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Abstract

This thesis describes the development of a new h-adaptive method for shell elements in the
explicit FE-code LS-DYNA. Adaptivity is used to obtain accurate results for large deformation
analyses to a low computational effort. However, the present adaptive method available in LS-
DYNA is based on a geometrical simplification. When the mesh is refined, the bending
deformation of the shell is not considered. This simplification makes the strains and strain
distribution improper in for example hydro-forming simulations with the adaptive method.

The new method is based on an improved description of the updated geometry. This is made by
approximating the shape of the deformed structure and inserting new nodes on the approximated
surface. Re-meshing is performed based on the new geometry and the simulation is restarted.

The method was applied in two hydro-forming simulations and results from the present adaptive
method were compared to results from a reference analyses with a fixed mesh.

The conclusions of the new method for the analysed examples are:

e Improved accuracy in terms of strains compared to the present methods.

e Improved strain distribution compared to the other present adaptive methods.

e Probably more effective than the present two-pass method. That is improved accuracy in
terms of strains to a lower computational effort.

e The method results in a loss of internal energy which leads to inaccurate stresses
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1. Introduction

1.1 Background

In large deformation FE-analyses, such as crash worthiness and metal-forming
applications, a fine element mesh is required to obtain accurate results. However, the
computational effort increases with an increasing number of elements in the model. In the
FE-code LS-DYNA, an h-adaptive method is frequently used. A problem with this
method is that the refinement process does not consider the deflection of the elements,
since displacements are only evaluated at the element nodes. This may lead to inaccurate
results concerning strain and strain distribution.

1.2 Aim with thesis

The primary aim of this thesis is to investigate and develop a new technique for the h-
adaptive method for shell elements in LS-DYNA. The purpose with the new method is to
obtain a more accurate solution in terms of strain and strain distribution. The new
technique will be compared to the present method and with a reference solution in
different analyses. The main task is thus to distinguish differences in the results. Also the
required CPU-time for the analyses is of great interest, since one of the objectives of the
adaptive method is to decrease the total computational time. Possible losses in total
energy with the new method will also be discussed.

1.3 Limitations

This thesis is performed during 20 weeks, which makes its context somewhat limited.
The new method is therefore limited to 2-dimensional problems for shell elements. The
same theory is valid also in the 3-dimensional case, although this requires more effort.
The 2-dimensional case is an appropriate approach to distinguish the differences between
the present and the new h-adaptive method. The new method is only a development of
one of the two different options for the adaptive solution methodology, the one-pass
method. How the new method will affect the total energy of a simulation will not be
taken into consideration but it will be noticed and discussed.

1.4 Method and tools

The basis of the new method is to improve the geometry description when the mesh is
refined. This is made by approximating the shape of the deformed structure and also
taking into account the bending deformation of the element. The procedure for the
intended methodology can be divided into the following steps:

e Define initial mesh and start the analysis
e Stop analysis at a certain state
e Identify nodal displacements
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Approximate the true shape of the deformed structure
Insert new nodes and re-mesh

Map the state variables from the previous solution
Restart the analysis

The new solution methodology will be made manually and no implementation in LS-
DYNA will be performed.

The analysis is made in LS-DYNA version 970 and the result is viewed in LS-Pre-Post, a
postprocessor for LS-DYNA. To generate the shape and the new nodal coordinates a
function in MATLAB has been written. The function has to be manually provided with
input.

1.5 Outline of the thesis

The first part of Chapter 2 contains necessary theory to understand the methods used in
LS-DYNA. Some basic structural dynamics, numerical methods, shell elements and
general adaptive methods are described briefly. The second part discusses LS-DYNA and
how the theory is implemented in the program.

In Chapter 3, the present adaptive method and its properties are treated. The initial
problems with the present method are also discussed. The methodology for the new
adaptive method is introduced.

Two introductory examples are presented in Chapter 4. The first example is a simple
linear elastic beam model and the second is an elastic plastic shell strip, both exposed to a
uniform pressure. The second example is evaluated to see if the proposed method is
accurate enough.

In Chapter 5, more complex hydro-forming simulations are made. The new method will
be compared to a reference solution and to the present adaptive method. The results of
these two simulations will be a measure of how accurate the new method is in practice.

Chapter 6 contains a discussion of the results of, in particular, the hydro-forming
simulations. Also, some opinions on future development and ideas how the software can

be improved are presented.

In the last chapter, the final conclusions of the new method are stated.
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2. Theory

To understand the context in this report one needs some basic theory about the methods
used in LS-DYNA and how the program works. In the first part of this Chapter, basic
theory about structural dynamics, shell elements, time integration and general adaptive
methods will be discussed. In the second part, LS-DYNA is described.

2.1 Basic Structural dynamics

LS-DYNA is a FEM-program mainly for analysing large deformation dynamic response
of structures. How dynamic problems are described mathematically and which methods
that are used to solve the governing equations will be treated in the following chapters.

2.1.1 Governing equations

Consider a statically analysed structure. The equations of equilibrium for a linear problem
require that:

S = Sor S hu=f (2.1)

That is, internal forces are equal to external forces. k£ denotes the linear stiffness of the
structure and u the displacement

In a static non-linear analysis the internal force varies as a nonlinear function of
displacements according to;

S W)= oa 22)

Now, consider the damped dynamic single degree of freedom, SDOF, system in Figure
2.1.

k fr inertia force
elastic force e EEESREESESEBER AT
p() i
m — = plt) external
£ O @] Ip forces

(7777777777 r777rr7r7

damping forces
a—lt- u(t) - displacements

Figure 2.1: Single degree of freedom system [4]
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Dynamic equilibrium requires that (d’Alembert’s principle):

Ji+Ip+ fo = PO (2.3)
Where:

.. . du .. .
S, =mii; = o ; il =acceleration (2.4-2.5)
fp=ci; U= %; u =velocity (2.6-2.7)
S =t u; u =displacement (2.8-2.9)

k is as in static analysis the linear stiffness , c is the damping coefficient and m is the mass
of the body.

Inserting Equations 2.4-2.9 in 2.3 leads to the equation of motion. In the linear case the
equation of motion appears as a linear ordinary differential equation (o.d.e).

mii+cu +ku = p(t) (2.10)

In the nonlinear case, the internal force varies in the same manner as in the static non-
linear case. Therefore, the equation of motion appears as a non-linear o.d.e.

mii+ci+ f, (u)= p(t) (2.11)

For the linear o.d.e, analytical solutions are accessible but in the non-linear case only
numerical solution methods are possible. [4]

2.1.2 Structural damping

In structural dynamic analyses the applied force is a function of time. If a typical load
curve is used as in Figure 2.2 the response for a certain node in an undamped structure,
¢ =0, will appear as shown in Figure 2.3.
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load

v

time

Figure 2.2: Typical load curve

That is, the structure will start to vibrate with a certain frequency, the natural angular
frequency, @,. To obtain the static solution to the problem, structural damping has to be

included. Some theory about structural damping and how the damping can be applied in a
dynamic structure follows.

Consider the equation of motion, Equation 2.10, for an SDOF system. Now, with the
modification that the vibration is said to be free. That is, the structure has been exposed to

a displacement, u(0), and thereafter been released. There is no excitating force acting on
the structure.

mii+cu+ku=0 (2.12)

¢ is, as described, earlier the damping coefficient. It describes the energy loss in a cycle
of free vibration.

