
Master’s Dissertation
Structural

Mechanics

DANIEL ÅKESSON

 Report TV
SM

-5186
D

A
N

IEL Å
K

ESSO
N IN

TER
A

C
TIO

N
 M

O
D

ELS FO
R

 2D
 FIN

ITE ELEM
EN

T M
O

D
ELIN

G
 O

N
 TO

U
C

H
 D

EV
IC

ES

INTERACTION MODELS FOR
2D FINITE ELEMENT MODELING
ON TOUCH DEVICES

Detta är en tom sida!

Copyright © 2013 by Structural Mechanics, LTH, Sweden.
Printed by Media-Tryck LU, Lund, Sweden, March, 2013 (Pl).

For information, address:

Division of Structural Mechanics, LTH, Lund University, Box 118, SE-221 00 Lund, Sweden.
Homepage: http://www.byggmek.lth.se

Structural Mechanics

Department of Construction Sciences

ISRN LUTVDG/TVSM--13/5186--SE (1-41)
ISSN 0281-6679

Supervisor:
Jonas Lindemann, PhD,

LUNARC, Lund

Examiner:
Ola Dahlblom, Professor,

Div. of Structural Mechanics, LTH, Lund

INTERACTION MODELS FOR

2D FINITE ELEMENT MODELING

ON TOUCH DEVICES

Master’s Dissertation by

DANIEL ÅKESSON

Abstract

The computational power of hand held devices have increased significantly during
the last years. Today it is possible to run advanced finite element simulations on
these devices. This opens up new possibilities for creating software for the early
design stage and for educational purposes. Touch devices such as the iPad has
become increasingly popular, and the number of users are growing every day. The
multi touch interface of the iPad has changed the interaction between computer
and human. Some of the precision of using a mouse is lost, but is replaced by
a more direct interaction with objects on the screen. The direct manipulation is
what makes the multi-touch interface well suited for structural mechanics prob-
lems. The ability to give the user a feeling of being able to directly manipulate a
model. The aim of this thesis is to develop an application to investigate how to
take advantage of the new possibilities that the multi-touch interfaces creates in
the field of structural mechanics.

There are today on the market some available software tools for the early
stage design process, but they are mostly PC software. To investigate how the
multi touch interface can be used for this type of applications an iPad application
has been developed. The iPad application has been developed using Objective C
and C++, where C++ is used for the FE computations for performance reasons.

The developed application is a finite element application using beam elements.
A geometry can quickly be modeled using developed direct manipulation meth-
ods. The application does not have the conventional user interface, instead the
result is continuously recomputed once the model is stable. Which is determined
using an eigenvalue analysis.

The developed application is avalible in App Store under the name ”Sketch a
Frame”. The created application uses the advantages of the multi touch interface.
Creating new methods for the modeling process which has enabled the user to
get a feeling of direct manipulation.

Sammanfattning

Beräkningskapaciteten p̊a tablets har ökat markant de senaste åren. Idag är det
möjligt att köra avancerade finita element simuleringar p̊a dessa enheter. Detta
öppnar upp nya möjligheter för att skapa mjukvara för det tidiga designskedet
samt för utbildningssyfte. Tablets har blivit allt mer populärt och antalet använ-
dare växer varje dag. Multi-touch gränssnittet som iPad:en introducerade har för-
ändrat interaktionen mellan användare och dator. En del av precisionen som f̊as
med mus förloras, samtidigt f̊as en ökad känsla direkt manipulation, möjligheten
att direkt kunna manipulera visualiserade objekt. Det är denna känsla av direkt
manipulation som gör multi-touch gränssnittet intressant för strukturmekaniska
applikationer. Möjligheten att ge användaren en känsla av att direkt kunna ma-
nipulera en modell. Målet med detta arbete är att undersöka möjligheterna som
multi-touch gränssnittet öppnar upp inom strukturmekaniken.

Det finns idag n̊agra mjukvaruverktyg för det tidiga designskedet, de flesta är
för PC. För att undersöka hur multi-touch gränssnittet kan användas för denna
typ av applikationer har en iPad applikation utvecklats. Applikationen har ut-
vecklats med Objective-C samt C++, där C++ har använts för beräkningsdelen
av prestandaskäl.

Den utvecklade applikationen är en finita element applikation som använder
sig av balkelement. En geometri kan enkelt skapas genom att utnyttja de framtag-
na manipulationsmetoderna. Applikationen har inte ett konventionellt gränssnitt,
istället uppdateras det beräknade resultatet löpande d̊a modellen är stabil. Detta
bestämts med hjälp av en egenvärdesanalys.

Den utvecklade applikationen är tillgänglig i App Store under namnet Sketch
a Frame”. Applikationen använder möjligheterna fr̊an multi-touch gränssnittet.
De framtagna metoderna för modelleringsprocessen har möjliggjort en känsla av
direkt manipulation för användaren.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Aim of the thesis . 1

2 Tablets 3

2.1 History . 3

2.2 Choice of tablet . 4

3 Previous work 5

3.1 ForcePAD . 5

3.2 pointSketch . 7

3.3 Intesym CASA software suite . 8

3.4 TopOpt . 9

4 Developing for the iPad 11

4.1 Xcode . 11

4.2 Programming languages . 12

4.2.1 C++ . 13

4.2.2 Objective C . 13

4.3 External libraries . 14

5 User interface development 17

5.1 Guidelines . 17

5.2 Development process . 18

3

5.2.1 Geometry modeling . 20

5.2.2 Boundary conditions . 22

5.2.3 Scale . 22

6 Implementing Sketch a Frame 25

6.1 Common structure of the code . 25

6.2 Drawing . 25

6.3 Data models . 27

6.4 Finite element model . 29

6.5 Finite element solver . 30

6.6 Optimizing performance . 32

7 Future work 33

8 Discussion 35

Acknowledgments

The work presented in this master thesis was carried out for the department of
structural mechanics at Lunds institute of technology in collaboration with the
software development company StruSoft. The idea for this thesis is Dr. Jonas
Lindemann and also uses ideas and concepts from Senior Lecturer Karl-Gunnar
Olsson.

