives

σ(t) = Ee−t/tr

∫ t

−∞

eτ/tr
dε

dτ
dτ (2.6)

Similarly for time t + ∆t

σ(t + ∆t) = Ee−(t+∆t)/tr

∫ t+∆t

−∞

eτ/tr
dε

dτ
dτ

The increment ∆σ = σ(t + ∆t) − σ(t) is given by

∆σ = σ(t)(e−∆t/tr − 1) + Ee−(t+∆t)/tr

∫ t+∆t

t
eτ/tr

dε

dτ
dτ (2.7)

with σ(t) according to (2.6).

For small time steps ∆t it is possible to approximate the integral in equation
(2.7) by the trapezoidal rule

∫ t+∆t

t
eτ/tr

dε

dτ
dτ ≈

1

2
(e(t+∆t)/tr + et/tr)∆ε

Equation (2.7) can now be written on the form

∆σ = A + B∆ε

where A = σ(t)(e−∆t/tr − 1) and B = E
2
(1 + e−∆t/tr) .

A simple time stepping algorithm for determining the stress from an arbitrary
strain history can hence be written

for i = 1 to n

A = σi−1(e
−∆t/tr − 1)

B = E
2
(1 + e−∆t/tr)
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∆σ = A + B∆εi

σi = σi−1 + ∆σ

A considerable numerical advantage of this form is that the stress increment is
directly computed only from the state of the previous time step. This is in contrast
to theories involving fractional derivatives which require storage of a large part of
the strain history.

2.3 Generalized frictional solid model

The elastoplastic part is discussed here in terms of dynamic modulus and damping
according to the definition (1.2) in Section 1.4. Moreover, a general algorithm for
the stress response is presented.

The generalized frictional solid model includes several frictional elements. The
stress-strain relation becomes more smooth when more frictional elements are used,
but the derivative of the stress history is still discontinuous. This phenomena is
shown in Figure 2.3.
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Figure 2.3: The generalized frictional solid model and corresponding initial loading
curve.

The model parameters can be obtained from the initial loading curve. It is a
piecewise linear curve according to Figure 2.3. The elements are assumed to yield in
the order 1, 2, . .n i.e. from above in Figure 2.3, and a particular break point means
that limit load has been reached in one element. The parameters are determined
directly from

Ei =
σi − σi−1

εi − εi−1

−
σi+1 − σi

εi+1 − εi

and Yi = Eiεi (2.8)

The inverse relation, i.e. the break points obtained from the model parameters, is
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given by

εi =
Yi

Ei

and σi =
i−1
∑

k=1

Ekεk + (E∞ +
n

∑

k=i

Ek) εi

where it is assumed that the first sum vanishes if i=1.
The dynamic modulus for the generalized model is also found directly from the

loading curve. Values of the dynamic modulus for amplitudes corresponding to the
break point strains are

Ei
dyn =

σi

εi

The damping for the strain amplitudes corresponding to the break points can be
determined by calculating the enclosed areas for the frictional elements that have
reached yielding, using definition (1.2) in Section 1.4.

The algorithm for each stress element is very simple and will be discussed in
detail in the next section. The model has the important characteristic that the
amplitude dependence of filled rubbers can be modelled in detail.

2.4 Stress history algorithm for the basic fric-

tional solid model

ε

ε

σfY Ε

σf

Ε

Y

Y

Y

ε
ε

o

o

Figure 2.4: Frictional stress in the basic element.

The rate-independent damping is symbolized by two blocks with sliding friction
that is fully developed when the stress in the element reaches the yield stress σf = Y .
The stress-strain relationship for the basic element, according to Figure 2.4, must
be evaluated for increments of strain and stress. The strain is a sum of elastic and
(frictional) plastic strain ε = εe + εp.

To obtain an algorithm an incremental relation given by

∆ε = ∆εe + ∆εp

is employed. The task is to find the stress increment ∆σf . It can be derived from the
elastic part, because the stress is the same in the elastic and the frictional element
giving σf = E εe. Hence, the stress increment can always be expressed as

∆σf = E∆εe
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A trial stress is determined from the assumption that the strain increment is
purely elastic. Suppose that the current stress σf is known. The trial stress is then

σtrial = σf + E∆ε

The total stress is limited to −Y < σf < Y ; this condition is tested for each
increment. If the trial stress σtrial is larger than the yield stress, then at least a
part of the strain increment is plastic. Eventually we have ∆εe = 0, if the strain
increment is purely plastic. We get the condition

if | σtrial |> Y then σf = ±Y (2.9)

Hence, the stress has to be scaled back to σf = ±Y if the condition (2.9) is fulfilled.
A scale factor α = Y/σtrial is introduced and the stress is consequently obtained
as σf = ασtrial. If the condition (2.9) is not fulfilled then we have a purely elastic
stress and σ = σtrial i.e. the strain increment is elastic.

The algorithm for determining the stress can now be written

i = 1, 2, 3...

∆ε = εi+1 − εi

σtrial = σi
f + E∆ε

α = Y/σtrial

if α > 1 then α = 1

σi+1
f = ασtrial

2.5 Generalized viscoelastic elastoplastic model

As mentioned in Appendix A the reorganization of the rubber network during peri-
odic loading results in frequency dependent loss angle and dynamic modulus. Heav-
ily filled rubber prove to have a very strong amplitude dependence with respect
to both loss angle and dynamic modulus. This is believed to be caused by the
breakdown and reforming of the filler structure.

The rubber network and filler give two kinds of damping, viscous and frictional
damping. A combination of rate-independent and rate-dependent damping is needed
to account for the inelastic effects in the filled rubber. The combination of a vis-
coelastic and elastoplastic model, gives a so-called viscoelastic elastoplastic (vis-
coplastic) material model.

2.5.1 Generalized linear elastic viscoelastic elastoplastic model

A successful way to model the different kinds of damping is to combine the linear
spring, the Maxwell elements, and the frictional elements, according to Figure 2.5.
This model is called the generalized linear elastic viscoelastic elastoplastic model. It
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σ + + σfve= σσ

elastic part

ε

frictional part

viscous part

Figure 2.5: One-dimensional model including elastic, viscous, and friction proper-
ties.

will be shown that this model can be made to fit static, quasi-static, and dynamic
tests with reasonable accuracy. The stress expression is calculated by

σ = σe + σv + σf

Several viscous elements make it possible to conduct a fit of the dynamic modulus
to a wider frequency range, or in the time range, fit the relaxation over a wider
time range. Likewise, several frictional elements make it possible to closely fit the
amplitude dependence for larger variations in the amplitude.

2.5.2 Generalized non-linear elastic viscoelastic elastoplas-

tic model

non−linear elastic part

viscous part

frictional part

σ

ε

Figure 2.6: One-dimensional model including non-linear elastic, viscous, and friction
properties.
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The generalized non-linear elastic viscoelastic elastoplastic model includes a non-
linear elastic stress component.

This model is the same as the previous model except that the linear elastic
spring is replaced by a non-linear elastic spring (cf. Figure ??) with a stiffness Ee(ε)
dependent on the actual strain ε. The stress is expressed in an incremental manner
by

∆σ = Ee(ε)∆ε + ∆σv + ∆σf

and the total stress in the whole model is obtained from

i = 1, 2, 3 . . .

∆σi = Ee(ε)∆εi + ∆σv
i + ∆σf

i

σi = σi−1 + ∆σi



Chapter 3

Transition from material to

structural level

In this chapter, the transition from material to structural level is discussed. Con-
stitutive relations on a material level have been established in Appendix B and the
previous chapter, i.e. in terms of stresses and strains. The following chapters will
deal with relations on a structural level, i.e. in terms of forces and displacements,
since the experimental data are established as forces and displacements. The only
difference between the two levels will turn out to be a geometrical factor for simple
geometries and homogeneous states of stress.

Young’s modulus E (N/m2) transforms to a stiffness K (N/m) by a geometrical
factor. Likewise can the viscosity coefficient η (Ns/m2) be transformed to a viscous
damping coefficient c (Ns/m) by a geometrical factor. This is here shown for a
structural geometry in the form of a simple bar. A force F is applied to a bar with a
material assumed to be linear elastic with Young’s modulus E (N/m2). The bar has
a cross section A and length L and will extend the distance u (m) when the force F is
applied. On the material level it is well known that σ = Eε i.e. F/A = Eu/L which
leads to F = Ku where K = EA/L (N/m) and A/L represents the geometrical
factor. If the force F instead is applied to a bar with a purely viscous material
with the viscosity coefficient η (Ns/m2) the expression on material level is σ = ηε̇.
The expression σ = ηε̇ is rewritten as F/A = ηu̇/L which leads to F = cu̇ where
c = ηA/L (Ns/m). Also in this case the geometrical factor A/L arises.

3.1 Viscoelastic and frictional models

The derived expressions in Appendix B can easily and in a straight-forward manner
be converted from material to structural level. The conversion is shown for the
complex modulus of the Zener model

E∗(ω) = E∞ + E
iωtr

1 + iωtr

16
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Assume again that the structural geometry is in the form of a simple bar. The
complex modulus is converted to structural level by multiplication of a geometrical
factor A/L according to

A

L
E∗(ω) =

A

L
E∞ +

A

L
E

iωtr
1 + iωtr

or

K∗(ω) = K∞ + K
iωtr

1 + iωtr

where tr = c/K

Likewise, the enclosed area Uc in a hysteresis loop of an arbitrary linear vis-
coelastic material in the (σ, ε) − plane is Uc = πσ0ε0 sin δ (see equation (1.2)). If
the structural geometry is in the form of a simple bar, Uc = π(F0u0/AL) sin δ. The
enclosed area in the (F, u) − plane can therefore be expressed as Us = πF0u0 sin δ
where Us = ALUc, (i.e. total strain energy).

frictional model. Assume next that we have a pure frictional model. For a simple
bar with cross section A and length L then σf transforms according to

σf = sign(ε̇)Y ⇒ Ff = sign(u̇)Fy

where Ff = σfA, Fy = Y A and u̇ = ε̇L

3.2 Non-linear elastic models

The difference between stress-strain and force-displacement relationship is shown
for the Yeoh material. In shear, (B.21) and (B.22) yields

P

A
= 2(C10 + 2κ2C20 + 3κ4C30)κ (3.1)

with κ = u/H

P = 2A(C10 + 2(
u

H
)2C20 + 3(

u

H
)4C30)

u

H
(3.2)

Defining AC10/H = D10, AC20/H
3 = D20 , and AC30/H

5 = D30 gives the
following force-displacement relationship

P = 2(D10 + 2D20u
2 + 3D30u

4)u (3.3)

A similar expression can be obtained for a compression/tension like behaviour
by using (B.4) and (B.11).



Chapter 4

Laboratory experiments

Figure 4.1: The test specimens. From left: shear specimen, cylindrical bushing, and
hydrobushing.

This chapter concerns testing of three different kinds of rubber components, two
geometrically simple components and one bushing taken from a Volvo car. The
first component is a double shear specimen. The second component is a cylindrical
bushing and the third component is a hydrobushing existing in a Volvo car. The first
two components are made in two kinds of natural rubber (NR), which have the same
hardness but different filler content. Static, quasi-static, and steady state harmonic
dynamic testing have been conducted for the rubber components. The components
are conditioned to avoid Mullins’ effect. The frequency and amplitude dependence
of dynamic stiffness and phase angle have been studied in detail.

18



4.1. TEST SPECIMENS 19

Thickness left

Diameter left Diameter right

Thickness right

δ

H

P

(a) (b)

Figure 4.2: (a) Double shear specimen (nominal geometry). (b) Displacement in
double shear specimen, κ = δ/H.

4.1 Test specimens

Three different kinds of rubber components are as mentioned studied in this Master’s
dissertation. Two of them are geometrically simple components and the third is an
actual component used in a Volvo car. The double shear specimens and cylindrical
bushings have been manufactured by Forsheda rubber company. The Volvo bushing
is a so-called hydrobushing and can be found in the S60, S80, V70, and XC70 cars.

The double shear specimen illustrated in Figure 4.1 and 4.2 gives an almost
homogeneous state of shear strain up to about κ = 100%. This state of strain is
advantageous since rubber is almost linear elastic in simple shear, making it possible
to isolate the non-linear dynamic behaviour that originates from inelastic effects,
i.e. viscous and frictional damping. It is desirable to isolate this non-linear dynamic
behaviour for validation of the amplitude and frequency dependence of the material
models. The shear specimen has been made in two kinds of natural rubber with
different amount of filler. The geometry of the double shear specimens can be seen
in Table 4.1.

The second component is a cylindrical bushing with simple geometry, see Figure
4.1. This component expects to show a strong non-linear elastic behaviour for large
displacements in radial loading. A major purpose for studying this component is to
investigate the material models ability to capture non-linear elasticity in combination
with viscous and frictional damping. The cylindrical bushings have been made in
the same two rubber compounds as the double shear specimens. Material properties
and geometry of the cylindrical bushings are listed in Table 4.2.

The third component, a hydrobushing from Volvo Car Corporation, can be seen
in Figure 4.1. The hydrobushing consists of natural rubber and cavities partly filled
with a fluid. The fluid (glycol) can stream between different chambers through
channels. The component is designed to give high damping for low amplitudes and
a specific frequency.

The rubber material

The double shear specimen and the cylindrical bushing have been manufactured in
two natural rubber compounds. Both the compounds have a hardness of 50 IRHD
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Shear Diameter Diameter Thickness Thickness Mat- Hardness Loss angle

spec. left [mm] right [mm] left [mm] right [mm] erial [IRHD] [deg]

A 24.96 25.01 5.09 4.52 NR 50 5

B 24.93 24.94 5.33 5.99 NR 50 14.5

Table 4.1: Material properties and geometry of the shear specimens.

Cylindrical Outer Diam- Radial thick- Length Mat- Hardness Loss angle

bushing eter1 [mm] ness2[mm] [mm] erial [IRHD] [deg]

C 50.17 12.75 40.37 NR 50 5

D 50.27 12.72 39.82 NR 50 14.5

Table 4.2: Material properties and geometry of the cylindrical bushings.
1Distance between the outer housing’s outer sides.
2Measured from the outer housing’s inner side to the inner housing’s outer side.

and will consequently have similar stiffness properties. One of the compounds is low
filled and the other is highly filled. The low filled natural rubber has a nominal phase
angle of 5 degrees, which is a typical phase angle for NR in automotive applications.
The highly filled material has a nominal phase angle of 14.5 degrees and is chosen
to validate the material models for, from an automotive point of view, very high-
damped natural rubber. The low filled compound is used in shear specimen A and
cylindrical bushing C, whereas the highly filled compound is used in shear specimen
B and cylindrical bushing D.

4.2 Test method

The tests have been carried out by Lars Janerst̊al at the Materials Centre of Volvo
Car Corporation. All tests have been performed with a Schenck static/dynamic
tensile testing machine, see Figure 4.3. The machine has a load cell with maximum
capacity of ±7 kN which is 110% of the maximum level of stretch used in the testing
and is able to measure at a frequency interval of 0.1-1000 Hz. The used software
is TEST STAR II. The accuracy measured at the latest calibration occation is less
than ±0.1% in the middle of the measuring interval, and up to at the most ±0.5%
at the wings of the interval. It is possible to increase the accuracy even at low loads
by choosing interval depending on the components stiffness.

The components are as mentioned mechanically conditioned to avoid Mullins’
effect. It is important to perform this condition properly because the usefulness
of the test data depends on how the mechanical conditioning has been performed.
The method to condition the components used in this Master’s dissertation is the
one-level conditioning, see Figure 4.4. This one-level method uses only one level of
stretch in the conditioning procedure, and it is also the maximum level + 10% of
stretch used in the testing. In order to avoid heat build-up in the component it is
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Figure 4.3: The machine used for testing. A Schenck static/dynamic tensile testing
machine.

important to not cycle the component too long. The components are exposed to 3
cycles. A disadvantage of the one-level method, is that it tends to lower the stiffness
of the vulcanizate too much in regions of small stretch values, according to [1]. The
order of the tests have been chosen to preserve the conditioning during the tests.
The testing has been conducted with the highest amplitude first and continued with
decreasing amplitudes.
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Figure 4.4: The one-level conditioning of rubber components.
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4.3 Overview of performed tests

The three chosen components have been experimentally tested at the Materials
Centre laboratory of Volvo Car Corporation. Static, quasi-static, and steady state
harmonic dynamic tests have been conducted and they are listed in Table 4.3, 4.4,
and 4.5 respectively. The components, i.e. the shear specimens, the cylindrical
bushings, and the hydrobushing have been tested in the radial direction. To avoid
Mullins’ effect, the test specimens have been mechanically conditioned. The strategy
to preserve the conditioning during the testing has been to test the highest amplitude
first and to continue with decreasing amplitudes.

Static testing

The static tests have been conducted with a triangular displacement history, i.e.
with a constant velocity. The tested amplitudes for each component are listed in
Table 4.3. The shear specimens are tested with a constant velocity v=0.05 mm/s.
The cylindrical bushings are tested with v=0.05 mm/s except for the amplitude 0.12
mm which is tested with v=0.01 mm/s. The hydrobushing is tested with v=0.05
mm/s except for the amplitudes 0.5 mm, 0.2 mm, and 0.12 mm which are tested
with v=0.01 mm/s.

Component Amplitude [mm]
Shear strain [%] is given for the shear specimens

Shear specimen A 0.12(2%), 0.30(5%), 0.60(10%), 1.2(20%),
(low filled) 3.0(50%), 6.0(100%), 9.0(150%)

Shear specimen B 0.12(2%), 0.30(5%), 0.60(10%), 1.2(20%),
(high filled) 3.0(50%), 6.0(100%), 9.0(150%)

Cylindrical bushing C 0.12, 0.30, 0.60, 1.2, 3.0, 6.25
(low filled)

Cylindrical bushing D 0.12, 0.30, 0.60, 1.2, 3.0, 6.25
(high filled)

Hydrobushing 0.12, 0.20, 0.50, 0.80, 1.0, 1.5, 2.0, 3.0, 4.0, 4.5

Table 4.3: Static tests.
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Quasi-static testing

The quasi-static tests have been performed with a sinusoidal displacement history
at 0.03 Hz. The tested amplitudes for each component are listed in Table 4.4.

Component Frequency [Hz] Amplitude [mm]

Cylindrical bushing C 0.03 0.20, 0.50, 0.80, 1.0, 1.5, 2.0, 3.0, 5.0
(low filled)

Cylindrical bushing D 0.03 0.20, 0.50, 0.80, 1.0, 1.5, 2.0, 3.0, 5.0
(high filled)

Hydrobushing 0.03 0.20, 0.50, 0.80, 1.0, 1.5, 2.0, 3.0

Table 4.4: Quasi-static tests.
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Steady state harmonic dynamic testing

The dynamic tests have been performed as discrete frequency sweeps for a given
amplitude. The amplitudes and frequency sweeps for each component can be seen
in Table 4.5.

Component Frequency [Hz] Amplitude [mm]
Shear strain [%] is given for

the shear specimens

Shear 0.1-1 (∆f=0.1) 0.012(0.2%), 0.030(0.5%), 0.060(1%),
specimen A 1-49 (∆f=3) 0.12(2%), 0.30(5%), 0.60(10%),
(low filled) 1.2(20%), 3.0(50%)

Shear 0.1-1 (∆f=0.1) 0.012(0.2%), 0.030(0.5%), 0.060(1%),
specimen B 1-49 (∆f=3) 0.12(2%), 0.30(5%), 0.60(10%),
(high filled) 1.2(20%), 3.0(50%)
Cylindrical 1-51 (∆f=2) 0.20, 0.50, 0.80, 1.0,
bushing C 1.5, 2.0, 3.0
(low filled)
Cylindrical 1-51 (∆f=2) 0.20, 0.50, 0.80, 1.0,
bushing D 1.5, 2.0, 3.0
(high filled)

Hydrobushing 1-41 (∆f=2) 0.10, 0.20, 0.50, 0.80,
1.0, 1.5, 2.0

Table 4.5: Steady state harmonic dynamic tests.
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4.4 Analysis of experimental data

In this section, the experimental tests results are presented and some conclusions
are drawn. The amplitude and frequency dependence of the dynamic stiffness and
phase angle have been studied in detail. (The definition of dynamic modulus and
phase angle are discussed in Chapter 1). As mentioned in Chapter 3, the only
difference between dynamic modulus and dynamic stiffness is a geometrical factor.
The expression for dynamic stiffness can thus easily be derived. The components
with highly filled natural rubber are expected to show a strong amplitude depen-
dence. Non-linear elastic behaviour is expected for the cylindrical bushings and the
hydrobushing when they are subjected to large displacements.

