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Abstract

An arch structure offers an effective load carrying system for large span struc-
tures. Environmental and economical considerations makes glulam a good material
of choice for the arch members. However, asymmetric loading of an arch cause bend-
ing moment that implies use of deep and narrow arch cross-sections. Such slender
section shape increases the risk of instability.

The purpose of this master’s thesis is to gain knowledge of instability phenomena
of timber arches. Identification and evaluation of influencing variables by non-linear
numerical analysis are compared to the rules for structural design used in EU: Eu-
rocode.

Eurocode considers instability of straight beams and columns with respect to bound-
ary conditions and cross-section properties, while initial imperfections are considered
only implicitly. For instability of curved members no analytical approach is provided
in the code, thus some numerical method is needed.

In structural design the load carrying capacity of arches is commonly evaluated by
finite element (FE) method. Typically used today is linear instability FE analy-
sis. However, this thesis also includes non-linear FE analysis which considers large
deformations with redistribution of stresses and a material fail criterion.

Our findings conclude that the linear analysis overestimates the critical load due to
instability typically by 20-40% for a parabolic arch. The analysis further indicates
that the lateral arch support setup is a fundamental design aspect for the buckling
behaviour for which both extrados and intrados lateral support is needed to obtain
an effective structure.

The variations in timber material properties and the influence of moisture and long
duration of loading are effectively regarded in Eurocode using reduction coefficients.
Non-linear FE calculations with respect to influence of moisture and load duration
indicated reasonably good agreement with Eurocode. Reduction of material strength
due to moisture and load duration effects does not affect the critical load as much
as the corresponding reduction of material stiffness. Moisture induced stiffness re-
duction can give 20% reduction of critical load.

The difficulty in Eurocode is to determine a feasible capacity reduction with respect
to the risk of instability for an arch. The authors conclude that structural design
of a parabolic arch should be conducted using critical loads from a non-linear FE
analysis to be implemented in the Eurocode design calculations.

Keywords:
Glulam, Arch, Instability, Buckling, FEM, Non-linear, Eurocode,
Lateral Support





Sammanfattning

Vid konstruktioner med längre spännvidder, s̊asom vid hallbyggnader, utgör en
b̊agkonstruktion ett effektivt bärande system. Limträ är d̊a ett bra materialval
sett ur ekonomisk och miljöperspektiv. Osymmetriska lastfall orsakar böjmoment
varvid ett slankt tvärsnitt ofta eftersträvas vilket dock innebär en ökad risk för
instabilitetsproblem.

Syftet med detta examensarbete är att erh̊alla djupare kunskap om instabilitet av
limträb̊agar. Identifiering och utvärdering av ing̊aende parametrars inverkan p̊a
brottlasten utförs och jämförs med den gemensamma byggnormen i EU: Eurokod.

Eurokod beaktar instabilitet av raka balkar och pelare med hänsyn till definier-
ade randvillkor och tvärsnittsm̊att medan initiala imperfektioner enbart behand-
las implicit. För instabilitet av krökta element erh̊alls inga analytiska bärförm̊age-
beräkningar varför en numerisk metod behövs.

Genom att använda finita elementmetoden (FEM) kan limträb̊agens bärförm̊aga
beräknas. Vid denna typ av FEM-beräkningar används vanligtvis linjär knäckn-
ingsanalys. Den här rapporten behandlar dock även olinjär analys vilken tar hänsyn
till stora deformationer med omfördelning av spänning samt kriterium för material-
brott.

Vid jämförelse med olinjär analys överskattar linjär FEM analys bärförm̊agan med
avseende p̊a instabilitet med hela 20-40% för en parabolisk b̊age. Studien visar även
att stagning ut ur planet har stor inverkan p̊a den kritiska instabilitetslasten. För
en effektiv konstruktion krävs stagningspunkter b̊ade i ovan- och underkant.

Variationen av materialparametrar hos trä orsakade av fukthalt och l̊angtidslaster
behandlas effektivt i Eurokod genom reduktionskoefficienter. Parameterstudier ut-
förda i de olinjära FEM-analyserna p̊avisar en relativt bra överensstämmelse med
Eurokod. Reduktion av h̊allfasthetsvärden p̊a grund av fuktkvot och l̊angtidslaster
p̊averkar inte bärförm̊agan i lika stor utsträckning som motsvarande reduktion av
styvhetsegenskaperna. Vid hög fukthalt kan styvhetsreduktionen orsaka en reduk-
tion av bärförm̊agan p̊a ca 20%.

Sv̊arigheten i Eurokod är att bestämma en rimlig reduktion av bärförm̊agan med
avseende p̊a instabilitet av ett b̊agelement. Författarna drar slutsatsen att en
limträb̊age bör utformas i enlighet med Eurokod genom att implementera kritisk
last beräknad i en olinjär FEM-modell.

Nyckelord:
Limträ, Båge, Instabilitet, Knäckning, Vippning, FEM, Olinjär,
Eurokod, Stagning
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List of Notations and Abbreviations

A Cross-sectional area m2

Cijkl Elastic flexibility tensor −
Dijkl Elastic stiffness tensor −
E Modulus of elasticity Pa
f Arch rise m
fc Compression strength Pa
fd Design strength Pa
fk Characteristic strength Pa
fm Bending moment strength Pa
ft Tension strength Pa
fv Shear strength Pa
G Shear modulus Pa
h Cross-sectional height m
I Moment of inertia m4

J Torsion constant m4

k Linear spring constant N/m
kcrit Reduction coefficient w.r.t. torsional buckling −
kdef Deformation coefficient −
kmod Material modification coefficient −
kc Reduction coefficient w.r.t. buckling −
kl Non-linear stress distribution coefficient −
kr Internal stress coefficient due to curvature −
L Length m
Le Effective length m
m Mass kg
M Bending moment Nm
Mcr Critical bending moment regarding instability Nm
N Normal force N
P Axial point load N
Pcr Critical axial point load regarding instability N
q Lateral distributed load N/m
Q Lateral point load N
s Snow load N/m2

S Static moment of area m3

u Moisture content −
V Shear force N
w Cross-sectional width m
W Elastic section modulus m3



β Euler effective length factor −
γ4 Parabolic arch buckling factor −
γM Material property deviation constant −
ε Strain −
λ Slenderness ratio −
ν Poisson’s ratio −
σ Stress Pa
σc Compression stress Pa
σm Bending stress Pa
σt Tension stress Pa

σcrit Critical stress regarding instability Pa
σt,90 Tension stress perpendicular to grain Pa
τ Shear stress Pa

DOF Degrees of freedom
DOL Duration of load

EC Eurocode
FE Finite element

FEM Finite element method
FSP Fibre saturation point

Glulam Glued laminated timber
IP In-plane

MOE Modulus of elasticity
MPC Multi-point constraint

MSTRS Maximum stress failure theory
OP Out-of-plane

UDL Uniformly distributed load
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Chapter 1

Introduction

1.1 Background

During the winter of 2010 a considerable number of roof structures failed in Sweden.
In the report [Boverket, 2010] it was concluded by The Swedish National Board of
Housing, Building and Planning that the snow loads that led to the collapse was not
likely greater than the loads specified in the standards. It was rather weaknesses in
the structure, such as poor design with regard to instability, which resulted in the
failure.

Cross-sectional optimization of structural elements is a natural part of environmental
friendly construction and economical gain. Since a high cross-section is more effective
for bending moment the optimization often leads to increasingly slender structural
elements. Slender element are however more prone to structural instability, such as
buckling. Hence it is vital that the instability phenomenon is properly addressed in
the design process.

To increase the capacity of slender elements limited by instability, lateral bracing is
often introduced in the structural system. By limiting lateral movements of the main
element critical loads can be increased significantly. Not only does the structural
system affect the critical load, but since wood is a complex material also time and
moisture affects the critical loads.

Buckling are, for straight members, well investigated both experimentally and theo-
retically. However, curved elements such as arches are not well defined theoretically
and the analysis is normally conducted using computer analysis. The computer
analysis is conventionally conducted using finite element method (FEM) with linear
analysis, which is not a consistently conservative approach.
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1.2 Objective and Method Introduction

Glulam represents today an alternative to concrete and steel structures. The use of
engineered wood products produces significant technological benefits such as high
level of industrialization, prefabrication and erection process besides the possibility
to reduce the carbon footprint. The natural characteristics and properties of wood
do however imply some difficulties in the design process, of which some will be
analysed in this thesis.

1.2 Objective and Method

The objective of this master’s dissertation is to gain knowledge of the instability
phenomenon of timber arches. Identification and evaluation of influencing variables
are to be compared to the technical rules for structural design within the European
Union: Eurocode. Furthermore, linear analysis will be compared to non-linear in
order to determine the accuracy of conventional linear FEM analyses.

Instability analyses will be conducted on a reference model for a range of varying
parameters such as geometries, imperfections, lateral support, moisture and time
effects using the commercial FEM-software Abaqus. The dissertation will be con-
cluded by a comparison between the results of a non-linear model and the corre-
sponding parameters in Eurocode.

1.3 Limitations

The following limitations apply to the study presented in this master’s dissertation.

• All arches are 3-hinged parabolic glulam arches.

• A specific arch model is used as a reference in the simulations.

• Linear elastic rectilinear transversely isotropic material properties are assumed.

• No local material defects are modelled, e.g. knots.

• All analyses are conducted on arch structural level with interaction between
other parts of the structure modelled only by springs.

• Only load models from Eurocode.

• Dead loads are considered as uniformly distributed load along the horizontal
axis.

• No load eccentricity.

• No mechano-sorptive effects are modelled.

• No moisture movements are included, i.e. swelling and shrinkage.

12



Introduction 1.4 Report Outline

1.4 Report Outline

Ch.1 Introduction Background and purpose of the thesis.

Ch.2 Wood and Timber
Theory of material properties for wood
and timber. Reduction of material model.

Ch.3 Glulam and Glulam Arches
Short introduction to glulam and arches.
Common structural details for glulam
arches are presented.

Ch.4 Instability Phenomenon
Theory of structural stability. Buckling
and lateral torsional buckling of
beams and arches.

Ch.5 Arch Structure Studied
Reference arch structure for the thesis
is presented. Geometry, material and
loads are defined.

Ch.6 Design According to Eurocode
Short introduction to Eurocode. Design
verification with applied modification
factors and combined stress state.

Ch.7 Finite Element Method and Abaqus

Theory of Finite Element Method. A
review of different element types and
the commercial FE analysis
software Abaqus.

Ch.8 Arch FE Model Studied

FE arch model presented with model
assumptions. Verification of different
functions and a short description
concerning method of analysis.

Ch.9 Arch FE Analysis and Discussion
Parametric study of arch structure
presented with results and discussion.

Ch.10 Comparison between FE Analysis Comparison of parametric study and
and Eurocode Eurocode modification factors.

Ch.11 Conclusion Conclusions from the performed study.

Ch.12 Suggestions for Further Research Suggestions for further research.
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Chapter 2

Wood and Timber

Wood is created by trees optimised for the conditions trees are exposed to. More
and less prominent features of the tree can be explained by natural selection. For
example, wind loads are minimized using a round stem and branches are maximizing
the effective area for photosynthesis. Of the less prominent features there is also toxic
chemicals in the centre of the tree in to prevent insect infestation.

Timber is a collective term for harvested wood which has been manufactured into
wood products, such as boards and planks. In this chapter, material properties of
softwood will be presented since its use is dominating in engineering. Softwood is
wood from angiosperm trees (most evergreen trees) and, despite what the name
suggests, is not necessarily softer than hardwood.

2.1 Material Structure of Wood

Wood is an organic composite built up mainly of cellulose, hemicellulose and lignin.
The most common cell type in softwood is tube-shaped fibres with an approximate
length of 2-4mm which is called the tracheid. The fibre wall consists of four layers
with varying micro fibre direction, P and S1-S3, surrounding the central cell cavity
used for transportation of liquids, see Figure 2.1 [Johansson, 2011].
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Figure 2.1: Structure of the most common cell type in softwood, called tracheid.
The individual micro fibre direction of the fibre wall layers is illustrated [Johansson,
2011].

Whereas hardwood consists of a great variety of cell types, 90% of the softwood
tissue is made up from tracheids [Bodig and Jayne, 1982]. Depending on the time of
year the cell is formed, cell structure varies causing thick lighter coloured band and
thinner dark coloured band to occur in a wood cross-section. The lighter coloured
earlywood is formed in spring time with larger cell cavities and thinner cell walls to
facilitate transport of liquids during the growth period. The thinner dark band is
latewood which is formed during summer and fall. Not only is the need of liquid
transport less, greater strength is needed due to increased wind and snow loads.
Hence the darker colour is due to thicker cell walls [Johansson, 2011]. As expected,
the ratio of earlywood and latewood highly influences the mechanical properties of
wood.

The only wood cells having capacity of cell division, i.e. are truly alive, are the
outermost cells close to the bark. This region is called cambium.

2.2 Natural Characteristics of Wood

In engineering a number of wood characteristics can be considered as defects of
which some are described in this section.

To support needles branches are used to increase the effective area of the tree.
The branches are gradually embedded in the stem as the tree grows causing an
irregularity, a knot. Even though the branch and stem is of the same material
and the tissue systems are interconnected, the fibre orientation is distorted and the
mechanical properties of sawn timber are impaired [Bodig and Jayne, 1982].
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Around the trunk of the tree wood fibres tends to grow in a spiral. The most
accepted explanation to this phenomenon is that is creates more flexibility in the
young stem which resist a brittle failure do to wind and snow loads. The spiral grain
angle often reaches a maximum of 3-4 degrees within the first ten annual growth
rings [Johansson, 2011]. Similarly to the knots, as the fibre direction is incoherent
mechanical properties are effected.

During the first 5-20 years of growth juvenile wood is formed near the pith. It is
characterised by a progressive increase in cell dimensions and changes in cell pattern
arrangement as well as cell characteristics. The consequences include 10-15% lower
density and 15-30% lower strength [Johansson, 2011].

2.3 Physical Properties of Wood

2.3.1 Wood and Moisture

Water content has large influence on the properties of wood. The moisture content
is dependent on the relative humidity in the surrounding air which is bound to the
cell walls. Once the cell walls are saturated cell cavity starts to fill up.

Moisture content or moisture ratio defines the amount of water in wood and is
defined by

u =
mu −mdry

mdry

(2.1)

where

u moisture content ratio
mu wood mass at moisture content u

mdry dry wood mass

Several material properties of wood is independent of the water level in the cavity,
hence the concept of fibre saturation point (FSP) is introduced. FSP is a cut-off
point in the moisture variation of wood properties, such as swelling, due to moisture
content. For softwoods grown in Europe the FSP is often between a moisture content
of 27-33% [Johansson, 2011].
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2.3.2 Density

Almost all mechanical properties of wood is correlated to density. Density ρ is
defined by the ratio between mass and volume. As expected, density is moisture
dependent since both mass and volume is dependent of the moisture content. The
most commonly used definition in timber engineering is density at 12% moisture
content, ρ12, which is used in all standard tests for wood strength. The normal den-
sity (ρ12) for softwood grown in the Nordic countries are 300-600 kg/m3 [Dinwoodie,
2000].

2.3.3 Distorsion of Timber

Varying shrinkage within a timber element can cause geometrical distortions. Four
types of distortions are illustrated in Figure 2.2.

Twist Spring

Cup Bow

Figure 2.2: Timber distortion modes. Source: Johansson [2011].

For studs used in the building industry, largest problems are due to twist [Johansson,
2011]. Twist occurs due to the combined effect of annual ring orientation, spiral grain
orientation and shrinkage. Shrinkage perpendicular to the actual fibre direction,
according to the spiral grain orientation, is large combined with the circular shape
of the annual rings causes each annual ring to twist and consequently the entire
board.

The extent of distortion of sawn timber can be influenced by different sawing patterns
and drying regimes.
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2.4 Mechanical Properties of Wood and Timber

The mechanical properties depends not only of the characteristics of wood fibre,
but also of natural characteristics such as knots, spiral grain angle and presence of
juvenile wood. Thus wood is usually divided into wood and timber. Wood is then
referring to the clear specimen of only straight wood fibres without anomalies, while
timber is highly dependent of the natural characteristics which to a great extent
determines the properties and behaviour of the specimen.

2.4.1 Strength and Stiffness of Wood

Wood is an anisotropic material due to the non-uniform orientation of the fibres.
For example, the fibre orientation causes higher compression strength parallel to the
stem than perpendicular. Consequently it is important to define the stresses for
different directions, which is found in Figure 2.3.
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Figure 2.3: Definition of stress directions and nomenclature used in timber engineer-
ing.

As can be seen in Figure 2.3, the characteristic directions are defined by three
mutually perpendicular planes of material symmetry; longitudinal (L), radial (R)
and tangential (T). Due to the characteristics of the fibres, wood can be classified
as an orthotropic material referring to the orthogonal directions. To describe the
stiffness of wood within the elastic range twelve constants are necessary [Bodig and
Jayne, 1982]:
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Table 2.1: The stiffness of wood using increasing degree of simplification.

Complete stiffness Engineering stiffness

Modulus of elasticity (MOE) EL, ER, ET EL, ER = ET
Shear modulus GLR, GLT , GRT GLR = GLT , GRT

Poisson ratios νLR, νRL, νLT , νTL, νRT , νTR νLR = νLT ,
νRT = νTR,
νRL = νTL

In engineering, the difference between radial and tangential direction are however
often disregarded. Furthermore, the Poisson ratios are normally regarded as par wise
equal thus reducing the number of material variables to six, often denoted E‖, E⊥,
G‖, G⊥, ν‖ and ν⊥. ‖ denotes parallel to the fibre direction and ⊥ perpendicular.
Wood strength and stiffness when loaded perpendicularly are considerably less than
when loaded parallel to the fibre direction [SS-EN 1194].

When considering timber, local defects is taken into account and it is therefore not
possible to predict the mechanical behaviour of sawn timber using only the proper-
ties of clear wood. For example the fibre deviations around a knot cause large local
stresses to arise due to loading. Strength and stiffness of timber are therefore de-
termined using standardised methodology. The result is material parameters which
better reflects strength on element level rather than on material level [Johansson,
2011].

2.4.2 Strength Grading

To optimize usage of a material of such varying properties as timber, strength grading
is necessary. For example, bending strength for Norway spruce can vary between
10 and 90 MPa [Berbom Dahl, 2009]. Since wood is produced by nature there is
small possibility to control the variation by changing manufacturing process. Instead
estimates of the properties are determined and the timber is graded into different
strength classes.