I would like to thank Dr. Jonas Lindemann for giving me the opportunity to
do this exciting project and for the guidance along the way. I would also like to
thank StruSoft for giving me the opportunity to see how they work and exchange
ideas. I would especially like to thank Dr. Pierre Olsson for his time and input
in the development process. Finally I would like to thank my fellow students and
friends for the support I have had during my education at LTH.

Lund, October 2012.

Daniel Åkesson

Chapter 1

Introduction

1.1 Background

Two decades ago only supercomputers could run FE-computations. The technol-
ogy has since developed in a rapid rate and there is unused potential in tablets
and laptops today, to run real-time FE-calculations. This opens up possibilities
for creating software for the early design stage, where the user quickly can model
and define load and boundary conditions and see the internal forces distribution
as an tool in creating new design. A good design will often maximize the strength
of the structure by utilise available materials in an efficient way.

Since the iPad was introduced in 2010 there has been a rapid development
in tablets and the number of users are growing every day. The advantages of
tablets are the small size and the direct touch-interface, enabling easy to use
and direct applications. The multi-touch interface changes the interaction for the
user compared to the regular mouse based applications. Some of the precision
of using a mouse is lost instead the feeling of directly manipulating the model
is increased. Direct manipulation is what makes the multi-touch interface well
suited for structural mechanics problems; the ability to give the user a feeling of
directly manipulat the model.

1.2 Aim of the thesis

The aim of the thesis is to develop an application to investigate how to take
advantage of the new possibilities that multi-touch interfaces offers in structural
mechanics software.

1

Chapter 2

Tablets

2.1 History

In 1968 a first concept called the Dynabook [1] was developed. It was never built
but the idea was to use it for education. In 1983 Apple built a prototype of a
tablet called Bashful [1]. This device had a keyboard and other add-ons such as
floppy drive and phone but was also never built. Five years later, in 1988, the
first tablet was released to the market and it was a portable device called the
GRiDPad [1]. The device had handwriting recognition and sold for 2370 USD.
Due to the high price it was mostly used in health care and law enforcement
institutions.

Figure 2.1: The Dynabook, GRiDPad, Apple Newton and Microsofts tablet

In 1987 Apple started a big project to build a tablet PC called Newton [2].
As the project developed it went from being a tablet to a PDA (Personal Digital
Assistant). The device needed a lot of processor power to be able to do hand-
writing recognition. At first, the device had three processors to supply enough

3

2.2 Choice of tablet Tablets

processor power. This was expensive and resulted in a low battery time. Apple
then switched to the ARM processor, which uses a different, more energy efficient
architecture. The ARM processor architecture is today very common in all small
devices such as phones, modems, iPads etc. due to the low energy consumption.
The Newton PDA was finally released in 1993 after the deadline had been pushed
back three times.

The next major event in the tablet market was when Microsoft in 2002 got in-
volved with the Tablet PC [1]. The Tablet PC used a special version of the
Windows XP operating system with special extensions for handwriting and sty-
lus input. The Windows XP was a great desktop operating system but did not
work as well on the tablet. The tablet was introduced at over 2000 USD and re-
quired a stylus for proper use. These were factors that never made it the success
that Bill Gates thought it to be.

”The Tablet takes cutting-edge PC technology and makes it avail-
able wherever you want it, which is why I’m already using a Tablet
as my everyday computer. It’s a PC that is virtually without limits –
and within five years I predict it will be the most popular form of PC
sold in America.” - Bill Gates [3]

In 2007 the iPhone was released, and along with it the new iOS operating
system. iOS took advantage of the new multitouch screen and this improved
the interaction. The iPad was actually developed before the iPhone, but it was
during this development Apple realised that touch and multi-touch could be used
in a mobile device such as a phone [4]. The iPad was released in 2010.

2.2 Choice of tablet

The iPad was chosen as a tablet for several reasons. First, it is the most widely
used tablet. Secondly, C++ can be easily integrated in the project, which enable
easy reuse of existing matrix and FE libraries such as Newmat and Calfem++.

It is possible to reuse the C++ code to develop the application for Android or
Windows 8. To visualize the result OpenGL ES would be beneficial to use as all
three OS’s supports it. The different OS’s would still need custom written code
as they all have their differences.

4

Chapter 3

Previous work

3.1 ForcePAD

ForcePAD is an intuitive tool for visualizing how structures behave when sub-
jected to loads and boundary conditions. [5]. The application is built up with
three different modes. Sketch mode is used to draw a geometry using the brush
tool. Physics mode where the user inputs constraints and forces. The final mode
is the action mode where the result is visualized. No numerical values are used in
the result as the application focuses on giving the user an understanding of how
the forces will be distributed.

Figure 3.1: ForcePAD

5

3.1 ForcePAD Previous work

Another version of the application was built for an exhibition at the Science
Center at LTH [6]. In the exhibition a SmartBoard touch device is used. The
SmartBoard is a large touch enabled computer screen. To be able to successfully
run ForcePAD on a touch screen some modifications to the user interface was
imperative [7]. The users are casual by passers which requires a simple user in-
terface. To simplify the user interface, menus was removed and a floating tool
box was introduced to better work with the touch interface. These modifications
made the application more accessible and it has been used effectively in illus-
trating different mechanics phenomena for the audience. However, visitors still
needed additional instructions to successfully use the application.