4.4.1 Double shear specimens

The double shear specimens are studied in this section. The static tests are first
discussed and thereafter the steady state harmonic dynamic tests.

Static tests

Static test results are shown in Figure 4.5. It is clearly seen that the hysteresis loops
for the high filled specimen B is wider than the corresponding ones for the low filled
specimen A. The wider hysteresis loops for specimen B are due to damping, in this
case frictional damping induced by the filler. The amplitude dependence of high
filled natural rubber is illustrated in Figure 4.5(c), where a higher amplitude gives a
lower static stiffness. For the higher amplitudes in Figure 4.5(b) and (d), influence
of non-linear elasticity can be seen.

Steady state harmonic dynamic tests

Steady state harmonic dynamic tests have been performed to analyse the amplitude
and frequency dependence of the dynamic stiffness and phase angle. An overview
of the results are shown in Figure 4.6.

The experimental testing was not completely successful. The plots for the am-
plitudes 0.012 and 0.030 mm are irregular for both specimen A and B, see Figure 4.6
and 4.8. These amplitudes are neglected in the following chapters. From Figure 4.6
it is obvious that the dynamic stiffness and phase angle are dependent on amplitude
and frequency.

The amplitude dependence is studied in detail by 2-D plots of dynamic stiffness
and phase angle as function of amplitude for some specific frequencies (0.1, 13,
and 49 Hz) cf. Figure 4.7. The high filled shear specimen B has a strong amplitude
dependence with respect to dynamic stiffness. Increasing amplitude gives decreasing
stiffness. It is a bit unexpected that the low filled shear specimen A is so amplitude
dependent since the amplitude dependence originates from the filler. Shear specimen
B has higher dynamic stiffness than shear specimen A due to higher filler content,
especially at low amplitudes according to Figure 4.6 (a), 4.6(c), 4.7(a), and 4.7(c).
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Figure 4.5: Static characteristics for double shear specimens. Hysteresis loops for
amplitudes between 0.12 and 9.0 mm. Low filled specimen A in (a) and (b), high filled
specimen B in (c) and (d). Corresponding shear strain is given for each amplitude.

Phase angle as function of amplitude is plotted in Figure 4.7(b) and (d). The phase
angle increases with amplitude for the lowest amplitudes, whereas it decreases with
amplitude for the other amplitudes.

The frequency dependence of the shear specimens can be seen in Figure 4.8 where
2-D plots of dynamic stiffness and phase angle as function of frequency are shown.
Increasing frequency results in increasing dynamic stiffness and phase angle due to
the viscous damping. The frequency dependence of the two shear components are
very similar, but somewhat stronger for the high filled specimen B. Figure 4.7 and
4.8 indicate that the frequency and amplitude dependence are separated from each
other, i.e. uncoupled. This important conclusion can be drawn since all the curves
within each plot in Figure 4.7 and 4.8 can be established by translating one of the
curves in the plots.

Hysteresis loops are plotted force-displacement relationships as mentioned in
Chapter 1. These plots contain information about dynamic stiffness and phase
angle. The dynamic stiffness is given by the slope of the hysteresis loop. A steep



4.4. ANALYSIS OF EXPERIMENTAL DATA 27

10
−2

10
0

10
2 0

1
2

3

100

150

200

250

300

amplitude  (mm)frequency  (Hz)

dy
na

m
ic

 s
tif

fn
es

s 
 (N

/m
m

)

(a) 

10
−2

10
0

10
2 0

1
2

3

2

4

6

8

amplitude  (mm)frequency  (Hz)

ph
as

e 
an

gl
e 

 (d
eg

)

(b) 

10
−2

10
0

10
2 0

1
2

3

0

200

400

600

amplitude  (mm)frequency  (Hz)

dy
na

m
ic

 s
tif

fn
es

s 
 (N

/m
m

)

(c) 

10
−2

10
0

10
2 0

1
2

3

8

10

12

14

16

18

amplitude  (mm)frequency  (Hz)

ph
as

e 
an

gl
e 

 (d
eg

)

(d) 

Figure 4.6: Steady state harmonic dynamic characteristics for the double shear spec-
imens. Dynamic stiffness and phase angle as function of amplitude and frequency.
Low filled specimen A in (a) and (b), high filled specimen B in (c) and (d).

hysteresis corresponds to a high stiffness. The phase angle is proportional to the
enclosed area of the hysteresis. Hysteresis loops are plotted in Figure 4.9. The
amplitude dependence is very clear, especially for shear specimen B. The frequency
dependence is more indistinct, but dynamic stiffness and phase angle increase with
frequency. The same set of hysteresis loops as in Figure 4.9 but for the amplitudes
0.60, 1.2, and 3.0 mm can be seen in Figure 4.10. They show the same behaviour
as is seen for the lower amplitudes.
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Figure 4.7: Steady state harmonic dynamic characteristics for the double shear spec-
imens. Dynamic stiffness and phase angle as function of amplitude for some specific
frequencies (0.1, 13, 49 Hz). Low filled specimen A in (a) and (b), high filled speci-
men B in (c) and (d).
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Figure 4.8: Steady state harmonic dynamic characteristics for the double shear spec-
imens. Dynamic stiffness and phase angle as function of frequency for different
amplitudes. Low filled specimen A in (a) and (b), high filled specimen B in (c) and
(d). Corresponding shear strain is given for each amplitude.
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Figure 4.9: Steady state harmonic dynamic characteristics for the double shear spec-
imens. Hysteresis loops for some different amplitudes at 0.3 Hz ((a) and (c)) and
at 49 Hz ((b) and (d)). Low filled specimen A in (a) and (b), high filled specimen B
in (c) and (d). Corresponding shear strain is given for each amplitude.
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Figure 4.10: Steady state harmonic dynamic characteristics for the double shear
specimens. Hysteresis loops for some different amplitudes at 0.3 Hz ((a) and (c))
and at 49 Hz ((b) and (d)). Low filled specimen A in (a) and (b), high filled specimen
B in (c) and (d). Corresponding shear strain is given for each amplitude.
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4.4.2 Cylindrical bushings

The cylindrical bushings are studied in this section. The static tests are first pre-
sented, thereafter the quasi-static tests and finally the steady state harmonic dy-
namic tests. As mentioned earlier in this chapter, the tests are performed in radial
direction.

Static tests

Static test results are shown in Figure 4.11. Influence of non-linear elasticity can be
seen for the highest amplitude. The amplitude dependence for the lowest amplitudes
is strong, resulting in increasing stiffness for decreasing amplitude cf. Figure 4.11(c).
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Figure 4.11: Static characteristics for the cylindrical bushings. Hysteresis loops for
amplitudes between 0.12 and 6.25 mm. Low filled specimen C in (a) and (b), high
filled specimen D in (c) and (d).
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Quasi-static tests

Quasi-static test results are given in Figure 4.12. The hysteresis loop for the highest
amplitude is non-linear, which is caused by a combination of non-linear elasticity
and frictional damping. As pointed out in Chapter 1, the hysteresis for a linear
viscoelastic material has an elliptical shape. The highest amplitude in Figure 4.12(e)
and (f) has more of a parallelogram-shaped hysteresis. The hysteresis loops for the
lower amplitudes are more elliptical-shaped.

Steady state harmonic dynamic tests

As for the shear specimens, steady state harmonic dynamic tests have been per-
formed to analyse the amplitude and frequency dependence. The results are pre-
sented in 3-D plots cf. Figure 4.13 to give an overview of the dynamic behaviour. The
amplitude and frequency dependence are studied in detail by 2-D plots of dynamic
stiffness and phase angle as function of amplitude (for some specific frequencies) and
frequency (for different amplitudes) cf. Figure 4.14 and 4.15.

The dynamic testing was successful for all frequencies and amplitudes. From
Figure 4.13 it is obvious that the dynamic stiffness and phase angle are dependent on
amplitude and frequency. The high filled cylindrical bushing has as expected a strong
amplitude dependence with respect to dynamic stiffness and phase angle. Cylindrical
bushing C has also a strong amplitude dependence, which is quite unexpected since
it has a low filler content (the amplitude dependence originates from the filler).

2-D plots of the amplitude dependence are shown in Figure 4.14. The dynamic
stiffness and phase angle decrease with increasing amplitude, except for the lowest
amplitude where the phase angle for some cases increases with increasing amplitude.

Dynamic stiffness and phase angle are as expected higher for the high filled
specimen D. Note the decrease in dynamic stiffness as the amplitude increases from
0.20 to 3.0 mm. The stiffness is reduced by a factor of 2 for specimen D and
significantly reduced for specimen C. The two cylindrical bushings have the same
dynamic stiffness for an amplitude of 1.5 mm, see Figure 4.14(a) and (c).

The frequency dependence is shown in Figure 4.15. Both dynamic stiffness and
phase angle generally increase with increasing frequency. The two cylindrical bush-
ings have a very similar frequency dependence. Just as for the shear specimens,
Figure 4.14 and 4.15 indicate that the frequency and amplitude dependence are sep-
arated from each other, i.e. uncoupled. This important conclusion can be drawn
since all the curves within each plot in Figure 4.14 and 4.15 can be established by
translating one of the curves in the plots.

Hysteresis loops are plotted in Figure 4.16. The amplitude dependence is very
clear, especially for the high filled cylindrical bushing D. The frequency dependence
is more indistinct, but dynamic stiffness and phase angle increase with frequency.
As earlier mentioned, the dynamic stiffness is given by the slope of the hysteresis
loop and the phase angle is proportional to the enclosed area of the loop. The same
set of hysteresis loops as in Figure 4.16 but for the amplitudes 1.5, 2.0, and 3.0 mm
can be seen in Figure 4.17.
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Figure 4.12: Quasi-static characteristics for the cylindrical bushings. Hysteresis
loops for some different amplitudes at 0.03 Hz. Low filled specimen C in (a), (c),
and (e), and high filled specimen D in (b), (d), and (f).
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Figure 4.13: Steady state harmonic dynamic characteristics for the cylindrical bush-
ings. Dynamic stiffness and phase angle as function of amplitude and frequency.
Low filled specimen C in (a) and (b), high filled specimen D in (c) and (d).



36 CHAPTER 4. LABORATORY EXPERIMENTS

0.5 1 1.5 2 2.5 3
800

900

1000

1100

1200

1300

1400

amplitude  (mm)

dy
na

m
ic

 s
tif

fn
es

s 
 (N

/m
m

)

1 Hz
25 Hz
51 Hz

(a) 

0.5 1 1.5 2 2.5 3
3

4

5

6

7

8

9

amplitude  (mm)

ph
as

e 
an

gl
e 

 (d
eg

)

1 Hz
25 Hz
51 Hz

(b) 

0.5 1 1.5 2 2.5 3
800

1000

1200

1400

1600

1800

2000

amplitude  (mm)

dy
na

m
ic

 s
tif

fn
es

s 
 (N

/m
m

)

1 Hz
25 Hz
51 Hz

(c) 

0.5 1 1.5 2 2.5 3
7

8

9

10

11

12

13

14

15

amplitude  (mm)

ph
as

e 
an

gl
e 

 (d
eg

)

1 Hz
25 Hz
51 Hz

(d) 

Figure 4.14: Steady state harmonic dynamic characteristics for the cylindrical bush-
ings. Dynamic stiffness and phase angle as function of amplitude for some specific
frequencies (1, 25, and 51 Hz). Low filled specimen C in (a) and (b), high filled
specimen D in (c) and (d).
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Figure 4.15: Steady state harmonic dynamic characteristics for the cylindrical bush-
ings. Dynamic stiffness and phase angle as function of frequency for different am-
plitudes. Low filled specimen C in (a) and (b), high filled specimen D in (c) and
(d).
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Figure 4.16: Steady state harmonic dynamic characteristics for the cylindrical bush-
ings. Hysteresis loops for some different amplitudes at 5 Hz ((a) and (c)) and at 51
Hz ((b) and (d)). Low filled specimen C in (a) and (b), high filled specimen D in
(c) and (d).
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Figure 4.17: Steady state harmonic dynamic characteristics for the cylindrical bush-
ings. Hysteresis loops for some different amplitudes at 5 Hz ((a) and (c)) and at 51
Hz ((b) and (d)). Low filled specimen C in (a) and (b), high filled specimen D in
(c) and (d).
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4.4.3 Hydrobushing

The hydrobushing (used in a Volvo car) is studied in this section. The results from
the experiments are presented in the same manner as for the cylindrical bushings,
i.e. the static tests are first presented, thereafter the quasi-static tests and finally the
steady state harmonic dynamic tests. The tests are, as mentioned earlier, performed
in radial direction.

Static tests

Static test results are given in Figure 4.18. Amplitude dependence in the form of
frictional damping can be seen in Figure 4.18(a), where increasing amplitude gives
decreasing stiffness. The amplitude dependence for large displacements in Figure
4.18(c) is due to non-linear elasticity.
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Figure 4.18: Static characteristics for the hydrobushing.
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Quasi-static tests

Quasi-static test results are given in Figure 4.19. A weak amplitude dependence
can be observed in Figure 4.19(a). The non-linearities after 2.0 mm displacement in
Figure 4.19(b) are caused by non-linear elasticity.
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Figure 4.19: Quasi-static characteristics for the hydrobushing. Hysteresis loops for
some different amplitudes at 0.03 Hz.

Steady state harmonic dynamic tests

The results are illustrated in the same manner as for the shear specimens and the
cylindrical bushings, i.e. with 3-D plots first and thereafter 2-D plots to illustrate
the amplitude and frequency dependence in more detail.

Dynamic stiffness and phase angle as function of amplitude and frequency are
plotted in Figure 4.20. The amplitude and frequency dependence are different for
the hydrobushing compared to the cylindrical bushings. The general dynamic be-
haviour of the cylindrical bushings is that dynamic stiffness and phase angle decrease
with increasing amplitude, whereas they increase with increasing frequency. The hy-
drobushing is as earlier mentioned designed to give a high vibration isolation for low
amplitudes (typically 0.10-0.20 mm) and a specific frequency (typically 15-20 Hz),
see Figure 4.20(b) and 4.21(b).

The dynamic stiffness of the hydrobushing has a strong amplitude and frequency
dependence for small amplitudes cf. Figure 4.20(a).

The maximum phase angle in Figure 4.20(b) is much higher than for the cylindri-
cal bushings. The frequency dependence of the hydrobushing is shown in Figure 4.21.
The dynamic stiffness and phase angle have a very strong frequency dependence for
small amplitudes. Dynamic stiffness and phase angle as function of amplitude are
given in Figure 4.22. The amplitude dependence of dynamic stiffness and phase
angle is weak for higher amplitudes, especially for the dynamic stiffness, cf. Figure
4.22.
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The dynamic characteristics of the hydrobushing have a very strong frequency
dependence, which is logical since there is a fluid contained in it.

It has been concluded that the amplitude and frequency dependence of the shear
specimens and cylindrical bushings are uncoupled. As for the hydrobushing, Figure
4.20 and 4.21 show that the amplitude and frequency dependence are coupled.

Hysteresis loops are plotted in Figure 4.23. The strong frequency dependence is
clearly seen comparing Figure 4.23(a) to (b) and Figure 4.23(c) to (d).

The non-linearities in Figure 4.23(b) and (d) are mainly due to viscous damping,
compare for example the hysteresis loop for 0.50 mm in Figure 4.23(a) to (b).
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Figure 4.20: Steady state harmonic dynamic characteristics for the hydrobushing.
Dynamic stiffness and phase angle as function of amplitude and frequency.
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Figure 4.21: Steady state harmonic dynamic characteristics for the hydrobushing.
Dynamic stiffness and phase angle as function of frequency for different amplitudes.
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Figure 4.22: Steady state harmonic dynamic characteristics for the hydrobushing.
Dynamic stiffness and phase angle as function of amplitude for some specific fre-
quencies (1, 21, and 41 Hz).
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Figure 4.23: Steady state harmonic dynamic characteristics for the hydrobushing.
Hysteresis loops for some different amplitudes at 5 Hz ((a) and (c)) and at 41 Hz
((b) and (d)).
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4.4.4 Summary of experimental test results

Findings from the analysis of experimental data are listed in this section. Conclu-
sions regarding the amplitude and frequency dependence, the rubber materials, and
the specific components are drawn.

• High filled natural rubber has higher dynamic stiffness and phase angle than
low filled natural rubber.

• High filled natural rubber has a stronger amplitude dependence than low filled
natural rubber.

• All the components show amplitude and frequency dependence with respect
to dynamic stiffness and phase angle.

• The general dynamic behaviour of the rubber components, i.e. shear specimens
and cylindrical bushings, is that dynamic stiffness and phase angle decrease
with increasing amplitude, whereas they increase with increasing frequency.
(The phase angle increases with increasing amplitude for some low ampli-
tudes).

• The hydrobushing consists of natural rubber and cavities partly filled with a
fluid (glycol). It is designed to give a high vibration isolation for low ampli-
tudes (typically 0.1-0.2 mm) and a specific frequency (typically 15-20 Hz), see
Figure 4.20(b) and 4.21(b). The dynamic characteristics of the hydrobushing
have a very strong frequency dependence, which is logical since there is a fluid
in the bushing. The maximum damping (phase angle) for the hydrobushing is
much higher than for the other components.

• The shear specimens are linear elastic up to about 100% shear strain and
slightly non-linear elastic for higher strains. The cylindrical bushings and hy-
drobushing show a strong non-linear elastic behaviour for large displacements.

• The amplitude and frequency dependence of the rubber components, i.e. shear
specimens and cylindrical bushings are uncoupled. However, the amplitude
and frequency dependence are coupled for the hydrobushing.



Chapter 5

Fitting procedures

In order to obtain the unknown model parameters from experimental data an op-
timization approach is adopted. Optimization means searching for a minima or a
maxima for a certain function in a certain interval with or without any specified
constraints.

5.1 The optimization approach

The fitting procedure can be viewed as a minimization of the relative error of the
component model compared to the experimental data. For this purpose an error
function φ is established

φ =
n

∑

i=1

((
Ki

dyn,theor

Ki
dyn,exp

− 1)2 + (
di

theor

di
exp

− 1)2) (5.1)

This function expresses the sum of the relative error of the component model com-
pared to the experimental data. φ is a function of the unknown component param-
eters. To find a minima of the error function, already existing algorithms developed
at Structural Mechanics (Lund University) [3] in Matlab have been used. In order
to find the best fit, the error function φ has to be calculated repeatedly for all
amplitudes and frequencies where measurements have been made.

Matlab uses iterative numerical methods to determine the minima of functions.
The iterative methods start with assumed initial values. On the basis of the first
values the search goes on for new values closer to the function minima. The multi-
dimensional line search algorithm fmincon provided by the optimization tool-box in
Matlab has been used to find the minimum of the error function (5.1).

The experimental data is evaluated for certain displacement pairs of angular
frequency and displacement amplitude in sinusoidal displacement control i.e.

[(ω1, û1), . . . , (ωn, ûn)]

For every pair (ωi, ûi) the dynamic stiffness Kdyn,exp and the phase angle δexp are

45
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measured. That gives n values for Kdyn,exp and n values for δexp i.e.

[K1
dyn,exp, . . . , Kn

dyn,exp]

and
[δ1

exp, . . . , δn
exp]

Further the function φ expresses the sum of the relative error of the component
model compared to the experimental data, and certain values of the unknown com-
ponent parameters will minimize the function φ. The relative error format (5.1)
makes it possible to compare stiffness and loss angle although they are numerically
of unequal magnitude, giving equal weight to stiffness and damping. Evaluating the
unknown component parameters is therefore a pure optimization problem.