The natural frequency is calculated as:

w =]~ (2.13)

A new term called the damping ratio, {, is introduced. The relation between ¢ and ¢ is
as follows:

C

= e, (2.14)
Dividing Equation 2.12 by m gives:
i+2lwpi+@u=0 (2.15)
The solution to this differential equation has the form:
u=e" — (s’ +2lws+a)e" =0 (2.16)
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This equation is satisfied for all ¢ if:
s’+2los+a =0 (2.17)

Equation 2.17, known as the characteristic equation, has two roots:

81, = @,(=¢ +iy1-¢7) 2.18)

In the case when ¢ = =1, the imaginary part will be zero. The solution to s,, is exactly

the undamped natural angular frequency. This case is called the critical damping of a
system and c,, is called the critical damping coefficient and can be expressed as:

¢, =2may, = 2km = 2& (2.19)
w

n

Other types of damping that can occur in a dynamic system are underdamped and
overdamped. The differences between undamped, underdamped and critical damping are
shown in Figure 2.3.

Critically damped/ Undamped
A [

Underdamped

u(t)/u(0)

t/T

Figure 2.3: Dynamic response for different types of damping (adopted from [1])

On the y-axis, one has the ratio between the response at time #, u(7), and the initial
displacement, #(0), and on the x-axis the ratio between the time ¢ and the natural period

time of the system, 7, , which is defined as:
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T =2 (2.20)

The above theory is described for one-dimensional single degree of freedom problems,
scalar problems. In multi degree of freedom, MDOF , the same theory applies, with
parameters described as matrices and vectors. That is, an MDOF-system has a set of
different natural angular frequencies. Every frequency is said to describe a mode, that is a
special vibration shape of the structure. For every mode there is a corresponding ¢, and

therefore a corresponding response.

There are different methods of applying damping to a structure. Unlike the elastic
modulus of a material, the properties of damping are not that well established. In classical
damping theory there are different ways to express the damping coefficient c¢. One usually
utilizes two main techniques, either mass-proportional damping or stiffness-proportional
damping. A mix of these two makes the so called Rayleigh damping. Since the damping
coefficient, as described earlier, varies in different modes it is a complex procedure to
express the damping for a structure. Normally in structural dynamics, only the lowest
modes (frequencies) are of interest for the response. [1]

2.2 Central difference method

As mentioned earlier only numerical solutions are available for the non-linear o.d.e. LS-
DYNA uses the central difference method, c.d.m, to solve the equation of motion. C.d.m
is an explicit time scheme since the unknown state variables only are functions of known
variables as shown below. [4] Difference methods are appropriate for approximating
derivatives of smooth curves.

U, =fWU, U, | cest st ot 5e00) (2.21)
In this case, consider the smooth displacement functionu(#). Now, one wants to
approximate the first and second derivatives,(¢) andii(¢), at a certain time ¢. Consider
the Taylor expansion series for a given time step Az .

u(t+At) =u(t) +u(t)At + @(At)2 + %(At)3 Fo, (2.22)
u(t—At)=u(t)—u(t)At +%(At)2 —?(Atﬁ Fon, (2.23)

Subtracting Equation 2.23 from 2.22 gives the central difference formula for the first
derivative. When At is small this can approximately be written as:

B u(t+At)—u(t—At)

() 2At

(2.24)

By adding 2.22 and 2.23, the second derivative can be approximated. This gives:
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B u(t+At)=2u(t)+u(t—At)

i(t) (Ar)?

(2.25)

Let n denote the time step counter. A more compact way of expressing these equations
can be written as [4]:

1
1 =— - 2.26
Z'tn 2At (un+l unfl) ( )
.. 1
un = (At)2 (un+1 _2un +un+1) (227)

The central difference algorithm is illustrated in Figure 2.4.[5] The central difference
method is however only conditionally stable and therefore the time steps need to be
small.[4] How the size of the critical time step can be approximated will be treated in
Chapter 2.6.1.

uj:%/

>
L s L Ly Ly t
P 2At g
| >
At
4+—>

Figure 2.4: Central difference method (adopted from [3])

Now, at state n, both u, and i, are functions ofu,,,. How this is applied when solving
the equations of motions is also treated in Chapter 2.6.1.[5]

2.3 Shell elements

Shell elements can be regarded as plate bending elements combined with plane
membrane elements. That is, a shell carries load both in the plane, membrane forces, and
perpendicular to the surface. Shells can also have a curved surface, though, only flat
linear elements are considered in this thesis. The definition of a thin shell is that its
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thickness ¢ is small compared to the overall dimensions. The thickness can be constant or
vary within an element.

Consider the quadrilateral shell element in Figure 2.5a. The four corner nodes have 5
degrees of freedom each, 3 translations and 2 rotations.

L Mo
bxhaz )

Figure 2.5: a) Quadrilateral shell element with d.o.f, b) Definition of midplane

The stresses in a shell generate membrane forces N, measured in force per unit length.

t/2 t/2 t/2
N,= [ odz; N, = [ o,dz; N,= [ o,d (2.28-2.30)
—t/2 » —t/2 » ) —t/2

The stresses are calculated as a superposition of membrane and bending stresses. For a
linear elastic thin shell the normal forces are independent of z and the bending stresses
varies linearly with z.

12M N, 12M,z N, 12M,z
gx:%+ e T (2.30-2.32)

Stresses are evaluated at so called integration points within the element. An element
needs 4 integration points to be stable, fully integrated. Elements with less integration
points are called under-integrated. At every integration point a number of integration
points through the thickness can be used to describe the stress variation. How under-
integrated elements are treated is described in Chapter 2.6.2.[2]

2.4 Principle of virtual work
The energy principle is the base to the governing equations in the FE-method. A body is

in static equilibrium when the internal energy is equal to the external according to the
principle of virtual work:

[0,0e,dv = [b,6udV + [ 1,6u,dA (2.33)
Vv Vv N



- 2. Theory -

b, is the body force, ¢, is the surface force acting on the body and Ju,is a virtual

displacement. This equation holds for large deformations as well if time history effects
are considered. [8]

2.5 Adaptive method

With an adaptive solution one means that the FE-mesh is changing or refined
continuously throughout the analysis. This change is due to, e.g. large deformation in
certain areas where the initial mesh describes the geometry poorly. The aim with an
adaptive method is to get the best accuracy at a minimum computational effort. When the
optimal mesh changes during the analysis, as in non-linear analysis, the adaptive method
gets even more beneficial. [7] Large deformation problems as metal forming are often
analysed with an adaptive method.

To illustrate an adaptive process, consider the thin walled beam in Figure 2.6. In areas
with large deformations the mesh needs to be refined to get improved accuracy. In other
areas, where small or no displacements occur, the initial mesh describes the geometry
well and therefore no refinement is necessary. [5]

S

il
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T T

Jusanan
5
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Figure 2.6: Thin cross section beam analysed with an h-adaptive method [5]

In Figure 2.6 the used h-adaptive method is based on a mesh refinement process.
However there are other methods to increase the accuracy of a simulation. For example,
the adaptive process can exist of increasing the polynomial order of the element

10
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formulation. That is a linear element, for example, becomes a quadratic element after an
adaptive refinement.