The characteristic strength value is defined as the 5%-fractile in the distribution of
strength, see Figure 2.4.

However, it is not possible to determine all material properties in a non-destructive
manner. Using a measured modulus of elasticity and density the timber strength
can be roughly determined through measured relationships, which is specified in the
European standards EN384 and EN408. Measurement methods include visual and
machine grading and the methodology utilizes the elastic section modulus to predict
timber properties non-destructively. As a consequence the strength values can only
be used in design models based on elastic theory.
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Figure 2.4: Principle variation of strength for graded and ungraded material. Char-
acteristic values marked as fx,k,i.

2.4.3 Influence of Moisture

As previously discussed, the physical properties of wood are affected by moisture
content and hence the mechanical properties are affected as well. The lower moisture
contents the higher strength and stiffness. The relation can be considered linear
below the FSP while the variation is negligible above [Bodig and Jayne, 1982].

Testing shows the influence of moisture content varies for different loading directions
in both strength and stiffness. The influence on stiffness is similar though not quite
as sensitive as strength, which can be seen in Table 2.2 and 2.3.

Table 2.2: Stiffness change for an increase of moisture content of 1%. The
linear approximation is valid for a moisture content ranging from 5% to the
FSP. Values are for Sitka Spruce [Dinwoodie, 2000].

EL ER ET νRL νTL νRT νTR GLR GLT GRT

-0.9% -2.6% -2.8% -1.3% 1.7% 2.6% 1.5% -1.0% -1.5% -2.0%
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Table 2.3: Strength change for an in-
crease of moisture content of 1%. The
linear approximation is valid for a mois-
ture content ranging from 8% to 20%
[Johansson, 2011].

fc fc,90 fT ft,90 fv

-5.0% -5.0% -2.5% -2.0% -3.0%

Again it should be noted that the influence on especially the strength of structural
timber differs from that of clear wood, for which the values are determined. Tests
indicate that the influence on structural timber is not as pronounced, particularly
for some loading directions [Johansson, 2011]. The tension strength is almost inde-
pendent while the compression strength is highly affected by the moisture content
of full size timber.

2.4.4 Influence of Temperature

Strength and stiffness of wood decreases with increasing temperature but the effect
is relatively small for normal temperatures (−30◦C to +90◦C). Hence the effect of
temperature variation is not considered in design codes [Johansson, 2011].

2.4.5 Influence of Size

Testing indicates that larger specimens break at lower average tension stress levels
than smaller specimens, a phenomenon usually explained by the weakest link theory.
The theory says“a chain subjected to tension is never stronger than its weakest link”.
For wood the probability of a large imperfection occurring in the most loaded section
is greater for larger specimen than for small. Brittle wood can be described using
the Weibull theory assuming random imperfection sizes and positions. If V1, V2 are
the two volumes andf1, f2 their respective strengths, the relation can be described
using [Johansson, 2011]

(
f2
f1

)
=

(
V1
V2

)1/k

(2.2)

k is the shape function of the Weibull distribution. The modification factor κh is
included in Eurocode 5 regarding this phenomenon.

Volume effect is also large for tension perpendicular to the grain which is especially
relevant in curved elements such as arches.
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2.4.6 Influence of Time

Wood experience a significant decrease of strength and stiffness over time. A 10
year duration of load (DOL) may reduce the strength to approximately 40% for
solid wood [Hoffmeyer, 2003]. Especially important is reduction of bending strength
and among the early research in the topic the work at Forest Product Laboratory,
US, stands out. The findings reported in Wood [1951] is commonly referred to as
“The Madison Curve” which describes strength versus time dependence for small
specimens of clear wood as can be found in Figure 2.5.
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Figure 2.5: The Madison curve which describes the characteristic decrease of
strength and stiffness over time.

where f is the relative stress level (%) and t is the effective DOL in hours. Note
that DOL effects are particularly significant at short- and medium-term loading.

DOL studies of timber began in the 1970’s and continues until present day due to the
complexity of the problem. The results do not correspond as some research indicate
that the DOL effect is less while other claims it being of the same magnitude as of
clear wood [Johansson, 2011]. There is also an effect of increased temperature and
moisture both resulting in larger DOL effects.

2.5 Short- and Long-term Deformations of Tim-

ber Structures

Deformations occur in all timber structures, but the significance varies due to the
utilization. Deformations can cause insufficient roof slopes and problems opening
doors and windows. Special consideration must be paid to deflections so that non-
structural components are not introduced in the load path.
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Deformations are commonly divided into elastic deformations, viscoelastic defor-
mations and mechano-sorptive deformations. Please note that plastic deformations
may occur for higher stress levels but this effect will not be further discussed in this
thesis.

2.5.1 Elastic Deformations

Instantaneous deformations due to tension, compression or bending are proportional
to the load applied. In a load-deflection curve the proportionality is represented by
a linear relation which upholds until a well-defined point known as the limit of
proportionality, see Figure 2.6. Note that there is a difference between tension and
compression.
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Figure 2.6: Load-deformation curve for wood in compression and tension. Limit of
proportionality after which non-linear material behaviour occur is illustrated.

Below the limit of proportionality, the material is said to be linear elastic described
by the modulus of elasticity.

2.5.2 Viscoelastic Deformations

An increasing deformation with time can be seen for timber elements subjected to
constant load. The effect is due to viscoelastic behaviour and is commonly referred
to as creep, which is illustrated as the change in deformation while no change in
load in Figure 2.7. Most of the deformation will be recovered after load removal
although a small permanent deformation remains.
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Figure 2.7: Time-deformation curve illustrating creep.

Temperature, stiffness, load direction, knots and moisture content all influence the
magnitude of the creep. Due to its importance, moisture variations are however not
included in a viscoelastic description but given a definition of its own, c.f. Section
2.5.3. For beams, creep may lead to failure at high load levels but deflections will
be moderate for normal loading conditions [Mårtensson, 2003]. Furthermore, en-
gineered wood products, such as glulam, may have different creep behaviour than
sawn timber governed by the properties of the adhesive [Johansson, 2011].

The relative creep, i.e. total deflection divided by initial deflection, is in Figure 2.8
plotted for different types of beams. Note that spruce and glulam beams exhibit less
creep than LVL- and I-beams for similar stress levels and that a significant part of
the creep occurs during the first six months. For glulam it will take at least ten years
to double the six months creep deflection [Ranta-Maunus and Kortesmaa, 2000].

2.5.3 Mechano-sorptive Deformations

Structural wood subjected to moisture content changes exhibits considerably larger
deformations than if subjected to constant humidity conditions. The phenomenon
has been studied since the 1960s by e.g. Armstrong and Christensen [1961] and is
commonly referred to as the mechano-sorptive effect.

In Figure 2.9, the mechano-sorptive effect is illustrated in a deflection-time curve.
The initial deflection δi is due to the elastic response of the structure. If load and
humidity is kept constant, pure creep δc follows over time. However, if humidity
varies the deflection curve will oscillate due to mechano-sorptive deflections δms.

The effect of moisture content variation on deformation is generally significantly
larger than the effect of time, but it can be minimized using chemical treatment
such as paint [Mårtensson, 2003].
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Figure 2.8: Average relative creep in sheltered environment. —– - —– I-beam; ——
LVL; —— —— Glulam; - - - - Spruce. Source: Ranta-Maunus and Kortesmaa [2000]
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Figure 2.9: Mechano-sorptive deflections induced by varying moisture content.

2.6 Linear Elastic Behaviour

Depending on the cut orientation in the trunk and/or engineering simplifications,
Cartesian or polar material axes can be used to model the elastic behaviour of wood.
If tangential and radial material properties are assumed equal, which is common in
timber engineering, the material classifies as transverse isotropic.

2.6.1 Orthotropy

Stresses at a point in a general continuum is represented by nine stress components
σij where {i, j} = {1, 2, 3}. The components act on the surface planes of a three
dimensional element, see Figure 2.10.

26



Wood and Timber 2.6 Linear Elastic Behaviour

  
1 

3 

2 

𝜎11 

𝜎12 
𝜎13 

𝜎21 
𝜎22 

𝜎23 
𝜎31 

𝜎32 
𝜎33 

Figure 2.10: General definition of stress components on a three dimensional element.

Similarly the strain is represented by εij. Hooke’s law defined the stress strain
relation which in index notation is stated as

σij = Dijklεkl; εij = Cijklσkl (2.3)

where Dijkl designate the elastic stiffness tensor and Cijkl the elastic flexibility tensor
[Ottosen and Ristinmaa, 2005]. Please note that D and C are fourth order tensors
containing 34 components each. In matrix notation Hooke’s law is stated as

σ = Dε; ε = Cσ (2.4)

To characterize a material completely would thus require 81 elastic constants. For-
tunately, basic mechanics and the general strain energy function implies minor and
major symmetry, thus

Dijkl = Djikl = Dijlk = Dklij (2.5)

which reduces the number of independent elastic constants of an anisotropic material
significantly to 21 [Ottosen and Ristinmaa, 2005]. Similarly holds for Cijkl.

As stated in Section 2.4.1 wood is orthotropic since the elastic components remain
unchanged (invariant) if the axis is reflected through one of its three mutually per-
pendicular symmetry planes. The corresponding orthogonal transformations implies
further simplifications of the constitutive matrix to




D1111 D1122 D1133 0 0 0
D2211 D2222 D2233 0 0 0
D3311 D3322 D3333 0 0 0

0 0 0 D1212 0 0
0 0 0 0 D1313 0
0 0 0 0 0 D2323




(2.6)
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using Voigt matrix form. Invert the elastic stiffness tensor to obtain Hooke’s law in
the format [Ottosen and Ristinmaa, 2005]




ε11
ε22
ε33
γ12
γ13
γ23




=




ε11
ε22
ε33

ε12 + ε21
ε13 + ε31
ε23 + ε32




=




1
E11

− ν21
E22

− ν31
E33

0 0 0

− ν12
E11

1
E22

− ν32
E33

0 0 0

− ν13
E11

− ν23
E22

1
E33

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G23







σ11
σ22
σ33
σ12
σ13
σ23




(2.7)

Please note that the shear strain γij equals the sum of εij and εji which by definition
are equal. Major symmetry enforces the equality

Ciijj =
νij
Eii

=
νji
Ejj

= Cjjii (2.8)

Thus only three of six Poisson’s ratios are independent. An orthotropic material is
consequently governed by nine independent elastic constants.

The relation are for wood normally set up using the widely accepted LRT nomen-
clature according to Figure 2.11.
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Figure 2.11: Reference coordinate system 123 relative to principal material system
LRT

Consequently, the elastic flexibility tensor is given by [Bodig and Jayne, 1982]

C =




1
EL
−νLR

ER
−νTL

ET
0 0 0

1
ER

−νTR

ET
0 0 0

1
ET

0 0 0
1

GRT
0 0

sym. 1
GLT

0
1

GLR




(2.9)
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2.6.2 Transverse Isotropy

If a material is an invariant with respect to an arbitrary rotation about a given axis it
is said to be transversely isotropic. This holds true for wood if radial and tangential
material properties are assumed equal. The elastic stiffness tensor is then again
reduced resulting in six independent elastic constants dependent of the longitudinal
(L) and perpendicular (P ) direction [Daniel and Ishai, 2005] [Reddy, 1997].

C =




1
EL
−νLP

EL
−νLP

EL
0 0 0

1
EP

−νPP

EP
0 0 0

1
EP

0 0 0
1+νPP

GRT
0 0

sym. 1
GLP

0
1

GLP




(2.10)

As mentioned in Section 2.4.1, the assumption of transversely isotropic materials is
used in timber engineering. A common argument is that the variation between R
and T is often lower than the variation along the stem from pith to bark. How-
ever, when testing clear wood specimens, the directions are commonly distinguished
[Gustafsson, 2003].

Please note that transversely isotropic materials also are orthotropic.

2.6.3 Timber as an Orthotropic Elastic Material

A number of assumptions are required when applying orthotropic elastic theory to
timber, some of which are illustrated in Figure 2.12. A bolt of wood (a) containing
natural characteristics, c.f. Section 2.2, is idealised by ignoring these features (b).
The bolt can be positioned by a polar coordinate system for which the long axis is
L, the radial orientation is R and the curvature of the cylindrical growth rings is T .

However, wood is for the most part modelled in a Cartesian coordinate system as
shown in Figure 2.12(d) [Bodig and Jayne, 1982]. Thus the curved growth rings
must be modelled as planar growth layers. The error introduced by the assumption
of rectilinear orthotropy for wood in the RT -plane is a function of specimen size
and location in a stem. Notice the varying curvature in highlighted timber section
in Figure 2.13.

Obviously the original location of the wood member in the log has great influence.
Linearized ring curvature introduces larger errors for pieces taken near the pith than
if taken in the periphery. Specimen 1 will thus be subjected to the least amount of
error while for specimen 3 T and R directions could be interchanged. By varying
the size of specimens 4, 5 and 6, the error remains nearly constant. The error is thus
minimized by a sample kept small in relation to the distance from the pith.
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Figure 2.12: Reduction of a tree stem to an orthotropic model [Bodig and Jayne,
1982].

Figure 2.13: Varying influence of curvature in timber elements depending on origi-
nating location in the log [Bodig and Jayne, 1982].
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Chapter 3

Glulam and Glulam Arches

3.1 Glulam

In order to exceed the naturally restricted dimensions of timber it is required to use
engineered wood products. The oldest engineered wood product is glued laminated
timber (glulam), first patented in 1906 by Otto Hetzer [Johansson, 2011]. Glulam
consists of several finger jointed sawn boards, also known as laminations, bonded
together with adhesives. The main fibre direction of the boards is aligned with the
axial direction of the finished glulam beam.

In Sweden, standard straight glulam consists of 45 mm thick laminations with a
width up to 215 mm. If needed, two or more glulam beams can be glued together
to increase the total width. To optimize the element for bending, high strength
laminations can be positioned in the outer higher stressed regions of the beam.
Such element is called combined glulam in comparison to homogeneous glulam, see
Figure 3.1.

Glulam beams can be produced with curvature, either to minimize deflections by
a small pre-camber or as a curved beam. Curved beams are normally made using
thinner laminations which are forced into the desired shape before hardening of the
adhesive. The production method induces stress in the material and the curvature
causes tensile stresses perpendicular to the grain in the apex which must be con-
sidered during design. Distortion of individual lamellas is not an issue in glulam
production, however distortion of the glulam element itself can occur.

Since glulam is built up with several layers of laminations, local defects are limited
in size and more evenly distributed over the volume in comparison with timber. The
distribution reduces the probability of having a defect with serious influence on the
element and consequently the total effect is less prominent. This dispersion effect
results in a more homogeneous material than solid timber [Serrano, 2003], see Figure
3.2. Please note that glulam is not significantly stronger than equivalent timber.
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Figure 3.1: Combined glulam. Source: Johansson [2011].

Figure 3.2: Strength distribution of timber and glulam. Source: Johansson [2011].

Though the material strength is not significantly greater than that of solid wood, the
load carrying capacity of a glulam structure is. This is since very large dimensions
of glulam can be made.

A typical feature of glulam is that the tensile strength of the laminations is higher
than the bending strength of a beam. This does however raise the question about
the stiffness of the finger joints, which has been found often comparable to that of
clear wood [Serrano, 2003].
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3.2 Arches

Arches were first used on a wide range of structures by the Ancient Romans. Stone
was used as building material which has a low tensile strength. Since arches works
mainly in compression it was a suitable geometry for span structures in stone. Due
to simple scaffolding the arch often used was semi-circular, see Figure 3.3 [Crocetti,
2013].

Figure 3.3: Macestus Bridge built by the Romans in the northwestern part of
modern-day Turkey.

Today the arch geometry is chosen to minimize bending moment which is achieved by
synchronizing the geometry with the thrust line of the dominating load combination,
commonly referred to as the funicular shape. However, bending cannot be eliminated
since several load combinations must be considered, each with their individual thrust
line. Using equations of equilibrium on a three-hinged arch subjected to horisontally
uniformly distributed load (UDL) it can be shown that bending moment is zero for
any given position of the arch if it is shaped according to Equation 3.1.

y =
4f

L2

(
Lx− x2

)
(3.1)

where f is the arch rise and L is the total span of the arch. An arch shaped of this
quadratic equation is called a parabolic arch. To limit the horizontal reaction forces
rise-span ratio should be chosen greater than 0.14 [Carling, 2008]. For functional
reasons other arch forms, such as elliptic or catenary, can be preferable. Common
arch terminology is presented in Figure 3.4.

Arches can be zero, two or three hinged. To minimize internal stresses due to
movements during service life, e.g. moisture content variation or uneven foundation
settlement, the statically determinate three hinged arch is usually preferable for
spans up to 60-70 m [Crocetti and Mårtensson, 2011]. Using a three hinged arch
the two structure parts can be transported separately with an individual length of
approximately up to 30m.
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Figure 3.4: Parabolic arch with terminology.

3.3 Glulam Arches

Due to the large forces in wide span structures, such as arches, timber is generally
used in larger glulam elements. Glulam can be produced in curved shapes with
varying depth without a great increase in production cost which makes it ideal for
light weight arch structures.

3.3.1 Crown and Abutment

The stability of glulam arches are influenced by the types of joints of which the
elements are attached to each other and to the foundation. It is of great importance
for joints in large span structures to be designed in such manner that the static
function of the element becomes the intended. Common types of connections for
glulam arches are presented below.

3.3.1.1 Abutment Hinge

A frequently used hinge is found in Figure 3.5. In this design, the transferred
bending moment is small and thus not needed to be considered during the arch
design [Carling, 2008]. While in-plane rotation of the arch is allowed, rotation out-
of-plane and around the longitudinal axis is restricted. However, the glulam arch is
not designed to take bending moment perpendicularly thus lateral bracing is needed.
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Figure 3.5: Common abutment hinge design. Source: Carling [2008].

3.3.1.2 Crown Hinge

Crown hinges for smaller spans are designed using nail plates. However, for large
shear forces nail plates generates significant moments due to eccentricity which is
not desirable. Instead a welded shim is introduced which can be designed as shown
in Figure 3.6.

Figure 3.6: Common crown hinge design using welded shims. Source: Carling [2008].

The shim transfers shear force causing negligible eccentric moment while nail plates
are used for the occasional horizontal tension.