5.2 Generalized linear elastic viscoelastic elasto-

plastic model
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Figure 5.1: Generalized linear elastic viscoelastic elastoplastic model.

The generalized linear elastic viscoelastic elastoplastic model contains several
Maxwell and basic frictional elements cf. Figure 5.1. This component model is
able to model both frequency and amplitude dependent material behaviour. The
error function for the viscoelastic and elastoplastic parts are discussed separetely in
Appendix C.

5.2.1 Fitting algorithm

The analytical part of the following fitting algorithm (Table 5.1) is based on an
analytical approximation (see next Section 5.2.2). The analytical approximation is
based on an assumption that the dynamic stiffness can be expressed as the sum of
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the constant elastic stiffness, the viscous stiffness, and the frictional stiffness and
that the normalized damping can be expressed as a weighted sum of viscous and
frictional damping. However, the poor accuracy of this approach yields a model with
poor fit to experimental data. It turns out that the most correct way to simulate
the component model is to use a time-stepping algorithm [3]. This is, however
a time-consuming procedure, especially if the optimization algorithm is such that
the error function φ needs to be evaluated repeatedly. For an increasing number
of experimental data and component parameters this approach will be very slow
compared to an analytical fitting approach. An efficient compromise between the two
approaches is to use the analytical approach for repeated evaluations and to use the
time stepping algorithm to calibrate the analytical expression with certain intervals.
The evaluated K i

dyn,theor and di
theor according to the analytical approximation are

used together with the evaluated Knum.i
dyn,theor and dnum.i

theor calculated from the time-
stepping algorithm, (see section 5.2.3), to set up the following relations

corri
dyn =

Knum.i
dyn,theor

Ki
dyn,theor

(5.2)

and

corri
δ =

dnum.i
theor

di
theor

(5.3)

Expression (5.2) and (5.3) are then used to calibrate the error function φ according
to

φcorr =
k

∑

i=1

((
Ki

dyn,theorcorr
i
dyn

Ki
dyn,exp

− 1)2 + (
di

theorcorr
i
δ

di
exp

− 1)2) (5.4)

The analytical part of the algorithm (Table 5.1) is then used again together with
the modified error function φcorr to obtain new component parameters. The new
obtained component parameters will give a model with better fit to experimental
data.
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Experimental data is given as:

k denotes the number of measurements

[(ω1, û1), (ω2, û2), . . . , (ωk, ûk)] (rad/s, m)

[K1
dyn,exp, K

2
dyn,exp, . . . , Kk

dyn,exp] (N/m)

[δ1
exp, δ

2
exp, . . . , δk

exp] (rad)

Analytical part

search for the unknown component parameters > 0 which will
minimize the function φ

φ =
∑k

i=1((
Ki

dyn,theor

Ki
dyn,exp

− 1)2 + (
di

theor

di
exp

− 1)2)

end Analytical part

Numerical part

from time-stepping algorithm compute

Knum.i
dyn,theor = F̂i

ûi

dnum.i
theor = U i

s

πF̂iûi

compute correction factors according to

corri
dyn =

Knum.i
dyn,theor

Ki
dyn,theor

corri
d =

dnum.i
theor

di
theor

end Numerical part

calibrated Analytical part

search for the unknown component parameters > 0 which will
minimize the function φcorr

φcorr =
∑k

i=1((
Ki

dyn,theor
corri

dyn

Ki
dyn,exp

− 1)2 + (
di

theor
corri

d

di
exp

− 1)2)

end calibrated Analytical part

Table 5.1: Algorithm to fit generalized linear elastic viscoelastic elastoplastic model
to experimental data.

5.2.2 Analytical approximation

Consider for instance a solid model represented by a spring, one Maxwell element,
and one basic frictional element in parallel. Since the largest force for the total
elastoplastic contribution does not occur at the same time as for the viscoelastic
contribution, adding the contributions from all elements in the model becomes com-



5.2. GENERALIZED LINEAR ELASTIC VISCOELASTIC ELASTOPLASTIC MODEL49

plicated. Therefore two approximations are made when calculating dynamic stiffness
and phase angle. The contribution to the dynamic stiffness in the complex plane
including the frictional contribution can be approximately represented by the basic
Fourier component of the response as an equivalent complex stiffness. This yields
an interpretation of the total dynamic stiffness illustrated in Figure 5.2.
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Figure 5.2: The equivalent complex modulus including elastic, viscous, and frictional
contributions.

The total dynamic stiffness Kdyn = |K∗| is the length of the vector in the complex
plane and the length of |K∗| can approximately be expressed as

Kdyn ≈ Ke cos(δ) + Kv
dyn(ω) cos(δv − δ) + Kp

dyn(û) cos(δp − δ) (5.5)

by projections of each component. For reasonable values of the phase angle δ corre-
sponding to, say δ < 0.4 rad (≈ 23o), the approximation d = sin δ ≈ tan δ ≈ δ and
cos δ = 1 can be used and the dynamic stiffness can approximately be expressed as
a sum of elastic, viscous, and frictional stiffness

Kdyn ≈ Ke + Kv
dyn(ω) + Kp

dyn(û) (5.6)

i.e. the total dynamic stiffness is the sum of the constant elastic stiffness, the fre-
quency dependent viscous stiffness, and the amplitude dependent frictional stiffness.

The damping is also found approximately from Figure 5.2 as

d = sin(δ) ≈
Kv

dyn(ω) sin(δv) + Kp
dyn(û) sin(δp)

Kdyn

(5.7)

i.e. the total normalized damping d can be expressed as a weighted sum of viscous
and frictional damping. As it was mentioned above for reasonable values of the
damping it is concluded that equation (5.7) also can be written as

d = sin(δ) ≈ δ ≈
Kv

dyn(ω)δv + Kp
dyn(û)δp

Kdyn

(5.8)

The discussion above of the component model which only contains one Maxwell
element and one basic frictional element is easily generalized to contain more than
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one Maxwell and frictional element. For a solid model which contains n Maxwell
elements and m basic frictional elements Kdyn is given as

Kdyn ≈ Ke + Kv.1
dyn(ω) + ... + Kv.n

dyn(ω) + Kp.1
dyn(û) + ... + Kp.m

dyn (û) (5.9)

and the total damping d as

d ≈
Kv.1

dyn(ω)δ1
v + ... + Kv.n

dyn(ω)δn
v + Kp.1

dyn(û)δ1
p + ... + Kp.m

dyn (û)δm
p

Kdyn

(5.10)

Based on the above discussed analytical approximations, an analytical fitting
approach for a generalized linear elastic viscoelastic elastoplastic model which con-
tains one spring with constant stiffness Ke, n Maxwell element, and m basic fric-
tional element in parallel (cf. Figure 5.1) is now discussed. As already mentioned,
viscoelastic elastoplastic models are able to model both frequency and amplitude
dependent material behaviour and therefore the experimental data are given as

{(ωi, ûi)} = [(ω1, û1), (ω2, û2), . . . , (ωk, ûk)] (rad/s, m)

{K i
dyn,exp} = [K1

dyn,exp, K2
dyn,exp, . . . , Kk

dyn,exp] (N/m)

and
{δi

exp} = [δ1
exp, δ

2
exp, . . . , δk

exp] (rad)

Every pair of (ωi, ûi) corresponds to the measured K i
dyn,exp and δi

exp , the amplitude
and frequency can therefore be chosen arbitrary.

In order to calculate the total dynamic stiffness Kdyn,theor and damping dtheor

for the entire model, dynamic stiffness and damping are calculated for each of the
elements. Starting with the Maxwell element and making use of the derived expres-
sion for complex modulus E∗ in Appendix B and making a transition from material
level to structural level leads to

K∗

v.j(ω) = Kj
v

jωtr.j
1 + jωtr.j

(5.11)

where tr.j = cj/K
j
v . From Appendix B it is concluded that |K∗

v.j(ω)| = Kv.j
dyn(ω)

and arg(K∗

v.j(ω)) = δj
v which give the following relations

Kv.j
dyn(ω) = Kj

v

ω2t2r.j
1 + ω2t2r.j

(5.12)

and

dj
v = sin(δj

v) =
1

√

1 + ω2t2r.j
(5.13)
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Summing up the total dynamic contribution from all the viscoelastic elements j
and the elastic element results in the following expression

Kv
dyn =

√

√

√

√(Ke +
n

∑

j=1

Kv.j
dyn cos(δj

v))2 + (
n

∑

j=1

Kv.j
dyn sin(δj

v))2 (5.14)

where δj
v is the phase angle according to equation (5.13). In a similar manner the

total viscous damping can be expressed as

dv = sin(δv) =
1

Kv
dyn

n
∑

j=1

Kv.j
dyn

√

1 + ω2t2r.j
(5.15)

The behaviour of the basic frictional element q depends on whether it is plastic
or not, i.e. whether the displacement û is larger than the yield displacement uq

s.
From Section C.2.1 it is concluded that the dynamic stiffness in a basic frictional
element q can be expressed as

Kp.q
dyn =

{

Kq
puq

s

û
if uq

s < û
Kq

p otherwise
(5.16)

and the hysteretic work is given by

U q
s =

{

4Kq
pu

q
s(û − uq

s) if uq
s < û

0 otherwise
(5.17)

Summing up the total dynamic contribution from all elastoplastic elements q
results in the following expression

Kp
dyn =

m
∑

q=1

Kp.q
dyn (5.18)

The total plastic damping is calculated according to

dp = sin(δp) =

∑m
q=1 U q

s

πû
∑m

q=1 Kq
pu

q
s

(5.19)

As already discussed two approximations were introduced in order to calculate
the dynamic stiffness and damping for a generalized linear elastic viscoelastic elasto-
plastic model. The total dynamic stiffness can approximately be expressed as the
sum of the constant elastic stiffness, the frequency dependent viscous stiffness, and
the amplitude dependent frictional stiffness. The normalized damping can approxi-
mately be expressed as a weighted sum of viscous and frictional damping. Combin-
ing the two approximations (5.9) and (5.10) gives the following expressions for the
theoretical dynamic stiffness and normalized damping for every measurement i

Ki
dyn,theor ≈ Kv.i

dyn + Kp.i
dyn (5.20)
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di
theor = sin(δi

theor) ≈
Kv.i

dyn sin(δi
v) + Kp.i

dyn sin(δi
p)

Ki
dyn,theor

(5.21)

Note that Kv.i
dyn also contains the elastic contribution Ke.

Using equation (5.20) and equation (5.21) it is now possible to evaluate the approx-
imative error function φ. The unknown component parameters are then obtained
from the analytical part of the algorithm (Table 5.1).

5.2.3 Numerical evaluation

A time-stepping algorithm for the Maxwell element can be found in Chapter 2
Section 2.2. For small time steps ∆t and using an approximation according to the
trapezoidal rule, the force for the viscoelastic element j can be expressed in an
incremental form as

∆F v
j = F v

j (e−∆ti/tjr − 1) +
Kj

v∆ui

2
(1 + e−∆ti/tjr) (5.22)

A time-stepping algorithm for the basic frictional element can be found in Chap-
ter 2 Section 2.4, and it is concluded that the force for the elastoplastic element q
can be expressed in the following incremental form

∆F p
q =

{

Kq
p∆ui if elastic

0 otherwise
(5.23)

The total incremental force for the whole generalized linear elastic viscoelastic
elastoplastic model is then obtained by adding all incremental force contributions
from all elements for the time-step ∆ti i.e.

∆Fi = Ke∆ui +
n

∑

j=1

∆F v
j +

m
∑

q=1

∆F p
q (5.24)

The total force for the whole model is then obtained from

i = 1, 2, 3 . . .

∆Fi = Ke∆ui +
∑n

j=1 ∆F v
j +

∑m
q=1 ∆F p

q

Fi = Fi−1 + ∆Fi

(5.25)

With knowledge of the applied displacement history together with the evaluated
component parameters from the analytical part of the algorithm (Table 5.1) it is
possible to calculate the dynamic stiffness and damping from (5.25) according to

Knum.i
dyn,theor =

F̂i

ûi

(5.26)
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and

dnum.i
theor = sin(δnum.i

theor ) =
U i

s

πF̂iûi

(5.27)

where index num denotes quantities evaluated based on (5.25). Hence, the error
function φcorr can be numerically evaluated.
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5.3 Modified fitting procedure for non-linear be-

haviour
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Figure 5.3: Generalized non-linear viscoelastic elastoplastic model.

The applied amplitude û is larger in the static and quasi-static tests than in the
steady state harmonic dynamic tests, see Chapter 4. The largest amplitudes in the
static and quasi-static tests give rise to a non-linear behaviour, as can be seen in
the hysteresis loops in Chapter 4.

The generalized linear elastic viscoelastic elastoplastic model is unable to model
such behaviour. It is therefore necessary to replace the spring with constant stiffness
Ke by a non-linear spring with stiffness Ke(u) , i.e. the stiffness is a function of the
applied displacement. However, it is concluded in Chapter 4 that the amplitudes in
the dynamic tests are not large enough to show any non-linear elastic behaviour. The
static or quasi-static tests are however conducted with an amplitude large enough
to show non-linear elastic behaviour.

5.3.1 Correction for the non-linear elastic behaviour

A method to take the non-linear elastic behviour into account is presented. The
method is based on experimental data that fulfil the above discussion concerning
large displacement amplitudes.

First step

A generalized linear elastic viscoelastic elastoplastic model fitted to experimental
data obtained from a dynamic test gives values of Ke, K1

v , . . . , Kn
v , c1 , . . . , cn,

K1
p , . . . , Km

p , and u1
s , . . . , um

s where n denotes the number of Maxwell element
and m denotes the number of basic frictional element that have been used. In order
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Figure 5.4: The middle curve is the mean shape Fmean(umean).

to capture the non-linear elastic behaviour, the mean shape Fmean = Fmean(umean)
is used cf. Figure 5.4 where the mean shape Fmean(umean) is the middle curve.

Second step

The next step is to find a force-displacement relation according to f = Ke(u)u. Make
use of the force-displacement relationship (3.3) in Chapter 3 Section 3.2 which is a
theoretical expression for the mean shape according to Figure 5.4. Equation (3.3)
can also be expressed in matrix notation, i.e.

Ftheor = [2u 4u3 6u5][D10 D20 D30]
T (5.28)

The main task is to find D10, D20, and D30 such that

F i
theor = [2umean.i 4u3

main.i 6u5
mean.i][D10 D20 D30]

T ≈ F i
mean (5.29)

or
Ftheor = Ad ≈ Fmean (5.30)

Equation (5.30) is an overdetermined system of equations which can be solved by
using the operation

ATAd ≈ ATFmean (5.31)

This operation transforms the overdetermined system of equations to an ordinary
system of equations with three equations and three unknowns and the D-constants
are computed according to

d = (ATA)−1ATFmean (5.32)

The obtained D-constants are constants which give the best fit according to equation
(5.30) in a least squares sense.

With the evaluated D-constants from equation (5.32) the following relations are
obtained

A =
D20

D10

and B =
D30

D10

(5.33)
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Figure 5.5: The dependence on D10 of the curve shape. Larger value of D10 gives a
stiffer material.

Hence, the shape of the middle curve in Figure 5.4 is remained also when D10 is
multiplied by other values, i.e. D20 = D10A and D30 = D10B. The dependence on
D10 of the curve shape is illustrated in Figure 5.5.

Third step

The force-displacement relationship is according to equation (3.3). For small dis-
placements the equation (3.3) can approximately be written as

Ftheor ≈ 2D10u (5.34)

From equation (5.34) it is concluded that a good approximation for D10 is

D10 ≈
Ke

2
(5.35)

where Ke is the stiffness according to a generalized linear elastic viscoelastic elasto-
plastic model fitted to experimental data obtained from a dynamic test. The spring
with the constant stiffness Ke in the generalized linear elastic viscoelastic elasto-
plastic model is now replaced with a non-linear spring with stiffness Ke(u), i.e.

Ke(u) = Ke + 4AD10u
2 + 6BD10u

4 (5.36)

where D10 = Ke/2 , A and B according to (5.33).

Forth step

The time-stepping algorithm (5.25) in Section 5.2.3 is then modified according to

i = 1, 2, 3 . . .

∆Fi = (Ke + 4AD10∆u2
i + 6BD10∆u4

i )∆ui +
∑n

j=1 ∆F v
j +

∑m
q=1 ∆F p

q

Fi = Fi−1 + ∆Fi

(5.37)
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A generalized non-linear elastic viscoelastic elastoplastic model obtained by this
method is validate by comparing theoretical force-displacement curves created by the
modified time-stepping algorithm (5.37) to experimental force-displacement curves.

5.4 Changing weight between stiffness and damp-

ing

As already discussed, the fitting procedure can be viewed as a minimization of the
relative error of the component model compared to the experimental data. For this
purpose an error function φ was proposed.

φ =
n

∑

i=1

(k(
Ki

dyn,theor

Ki
dyn,exp

− 1)2 + (1 − k)(
di

theor

di
exp

− 1)2) (5.38)

In the above expression the factor k is introduced. By choosing the scale factor k,
it is possible to decide whether to emphasize a correct modelling of the dynamic
stiffness Kdyn or a correct modelling of the damping d.



Chapter 6

Validation

The one dimensional models presented in Chapter 2 and Appendix B are validated
for static, quasi-static, and steady state harmonic dynamic loading in this chap-
ter. The model behaviour for the shear specimens, the cylindrical bushings, and
the hydrobushing have been validated. Three viscoelastic models have been vali-
dated, namely Kelvin-Voigt, Zener, and generalized Maxwell. However, the main
validation concerned the generlized viscoelastic elastoplastic (viscoplastic) model.
The viscoelastic models are, as mentioned in Appendix B, unable to capture the
inelastic amplitude dependence (frictional damping) of natural rubber. They are
as a consequence of that only briefly evaluated. The generalized viscoelastic elasto-
plastic model is more carefully evaluated since it captures both the amplitude and
frequency dependence.

6.1 Expectation on the validation

It was concluded in Chapter 4 that the evaluated components are amplitude and
frequency dependent. The amplitude and frequency dependence are uncoupled for
the rubber components (i.e. shear specimens and cylindrical bushings) and coupled
for the hydrobushing. None of the validated models has coupled amplitude and
frequency dependence, i.e. the behaviour of the hydrobushing can not be captured.
The viscoelastic models lack the ability to model inelastic amplitude dependence
(frictional damping) and are therefore expected to correlate poorly. The generalized
viscoelastic elastoplastic model is however expected to correlate well for the shear
specimens and cylindrical bushings [3].

6.2 Validation method

Calculated and measured hysteresis loops for different amplitudes and frequencies
have been plotted and compared. Identity of hysteresis loops gives identical dynamic
stiffness and phase angle, but the inverse is not necessarily true. An adequate
way to evaluate the behaviour of the models is thus to compare measured and

58
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calculated hysteresis loops. Moreover have the dynamic stiffness and phase angle
been validated. Measured and calculated values for dynamic stiffness and phase
angle have been compared in 2-D and 3-D plots. The 2-D plots show dynamic
stiffness and phase angle as function of frequency for some specific amplitudes. An
overview of the validation is given in Table 6.1.
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Static Quasi-static Steady state harmonic
behaviour behaviour dynamic behaviour

Shear specimens

Viscoelastic models: -2-D plots of
dynamic stiffness and

phase angle

Generalized viscoelastic
elastoplastic model: -Hysteresis -Hysteresis loops

loops
-2-D plots of

dynamic stiffness and
phase angle

-3-D plots of
dynamic stiffness and

phase angle
Cylindrical bushings

Viscoelastic models: -2-D plots of
dynamic stiffness and

phase angle

Generalized viscoelastic
elastoplastic model: -Hysteresis -Hysteresis -Hysteresis loops

loops loops
-2-D plots of

dynamic stiffness and
phase angle

-3-D plots of
dynamic stiffness and

phase angle
Hydrobushing

Viscoelastic models:

Generalized viscoelastic
elastoplastic model: -Hysteresis loops

-2-D plots of
dynamic stiffness and

phase angle

-3-D plots of
dynamic stiffness and

phase angle

Table 6.1: Validation of the viscoelastic models and the viscoelastic elastoplastic
model.