Generally, in an adaptive method the meshing procedure is based on error estimations. In
the areas where the estimated error is too high, the FE-model is refined. In non-linear
analysis the solution is obtained via load- or time steps. Therefore, error estimation has to
be performed after each incremental step. Though, in practice, error estimation is
performed at selected steps. The error estimation is based on the energy norm (difference
between internal and external energy) within each element. Figure 2.7 shows an
algorithmic scheme of a non-linear adaptive solution procedure. u, o and &£ are state
variables such as displacement, stress and strain. i is the load step counter, £ the iteration
counter, m and n are mesh counters. After refinement the state variables must be mapped
from the old FE-model to the new one. This is called rezoning. [7]

It should be mentioned that this is an example of a non-linear adaptive algorithm and not
the algorithm used in LS-DYNA.

Define initial state

i=0; n=0; m=0;
=
Uy 0y &
g | n=m [« Error ok
A A
Next load ste
i=i+1 P Estimate error
Error to
high A
A Equilibrium
Predict load step i
k=0
0 0 .0 P . "
= u;, O & _ Eq_umbrlum iteration
i=0 k = k+1
ko ~k _k
A A = u; 0;
Equilibrium iteration
k=k+1; A
i<2
= ulk of &F Map solution variables from
Y | the n:th mesh m:th mesh
1 k=0
Y Equilibrium
Estimate error A
Refine mesh )
B memt RaEIEN i=i1
Error to high

Error ok

Figure 2.7: Algorithmic non-linear adaptive solution scheme (adopted from [7])

11
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2.6 LS-DYNA

As mentioned in Chapter 2.1, LS-DYNA is an explicit FEM-program. It is appropriate to
simulate fast dynamic problems, such as impact and shock problems. In this Chapter, the
basics of the explicit time integration, program features and its properties are described.

2.6.1 Explicit time integration

As mentioned earlier LS-DYNA uses the central difference method to solve the equation
of motion. The method has been described generally in Chapter 2.2. How DYNA handles
the operations for an MDOF system is treated in this Chapter.

Earlier, the equation of motion has been formulated for an SDOF system. Now we want
to formulate the relationships for an arbitrary number of DOF. In matrix form, the
equation of motion appears as:

Mii + Cu + ™ (u) = £ (t) (2.34)

M and C have the dimensions(dof Xdof), f and u have the dimensions(dof x1).
However, the formulation in LS-DYNA differs from the original equation. Because of the
reduced integration that will be discussed in Chapter 2.6.2 an “hourglass” force is added.
There might also be contact between different parts involved. Therefore a second force is
added to the equation. How LS-DYNA handles these added forces numerically will not
be treated in this thesis. For further reading, see [5] and [6]. Thus, the formulation in LS-
DYNA appears as:

Mii + Cit + £ (w) = £ (1) + £ (w, i) + £ (u, 1) (2.35)

If we from now on disregard from “hourglass” and contact forces and return to the
equation for an SDOF system, Equation 2.11. Inserting Equation 2.26 and 2.27 from the
central difference method in Equation 2.11. The following expression appears:

[m +%2Atcjun+1 = [(At)z p,— ((At)zk_ 2m)”n —(m _%Cj un—lJ (2.36)

The only unknown isu, ., , which is trivial to find by dividing the right side of Equation

n+l?>
2.36 with (m +%2Atc] . Now, consider this to be an MDOF system. Then, M is a matrix

and therefore an inversion is necessary. In a system with a large number of DOFs this
will be computationally expensive to do in every single time step. Therefore LS-DYNA
uses a lumped mass matrix which has only non-zero values in the diagonal. Also the
damping matrix is diagonal. The inversion of a diagonal matrix is trivial. A lumped mass
matrix can be seen as every node obtaining a contribution which is proportional to the
area of influence of the node as shown in Figure 2.8.

12
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Influence area for middle node

Figure 2.8: Influence area when calculating lumped masses

For the MDOF system the solution to u,,, appears as:

u, = (M +%2AtC]_ [(At)an ~((A’K-2M)u, —(M —%C)un_lj (2.37)

The explicit time integration has many merits, it is memory efficient since no major
matrix inverse operations need to be performed. It also makes it possible to describe a
complex problem with a relative simple algorithm. However, it is as earlier described
only conditionally stable which means that the time step may not exceed a critical value.
This makes the explicit solver, as mentioned, appropriate for short time loading
situations. If a slow process needs to be described, the computational effort will be too
high. For example, the actual time to perform a metal forming may perhaps be 10 seconds
but the simulations made in LS-DYNA are only performed during 50 ms. The critical
time step, A¢, , depends on the size of the elements in the model. Small elements require
a small time step to make the central difference method stable. [3] This critical time step
is based on wave propagation. Basically it says that a wave can not pass an entire element
in one time step. This leads to:

Ar, = Lo (2.38)

cr
c

Where L_, the shortest element side in the model and c is the so called wave propagation
velocity, is calculated as:

e~ |E (2.39)
Yo,

However, different methods can be used to increase the time step and also an implicit
solver is included in LS-DYNA for slower processes. For further reading see [5]

13
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2.6.2 Belytschko-Lin-Tsay shell

The most frequently used shell element is the so called Belytschko-Lin-Tsay element. It
was first implemented in LS-DYNA as a computationally more efficient element than its
precursor. It is considerably more efficient than the other types of shells and this
advantage depends on several mathematical simplifications. However, because of these
simplifications, it has some disadvantages. It looses stiffness considerably when it is
warped and it is therefore not appropriate for analysing warped structures. Since only one
integration point in the plane is used, zero energy modes may occur. The difference
between an under integrated and a fully integrated element is shown in Figure 2.9a. Zero
energy modes are also known as “hourglass” modes because of their shape. Two typical
hourglass modes are shown in Figure 2.9b.

[ ] [ ]
L]
[ ] [ ]
a
T
- -— =TT /I
T ! N e T Y
\ | / < | /
\ : / \ . /
\ | ! \ | 4
\ H / \ ! /
| / \ L_ /
(R St I i ~
\ . / \ | ,
\ ! \ /
\ | / \ | /
\ ! \ /
\ | ! A | /
\ / S~ /
\ | ! | /
<
~</

Figure 2.9: a) A fully integrated element to the left and a under integrated element to the right b) Two
hourglass modes for the under integrated element

Since the strain is only evaluated in one point it is possible that no strains occur in that
point. Therefore, the strain energy of the element is zero even though the element is
considerably deformed. For a fully integrated element, the hourglass effect will not have
an influence on the solution. As discussed earlier, an hourglass force is added to the
equation of motion in LS-DYNA. The aim with this force is to control the formation of
these modes. After the analysis, it is essential to control that the hourglass energy is small
compared to the total energy. Otherwise, the solution will be inaccurate.

Displacements are only evaluated at the element nodes. The element is linear and
therefore no bending deformation of the element is obtained within the element. An
element formulation of higher degree would affect the critical time step considerably and
is therefore rarely used in an explicit FEM-solver.[5] For further reading see [3] and [5].
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2.6.3 Damping in LS-DYNA

LS-DYNA includes both Rayleigh and mass-proportional damping. For lower
frequencies the mass-proportional damping is more efficient and therefore used. The
damping is applied on the nodes of the deformable structure. The best damping is usually
based on the critical damping of the lowest mode of interest. The damping affects both
translations and rotations of the structure. The damping force is calculated as:

Fl‘l

damp

=D Mu (2.40)
Where D, is a function of the lowest frequency of interest:
D =2a, (241)

With Equation 2.24 one can easily see that this refers to the critical damping for the
lowest natural frequency. [5]

2.6.4 Contacts

The contact option in LS-DYNA treats interaction between different parts in a model.
When different parts are interacting, forces appear in the contact interface. There are
numbers of different contact options in LS-DYNA and the majority of them are based on
the penalty method that will be treated later.