6

Previous work 3.2 pointSketch

3.2 pointSketch

PointSketch is an application built for use in the early design process [8]. The
interface is built for mouse input. To input a geometry nodes are set out and
then bar elements can be drawn between these. Forces and constraints can then
be applied to the nodes. When the geometry is complete an action mode can be
entered where forces are visualized by coloring the elements and the deflections are
visualized using an animation. There are two different versions of the application;
one for two dimensions and the other for three. The pointSketch can also show
if the model is stable or not. If it is a mechanism, the mode of the mechanism
will be illustrated with an animation.

Figure 3.2: The GUI in pointSketch2D, currently in the physics mode.

7

3.3 Intesym CASA software suite Previous work

3.3 Intesym CASA software suite

The company Intesym have created a software suite for the iPad with tools to
analyze whole structures in both 2D and 3D [9]. The input is either entered
numerical or by drawing. Material parameters can be chosen and the result will
present if the structure has sufficient strength to the existing load and show how
the structure will deform. The prices on the apps are ranging from 189 SEK to
1399 SEK depending on the type of element used and if it is 2D or 3D. The user
interface is built up like a classic FE-software, with three stages to go through:
geometry, load and last results. A tab bar is used to go through the different
stages.

Figure 3.3: Screenshot of intesym CASA Beam 2D

8

Previous work 3.4 TopOpt

3.4 TopOpt

TopOpt has been developed at the technical university of Denmark [10]. It is
an interactive topology optimazation tool, the user can change loads, support
and volume fraction and the result is visualized on the fly. A geometry is not
drawn, instead the app creates an optimized geometry. It is avalible as a native
application for iOS and android, it is also avalible as a web player. The application
has been developed using the multiplatform game engine Unity3D with a core
written in C.

Figure 3.4: The TopOpt application

9

Chapter 4

Developing for the iPad

Apple have created a tool to create apps for both Mac OS and iOS that is called
Xcode. Even though most code is written in Objective C there is support for
including C++ code and libraries.

4.1 Xcode

XCode is an advanced development environment that can handle simple as well
as large projects with multiple sub-projects. In the storyboard mode elements
are available to build up the interface such as views, scroll views, sliders, buttons
etc.. Transitions between views can be created visually by using the storyboard.
The storyboard allows for a good overview of a project and visualizes how the
views are connected.

View elements are like blank sheets of paper, they are used to present some-
thing for the user e.g. draw a model. When building apps the Model View
Controller design patters is often used, referred to as MVC.

The controller class is where the input from the user is handled, it can send
commands to manipulate the model. The model is where the data is stored, when
the model is manipulated it sends a notification to the view. This notification
updates the content of the view accordingly. In the view generates the visual
representation of the model that the user sees.

When developing applications for iOS the Cocoa touch framework is used[11].
The framework contains functions to handle touch input from the user. The
framework analyzes the users touch input and calls different functions depending
on the type of action. This enables use of for example swipe, pinch, pan actions.

11

4.2 Programming languages Developing for the iPad

Figure 4.1: Xcode with a storyboard open

Figure 4.2: Model View Controller

4.2 Programming languages

The languages primarily used when developing in XCode is Objective-C and
C++. They are both a superset of C but they have developed in different direc-
tions.

12

Developing for the iPad 4.2 Programming languages

4.2.1 C++

C++ is an object-oriented, general purpose programming language that combines
high-level and low-level language features [12]. It is today one of the most popular
programming languages [13] and a few well known applications of the language
are Adobe Photoshop, Google searchengine, Facebook and Autodesk AutoCAD
[14]. It is also used in device drivers and hardware design which illustrates the
versatility of the language. One of the strengths of C++ is that is supports a
multi paradigm programming style in which it is possible to combine different
styles of programming [15].

Background

In 1979 Bjarne Stroustrup worked at AT&T and he could not find a suitable
programming language to solve a problem [15]. He wanted a programming lan-
guage that was both efficient and elegant, but no existing languages at the time
had these qualities. He then decided to create a new programming language that
at first was called ”C with classes”. This first version of the language was used
internally at AT&T in august 1983 [15]. Later that year the name was changed
from ”C with classes” to C++ as a pun involving the C increment operator [12].

The first commercial version was released two years later in 1985 and has
since then continued to evolve. In 1998 C++ got standardized and published as
ISO/IEC 14882:1998 and the standard has since then been updated in 2003, 2007
and the latest in 2011.

Influences

C was a big influence as it still today is retained as a subset and C owed much to its
predecessor BCPL (Basic Programming Language). In fact BCPL’s commenting
system // was reintroduced in C++ [12]. Another main inspiration source was
Simulia67. This language was slow but had good features for large software
development. One of the features was the class concept which was borrowed and
used in C++.

4.2.2 Objective C

Objective-C is a object-oriented high-level programing language that uses C with
Smalltalk syntax. One major difference from C++ is that Objective-C does
not call a function, it sends it a message. This makes Objective-C slower as
the compiler does not make the same type of direct bindings as in C++[16].

13

4.3 External libraries Developing for the iPad

Objective-C has backwards compatibility and all C code can be run without
modifications.