3.3.2 Lateral Support

The glulam arch is commonly not designed with respect to perpendicular bend-
ing moment, thus lateral support is needed. The traditional design is a secondary
structure of purlins, however load bearing profiled sheets are growing increasingly
popular.
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3.3.2.1 Purlin Joint

The joint which attaches the purlins to the arch is preferably designed using one of
several types of fabricated connectors of which two frequently used can be seen in
Figure 3.7.

Figure 3.7: Purlin joint using reinforced angle (left) and hanger (right). Source:
Carling [2008].

Using angles, purlins transfer vertical loads mainly by contact pressure while hori-
zontal forces are transferred by nails. Please note that the angles can be placed un-
der the purlin to obtain greater bending moment capacity which can be favourable
regarding out-of-plane buckling of the arch.

Especially when the extrados and secondary structure is to be aligned, hangers are
preferred. Horizontal forces are transferred from purlin to hanger by contact pressure
while vertical forces are transferred from the hanger to the arch by nails.

Please note that when lateral support joints are designed to act in compression, the
secondary structure needs to be designed with respect to buckling.

3.3.2.2 Load Bearing Profiled Sheets

Self-supporting roof structures is growing increasingly popular in large buildings due
to cost efficiency in comparison to the use of purlins, see Figure 3.8. The high profiled
steel sheathing supports insulation, installations and variable vertical loads through
bending while horizontal loads from wind are transferred through diaphragm action.

The profiled sheets are typically fastened using two screws in every profile valley
for mid-structure elements while six to eight in the gables [Andersson, 2014]. Due
to the numerous fasteners, profiled sheathing can be considered as a more effective
lateral bracing for the primary structure than purlins in terms of bracing capacity.
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Figure 3.8: Bracing of arch structure by load bearing profiled sheets.

3.3.3 Global Lateral Stability

It is essential to achieve lateral stability not only of a structural element, i.e. using
lateral bracing, but also of the entire structural system. The three fundamental
methods of achieving lateral stability are diagonal bracing, shear wall and rigid
joints. When additional capacity or redundancies are required more than one method
can be used simultaneously.

Diagonal bracing using steel cables are usually preferred for glulam arches, which
is illustrated in Figure 3.9. A secondary structure, such as purlins or load bearing
profiled sheets, is used to transfer horizontal loads to the bracing structure.

Figure 3.9: Lateral stability of glulam arches using diagonal bracing. Source: Carling
[2008].
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3.3.4 Additional Stresses in Arches

In comparison with traditional beam design, two additional stress phenomena are
needed to be considered when designing glulam arches.

3.3.4.1 Bending stress in the apex zone

During the production of curved glulam beams, individual lamellas are forced into
a curvature which induces considerable bending stresses. However, these bend-
ing stresses are reduced due to material relaxation thus resulting in relative small
strength reductions [Hudson, 1960]. Depending on the curvature and thickness of
the lamella, these stresses should be considered.

Under the action of a pure moment on a uniform section of a curved beam the
bending stress will not be linearly distributed over the cross-section unlike that of a
straight beam, see Figure 3.10.

Figure 3.10: Curved beam of rectangular cross-section subjected to constant bend-
ing moment M resulting in a non-linear stress distribution. Source: Larsen and
Riberholt [1999].

This is due to the fact that the face of the cross-section nearly stays perpendicular
to the neutral axis, but since the original fibre lengths are increasing from intrados
to extrados the strains (thus the stresses) will not vary linearly. Solutions for a
rectangular cross-section can be found in [Lekhnitskii, 1968].
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3.3.4.2 Radial stress in the apex zone

As can be seen in Figure 3.10 radial stresses will also arise due to the curvature.
Consider the direction of compression forces in Figure 3.11. The curvature will cause
a force component perpendicular to the grain which the material must withstand.

Figure 3.11: Internal forces F and tensile stresses perpendicular to grain at the
centreline of a curved beam, σ90 . Source: Larsen and Riberholt [1999].

The radial stresses are especially significant for glulam arches since the tensile
strength perpendicular to grain is very low.
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Chapter 4

Instability Phenomenon

A structure is considered stable if a small increase of loading results in a small
increase of deflections. However, if the structure is in an unstable state of equilibrium
a small disturbance or increase of the load can result in a finite, but often very
large, deformation. A comparison can be made to a ball on a hill versus in a
valley, see Figure 4.1. These structural instabilities often results in collapse since
the magnitude of the deformations can induce large stresses and ultimately material
failure [Runesson et al., 1992].

Figure 4.1: A ball in a stable and unstable state of equilibrium.

While material failure often is the limiting failure mode for short and bulky ele-
ments, instability is typically addressed to slender structural elements subjected to
compressive axial or transversal loading. The most common instability phenomena
are buckling and lateral torsional buckling, which can be analysed using different
orders of theory. In the following chapter buckling and lateral torsional buckling
will be presented for straight and curved beams.
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4.1 Order of Theory

The mathematical definition of instability is expressed in terms of potential energy.
The potential energy is dependent only of the actual configuration and not of how
it is achieved. Equilibrium is reached for constant potential energy while the type
of equilibrium is determined by the change of potential energy for a change of con-
figuration around the equilibrium position. A stable equilibrium is characterised by
a local minimum of the potential energy while a local maximum characterises an
instable equilibrium [Runesson et al., 1992]. Please relate to Figure 4.1.

Three distinct orders of theory exist for various degrees of simplifications. In 1st

order theory deformations and internal forces are directly proportional to the applied
loading, i.e. forms linear systems. It is assumed that the deformations are small
and thus they are neglected when considering the equations of equilibrium. The
structure is analysed in the initial configuration and the principle of superposition
is applicable.

If the deformations are small but being considered in the equilibrium equations the
2nd order theory is used. Stresses and deflections are no longer proportional to the
axial load. Their values will also be dependent on the magnitude of the deflections
produced [Timoshenko and Gere, 1961]. Stability analysis according to 2nd order
theory with pre-defined, known or assumed, compressive normal force is also known
as linear buckling analysis.

A higher level of realism is obtained if the deformations are not treated as small and
the real geometry is continuously being used to derive the equilibrium equations.
Analysis according to the 3rd order is difficult to achieve without the use of finite
element method since new equilibrium states are needed to be calculated for each
small increase of loading. 3rd order analysis is also referred to as non-linear buckling
analysis.

4.2 Buckling

As previously mentioned, slender structural members subjected to compressive axial
loading may reach a critical load for which the member becomes unstable. Though
unstable, the member (column) may theoretically withstand further increased load-
ing. Since an unstable condition is reached the member may however suddenly
buckle due to small disturbances causing large in-plane deformations. Such distur-
bances always exist in reality.
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Figure 4.2: (a) Axial loaded column. Sensitive to instability. (b) Stable state of
equilibrium. (c) Unstable state of equilibrium. Source: Runesson et al. [1992]

4.2.1 Buckling of Columns

Figure 4.2 illustrates buckling of a column. A small increase of axial loading ∆P ,
in total smaller than the buckling load PE, causes only a small increase in axial
deformation (Figure 4.2b). However, a small increase ∆P of PE may also cause a
finite horizontal displacement (Figure 4.2c); an instable equilibrium.

A general expression for the buckling load of an initially straight column subjected
to axial loading through the centreline of gravity is presented in Equation 4.1.

Pcr =
π2EI

(βL)2
(4.1)

where

EI bending stiffness of the column [Nm2]
L unsupported length of the column [m]
β Euler effective length factor depending on the

support conditions according to Figure 4.3.

In the section above the column was treated as straight and with loading directly in
the centre of gravity. Practically, there are always imperfections such as eccentric
loading, initial bow shape or residual stresses within the member. Depending on
the magnitude of imperfection the critical buckling load will never be achieved, see
Figure 4.4. The buckling load will instead be seen as the theoretical limit of the
analysed member [Runesson et al., 1992].
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Figure 4.3: Euler effective length factor β for different support conditions.

Figure 4.4: Stiff column with initial imperfection. The critical load is plotted for
increasing initial angle in two systems (a and b), theoretical buckling load as dashed
line. Source: Runesson et al. [1992].

4.2.2 Buckling of Beam-columns

Beams subjected to axial and lateral loads simultaneously are known as beam-
columns [Timoshenko and Gere, 1961], see Figure 4.5.

Since the lateral loads will cause eccentricity for the axial loading, internal forces,
stresses and deflections of the beam will not be proportional to the magnitude of
the axial load. Hence 2nd or 3rd order analysis is necessary.
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Figure 4.5: Simply supported beam subjected to axial (P) and lateral (Q) point
loads.
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Figure 4.6: First in-plane buckling mode for a parabolic arch.

4.2.3 Buckling of Arches

Since a parabola is the funicular shape of a uniform load no bending of the arch will
occur while subjected to such load. By gradually increasing the load on the parabolic
arch a condition at which the equilibrium becomes unstable can be reached. The
shapes of buckling modes are dependent of boundary conditions, and for a three-
hinged parabolic arch the first in-plane buckling mode is illustrated in Figure 4.6.

For a parabolic arch with constant cross-section and uniform load the critical load
can be expressed by the following formula [Timoshenko and Gere, 1961]:

qcr = γ4
EI

L3
(4.2)

where

EI bending stiffness of the arch [Nm2]
L span [m]
γ4 numerical factor depending on the ratio f/L and

the number of hinges in the arch, see Figure 4.7

The dashed lines corresponds to symmetrical forms of buckling. In these cases
asymmetrical buckling will still occur and to obtain values of γ4 curves for arches
without central hinge must be used [Timoshenko and Gere, 1961].
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Figure 4.7: Numerical factor γ4 expressed graphically as a function of f/L. Source:
Timoshenko and Gere [1961]

4.3 Lateral Torsional Buckling

Lateral torsional buckling represents a limit state where beam deformation includes
in- and out-of-plane deformations as well as twisting. This can occur when a beam
is loaded transversally, though risk of instability increases for simultaneous axial
loading [Runesson et al., 1992]. As for buckling, in order for the phenomenon to
occur the cross-section needs to be slender, i.e. the flexural rigidity of the beam in
the plane of bending is large in comparison with the lateral bending rigidity.

4.3.1 Lateral Torsional Buckling of Beams

Equations can be written for the beam in its deformed position: one for bending in
the strong axis, one for bending in the weak axis and one equation associated with
torsion. These can then be combined to determine the critical moment of the beam
Mcrit. A load on the beam greater than the critical moment may induce lateral
torsional buckling, see Figure 4.8.
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Figure 4.8: Simply supported beam with critical end moments causing lateral buck-
ling. Source: American Forest and Paper Association [2003]

The lateral torsional buckling seen in Figure 4.8 corresponds to an unrestrained
rectangular cross-section with a concentrated load in the centre of gravity. The
critical moment can be calculated using Equation 4.3 [Runesson et al., 1992].

Mcr =
π

Le

√
EIyGJ (4.3)

where

E modulus of elasticity [Pa]
Iy moment of inertia with respect to the weak direction [m4]
G shear modulus [Pa]
J torsion constant [m4]
Le effective length of beam [m]

As can be seen in Equation 4.3, the critical moment can be significantly increased
by reducing the effective length of a beam, for which it can deform, using lateral
bracing. For increasing stiffness of the lateral bracing, Mcrit is increased until the
buckling mode is eliminated, see Figure 4.9. However, after the first buckling mode
a stiffer mode will occur which needs to be verified.
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Figure 4.9: Simply supported beam with lateral spring at L/2. Critical load ratio
plotted for increasing spring stiffness illustrating buckling mode elimination [Runes-
son et al., 1992]. Please note that the stiffer buckling mode will have an inflection
point at the point of bracing, thus not effected by the spring stiffness. Source:
Runesson et al. [1992]

4.3.2 Lateral Torsional Buckling of Arches

Since arches are mainly subjected to axial compression the risk of buckling is pro-
found. For some load cases bending moments can be introduced and increase the
risk of lateral torsional buckling. However, a useful theoretical model of the capac-
ity with respect to lateral torsional buckling of curved beams is, to the authors’
knowledge, not yet presented. Using beam analogy it is usually possible to identify
the lower lateral torsional buckling modes, but in order to obtain numerical values
a finite element model needs to be introduced, c.f. Chapter 7. The relevant arch
buckling modes in this thesis are presented in Section 5.1.
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Chapter 5

Arch Structure Studied

The reference arch model used in this thesis is presented in Figure 5.1 and 5.2. The
model is a three-hinged parabolic arch situated inside a large span structure, such as
a sports hall, in the south of Sweden. The roofing consists of continuous trapezoidal
steel sheets which also is used as part of the bracing structure. The structural design
is verified using Eurocode (EC) and later compared with finite element analysis.

7m
60m

9m

Figure 5.1: Large span arch building with trapezoidal roof sheathing.

5.1 Geometry

The arch is a three hinged arch of a parabolic shape with the rise-span ratio of 0.15,
slightly larger than the common limit, c.f. Section 3.2. The spacing of the arch
members is set to 7 m. The cross-section of the reference model is constant along
the arch axis and its height by width is 1800x190 mm2. Due to the slenderness of
the cross-section lateral supports are introduced along the intrados of the arch, see
Figure 5.2 and Table 5.1.
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Figure 5.2: Boundary conditions of the arch model studied, see Table 5.1.

Table 5.1: Boundary conditions specifications.

Point Boundary condition

1 Fixed support in both ends
2 3 point intrados lateral support
3 Continuous extrados lateral support by roof

The boundary conditions described will shape the buckling modes of the arch. The
first out-of- and in-plane buckling modes for the presented model are shown in Figure
5.3.
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Figure 5.3: Buckling modes of a 3-hinged parabolic arch with intrados lateral sup-
port; out-of-plane (a) and in-plane (b,c).

Please note the similarity of Figure 5.3(a) to beams subjected to bending moments
in Figure 4.8. The characteristic deformation of lateral torsional buckling is found
between the intrados lateral bracing. Consider the effective buckling length with
and without this lateral support. An asymmetrical load induces compression along
a section of the arch intrados which further enhances instability failure.
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The extent of the lateral support can be arranged in many different configurations
preventing the structure to fail due to lateral torsional buckling. A comprehensive
configuration of lateral support changes the first buckling mode from out-of-plane
to in-plane after which no significant increase in load bearing capacity can be made.
The configuration used in this thesis has been chosen in order to evaluate lateral
torsional stability, hence out-of-plane modes occur prior to in-plane.

5.2 Material

The material used is a homogenous glulam of Eurocode class GL32h. The use of
a combined glulam class such as GL32c were not found suitable since large normal
forces are induced over the whole cross section (opposed to beams subjected to pure
bending). The chosen glulam class GL32h has the following properties [SS-EN 1194]:

fmk = 32 MPa Characteristic bending strength
fck = 29 MPa Characteristic compression strength parallel to grain
fv,k = 3.8 MPa Characteristic shear strength
ft,90,k = 0.5 MPa Characteristic tension strength perpendicular to grain

E0.05 = 13 700 MPa Characteristic modulus of elasticity parallel to grain
Gk = 850 MPa Characteristic shear modulus

5.3 Design Loads

The design loads are derived using load cases and distributions stated in the Eu-
ropean rules for structural design, Eurocode, further presented in Chapter 6. The
load cases considers permanent and variable loads in order to standardise building
requirements. Variable loads typically varies over time and includes wind, snow and
imposed loads depending of occupancy.

5.3.1 Permanent Load

The self-weight of a structure is represented by permanent loads. Since the cross-
section and roofing is constant along the length of the arch the permanent load is
simplified to a uniformly distributed load, see Figure 5.4.

Self-weights of the arch member, roofing and installations are approximated in Ap-
pendix A.1 with respect to the arch spacing of 7 meters. The total load is

qself−weight = 13.1 kN/m horisontal
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Figure 5.4: Arch with permanent loads considered as UDL.

5.3.2 Snow Load

The characteristic snow load is the weight of snow with the probability of 2% to be
exceeded during a given year. However, the distribution of snow on a structure is
influenced by many factors including the shape of the building, surrounding terrain
and local climate for which the characteristic value is modified accordingly. Another
variable regarding snow loads is the consideration of snowdrift due to wind.

Two load cases are considered during design; snow with and without snowdrift.
Without snowdrift the snow is represented by a uniformly distributed load while
snowdrift is represented by a asymmetrical triangular load case, see Figure 5.5.
The triangular load represents an exceptional snow drift which can cause negative
moments in the arch.
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Figure 5.5: Snow loads on arches according to Eurocode; symmetric and asymmetric.

The loads are derived in Appendix A.2 to:

sUDL = 1.6 kN/m2

sTriangular = s3 = 3.4 kN/m2

The value of the triangular load model will henceforth be referred to the maximum
load, i.e. sTriangular. Please note that in comparison to sUDL the total force applied
is only 37,5%.
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5.3.3 Wind Load

With similar background as for snow loads, standardised wind load models are stip-
ulated in Eurocode. The characteristic wind load is the average wind velocity during
10 minutes with the probability of 2% to be exceeded during a given year on the
height of 10 meters above ground. As for snow, shape factors and topology is taken
into account.

The wind load is primarily the result of dynamic effects. Most structures have a
considerable natural dampening and are insensitive to short dynamic loads such as
wind gusts. These characteristics allow an equivalent static load to be used in EC.
The wind load model on an arch roof according to EC is found in EKS 9 (1.1.4,
13§), see Figure 5.6.

 

Figure 5.6: Wind load model of arch roof with rectangular base. Source: EKS9
figure C-6

While external surfaces are most exposed to winds, wind can cause high and low
pressure within a structure which needs to be considered during the design. The
main effect of wind on roof structures is that it is subjected to upwardly directing
forces which may become larger than the self-weight of the structure.

5.3.4 Load Combination

Variable and permanent loads should be considered acting simultaneously on a struc-
ture. However, the probability of a worst case scenario, e.g. high winds and snow
simultaneously, is low. To determine a more reasonable load combination, one of
the variable loads is considered dominant while remaining are reduced.

Considering the relevant loads presented above, eight possible load combinations
are needed in order to determine the designing load case. Calculations are found in
Appendix A.4 and the combinations are presented in Figure 5.7.
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Figure 5.7: Identification of worst load case by possible combinations according to
Eurocode. Main load: Snow (bold), wind (regular). Internal relative wind pressure:
Positive (solid line), negative (dashed line). Used load combination in red.

Due to small influence the wind load is neglected in the further studies, resulting in
two possible load cases to be considered according to Figure 5.8.
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Figure 5.8: Two load cases illustrated. A) Self-weight and uniformly distributed
snow B) self-weight and snow subjected to snowdrift.
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5.4 Internal and Reaction Forces

In addition to self-weight, the parabolic arch is subjected to variable loads according
to Section 5.3, see Figure 5.9. The three hinge design forms a statically determinate
structure of which the internal forces can be determined analytically according to
1st order theory.