The contact used in this thesis is mainly a surface to surface contact, that is, one surface is
impacting another surface. Node to surface and node to node contacts are other types of
contact that work in a similar way. The surface to surface contact is computational more
expensive than the other two but more stable and accurate when a coarse mesh is used.
The contacts are usually defined by a master and a slave side. Generally the part with
highest mesh density is used as a master side. Although, in the surface to surface contact
the choice of master and slave side is arbitrary.

The penalty method consists of placing springs between all penetrating parts and the

contact surface. How the penalty method works for a node to surface contact is illustrated
in Figure 2.10
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Figure 2.10: Penalty method (Adopted from [3])

The contact force is calculated as:

F =6k (2.42)
Where £ is the spring stiffness.

The surface to surface contact is treated symmetrically, that is, both master and slave
nodes are checked against penetration. If the contact pressures become large, it is possible
that unacceptable penetration occur. The method checks for initial penetration, that is, if a

node already has penetrated a surface before the analysis starts. It is also possible to add
friction and damping in the contact interface.[3]

2.6.5 Control volume

A way of controlling a simulation of an enclosed surface is to use a control volume. The
enclosed surface can exist of shell or membrane elements and defines the control volume.
By using the airbag card in LS-DYNA, the control volume can be exposed to a mass flow
of a gas or liquid. That is, the structure is forced to expand as the enclosed volume is
increased.

Consider for example a tube consisting of shell elements which defines the control
volume and are exposed to a mass flow.

The enclosed mass in the volume can be calculated from:

M(t)=M(0)+ ijdt —j M, dt (2.43)
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M denotes the mass flow per unit time, in and out of the enclosed volume respectively.
The enclosed volume of the uncompressed liquid at a certain time can then be calculated
as:

M)

V()= (2.44)

0

P, is the density of the uncompressed liquid. The volume of the fluid in the compressed
state is calculated as:

V(=10 (2.45)
P

The pressure generated by the mass flow and the current volume is calculated as:

_ h®
P(t) = K(t) ln[ o J (2.46)

Here, K(t) is the bulk modulus. The pressure is uniformly applied on the surface within
the control volume. [5]

In hydro-forming simulations, it is preferable to simulate the process with a control
volume instead of using a linear pressure curve. The explanation to why this is preferable
can be compared to a uniaxial tensile test. If the behaviour of the material is to be
described in an appropriate manner, the test should be controlled by displacements and
the force or stress be measured. Figure 2.11a illustrates a tube exposed to a mass flow
which generates an internal pressure. The tube is surrounded by a rigid tool. The
continuous line in Figure 2.11b illustrates the pressure generated by the mass flow as a
function of the radius of the tube. That is the required pressure to form out the tube. The
dashed line illustrates a linear pressure curve applied by the user.
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Figure 2.11: a) Tube exposed to a mass flow b) Obtained pressure by the flow and comparison to a liner
pressure curve
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A simulation with a control volume makes the process much smoother and no
considerable dynamics effects are introduced. The simulation with a prescribed pressure
makes the simulation unstable and dynamic effects are introduced. The critical state

P . .
where —C; =0 is not considered here.
r

2.6.6 H-adaptivity in LS-DYNA

As mentioned earlier there are different types of adaptive refinement processes. The
major one used in LS-DYNA for shell elements is called h-adaptive. In this method the
elements are subdivided into smaller elements whenever an indicator shows that a
refinement of the mesh will provide improved accuracy of the solution. To decide the
location of the areas needed to be refined, a refinement indicator is used. [5] Generally in
adaptive methods, this indicator can be of several different types. Plastic strain rate,
effective stress, change in thickness and relative change in angle between adjacent
elements are examples of indicators. [7] The latter is shown in Figure 2.12.

¢

Undeformed Deformed

Figure 2.12: Change in angles as a refinement indicator (Adopted from [5])

The indicator used in LS-DYNA is based on change in angles for shell elements. The
process when an element is divided into several smaller element is called fission. In h-
adaptive methods the original element is divided into elements with sides h/2, where h is
the characteristic size of the original element. In Figure 2.13, a quadrilateral is first
divided into four quadrilaterals using the mid-points of the sides and the centre of the
original element. The new elements can later be subdivided into smaller elements in
several levels of adaptivity as shown.

Figure 2.13: Fission of a quadrilateral element (Adopted from [5])

The adaptive process is automatic in LS-DYNA. The user sets the initial mesh, value of
refinement indicator, update interval and maximum levels of adaptivity. The program
subdivides those elements in which the refinement indicator has exceeded. This makes it
possible to get an acceptable accuracy of a less computational resource than with a fix
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mesh. Although, the process does not provide control of the error of the solution. The
number of levels of adaptivity is though restricted by three rules:

1. The number of levels is restricted by the user. Normally, 3 to 4 levels.
In a mesh, the levels of adaptivity must be such that the levels of adaptivity in
neighboring elements differ at most by one level.

3. The total number of elements in an analysis can be restricted by available
memory.

Elements initially generated by the user are called parent elements. The new elements
generated by the adaptive process are called descendent elements and the new nodes

descendent nodes. The coordinates of the descendent nodes along the sides are generated
by linear interpolation according to:

1
Xy = E(XI +x,) (2.47)
Where x, is the coordinate of the descendent node, x, and x, are the current node-

coordinates along the side which the descendent node was generated.

The coordinate of the midpoint is generated in the same manner:

1
Xy =Z(x, +X,+x, +x,) (2.48)
Here, x,, is the descendent mid-point node and x, , ., are the current nodes of the

original element.

That is, the new node is placed in the plane that the parent element described and the
bending deformation of the element is not considered.

Also velocities and angular velocities need to be described in the descendent nodes.
Linear interpolation in the same manner as coordinates leads to:

vy = %(v, +v,); Velocity of descendent node on the boundary. (2.49)
v, = %(V, +v, +v, +v,) ; Velocity of descendent mid-point node. (2.50)
W, = %(a)l +w,); Angular velocity of descendent node on the boundary. (2.51)
o, = %(a), +w, + W, +®,) ; Angular velocity of descendent mid-point node. (2.52)

The stresses and strains in the descendent elements are set equal to the state variables in
the parent element at the corresponding through the thickness quadrature points.
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Descendent nodes which are not corner nodes of an all attached element are treated as
slave nodes and secondary conditions are applied to the present degrees of freedom.

When the new mesh is generated and the calculations can proceed the user has two

alternatives;

—

Restart the calculations from actual state, one-pass adaptivity.

2. Back up to an earlier time state and repeat a part of the calculation with the
new mesh, two-pass adaptivity.

The latter alternative is preferred for accuracy and stability reasons. The former is
preferred for speed. The two alternatives are shown in Figure 2.14.
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Figure 2.14: Alternatives after refinement of mesh a) Two-pass. b) One-pass [5]

Besides these two similar methods there is a third alternative adaptive method. It is called
uniform adaptivity. This method refines the mesh at the initial state of the analysis. There
is accordingly no indicator that needs to be exceeded. The number of elements will be
increased but the method does not consider the geometrical aspects. [5]
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3. Proposed method

In this chapter the methods and the procedure of the proposed h-adaptive method are
described. Also the problems and properties for the present h-adaptive method are
mentioned briefly.