An advantage of Objective C is that the syntax does not intersect with the
syntax from C++. This has lead to the creation of Objective C++, which consol-
idates the features of all three languages [17]. Objective C++ is a pure superset
of C++, so existing C++ code can be implemented without modifications.

obj−>method (argument) ; // C++ syn tax
[ob j method : argument] ; // Ob j e c t i v e−C syn tax

History

Alan Kay coined the term object-oriented in the 1960s and in the 1970s he de-
veloped a language called Smalltalk to demonstrate the style of programing [16].
The most common version of the language was released in the early 1980s. How-
ever Smalltalk was a high level language and could at the time only be run at
expensive computers. Brad Cox liked the idea but wanted a language that could
be run at all computers. His idea was to couple the high level Smalltalk with
the much simpler C. In 1986 he together with Tom Love started the company
StepStone. In 1988 NeXT bought a license to Objective-C and it was the main
language used when they developed their NeXTSTEP operating system. The
founder of NeXT was Steve Jobs. When he later went back to work for Apple
again they purchased NeXT in 1997. Apple used Objective-C in their new oper-
ating system Mac OS X. In 2007 a new major release came called Objective-C
2.0.

4.3 External libraries

There is no built in support for matrix computation in C++. To support matrices
external libraries must be used. One such library is the Newmat matrix library
[18]. Newmat is written for scientists and engineers and enables the common
matrix operations such as transpose, inverse, eigenvalues, linear equation solve
etc. Newmat introduces a few new data types, different types of two-dimensional
matrices and the row vector and column vector [19]. The row- and column vector
is similar to the array but with the difference that matrix operations can be
performed on them.

The CALFEM C++ [20] implements a subset of CALFEM subroutines using
the Newmat library. The library contains functions for most of the common

14

Developing for the iPad 4.3 External libraries

element types and also functions for assembling stiffness matrices. However, the
library did not include a function for 2D beam elements, stiffness matrices for
these elements where implemented in the same way as in the CALFEM toolbox
[21].

15

Chapter 5

User interface development

Initially the idea was to create a simple user interface that was intuitive to the
user. A manual should not be necessary for using and understanding the appli-
cation. Focus was on creating an application where the user can get an under-
standing of the structural behavior.

5.1 Guidelines

To make it easier for a user to quickly understand how different applications
work it is important to have a consistency between applications. Xcode contains
several of these user interface elements and guidelines to aid in the design process.
Apple has also written guidelines on how to design easy to use user interfaces [22].
How the application works should not be based on the capabilities of the device,
it should be based on the way people think and work. The application should
be optimized and specifically built for the device that it is running on. Aesthetic
integrity is important, its not just about creating something beautiful it is about
how the design integrates with the functionality of the application. The more
productive type of applications generally have more subtle decorative elements
compared to games.

Users enjoy direct manipulation on the screen, this keeps them engaged in
the task and it makes it easier for them to understand what is happening and
it gives them a sense of control [22]. Direct manipulation is a human-computer
interaction style with continuous representation of objects with rapid, reversible,
and incremental feedback & actions [23]. The idea is to allow the user to directly
manipulate objects presented to them using actions that represent real world

17

5.2 Development process User interface development

actions. An example of direct manipulation on the iPad is when the user pinches
to zoom instead of for example tapping, as the zoom follows the finger movement.

Metaphors from the real world helps the user to quickly understand how
software works [22]. A classic example is the folder. People use it in the real
world to put stuff in it and it works the same way on a computer. This is used a
lot in iOS, e.g. when flicking through photos or when sliding on/off sliders.

5.2 Development process

The development process of Sketch a Frame have been an iterative process. Users
have been observed using the application. Observing users is a valuable input
in the development process. The test users have been engineering students and
employees of StruSoft, all with experience in structural mechanics.

The initial concept of the user interface was inspired by the current way of
designing FE user interfaces. The interface has a tab bar at the bottom where the
user defines the geometry in the first tab, and applies the forces and boundary
conditions in the second and the third visualizes the results. After some design
iterations, the need for different tabs for geometry, constraints and visualization
felt unnecessary. A single view could handle all these tasks.

Figure 5.1: 1. Classic simulation cycle, 2. Direct manipulation cycle

The single view approach had other problems, see figure 5.2 (1). When the
result views where combined the view quickly became cluttered and complex.
Visualizing the tension by coloring the elements created a problem since the
elements were already colored according to their normal force. To solve this
there was a need to be able to turn on and off the different result views.

A menu was created where the user could turn on and off different results
using sliders, see figure 5.2 (2). The menu also created a space where other

18

User interface development 5.2 Development process

settings could be set. It created good customization for the user but it was not
intuitive and when users tried the application it was not obvious that the options
could be found in the popover menu. Having menu bars with options is great on
a computer application, but for a touch based application the user expects the
important options to be in plain view.

Figure 5.2: 1. Early one view version, 2. Version with a popover menu

The whole menu concept was removed for a much less complex user interface.
Although it does not offer the same degree of customization it makes the appli-
cation much easier to use. New users to an application expects to get started
straight away and do not have a lot of patience.

19

5.2 Development process User interface development

5.2.1 Geometry modeling

The first tool that was developed was the pen tool. In the first version the user
would touch the screen to input nodes and then swipe between them to create
lines. After observing users this was quickly improved to allow users to draw lines
and the application would create a start and end nodes automatically, see figure
5.3.

Figure 5.3: Creating an element with start and end node, and continuing to draw
[24]

Most users tries to draw lines when they use the pen tool, which is not so
surprising considering how the pen metaphor works in the real world. In the real
world a pen is used to draw lines and not to draw nodes. Users expected to be
able to draw and connect lines from and to the middle of other lines, see figure
5.4. Without this ability, users got confused as they had nodes on top of a line
without connection.