The triangular distributed snow load model will induce significant bending moment
in the arch whereas the uniform will induce maximum normal forces. Thus it is
of importance to separately find maximum internal forces and to identify possible
critical positions of combination effects.

Calculations can be found in Appendix B while the result of the triangular and UDL
load case is presented below.
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Figure 5.9: Free body diagram of parabolic arch with load models according to
Eurocode.

5.4.1 Uniformly Distributed Load

Using static equilibrium and analytical calculations the internal forces for the arch
subjected to a UDL was found. As previously discussed in Section 3.2, the parabolic
shape does not obtain any bending moments for UDL, hence no shear forces neither.
The normal force distribution is illustrated in Figure 5.10.

The maximum normal force is found at the abutments while the minimum is found
at the crown, see Table 5.2.
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N
_

Figure 5.10: Normal force distribution over a parabolic arch subjected to UDL.

Table 5.2: Maximum internal forces in parabolic
arch subjected to UDL.

Self-weight Snow

Normal force, Nmax 762 kN 682 kN
Shear force, Vmax ≈ 0 kN ≈ 0 kN

Bending moment, M ≈ 0 kNm ≈ 0 kNm

Since the normal force variation for shallow arches is small, it is for UDL assumed
constant henceforth.

5.4.2 Triangular Distributed Load

While a parabola is the funicular shape to an UDL, bending moments and shear
forces are expected for the triangular load case while a lower normal force. The
internal forces are analytically calculated in Appendix B.2 and the results are found
in Figure 5.11 and Table 5.3.

Table 5.3: Maximum internal force with corresponding internal forces
at same location.

Internal force Max value Position Simultaneously

Nmax 550 kN 0 41 kN 0 kNm
Vmax 72 kN ≈ L/2 445 kN 348 kNm
Mmax 811 kNm L/4 470 kN 0 kN
Mmin -157 kNm ≈ 3L/5 456 kN 0 kN
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Figure 5.11: Internal forces for triangular load case. Normal force, radial shear force
and bending moment distribution respectively.
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Chapter 6

Design According to Eurocode

The Eurocode (EC) is a set of documents comprising rules for structural design
using different materials in the European Union (EU). While the codes are equal for
every member nation there may be, when considered appropriate, national choices
of certain design rules or values [Porteous and Kermani, 2013].

In this chapter the studied arch presented in Chapter 5 will be verified according to
EC using the following standards:

• The Eurocode framework for structural design is EN1990, Eurocode 0: Basis
of structural design.

• The Eurocodes with regulations regarding snow and wind loads are EN1991,
Eurocode 1: General actions on structures, Part 1-3 snow loads and part 1-4
wind load respectively.

• The Eurocode for design of timber structures is EN1995, Eurocode 5: Design
of timber structures.

Within Eurocode it is possible to address instability using both first and higher order
of analysis. Since it is an aim of this thesis to compare Eurocode hand calculations
with FEM results, an analytical first order analysis approach has been chosen.

All calculations and variable definitions are presented in Appendix C.
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6.1 Design Forces

The characteristic internal forces were determined analytically in Chapter 5. The
uncertainties in the load models are considered in Eurocode with the use of par-
tial safety factors. Since this thesis focuses on structural failure, the design forces
are calculated using the ultimate limit state [EKS 9 eqn 6.10b] with safety class 3
according to Equation 6.1. The design loads are presented in Table 6.1.

Xd = γd {1.2XG + 1.5XQ} (6.1)

Table 6.1: Design internal forces.

Position N [kN] V [kN] M [kNm]

Nmax
1) 0 1938 0 0

V max
2) ≈ L/2 1582 108 522

Mmax
2) L/4 1620 0 1217

Mmin
2) ≈ 3L/5 1600 0 -236

1) Uniformly distributed load
2) Triangularly distributed load

6.2 Modification Factors

In order to take model uncertainties and property variations into account certain re-
duction coefficients are used. In the following a short description of the modification
factors used in Eurocode 5 are presented.

6.2.1 Modification Factor kmod

Timber behaves differently when exposed to different load durations and moisture
levels, c.f. Chapter 2. The design standards quantifies this with the use of a modi-
fication factor, kmod, which is multiplied with the characteristic strength according
to Equation 6.2.

fd = kmod
fk
γM

(6.2)

60



Design According to Eurocode 6.3 Influence of Curvature

The structural design standard defines five different load duration classes and three
service classes accounting for load duration and humidity conditions respectively.
For each combination of load duration and service class a value for kmod is proposed,
ranging from 0.5 to 1.1 (c.f. SS-EN 1995-1-1, 3.1.3).

In order to take account for uncertainties in the effects of geometric and mate-
rial property deviations a partial factor γM is introduced. Typical value for glued-
laminated timber is γM = 1.25.

6.2.2 Deformation Factor kdef

Deformation of a member or a structure can be calculated for both instantaneous
deflections and long-time deflections including creep behaviour. As explained in
Chapter 2 the creep behaviour is a function of several factors including moisture level
and material. In Eurocode 5 the design process is simplified using a deformation
factor, kdef , which is applied to the elastic modulus according to Equation 6.3. The
deformation factor is dependent on the type of material as well as its moisture
content (expressed with a service class) and it ranges from 0.6 to 2.0 for glulam
[Porteous and Kermani, 2013].

Emean,fin =
Emean

(1 + kdef )
(6.3)

The deformation factor is applied to long term loads such as self-weight. Variable
loads are instead converted to an equivalent long term load using quasi-permanent
load modification factors (c.f. SS-EN 1990, 6.5.3). When validating the strength of
a structure at ULS the elasticity and shear modulus should be reduced with respect
to load duration and moisture condition. This is done in order to achieve the final
mean values adjusted according to Equation 6.4 [SS-EN 1995-1-1, 2.3.2.2]:

Emean,fin =
Emean

(1 + ψ2kdef )
(6.4)

6.3 Influence of Curvature

In addition to the regular design verifications the apex zone must be validated with
respect to stress condition, c.f. Section 3.3 and Figure 6.1.
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𝑉𝑎𝑝𝑒𝑥   

Figure 6.1: Curved beam with apex volume highlighted.

Due to the non-linear stress distribution over the cross-section (see Section 3.3.4)
a modification factor, kl, is introduced. The maximum bending stress, σm,0,d, is
defined in SS-EN 1995-1-1 eqn 6.42 as:

σm,d = kl
6Map,d

bh2ap
= 12 MPa (6.5)

The maximum stress must then be checked by the capacity of the cross-section
according to Equation 6.6.

σm,d ≤ krfm,d ⇒ 12 ≤ 20.5 MPa OK! (6.6)

The maximum tensile stress perpendicular to grain in a curved beam is defined in
SS-EN 1995-1-1 eqn 6.54 as Equation 6.7 and checked in Equation 6.8.

σt,90,d = kp
6Map,d

bh2ap
= 0.1 MPa (6.7)

σt,90,d ≤ kdiskvolft,90,d ⇒ 0.1 ≤ 0.69 MPa OK! (6.8)

Where kp is a modification factor addressing the magnitude of the radial tension
stress, see Section 3.3.4.
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1 

Figure 6.2: Buckling reduction factor kc as a function of relative slenderness ratio.
For bulky elements no reduction is required since material failure will occur prior to
buckling.

6.4 Normal Force Capacity with regard of Insta-

bility

A member subjected to axial load has a tendency to buckle laterally due to geomet-
rical imperfections, high slenderness ratio, λ, or a combination of both. Eurocode
implements the use of slenderness ratio from which a strength reduction factor kc is
obtained, see Figure 6.2.

The compressive stress of the member must be less than the strength of the member
at the design condition in Equation 6.9.

σc,0,d ≤ kcfc,0,d (6.9)

As seen in Figure 6.2 the strength reduction factor is highly influenced of the slender-
ness ratio, λ. The slenderness ratio is defined as the effective length of the member
divided by its radius of gyration. Since a constant cross-section is used the radius
of gyration is constant throughout the length of the member. When the member is
short and bulky, failure will be due to timber failing under compression stress rather
than buckling, represented by the initial constant part of the curve.

To estimate the in-plane buckling length of an equivalent column an effective length
factor β = 1.25 is used [Crocetti and Mårtensson, 2011].
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6.5 Bending Moment Capacity with regard of Instability Design According to Eurocode

Le,IP = βs = 1.25 · 31.7 = 40 m (6.10)

where s is half the arch length.

Since the arch is considered to be laterally supported along the whole length of the
extrados the classic buckling behaviour is restricted. Instead torsional buckling will
occur as the intrados buckles laterally, see Figure 6.3 left.

The buckling reduction within Eurocode is only defined for straight elements. For
curved elements a second order FE analysis is commonly used to provide the critical
load. However, it is the aim of this thesis to keep FE analysis separated from the
Eurocode calculations, hence an analytical approach has been chosen.

In order to analytically evaluate the critical compressive load for such out-of-plane
buckling an analogy is made to torsional buckling of a cruciform strut, see Figure
6.3 right. The internal edge of each quadrant of the cruciform cross-section can be
considered restrained from lateral movements, similar to the lateral support of the
arch. The critical load for the cruciform cross-section is hence divided by four in
order to obtain a critical load estimation of the arch. Note that no regard has been
taken to initial imperfection, which is considered in Eurocode.

 

 

 

  

ℎ 2ℎ 

Figure 6.3: Analogy between lateral buckling of arch and torsional buckling of a
cruciform strut.

6.5 Bending Moment Capacity with regard of In-

stability

Members subjected to flexure may fail due to lateral torsional instability, see Section
4.3. Eurocode 5 treats this matter by using a relative slenderness for the structural
member.
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For a member with the effective length of lef , restrained against torsional movements
at its ends and subjected to pure moment applied at its ends the elastic critical
bending stress according to Eurocode is [SS-EN 1995-1-1 eqn 6.31]:

σm,crit =
My,crit

Wy

=
π
√
E0.05IzG0.05J

lefWy

= 10.7 MPa (6.11)

In order to account for lateral buckling of a member the bending stress in the member
must be less than or equal to the reduced bending strength [SS-EN 1995-1-1 eqn
6.33]:

σm,d ≤ kcritfm,d ⇒ 2.3 ≤ 0.33 · 20.5 = 6.77 MPa OK! (6.12)

where kcrit is the lateral buckling reduction factor determined from the relative
slenderness.

6.6 Shear Strength

When a member is subjected to bending, shear stress will also arise perpendicular
to the longitudinal axis. According to elastic theory the shear stress at any level in
the member is calculated according to Equation 6.13.

τ =
V S

Iw
(6.13)

where

τ shear stress [Pa]
V shear force [N ]
S static moment of area [m3]
I moment of inertia [m4]
w width of member [m]

For a rectangular section of width w and height h the maximum shear stress will
occur at mid-depth with a magnitude according to Equation 6.14.

τ =
3V

2wh
(6.14)

The shear capacity of the arch will then be (see Appendix C.9):

VRd =
3

2
weffhfV,d = 438 kN (6.15)

VEd ≤ VRd ⇒ 108 ≤ 438 kN OK! (6.16)
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6.7 Total Load Bearing Capacity

In order to evaluate the total load bearing capacity of the arch specific sections are
controlled with respect to the sectional forces acting, see Figure 6.4.

 A 

B 

Figure 6.4: Section controls: A) Positive bending moment, compressed edge re-
strained from lateral buckling, B) Negative bending moment and compressed edge
free to buckle laterally.

6.7.1 Compressed Edge Restrained from Lateral Buckling

With a relative slenderness greater than 0.3 buckling behaviour needs to be consid-
ered. Hence no plastic stresses are allowed to be utilized and the member fails when
the material reaches its failure strength in the extreme fibre. For a member sub-
jected to combined axial compression and bending moment Eurocode 5 stipulates a
verification according to the constraints below [SS-EN 1995-1-1 eqn 6.23-24]:

σc,0,d
σRd,cruciform

+ km
σm,y,d
fm,y,d

+
σm,z,d
fm,z,d

= 0.99 < 1.0 OK! (6.17)

σc,0,d
kc,yfc,0,d

+
σm,y,d
fm,y,d

+ km
σm,z,d
fm,z,d

= 0.96 < 1.0 OK! (6.18)

6.7.2 Compressed Edge Unrestrained from Lateral Buckling

For members which has a relative slenderness greater than 0.75 the effects of lateral
torsional stability needs to be considered. When combined action from moment
about the major axis and compressive force the stresses should fulfil the following
condition [SS-EN 1995-1-1 eqn 6.35]:

(
σm,d

kcritfm,d

)2

+
σc,0,d

kc,zfc,0,d
= 0.49 < 1.0 OK! (6.19)
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6.8 Eurocode Verification Summary

The presented verifications are summarized in Table 6.2.

Table 6.2: Verification summary.

Verification of Status Reference

Stresses in apex zone OK Appendix C.6.1 and C.6.2
Bending stress OK Appendix C.8

Compression stress OK Appendix C.7
Shear stress OK Appendix C.9

Combined stresses OK Appendix C.10
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Chapter 7

Finite Element Method and
Abaqus

7.1 Finite Element Method

Problems occurring in structural mechanics can usually be described by differential
equations. Some problems can be solved analytically but due to complex geometry
or boundary conditions the analytical solutions may not be available. Using finite
element method the problems are instead solved approximately with a numerical
approach [Ottosen and Petersson, 1992], see Figure 7.1.
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Figure 7.1: Analysis scheme from physical phenomenon to FEM.

The differential equations used to describe a physical phenomenon are assumed valid
over a certain small region of a model. Instead of finding a solution for the entire
model it is characteristic for the finite element method to divide the region into
smaller parts, i.e. finite elements. An approximation is then carried out over each
element assuming linear or quadratic variation. By using a great amount of elements
even a model with highly non-linear variation can be modelled using finite element
method [Ottosen and Petersson, 1992]. The collection of all such elements building
up a model is called a finite element mesh, see Figure 7.2.
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Figure 7.2: Illustration of modelling steps in order to represent a physical phe-
nomenon.

As FE method is a numerical solution to a general differential equation the method
can be applied to a wide variety of problems, e.g. heat conduction and the flexural
behaviour of three-dimensional bodies such as plates.

To further illuminate the solution technique a heat conduction problem is illustrated
in an example below. The example consists of only a few unknowns, i.e. degrees
of freedom or DOF, which are needed to analyse how the temperature varies over
the length of the bar. The property of a material to conduct heat is called thermal
conductivity, which can be seen as the resistance of the system to a physical change.

In structural analysis the unknown DOF consists not of temperature but displace-
ments and rotations. The resistance of a system to such changes depends on material
properties, boundary conditions and geometry which all are included in the stiffness
matrix K representing the system.

In general the problems analysed often involves thousands of unknown and such
equation systems cannot be solved by hand. Instead the FE method is entirely
depending on the use of computers making it possible to analyse complex geometry.
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Example. The temperature variation along a one-dimensional bar is to be
modelled using FE method. The bar is divided into several elements with linear
approximation between the elements nodes. The temperature at these nodes
are assumed to be equal to the real temperature T (x). These points are called
nodal points and are usually located on the boundary of each element.4.1. FINITA ELEMENTMETODEN 31

(a) Temperaturfördelning längs endi-
mensionell st̊ang

(b) Noder och temperaturer vid dessa

(c) Fyra element med linjär fördelning (d) Resulterande approximativ temper-
aturfördelning längs st̊angen

Figur 4.3: Exempel p̊a approximeringar som görs med FEM

4.1.1 Egenvärdesanalys

För att p̊a ett enkelt sätt bestämma instabilitetslaster har möjligheten till egenvärde-
sanalyser i det Finita elementbaserade datorprogrammet Abaqus använts. En egen-
värdesanalys innebär kortfattat beräkning av den last som medför att strukturens
styvhetsmatris blir singulär. Beräkningen ger instabilitetslasten samt deformation-
smönstret vid instabiliteten. Metoden förutsätter att de deformationer som föreg̊ar
instabiliteten är sm̊a. I Abaqus ges en faktor, λi som den p̊alagda lasten m̊aste mul-
tipliceras med för att f̊a reda p̊a den korrekta instabilitetslasten. Beräkningsmässigt
beskrivs egenvärdesproblemet med följande ekvation 4.1 [1]:

(
KNM

0 +λiK
NM
∆
)

vM
i = 0 (4.1)

(a) Temperature variation over a bar (b) Temperature at nodes

(d) Approximated temperature distribution(c) 4 elements with linear distribution

Figure 7.3: Example of approximations using FEM. Source: Persson [2010].

By introducing elements the original problem with infinitely many unknowns
has been replaced with a problem of finite number of unknowns. In general,
more unknowns used to approximate a problem will result in higher accuracy
and the numerical solution from a well-defined FE analysis will converge to the
true value.
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7.2 Linear Elastic Buckling Analysis

Analysing buckling load using eigenvalues provides the critical load for which the
structure reaches its buckling strength. By numerical solutions the load at which
the stiffness matrix becomes singular is identified and expressed as a load multiplier,
λ. This eigenvalue is multiplied with the assigned load to achieve the critical load.
The eigenvalue problem is formulated in Equation 7.1.

(K0 + λiK∆)vi = 0 (7.1)

where

K0
n · n stiffness matrix originating from the base state where n is number of
DOF. Any preloads defined on the structure are included.

K∆ n · n stiffness matrix due to the type of loading.
λi scalar eigenvalue for the corresponding eigenmode, i = 1, 2, 3, . . . , n
vi eigenvector containing the normalized mode shape, i = 1, 2, 3, . . . , n

When conducting a buckling analysis usually the lowest mode is of greatest interest
since it is most likely to occur. It should be noted that the eigenvector contains
normalized magnitudes of deformation at the critical load, i.e. the maximum dis-
placement component is 1.0. Hence the real deflection is not presented using linear
buckling analysis.

7.3 Non-linear Buckling Analysis

Utilizing non-linear analysis the structural model can include plastic deformations
and, as of interest in this report, initial imperfections and large deflection responses.
Non-linear buckling analysis allows a more accurate prediction of critical load for a
structure in comparison to a linear eigenvalue analysis. The latter is still commonly
used since the computational cost is low and gives a good estimate of the upper
bound of the critical load.