3.1 Present adaptive method

As mentioned in the introduction, the problem with the present h-adaptive method is that
the bending deformation of the element is not considered when the descendent nodes are
generated. As described in Chapter 2.6.4, the descendent middle node is generated in the
plane that the parent element described. This simplification of the geometry has proved to
result in improper strains and strain distribution. This holds for all three types of
adaptivity but it is most striking for the uniform and the one-pass adaptivity.

Later in this thesis two examples will be analysed with different adaptive methods. The
described behaviour with the strain will then be presented more in detail.

3.2 About the proposed adaptive method

The fundamental basis of the new h-adaptive method is that the bending deformation of
the shell element is to be considered when the mesh is refined. By this approach, the
geometry of the structure is described in an improved manner. Consider the discrete
element mesh of a curved surface in Figure 3.1a. With increasing nodal displacement, the
mesh represents the true shape poorly. With the present adaptive method the descendent
node is generated on the parent element. With the proposed method, this node is to be
moved towards the true surface. Figure 3.1b illustrates the differences of the two
methods.

True geometry Descendent middle node with
\ proposed method

Discrete FE-

mesh Descendent middle node with

present method

a) b)

Figure 3.1: a) Discrete element mesh of a curved surface b) Difference between present and proposed
location of descendent middle node

As mentioned in the introduction the proposed analysis method consists of several steps.
Figure 3.1 illustrates the procedure during the analysis in LS-DYNA.
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Start analysis with
initial mesh

y

Stop analysis at 4’| Generate output file |

selected state
A

| Generate new mesh |

Restart analysis |
A

A

Rezoning stresses
and strains

Figure 3.2: Analysis scheme in LS-DYNA for the proposed adaptive method

The initial mesh and the state when the analysis is stopped are defined by the user. With
the command *INTERFACE SPRINGBACK DYNA3D THICKNESS, LS-DYNA generates an
output file containing nodal coordinates, stresses, strains and thickness of the elements.
Next step in the procedure is to generate descendent nodes and create the new mesh. How
the “true” shape is approximated is treated in the following chapter. When the new mesh
is created all element history needs to be mapped from the parent to the descendent
elements. The descendent elements are assigned the same state values as the
corresponding parent element, as in the present method. The analysis can now be
restarted and the adaptive procedure can be repeated any desired number of times. This
new method will only be evaluated as a one-pass method. However, it is possible to make
the new method work as the present two-pass method.

There is a drawback though to the proposed procedure. Since the method performs a
virtual displacement of the generated descendent node that is not a result of an external
force, one automatically has added energy to the system. This energy is however not
taken into consideration in the principle of virtual work. This may lead to a loss of total
energy of the system in the end. If the conservation of energy between the parent and the
descendent elements should hold, one has to adjust the stresses. Consider the principle of
virtual work, Equation 2.33, with the modification that one neglects the body forces.

[o,0e,dv = [t,6u,d4 3.1)
4 S

At a certain state, this equilibrium is fulfilled. When introducing the descendent node as
in the present method the equilibrium holds. Consider now that the middle node is moved
to the approximated surface. One has introduced a virtual displacement Au, of certain
nodes which should lead to an incremental change in external work, right side of
Equation 3.1. ¢,, o and & are constant at this state and it should lead to that the equation
of equilibrium is not fulfilled.

J.a,/JsijdV # .ft,.ﬁu,.dA (32)
14 N
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Unless, there is an adjustment to o, the energy between the parent and the descendent
elements will not be conserved.

However, the method described in this thesis is not based on conservation of energy and a
loss of energy in the simulation will not be adjusted in any way. This may lead to
inaccurate results with respect to stresses. This effect will be discussed later in Chapter 5
and 6.

3.3 Approximating shape in 2 dimensions

The base in the new method is to describe the “true” shape of a deformed structure by the
nodal displacement. At a certain step in the analysis the mesh needs to be refined. Now,
the approximated shape has to be described. The new geometry is expressed by each

element in a local coordinate system, (¥, 0 ), shown in Figure 3.3

<
XI;

v

X

Figure 3.3: Definition of local coordinate system for an element

The relation between the local (X, ) and the global (x,y) coordinate system for a
coordinate P ,can be expressed as:

X | | cos(d) sin(6) P_C 13
5| | =sin@) cos(8) (P-C) (3-3)

The approximating function which describes the shape is of the third degree in the 2-
dimensional case. That is:

(X)) =+, X+ X’ +a, X’ (3.4)

To be able to determine the constants & one needs four boundary conditions, the nodal
normal and the nodal values. This normal is calculated as an average of two neighbouring
elements normal. Figure 3.4 illustrates the definitions.
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Figure 3.4: Element normal and calculated nodal normal

The nodal normal can now be calculated as:
1 21
n, = E(ni—l +n), n; = E(nm +n,) (3.5)

With the nodal values and the normals one can now find the constants in Equation 3.4.
The slope in the nodes is orthogonal to the normal. In matrix form, Equation 3.4, leads to:

[5(x=0)]
L% ¥ X |[a] | 45
0 2x 3% ||« dx |__
Aa=b | _ o TR e (3.6)
1 x, X, X ||& (x=1L)
0 1 2%, 3% |e a5
L x|, J
The vectora is calculated as:
o= A-lb (37)

Now, the shape is determined and the location of the descendent node can easily be
determined in the local coordinate system and also transformed to the global system. The
descendent node is always generated in the centre of the original element, that is,
atx=1L/2.

The new geometry is generated by a function written in MATLAB, see Appendix A.
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4. Introductory examples

In this chapter, two minor examples are given to see how variables can be transferred
from one FE-model to another and if the new method appears to work in a satisfying way.

4.1 Linear elastic beam

The aim with considering a linear elastic simple beam model is to see how the nodal
displacements change with an increasing number of elements. Also, one can study how a
set of displacements can be transferred from a model with few elements to a new model
with more elements. Consider the beam with a distributed load in Figure 4.1. If one
considers only nodal displacement and no bending of the element segments, one obtains
the displacement as shown below.

| |
A 7\

@ —@

g
Figure 4.1: 2-element beam with distributed load and the corresponding nodal displacement

With only two elements we get the displacement at the mid-node as shown in Figure 4.1
By refinement a new node is inserted in the centre of the origin element. By symmetry
reasons one can study the geometry shown in Figure 4.2.
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Figure 4.2: New middle node is introduced and the new nodal displacements u'

With the displacement inserted from the old model, the new nodal loads and the stiffness
calculated from the initial state (horizontal) one obtains the following relationship:
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K'u'—f'=r (4.1)

Here, K' is the new stiffness and r is the error. To get the new displacements,u', one
needs to add Au, which is calculated as:

Au=K"'r 42
4.2)

Since, it is not possible to invert K one needs the boundary conditions and thereafter
invert the reduced K. The total displacement for the new model is:

u' =u’+Au (4.3)

These studies are made to understand how variables can be mapped from one FE-model
to another. In the following examples stresses and strains will be mapped from one model
to another.

4.2 Shell strip

In this chapter a thin shell strip is considered in LS-DYNA. The aim with this example is
to see how the energy differs for different types of approaches and verify that the
proposed method is accurate enough. The strip is supported at its both ends and it is
exposed to a uniform pressure which during the analysis operates perpendicular to the
shell. The models below have been analysed.

1. Aninitial fine mesh consisting of 8 elements.

2. An initial mesh of 2 elements is used with the present two-pass adaptive method
to refine the mesh 2 levels up to 8 elements.

3. An initial mesh of 2 elements is used with the present one-pass adaptive method
to refine the mesh 2 levels up to 8 elements.