6.3. VALIDATION RESULTS 61

6.3 Validation results

The validation results are presented and discussed in this section. The double shear
specimens are first validated, thereafter the cylindrical bushings and finally the
hydrobushing. The double shear specimens and the cylindrical bushings have been
modelled by viscoelastic models and the generalized non-linear elastic viscoelastic
elastoplastic model. The generalized linear elastic viscoelastic elastoplastic model
has been used for the hydrobushing.

6.3.1 Double shear specimens

The models of shear specimen A and B are validated in this section. In Chapter
4 it was concluded that the amplitudes 0.012 and 0.030 mm were unsuccessfully
measured. These amplitudes are consequently not used in the validation. The
viscoelastic models are first discussed and then the generalized non-linear elastic
viscoelastic elastoplastic model.

Viscoelastic models

Three viscoelastic models (i.e. amplitude independent) are validated with measure-
ments in Figure 6.1, namely Kelvin-Voigt, Zener, and generalized Maxwell. The
Kelvin-Voigt and Zener model are fitted to the measured data with the use of Mat-
lab function fmins, whereas the generalized Maxwell model is fitted with fmincon
[3]. The viscoelastic models are unable to describe amplitude dependence and are
therefore fitted to the mean value of the dynamic stiffness and the phase angle for
the largest and smallest amplitude.

Figure 6.1 shows that the calculated and measured responses correlate poorly.
The Kelvin-Voigt model gives an almost constant dynamic stiffness as function of
frequency and a phase angle linearly dependent of frequency. The linear relationship
between phase angle and frequency is seen in the equation tan(δ) = η

E
ω which is

discussed in Appendix B. The Zener model underestimates the dynamic stiffness for
low frequencies and overestimates the dynamic stiffness for high frequencies. Just as
the Kelvin-Voigt model is the Zener model unable to capture the frequency depen-
dence of the phase angle. The generalized Maxwell model describes the frequency
dependence of the dynamic stiffness and phase angle fairly well with respect to the
mean value. The fitting curve for the generalized Maxwell model in Figure 6.1(b)
and (d) can be understood to be discontinuous. This is a phenomena from the
plotting, smaller frequency step will give continuous curves, i.e. the model is con-
tinuous. The viscoelastic model that describes the behaviour of the shear specimens
most accurate is the generalized Maxwell model.
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Figure 6.1: Validation of the viscoelastic models of the double shear specimens for
steady state harmonic dynamic behaviour. Low filled specimen A in (a) and (b),
high filled specimen B in (c) and (d). The generalized Maxwell model of specimen
A and B has five and four elements respectively. Note: The generalized Maxwell
models have the phase angle 0 degrees at 0 Hz. It is first at 0.1 Hz that the phase
angle has the value that is shown in (b) and (d). Corresponding shear strain is given
for each amplitude.
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Generalized non-linear elastic viscoelastic elastoplastic model

The static behaviour is first validated and then the harmonic dynamic behaviour.
Shear specimen A has been modelled by three Maxwell and four frictional elements,
whereas shear specimen B has been modelled by one Maxwell and four frictional
elements. It is possible to get more accurate models by increasing the number of
elements, but the improvement is hardly noticeable. The relative error (err) as
function of number of Maxwell and frictional elements is plotted in Figure 6.2. The
relative error (err) is defined as

err =
1

n

√

φ (6.1)

φ is defined in equation (5.1) and n is the number of measured points.

Figure 6.2: Relative error as function of number of frictional and Maxwell elements.
The relative error is established from steady state harmonic dynamic tests. Low filled
specimen A in (a) and high filled specimen B in (b).

Static behaviour

The generalized non-linear elastic viscoelastic elastoplastic model describes the over-
all static behaviour of specimen A and B in a satisfying manner, see Figure 6.3. The
hysteresis loops with linear elastic behaviour are calculated very accurately, whereas
the hysteresis loop with non-linear elastic behaviour shows significant discrepancies
for the non-linear elastic parts of the hysteresis loop. These discrepancies are caused
by the adopted strategy to fit the frictional elements to experimental data. The fric-
tional elements have been fitted to steady state harmonic dynamic test data (linear
elastic), so the frictional damping for amplitudes corresponding to non-linear elastic
behaviour have not been identified. The lack of frictional damping for the non-linear
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elastic parts of the hysteresis loop with 9.0 mm amplitude is clear. The hystere-
sis loops for the low amplitudes presented in Chapter 4 have been left out since
they have linear elastic behaviour and therefore are as accurately calculated as the
hysteresis loops for 3.0 and 6.0 mm.
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Figure 6.3: Validation of the generalized non-linear elastic viscoelastic elastoplastic
models of the double shear specimens for static behaviour. Low filled specimen A in
(a) and (b), high filled specimen B in (c) and (d). Measured responses in (a) and
(c), calculated responses in (b) and (d). Corresponding shear strain is given for each
amplitude.
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Steady state harmonic dynamic behaviour

The model of shear specimen A (three viscoelastic and four elastoplastic elements)
is validated in Figure 6.4, 6.5, and 6.6. The 3-D plots in Figure 6.4(a) and (b) give
an overview of the calculated and measured behaviour, whereas the 2-D plots in
Figure 6.4(c) and (d) give more detailed information. The generalized non-linear
elastic viscoelastic elastoplastic model is not able to capture the frequency depen-
dence perfectly. The model typically overestimates the dynamic stiffness for low
frequencies and underestimates the dynamic stiffness for high frequenies, see Figure
6.4(c). The amplitude 0.060 mm seems to be the most difficult amplitude to model
with respect to both dynamic stiffness and phase angle. By studying the phase
angle in Figure 6.4(d) it can be seen that shear specimen A is modelled with great
accuracy for frequencies between 0.1-25 Hz and that the correlation is worse for
higher frequencies.

Measured and calculated hysteresis loops for low amplitudes at 0.3 Hz and at
49 Hz are plotted in Figure 6.5. The slope and enclosed area of the hysteresis loops
seems to be quite accurately modelled. The calculated hysteresis loops are sharp
edged for low amplitudes cf. Figure 6.5(b) and (d). This phenomena appears since
only one frictional element is working. Hysteresis loops for high amplitudes are
validated in Figure 6.6. Figure 6.6(a) and (b) illustrate just like Figure 6.4(c) that
the generalized non-linear elastic viscoelastic elastoplastic model overestimates the
dynamic stiffness for low frequencies. Calculated and measured hysteresis loops show
good agreement for high amplitudes cf. Figure 6.6. To sum up it can be concluded
that the model describes the behaviour of shear specimen A with satisfying accuracy.

The model of shear specimen B (one viscoelastic and four elastoplastic elements)
is validated in Figure 6.7, 6.8, and 6.9. The behaviour for high amplitudes is pre-
dicted more accurate than the behaviour for low amplitudes, see Figure 6.7.

The slope and enclosed area of the hysteresis loops correlate well cf. Figure 6.8
and 6.9. As for shear specimen A, the calculated hysteresis loops are sharp edged
for low amplitudes, see Figure 6.8(b) and (d). The model captures the behaviour of
shear specimen B with satisfying accuracy.
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Figure 6.4: Validation of the generalized non-linear elastic viscoelastic elastoplas-
tic model of shear specimen A for steady state harmonic dynamic behaviour. The
model has three Maxwell and four frictional elements. Solid lines and surfaces are
calculated responses, dashed lines and grid surfaces are measured responses. Corre-
sponding shear strain is given for each amplitude.
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Figure 6.5: Calculated and measured hysteresis loops for low amplitudes at 0.3 Hz
((a) and (b)) and at 49 Hz ((c) and (d)), shear specimen A. The model has three
Maxwell and four frictional elements. Measured responses in (a) and (c), calculated
responses in (b) and (d). Corresponding shear strain is given for each amplitude.
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Figure 6.6: Calculated and measured hysteresis loops for high amplitudes at 0.3 Hz
((a) and (b)) and at 49 Hz ((c) and (d)), shear specimen A. The model has three
Maxwell and four frictional elements. Measured responses in (a) and (c), calculated
responses in (b) and (d). Corresponding shear strain is given for each amplitude.



6.3. VALIDATION RESULTS 69

10
0

10
10

50

100

150

200

250

300

350

dy
na

m
ic

 s
tif

fn
es

s 
 (N

/m
m

)

frequency  (Hz)

0.060 mm (1 %)
0.12 mm (2%)
0.30 mm (5%)
0.60 mm (10%)
1.2 mm (20%)
3.0 mm (50%)

(c) 

10
0

10
14

6

8

10

12

14

16
ph

as
e 

an
gl

e 
 (d

eg
)

frequency  (Hz)

0.060 mm (1%)
0.12 mm (2%)
0.30 mm (5%)
0.60 mm (10%)
1.2 mm (20%)
3.0 mm (50%)

(d) 

Figure 6.7: Validation of the generalized non-linear elastic viscoelastic elastoplastic
model of shear specimen B for steady state harmonic dynamic behaviour. The model
has one Maxwell and four frictional elements. Solid lines and surfaces are calculated
responses, dashed lines and grid surfaces are measured responses. Corresponding
shear strain is given for each amplitude.
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Figure 6.8: Calculated and measured hysteresis loops for low amplitudes at 0.3 Hz
((a) and (b)) and at 49 Hz ((c) and (d)), shear specimen B. The model has one
Maxwell and four frictional elements. Measured responses in (a) and (c), calculated
responses in (b) and (d). Corresponding shear strain is given for each amplitude.
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Figure 6.9: Calculated and measured hysteresis loops for high amplitudes at 0.3 Hz
((a) and (b)) and at 49 Hz ((c) and (d)), shear specimen B. The model has one
Maxwell and four frictional elements. Measured responses in (a) and (c), calculated
responses in (b) and (d). Corresponding shear strain is given for each amplitude.
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6.3.2 Cylindrical bushings

The models of cylindrical bushing C and D are validated in this section. The vis-
coelastic models are first discussed and then the generalized non-linear elastic vis-
coelastic elastoplastic model.

Viscoelastic models

The viscoelastic models (Kelvin-Voigt, Zener, generalized Maxwell) are validated
with measurements in Figure 6.10. The Kelvin-Voigt and Zener model are fitted to
the measured data with the Matlab function fmins, whereas the generalized Maxwell
model is fitted with fmincon [3]. The viscoelastic models are unable to describe
amplitude dependence and are therefore fitted to the mean value of the dynamic
stiffness and phase angle for the largest and smallest amplitude. Just as for the
shear specimens, the calculated and measured responses correlate poorly cf. Figure
6.10.

The Kelvin-Voigt model gives an almost constant dynamic stiffness as function
of frequency and a phase angle linearly dependent on frequency. The Zener model
underestimates the dynamic stiffness for low frequencies and overestimates the dy-
namic stiffness for high frequencies. The Kelvin-Voigt and Zener model are unable
to capture the frequency dependence of the phase angle. The generalized Maxwell
model describes the frequency dependence of the dynamic stiffness and phase angle
fairly well with respect to the mean value. The fitting curve for the generalized
Maxwell model in Figure 6.10(b) and (d) can be understood to be discontinuous.
This is a phenomena from the plotting, a smaller frequency step will give contin-
uous curves, i.e. the model is continuous. The viscoelastic model that describes
the behaviour of the cylindrical bushings most accurate is the generalized Maxwell
model.



6.3. VALIDATION RESULTS 73

0 10 20 30 40 50 60
200

400

600

800

1000

1200

1400

dy
na

m
ic

 s
tif

fn
es

s 
 (N

/m
m

)

frequency  (Hz)

Generalized Maxwell
Zener 
Kelvin−Voigt
mean value of measurements
measurement: amplitude 0.20 mm 
measurement: amplitude 3.0 mm(a) 

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

ph
as

e 
an

gl
e 

 (d
eg

)

frequency  (Hz)

Generalized Maxwell 
Zener 
Kelvin−Voigt 
mean value of measurements
measurement: amplitude 0.50 mm
measurement: amplitude  3.0 mm(b) 

0 10 20 30 40 50 60
200

400

600

800

1000

1200

1400

1600

1800

2000

dy
na

m
ic

 s
tif

fn
es

s 
 (N

/m
m

)

frequency  (Hz)

Generalized Maxwell
Zener 
Kelvin−Voigt
mean value of measurements
measurement: amplitude  0.20 mm
measurement: amplitude  3.0 mm(c) 

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

ph
as

e 
an

gl
e 

 (d
eg

)

frequency  (Hz)

Generalized Maxwell
Zener 
Kelvin−Voigt 
mean value of measurements
measurement: amplitude 0.20 mm
measurement: amplitude 3.0 mm(d) 

Figure 6.10: Validation of the viscoelastic models of the cylindrical bushings for
steady state harmonic dynamic behaviour. Low filled specimen C in (a) and (b),
high filled specimen D in (c) and (d). The generalized Maxwell model of bushing
C and D has three and four Maxwell elements respectively. Note: The generalized
Maxwell models have the phase angle 0 degrees at 0 Hz. It is first at 1 Hz that the
phase angle has the value that is shown in (b) and (d).
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Generalized non-linear elastic viscoelastic elastoplastic model

The static behaviour is first validated, thereafter the harmonic dynamic behaviour,
and finally the quasi-static behaviour. Three Maxwell and three frictional elements
are needed to get an accurate modelling of bushing C. Bushing D is modelled by
one Maxwell and six frictional elements. Just as for the shear specimens it is pos-
sible to get more accurate models by increasing the number of elements, but the
improvement is hardly noticeable. The relative error (err) defined in equation (6.1)
as function of number of Maxwell and frictional elements is plotted in Figure 6.11.

Figure 6.11: Relative error as function of number of frictional and Maxwell elements.
The relative error is established from steady state harmonic dynamic tests. Low filled
bushing C in (a) and high filled bushing D in (b).

Static behaviour

The generalized non-linear elastic viscoelastic elastoplastic model describes the over-
all static behaviour of bushing D in a satisfying manner, see Figure 6.12. In Figure
6.12(a) it can be seen that damage is appearing in cylindrical bushing C. The dam-
age is presumable an effect from the measurements. The bushing might have been
at rest long enough so the stiffness could recover. Damage can not be described by
the models presented in this Master’s thesis. The hysteresis loops for bushing D
with linear elastic behaviour are calculated very accurately, whereas the hysteresis
loop for bushing D with non-linear elastic behaviour shows significant discrepancies
for the non-linear elastic parts of the hysteresis loop. These discrepancies are caused
by the adopted strategy to fit the frictional elements. The frictional elements have
been fitted to steady state harmonic dynamic test data (linear elastic), so the fric-
tional damping for amplitudes corresponding to non-linear elastic behaviour have
not been identified. The lack of frictional damping for the non-linear elastic parts
of the hysteresis loop with 6.25 mm amplitude is clear. The hysteresis loops for
the low amplitudes presented in Chapter 4 have been left out since they have linear
elastic behaviour and therefore are as accurately calculated as the hysteresis loops
for 1.2 and 3.0 mm.
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Figure 6.12: Validation of the generalized non-linear elastic viscoelastic elastoplastic
models of the cylindrical bushings for static behaviour. Low filled bushing C in (a)
and (b), high filled bushing D in (c) and (d). Measured responses in (a) and (c),
calculated responses in (b) and (d).
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Steady state harmonic dynamic behaviour

The model of cylindrical bushing C (three Maxwell and three frictional elements)
is validated in Figure 6.13, 6.14, and 6.15. The 3-D plots in Figure 6.13(a) and (b)
give an overview of the calculated and measured behaviour, whereas the 2-D plots
in Figure 6.13(c) and (d) give more detailed information. The generalized non-
linear elastic viscoelastic elastoplastic model correlates well for dynamic stiffness
cf. Figure 6.13(c). The dynamic stiffness is however mostly overestimated and the
behaviour for 0.20 mm amplitude is not perfectly modelled. The dynamic stiffness
is most accurately modelled for 15 Hz and higher frequencies. Furthermore, the
model describes the phase angle with high accuracy cf. Figure 6.13(d). The largest
discrepancies for the phase angle are for the 3.0 mm amplitude.

Hysteresis loops for low amplitudes at 5 Hz and at 51 Hz are validated in Fig-
ure 6.14. As concluded earlier the slope and enclosed area of the hysteresis loops
are accurately modelled, but as for the shear specimens, the hysteresis loops are
sharp edged for low amplitudes. The calculated and measured hysteresis loops for
high amplitudes show good agreement (cf. Figure 6.15). The model describes the
behaviour of bushing C with satisfying accuracy.

The model of cylindrical bushing D (one Maxwell and six frictional elements)
is validated in Figure 6.16, 6.17, and 6.18. The largest discrepancies for dynamic
stiffness and phase angle are for 0.20 and 3.0 mm amplitude respectively, see Figure
6.16(c) and (d). The hysteresis loops in Figure 6.17 and 6.18 are sharp edged, but
the dynamic stiffness and phase angle are accurately modelled. The model captures
the behaviour of bushing D with satisfying accuracy.
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Figure 6.13: Validation of the generalized non-linear elastic viscoelastic elastoplastic
model of bushing C for steady state harmonic dynamic behaviour. The model has
three Maxwell and three frictional elements. Solid lines and surfaces are calculated
responses, dashed lines and grid surfaces are measured responses.
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Figure 6.14: Calculated and measured hysteresis loops for low amplitudes at 5 Hz ((a)
and (b)) and at 51 Hz ((c) and (d)), bushing C. The model has three Maxwell and
three frictional elements. Measured responses in (a) and (c), calculated responses in
(b) and (d).
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Figure 6.15: Calculated and measured hysteresis loops for high amplitudes at 5 Hz
((a) and (b)) and at 51 Hz ((c) and (d)), bushing C. The model has three Maxwell
and three frictional elements. Measured responses in (a) and (c), calculated re-
sponses in (b) and (d).
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Figure 6.16: Validation of the generalized non-linear elastic viscoelastic elastoplastic
model of bushing D for steady state harmonic dynamic behaviour. The model has
one Maxwell and six frictional elements. Solid lines and surfaces are calculated
responses, dashed lines and grid surfaces are measured responses.
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Figure 6.17: Calculated and measured hysteresis loops for low amplitudes at 5 Hz
((a) and (b)) and at 51 Hz ((c) and (d)), bushing D. The model has one Maxwell
and six frictional elements. Measured responses in (a) and (c), calculated responses
in (b) and (d).
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Figure 6.18: Calculated and measured hysteresis loops for high amplitudes at 5 Hz
((a) and (b)) and at 51 Hz ((c) and (d)), bushing D. The model has one Maxwell
and six frictional elements. Measured responses in (a) and (c), calculated responses
in (b) and (d).
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Quasi-static behaviour

The generalized non-linear elastic viscoelastic elastoplastic model describes the over-
all quasi-static behaviour of bushing C and D well, see Figure 6.19. The significant
discrepancies for the non-linear elastic parts of the hysteresis loops are caused by
the adopted strategy to fit the frictional elements to experimental data, see the
discussion for static behaviour on page 74.

−6 −4 −2 0 2 4 6
−6000

−4000

−2000

0

2000

4000

6000

displacement  (mm)

fo
rc

e 
 (N

)

5.0 mm
3.0 mm
2.0 mm(a) 

−6 −4 −2 0 2 4 6
−6000

−4000

−2000

0

2000

4000

6000

displacement  (mm)

fo
rc

e 
 (N

)

5.0 mm
3.0 mm
2.0 mm(b) 

−6 −4 −2 0 2 4 6
−6000

−4000

−2000

0

2000

4000

6000

displacement  (mm)

fo
rc

e 
 (N

)

5.0 mm
3.0 mm
2.0 mm(c) 

−6 −4 −2 0 2 4 6
−6000

−4000

−2000

0

2000

4000

6000

displacement  (mm)

fo
rc

e 
 (N

)

5.0 mm
3.0 mm
2.0 mm(d) 

Figure 6.19: Validation of the generalized non-linear elastic viscoelastic elastoplastic
models of the cylindrical bushings for quasi-static behaviour. Low filled bushing C
in (a) and (b), high filled bushing D in (c) and (d). Measured responses in (a) and
(c), calculated responses in (b) and (d).