Non-linear analysis takes large deformations into account when solving equilibrium
states and the loading can be applied using either a load- or displacement-controlled
algorithm or a combination of both. When using a load controlled analysis the load
is gradually increased until the structure becomes unstable and the limit point is
reached, i.e. a small increase in load causes very large deflections. The analysis will
then stop since a further increase of load will not yield a corresponding equilibrium.
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In order to use non-linear analysis a disturbance of the structural system must
be introduced. There are several methods to introduce disturbances in a finite
element model. A generic method has been used in this thesis by applying scaled
imperfections of buckling modes. This method is to be considered as a severe yet
reasonable type of imperfection since the entire geometry is given an imperfection in
which the geometry is most prone to take when buckling. As can be seen in Figure
7.4, the critical load decreases for increasing initial imperfections.

FIGURE Load – Displacement curve for different imperfections, see davids rapport s.33 
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Figure 7.4: Load-displacement curve for increasing imperfections.

A simple load or displacement controlled algorithm experiences a so called snap-back
and snap-through phenomenon due to highly non-linear response, see Figure 7.5. To
study the response of the structure beyond the limit point a path following algorithm
is required, which is a combination of load- and displacement controlled algorithm.
This allows to identify potential post-buckling capacity, c.f. Krenk [2009]. It is not
commonly utilized in the design of building structures but can be beneficial as it
produce some sort of redundancies.

 

FIGURE simple scheme of load displacement to show difference of riks and general 
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Figure 7.5: Post-buckling analysis using a path following analysis (dashed line) as op-
posed to conventional load-controlled algorithm causing snap-through phenomenon.
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7.4 Element Types

A geometry is divided into a finite number of elements of which there are generally
three families. These families are presented in the following section and will further
be compared in Section 8.6.

7.4.1 Characterising Elements

There are several types of elements suitable for different types of problems. Five
aspects characterises the behaviour [Dassault Systèmes Simulia Corp., 2010]:

• Family

• Degrees of freedom

• Number of nodes

• Formulation

• Integration

To model an arch, three families are applicable namely solid-, shell- and beam ele-
ments, see Figure 7.6.
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Figure 7.6: Element families commonly used in structural engineering.

Directly related to the element family is the number of degrees of freedom, DOF,
which are the fundamental variables calculated during the analysis. For a stress
and displacement simulation DOF includes translations and for some elements also
rotations. DOF are defined in a number of points within an element, called nodes.
For each element family, the number of nodes can be varied in order to obtain
linear or quadratic variation over the element, see Figure 7.7. An optimized analysis
generates accurate results using a minimum number of nodes.

Formulation refers to the mathematical theory used to define the behaviour of the
element. For solid material analysis Lagrangian formulation is used while numerical
techniques are used to integrate various quantities over the volume of each element.
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Figure 7.7: Linear 8-node solid element and quadratic 20-node element.

7.4.2 3D Solid Element

Solid elements enable meshing in three dimensions since the element contains nodes
in three dimensions, see Figure 7.8. A brick is numerically preferable over a tetra-
hedral even though tetrahedral elements are sometimes advantageous for advanced
geometries.

Figure 7.8: Solid elements in brick and tetrahedral shape.

Solid elements have only translation DOF and rotation is enabled by the three
dimensional distribution of nodes.

7.4.3 3D Shell Element

A three dimensional shell element found in Figure 7.9 is actually a two dimensional
element given a theoretical stiffness for the third dimension, thus reducing the DOF.
Shell elements are normally rectangular in shape though triangular exists subjected
to similar limitations as tetrahedral solids.

Using a 3D shell element enables to combine the simplicity of a 2D element and the
versatility of a 3D element, thus reducing the number of computations in comparison
with a 3D solid element. Loads are applied in 2D and by using 3D DOF a three
dimensional result is obtained.
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143 3d shell elements 

 

 Figure 7.9: Shell elements, linear and quadratic.

7.4.4 3D Beam Element

Beam elements further simplify the geometry using a single line of two or three
nodes for linear or quadratic distribution respectively, see Figure 7.10. In order to
analyse a two or three dimensional problem beam elements use both translation and
rotations DOFs in each node. The rotational DOF enables the beam element to
represent a 3-dimensional behaviour.

��� ���� ������	
��
���������
��
�
��
����������
����������������
�����
���
���
�
������ �����������
���
�������������������
�!��������
�����
���
�
�����
��
���
�
��
�������� ������	
"#"$ "%"&"'"( )*+,-*)*+,-.)*+,-/)*+,-0)*+,-1 "#"$ "%"&"' "( "2"3 "#4"##"#$"5)*+,6*789��� ������	
)*+,-* :��;<����������
������)*+,-= :��;<���������������)*+,-. :��;<����������
��������� �������>���
��������)*+,-.= :��;<������������������ �������>���
��������)*+,-/ :��;<����������
�����������
������������
������<��
����)*+,-/=:��;<��������������������
������������
������<��
����)*+,-0 :��;<����������
�������������;�����!���������������
����)*+,-0= :��;<������������������!���������������
���
��������)*+,-1 :��;<����������
����������
���
�
�����)*+,-1= :��;<�������������������
���
�
�����?89��� ������	
)*+,6* :��;<����������
������)*+,6= :��;<��������������� @�ABC DEDFDGHFigure 7.10: Beam element with illustrated DOFs.

7.5 Abaqus

There a numerous commercial FEM software on the market which are either applica-
ble to general or specific types of problems. Software designed for specific problems
are often used to obtain a more effective workflow. However, such software usually
includes different assumptions which may affect the result.
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In order to gain full control over the analysis, a general FEM software has been used
in this thesis; Abaqus FEA. Abaqus was initially designed to address non-linear
behaviour and as a result it has an extensive range of material models which has
made it popular with academic and research institutes.

Abaqus is a software suite for FE analysis and computer-aided engineering. The
specific software used in this thesis is Abaqus CAE and Abaqus Standard. Abaqus
CAE is used in pre and post processing defining the model and visualizing the
result while Abaqus Standard is used to run the actual analysis. Abaqus Standard
employs a traditional FEM implicit integration scheme which is suitable for static
and low-speed dynamic events.

In order to obtain an effective workflow customized scripts using Python language
has been used as direct input to Abaqus Standard.
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Chapter 8

Arch FE Model Studied

The arch model presented in Chapter 5 is modelled using the commercial FE software
Abaqus. In the following chapter specific characteristics of the FE model will be
presented, including verification study and method of analysis.

8.1 Introduction

After decades of study, buckling of curved beams continues to be a subject of great
interest. There are generally three methods which have been used in the derived
theories [Yang and Kuo, 1994]:

1. The equilibrium approach was used by e.g. Timoshenko and Gere [1961] in
solving for critical loads of a solid curved beam under the two special cases of
uniform bending or uniform compression. Experience indicates that the theory
can yield very good solutions for solid curved beams. It is however difficult to
consider coupling effects [Yang and Kuo, 1994].

2. Vlasov [1961] used the analogy approach based on straight beam theory. Please
note that the idea of starting with the straight-beam theory is not meritless,
although the analogy relations used in their derivations should be questioned.

3. More recent studies use energy methods such as virtual displacements and
potential energy. The methods are all derived from the so-called first principles
for curved beams, with no reference made to the straight-beam equations.
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Discrepancies do however exist among the various theories. The lack of consistency
in terms of method formulation and definition of control variables makes them dif-
ficult to compare. To justify superiority of one theory over the others experimental
testing seems to be the only recourse. However, there are very few tests conducted
[Yang and Kuo, 1994].

It has been argued that straight-beam elements cannot be used to model buckling
of curved beams, particularly for the cases with large curvatures or small warping
rigidity. Hence solutions using straight-beam elements should not be considered a
valid base for judging the rationality of various curved-beam theories. However,
more recent studies indicate that a curved beam can indeed be represented as an in-
finite number of infinitesimal straight elements by introducing an additional stiffness
matrix; the joint moment matrix [Yang et al., 1991].

However, straight elements have been used in the FE analysis due to the simplicity
of implementation in Abaqus and small difference from theoretical values calculated
according to Timoshenko and Gere [1961].

8.2 Straight Member Approximation

In simpler commercial FEM software it is common that only straight members can
be analysed and the common praxis is then to represent an arch by several straight
members.

Depending on the type of analysis, such beam approximation can affect the accu-
rateness of the analysis. In order to evaluate the accuracy of the instability load a
linear buckling analysis has been conducted for geometries consisting of an increasing
number of straight members, see Figure 8.1.

The results are found in Table 8.1, in which Error describes the deviation from
theoretical values, c.f. Section 4.2.3, while Diff describes the deviation from previous
results. In order to compare the results with theoretical data the analysis was made
using an arch with isotropic material.

Figure: Number of straight members 

  

𝑛 = 3   𝑛 = 5   𝑛 = 𝑖𝑛𝑓 

𝑛 = 2   𝑛 = 3   𝑛 = 𝑖𝑛𝑓 

Figure 8.1: Straight member approximation of arch geometry.
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Table 8.1: Influence of straight member approximation of in-plane
linear buckling analysis of parabolic arch. L = 60m, f = 9m, width =
0.1m, height = 1m, steel, element S8R. Symmetry was used.

No. straight members Critical load [kN/m] Diff [%] Error [%]

3 263 2.06
5 251 4.58 -2.41

10 246 2.16 -4.48
20 247 -0.19 -4.29
40 241 2.18 -6.34

infinite 250 -2.43 -2.77

Theoretical 258 kN/m

The increasing number of straight members does surprisingly not converge for the
specific analysis which should be regarded as an uncertainty for such approximations.
However, in order to exclude possible secondary errors due to such approximation
the geometry used henceforth is the one referred to as “infinite”. The geometry is an
equation driven parabolic arch imported from Solidworks, thus the straight members
of the arch is assumed to be only the individual finite elements which are straight.

8.3 Material Model

A model that accounts for all characteristics of wood, timber and glulam is not
computationally effective [Serrano, 2003]. Failure modes of glulam can be due to
bending, tension failure parallel to grain, shear failure or instability. The scope of
this report is instability thus failure due to plastic deformations is not analysed in
detail. An elastic model is then reasonable to be assumed, in both tension and
compression.

8.3.1 Linear Elastic Material Model

The material properties of wood are discussed in Section 2.6, for which a recti-
linear transverse isotropic material model is implemented in this thesis. Thus the
tangential and radial direction are assumed equal and modelled using a Cartesian
coordinate system.
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As a result of the dispersion effect of local imperfections in glulam discussed in Sec-
tion 3.1, a simplification in the material model is therefore introduced by neglecting
the influence of local defects such as knots resulting in a homogenous material. How-
ever, the global stiffness used is the characteristic value according to the european
standard SS-EN 1194 which has taken local defects into account. The influence
of finger joints are also neglected in a similar manner. The characteristic values
from Eurocode are complemented by material parameters from Berbom Dahl [2009]
resulting in the material properties in Table 8.2.

Table 8.2: Material properties of glulam quality GL32h complemented
by Norway spruce characteristics. Stiffnesses in MPa.

EL ER, ET νLR, νLT νRT , νTR νRL, νTL GRL, GLT GRT

E1 E2, E3 ν12 ν13 ν23 G12, G13 G23

13 700 460 0.4951) 0.431) 0.021) 850 341)

1) From Berbom Dahl [2009]
Remaining from SS-EN 1194

8.3.2 Failure Criterion

An elastic material model does not necessarily contain a failure limit restricting
strains nor stresses. A stability analysis can, especially for small initial imperfec-
tions and/or rigorous bracing, result in large stresses before instability occurs thus
a failure criterion is required. Failure criteria can be defined using stresses, strains
or displacements. In accordance with ultimate limit state in Eurocode, stresses are
used in this thesis.

There are multiple failure criteria defined using both linear and quadratic forms
used in solid mechanics, e.g. Tsai-Hill, Tresca and Von-Mises. However, the fail-
ure criterion adopted in Eurocode is based on first order analysis hence it includes
coefficients accounting for the risk of buckling.

If the member is considered to be restrained from buckling Eurocode adopts a failure
criterion where the cross-section to some extent can achieve plasticity. If, on the
other hand, buckling effect have to be taken into account no benefit is taken of any
plastic behaviour in the member and the member fails when the most stressed fibre
reaches the capacity. Eurocode combines normal and bending stresses in a linear
manner according to Equation 8.1-8.2.

σc,0,d
kc,yfc,0,d

+
σm,y,d
fm,y,d

+ km
σm,z,d
fm,z,d

≤ 1.0 (8.1)
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σc,0,d
kc,zfc,0,d

+ km
σm,y,d
fm,y,d

+
σm,z,d
fm,z,d

≤ 1.0 (8.2)

In order to obtain a similar failure criterion in the FE analysis a maximum stress
theory described in Equation 8.3 is used, thus no stress interaction is considered.

[
σc
fck

,
σc90
fc90k

,
σt
ftk
,
σt90
ft90k

,

∣∣∣∣
σv
fvk

∣∣∣∣
]
≤ 1.0 (8.3)

fi are the failure strength values stated in Table 8.3. Similar to the elastic material
parameters, the characteristic failure strength is from Eurocode in order to obtain
comparable results.

Table 8.3: Characteristic failure
strength for glulam GL32h accord-
ing to SS-EN 1194.

Direction Fail strength

fck 29 MPa
ftk 22.5 MPa
fc90k 3.3 MPa
ft90k 0.5 MPa
fvk 3.8 MPa

The failure envelope of maximum stress theory is plotted in Figure 8.2, where it is
compared to the Tsai-Hill theory which do consider stress interaction. Please note
that maximum stress theory is not always a conservative approach.

Picture: MSTRS 

 

 

  

𝑓𝑐,90 

Maximum stress theory 
Tsai-Hill theory 

𝑓𝑡,90 

𝑓𝑐 𝑓𝑡 

Figure 8.2: Failure envelope for Tsai-Hill and Maximum stress theory.

83



8.4 Boundary Conditions Arch FE Model Studied

In the finite element calculations the maximum stress theory (MSTRS) is used in
order to obtain the material failure limit. The MSTRS represents the maximum
utilization rate of all nodes in the model. However, unwanted stress concentrations
occur due to the linear material model. Since no plasticity is defined, strains can
become so large that small portions of the structure can be exposed to stresses
beyond the yield stress or even failure stress due to the lack of stress redistribution.
If failure stress is reached the node would be represented by a MSTRS value of > 1.0.
How stress concentrations are treated is described in Section 8.8.2.

8.4 Boundary Conditions

Boundary conditions are used to restrict element movements in known contact
points. The boundary conditions in the reference model are described in Figure
8.3 and the following section.

 

 

 

 

  

L 

f 

L 

f 

1 
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3 

1 

Figure 8.3: Arch geometry with indexed boundary conditions.

Please note that no eccentricities are included in the reference model.

8.4.1 Hinges

In each end the arch support, index 1 in Figure 8.3, is pinned in one point, i.e.
translations are constrained in all directions. In order to obtain a realistic stress
distribution over the cross-section yet allowing rotation a multi-point constraint,
MPC, was used. Rotation is only allowed about the out-of-plane axis.

Similarly, the top hinge was defined using MPCs combined with another constraint
connecting the master nodes of each arch element. The constraint only allows rota-
tion between the elements about the out-of-plane axis.
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8.4.2 Lateral Support

The extrados lateral support, index 3 in Figure 8.3, is a self-supporting roof system
which either can be modelled by a total elimination of out-of-plane displacements or
by assigning a more realistic stiffness to the connection. Please note that in either
case such a system has a negligible bending moment capacity hence it cannot resist
torsion of the arch.

In order to determine a realistic stiffness a force-displacement curve for the specific
type of fasteners used is needed, which is found in Figure 8.4 for various types of
connections in timber. One finds that almost full capacity for screws is reached after
a displacement of 8mm.

Figure 8.4: Load-slip curves for various fasteners. Screws are used in the lateral
support. Source: Larsen [2003].

According to the roof system manufacturer Lindab the dimensions of the screws are
6.5x51 mm which makes it possible to determine the characteristic Fmax according
to Eurocode 5 [SS-EN 1995-1-1, 8.5] (calculations in Appendix D).

Fmax = 3950 N

Furthermore, two screws are used in every profile bottom spacing 315 mm apart.
By combining these findings with Figure 8.4 it is possible to estimate the lateral dis-
placement stiffness of the system. By sectionally linearizing the force-displacement
curve one obtains a non-linear spring behaviour according to Figure 8.5 which has
been implemented.

Please note that any deformations of the steel roof structure during the instability
failure are neglected, which results in a slightly stiffer spring response than what is
realistic. Possible interaction between screws in groups is neglected.
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Figure 8.5: Slip-force curve implemented in FE model.

To further prevent lateral torsional buckling in the arch, the extrados lateral support
is accompanied by three bracing beams fixed at the intrados, c.f. Section 5.1. The
bracing is designed to act in pure tension so that the stiffness is only dependent
of the elongation. The spring stiffness k is then determined in Equation 8.4 for a
timber beam 150x70mm (see Appendix D.2):

k =
EA

L
= 18.3 MN/m (8.4)

Please note that there is normally a slip for members acting in tension, thus such
bracing system used in our model normally acts in compression. Due to bracing
buckling and interaction throughout an entire system such behaviour is non-linear
and it is not within the scope of this thesis to analyse global effects.

8.5 Loads

The load cases applied to the arch model are uniformly distributed load and triangu-
lar distributed load respectively, see Section 5.3. In order to analyse the differences
for each load type the uniformly and triangular distributed loads are applied sepa-
rately during the analyses. A combined load model is later used in order to compare
FE results to Eurocode.

All loads are applied on the extrados with direction parallel to the vertical axis. The
loads are modelled as conservative forces, i.e. the force applied does not follow the
rotation of the arch member.
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8.5.1 Uniform Load Distribution

Distributed load is in Abaqus defined with respect to the curved edge of the member,
ds in Figure 8.6. In order to obtain a uniformly distributed load with respect to the
horizontal axis the load is modified according to:

 

FIGURE: UDL 

 

 

𝑑𝑥 

𝑑𝑠 

𝛼 

Figure 8.6: Distributed load is by default assigned to the curved length, ds. A
function is determined to obtain a distributed load over horisontal length, dx.