Figure 5.4: Drawing to an existing element [24]

Users also wanted to be able to draw straight lines to create geometries so a

20

User interface development 5.2 Development process

grid and an orthogonal draw mode was added. At first these options were in the
popover menu. It was not obvious to users what the menu option ”ortho draw”
meant. Instead of menu options, icons for these options were added to the top
icon bar. Users understood the new icons of the grid and the orthogonal draw
mode from start.

The first version of the eraser tool worked just as the first pen tool, to erase
simply tap. But again the metaphor of an eraser made most of the users swipe
with it as one would do in real world using an eraser, so the tool was rebuilt to
support that.

The move tool is one of the few tools that have been successful from the initial
version. A node or a force is moved by dragging it on the screen. There has been
a few minor updates where the first version needed the user to start dragging the
force from the tail where as it now works as long as it is close enough to the line
that the force creates. Again, trying to support as many different ways of using
the tools as possible, to maximize the success rate for the user.

Figure 5.5: Drawing a geometry, adding boundary condition and force

Adding a force was at initially accomplished by tapping a node and a standard
force was applied, but again users tried to swipe to add the force, which makes
sense since after adding the force it needs to be adjusted to the users preference.
Some users try to apply a force by going from the tail of the force to the node
they want to apply it to. This is probably due to the fact that it is intuitive to
follow the arrows direction. However there is no support for this as it makes more
sense to first choose the node and then it is possible to adjust the force and see
how the geometry responds. When the user have failed to add a force by swiping

21

5.2 Development process User interface development

from the tail of the force to the node, the next thing the they try is usually the
other way around. Support has also been added for adding a force in the middle
of a line and it creates a moment stiff node keeping the beam continuous.

5.2.2 Boundary conditions

It was first decided how users would set the boundary conditions. Since it is
beam elements every node has three degrees of freedom which makes up for eight
different combinations. Two different ideas were contemplated, either the user
would tap on the degrees of freedom to lock or unlock them, or to have standard
boundary conditions that the user would choose from. The latter option was
chosen as it results in the less complex user interface. Although, only six of the
eight possible eight boundary conditions were implemented in the application as
two of them (locked in moment and horizontal or vertical) do not have a lot of
real world applications. Boundary conditions are set by choosing a boundary
condition in the icon menu and then tap at the preferred node.

Figure 5.6: Boundary condition tools

The application do not have support for individual joint connections to a
moment stiff node. A version with this function was built but it slowed down
the performance of the computation as well as made the user interface more
complicated and was therefore not implemented.

5.2.3 Scale

A challenging aspect in the user interface design was how to scale the deforma-
tions and the moment distribution. The initial version did not have any options
for this but this lead to problems with stiff models such as trusses as the deforma-
tions were to small to be visualized. An initial version of a scale gave the users the
possibility to change the scale of the force to get appropriate deformations. How-
ever, on certain models this resulted in very large moment distribution when the
deformation was scaled appropriate, and on other models the opposite problem
would occur. To solve this problem two different scales were introduced, one for
the moment distribution and one for the deformations. This was all implemented
in the, at the time existing, menu pop over. Two auto buttons were implemented
that set the scales on the deformation and the moment distribution to a fixed

22

User interface development 5.2 Development process

size. However, this got all too complex for the users, even if the users understood
the concept it was still needed to go into the menu and set the scales on every new
model. A new button was introduced called ”Auto” that rescaled both moment
distribution and the deformation. This made for a better user experience, the
existentance of the menu was questioned.

Different ideas were considered, contemplating having a fixed size of the max
deformation and the moment distribution. The problem with this would be that
the user would lose some of the important direct manipulation feeling of how the
model behaves when a force is increased or decreased. Another idea was to let
the rescaling occur when the swipe motion of moving a force is finished. The
pros with this is that the rescaling is automatic but still lets the user feel how
the model behaves when a force is increased or decreased. The problem with
this solution is to get the users to understand that the application automatically
rescales.

Figure 5.7: The initial version of the scale

The application is developed without use of any numbers such as material
parameters. However, the need to be able to compare to different models was
imperative. Two models can be drawn in the same view and compared, but if
the difference between the deformations is as large as 109, which they can easily
be, that does not work. A numeric scale label was introduced that presents the
current scale for the users.

Extensive user trials were performed and it was clear that users struggled

23

5.2 Development process User interface development

to understand how to compare different models. Users did not observe that the
scale updated as the force was released. An updated version of the scale label was
introduced, where it would bounce as the scale was updated. This helped getting
the users attention to the scale, but they still did not understand the concept.

The problem was that the difference of a stiff model compared to a flexible
could be as large as 109, which makes it hard to visualize. An idea was to have
a textured background that would change with the scale, however, the level of
the rescaling made this impossible to implement. Another idea was a logarithmic
scale but that would be hard to implement due to the huge rescaling factor, and
would be challenging to get the users to understand that the scale is logarithmic.
The next idea was to display a colored line on the screen when the force was
released, this line would illustrate where the largest deformation / moment was.
Then the scale would have the same color, creating a color connection to the
scale.

The winning concept was to have a scale at the bottom of the screen just as
there is on an ordinary map, showing the length of the current scale. This scale is
stretched and shrunken just as the maximal deformation and moment is. At this
point the new tab view had been introduced which also helped as deformation
scale and moment scale is never shown at the same time. Scientific numbering
was also introduced for small or large numbers.