4. An initial mesh of 2 elements is used with the new adaptive method to refine the
mesh up to 8§ elements.

The strip was loaded such that plastic strain was initialized. The material properties for
the steel used are shown in Appendix B.

In these analyses, the damping described in Chapter 2.6.3 is applied. The lowest angular
frequency is calculated according to beam theory.

EI
mL'

®, =(7L) (4.4)

The first analysis with 8 elements is used as a reference when comparing the other
methods. In analysis with the present h-adaptive method, a relative change in angles of 3
degrees is used as a refinement indicator.

For the new adaptive method, the two refinements have been made continuously over the

load curve. The refinement procedure follows the described process in Chapter 3.2.
The results for the three different analyses are shown in Table 4.1.
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Table 4.1: Results for the four different analyses

Initial 8 Present two- Present one-

Variables elements pass adaptive | pass adaptive | New adaptive
Deflection of middle node
(mm) -304 -304 -342 -308
Deflection at x=L/4 (mm) -227 - - -230
Total energy (MNm) 28,3 28,7 37,3 26,2
Internal Energy (MNm) 28 28,15 36,2 26
Max. eff. stress in middle
section (MPa) 253,3 253 253 250,8
Max. eff. strain in middle
section - - - -
Upper surface 0,0573 0,0588 0,062 0,0582
Mid surface 0,0585 0,05885 0,074 0,0593
Lower surface 0,0599 0,0594 0,085 0,0606

From Table 4.1 one can distinguish that the present one-pass method separates from the
other three analyses. The new method on the other hand, shows decent accuracy
compared to the reference and the present two-pass method. However, there is a certain
loss in internal energy for the new adaptive method, even if it is only about 7%.

It should be mentioned that it is the most interesting case to compare the present one-pass
method and the new method, since it is also a kind of one-pass method. It is not possible
to compare the total CPU-time for these two analyses since the new method is performed
by hand but it can be interesting to compare the time for the two present methods to get
an understanding how much more effort the two-pass method claims. The total CPU-time
for the two adaptive simulations is as follows:

e one-pass: 39s
e two-pass: 100 s

It is not straightforward to claim that the new one-pass method will have the same low
computational cost as the present one-pass method but it is most likely that the new
method will be more efficient than the present two-pass method. After all, it shows
comparable accuracy to the two-pass method.
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5. Hydro-forming analyses

In this chapter two examples are analysed to distinguish the differences between a
reference solution, a solution with the present adaptive method and one with the new
adaptive method. The analyses are similar to each other. Both are simulations of a hydro-
forming process of a tube and the main theme is that the tube is somehow formed into a
radius. The first example may not have a great practical use but it is uncomplicated to
analyse and to compare the results. In the second example, the adaptive method is used in
a more relevant problem that is likely to occur in the metal-forming industry. Also some
other problems that occurred with the present adaptive method will be discussed. As
mentioned earlier the focus is to distinguish differences in plastic strain and its
distribution. As mentioned in Chapter 3.2, changes in total energy lead to incorrect
stresses. Therefore, the internal energies will be compared and how this affects the
stresses.

Both analyses are modelled with a surrounding rigid tool. Because of stability reasons,
the analysis is made by using the earlier mentioned mass flow instead of an internal
pressure. As described in Chapter 2.6.5 this makes the deformation progress much
smoother. In the two examples the default Belytschko-Lin-Tsay shell element is used.
The material properties for the aluminium are shown in Appendix B.

5.1 Expanding tube

In this first example the tube is surrounded by a rigid cylinder, a tool, of greater radius
than the tube. With a constant mass flow into the volume, the cylinder expands
symmetrically and forms out to the rigid form. The dimensions of the model are shown in
Figure 5.1. With this specific geometry some problems occur with the earlier described
surface to surface contact. Then the tube has initiated contact with the tool it starts to
rotate in the cylinder due to its faceted FE-surface. This behaviour affects the results and
makes them unreliable and the analysis loses its purpose. Therefore another type of
contact is applied to the problem, called contact entity. How this contact works will not
be treated in this thesis. For further reading see [5]. However, this specific contact
showed to perform poorly with the present adaptive method. This will be explained later.
To avoid the unwanted rotation of the tube friction was applied in the contact surface to
surface interface. However this also resulted in improper strains.
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Figure 5.1: Analysed cylinder

The length of the tube is 180 mm and the initial thickness of the shells is 2 mm. The
process is simulated during 10 ms. For the adaptive analysis, the initial mesh consisted of
only 8 elements and 2 levels of adaptivity were applied, see Figure 5.1.

The following different analyses are to be compared.

A reference analysis with an initial fine mesh, i.e. 32 elements
The present one-pass adaptive method

Uniform adaptivity

The new adaptive method

5.1.1 Analyses

The first analysis is made with an initial fine mesh and no adaptivity is applied. This
analysis is made as a reference. Since the tube expands symmetrically a uniform strain
distribution is expected. This is why the current example is appropriate for distinguishing
differences in the analyses.

As mentioned earlier some problems occurred when combining the present adaptive
method with the current contact. The descendent nodes started to penetrate the rigid form
considerably and this led to inaccurate results. To avoid this, the simulation had to be
stopped after each mesh refinement. A complete result file was written and then the
simulation was restarted with the result file included. Therefore, only the present one-pass
adaptive method is analysed since it would be demanding to back up to an earlier state
and restart the analysis like in the two-pass method. It is the author’s opinion that this
penetration depended on some problems with the updating of the descendent nodes.

Since the adaptive refinement is based on a change in angles between neighbouring
elements the model has to be trigged to perform a mesh refinement. Consider the FE-
mesh in Figure 5.1. If this model starts to expand symmetrically, no change in angles will
occur during the whole analysis. The cylindrical geometry will be intact, only the

30



- 5. Hydro-forming analyses -

enclosing volume will increase. Therefore, the first mesh refinement is performed
initially, see Figure 5.2. That is, the initial model actually consists of 16 elements. Now,
the nodal displacements will lead to change in angles and another mesh refinement will
be performed when the change in angle is 2 degrees. The first refinement can be
compared to the uniform adaptivity that also will be analysed.

Figure 5.2: First mesh refinement at initial state to trigger of the adaptive procedure

One analysis is made with the present uniform adaptive method. In the first two steps the
mesh is refined first to 16 elements and then to 32 elements. Also in this analysis, the
simulation was stopped after the second refinement and thereafter restarted with an
included result file.

With the new method, the mesh initially consisted of 8 elements. The mesh refinement
was made by hand after the simulation was had terminated. The procedure for the
analysis follows the scheme in Figure 3.2. The refinements have been made at two
arbitrary points in time.
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5.1.2 Results

As expected the reference analysis proved a homogenous strain distribution in the whole
model. The initial mesh was therefore fine enough to achieve a representative result. The
results are shown in Table 5.1.

Table 5.1: Effective plastic strain values for the different analyses

Reference New adaptive Present one- Present
Variables analysis method pass uniform
Max. effective plastic strain in
the model (%) 11,1 12,8 21,5 21,3
Min. effective plastic strain in
the model (%) 11,1 12,2 211 20,4

The noticeable with this simulation is that the present adaptive method totally failed. The
strain distribution is rather homogenous but, the absolute maximum value is almost twice
the value calculated with the reference model. This holds both for the one-pass as well as
the uniform method. The new adaptive method performed considerably much better than
the present. The strain distribution is not completely homogenous but the strain absolute
maximum value differs only by 1.7%.