The default applied load is
F = q · ds (8.5)

However, in order to obtain a horizontally UDL, a correction factor must be intro-
duced according to

Fhor,UDL = F
dx

ds
= q · dsdx

ds
= q · cos (α) dx (8.6)

Where α is derived from the derivative of the parabolic shape function to

α = tan−1
(

4f

L2
(L− 2x)

)
(8.7)

thus

q(x) = q · cos
(
tan−1

(
4f

L2
(L− 2x)

))
(8.8)

8.5.2 Asymmetric Triangular Load Distribution

The asymmetric triangular load case, Figure 8.7, is representing snow drift. No
redistribution of the distributed load, as for the UDL, has been applied to this
model.
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Figure 8.7: Asymmetric triangular distributed load model according to Eurocode
[SS-EN 1991-1-3, 5.3.5].

8.6 Elements and Mesh

Choosing element type is not a trivial task, neither is the number of elements needed
to obtain results of reasonable accuracy. Convergence studies of standard element
types in presented element families (c.f. Section 7.4) have been conducted for buckle
analysis by Persson [2010]. Using quadratic elements and a simple geometry, he
concludes that all families converges to the theoretical buckling value of a column for
a reasonable amount of elements with a relative error of ±0.02%. Lateral torsional
buckling of a simply supported beam resulted in a relative error of for all families
less than ±0.4 % where solid elements resulted in the minimum relative error.

For a parabolic arch geometry with isotropic material, the linear buckling load has
been calculated using quadratic elements of shell and solid elements. The results are
found in Table 8.4. In order to compare with the theoretical findings, c.f. Section
4.2.3, an isotropic material model has been chosen. Err describes the deviation
from the theoretical values while Diff describes the deviation from previous result.
Please note that beam elements have been excluded from the analysis since relevant
geometric features of this thesis is not applicable, e.g. edge loading and bracing.
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Table 8.4: Mesh convergence study of in-plane linear buckling analysis of parabolic arch
using different element types. L = 60m, f = 9m, width = 0.1m, height = 1m, steel.
Symmetry was used.

No. elements Solid [kN/m] Diff [ %] Err [ %] Shell [kN/m] Diff [%] Err [%]

15 2925 2.46 2770 -2.97
20 2917 0.27 2.18 2742 1.02 -3.95
25 2915 0.07 2.11 2732 0.35 -4.29
35 2914 0.02 2.09 2728 0.17 -4.45
70 2913 0.06 2.03 2726 0.07 -4.52
275 2909 0.12 1.90 2725 0.03 -4.54

1 000 2902 0.23 1.67 2725 0.01 -4.55
7 000 2884 0.63 1.03 2725 0.01 -4.56

Theoretical 2885 kN/m

As expected, the study indicates a convergence for an increasing number of elements
and regardless of element family. Additional testing clearly confirms that quadratic
elements converges significantly faster than linear. More surprisingly was the dif-
ferentiation between the converged values for each element type. For a fairly more
complex geometry such as a parabolic arch, not only is the theory inconsistent, c.f.
Section 8.1, but the different element formulations seem to significantly influence
the converged results.

Quadratic shell elements with reduced integration, S8R, and a element size resulting
in 275 elements are chosen for this thesis. The result of the convergence study
indicates a fast converged error of -4.5% in comparison to the theoretical value.
However, consideration has also been taken to the considerably shorter running
time than for solid elements which needs an unreasonable amount of elements in
order to obtain accurate results.

Reduced integration is used to form the element stiffness, which significantly reduces
running time and usually provides more accurate results [Dassault Systèmes Simulia
Corp., 2010]. However, when using reduced integration a specific type of element
deformation can occur which produces no strains, hence no force to resist. The phe-
nomenon is known as hourglassing which in the model is minimized using standard
Abaqus hourglass control.

8.7 Verification of Model

In order to verify the accuracy of the model, several simulations have been conducted
in order to determine whether different particulars performs in the intended manner.
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8.7.1 Multi-point Constraints

In order to acquire a model without stress concentrations due to boundary conditions
at a single point, multi-point constraints (MPCs) are introduced. These constraints
allow the structure to redistribute stresses in a manner more similar to real life
supports where the contact is distributed over the cross-section.

Stress distributions of abutment with and without MPCs are illustrated in Figure
8.8.

Figure 8.8: Stress distribution with and without MPCs. Significant stress concen-
trations when no MPCs are used.

8.7.2 Failure Stress Criterion

In order to validate the stress failure criterion a simply supported beam model was
used. For a given UDL q, the beam will fail due to stresses exceeding the strength
values.

 

 

FIGURE: Brottcrit 

 

 

 

 

  

𝑞 

ℎ = 405mm 

 𝑤 = 90mm 

  𝑙 = 5m 

  
Figure 8.9: Simply supported beam subjected to UDL to visualize fail criterion
according to maximum stress theory.
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Maximum stress will occur at mid span due to the maximum bending moment.
Using the same wood material model as in the arch analysis the tension parallel to
grain is decisive, see Equation 8.9.

σ11 =
M

W
=

ql2/8

wh2/6
< ft ⇒ qfail = ft

wh2/6

l2/8
= 17.71 kN/m (8.9)

An identical analysis was conducted in ABAQUS using the maximum stress failure
criterion defined in Section 8.3.2. Material failure occurs when the MSTRS value
reaches one, which is illustrated in Figure 8.10 where an increasing value is repre-
sented by a darker shade. Since the strength is lower in tension maximum MSTRS
values are expected at the lower part of the beam. Failure load for both analytical
calculations and simulations are found in Table 8.5.

Figure 8.10: Illustration of MSTRS failure criterion on a simply supported beam
subjected to UDL. Failure nodes marked in black.

Table 8.5: Comparison between analytical and
simulated material failure using MSTRS crite-
rion.

Analytical failure Simulated failure Error

17.71 kN/m 17.73 kN/m 0.2%

With small deviations from the analytically calculated failure load the maximum
stress failure criterion is found suitable.

8.7.3 Springs

The arch is laterally stabilized continuously at the extrados of the arch by a load
bearing profiled steel sheet. These connections can be represented by uniformly dis-
tributed non-linear springs. In addition to the non-linearity, it is of importance that
the springs does not affect the behaviour in any other direction than the intended.
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FIGURE: NL spring test 
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Figure 8.11: Non-linear spring test setup using a symmetric stiff column.
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Figure 8.12: Load-displacement of test column using non-linear elastic spring ele-
ments.

In order to verify the non-linearity of the spring, a simple column test was used,
only supported by spring elements. The test setup is illustrated in Figure 8.11 while
the results are found in Figure 8.12.

The non-linear behaviour is hereby confirmed for lateral movements in both direc-
tions. Similar tests indicates that the springs do not affect force distribution nor
deflections in any other direction than the intended.

8.8 Method of Analysis using Abaqus

8.8.1 Linear Buckling Analysis

In the linear buckling analysis preformed with ABAQUS no non-linearities such as
springs are simulated. The intrados and extrados spring support is considered rigid
i.e. no deflection out-of-plane is permitted. Moreover are the calculations performed
in the so called base state, i.e. no second order effects are considered.

From a linear buckling analysis only the eigenvalue or the critical load is achieved
accompanied with the eigenvector representing the mode shape with normalized
deflections.
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Eigenvalue buckling analysis can use preloading to create a stress state in the struc-
tural member. Using linear perturbation without preload corresponds to classic
Euler buckling analysis. However, all structures have self-weight which induces in-
ternal stresses in the members. These internal stresses and initial deflection can
produce eigenvalues deviating from the classic Euler case. Density was however not
included in the linear buckling analysis.

8.8.2 Non-linear Buckling Analysis

The non-linear buckling analysis in ABAQUS permits the use of third order effects,
i.e. equilibrium is calculated in the deformed state and for large deformations.
Furthermore, the non-linear analysis is able to capture the behaviour of the spring
boundary conditions at the intrados and extrados and calculate the stress levels for
each load increment.

If not else specified the initial imperfections are scaled versions of the first out-of-
plane and second in-plane buckling modes, see Figure 5.3. Eurocode uses the same
method and stipulates a geometric imperfection to be used when conducting non-
linear analysis. The magnitude for in-plane imperfections correspond to L/400, seen
in Figure 8.13 .

Figure 8.13: Example of specified in-plane imperfections according to Eurocode 5.
The eccentricity should be no less than e = 0.0025li corresponding to an imperfection
of approximately L/400. Source: [SS-EN 1995-1-1 figure 5.3]

However, out-of-plane imperfections are restricted to L/500 [SS-EN 1995-1-1, 10.2
(1)] using the definitions found in Figure 8.14.

OoP imperfections 

 

 

 
𝐿 ≈ 15 m 

𝐿/500 

Figure 8.14: Schematic figure of out-of-plane imperfection. Solid line represents the
intrados and dashed line represent the extrados which is fastened to the roofing
along its whole length. Please compare with Figure 5.3a.
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For each non-linear analysis during the parametric study two values are presented:
Non-linear buckling and Non-linear material failure. In order to illustrate the dif-
ference of these two values an example is presented below.

Example. An arch member is subjected to small initial imperfections and a
uniformly distributed load with increasing magnitude until the point of buckling,
see Figure 8.15.

Figure 8.15: Non-linear analysis of arch subjected to uniformly distributed load
up to point of lateral buckling.

The critical load corresponding to the non-linear buckling load is shown in the
left part of Figure 8.16. This is the limit value for which a load controlled
analysis can achieve, c.f. Section 7.3. The material can on the other hand fail
due to stress prior to the geometrical buckling. If the failure criteria is greater
than or equal to one the member is considered to fail due to stresses, see right
part of Figure 8.16. Note that instability failure commonly refers to geometrical
failure, i.e. the left plot in the figure.
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Figure 8.16: Load-displacement curve for a typical non-linear analysis. NL
Buckling load and NL material failure load marked in the left and right figure
respectively.

As previously discussed, stress concentrations not representative to the true be-
haviour of the structure will arise. If not dealt with, these concentrations will sig-
nificantly underestimate material failure.

Stress concentrations commonly occur at sharp edges, in nodes at which boundary
conditions or where connecting elements are set. In the reference model stress con-
centrations is present in the four corners of each arch member and where the springs
are located. Since MPCs are used at all hinges, no stress concentrations occur at the
supports nor in the crown. The MSTRS value of these specific nodes are excluded
in the material failure analysis.

Material failure occur at the FEM analysis increment where a MSTRS value first
is 1.0 (after concentration exclusion). If the exact value of 1.0 is not present in an
increment, linear interpolation is used between the two closest load increments. To
minimize the error, small increments is used when necessary.

8.8.3 Abaqus Nomenclature

The algorithms used in this thesis are included in Abaqus using the steps in Table
8.6 below. Different calculation increments are used in the different steps to obtain
required results.

Table 8.6: Abaqus nomenclature of FEM algorithms.

Type of analysis Abaqus step

Linear analysis Linear perturbation, Buckle
General non-linear analysis Static general
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Chapter 9

Arch FE Analysis and Discussion

To obtain a deeper understanding of the instability phenomenon of arches the pre-
sented model will in this chapter be subjected to several parametric studies of the
system sensitivity. The analyses can be divided into two groups: sensitivity analy-
ses of system constants and system variables. The system constants are parameters
which normally do not vary during the service life of the structure while system
variables do, e.g. cross-section slenderness and moisture content respectively. The
parametric studies comprises geometrical features, support conditions and material
properties.

The arch geometry and boundary conditions can be found in Section 8.4. The
critical load, qUDL and qTRI , refers to the load at which failure occur due to the
load models defined in Section 5.3. According to Section 5.3.2, qTRI is defined by
the maximum value of the asymmetrical triangular load. To allow easy comparison
between the uniform and triangular load model results, a total critical load FUDL or
FTRI is defined as the sum of all vertical load applied to the structure. Dashed lines
in plots refers to material failure.

9.1 Lateral Support

Lateral support is often modelled as infinitely stiff points at which no lateral dis-
placements can occur. However, this is not a conservative approach regarding the
design of the structure. To obtain more realistic boundary conditions the lateral
support is modelled using linear and non-linear spring elements according to Sec-
tion 8.4.2. In order to determine the structure sensitivity to extrados spring stiffness,
a parametric study is conducted by varying the maximum force, Fmax, of the spring
according to Figure 9.1. Note that springs with greater maximum force also are a
stiffer connection.
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Figure 9.1: Load-slip curve for screws with increasing Fmax.

The intrados lateral support was varied using different linear spring constants, k.
The resulting sensitivity analysis is presented in Figure 9.2 and 9.3 below.
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Figure 9.2: Non-linear critical load for increasing maximal force in extrados springs.
Solid lines represents geometrical instability while dashed lines represents load at
which material failure occurs. Horizontal line is non-linear analysis of rigid lateral
support while highlighted dot is the reference spring stiffness calculated.
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While subjected to UDL, geometrical instability is the main cause of failure. In-
creasing extrados rigidity results in higher critical loads. In terms of optimisation
with respect to instability a less amount of or smaller screws can be used. However,
the screws also transfers lateral load due to wind thus an extra capacity is required.

The calculated intrados lateral support is very stiff. The analysis indicates that the
critical load converges for k-values over 10 000 kN/m (only three different stiffnesses
are plotted in Figure 9.2 to obtain a clear plot), hence this type of tension support
can be designed significantly more slender, c.f. Section 8.4.2. The linear assumption
made for the intrados support also appears reasonable due to the convergence.

A similar analysis has been conducted for triangular load, see Figure 9.3.
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Figure 9.3: Similar to Figure 9.2 but for triangular load.

Please note the difference between geometrical instability and material failure. For
intrados support siffnesses exceeding only 1 kN/m material failure will occur prior
to instability due to the bending moment caused by the asymmetrical load model.

As can be seen in both Figure 9.2 and 9.3, the effect of springs for the reference arch
with continuous extrados support is not considerable. For a similar analysis with
purlin design, c.f. [Persson, 2010].

It is convenient to conclude that a stiff secondary structure is consistently benefi-
cial. It holds true on element level, but when regarding structural systems a stiff
secondary structure can cause progressive collapse, c.f. Dietsch and Winter [2010].
Hence a global analysis considering interaction between arch members should be
made during the structural design.
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9.2 Geometry

9.2.1 Slenderness

The risk of instability phenomenon is closely related to the slenderness of an element,
c.f. Chapter 4. A slender element is more prone to buckling than a bulky element.
However, bending moment capacity of an element is increased cubically with height
while only linear with the width hence these properties must be balanced against
each other to obtain an optimal cross-section.

For a given cross-sectional area, the influence of width and height ratio on the
critical buckling load of the arch has been analysed in Figure 9.5 and 9.6. Examples
of analysed cross-sections are presented in Figure 9.4. The non-linear analysis was
conducted using small imperfections based on the first linear buckling mode for each
specific geometry. 

 

 

  

w/h = 0.1 w/h = 0.2 w/h = 0.4 

Figure 9.4: Examples of cross-sections with increasing width to height ratios for a
given cross-sectional area, wh = const.
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Figure 9.5: Critical UDL plotted for increasing width to height ratio. Reference
model ratio represented by vertical dash dot line.

Keep in mind that the parabolic arch shape is the funicular shape to a uniformly
distributed load hence no bending moment will occur. The optimum ratio in Figure
9.5 thus cannot be explained by beam analogy of buckling load versus bending
moment capacity. Instead, the width to height ratio determines the first buckling
mode at which the divergence point between the modes determines the optimum
value. On the left hand side of the optimum the first out-of-plane buckling mode
occurs while on the right hand side the first in-plane buckling mode occurs, see
Figure 5.3a and 5.3b respectively.

As expected, the non-linear analysis is not as clear as the linear in terms of an
optimum ratio. Nonetheless, the results indicate an effective cross-section ranging
from 0.16-0.18 in width over height ratio while subjected to UDL.

Dissimilar to UDL, the asymmetrical triangular distributed load stipulated by Eu-
rocode will however induce bending moment in the arch. A similar analysis has been
conducted and the result can be seen in Figure 9.6.

The geometrical instability follows the same trend for triangular load as for UDL
but for a ratio of 0.16-0.19. However, the material failure due to bending stresses
occurs significantly prior to instability. The optimum ratio with respect to material
failure is 0.08.

Regarding geometrical instability an optimum width-height ratio of 0.16-0.19 seems
plausible for both load models. However, the optimum for failure stress criteria
deviates considerably due to the triangular load model. Note that the triangular
load model never acts unaccompanied by UDL, hence the practical relevance of the
material failure optimum is low.
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Figure 9.6: Critical triangular load plotted for increasing width to height ratio.
Reference model ratio represented by vertical dash dot line.

This result is valid for the type and location of lateral support presented in Section
5.1. It is evident that the reference model width-to-height ratio is too small to
obtain the optimum critical load. However, by adding additional lateral support the
optimum ratio should decrease. Thus a similar analysis can be conducted for each
setup of lateral support in order to find the corresponding optimum ratio.

9.2.2 Arch Rise

While often limited in span, an arch designer has usually more influence over the
arch rise. Not only does the height influence apex stresses and curvature stresses in
lamellas, but the rise also influence the geometrical instability of the arch.

Illustrated in Figure 9.8 is how the buckling load of the parabolic arch varies with
the rise-span ratio f/L. For low ratios a significant horizontal force is needed to
resist the UDL, causing high compression stresses in the arch which ultimately will
buckle. However, as the ratio increases the effective buckling length increases which
effectively lower the buckling capacity. These two buckle variables results in the
existence of an optimum f/L ratio.

A linear parametric study has been conducted for an increasing value of f/L ratio,
see Figure 9.8 and 9.9. Examples of the geometries are presented in Figure 9.7.

Optimum rise-span ratio for the analysed arch subjected to UDL is f/L = 0.4,
which coincides with the findings of Timoshenko and Gere [1961] given a three-
hinged arch, c.f. Section 4.2.3. However, when subjected to the triangular load
model the optimum ratio is 0.3, see Figure 9.9.
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f/L =0.10 f/L =0.50 f/L =1.00

Figure 9.7: Parabolic arch geometry for increasing f/L ratio.
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Figure 9.8: Instability analysis for parabolic arch subjected to UDL for increasing
rise-span ratio. Reference model ratio marked with vertical line.

Please note that the triangular load model is not modified to the angle of the arch, c.f.
Section 8.5.2, which affects this analysis considerably especially for large f/L ratios.
Furthermore, only a linear analysis has been conducted for which it is reasonable
to assume that material failure occur prior to geometrical instability, similar to the
findings in Figure 9.3 and 9.6. The sudden change at f/L ratio of 0.9 is due to
change of buckling mode from the first out-of-plane to the first in-plane mode.
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Figure 9.9: Linear buckling analysis for parabolic arch subjected to triangular load
model for increasing rise-span ratio. Reference model ratio marked with vertical
line.