6.3.3 Hydrobushing

The measurements for the hydrobushing show that the amplitude and frequency
dependence are coupled. All the presented models in this dissertation have however
uncoupled amplitude and frequency dependence. The modelling of the hydrobushing
is therefore expected to correlate poorly. A generalized linear elastic viscoelastic
elastoplastic model has been validated for steady state harmonic dynamic behaviour.
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Generalized linear elastic viscoelastic elastoplastic model

The hydrobushing has been modelled by two Maxwell and four frictional elements.
The relative error (err) defined in equation (6.1) as function of number of Maxwell
and frictional elements is plotted in Figure 6.20. It can be seen that the number of
elements has a weak influence on the quality of the model. The inability of the model
to describe coupled amplitude and frequency dependence is clearly seen in Figure
6.21, 6.22, and 6.23. A proposed one dimensional model that presumably could
describe the behaviour of the hydrobushing more accurately is discussed Chapter 9.

Figure 6.20: Relative error as function of number of frictional and Maxwell elements.
The relative error is established from steady state harmonic dynamic tests.
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Figure 6.21: Validation of the generalized linear elastic viscoelastic elastoplastic
model of the hydrobushing for steady state harmonic dynamic behaviour. The model
has two Maxwell and four frictional elements. Solid lines and surfaces are calculated
responses, dashed lines and grid surfaces are measured responses.
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Figure 6.22: Calculated and measured hysteresis loops for low amplitudes at 5 Hz
((a) and (b)) and at 41 Hz ((c) and (d)), hydrobushing. The model has two Maxwell
and four frictional elements. Measured responses in (a) and (c), calculated responses
in (b) and (d).
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Figure 6.23: Calculated and measured hysteresis loops for high amplitudes at 5 Hz
((a) and (b)) and at 41 Hz ((c) and (d)), hydrobushing. The model has two Maxwell
and four frictional elements. Measured responses in (a) and (c), calculated responses
in (b) and (d).
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6.3.4 Summary of the validation

Important findings from the validation are summarized here. Limitations, advan-
tages, and possibilities of the models are noted.

• The inability to capture amplitude dependence limits the use of viscoelastic
models such as Kelvin-Voigt, Zener, and generalized Maxwell. The Kelvin-
Voigt and Zener model describe the component behaviours very poorly. The
generalized Maxwell model correlates best of the viscoelastic models. The
strong amplitude dependence is however not taken into account, which is a
severe limitation.

• The rubber components with uncoupled amplitude and frequency dependence
(i.e. the shear specimens and cylindrical bushings) have been successfully mod-
elled with the generalized non-linear elastic viscoelastic elastoplastic model for
static as well as quasi-static and steady state harmonic dynamic loading.

• The hysteresis loops for the cylindrical bushings with linear elastic behaviour
are calculated very accurately with the generalized non-linear elastic viscoelas-
tic elastoplastic model, whereas the hysteresis loops with non-linear elastic
behaviour show significant discrepancies for the non-linear elastic parts of the
hysteresis loops. These discrepancies are caused by the adopted strategy to fit
the frictional elements to experimental data. The frictional elements have been
fitted to steady state harmonic dynamic test data (linear elastic), so the fric-
tional damping for amplitudes corresponding to non-linear elastic behaviour
have not been identified. The lack of frictional damping for the non-linear
elastic parts of the hysteresis loops is clearly seen in the plots.

• The generalized linear elastic viscoelastic elastoplastic model is not able to de-
scribe the coupled amplitude and frequency dependence of the hydrobushing.

• The behaviour for low amplitudes at steady state harmonic dynamic excitation
is most difficult to describe for the generalized non-linear elastic viscoelastic
elastoplastic models.

• The calculated hysteresis loops are sharp edged for low amplitudes. This is
an effect of the Coulumb friction in combination with few active frictional
elements for low amplitudes.



Chapter 7

Practical aspects of the

viscoplastic model

There are some general aspects that should be considered when formulating a mathe-
matical model which is intended to be used in computer simulations. In this chapter,
these aspects are discussed together with aspects concerning the proposed general-
ized viscoplastic (viscoelastic elastoplastic) model.

The construction of the model is a compromise between retaining all factors that
could likely have a bearing on the validity of the model and keeping the mathematical
model sufficiently simple so it is solvable using the tools at hand. As an example of
this the proposed model is 1-D and will not be able to predict any potential coupling
effects that can arise in combined axial and radial load cases.

Another aspect of the model is that the number of frictional and Maxwell ele-
ments are chosen so that the physics of the bushing can sufficiently be predicted.
This will put the requirement on the implementation in ADAMS that this feature
can be utilized without any extra effort. This means that the number of fractions in
the implemented model should not be fixed. Another aspect of the model is that the
number of frictional and Maxwell elements are chosen so that the model correlates
well with the experimental data. The implementation in ADAMS has to have this
feature, i.e. the number of fractions in the implemented model can not be fixed.

A crucial requirement on the mathematical formulation of the model is that it
must be stable for the numerical methods that are provided in commercial MBS
packages. Furthermore, the solutions obtained must be as accurate as necessary. As
for this, the formulation of the frictional element is critical. Friction has the intrisic
property of being highly non-linear, and especially the Coulomb friction model which
also is discontinuous. In general, predictor-corrector integrators are not suitable for
discontinuities and if a multi-step method is used the order of the integrator must
probably be reduced in order to continue the solution. The formulation must also
be suitable for integrators which make use of variable step size, i.e. a time-stepping
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algorithm for fixed step sizes is not possible. Taking the mentioned aspects into
consideration, it is necessary to work out another formulation for the frictional
element than the Coulomb model.

One of the major considerations besides accuracy in the development of mathe-
matical models is efficiency. By this we mean the amount of effort, both human and
computer, required to solve a given problem. With this in mind and what have been
mentioned above we can identify some issues that will have impact on efficiency:

• In order to get model parameters we have to perform extensive testing

• The fitting procedure make use of closed-form solutions which may not be
possible to use for a new friction formulation

• The friction formulation will have an effect on the effort needed by the inte-
grator

• The number of frictional and Maxwell elements

Besides this issues conserning mathematical formulation and efficiency, we are
rather convinced that the proposed viscoplastic model, although with some further
development, together with the fitting procedure have the potential to be an impor-
tant part in vehicle dynamic simulations.



Chapter 8

Summary and conclusions

The main objectives of this Master’s thesis have been to:

• Gain further insight in material characteristics and dynamic properties of rub-
ber components.

• Analyse and determine the validity of different bushing models.

• Develop a methodology for model parameter identification from physical com-
ponent tests.

• Give directions for rubber bushing modelling in MBS models.

Physical testing has been conducted to give information about the material char-
acteristics and dynamic properties of rubber components. High filled natural rubber
has higher dynamic stiffness and phase angle than low filled natural rubber. Fur-
thermore, high filled natural rubber has a stronger amplitude dependence than low
filled natural rubber.

The general dynamic behaviour of the rubber components (i.e. shear specimens
and cylindrical bushings) is that dynamic stiffness and phase angle decrease with
increasing amplitude, whereas they increase with increasing frequency. (The phase
angle increases with increasing amplitude for some low amplitudes). Non-linear
elasticity appears at large displacements.

The hydrobushing consists of natural rubber and cavities partly filled with a
fluid (glycol). It is designed to give high vibration isolation for low amplitudes
(typically 0.1-0.2 mm) and a specific frequency (typically 15-20 Hz). The dynamic
characteristics of the hydrobushing have a very strong frequency dependence, which
is logical since there is a fluid in the bushing. The maximum damping (phase angle)
for the hydrobushing is much higher than for the other components.
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An important conclusion from the physical testing is that the amplitude and fre-
quency dependence of the rubber components (i.e. shear specimens and cylindrical
bushings) are uncoupled. However, the amplitude and frequency dependence are
coupled for the hydrobushing.

Different bushing models have been validated against physical test data. The
viscoelastic models (Kelvin-Voigt, Zener, and generalized Maxwell) describe the
behaviour of the components very poorly, because the inability to show amplitude
dependence.

The non-linear elastic generalized viscoelastic elastoplastic model captures the
behaviour of the rubber components (i.e. shear specimens and cylindrical bushings)
in a satisfying manner. The linear elastic generalized viscoelastic elastoplastic model
is useful for displacements that show linear elastic behaviour.

The bushing models presented in this Master’s dissertation are unable to accu-
rately model the hydrobushing. The hydrobushing has as mentioned coupled am-
plitude and frequency dependence and the bushing models are only able to model
uncoupled amplitude and frequency dependence. The hydro bushing is therefore
poorly modelled. A proposed model that more accurately should describe the be-
haviour of the hydrobushing is discussed in Chapter 9.



Chapter 9

Future work

Suggestions for future work within the field of rubber component modelling are listed
below:

• The studied approach for bushing modelling is based on model parameter
identification from physical component tests. Physical measurements are ex-
pensive, it is therefore desirable to reduce the number of measurements. A
method to reduce the number of measurements,which does not significantly
impact the accuracy of the model, would be valuable.

• Develop a bushing model that describes coupled amplitude and frequency de-
pendence. A proposed model that possibly could describe the behaviour of
the hydrobushing more accurately is illustrated in Figure 9.1. This model has
amplitude and frequency dependent elements coupled in series. The model is
therefore expected to describe the coupled amplitude and frequency depen-
dence existing in the hydrobushing.

ε

σ

Figure 9.1: A model consisting of non-linear elastic spring in parallel with amplitude
and frequency dependent elements coupled in series.

• Extend the 1-D bushing models to 3-D bushing models. It is desirable to
develop a bushing model that describes the behaviour of the bushing in 3-D.
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• Smoother friction functions in order to avoid the sharp edged hysteresis loops
existing from the present frictional elements.

• Implementation of the bushing models in MBS codes such as ADAMS is neces-
sary. It will then be possible to use the bushing models in durability, handling,
and ride comfort simulations.

• The car is exposed to loads from for example the engine and road. These
loads have different amplitudes and frequencies so it is necessary to study
how accurate the models describe the combined loads from for example the
road and engine. Evaluation of the model response for transitions between
amplitudes is an important continuation of this work.

• There are so-called jounce bumpers in the wheel suspensions of a car. When
driving over a rough road or a transient obstacle, the jounce bumpers are
subjected to shock loads. It is important to have an accurate modelling of the
jounce bumpers since the shock loads (i.e. strength load cases) play a major
role in the design of the car body and chassis components. A sophisticated
model to describe the impact behaviour of a jounce bumper is welcome.



Appendix A

Mechanical properties of rubber

Appendix A serves as an introduction to the behaviour of rubber material. Most of
the figures and the text in this chapter can be found in the thesis [1] written by Per-
Erik Austrell. Here follows a brief description of molecular structure, manufacturing
process, and mechanical properties.

A.1 Molecular structure and manufacturing pro-

cess

Rubber is a collective name for a broad group of materials with different chemical
composition but similar molecular structure and mechanical properties. The word
“rubber” originates from the pencil lead erasing property of natural gum rubber.
The fact that all rubber materials are highly elastic polymers is the origin of the
alternative and more descriptive name elastomer.

There are elastomers made from a wide variety of organic substances, but they
are all polymers with very long molecular chains. The raw elastomeric material can
be either natural or synthetic. In natural rubber, the sap of a tropical “rubber”
tree, is coagulated in thin sheets and compressed into bales.

Natural rubber was used in the first elastomeric units manufactured, and it is
still the most common material in general purpose applications. The most common
synthetic rubber is made with butadiene as a base, and the main application is in
car tires, because of the good abrasion resistance.

The chemical bonds between the molecular chains is of van der Waals type which
is a weak chemical bond, and as a consequence the raw material is of a soft and
plastic consistency. The important process of vulcanization, that was discovered by
Charles Goodyear in 1839, converts the plastic raw elastomeric material into a solid
and elastic consistency. Vulcanization is a chemical process where the long molecular
chains are linked together by bonds much stronger than the van der Waals bonds,
and thereby forming a stable and more solid molecular structure. The cross linking
is enabled by a small amount of sulfur that is mixed with the plastic raw material.
When the mixture is heated to about 170 o C the vulcanization process starts and
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Figure A.1: Molecular structure for a carbon-black-filled rubber vulcanizate. Carbon
particles, polymer chains, and cross-links are schematically illustrated.

cross-links are formed, connecting the molecular chains.
Fillers such as carbon-black are added in order to increase the stiffness of the

material or, for some applications, to increase the resistance to wear. Carbon-black
consists of very small particles of carbon (20 nm - 50 µm) that are mixed into the
raw rubber base before vulcanization. The individual filler particles are stronger
joined to the elastomeric material than they are joined together i.e. filler to filler.
The chemical bonds between filler to filler is of van der Waal type. The filler and the
elastomeric material can therefore be regarded as separated phases in the vulcanized
rubber.

The rubber phase forms a continuous network, and the filler material forms
agglomerates inside the rubber network. The material is thus a two-phase material
made from constituents with completely different mechanical properties. Figure
A.1 shows schematically the structure on a molecular level of a carbon-black-filled
vulcanizate. The polymer chains are shown as solid lines and the cross-links between
filler and polymer chains are shown as dashed lines.

Vulcanization and shaping are combined in the so-called moulding process. The
rubber-filler mix is inserted into the mould cavity and heated to the appropriate
temperature, and the vulcanization starts. The curing time is dependent on the
temperature, the size of the unit and on how well heat is transferred to the unit.

Elastomeric units in technical applications are often composed of both rubber
and steel. The attached steel parts are used to connect the rubber unit to other
structures or to increase the stiffness of the unit. It is possible to attach steel parts
to the rubber material in the moulding process. The steel parts are bonded, very
efficiently, to the rubber. The bond is stronger than the rubber material itself in the
sense that a rupture in a properly manufactured rubber-steel unit usually occurs in
the rubber and not at the bonding surface between rubber and steel.
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A.2 Mechanical properties

The main specific properties of elastomeric materials taken advantage of in engi-
neering applications are the ability to sustain large straining without permanent
deformation, the vibration damping property, and the resistance to wear.

The elastic property is the most prominent characteristic feature of vulcanized
rubber. The ability to store large amounts of strain energy and to release most
of it in unloading is a primary function. The molecular structure enables it to
undergo large deformations and recover almost completely in unloading. However,
the material becomes less elastic and more leathery as more filler is mixed into the
compound.

The elasticity of rubber is due to the long tangled molecular chains and their
ability to stretch and orient themselves in the direction of straining. This is possible
because the repeated molecular units in the polymer can rotate freely about the
bonds joining the units. Elongations of several hundred percent are possible.

Another characteristic feature of rubber is the large difference between the shear
modulus and the bulk modulus. A typical carbon-black-filled rubber vulcanizate
for technical applications has a shear modulus of about 1 MPa and a bulk modulus
of about 2000 MPa. The large volumetric stiffness compared to the shear stiffness
indicates a nearly incompressible behaviour. In many applications complete incom-
pressibility is a good assumption.

Although rubber is a highly elastic material it is not perfectly elastic. A differ-
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Figure A.2: Force-displacement relations for a rubber vulcanizate exposed to cyclic
loading. The so-called Mullins’ effect can clearly be seen.
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ence is always observed between the loading and unloading curves in a stress-strain
diagram. This phenomenon is referred to as hysteresis, and it is illustrated in Figure
A.2 for a carbon-black-filled rubber in planar tension. In cyclic loading there is thus
always a part of the energy that is not recoverable. The area enclosed by the loading
and unloading curves represents energy dissipated mainly as heat. In free vibrations
this causes the amplitude of the vibrations to decrease, and this material property
is therefore termed damping. Adding fillers to the rubber compound increases the
damping.

Stress softening or Mullins’ [8] effect is another phenomenon which has to be
considered. This decrease in stiffness by straining is seen in Figure A.2. If a pre-
viously unstrained rubber specimen is exposed to cyclic loading up to a specific
strain level, the maximum stress and the distance between the loading and unload-
ing curves will decrease in the first few load cycles. After about three to five load
cycles a steady state will be reached at this specific maximum strain level. If the
specimen is exposed to a new set of cyclic straining to a higher strain level, there
will be a new decrease in stress and hysteresis until a new steady state is reached.
The strain softening behaviour originates from a gradual breakdown of molecular
crosslinks and to configurational changes in the rubber network, with increasing
strain.

In order to get stationary values in the testing of rubber specimens it is thus
necessary to pre-strain the specimens before conducting the actual recording of
corresponding force-displacement values. This is called mechanical conditioning.

The filler phase has a very small stress carrying capacity as compared to the
rubber phase. The filler particles can be regarded as rigid inclusions embedded in
the rubber matrix. Consequently, the stress and strain in the rubber phase will
reach higher levels in elastomeric units with filler added than in an equally loaded
and identical unfilled unit. The filler will also affect the maximum elongation (at
break), which is lowered by adding fillers. This effect of the filler on the rubber
phase is called strain amplification.

Stiffness of a rubber vulcanizate is classified by a value of hardness. It is measured
by an indentation test with a ball or needle with a spherical tip. A constant force
is applied and the indentation depth is measured. There are two methods, the
IRHD test (International Rubber Hardness Degrees) which is also the ISO standard
test, and the Shore Hardness test. The scales of the tests are almost identical for
rubbers in the range of 30-80 IRHD where most rubber mixes belong. The hardness
test gives an indirect measure of the elastic modulus. This is sometimes the only
value available for the modulus of the material. The relationship between the shear
modulus G and hardness is indicated in Figure A.3. The diagram is constructed
from Lindley [6] (Table 3, p. 8).

Simple shear is more linear than other homogeneous modes of deformation. The
shear modulus is quite independent of the shear strain and it can therefore be re-
garded as a material constant at least for moderate strains. This is not the case for
Young’s modulus as can be seen in Figure A.4, where loading curves in compres-
sion/tension and simple shear are shown for a 60 IRHD carbon-black-filled natural
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rubber vulcanizate. (The curve illustrating the uniaxial state of stress is composed
of a tension test and a compression test.) The behaviour of rubber in compression is
progressive. For tension and simple shear the behaviour is first degressive and then
progressive for large strains.
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Figure A.3: (a) An indentation test is conducted with a ball or needle with a spherical
tip.(b) Relationship between the shear modulus G and the hardness in IRHD or
SHORE units.
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Figure A.4: Homogeneous deformations of a 60 IRHD rubber, (a) uniaxial state of
stress and (b) simple shear.
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A.3 Microstructure and dynamic properties

The origin of the damping property of rubber can be understood from the molecular
structure of the material. Vulcanized rubber is made up of very long cross-linked
polymer molecules. The damping is increased when filler, usually carbon-black, is
added to the rubber compound. Carbon-black consists of very small particles of car-
bon (20 nm - 50 µm), which are mixed into the raw rubber base before vulcanization.
The material is thus a two-phase material made up of constituents with completely
different mechanical properties. Figure A.1 shows schematically the structure at a
molecular level of a carbon-black-filled vulcanizate. The cross-links are shown as
dashed lines and the carbon particles forms agglomerates inside the rubber network
(solid lines).

The damping property of filled rubbers, i.e. the ability to dissipate mechanical
energy into heat, is mainly due to two kinds of mechanisms. One is of viscous
character - the origin of the viscous damping being the resistance in reorganization
of the molecular chains within the rubber phase. This reorganization of the long
molecular chains can not occur instantaneously, giving a rate dependent resistance of
a viscous character. The other mechanism is due to the filler; damping is increased
by adding fillers to the rubber compound. The filler particles can be regarded
as rigid compared to the stiffness of the rubber matrix. The filler particles, as
mentioned above, form agglomerates and these build a filler structure inside the
rubber network. When the composed rubber material is being deformed there will
be forces developing in the filler interfaces and the filler structure will break. The
increased damping must therefore be attributed to a resistance in the rubber-carbon
interfaces and in the carbon-carbon interfaces. It will be argued that this part of the
damping is rate-independent and responsible for the non-linear dynamic behaviour
of filled rubbers that appears as amplitude dependence of the dynamic stiffness and
phase angle.