24

Chapter 6

Implementing Sketch a
Frame

6.1 Common structure of the code

The application is created around a C++ data model that contains all the data
for the current model. The data model contains functions to retrieve data for the
nodes, lines, forces and boundary conditions. It also contains a function to do all
the computations on the model once the model is stable. The computations are
then performed in the CALFEM C++ [20] library and the result is stored in the
data model. It is preferable to use C++ for the heavier operations as it performs
computations faster than Objective-C [25].

The user interface in written in objective C and it can access the C++ data
model functions to retrieve data. A singleton is used to pass the data around in
the user interface so that all views and controllers use the same instance of the
data model. A singleton is a function that makes sure an object is instantiated
and then returns this object.

6.2 Drawing

The view where the model is drawn is connected to a custom written class. This
custom class iterates through the data from the C++ data model and draws it
accordingly. Three different coordinate systems are used throughout the process.
To compute normal forces etc. a local coordinate system for the current element is

25

6.2 Drawing Implementing Sketch a Frame

used. This is transformed into a global cartesian coordinate system and stored in
the data model. In the quartz [26] drawing process a flipped coordinate system
is used as standard, so when drawing the data is transformed into the flipped
coordinate system.

Figure 6.1: From local to cartesian to flipped coordinate system

As beam elements are used the rotation, x-, y-displacements and rotation can
be obtained. The initial idea was to use a built in function in quartz drawing, to
visualize the deformations with perfect curves. The cubic beizer curve is a built
in function in quartz drawing and uses four points to describe a curve, see figure
6.2.

Figure 6.2: Cubic beizer curve

However, while the rotation was computed the length of the P0->P1 and P2-
>P3 vectors was not. A different approach was used, dividing every line into
smaller elements and calculate these nodes using the FE-model. This approach

26

Implementing Sketch a Frame 6.3 Data models

worked great and experimenting with the number of elements needed to get vi-
sually correct curves resulted in every line being divided into 20 smaller pieces.

To display the tensions the elements gradient colors are used. There is no built
in support for gradient colored lines in the Xcode environment, however, there
is support for gradient rectangles. The first approach was drawing rectangles in-
stead of lines, using trigonometry to calculate the four points of the rectangle and
color it with the gradient function. Drawing the gradient was a heavy operation
and the iPad could not keep up with the real time calculations. Same approach
was used here as with the deflections, dividing up every line into pieces and then
color the smaller lines into solid colors. Dividing up every line into 40 pieces gave
the same gradient effect and was more efficient.

6.3 Data models

Two different sets of data models are used in the application. The first C++ data
model holds all the current model data, but to be able to save models another
data model was needed. There is a built in framework in Xcode called coredata
[27]. This allows for creation of data models that stores the data on the device.
Creation of these data models can be done visually and then exported to code.
Connections between the different objects in the model can be created visually
as well.

Figure 6.3: XCode data model

When a model is opened the saved model is parsed and stored in the current
C++ data model, and when a model is saved the opposite happens.

27

6.3 Data models Implementing Sketch a Frame

Objective-C example of how the data is parsed when a model is opened:

+(vo i d) readModel : (Models ∗) model : (UIManagedDocument
∗) document

{
. . .

femModel−>setName ([model . name UTF8String]) ;
NSArray ∗ nodes InMode l = [document .

managedObjectContext execu t eFe t chReque s t :
r eques tNodes e r r o r : n i l] ;

f o r (i n t i =0; i <[nodes InMode l count] ; i++)
{

Nodes ∗myNode = [nodes InMode l o b j e c tA t I nd e x : i
] ;

femModel−>addNode ([myNode . x doub l eVa lue] , [
myNode . y doub l eVa lue]) ;

}
. . .
}

The model has a pointer to an instance of the class called CalfemBrain which
performs the calculations on the model. The CalfemBrain is instantiated with a
pointer to the model which enables access to the data. The calculate function
returns whether the calculations where successful or not.

CCal femBrain ∗ CFemModel : : g e tCa l f emBra in (CFemModel∗
model)

{
i f (! c a l f emBra i n)

ca l f emBra i n = new CCal femBrain (model) ;
re tu rn ca l f emBra i n ;

}

bool CFemModel : : c a l c u l a t e (bool geometryUpdated , bool
d o S t a t i c A n a l y s i s)

{
re tu rn ca l f emBra in−>f emCa l c u l a t i o n s (

geometryUpdated , d o S t a t i c A n a l y s i s) ;
}

28

Implementing Sketch a Frame 6.4 Finite element model

6.4 Finite element model

The following element stiffness matrix is used for the beam elements [21].

Ke =



EA
L 0 0 EA

L 0 0
0 12EI

L3
6EI
L2 0 − 12EI

L3
6EI
L2

0 6EI
L2

4EI
L 0 − 6EI

L2
2EI
L

−EA
L 0 0 EA

L 0 0
0 − 12EI

L3 − 6EI
L2 0 12EI

L3 − 6EI
L2

0 6EI
L2

2EI
L 0 − 6EI

L2
4EI
L


As beam elements are used every node has three degrees of freedom [21].

Every degree of freedom has a corresponding displacement, to constrain a degree
of freedom its displacement is set to zero. However, to create moment free nodes,
hinges, a different approach is required. If two elements meet in a node and they
are hinged together, a new rotational degree of freedom needs to be introduced,
the node now has four degrees of freedom vertical, horizontal and two rotational,
see figure 6.4. Both of the rotational degrees of freedom remain unconnected
which creates a hinge.

When boundary conditions are set, different degrees of freedom are hindered
to move. This is done by setting the corresponding rows in the displacement
vector to zero.