Regarding the internal energies it is not possible to evaluate the present one-pass method
since it was performed in several steps, but for the other analyses the following results
were obtained:

e Reference analysis: 1.19 MNm
e Uniform adaptive analysis: 1.83 MNm
e New adaptive method: 1.13 MNm

The uniform adaptive method showed high internal energy compared to the reference
model. For the new method, the energy is close to the reference model. However, since
the strains were slightly too high this leads to low stresses according to the principle of
virtual work.

5.2 Hydro-forming of a tube

This example is much similar to the first one, but now the tube is expanding and formed
into a square-shaped tool with curved corners. In the first example, the present adaptive
method showed inaccurate strains but the distribution was uniform through the model.
The new method will now be compared to a reference model and to the present adaptive
method for a more complex geometry. The model and its dimensions are shown in Figure
5.3.
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Figure 5.3: Geometry and dimensions of the tube and the rigid form

The sides of the square, b, are 55 mm. The initial radius of the tube is 50 mm. This
simulation has been made with different values on the radius of the corners. The results
are presented for a simulation with radius of 20 mm. Also radiuses of 10 mm and 30 mm
have been analysed. The differences for these analyses will be mentioned later. Also this
simulation is performed during 10 ms and 2 degrees are used as a refinement indicator.

A control volume is used also in this simulation. Since the tube is incapable to rotate
inside of the tube in this case the surface to surface contact can be used. To really make
the tube stick, a coefficient of friction of 0.1 is applied on the contact interface. With this
contact, the present adaptive method functions well and no restarts are necessary. In this
simulation a higher mesh density of the model is necessary to obtain an accurate result.
Therefore an initial finer mesh than in the previous simulation is used. The following
models have been analysed:

e A reference analysis with 96 elements.

e The present two-pass adaptive method. Starting with 24 elements and applying
two levels of adaptivity.

e The present one-pass adaptive method with the same properties as the former.

e The present uniform adaptive method with the same properties as the former.

e The new adaptive method. Starting with 24 elements and refined twice at the
same state as the two-pass method.

Besides comparing absolute strain and its distribution, the internal energy is to be
compared.

5.2.1 Analyses

For the reference analysis the expected result is not that easy to predict as in the previous
analysis. One can expect high and homogenous strains through out the whole radius. In
the other areas, one can not predict the results except a symmetric strain distribution in
the tube.

As described earlier for the two-pass method, the initial mesh consisted of 24 elements
and the model is refined twice to a final state consisting of 96 elements around the tube.
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The adaptive refinement indicator control is performed every 1 ms, that is ten times
during the simulation. For stability reasons, the time step is scaled with a factor 0.4.

The one-pass simulation is the most interesting one to compare with the new adaptive
method since the new one, as used here, also is a one-pass adaptive method. The same
properties hold for this simulation as for the two-pass analysis. However, this method
showed some instability problems in spite of the fact that the time step was scaled. This
will be discussed later.

The uniform analysis is not of major interest to compare with the new method since it is a
completely different type of method. It is still relevant to see how this method differs
from the two-pass method and distinguish a certain behaviour. The time step was scaled
with a factor 0.7 to avoid contact instability.

The simulation with the new adaptive method is performed in the same manner as in the
previous example, but the model is refined at the same time states as for the two-pass
adaptive method.

5.2.2 Results

The reference solution showed a homogenous strain distribution through the radius and a
symmetric strain distribution in other parts of the model. A final model of 96 elements
should therefore be fine enough to show accurate results. The maximum strain in the
radius is 40.6% and the minimum strain in other parts of the model is 20.9%. The
maximum and minimum strain values for the different analyses are presented in Table
5.2.

It should be mentioned that the present one-pass adaptive method showed contact

instability even though the time step was scaled with a factor 0.05. Therefore, no results
will be presented for the one-pass analysis.

Table 5.2: Absolute strain values for the different analyses

Reference | New adaptive Present Present
Variables analyse method two-pass uniform
Max. plastic strain in the model
(radius) (%) 40,6 38,1 43,3 43,5
Min. plastic strain in the model
(%) 20,9 23,1 21,1 22,7
Internal energy (MNm) 3,95 3,25 3,98 3,98
1:st principal stress (MPa) 210 154 217 218

The adaptive analyses showed comparable accuracy with respect to maximum strain in
the radius. However, the new adaptive method showed lower maximum strain in the
radius and higher minimum strain in other parts of the model. The present adaptive
method showed both higher maximum and minimum strain. The absolute strain value is
not of greatest interest when comparing the two methods but it is of importance that the
simulation shows acceptable accuracy.
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When it comes to the strain distribution in the radius the different analyses differs. The
two-pass and the uniform method show an inhomogeneous strain distribution in the
radius. For the uniform method, the behaviour is the most striking. The new method, on
the other hand, showed a completely homogenous strain distribution. This holds for the
analyses with 10 and 30 mm radius as well. Figure 5.4 illustrates the inhomogeneous
distribution for the present two-pass adaptive method to the left and the new adaptive
method to the right.

Inhomogeneous strain distribution
in the radius

Figure 5.4: Strain distribution for the present two-pass adaptive method to the left and the new adaptive
method to the right

In Figure 5.5, the strain along the middle section is plotted for the four compared
analyses. The starting point is in the centre of the radius.
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Figure 5.5: Strains along the section for the different analyses
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From Figure 5.5 one can easily observe the inhomogeneous strain behaviour of the
present adaptive method. The peaks illustrate the strain in the radius and there is a clearly
visible V-shaped peak for the two analyses with the present adaptive method (red and
green curve). For the new adaptive method no such behaviour is visible. As mentioned
earlier, it is the absolute strain values that differ from each other. In Figure 5.6, only the
new method is compared to the reference model.
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Figure 5.6: The reference analysis compared to the new method.

Even if the plotted curves in Figure 5.6 are not completely correlated the new method
proves a more accurate behaviour than the present adaptive method.

When it comes to the internal energy for the analyses it is clearly visible that there is a
loss in internal energy for the new method. The calculated stresses are, due to the energy
losses, too low compared to the reference model.

All the adaptive analyses have common strain behaviour with the sharp notch, only at
different positions. Why the adaptive analyses prove this behaviour is hard to explain.
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6. Discussion of results

This chapter will discuss the results and experience from the different examples. The
conclusions are based on the two examples that have been presented in the thesis. Other
opinions are based on the author’s experience of the analysed examples and own
assumptions.

6.1 Discussion of the hydro-forming examples

For a start, it should be mentioned that the results of the examples performed in this thesis
can not in any way represent a general behaviour of the new method. However, these
examples demonstrates how well the new method performs in these particular cases and
one can make own assumptions on the behaviour of an arbitrary structure and some
general conclusions can be drawn, though. This will be discussed later.

In the first hydro-forming simulation with the expanding tube the new method proved to
perform considerably much better than the present. Exactly why the present adaptive
method generates these inaccurate results is hard to tell but it is the author’s opinion that
it depends on the poorly described geometry. As described in Chapter 2.6.6 the
descendent node is generated on the same plane as the parent nodes and the bending of
the element is not considered. Consequently, after each mesh refinement the simulation is
restarted with the wrong geometry. In the uniform case it is particularly easy to see the
incorrect description of the geometry. If Figure 5.2 is considered, one can see that the
refinement describes the tube as poor as the initial mesh did, only the number of elements
has been increased. Though, in practice, it is the same case with the one-pass method. It is
possible that the two-pass method would perform better but it is most likely that even that
method would fail. In particular, these inaccurate results may be noticeable when the
initial mesh is as coarse as it was in these simulations and the structure is strongly curved.
However, both the present and the new adaptive method showed a homogeneous strain
distribution.