A.3.1 Stationary dynamic properties

There will be differences between loading and unloading curves in a force-displacement
diagram when a cyclic load is applied on a rubber material. This phenomena is
termed hysteresis. The energy which is dissipated in each cycle is represented by
the enclosed area Uc created by the loading and unloading curves cf. Figure A.5.
This energy dissipates mainly as heat. It is the dissipated energy that causes the am-
plitude of the vibration to decrease, and this material property is therefore termed
damping. As mentioned earlier the damping will increase if more filler is added into
the rubber compound.

Linear dynamic is characterized by sinusoidal response to sinusoidal excitation.
The response is of the same frequency but shifted by a phase angle δ. Figure
A.5(a) corresponds to linear (viscoelastic) behaviour, which is characterized by a
pure elliptical form. Figure A.5(b) is more general where non-linearities are present.
The non-linear behaviour appears as a distortion of the hysteresis loop. These non-
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Figure A.5: Linear viscoelastic (a) and general (b) hysteresis loop for harmonic
excitation.

linearities are due to non-linear elasticity and/or frictional damping (filler structure
breakdown and reforming).

On the basis of a steady state harmonic excitation which is an important loading
case, the dynamic modulus is defined according to Figure A.5 as

Edyn =
σ0

ε0

(A.1)

Note that the dynamic modulus for the non-linear case is not unambiguous by this
definition since the same dynamic modulus can be achieved with different hysteresis
(if σ0 and ε0 is the same).

The dissipated energy Uc for each strain cycle is related to the phase angle δ
according to Uc = πσ0ε0 sin(δ). This expression is derived in connection with linear
viscoelastic models in Appendix B and is only valid for linear viscoelastic materials.
The normalized damping d is defined according to

d = sin(δ) =
Uc

πσ0ε0

(A.2)

For moderate damping, sin(δ) ≈ δ , it is concluded that the normalized damping d
will coincide with the phase angle (loss angle).

The dynamic properties of rubber are dependent on frequency, temperature,
static load, and amplitude.

Frequency dependence

Figure A.6 shows the frequency dependence of the dynamic modulus and phase
angle for a filled rubber. The dynamic shear modulus and phase angle are shown
as function of frequency. The effect of changing the temperature is also shown in
the figure. The values given are approximate and strongly dependent also on the
amplitude, which will be discussed below.
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Figure A.6: Frequency dependence of dynamic shear modulus (a) and phase angle
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Temperature dependence

Figure A.7 shows the temperature dependence of the dynamic shear modulus and
phase angle for a filled rubber. Values given are approximate and dependent also on
the amplitude. The dynamic modulus decreases, with increasing temperature. The
effect of changing the frequency is also shown in the figure. The general behaviour
shown in Figure A.7 is the same for all rubbers, although the temperature scale can
be shifted by additives in the rubber compound.

Three temperature regions are indicated. The first is the glassy region where the
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thermal motion of the polymer molecules is reduced. In this range, almost no inter-
molecular motion is possible and the material is glass-like and brittle. Mechanical
behaviour of rubber in this temperature range is dependent on the inter-atomic
bonds. The modulus is therefore considerably high (≈1 GPa) in this region, while
damping represented by the phase angle is low. The second region is the transition
region, with a drastic drop in dynamic modulus and with maximum damping shown
as a peak in the phase angle. The third temperature region is the rubbery region
with a considerably low dynamic modulus (≈1 MPa). Rubbers in working conditions
must be in the end of the transition region or in the rubbery region in order to have
rubber-like properties.

Amplitude dependence

Special emphasis will here be put on strain amplitude dependence of the dynamic
modulus. The modulus is seen to decrease with increasing strain amplitude. This
effect is sometimes denoted the Payne effect due to investigations of reinforced
elastomers made by Payne [10]. He interpreted the decline in modulus for increasing
strain amplitude as a result of breaking of the filler structure. The structure is
composed of aggregates held together by van der Waals bonds. Payne found that
the modulus is almost recoverable upon return to small amplitudes, i.e. the filler
structure largely reforms for an amplitude cycle. It is clear that the mechanisms
involved should not be confused with the Mullins’ effect, which is attributed to
breaking of the cross-links between the filler and elastomeric material with recovery
times of about 24 hours. To sum up, it canbe concluded that the Payne effect has
a short recovery time while the Mullins’ effect has a long recovery time.

Payne also observed that the shape of the decline in modulus for increasing strain
amplitude was almost independent of frequency for low frequencies.

Harris and Stevenson [5] have made experimental investigations of several non-
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Figure A.8: Amplitude dependence of dynamic shear modulus (a) and phase angle (b)
for some filled natural rubbers with various filler content. A-E represent increasing
filler content. (Reproduced from Harris and Stevenson.)
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linear aspects of the dynamic behaviour of, especially, filled rubbers. They investi-
gated effects of frequency, amplitude, and elastic non-linearity for filled and unfilled
rubbers. For unfilled rubbers it is clearly seen that the hysteresis loop has an ellip-
tic shape for small amplitudes and preload and the behaviour is viscoelastic. For
filled rubbers a significant effect of the strain amplitude on the dynamic modulus is
reported. Figure A.8 shows the strain amplitude dependence of the dynamic shear
modulus and phase angle, reproduced from [5], for natural rubbers (NR) with dif-
ferent carbon-black loading. The amount of black varied from 30 phr (parts per
hundred of NR by weight) to 75 phr. The rubbers are all of approximately the same
hardness (about 55 IRHD). This was accomplished by using three different types of
carbon-black and by balancing the reinforcing effect by addition of a high-viscosity
aromatic oil. Figure A.8 shows the strain amplitude influence in simple shear. The
vulcanizates are denoted A, B, C, D, and E in [5] in order of increasing reinforce-
ment of carbon-black. The carbon-black content varied from 30 to 75 phr (75 phr
for vulcanizate E). Vulcanizate B and C behaved similarly. B is therefore left out in
the reproduction (cf. Figure A.8). The vulcanizate with the highest damping and
variation in dynamic modulus is the one with the highest filler content.

Harris and Stevenson also report that the stress response for harmonic loading in
simple shear is influenced by higher harmonic components, resulting in a distorted
elliptic shape which tends towards a parallelogram. The most significant contribu-
tion is from the third harmonic component. The ratios of the third and the first
harmonic component are reported for vulcanizate specimen E for a 1 Hz test at
different amplitudes. The maximum ratio is 0.035 for a strain amplitude of 5%.

The shape of the shear strain has a very small influence in quasi-static tests. For
example a test with triangular shaped periodic shear load and sinusoidal shear load
yields almost the same hysteresis, according to [1].

It has been mentioned that the dynamic modulus decreases for increasing strain
amplitude. It is therefore interesting to discuss the reversibility for rubber. The
influence of damage on the amplitude dependence of the dynamic modulus is not
too severe. Most of the decline in dynamic modulus is recoverable and the damage
plays a minor role, according to [1].

An important property of the dynamic behaviour of filled rubbers is the separa-
bility of rate and amplitude effects, as illustrated in Figure A.9. This phenomena is
fundamental for the modelling in this Master’s dissertation.
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Figure A.9: Separation of rate and amplitude effects. Dynamic shear modulus (a)
and phase angle (b) as function of strain amplitude for different frequencies. Natural
rubber with the hardness 60 shore.

A.4 Summary

Deviations from linear dynamic behaviour are caused by the underlying non-linear
elastic properties and/or by the damping mechanisms introduced by the filler.

For unfilled rubbers, a linear viscoelastic behaviour can be observed in simple
shear, which is a linear mode of deformation if the strains are not too large. In the
case of filled rubbers, non-linear dynamic behaviour is present even for simple shear
due to breakdown and reforming of the carbon-black structure.

Important mechanical and dynamic properties of carbon-black-filled natural rub-
bers are summarized here.

• Payne interpreted the decline in dynamic modulus for increasing strain am-
plitude as a result of breaking of the filler structure. Payne found that the
modulus is almost recoverable upon return to small amplitudes, i.e. the filler
structure largely reforms for an amplitude cycle.

• Mullins’ effect is attributed to breaking of the cross-links between the filler
and elastomeric material, which results in decline in dynamic modulus for
increasing strain amplitude. This breaking of cross-links between the filler
and elastomeric material has a recovery time of about 24 hours.

• The dynamic modulus is almost recoverable for a strain cycle with increasing
amplitude followed by decreasing amplitude in harmonic testing. The mech-
anisms on microstructural level involved must therefore be different from the
mechanisms involved in the Mullins’ effect. The explanation lies in the break-
down and quick reforming of the carbon-black structure.

• On the basis of steady state harmonic excitation, the dynamic modulus is
defined according to Figure A.5 and equation (A.1) as Edyn = σ0/ε0. It is
obvious that this definition is not unambiguous when non-linearity appears.
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• The normalized damping is defined according to equation (A.2) as d = Uc/(πσ0ε0).
As the dynamic modulus is not the damping unambiguous when non-linearity
appears.

• In quasi-static loading, it can be observed that a difference between load-
ing and unloading curves is present irrespective of how low the loading rate
is, according to [1]. It can also be observed [1] that the hysteresis loop in
quasi-static loading of heavily filled rubber takes the approximate shape of a
parallelogram.

• The shape of the strain history in quasi-static loading does not appreciately
influence the shape of the hysteresis loop. Triangular shaped periodic shear
strain and sinusoidal shear strain in quasi-static loading gives almost the same
hysteresis loops, according to [1].

• In harmonic loading, it can be observed that the dynamic modulus shows a
considerable amplitude dependence. The modulus declines with amplitude
towards an asymptotic value for large amplitudes. The damping represented
by the equivalent phase angle reaches a maximum where the decline in modulus
is the greatest (cf. Figure A.8).

• The shape of the decline of the dynamic modulus with amplitude is insen-
sitive to frequency. Experiments indicate that the amplitude and frequency
dependence are separable (cf. Figure A.9).



Appendix B

Material models for rubber

Appendix B concerns one dimensional material models which constitute the basis for
the modelling of rubber components. Linear viscoelastic models are first discussed,
then elastoplastic models. Most of the figures and the text in Appendix B are copied
from the PhD thesis by Per-Erik Austrell [1].

A starting point for the modelling of damping in filled rubbers is the simple
one-dimensional model of elastic and damping properties shown in Figure B.1. The
elastic behaviour is provided by the spring element, which is assumed to be non-
linear. Damping is modelled by the rate-dependent viscous damper and the rate-
independent frictional element. The frictional element makes it possible to model
hysteresis in quasi-static load cases, i.e. when the strain rate approaches zero.

v

ε

σ σ+ σσ= e f+

Figure B.1: Simple one-dimensional rheological model including non-linear elastic,
viscous, and frictional properties.

The elastic, viscous, and frictional forces act in parallel, and the total stress is
the sum of the stresses in the elements, i.e. σ = σe + σv + σf . The viscous stress
σv corresponds to dissipative stresses in the rubber network. Stresses in the filler
phase and in the rubber-filler interfaces are responsible for the rate-independent
contribution σf .

This model incorporates some important aspects of the mechanical behaviour of
filled rubbers. Frequency dependence, effects of static load on the dynamic modulus,
distortion of the elliptic shape of the hysteresis loop, and amplitude dependence are
properties of the simple model. However, it has some unphysical properties, e.g.
discontinuous stress response for continuous strain and inability to exhibit relaxation
behaviour. More sophisticated models are therefore needed.

107
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B.1 Non-linear elasticity

A material where the stress can be defined by a strain energy function W is termed
a hyperelastic material. The strain energy function can be regarded as a potential
function for the stresses i.e. stresses are determined by derivatives of the strain
energy function. In this section the concept of hyperelasticity will be illustrated
by a non-linear elastic bar. Also hyperelastic models like Neo-Hooke and Yeoh are
discussed. Finally the stress and strain relation in simple shear will be derived.

B.1.1 Non-linear elastic bar

Consider the non-linear elastic bar, illustrated in Figure B.2, with original length L
and cross-section area A. The force P causes the displacement u at the end of the
bar and increases its length to l giving the stretch λ = l/L.

A

P P

L

l

u

Figure B.2: Non-linear elastic bar loaded by a force P.

The uniaxial stress-stretch relation will be derived here for a uniaxial state of
stress. This is done by introducing the strain energy function W (λ) with W the
strain energy per undeformed volume of the bar and λ the stretch, defined as the
length ratio of the deformed and undeformed bar.

The total strain energy U is computed by multiplying the strain energy density
W with the volume, i.e.

U = ALW (λ)

The incremental work done by the external force P should be equal to the increment
in total strain energy. Hence, the energy balance is stated as

Pdu = dU (B.1)

and the increment in total strain energy can be expressed by use of W as

dU = ALdW = AL
dW

dλ
dλ (B.2)

The displacement increment can also be written in terms of stretch by using

u = l − L = (λ − 1)L
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Differention yields
du = Ldλ (B.3)

Inserting (B.3) and (B.2) into the energy balance equation (B.1) yields

PLdλ = AL
dW

dλ
dλ

Simplifying the expression gives
P

A
=

dW

dλ
(B.4)

where P/A is the nominal stress, i.e. force per original cross section area, derived
from the strain energy function.

It is seen from this one-dimensional example that the stress can be obtained
directly from the strain energy density function. In the general multiaxial case the
stresses are found in a similar manner from the strain energy density function.

B.1.2 The Neo-Hooke material

λ21/λ

λ

W( )λ

λ

Figure B.3: Strain energy function W (λ) constructed from a simple choice of func-
tions.

The strain energy function W (λ) has to fulfill some general conditions:

• W (1) = 0 for λ = 1, i.e. the strain energy is zero in the unloaded case.

• W (λ) → ∞ for λ → 0 and for λ → ∞, i.e. the strain energy should increase
for increasing compression and tension.

• dW/dλ = 0 for λ = 1, the nominal stress has to be zero in the unloaded
state.

A strain energy function can be constructed from a simple choice of functions by
using 1/λ and λ2 according to Figure B.3. A function that satisfies these conditions
is given by

W (λ) = C(λ2 +
2

λ
− 3) (B.5)
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Inserting (B.5) into (B.4) results in

P

A
= 2C(λ −

1

λ2
) (B.6)

where C is an arbitrary material constant. Equation (B.6) is the nominal stress in
the so-called Neo-Hooke material, which is the simplest possible hyperelastic model,
with only one material parameter.

B.1.3 Yeoh material

In [1] it is concluded that for a material which is assumed to be isotropic the strain
energy function W can be expressed as a function of the strain invariants i.e.

W = W (I1, I2, I3)

with the strain invariants


















I1 = λ1
2 + λ2

2 + λ3
2

I2 = λ1
2λ2

2 + λ1
2λ3

2 + λ2
2λ3

2

I3 = λ1
2λ2

2λ3
2

(B.7)

In the case of an incompressible material there is no dependence on the third strain
invariant, because this invariant expresses the volume change, giving

W = W (I1, I2) (B.8)

A general form of (B.8) is given by the series expansion

W =
∞
∑

i=0,j=0

Cij(I1 − 3)i(I2 − 3)j (B.9)

where Cij are unknown constants. The sum is formally written as a sum to infinity,
but normally only few terms are used. The explicit version of (B.9), with the terms
having an index sum less or equal to three, is written as

W = C10(I1 − 3) + C01(I2 − 3)

+C20(I1 − 3)2 + C11(I1 − 3)(I2 − 3) + C02(I2 − 3)2

+C30(I1 − 3)3 + C21(I1 − 3)2(I2 − 3) + C12(I1 − 3)(I2 − 3)2 + C03(I2 − 3)3

+..... .

Taking terms that include I1, I
2
1 , I

3
1 and I1I2 then the third order of deformation is

obtained i.e.

W = C10(I1−3)+C01(I2−3)+C20(I1−3)2+C11(I1−3)(I2−3)+C30(I1−3)3 (B.10)
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which is a model with five parameters.
Yeoh [11] found that the dependence on the second invariant is very weak for

carbon-black-filled natural rubbers. By leaving out terms in (B.10) that include I2

Yeoh obtained a model with three parameters that gave a good fit to experiments
carried out on filled rubbers. Consequently, this strain energy function is written as

W = C10(I1 − 3) + C20(I1 − 3)2 + C30(I1 − 3)3 (B.11)

which is the so-called Yeoh material.

B.1.4 Simple shear

A

H

P

P

u

Figure B.4: Simple shear.

Another important state of deformation is simple shear cf. Figure B.4. The force
P causes the shear strain

κ =
u

H
(B.12)

The total strain energy U , is in similar manner as for the example of the bar,
computed by multiplying the strain energy density W with volume

U = AHW (κ) (B.13)

The incremental work caused by the external force P is equal the increment in total
strain energy i.e.

Pdu = dU (B.14)

Differention of equation (B.12) and equation (B.13) gives

du

dκ
= H (B.15)

and

dU = AH
dW

dκ
dκ (B.16)

Inserting equation (B.16) in equation (B.14) gives

P
du

dκ
= AH

dW

dκ
(B.17)
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If the strain energy function is chosen according to Yeoh i.e. W (I1) and making use
of the expression

I1 = 3 + κ2 (B.18)

which is derived in [1], the chain rule gives that dW/dκ in equation (B.17) can be
written as

dW

dκ
=

dW

dI1

dI1

dκ
(B.19)

From equation (B.18) it is concluded that

dI1

dκ
= 2κ (B.20)

Inserting equation (B.20) in equation (B.19), and inserting equation (B.19) in equa-
tion (B.17) and finally making use of equation (B.15) gives

τ =
P

A
= 2

dW

dI1

κ (B.21)

where
dW

dI1

= C10 + 2C20(I1 − 3) + 3C30(I1 − 3)2 (B.22)

according to equation (B.11) with use of (B.18).

B.2 Linear viscoelasticity

This section deals with different aspects of viscoelastic behaviour. Linear viscoelas-
ticity will be illustrated for transient and periodic loading. Issues like complex
modulus, creep and relaxation functions will be treated.

Viscoelastic material models combine elastic and viscous characteristics. The
constitutive relations are defined in terms of time functions of stress σ(t) and strain
ε(t). Hence, the response becomes time dependent, in contrast to ideally elastic
materials where a one-to-one relation exists between the current stresses and the
current strains. The constitutive equations can be defined by an integral or by a
differential equation.

Mechanical analogies consisting of spring and dashpot assemblies are often used
to illustrate viscoelastic material behaviour. The mechanical behaviour of a specific
viscoelastic material in a uniaxial case is analogous to the behaviour of a proper
combination of springs and dashpots.

With harmonic excitation the response will be a phase shifted harmonic function
with the same frequency. This property of linear viscoelasticity makes it possible to
define a complex modulus independent of amplitude and a function only of frequency.
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Figure B.5: Creep behaviour; increasing strain as response to a stress step.
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Figure B.6: Relaxation behaviour; decreasing stress as response to a strain step.

B.2.1 Creep and relaxation

Material behaviour explainable by linear viscoelastic models includes, for example,
creep and relaxation phenomena. These are in the hereditary approach discussed
below.

Creep is an increasing strain as response to a step-stress loading. Consider a bar
with cross section A and length L. When a step-stress loading according to Figure
B.5 is applied to the bar at time t = 0 the length will suddenly increase to ∆L
according to:

ε(0) =
∆L

L
=

σ0

E(0)
(B.23)

where E(0) is the Young’s modulus at t = 0.
Viscoelastic materials, for example rubber, undergo creep i.e. the deformation

increases with respect to time even though the stress is constant.
The phenomena relaxation cf. Figure B.6 is a decreasing stress as a response to

a step-strain loading and depends on the same mechanisms as creep. Therefore
relaxation is coupled to the phenomena creep.