Figure 6.4: Degrees of freedom

The result in the application is only displayed once the model is stable. If the
model is stable is determined using an eigenvalue analysis [28].

det(K − λI) = 0

29

6.5 Finite element solver Implementing Sketch a Frame

Where λ contains the eigenvalues, every eigenvalue corresponds to a defor-
mation shape. The value can be seen as the relative energy that is needed to
deform into the corresponding deformation shape. A stable model built with
beam elements have three zero values. As they are zero that means it takes no
energy to move or deform. These three values are the rigid body motions of the
whole structure, vertical, horizontal and rotation. If there are more then three
zero values that means that the structure is a mechanism, and the number of zero
values subtracted by three gives the degree of mechanism. In Sketch a Frame this
eigenvalue analysis is performed on the reduced K matrix for better efficiency. In
that case there is no zero values if the model is stable.

6.5 Finite element solver

The element stiffness matrices are calculated in CALFEM C++ and then assem-
bled into a global stiffness matrix using the assem command in CALFEM C++.
The force vector is assembled by dividing up the forces into vertical and horizon-
tal composants, and inserted into the corresponding row in the force vector. The
global stiffness matrix is then reduced with the help of the known displacements.
The following example could for example be a beam that is fixed in one end.


K1,1 K1,2 K1,3 K1,4 K1,5 K1,6

K2,1 K2,2 K2,3 K2,4 K2,5 K2,6

K3,1 K3,2 K3,3 K3,4 K3,5 K3,6

K4,1 K4,2 K4,3 K4,4 K4,5 K4,6

K5,1 K5,2 K5,3 K5,4 K5,5 K5,6

K6,1 K6,2 K6,3 K6,4 K6,5 K6,6




0
0
0
a4
a5
a6

 =


f1
f2
f3
f4
f5
f6

 =⇒

K4,4 K4,5 K4,6

K5,4 K5,5 K5,6

K6,4 K6,5 K6,6

 a4
a5
a6

 =

 f4
f5
f6


The Newmat library is then used to solve the equation system and the un-

known displacements are obtained. The following code is used:

ColumnVector a = K. i () ∗ f ; //Newmat C++ syn tax

Then the force vector is obtained by:

Ka = f

30

Implementing Sketch a Frame 6.5 Finite element solver

The force vector is in the global cartesian system, see figure 6.1 (2), with the
help of the rotational matrix it is transformed to local coordinate system, see
figure 6.1 (1). The three forces obtained in every node now corresponds to the
moment, normal- and shear force.

The tension is calculated by using:

σn =
N

A
+
M

W

The material parameters used are from a IPE-80 beam. This beam type
rendered a good balance between the tension from the normal force and the
tension from the moment.

From the data model an instance of the calfemBrain is created which contains
all the FE-functions. It is instantiated as a bool to return whether the model was
stable or not.

31

6.6 Optimizing performance Implementing Sketch a Frame

6.6 Optimizing performance

To optimize the computations and minimize lag a few measures have been taken.
The most critical point is when the geometry or a force is moved as real time
computations are then performed. The eigenvalue analysis is one of the heaviest
operations, but only needs to be performed when there has been major changes
in the geometry, more than moving a node. It is only performed at these points
and never during the real time computations. The stiffness matrix only needs to
be assembled when there has been changes in the geometry, not when changing
the direction or magnitude of a force.

Even though the iPad has limited computational power the real time calcu-
lations work well. The total time it takes to compute and draw the result grows
with the number of nodes, as seen in 6.5. The computation part takes 30% to
40% of the total time, which shows that it is important to draw in an efficient
way.

Figure 6.5: How the total draw and compute grows with the number of nodes

The total update time grows almost linearly with the number of nodes, there
is some variance in the drawing part of the total time. This is because it depends
on how the model is drawn and not only the number of nodes.

Apple’s core graphics framework is used in the application to perform the
drawing. This is easy to use and has all the elementary functions needed. An
alternative would be to use OpenGL ES which has better performance but harder
to implement [26]. Since the drawing takes up 60-70% of the time of a iteration
this could help to further reduce lag.

Armadillo is a more efficient C++ matrix library than newmat, this could be
implemented to enhance performance [29]. To further enhance perfomance multi
threading could be used to take advantage of the iPads multi core processor.

32

Chapter 7

Future work

There is still a few functions that users have been requesting that has not been
implemented due to time restrictions. The most requested is an undo button
which is a part of direct manipulations, reversible actions. Another is if the
model is mechanism then to visualize it using an animation. The computational
part of this is already in place with the eigenvalue analysis but not the visual
presentation.

There is a lot of potential in FE-software for touch devices as the develop-
ment is this is a new area. For future work it would be interesting to try to
integrate more advanced models with the touch interface, using more advanced
FE-elements and examine how this would work with 3D. Continue to develop
the direct manipulation methods for the user interface and explore other touch
enabled devices. Future work would also need to focus on fields of application,
working together with designers and architects to examine how this type of ap-
plications can be used.

33

Chapter 8

Discussion

When starting this project the idea was to create an application that gave the
user the feeling of being able to directly manipulate a geometry to see how it
behaves. It is hard to define what an application feels like but the developed
application has achieved a good feeling of direct manipulation, almost making
it feel playful as it is easy moving elements and forces. During the development
process of the user interface a lot was learned of what works well and what does
not. Some ideas that was thought to work well did work, or give the desired
feeling when they were implemented, and had to be removed.

The most decisive point in the development was leaving the classical FE-
interface and create a user interface that did real time computations when the
model was stable. This has largely contributed to the feeling of direct manipula-
tion as there is no need for going through different tabs to see the result.

After the launch into appstore there has been around 20 downloads daily from
all over the world. It is one of the highly ranked applications when searching for
”mechanics”.