9.3 Instability with respect to Imperfections

In theoretical analyses it is often convenient to use perfect geometries. Geometrical
imperfections are random in nature which makes them difficult to quantify and
model. However, imperfections can have a significant impact on element and system
stability, c.f. Section 4.1 and 8.8.2, but is also crucial for a non-linear FE analysis.
It is expected that the nonlinear analysis including geometrical imperfections result
in lower critical loads than linear analysis and that the critical load should reduce
for larger imperfections.

The most prominent buckling modes for the arch structure was determined using an
imperfection sweep over the first 20 buckling modes. The structure was subjected
to a small imperfection based on the respective buckling mode and the results are
found in Figure 9.10.

The analysis concludes that the first in- and out-of-plane buckling modes are repre-
sentative in order to determine the non-linear critical load.

In order to determine whether or not a parabolic arch is sensitive to imperfections
the following analysis has been conducted for asymmetrical triangular distributed
load as well as uniformly distributed load for scaled imperfections of the first in- and
out-of-plane modes.
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Figure 9.10: Arch member subjected to small imperfections based on various linear
buckling modes. Mode 11 and 14 are in-plane buckling modes with considerable
higher critical loads.

9.3.1 In-plane Imperfections

The sensitivity analysis of the arch member for in-plane imperfections with UDL
and asymmetrical triangular load cases, c.f. Section 5.3, are presented below. The
initial imperfections according to Eurocode, c.f. Section 8.8.2, corresponds to the
first and second out-of-plane mode in our model.

The size of the initial imperfection is given relative to the element inflection points,
which is illustrated in Figure 9.11 for the two analysed in-plane modes.
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Figure 9.11: Scaled in-plane imperfections based on the 1st and 2nd in-plane buckling
modes.
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9.3.1.1 UDL model

  0  L/700 L/600 L/500 L/400 L/300 L/200 L/100
0

50

100

150

200

250

300

Initial Imperfection, e [m]

C
ri

tic
al

 q
 U

D
L [

kN
/m

]

 

 

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

T
ot

al
 c

ri
tic

al
 lo

ad
 F

 U
D

L [
kN

] Linear buckling
 NL instability
 NL material failure

Figure 9.12: Critical UDL for different initial imperfections based on 1st in-plane
buckling mode.
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Figure 9.13: Critical UDL for different initial imperfections based on 2nd in-plane
buckling mode.

As seen in Figure 9.13 the structure is fairly insensitive to imperfections of the second
buckling mode.
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9.3.1.2 Triangular load model

A clear decreasing buckling strength for increasing imperfections is hard to find for
the triangular load model, as can be seen in Figure 9.14 and 9.15.
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Figure 9.14: Critical triangular load for different initial imperfections based on 1st

in-plane buckling mode.
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Figure 9.15: Critical triangular load for different initial imperfections based on 2nd

in-plane buckling mode.
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Since the loading is asymmetrical the in-plane deflections will increase in a shape
similar to the second buckling mode, see Figure 9.11. Small in-plane disturbances
will not affect the critical load and variations of this is considered to be due to
numerical deviations during analysis.

Note that the material failure level is fairly constant throughout the range of imper-
fections. The asymmetrical load induces large bending moments and in combination
with normal forces under which the member fails in compression due to large in-plane
deformations.

9.3.2 Out-of-plane Imperfections

Imperfections based on the first out-of-plane buckling mode, see Figure 9.16, are
applied to the structure with a variety of magnitudes. According to Eurocode 5
[SS-EN 1995-1-1 section 10] the initial imperfections should be assumed to have a
magnitude of approximately L/500, c.f. Section 8.8.2.

OoP imperfections 

 

 

 
𝐿 ≈ 15 m 

𝐿/500 

Figure 9.16: Top view of initial out-of-plane imperfections. Solid line represents the
intrados edge and the dashed line the extrados edge fastened to the roofing. The
magnitude of imperfection is shown for the value Eurocode specifies.

Please recall from Section 5.1 that the analysed reference arch is geometrically
stronger in-plane than out-of-plane hence generally lower critical loads is expected
in comparison with in-plane imperfections.

9.3.2.1 UDL model

A small difference in load between non-linear instability and material failure reveals
that an elastic buckling will occur for OP imperfections subjected to UDL, see Figure
9.17.
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Figure 9.17: Critical UDL for different initial imperfections according to the 1st

out-of-plane buckling mode.

9.3.2.2 Triangular load model

The influence of out-of-plane imperfections on the critical triangular load was also
analysed, see Figure 9.18.
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Figure 9.18: Critical triangle load for different initial imperfections according to the
1st out-of-plane buckling mode.
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9.3.3 Linear Combination of Imperfection Modes

A geometry often contains multiple combinations of small imperfections, both in-
plane and out-of-plane. The following study is conducted to determine if any com-
bination effects exists.

An imperfection out-of-plane is clearly dominating the behaviour of the structure
making it buckle laterally even for small out-of-plane imperfections and moderate
in-plane imperfections. In Table 9.1 and Figures 9.19-9.20 a comparison is made for
different imperfections and magnitudes.

The imperfections are based on the first buckling mode of in-plane and out-of-plane
respectively. Since the out-of-plane imperfection is dominating the behaviour of the
member values for zero out-of-plane imperfections are neglected in the plots.
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Figure 9.19: Linear combination of imperfections on arch subjected to uniformly
distributed load and increasing out-of-plane imperfections. Each line represents an
in-plane imperfection based on the first in-plane buckling mode.
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Figure 9.20: Same as above but for increasing in-plane imperfections.

9.3.4 Imperfections Conclusions

The general expectation of reduced critical load for larger imperfections is hereby
verified for the reference arch. Since imperfections are introduced the non-linear
buckling loads are considerably lower than the corresponding linear buckling load.

The analysis concludes that the arch is more sensitive to imperfections when sub-
jected to a uniformly distributed load rather than a triangular distribution. The
asymmetrical load case forces the arch into a specific deformation mode causing the
influence of imperfection to be small. Furthermore does the triangular load case
cause material failure prior to geometrical instability in comparison to the load case
with uniform distribution.

The analysis further indicates that the reference arch is more sensitive to out-of-
plane imperfections than in-plane, which can be seen in Table 9.1. However, further
analysis of different arch geometries is needed to determine whether this is a general
phenomenon. For our reference arch, this is possibly due to the fact that the first
buckling mode is out-of-plane. In Table 9.1 a comparison can further be seen for
the initial imperfections stated by Eurocode.
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Table 9.1: Linear combination effect of imperfections in- and out-of-plane for uniformly
distributed load and asymmetrical triangular load.

Imperfection UDL1) [kN/m] % Triangular load1) [kN/m] %

Reference (OP ≈ 0, IP = 0) 53.2 100 49.5 100
IP (L/400) 80.9 152 49.6 100
OP (L/500) 43.7 82 44.6 90
Combination 40.7 77 44.5 90

1) Non-linear analysis at material failure

The increasing difference between the non-linear buckling load and material failure
found in several of the presented plots can be explained by visualising the load-
deflection curve. An increasing imperfection size will cause the curve to flatten thus
making the geometrical instability less prominent, see Figure 9.21.
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Figure 9.21: Load-deflection curve for out-of-plane movement of parabolic arch.
Comparison between increasing initial deformation using out-of-plane buckling
mode. Material failure marked with diamonds while geometrical failure is marked
with x.

Since the model already has deformations in accordance with the desired mode, no
distinctive point exists at which it falls into the mode in comparison to the analysis
with negligible imperfections. However, large deformations arise thus the material
failure will occur increasingly prior to instability.

112



Arch FE Analysis and Discussion 9.4 Long Term Deformations

9.4 Long Term Deformations

9.4.1 Reduction of MOE

There are many methods to analyse the creep behaviour of timber including moisture
variation to simulate mechano-sorptive creep or load variation with accumulated
damage. Similarly to Eurocode, long term deformations are here analysed by a
simplified method with a reduction of the modulus of elasticity, c.f. Section 6.2.2,
in which no climate or load variations occur. Both instantaneous and slow paced
buckling (creep buckling) can occur at which the material responds with original or
reduced MOE respectively. In this thesis only instantaneous buckling is analysed
since the collapse is sudden, while collapse due to creep buckling is slow paced
[Becker and Rautenstrauch, 2001]. In order to determine the parameter sensitivity
the critical load is plotted versus the creep coefficient ϕc in Figure 9.22.

The analysis was conducted by non-linearly deforming the structure with initial im-
perfections using the quasi-permanent load model stipulated in Eurocode 1 [SS-EN
1990-1-1 eqn 6.16b]. The initial imperfections were both in- and out-of-plane with
a magnitude of L/400 and L/500 respectively. The MOE used during deformation
was changed with respect to ϕc in accordance to Equation 9.1.

Emean,fin =
Emean
1 + ϕc

(9.1)

The simulated long term deformations obtained were then used as input to a non-
linear buckling analysis in order to achieve the critical uniform load. Both elastic
and creep deformations were transferred to the buckling analysis while stresses were
not, i.e. the material was considered being fully relaxed. Short term MOE was used
in the buckling analysis to simulate a fast paced instability phenomenon.

Creep deformation increases the initial imperfections and may alter the stress dis-
tribution in the loadbearing members in comparison with the initial configuration.
The first order analysis of the arch performed does not consider any changes in stress
distribution due to deformations. Instead an analysis of the load bearing capacity
is made for increasing creep deformations, see Table 9.2 below.

Table 9.2: Reduction of load bearing capac-
ity due to long term deformations.

Creep coefficient ϕc FEM qcrit reduction

0.60 0.95
0.80 0.93
2.00 0.79
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Figure 9.22: Non-linear critical UDL plotted for increasing creep coefficient ac-
cording to Equation 9.1. Long term deformations simulated using quasi-permanent
loading.

The amount of reduction is calculated using a reference value qcrit,0 for which material
failure occur without any creep deformations (ϕc = 0) according to:

redi =
qcrit,i

1 + qcrit,0
(9.2)

For the parabolic arch the reduction of critical load found due to long term deforma-
tions are considered moderate, ranging from 5% up to approximately 20% depending
on climate condition.

The analysis indicates an almost linear degrade of buckling load. Material failure
do occur increasingly prior to geometrical instability which has been previously
discussed in Section 9.3.4.

The creep coefficient is however specific for a given material product. In Figure 2.5.2
it can be found that for glulam ϕc = 0.6 which reduces the critical load capacity by
5%. Hence it can be concluded that creep does not seriously affect the instantaneous
buckling capacity.

9.4.2 Reduction of Failure Strength

In addition to the creep behaviour, time also affects the failure strength. As pre-
sented in Section 2.4.6, the Madison curve indicates a logarithmic degradation to
about 55% after 50 years. An analysis of the effect on the critical load is presented
in Figure 9.23.
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Figure 9.23: Non-linear analysis of critical load reduction over time by reducing the
material failure strength according to the Madison curve.

The found reduction of critical load is surprisingly low. The failure strength has
indeed been reduced to 56% of the original value for the 30 year simulation, but
the critical load is only a decreased by 8%. The very definition of instability does
however state that a small increase of load causes a large increase in deflection. Thus
a small increase of load does significantly increase stresses in the arch, which in turn
causes the MSTRS-critical load curve being flat (c.f. example in Section 8.8.2). The
flat curve does imply a small critical load decrease for a significant reduction in
failure strength.

9.5 Moisture

Stiffness and strength of timber is affected by moisture content for which a simplified
analysis has been conducted. The property variations used is described in Section
2.4.3 which are assigned to the entire cross-section, i.e. a steady-state equilibrium
is reached between the glulam and its surroundings thus no cross-sectional mois-
ture gradient due to flow exists. Since no volume change nor moisture gradient is
present in the analysis, moisture induced stresses are not considered. Hence an over
prediction of the material failure load is expected.

In order to assign the variations on the material model certain modifications and
assumptions were needed which are noted in Table 9.3, please compare to Table 2.2.
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Table 9.3: Material properties of glulam quality GL32h complemented
by Norway spruce characteristics. Stiffnesses in MPa.

EL ER, ET νLR, νLT νRT , νTR νRL, νTL GRL, GLT GRT

E1 E2, E3 ν12 ν13 ν23 G12, G13 G23

-0.9% -2.7% 2.1%1) 2.1% 0.2%2) -1.3% -2.0%

1) Assumed equal to ν13
2) Average of νRL, νTL

Not only is the stiffness of the material changed, but also the failure strength which
is varied according to Section 2.4.3. The results are found in Figure 9.24.
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Figure 9.24: Moisture influence on critical load. Clear wood property variations
used.

The geometrical instability indicates a linear degradation which is reasonable for a
linear degradation of the stiffness properties. However, the material failure is non-
linear which is possibly due to the combined result of linear degradation of both
stiffness and strength.

The geometrical instability decreases by -1.1% for an increase in moisture content of
1%. The reduction of critical load is between the reduction of EL and GRL. It has
previously been found by Persson [2010] that EL and GRL are the most important
variables for this type of analysis, and our findings concur.
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In comparison to the strength reduction analysis using the Madison curve a consider-
ably larger decrease in load bearing capacity is obtained in the analysis of moisture
content. The strength reduction due to loading time reaches approximately 55%
while the corresponding reduction due to increased moisture content is approxi-
mately 65% (from MC12 to MC25 with 5% decrease of fc per 1% increase in MC,
see Section 2.4.3). Despite the relatively similar reduction of strength the decrease
in load bearing capacity is large, approximately 8% and 30% for time and moisture
analysis respectively. The reason for this effect is due to the simultaneous reduction
of MOE with increasing MC while a constant elasticity were used in the analysis
with Madison curve.
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Chapter 10

Comparison between FE Analysis
and Eurocode

The analyses presented in the previous chapter can to some extent be compared
with Eurocode. The ambition of this comparison is to find that the design standard
is consequently conservative and possibly explain the difference.

10.1 Parametric Comparison

In order to obtain an effective design workflow reduction coefficients are in Eurocode
used to consider the natural and model characteristics of timber. These coefficients
are often the result of several included variables of only which some are studied in
this thesis. In such cases the Eurocode reductions are expected to be higher than
the findings of the finite element model.

10.1.1 Influence of Initial Imperfections

Instead of calculating buckling loads with formulas for perfect members Eurocode
adopts certain buckling curves. These are used in order to take into account the
effect of increase in relative slenderness and member imperfections [Porteous and
Kermani, 2013].

When conducting FE analysis certain imperfections can be introduced to the model.
The imperfections used in the Eurocode buckling curve is L/500 [SS-EN 1995-1-1,
10.2], which is included in the calculation of the buckling reduction factor kc using
the factor βc, c.f. Appendix C.7.1.
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In Table 10.1 below a comparison shows that an initial imperfection to the arch
structure corresponds fairly well to the Eurocode reduction. The FE reduction is
based upon a combination of in- and out-of-plane imperfections according to EC.

Table 10.1: Comparison of initial imper-
fection effect on critical load.

EC reduction1) FEM qcrit reduction

kc(βc=0.1)
kc(βc=0)

= 0.80 0.772)

1) SS-EN 1995-1-1, 6.3.2
2) From Table 9.1 using UDL with com-
bined imperfections.

The size of the initial imperfections stipulated in Eurocode appears reasonable for
a parabolic arch. However, the code focuses on in-plane geometrical imperfection
modes which is not always the limiting mode. A linear combination of both in and
out-of-plane imperfection modes are recommended.

10.1.2 Influence of Cross-section Dimensions

In-plane and out-of-plane buckling is verified separately in Eurocode using a reduc-
tion factor kc which is applied to the normal force capacity, according to Equation
10.1.

Nc,Rd = fcdAkc (10.1)

The reduction is highly dependent on the slenderness of the cross-section. In order
to determine the accuracy of this reduction factor for parabolic arches a comparison
has been made with the results presented in Section 9.2.1, in which the critical load
for an increasing slenderness was plotted.

In the Eurocode calculations in Section 6.4, the out-of-plane buckling mode was
presented as the limiting for the reference arch model. An analogy with a cruciform
strut was used in order to estimate the effect of lateral support provided by the load
bearing profiled sheets. However, for increasingly bulky cross-sections the in-plane
buckling mode will occur and the reduction factor kc does modify accordingly, see
Figure 10.1.
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To compare with the analysis results a comparable reduction factor kc,FEM was
determined according to Equation 10.2.

kc,FEM =
N1st

qcrit

fckA
(10.2)

The factor N1st

qcrit
is the maximum normal force obtained by a first order analysis

of the critical load of the FE analysis, c.f. Appendix B.1. For the non-linear FE
analysis material failure is taken into account and the results are plotted in Figure
10.1.
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Figure 10.1: First order normal force reduction regarding risk of instability plotted
for UDL. Reduction used in the Eurocode calculations, kc, is compared to reductions
found in linear and non-linear FE analysis.

Similar to Figure 9.5, for low width-height ratios out-of-plane buckling occur while
in-plane for large ratios hence the cruciform strut analogy is represented on the left
hand side of the plot. A clear resemblance can be seen by the analogy used in the
EC calculations to the linear FE analysis. This can most probably be explained
by the fact that both members act in pure compression, since UDL load model is
applied. The curvature of the reference arch does not seem to affect the lateral
torsional buckling behaviour considerably.

However, in comparison to the non-linear analysis, in which bending and shear
stresses will arise even for UDL, the analogy is not consistently conservative. By
sheer coincidence the reference arch, represented by a vertical line in Figure 9.5,
happens to be well corresponded by the analogy.
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To obtain an effective slender cross-section additional intrados bracing is needed.
The buckling length will then become increasingly straight for which the analogy
should become even more accurate.

10.1.3 Influence of Time Effects

With the duration of load both deformation and material strength change for timber,
c.f. Section 2.4.6. Eurocode uses two coefficients in order to consider these changes
over time: kmod and kdef . The coefficients do not only consider time effects but
also climate variations which makes a direct comparison difficult. By evaluating the
coefficients with a constant climate class some of the long term effects are sought to
be isolated.

The reduction of failure strength over time according to the Madison curve is found
in Eurocode using the coefficient kmod. kmod also considers moisture content but us-
ing service class 1, for which the average moisture content is 12%, i.e. the reference
value, moisture variation is here neglected. The load duration factor is traditionally
determined empirically by experience on timber structures, but probabilistic meth-
ods connected with damage accumulation models are used to estimate the factor
kmod. However, no damage accumulation is treated in this thesis.