There are two approaches in order to model linear viscoelasticity; one is the
hereditary approach and the other is the differential approach. The differential
approach is here used in this chapter to derive the constitutive equations for the
subsequent linear viscoelastic models represented by assemblies of linear springs
and dashpots. The hereditary approach is discussed in the next section.

To represent viscoelastic behaviour by the hereditary approach there is a need
to introduce the creep compliance JC(t) and relaxation modulus ER(t):

• JC(t) is the strain developed in a creep test when loaded by a unit stress.

• ER(t) is the stress developed in a relaxation test when loaded by a unit strain.
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For a linear viscoelastic material the creep compliance JC(t) = ε(t)/σ0 (cf. Figure
B.5) is a characteristic function independent of the stress step σ0. This function is
unique for a specific linear viscoelastic material.

For a linear viscoelastic material, the relaxation modulus ER(t) = σ(t)/ε0 (cf.
Figure B.6) is a characteristic function independent of the strain step ε0. This
function is unique for the specific linear viscoelastic material.

It can be shown that the instantaneous elasticity, i.e. the relationship between
the creep compliance and the relaxation modulus at t = 0, is ER(0) = 1/JC(0).

B.2.2 Hereditary approach

The behaviour of a linear viscoelastic material can be defined from this single step
response function. Linearity and superposition (Boltzmann’s superposition princi-
ple) leads to the constitutive equation defined as a convolution integral (also called
hereditary integral). The stress history corresponding to any strain history can be
obtained from this integral. The constitutive model is defined by the relaxation
modulus, or for the inverse relation, the creep compliance.

(t)ε

t t

d 

t t

ε

21 +dt1

Figure B.7: An arbitrary strain history.

An arbitrary strain history ε(t), cf. Figure B.7, can be considered as a sum of a
large number of differential, positive and negative strain steps. A strain step dε at
time t1 causes a stress change dσ. At time t2 the stress change has been relaxed to

dσ(t2) = ER(t2 − t1) dε(t1)

Summation of all stress changes at time t2 due to all previous strain steps yields

σ(t2) =
∫ t2

−∞

ER(t2 − t)
dε

dt
dt (B.24)

This is the hereditary integral that defines the linear viscoelastic stress response for
an arbitrary strain history. Hence, from knowledge of the relaxation modulus the
stress σ(t2) can be derived by (B.24) for an arbitrary strain history ε(t).

The inverse relation can be obtained by applying stress steps and assembling the
creep histories, giving the relation

ε(t2) =
∫ t2

−∞

JC(t2 − t)
dσ

dt
dt (B.25)
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In connection with the finite element method, where strain and displacement are
the basic unknown quantities, the form (B.24) defined by the relaxation modulus is
preferred.

(t)R

o

E

t

0E

oE

Figure B.8: The relaxation modulus of a viscoelastic solid. E0 is the instantaneous
modulus and E∞ is the long-term modulus.

Linear viscoelastic theory can model both fluid and solid material behaviour.
The main interest here is models for solids. It is therefore required that the creep
response is limited, and that the relaxation has a limit different from zero according
to Figure B.8.

An example of a relaxation process can be obtained by assuming a simple expo-
nential law given by

ER(t) = E∞ + (E0 − E∞) e−t/tr

which is the relaxation modulus associated with the so-called Zener model, where
the parameter tr is the relaxation time. The Zener model will be discussed further
in relation to the models in Section B.3.3.

B.2.3 Harmonic excitation and complex modulus

The response to a stationary sinusoidal strain history is of interest in many engi-
neering applications. The stress corresponding to a stationary sinusoidal strain can
be expressed by a complex modulus. The constitutive relation (B.24) will be used
to determine an expression for the complex modulus. Consider the sinusoidal strain
in complex notation

ε∗ = ε0e
iωt = ε0(cos(ωt) + isin(ωt)) (B.26)

where the real or imaginary part is interpreted as the physical strain. Inserting
(B.26) into the convolution integral (B.24) yields an expression that resembles the
Fourier transform. The Fourier transform is a complex valued function depending
on the parameter ω = 2π/T i.e. the angular frequency for the vibration, with T
being the periodic time.

The form of the relaxation modulus ER(t) is inadequate for Fourier transform
methods since the transform is defined only for absolute convergent functions. This
requires that the function to be transformed fulfills the condition

∫

∞

−∞

| f(t) | dt < ∞ (B.27)



116 APPENDIX B. MATERIAL MODELS FOR RUBBER

The relaxation modulus, cf. Figure B.8, does not fulfill the requirement in (B.27).
The long-term modulus E∞ has to be separated from ER(t). A dimensionless relax-
ation function e(t) is therefore introduced, according to

ER(t) = E∞(1 + e(t)) (B.28)

The function e(t) has the property e(t) → 0 when t → ∞. The dimensionless re-
laxation function now fulfills the requirement in (B.27) and the constitutive relation
(B.24) may now be written as

σ(t2) = E∞

∫ t2

−∞

(1 + e(t2 − t))
dε(t)

dt
dt (B.29)

Introducing a change of variables τ = t2 − t and substituting the complex strain
(B.26) into (B.29) yields

σ(t2) = E∞(1 + iω
∫

∞

0
e(τ)e−iωτdτ)ε0e

iωt2 (B.30)

In (B.30) the Fourier transform of the dimensionless relaxation function can now be
identified as

e∗(ω) = F(e(τ)) =
∫

∞

0
e−iωτe(τ)dτ

and (B.30) can now be expressed as

σ∗ = E∗(ω)ε∗ (B.31)

with the complex modulus

E∗(ω) = E∞(1 + iωe∗(ω)) (B.32)

Hence, the hereditary integral (B.24) is converted into a relation between the com-
plex strain and stress given by a simple multiplication by a complex function, the
complex modulus.
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tω
*ε

ωt)

t

sin(
sin( t+ω δ)σ=σ
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0

0

δ

Re

Im

Figure B.9: The real or imaginary part of the complex strain and stress represents
the harmonic motion.
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The stress response σ∗ can therefore be written as a complex number in polar
form as

σ∗ = σ0e
i(ωt+δ) (B.33)

The response to a steady-state sinusoidal strain is thus a steady-state sinusoidal
stress with the same frequency, but out-of-phase. The phase relationships are con-
veniently shown in the rotating-vector representation according to Figure B.9.

Interpretation of the complex modulus

In view of (B.31), the complex modulus can be expressed as

σ∗ =| E∗ | eiarg(E∗)ε0e
iωt =| E∗ | ε0e

i(ωt+arg(E∗)) (B.34)

Comparing (B.34) with (B.33) yields an interpretation of the complex modulus in
terms of measurable quantities according to

| E∗ |=
σ0

ε0

and arg(E∗) = δ

i.e. the absolute value | E∗(ω) | is the amplitude ratio of stress and strain and the
phase angle arg(E∗(ω)) is the phase shift between stress and strain. The absolute
value | E∗(ω) | is here called the dynamic modulus (also called the absolute modulus).

Note that the dynamic modulus and the phase angle are functions of the angular
frequency ω only. Hence, for a linear viscoelastic material, the dynamic modulus is
independent of the strain amplitude ε0.

s

E *

E

Im
El

δ Re

Figure B.10: Relation between polar and rectangular form of the complex modulus.

The complex modulus

E∗ =
σ∗

ε∗
=

σ0e
i(ωt+δ)

ε0eiωt
=

σ0

ε0

eiδ

can alternatively be expressed in rectangular form

E∗ =
σ0

ε0

cosδ + i
σ0

ε0

sinδ (B.35)

where the real part Es is termed storage modulus and the imaginary part El is
termed loss modulus. Hence,

Es =
σ0

ε0

cosδ and El =
σ0

ε0

sinδ
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The storage modulus is said to represent in-phase response and the loss modulus is
said to represent out-of-phase response, according to Figure B.10.

An alternative representation of the rectangular form is

E∗ = Es(1 + itan δ)

where tan δ is called the loss factor.
The relation between the polar and the rectangular form of the complex modulus

can be simplified for small values of δ. The approximate equalities sin δ ≈ tan δ ≈ δ
and cos δ ≈ 1 yield

Es ≈| E∗ | and El ≈| E∗ | δ

For example, δ = 0.2 rad yields sin δ = 0.199, cos δ = 0.980, and tan δ = 0.203.

Hysteresis and energy dissipation

For cyclic loading, viscoelastic materials dissipate energy, which for instance results
in damping of free vibrations. The area enclosed by the loading and unloading
curves (cf. Figure B.11) represents the energy dissipated as heat.

Harmonic excitation yields harmonic response with the same frequency but out-
of-phase for a linear viscoelastic material, according to the previous discussion. Con-
sequently, if the strain ε = ε0 sin(ωt) and the stress σ = σ0 sin(ωt + δ) are plotted in
the (σ, ε)-plane, an elliptic path is obtained, as shown in Figure B.11. The hysteresis
is dependent on the angular frequency ω through the complex modulus.

ε

σ

ε

0

0σ

Figure B.11: The stress σ = σ0sin(ωt + δ) and the strain ε = ε0sin(ωt) plotted in
the (σ, ε)-plane, giving an elliptical hysteresis loop.

The energy dissipated during one cycle is

Uc =
∮

σdε = σ0ε0ω
∫ T

0
cos(ωt)sin(ωt + δ)dt (B.36)

Expression (B.36) is evaluated by using the trigonometric formula sin(ωt + δ) =
sinωt cosδ + cosωt sinδ, giving

Uc = πσ0ε0sin δ (B.37)

We observe that dissipated heat increases with the phase difference δ and the largest
dissipation is obtained for δ = π/2.
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B.3 Viscoelastic models derived from differential

equations

ε

σ
η

σ
ε

E

. ε
σ=ηεσ= E

Figure B.12: Basic elements in rheological models; the linear spring and the dashpot.

An intuitive way to interpret and describe the nature of viscoelastic behaviour is
to use mechanical analogies that consist of springs and dashpots combined together
in different ways.

The spring is characterized by the modulus E (N/m2) cf. Figure B.12, and the
stress in the spring is proportional to the strain

σ = Eε (B.38)

A spring can only describe instantaneous elastic deformation.
The dashpot is characterized by the time dependent relation dε/dt = ε̇ = σ/η

i.e. the stress is proportional to the strain rate

σ = ηε̇ (B.39)

where η is the coefficient of viscosity (Ns/m2) cf. Figure B.12. A dashpot can only
describe viscous deformation.

B.3.1 The Kelvin-Voigt model

ε

σ
η

E

Figure B.13: The Kelvin-Voigt model.

To obtain the Kelvin-Voigt model, which is a simple viscoelastic solid model, a
spring and a dashpot are connected in parallel according to Figure B.13.

Differential equation

Connection in parallel yields

σ = σspring + σdashpot (B.40)
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By inserting the relations σspring = Eε and σdashpot = ηε̇, the total stress is

σ = Eε + ηε̇ (B.41)

which is the differential equation for the Kelvin-Voigt model.

Relaxation

t

o

εoE

σ
o

Figure B.14: Relaxation test.

The Kelvin-Voigt model can not exhibit relaxation. In order to deform the
Kelvin-Voigt model instantaneously an infinitely large stress is required. Therefore,
the stress increases instantaneously and immediately after, the stress will take the
value σ = Eε0 cf. Figure B.14. This behaviour is not particularly physical and the
Kelvin-Vogit model is thus a poor viscoelastic solid model.

Creep compliance

(t)(t)
σ0

Eσ0

σ

t t

ε

εσ

Figure B.15: Creep behaviour of the Kelvin-Voigt model.

The homogenous solution to (B.41) is ε = Ce
−E
η

t where C is an arbitrary con-
stant. For the case with constant stress σ0 a particular solution to (B.41) is σ0/E
and the solution to (B.41) is therefore

ε =
σ0

E
+ Ce

−E
η

t (B.42)

When a load is applied suddenly, the dashpot will react like a rigid member which
gives the condition ε = 0 when t = 0. Inserting this condition in (B.42) determines
C and (B.42) can now be written as

ε =
σ0

E
(1 − e

−E
η

t) (B.43)
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It can be seen in equation (B.43) that the strain ε will reach an asymptotic upper
limit σ0/E for large values of t.

From the definition of JC(t) it is concluded that

JC(t) =
1

E
(1 − e

−E
η

t) (B.44)

Dynamic modulus

The dynamic modulus Edyn(ω) can be determined by solving (B.41) for a steady
state sinusoidal strain history ε = ε0 sin(ωt). The time derivative is ε̇ = ωε0 cos(ωt).
Inserting the expression for ε and ε̇ in (B.41) and rearranging yields

σ = Eε0 sin(ωt) + ηωε0 cos(ωt) (B.45)

Equation (B.45) can also be written as

σ = σ0 sin(ωt + δ) (B.46)

where
σ0 = ε0

√

E2 + η2ω2 (B.47)

and
tan(δ) =

η

E
ω (B.48)

From the definition of dynamic modulus Edyn = σ0/ε0 it is concluded that

Edyn =
√

E2 + η2ω2 (B.49)

B.3.2 The Maxwell model

ε

Eη
σ

Figure B.16: The Maxwell model.

To obtain the Maxwell model the spring and the dashpot are connected in series,
giving a viscoelastic fluid model. The Maxwell element is illustrated in Figure B.16.
The relaxation behaviour with a totally relaxed stress suggests that the element is
a simple model of a linear viscoelastic fluid. The normalized relaxation behaviour
given by ER(t) is the fundamental function that defines the behaviour of a linear
viscoelastic material as mentioned earlier. Hence, the stress-strain relation for a
Maxwell model is found by applying a step strain and evaluating the stress response.
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Differential equation

The total deformation in a Maxwell element, which consists of a spring and a dashpot
in series cf. Figure B.16, is ε = εspring + εdashpot. It appears that

ε̇ = ε̇spring + ε̇dashpot (B.50)

Inserting ε̇spring = σ̇/E and ε̇dashpot = σ/η into (B.50) and rearranging yields

σ̇ +
E

η
σ = E ε̇ (B.51)

which is the differential equation that defines the stress-strain relation for the Maxwell
model.

Relaxation modulus
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Figure B.17: Relaxation behaviour of the Maxwell model; stress is relaxed to zero.

The normalized relaxation behaviour ER(t) can be derived by solving (B.51) for
a step strain. For t > 0 we have ε̇ = 0, giving

σ̇ +
E

η
σ = 0 t > 0 (B.52)

On application of the step strain the dashpot acts as a rigid member due to the
infinitely large strain rate at t = 0. Hence, the initial stress is defined entirely by the
elastic spring, and the initial condition for the differential equation is σ(0) = E ε0,
i.e. the instantaneous elastic response. Solving (B.52) yields

σ(t) = E ε0 e−
E
η

t (B.53)

The step strain stress response is illustrated in Figure B.17, and we conclude that
the relaxation modulus for the Maxwell model is

ER(t) = E e−t/tr (B.54)

where the relaxation time is defined as tr = η/E.
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Figure B.18: Creep behaviour of the Maxwell model .

Creep compliance

The creep compliance JC(t) can be derived by solving (B.51) for a step load i.e.
σ(t) = const = σ0. For t > 0 it is concluded that σ̇ = 0, giving

ε̇ =
σ0

η
⇔ ε(t) = ε(t0) +

σ0

η

∫ t

0
dτ (B.55)

A sudden applied load gives the initial condition ε(t0) = σ0/E as a consequence
that the dashpot acts like a rigid member and (B.55) can be written as

ε(t) = (
1

E
+

t

η
)σ0 (B.56)

From the definition of creep compliance i.e. JC(t) = ε(t)/σ0 it is concluded that the
creep compliance for the Maxwell model is

JC(t) =
1

E
+

t

η
(B.57)

Complex modulus

The complex modulus E∗(ω) for the Maxwell model can be determined by solving
(B.51) for a steady state sinusoidal strain history

ε∗ = ε0e
iωt

Inserting a trial solution σ = Ceiωt into (B.51) yields the stationary solution

C = E
iω

iω + E/η
ε0 = E

iωtr
iωtr + 1

ε0

Consequently we find the complex modulus

E∗(ω) = E
iωtr

1 + iωtr
(B.58)

for the Maxwell model, where tr = η/E.
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Figure B.19: The Zener model. A spring coupled in parallel with a Maxwell element.

B.3.3 The Zener model

To avoid the problem which is associated with the Kelvin-Voigt model, the dashpot
element is replaced by a Maxwell element according to Figure B.19. This model is
the so-called Zener or standard linear solid model which behaves like a solid. The
Zener model is the simplest viscoelastic model with solid properties that reflects
the behaviour of real solid materials in the sense that the relaxation behaviour is
reasonable and the creep response is limited.

Differential equation

Let us denote the stress in the spring with σ∞ and the stress in the Maxwell element
with σM . The total stress σ in the Zener model, cf. Figure B.19, is then given by

σ = σ∞ + σM (B.59)

Equation (B.59) gives the following relation

{

σM = σ − σ∞

σ̇M = σ̇ − σ̇∞

(B.60)

Inserting the relation (B.60) in (B.51) gives

{

σ∞ = E∞ε
σ̇ + E

η
σ = Eε̇ + E

η
σ∞ + σ̇∞

(B.61)

i.e.

σ̇ +
E

η
σ = (E + E∞)ε̇ +

EE∞

η
ε (B.62)

which is the differential equation that defines the stress-strain relation for the Zener
model.

Relaxation modulus

Solving the equation (B.62) to a step strain history yields

σR(t) = E∞ε0 + Ee−
E
η

tε0 t > 0 (B.63)
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Figure B.20: Relaxation behaviour of the Zener model; stress is relaxed to a long-
term value.

Hence, the relaxation modulus for the Zener model is

ER(t) = E∞(1 +
E

E∞

e−t/tr) (B.64)

The step strain response (B.64) is illustrated in Figure B.20. The instantaneous and
the long-term response is

ER(0) = E∞ + E ER(∞) = E∞

according to (B.64), and the model gives elastic behaviour for both cases.

Creep compliance
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Figure B.21: Creep behaviour of the Zener model.

Solving the equation (B.61) to a step load history will give

ε(t) =
σ0

E∞

+ σ0(
1

E∞ + E
−

1

E∞

)e−
E∞E

η(E∞+E)
t t > 0 (B.65)

and consequently the creep compliance for the Zener model is given by

JC(t) =
1

E∞

+ (
1

E∞ + E
−

1

E∞

)e−
E∞E

η(E∞+E)
t (B.66)
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Complex modulus

The complex modulus E∗(ω) for the Zener model can be determined by solving for
a stationary sinusoidal strain. The strain is given by

ε∗ = ε0e
iωt (B.67)

The stress is given by inserting the Maxwell stress (B.58) into (B.59) according to

σ∗ = E∞ε∗ + E
iωtr

1 + iωtr
ε∗ (B.68)

Hence, the complex modulus for the Zener model is

E∗(ω) = E∞(1 +
E

E∞

iωtr
1 + iωtr

) (B.69)

Consider three cases of harmonic excitation; low, medium, and high frequency
i.e.

1) ωtr � 1 2) ωtr ≈ 1 3) ωtr � 1

0
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E ε
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t
ε

T
ε

0

0
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oo

Figure B.22: Linear viscoelastic solid response to sinusoidal excitation.

The elliptic paths in the (σ, ε)-plane for the three cases are illustrated in Figure
B.22. Low and high frequencies yield approximately elastic behaviour. Elastic
behaviour is obtained if E∗ is real, i.e. for ωtr = 0 and ωtr = ∞. For intermediate
frequencies E∗ is complex, giving hysteresis. The absolute value and the phase of
E∗ are shown in Figure B.23 as function of normalized frequency ωtr.

Maximum phase angle (and hysteresis) occurs at ωtr ≈ 1. An approximation of
the maximum phase angle δmax = max{arg(E∗)} can be shown [1] to be

δmax =
g

2 − g
( for ωtr ≈ 1 and g ≤ 0.5)

with

g =
E

E + E∞
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Figure B.23: Zener model; frequency dependence of the complex modulus for g ≤ 0.5.