A student that of the civil engineer program got to try the application, he
immediately had an idea of what he wanted to draw and he quickly sketched it
even though it was his first time using the application. The application displayed
”mechanism of 1 degree” and he played around to see what he could do to solve
the problem and he came up with a few alternatives. It turned out that he had
just solved his first hand-in assignment in the finite element course, see figure
8.2 for the result. Not all interactions have run this smoothly but this shows the
power in educational purposes.

35

Discussion

Figure 8.1: Downloads the first week

Figure 8.2: The solved hand-in assignment

36

Bibliography

[1] C. Steele. History of the tablet. http://www.pcmag.com/slideshow/story/
285757/history-of-the-tablet/, 2011. [Online; accessed 25-July-2012].

[2] T. Hormby. The story behind apple’s newton. http://lowendmac.com/

orchard/06/john-sculley-newton-origin.html, 2006. [Online; accessed
25-July-2012].

[3] P. Gralla. Microsoft released its first tablet 10 years ago. so why did
apple win with the ipad? http://blogs.computerworld.com/19251/

microsoft_released_its_first_tablet_10_years_ago_so_why_did_

apple_win_with_the_ipad, 2011. [Online; accessed 25-July-2012].

[4] S. Jobs. Apple keynote, 2007.

[5] J. Linemann et al. An approach to teaching architectural and engineering
students utilizing computational mechanics software forcepad. ITcon Special
Issue ICT Supported Learning in Architecture and Civil Engineering, 9:219–
228, 2004.

[6] Vattenhallen science center, lth. http://www.vattenhallen.lth.se/, 2012.

[7] J. Lindemann and D. Åkesson. Using touch and multi-touch interfaces in
structural mechanics software. Division of Structural Mechanics, Lunds
tekniska högskola, 2012.

[8] P. Olsson. Conceptual studies in structural design : pointSketch - a based
approach for use in early stages of the architectural process. PhD thesis,
Chalmers tekniska högskola, 2006. ISSN 0346-718X; nr 2435.

[9] Intesym. Mobile apps. http://www.intesym.com/mobile.php, 2012. [On-
line; accessed 11-October-2012].

37

BIBLIOGRAPHY BIBLIOGRAPHY

[10] DTU. Topopt. http://www.topopt.dtu.dk/?q=node/781, 2013. [Online;
accessed 14-February-2013].

[11] Apple Inc. Cocoa touch. https://developer.apple.com/technologies/

ios/cocoa-touch.html, 2013. [Online; accessed 14-February-2013].

[12] B. Strorup. The C++ Programming Language: Special Edition. Addison-
Wesley, 2000.

[13] Langpop. Programming language popularity. http://www.langpop.com,
2012. [Online; accessed 25-July-2012].

[14] B. Stroustrup. C++ applications. http://www2.research.att.com/~bs/

applications.html, 2012. [Online; accessed 25-July-2012].

[15] B. Stroustrup. Interview bjarne strostrup. http://www2.research.att.

com/~bs/bs_faq.html, 2012. [Online; accessed 25-July-2012].

[16] D. Chisnall. Objective-C, pages 1–9. RR Donnelly, 2011. ISBN-10: 0-321-
74362-8.

[17] Cocoa dev. Objectivecplusplus. http://cocoadev.com/wiki/

ObjectiveCPlusPlus, 2012. [Online; accessed 10-November-2012].

[18] R. Davies. Newmat c++ matrix library - short introduction. http://www.

robertnz.net/nm_intro.htm, 2012. [Online; accessed 25-July-2012].

[19] R. Davies. Documentation for newmat10d, a matrix library in c++. http:

//www.robertnz.net/nm_intro.htm, 2006. [Online; accessed 25-July-2012].

[20] J. Lindemann. Calfem c++. http://www.byggmek.lth.se/personal/

lindemann_jonas/programvara/, 2009. Division of structrural dynamics,
Lund University.

[21] P-E. Austrell et al. CALFEM, a finite element toolbox. KFS i Lund AB,
2004.

[22] Apple inc. ios human interface guidelines. https://developer.apple.

com/library/ios/#documentation/UserExperience/Conceptual/

MobileHIG/Introduction/Introduction.html, 2012. [Online; accessed
1-September-2012].

[23] Ben Shneiderman. Direct manipulation: A step beyond programming lan-
guages. SIGSOC Bull., 13(2-3):143–, May 1981.

[24] Jonas Lindemann. Using touch and multi-touch interfaces in structural me-
chanics software. Seminar NSCM25, 2012.

38

BIBLIOGRAPHY BIBLIOGRAPHY

[25] M. Ash. Performance comparisions of com-
mon operations. http://www.mikeash.com/pyblog/

performance-comparisons-of-common-operations.html, 2007. [Online;
accessed 24-October-2012].

[26] Apple Inc. Graphics & animation starting point. https://developer.

apple.com/library/ios/#referencelibrary/GettingStarted/GS_

Graphics_iPhone/_index.html, 2011. [Online; accessed 17-October-2012].

[27] Apple Inc. Introduction to core data programming guide.
http://developer.apple.com/library/mac/#documentation/cocoa/

Conceptual/CoreData/cdProgrammingGuide.html, 2012. [Online; ac-
cessed 17-October-2012].

[28] R. Cook et al. Concepts and Applications of Finite Element Analysis, page
564. Wiley, 2001. ISBN-10: 0471356050.

[29] Conrad Sanderson. Armadillo. http://arma.sourceforge.net/, 2013.
[Online; accessed 14-February-2013].

39