The uniform adaptive method showed higher internal energy than the new adaptive
method as well as the reference model. This is also due to the geometrical simplification
with the present method and the fact that the initial mesh was rather coarse. The new
method on the other hand showed a comparable internal energy with the reference
analysis despite the coarse mesh. That the difference in energy was insignificant for this
case may depend on the states where the model was refined.

For the second hydro-forming analysis the differences of the simulations are of another
kind. The absolute strain values are comparable with the reference simulation both for the
present and for the new adaptive method. However, the new adaptive method eliminated
the unwanted behaviour with inhomogeneous strains in the radius, which was one of the
primary aims with the method.

The drawback with the new method is obviously the losses of internal energies. The
losses depend, as described in Chapter 3.2, on the virtual displacement of the descendent
node which is not included in the principle of virtual work. This leads to a loss of external
work and accordingly to a loss of internal energy. These losses lead to inaccurate stresses.
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In this example the present adaptive method proved comparable internal energy with the
reference model. This may be due to the relatively fine initial mesh. However, the author
expected that the uniform adaptive method would lead to high internal energy also in this
case.

6.2 Future development of the method

As mentioned earlier the new method improves the solution accuracy in terms of strain
and its strain distribution. To really investigate how the new method performs in a larger
scale, it has to be implemented in LS-DYNA. However, the problems with the internal
energies have to be solved. That is the virtual displacement of the descendent node has to
be included in the principle of virtual work. How the computational effort would differ
from the present one-pass method is difficult to predict but it is the author’s opinion that
it would not be striking since the element normal is calculated at every state in the
analysis.

It could be an interesting task to investigate how a similar two-pass method would
perform compared to the new one-pass method.

The next natural step would also be to implement the method for three dimensional cases.
This will of course take more efforts but is necessary for the practical use of the proposed
method.

Outside the range of this thesis it would also be of an interest to investigate why different
types of adaptivity failed with a specific contact. Also, a closer investigation on how
hydro-forming simulations can be modelled in a better manner and which contacts that
are most appropriate to use.
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7. Conclusions

The drawback with the present method is that the refined geometry is poorly.
Consequently, after each refinement the analysis restarts with an incorrect geometry. This
is in particular noticeable for the one-pass and the uniform adaptive methods. Inaccurate
strains and corresponding strain distribution are results of this geometrical simplification.
This will in some cases also lead to higher external energies than expected and therefore
inaccurate stresses.

The final conclusions of the new method for the analysed examples are:

e Improved accuracy in terms of strains compared to the present uniform, one-pass
as well as the two-pass method.

e Improved strain distribution compared to the other present adaptive methods.

e Probably more effective than the present two-pass method. That is, improved
accuracy in terms of strains of a lower computational effort.

e Loss of internal energy, which leads to inaccurate stresses.

The third conclusion is based on the results for the new method combined with the
difference in total CPU-time for the present one-pass and two-pass method. This
statement depends on how effective the new mesh generator is implemented.

Further, how accurate the internal energies are, and hence the stresses, appears to depend
on:

¢ Element density of the initial mesh.
e The degree of curvature of the structure.
e At which state the mesh refinement is performed.

A combination of a rough mesh and a strongly curved surface generates a large virtual
displacement and therefore a large loss of internal energy is expected. A mesh refinement
early in the analysis, when the displacements are minor, should lead to smaller losses in
energy. However, for the last case the adaptive method has lost its purpose.
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Appendix A

Function for generate descendent node-coordinates

function GlobalCoord=shapefunc(X,Y);

%
% PURPOSE

% Approximates a function of degree 3 that intersects all

% nodes specified in X & Y. Generates new nodes on the curve in the

% middle of the two original nodes to create a refined mesh. The input has
% to be continuously and the structure non-enclosed.

%

% INPUT: X = [x1x2 x3...xn]' node coordinates (continuously)

% Y =[y1y2y3...yn]' node coordinates (continuously)

%

% OUTPUT: GlobalCoord = Generated node coordinates in order.

% [x1_new y1_new

% X2_new y2_new

% 1

%

nnd=length(X);
nel=nnd-1;
GlobalCoord=[];

for i=1:nel

Li=sqrt((X()-X(i+1))"2+(Y()-Y (i+1))"2);
C_O=[X();Y()];

A=[1000

0100

1 Li Li*2 Lir3

0 1 2°Li 3*Lir2;
teta=atan((Y(i)-Y(i+1))/(X()-X(i+1)));

Trans=[cos(teta) sin(teta)
-sin(teta) cos(teta)];

if i==
k1=0;
node2=Trans*([[X(i+1);Y(i+1)]-C_0]);
node3=Trans*([[X(i+2);Y(i+2)]-C_0]);
k2=((node2(2)-node3(2))/(node2(1)-node3(1)))*0.5;

bc=[0 k1 0 k2]’
alfa=inv(A)*bc;

Ylocal=alfa(1)+alfa(2)*Li*0.5+alfa(3)*(Li*0.5)"2+alfa(4)*(Li*0.5)"3;
CoordLocal=[Li*0.5;Ylocal];
NewCoord=inv(Trans)*CoordLocal+C_0;

GlobalCoord(i,:)=NewCoord';
end
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if i==nel
k2=0;
node2=Trans*([[X(i);Y(i)]-C_0]);
node3=Trans*([[X(i-1);Y(i-1)]-C_0]);
k1=((node3(2)-node2(2))/(node3(1)-node2(1)))*0.5;

bc=[0 k1 0 k2]’
alfa=inv(A)*bc;

Ylocal=alfa(1)+alfa(2)*Li*0.5+alfa(3)*(Li*0.5)"2+alfa(4)*(Li*0.5)"3;
CoordLocal=[Li*0.5;Ylocal];
NewCoord=inv(Trans)*CoordLocal+C_0;

GlobalCoord(i,:)=NewCoord"
end

if i~=1 && i~=nel
node1=Trans*([[X(i- 1) Y(i-1)]-C_0])
node2=Trans*([[X(i+1);Y(i+1)]-C_0]);
node3=Trans*([[X(i+2);Y(i+2)]-C_0]);
k2=((node2(2)-node3(2))/ (node2( )-node3(1)))*0.5;
k1=((node1(2)-0)/(node1(1)-0))*0.5;

bc=[0 k1 0 k2];

alfa=inv(A)*bc';

Ylocal=alfa(1)+alfa(2)*Li*0.5+alfa(3)*(Li*0.5)"2+alfa(4)*(Li*0.5)"3;
CoordLocal=[Li*0.5;Ylocal];
NewCoord=inv(Trans)*CoordLocal+C_0;
GlobalCoord(i,:)=NewCoord"

end
end
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Appendix B

Material properties
Steel
Density (kg/m®) 7800
Elastic modulus (GPa) 210
Yield stress (MPa) 230
Etan (MPa) 500
Poissons ratio 0,3
Aluminium

Density (kg/m°) 3000
Elastic modulus (GPa) 68,3
Yield stress (MPa) 80
Etan (MPa) 250
Poissons ratio 0,3

Etan

[
| o
I3

Figure B.1: Definition of Etan for the material properties
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