Summary

The Zener model responds approximately elastically for both very slow and very fast
loading. This is because the dashpots behave like rigid members for fast loading rates
and because the dashpot stresses are relaxed for slow loading rates.

The Zener model is a simple example of a linear viscoelastic solid model with
physically reasonable properties.

B.4 Elastoplastic models

Filled rubber components exhibit an amplitude dependent behaviour. This section
concerns the modelling of frictional (i.e. rate-independent) damping by a model
including several frictional elements according to Figure B.24. Heavily filled rubbers
develop a hysteresis loop which reminds of a parallelogram. The elastoplastic model
in Figure B.24, the so-called generalized frictional solid model, is able to reproduce
the parallelogram-shaped hysteresis loop of filled rubbers. Relaxation and creep is
not represented by the models. Moreover, the response to a harmonic strain will
not be harmonic due to the friction elements.

ooE

E1

E2
σ

ε

2Y

Y1

EY nn

Figure B.24: The generalized frictional solid model.

An elastoplastic model consists of such basic components as the linear spring
and two blocks with sliding friction. These components coupled in series give the
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so-called frictional element. Elastic behaviour is described with a linear spring and
the rate-independent damping is symbolized by the two blocks, shown in figure B.24.
Since the elastoplastic model includes the frictional element, the model is able to
describe the amplitude dependence of filled rubber.

B.4.1 The basic element

The frictional element has the important advantage to give decreasing dynamic
modulus with increasing strain amplitude. However, the frictional element is not
particularly physical by itself since a sudden application of strain gives a discontin-
uous stress response. The two blocks with sliding friction stay fixed together until

ε

σY

σf
Y

f ε

Y

Figure B.25: The basic element and stress response.

the stress in the element reaches the yield limit. The stress in the element is then
constant ±Y, depending on whether the sign of the strain-rate is positive or nega-
tive, see Figure B.25. This frictional element has an important advantage, namely
the ability to describe amplitude dependence as will be shown in the next section.

B.4.2 Frictional analogy to the Kelvin-Voigt model

o

− o

o

− o
σ + σfσ

Y

Y

ε

σ

εε

1
σ

oo

ooE

ooEσ

ε

=

Figure B.26: Friction model in analogy with the Kelvin-Voigt model.

The simplest frictional model consists of a linear spring and two blocks coupled in
parallel according to Figure B.26. This model is similar to the Kelvin-Voigt model,
but the dashpot is replaced by two sliding blocks. The stress is a sum of the stress
from the spring and the frictional element given by

σ = σ∞ + σf (B.70)
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developing each term gives

σ∞ = E∞ε σf = Y sign(ε̇) (B.71)

Equation (B.70) and equation (B.71) gives the stress equation

σ = E∞ε + Y sign(ε̇) (B.72)

Inserting a sinusoidal strain history

ε(t) = ε0sinωt (B.73)

into the stress equation (B.72) yields

σ(t) = Eε(t)sinωt ± Y sign(cosωt) (B.74)

This simple frictional model gives amplitude dependence with respect to dynamic
modulus. Amplitude dependence is desirable since that is a feature of filled rubber
components. The equation (B.75) for the dynamic modulus can be understood by
studying Figure B.26. It gives decreasing dynamic modulus with increasing strain
amplitude according to

Edyn =
σ0

ε0

= E∞ +
Y

ε0

(B.75)

The model does not show any relaxation behaviour. When the model is exposed
to a step-strain, the response will be limited to Y, see Figure B.25. The model gives
unphysical hysteresis with discontinuouities at the turning points cf. Figure B.26.
The characteristics of this very simple frictional model can be summarized as:

• Discontinuous and unphysical hysteresis loop.

• An infinitely large dynamic modulus as the model is exposed to infinitely small
strain.

• Amplitude dependence with respect to dynamic modulus.

• As all frictional models it does not show any relaxation behaviour.

B.4.3 Frictional analogy to the Maxwell model

If a spring and two blocks are coupled in series the ”frictional Maxwell” is obtained.
In terms of plasticity this is a one-dimensional elastic perfectly plastic model.

The rate-independent damping in the ”frictional Maxwell” model is fully devel-
oped when the stress in the element reaches σf = Y . When the stress is less than Y ,
the two blocks are fixed together and the linear spring gives a linear elastic response,
see Figure B.27. The stress-strain relationship for the element, in Figure B.27, must
be evaluated for increments of strain and stress. The strain is a sum of elastic and
(frictional) plastic strain ε = εe+εp. The algorithm for the basic element is discussed
in Chapter 2 Section 2.4.
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Figure B.27: Frictional stress in the simple model.

B.4.4 Frictional analogy to the Zener model
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Figure B.28: Frictional model including elastic and frictional properties. The yield
strain εs = Y/E.

The model is similar to the Zener model, but the rate-dependent dashpot is
replaced by a rate-independent frictional element. It has the same configuration as
the model in Section B.4.2, except that it has a spring in series with the sliding
blocks, according to Figure B.28. The advantage with the extra spring is a limited
increase in dynamic modulus with decreasing amplitude. In terms of plasticity this
is a kinematic linear hardening von Mises model.

The hysteresis loop for the total stress, also shown in Figure B.29, is the sum of
the frictional stress shown in Figure B.27 and the elastic stress (in the spring with
the modulus E∞) i.e.

σ = σ∞ + σf

The rectangular hysteresis according to Figure B.27 is tilted due to the elastic stress
σ∞ = E∞ε giving the hysteresis shown in Figure B.29.

The parallelogram-shaped hysteresis loop is the same for different kinds of peri-
odic strain excitation with the same amplitude. That is, a sine, sawtooth or square-
shaped periodic function yields the same response, regardless of the frequency, if the
amplitude is the same.

As mentioned earlier, this model describes the dynamic modulus and damping
in a better way. As one may se in Figure B.30, the dynamic modulus increases
with decreasing amplitude, but the dynamic modulus is limited for extremely small
amplitudes.
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Figure B.29: Amplitude dependence in the simple frictional model.
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Figure B.30: Amplitude dependence of the dynamic modulus.

Maximum stress and maximum strain occur simultaneously, and the dynamic
modulus is according to Figure B.29 calculated at that point as Edyn = σ0/ε0. If the
strain is below the yield limit εs = Y/E, the two sliding blocks are fixed together
and the model is fully elastic with a constant modulus E + E∞. When the strain
amplitude exceeds the yield limit the two blocks start to slide, the blocks and the
linear elastic spring coupled in parallel give σ0 = Y + E∞ε0. The dynamic modulus
decreases with increasing amplitude according to

Edyn =
σ0

ε0

= E∞ +
Y

ε0

ε0 > εs (B.76)

In order to determine the damping, the definition discussed in Appendix A Section
A.3.1 will be used. The damping can be determined from the area enclosed in one
cycle. This area is the same as for the basic element (the hysteresis is just tilted)
and it is simpler to determine that area (cf. Figure B.27).

We have to look at two cases. If the strain amplitude is below the yield strain
then the area enclosed is zero because there will not be any hysteresis and the
damping d = 0. Otherwise, the area is Uc = 4Y (ε0 − εs) and the stress amplitude
is σ0 = Y + E∞ε0. The damping given by the normalized dissipated energy in each
cycle is thus given by

d =
4

π

ε0 − εs

(1 + E∞ε0/Y )ε0

ε0 > εs
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Figure B.31: The damping for the simple frictional model.(εs = Y/E)

This frictional model have the same characteristics as the model described in
Section B.4.2 with one important exception:

• Infinitely small strain amplitudes give limited dynamic modulus.

Summary

The elastoplastic models consist of linear elastic springs and sliding blocks. The
elastoplastic models does not show any relaxation behaviour. The advantage with
the elastoplastic models is the capability of modelling amplitude dependence.



Appendix C

Error functions

Appendix C deals with how the error function φ is established for different kinds of
linear viscoelastic and elastoplastic models. Error functions for linear viscoelastic
models are first discussed and thereafter error functions for elastoplastic models.

C.1 Error functions for linear viscoelastic models

The equations for the complex modulus E∗ for linear viscoelastic models were derived
in Appendix B. In Chapter 4, the experimental data were expressed on a structural
level. However, as it was concluded in Chapter 3, the material and structural level
expressions are almost the same. The material level models are simply connected
to the structural level models by some geometric factor. The dynamic stiffness
can therefore be expressed as K∗ = (geometric factor) ∗ E∗. Using the theoretical
expressions together with the experimental data in equation (5.1) yields the stiffness
and phase angle in terms of unknown component parameters.

C.1.1 Kelvin-Voigt model

e

F

u
c

K

Figure C.1: The Kelvin-Voigt model: A spring coupled in parallel with a dashpot.

There are two material parameters in the Kelvin-Voigt model cf. Figure C.1
which are to be fitted to experimental data. The model equations for a Kelvin-
Voigt material were derived in Appendix B and as the Kelvin-Voigt model is a
viscoelastic model it is found that Edyn and d = sin(δ) only are functions of the
angular velocity ω, see equation (B.48) and equation (B.49).
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In the case of moderate damping, i.e. δ < 0.4 rad (≈ 23 o) the approximation
d = sin(δ) ≈ tan(δ) ≈ δ can be used and equation (B.48) can therefore be expressed
as

dtheor =
η

E
ω (C.1)

The equations (B.48)-(B.49) are derived on the material level i.e. functions of E
and η and the dynamic modulus from the experimental data are expressed on the
structural level i.e. Kdyn,exp. It is therefore necessary to rewrite the equations (B.48)
and (B.49). In accordance with Chapter 3 Section 3.1 the structural geometry is
assumed to be in the form of a uniaxially loaded bar. This approach leads to

Kdyn,theor =
√

K2
e + c2ω2 (C.2)

which is the structural level equation corresponding to (B.49). Equation (C.1) can
be rewritten on structural level as

dtheor =
cL
A

KeL
A

ω =
c

Ke

ω (C.3)

The two material parameters Ke and c are obtained by minimization of the
function φ expressed as

φ =
n

∑

i=1

((

√

K2
e + c2ω2

i

Ki
dyn,exp

− 1)2 + (
cωi

Kedi
exp

− 1)2) (C.4)

where n denotes the number of measurements.

C.1.2 Zener model

vc K
F

u

Ke

Figure C.2: The Zener model: A spring coupled in parallel with a Maxwell element.

The Zener model is also a simple viscoelastic solid model. However, it has some
clear benefits compared to the Kelvin-Voigt model. It was mentioned in Appendix
B that the Kelvin-Voigt model, can not exhibit relaxation. This problem is circum-
vented in the Zener model with a spring coupled in series with the dashpot giving
the simplest viscoelastic model that can reflect the principal behaviour of a real solid
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material. The difference between the Zener model and the Kelvin-Voigt model is
that the dashpot is replaced by a Maxwell element. This leads to a model requiring
evaluation of three material parameters Ke, Kv, and c, according to Figure C.2.

The expression for the complex modulus in Appendix B Section B.3.3 is rewrit-
ten here

E∗(ω) = E∞(1 +
E

E∞

iωtr
1 + iωtr

) (C.5)

From Appendix B Section B.2.3 it is known that Edyn,theor = |E∗(ω)| and dtheor =
sin(δ) = sin(arg(E∗(ω))) likewise tr = η/E. The transition from material to struc-
tural level using equation (C.5) yields

K∗(ω) = Ke + Kv
iω

1 + iωtr
tr (C.6)

where tr in equation (C.6) is expressed as tr = c/Kv.

By making use of the interpretation of complex stiffness in analogy with complex
modulus it is concluded that

Kdyn,theor = |K∗(ω)| (C.7)

and
dtheor = sin(δ) = sin(arg(K∗(ω))) (C.8)

Equation (C.7) and (C.8) make it possible to establish the error function φ , i.e.
equation (5.1).

C.1.3 Generalized Maxwell model
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Figure C.3: The generalized Maxwell model: A spring in parallel with several
Maxwell elements.
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If more than one Maxwell element is coupled in parallel with a spring, the model
is called generalized Maxwell model. This model has the same properties as the
Zener model but with better ability to accurately fit the rate dependence in experi-
mental data as a consequence of the arbitrary number of Maxwell elements.

Generalization of the Zener model to contain more than one Maxwell element
gives a complex stiffness in analogy with complex modulus, (see Appendix B), as

K∗(ω) = K +
k

∑

j=1

Kj
v

iωtjr
1 + iωtjr

(C.9)

where k denotes the number of Maxwell element. Equation (C.9) and the relations
(C.7)-(C.8) make the error function φ complete.

C.2 Error functions for elastoplastic models

In this section fitting procedures for elastoplastic models , i.e. no viscous elements,
are discussed. A frictional element is a rate-independent element and the experi-
mental data are therefore evaluated for amplitude interval

[û1, . . . , ûn]

At each amplitude 1 to n the dynamic stiffness Kdyn,exp and the phase angle δexp

are measured. Hence, the following experimental data are obtained

[K1
dyn,exp, . . . , Kn

dyn,exp] (N/m)

[δ1
exp, . . . , δn

exp] (rad)

As for the viscoelastic models, the component parameters are obtained with an
optimization approach. Hence, the error function (5.1) is also used in elastoplastic
models.

C.2.1 Frictional model in analogy with Maxwell model

s p
pF

u

Ku

Figure C.4: Basic frictional element.

The behaviour of the basic frictional element depends on whether it is plastic
or not (cf. Figure C.4), i.e. whether the displacement û is larger than the yield
displacement us. In analogy with material level expressions

Kdyn,theor =

{

Kpus

û
if us < û

Kp otherwise
(C.10)
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The definition of the normalized damping from viscoelasticity (A.2) is repeated
here and used in order to determine the damping dtheor

d = sin(δ) =
Uc

πσ0ε0

(C.11)

Uc is the enclosed area created by the loading and unloading curve and represents
the dissipated energy in each cycle. The definition of the normalized damping d
will coincide with the phase angle for moderate damping, i.e. d ≈ δ (sin(δ) ≈ δ for
small δ).A transition from material to structural level makes it possible to rewrite
equation (C.11) according to

d = sin(δ) =
Us

πF̂ û
(C.12)
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2u

p

u

F

F

Figure C.5: The enclosed area Us in a F − u diagram.

Us is the enclosed area in a F−u diagram, F̂ is the applied force amplitude, and
û is the applied displacement amplitude (cf. Figure C.5). There are two possible
expressions for the hysteretic work Us

Us =

{

4Kpus(û − us) if us < û
0 otherwise

(C.13)

i.e. if the displacement amplitude is below the yield displacement us , the enclosed
area is zero and the damping d = 0. Otherwise, the area is expressed according to
Us = 4Kpus(û − us). Inserting equation (C.13) in equation (C.12) will determine
the damping dtheor.

Equation (C.10) and (C.13) together with equation (C.12) and the experimental
data make it possible to establish the error function φ , i.e. equation (5.1).

C.2.2 Frictional model in analogy with Zener model

A simple frictional model can be represented by a spring coupled in parallel with
a basic frictional element cf. Figure C.6. There are three material parameters
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Figure C.6: Frictional model in analogy with Zener model.

Ke, Kp , and us which are to be fitted to experimental data by use of the error
function. Therefore it is necessary to find expressions for Kdyn,theor and dtheor.

If the applied displacement amplitude û is below the yield displacement us, the
model is fully elastic with a constant stiffness Ke + Kp. The total force in the
model when the displacement amplitude exceeds the yield limit can be determined
according to F̂ = Kpus+Keû. The dynamic stiffness decreases thus with the inverse
of the displacement amplitude according to

Kdyn,theor =
F̂

û
= Ke +

Kpus

û
(C.14)

To summarize it is concluded that

Kdyn,theor =

{

Ke + Kpus

û
if us < û

Ke + Kp otherwise
(C.15)

There are two possible expressions for the damping dtheor. If the displacement
amplitude û is below the yield displacement us , Us in equation (C.12) is zero and
also the damping dtheor. Otherwise, the damping is obtained from equation (C.12)
rewritten here according to

dtheor = sin(δ) =
Us

πûKpus

(C.16)

where Us is calculated according to equation (C.13). Equation (C.15) and (C.16)
together with the error function (5.1) make it possible to evaluate the unknown
component parameters Ke, Kp , and us.

C.2.3 Generalized frictional solid model

Generalized frictional solid models contain more than one basic frictional element
which leads to several component parameters i.e. Ke, K1

p , . . . , Km
p and u1

s, . . . , um
s

where m denotes the number of basic frictional element cf. Figure C.7. The total
dynamic stiffness Kdyn,theor is obtained from the following expressions

Kj
dyn =







Kj
puj

s

ûi
if uj

s < ûi

Kj
p otherwise

(C.17)
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Figure C.7: Generalized frictional solid model.

and

Kdyn,theor = Ke +
m

∑

j=1

Kj
dyn (C.18)

The damping dtheor can be calculated by summing the enclosed areas for the
basic frictional elements that yield at a particular displacement amplitude û. The
total damping can therefore be obtained from the following expression

dtheor = sin(δ) =

∑m
j=1 U j

s

πû
∑m

j=1 Kj
pu

j
s

(C.19)

where U j
s is calculated according to

U j
s =

{

4Kj
pu

j
s(ûi − uj

s) if uj
s < ûi

0 otherwise
(C.20)

With the error function (5.1) together with the expressions derived above for
Kdyn,theor and dtheor, the unknown component parameters can be evaluated.



Appendix D

Component parameters

The fitted component parameters for the viscoelastic models and the generalized
non-linear elastic viscoelastic elastoplastic model are tabled in this section.

D.1 Viscoelastic models

Kelvin-Voigt

Component Ke [N/mm] c [Ns]
Shear specimen A 172.2919 0.0953
Shear specimen B 211.1067 0.2582

Cylindrical bushing C 1035.6000 0.5558
Cylindrical bushing D 1141.3000 1.1006

Table D.1: The component parameters for the Kelvin-Voigt model.

Zener

Component Ke [N/mm] Kv [N/mm] tr [s]
Shear specimen A 140.1991 58.6715 0.027700
Shear specimen B 161.6707 134.5649 0.008800

Cylindrical bushing C 905.4096 134.5649 0.006800
Cylindrical bushing D 877.2268 541.1714 0.006500

Table D.2: The component parameters for the Zener model.
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Generalized Maxwell

Component Ke [N/mm] Kv [N/mm] tr [s]
Shear specimen A 80.2974 47.0714 9.219100

17.2353 0.274700
21.1840 0.021200
40.1433 0.002300

Shear specimen B 91.8722 55.7943 1.810300
39.1573 0.219300
51.5727 0.013100
83.0546 0.001600
47.3225 0.001500
111.5544 0.001300

Cylindrical bushing C 490.6290 309.3259 0.584500
143.1166 0.015700
268.9768 0.001500

Cylindrical bushing D 532.1760 434.7185 0.085010
218.6918 0.007800
495.6674 0.000830
359.7936 0.000460

Table D.3: The component parameters for the generalized Maxwell model.
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D.2 Generalized non-linear elastic viscoelastic elasto-

plastic model

The left column identifies which specimens that are tabled.

C10 C20 C30 Kv [N/mm] tr [s] Kp [N/mm] us [mm]
A 53.4938 -0.1648 0.0015 0.6678 0.021535 54.2000 2.2909

3.3322 0.020338 24.8990 5.3929
15.8280 0.002021 12.5560 12.7160

4.2478 12.5660
B 40.9413 -0.1583 0.0015 17.5170 0.004727 217.6800 4.9650

71.4620 6.8941
32.9800 14.2370
14.7550 18.0970

C 383.3117 -1.4602 0.0503 12.1060 0.024697 436.4100 56.3350
59.0040 0.004518 62.9890 41.2440
41.4530 0.000773 40.6520 57.4790

D 389.4253 -2.1094 0.0786 61.4760 0.004335 1016.6000 101.5800
301.0400 42.2560
25.5160 12.6950
33.9180 17.7630
54.9620 35.1160
84.9550 110.6800

Table D.4: The component parameters for the generalized non-linear elastic vis-
coelastic elastoplastic model.
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