In comparison to the Madison curve, the kmod reduction may initially appear not
sufficient. The Madison curve indicates a reduction to 0.55 after 30 years, which
by itself is a greater reduction than the kmod = 0.60 used for permanent loading
which is usually designed for 50 years of service life. However, it should be kept in
mind that the Madison curve is not only based on small specimens of clear wood
but the curve is also extrapolated over time. The comparison is presented in Table
10.2 below.

Table 10.2: Duration of load effect comparison with Eurocode.

Load duration DOL1) EC red.2) Madison red. FEM qcrit red.

Short < 1 week 0.82 0.76 (1 w) 0.97
Medium 1 week - 6 months 0.73 0.69 (4 mo) 0.96

Long 6 months - 10 years 0.64 0.61 (6 yrs) 0.94
Permanent > 10 years 0.55 0.56 (30 yrs) 0.92

1) SS-EN 1995-1-1, 2.3.1.2
2) For service class 1 [SS-EN 1995-1-1, 3.1.3] kmod,i / kmod,Instanteous
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The reduction is calculated from the results presented in Section 9.4.1. The reduction
is calculated using a reference value qcrit,5 for which material failure occurs after 5
minutes duration of load.

RedDOL,i =
qcrit,i
qcrit,5

(10.3)

The reference value is chosen in accordance with standardised testing methods in
which the specimen is subjected to load during 5 minutes. It is the same reference
the Madison curve uses for calibration.

Even though the Eurocode reduction kmod initially may appear not sufficient, the
influence on the critical load is negligible.

10.1.4 Influence of Moisture Content

In order to determine design strength values Eurocode uses a system of service classes
for three well defined climate conditions with a corresponding average moisture
content of the timber. Similarly to the time effect on failure strength, the moisture
effect is within Eurocode included in the reduction factor kmod. Keep in mind that
kmod also considers climate variations over time. In order to obtain comparable
results the duration of load is kept constant in Table 10.3.

Table 10.3: Moisture effect comparison with Eurocode.

Service class Moisture content EC reduction1) FEM qcrit reduction

1 12% 0.90 1.00
2 20% 0.90 0.96
3 >20% 0.70 0.71 (25% MC)

1) For short load duration [SS-EN 1995-1-1, 3.1.3]

The reduction is calculated using the same method as presented in the DOL analysis
above. The results used are presented in Section 9.5 and the reduction is calculated
using a reference value qcrit,12 for which material failure occur at 12% moisture
content.

RedMC,i =
qcrit,i
qcrit,12

(10.4)
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It can be seen that Eurocode is consequently on the safe side in comparison to the
moisture analysis of the arch. For service class 3, i.e. structures directly exposed to
the elements, combination effects should be considered.

Please note that swelling and shrinkage of the timber is not considered. This type
of deformation can be vital for the capacity of timber connections reducing the load
bearing capacity of the entire structure.

10.2 Critical FE Load versus Design Load

With the parametric study conducted, a full load sequence of self-weight and snow
load is to be applied to the arch structure in order to compare with the hand calcu-
lations according to Eurocode, see Chapter 6.

Since the structure is designed for a lifetime of 50 years, long term effects are mod-
elled by a reduction of the MOE in accordance with Eurocode 5 [SS-EN 1995-1-1,
2.3.2.2]:

Emean,fin =
E

1 + ψ2kdef
=

E

1 + 0.2 · 0.8
(10.5)

All material strengths are reduced to consider time and moisture effects as well as
statistical variation of specimen quality according to [SS-EN 1995-1-1 eqn 2.14]

fd = kmod
fk
γM

= 0.8
fk

1.25
(10.6)

The analysis is conducted in two steps representing permanent and variable load
respectively, see Figure 10.2. Imperfections according to Eurocode are applied in the
first step which is then followed by a non-linear buckling analysis. We recall the load
model used in the Eurocode calculations while considering the partial coefficients:

Xd = γd {1.2XG + 1.5XQ} (10.7)

in which the permanent load is represented by XG while XQ is the variable load. In
order to obtain comparable results the partial coefficients must be considered thus
the permanent loads were increased by a factor of 1.2. Furthermore, the result of the
non-linear buckling analysis must be divided by a factor 1.5 to finally be compared
to the variable load which the parabolic arch originally was designed for. The result
of the symmetrical and asymmetrical snow load model is presented in Figure 10.3
and Figure 10.4.
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Figure 10.2: Symmetrical and asymmetrical load models used for comparison anal-
ysis.
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Figure 10.3: Load-displacement for non-linear simulation with UDL. Material failure
marked with diamond and hand calculations according to Eurocode is marked with
dashed line.

The load-deflection curves continue above the critical load according to Eurocode
using first order analysis and beam analogy. The analysis is aborted as the maximum
is reached, at which geometrical instability occurs. However, the material has failed
prior to the Eurocode buckling load, i.e. Eurocode did not result in a conservative
load bearing capacity.
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Figure 10.4: Load-displacement for non-linear simulation with triangular load. Ma-
terial failure marked with diamond and hand calculations according to Eurocode is
marked with dashed line.

The reason is probably a combination of the cruciform strut analogy used to deter-
mine the first order critical normal force, c.f. Section 6.4 and higher order effects.
Even though the normal force reduction using the cruciform analogy was rather ac-
curate according to Section 10.1.2, the internal forces of the arch section comprise
of more than only a normal force. Shear force and bending moment of the section
will be higher in the non-linear analysis than in a first order analysis the Eurocode
calculations are based upon. Please note that the analogy is not supported by the
Eurocode but the results of the authors’ aim to keep the design according to Eu-
rocode totally separated from FE calculations. This study however clearly indicates
that FEM analysis should be used alongside Eurocode for instability analysis of
advanced geometries such as curved beams.
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Chapter 11

Conclusion

The funicular shape to a uniformly distributed load is a compelling structural design
concept for large span structures. Environmental awareness and the possibility of
curvature makes glulam a good material of choice. However, asymmetrical load
models which causes bending moment must be considered in arch design, thus a
more slender parabolic arch is commonly preferred.

Slenderness do however imply the risk of instability phenomenon at a critical load.
Lateral support of the arch is crucial to obtain an effective slender structure, for
which not only extrados but also intrados lateral support is needed.

Structural design according to Eurocode using first order analysis of straight beam
analogy is not recommended on curved elements, but a finite element model is
required. The arch structure is however sensitive to non-linear effects regarding
second and third order of theory. Consequently, a linear buckling analysis using a
FE software overestimate the buckling load and thus a non-linear analysis is more
suitable.

The parametric studies conducted using non-linear analysis shows good resemblance
with Eurocode. An effective design workflow would however be to conduct a non-
linear buckling analysis to implement in Eurocode calculations. It is possible to use
linear buckling analysis in early design phases in order to evaluate the lateral support
setup. The aim of this should be to find an effective combination of cross-section
dimensions and lateral support setup, for which the first buckling mode is in-plane.
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Chapter 12

Suggestions for Further Research

Due to the natural characteristics of timber, fairly advanced models are needed to
capture its true behaviour. It is not only a question of a linear or non-linear material
model, but also the stochastic nature of local defects and influence of moisture can,
among other things, also be considered. Several assumptions have been made in
this thesis but the effect of all have not been thoroughly analysed. For example the
influence an orthotropic material model with polar coordinates using random pith
locations could be analysed using Monte Carlo simulations.

Regarding the influence of moisture only a simplified analysis method has been
used with a constant moisture content over the entire cross-sectional area. The
influence of moisture gradients over the cross-section may induce local swelling and
thus internal stresses, which possibly can affect the load bearing capacity.

Some effort has in this report been put into identifying an optimal arch geometry,
i.e. cross-section, arch span and rise. However, by applying some findings of this
thesis on a variety of arch geometries one could be able to identify a somewhat
general optimum and evaluate its practical use. It would also be interesting if the
same geometrical rules applies to circular arches.

A comparison between different lateral bracing setups could be conducted, e.g. roof
sheathing, purlins and extent of intrados support. Experimental testing of common
lateral supports to obtain a more realistic interaction between arch member and
support can be conducted. The lateral support combines structural elements which
makes a global analysis of the entire structure interesting, especially considering
instability failure and progressive collapse.
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Appendix A

Loads

A.1 Permanent Load

A.1.1 Self-weight of Arch Member

The total mass of the arch member is considered to be distributed uniformly along
the horizontal axis.

qarch =
ρgAs

L
= 1.53 kN/m (A.1)

where

ρ density of the timber. 430 kg/m3 (SS-EN 1194)

g gravitational constant. 9.81 m/s2

A cross-sectional area. A = h · w = 1.8 · 0.19 = 0.342 m2

L horizontal length or span of the arch. 60 m

s arch length along the system line. According to Carling [2008]

the arch length can be calculated according to Equation A.2.

s = 2f

√
1 +

(
L

4f

)2

+ 2f

(
L

4f

)2

ln


4f

L


1 +

√
1 +

(
L

4f

)2



 = 63.4 m (A.2)

With L = 60 m, f = 9 m
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A.2 Snow Load Loads

A.1.2 Roofing and Installations

An estimation of self-weight for steel profiled sheet with insulation and light weight
roofing material can span between 0.30-0.65 kN/m2. The weight of installations
such as ventilation and electricity is estimated to approximately 1 kN/m2.

With an arch member spacing of 7 m the distributed load is:

qroof = (0.65 + 1) · 7 = 11.6 kN/m (A.3)

A.1.3 Combined Load

The combined load of self-weight of arch member and roofing:

qG,k = qroof + qarch = 13.1 kN/m hor (A.4)

A.2 Snow Load

The snow load is calculated according to Eurocode SS-EN1991-1-3: Actions on
structures - Snow loads.

s = µiCeCtsk (A.5)

where

Ce exposure factor according to SS-EN1991-1-3 table 5.1 (normal topography): 1.0.

Ct thermal coefficient, here assumed 1.

sk

characteristic value of ground snow load. For a building placed in Växjö
the characteristic ground snow load is 2 kN/m2 [SS-EN1991-1-3
table NB:1 (Växjö)].
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Loads A.3 Wind Load

A.2.1 Roof Shape Coefficient

The roof shape coefficient for a circular roof is calculated according to SS-EN 1991-
1-3 figure 5.6. Without influence of snowdrift the loading is uniformly distributed
with a shape coefficient of: µ1 = 0.8. With the influence of snowdrift: µ3 = 1.7
[SS-EN1991-1-3 figure 5.5, h=9m, b=60m].

Figure A.1: Roof shape coefficient for an arch-shaped roof. Source: SS-EN1991-1-3
fig 5.6.

A.2.2 Snow Load on Roof

Uniform distribution: s1 = 0.8 · 1.0 · 1.0 · 2 = 1.6 kN/m2

Triangular distribution: s1 = 1.7 · 1.0 · 1.0 · 2 = 3.4 kN/m2

A.3 Wind Load

The wind loads are calculated according to Eurocode SS-EN1991-1-4:2005 General
actions - Wind actions and the Swedish national annex EKS 9.

A.3.1 External Load

The external wind load is dependent on the surrounding terrain, geographical loca-
tion and shape of the building.

we,i = qp(ze) · cpe,10 (A.6)
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A.3 Wind Load Loads

where

qp(ze) is the peak velocity pressure at the reference height z with respect to
exposure factor ce and basic wind velocity vb,0.

cpe,10 is the external pressure coefficient for loaded areas larger than 10 m2.

In order to determine the peak velocity pressure,qp(ze), the reference wind velocity
is determined:

vb,0 = 24 m/s [EKS 9 table C-10, City: Växjö]

With a building height of 9 m and an assumed site location within urban area
(terrain type III) the peak velocity pressure is:

qp(ze) = 0.53 kN/m2 [EKS 9 table C-10a]

The external pressure coefficient for a circular shaped roof is determined with respect
to the height-span-ratio according to EKS9 1.1.4 10§.

 

Figure A.2: External pressure coefficients of arch roof with rectangular base. Source:
EKS9 figure C-6.

With f/b = 0.15 and h/b = 0 the different pressure coefficients for A,B,C and D is
[EKS9 figure C-6]:

cpe,10,A = 0.38

cpe,10,B = −0.15

cpe,10,C = −0.50

cpe,10,D = −0.20

Which results in an external wind load of:

we,A = 0.53 · 0.38 = 0.20 kN/m2

we,B = 0.53 · (−0.15) = −0.08 kN/m2

we,C = 0.53 · (−0.50) = −0.27 kN/m2

we,D = 0.53 · (−0.20) = −0.11 kN/m2
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Loads A.4 Load Combination

A.3.2 Internal Load

The external wind load should be supplemented by an internal wind load due to
internal negative or positive pressure.

wi = qp(zi) · cpi (A.7)

The internal pressure coefficient, cpi, is dependent on the openings in the structure
and when the relative opening area is unknown the coefficient should be chosen as
+0.2 or -0.3, whichever is more onerous [SS-EN1991-1-4 7.2.9].

Combined with the external wind load either the internal negative or positive pres-
sure can be most unfavourable.

wi,pos = 0.11 kN/m2 wi,neg = −0.16 kN/m2

1.2.2 Internal wind 

 

  

𝑤𝑖 

Figure A.3: Definition of positive internal wind load.

A.4 Load Combination

All different kinds of loads applied to a structure is probably not at its maximum
simultaneously, i.e. for strong winds the snow may blow of the roof. Eurocode
adopts load combination factors in order to reduce the combined effect of variable
loads. This factor is multiplied with any load other than the current main load.

Table A.1: Recommended load combination factor for buildings [SS-EN1990 table
A1.1].

ψ0

Snow 0.7
Wind 0.3
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A.4 Load Combination Loads

In order to determine the worst load combination with snow and wind as variable
loads eight different load cases are considered as seen in Table A.2 and Figure A.4.
The wind and snow load is placed in order to obtain the most onerous load combi-
nation. Self-weight and partial coefficients are introduced to the internal forces in
Section C.4.
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Loads A.4 Load Combination
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A.4 Load Combination Loads
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Figure A.4: Magnitude of load for uniform and triangular distribution including wind
effect. Main load: Snow (bold), Wind (regular); Internal wind pressure: Positive
(solid line), Negative (dashed line). Used load combination in red.

The influence of the wind in the dominating load combination is low and is hereafter
neglected in the calculations. Load used henceforth is marked with a dashed red
line in Figure A.4.
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Appendix B

Internal Forces and Reactions

 

𝑞𝑈𝐷𝐿  

𝑓  

𝐿 

𝑅𝐵  
𝐻𝐵  𝐻𝐴  

𝑅𝐴  

0.5𝑞𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟  
𝑞𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟  

B.1 Uniformly Distributed Load

The following equations were used to calculate internal and reaction forces caused
by UDL:

Vertical reaction force: R = qL
2

Horizontal reaction force: H = qL2

8f

Maximal normal force: N =
√
R2 +H2

Normal force in arbitrary section: N(x) =
√

(R− qx)2 +H2

With the reference geometry presented in Section 5.1 and characteristic loads cal-
culated in Appendix A the internal forces for the uniformly distributed load is:
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B.2 Triangular Distributed Load Internal Forces and Reactions

Characteristic self-weight load, qG,k qG,k = 13.1 kN/m
Characteristic snow load without snowdrift, qs1,k qs1,k = s1 · 7 = 11.2 kN/m

N
_

Figure B.1: Normal force distribution for a parabolic arch subjected to UDL.

Table B.1: Characteristic internal forces in a
parabolic arch subjected to UDL.

Self-weight Snow pressure

Normal force, Nmax 762 kN 682 kN
Shear force, V ≈ 0 kN ≈ 0 kN

Bending moment, M ≈ 0 kN ≈ 0 kN

B.2 Triangular Distributed Load

Characteristic snow load
qs3,k = s3 · 7 = 3.7 · 7 = 23.8 kN/m

without snowdrift, qs3,k

In order to calculate the internal forces for a triangular distributed load a free body
diagram is sketched and equilibrium equations are set up.
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Internal Forces and Reactions B.2 Triangular Distributed Load
Free body diagram TRI 

 

  

𝐻𝐴  
𝑅𝐴  

𝑞 𝑥    

𝑉 𝑁 𝑀 

𝜃 𝑥  

𝑥 
𝐿/4 

𝑞𝑠3,𝑘   

𝑦 

Figure B.2: Free body diagram over arch subjected to non-symmetrical triangular
load. Figure is valid in region L

4
< x ≤ L

2
.

Example. L
4
< x ≤ L

2

qs3,k = 23.8 kN/m

q(x) = qs3,k
(
2− 4

L
x
)

y(x) = y(x) = 0.01 (Lx− x2)

θ(x) = tan−1
(
dy(x)
dx

)
= tan−1 (0.01 (L− 2x))

(↖) V +RAcos (θ)−Hsin (θ)−
(
1
2
qs3,k

4
L

+ 1
2

(qs3,k + q(x))
(
x− 4

L

))
cos (θ)

= 0
(↗) N −Hcos (θ)−RAsin (θ) +

(
1
2
qs3,k

4
L

+ 1
2

(qs3,k + q(x))
(
x− 4

L

))
sin (θ)

= 0

(x) M +Hy(x)−RAx+
qs3,kL

8

(
x− 2

3
4
L

)
+ q(x)1

2

(
x− 4

L

)2
+

(qs3,k − q(x)) 1
3

(
x− 4

L

)2
= 0

Corresponding equilibriums are set up throughout the whole region 0 < x < L to
obtain the internal forces and their distribution.
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B.2 Triangular Distributed Load Internal Forces and Reactions

N

V

M

_

_

_

+

+

Figure B.3: Internal forces for triangular load case. Normal force, radial shear force
and bending moment distribution respectively.

Table B.2: Maximum characteristic internal force with corresponding
internal forces at same location.

Internal force Max value Position
Simultaneously

N V M

Nmax 550 kN 0 41 kN 0 kNm
Vmax 72 kN ≈ L/2 445 kN 348 kNm
Mmax 811 kNm L/4 470 kN 0 kN
Mmin -157 kNm ≈ 3L/5 456 kN 0 kN
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Appendix C

Design According to Eurocode 5

C.1 Geometric Properties 

 

  

L 

f 
h 

w 

𝑠 2  

Width of member, w w = 190 mm

Height of member, h h = 1800 mm

Cross-sectional area, A A = w · h = 3.42 · 105 mm2

Arch length, s (see Section A.1.1) s = 63.4 m

Effective length with respect to IP
Le,y = β s

2
= 1.25 · 63.4

2
= 39.6 m

buckling, Le,y (see Section 6.4)

Effective length with respect to OP buckling, Le,z Le,z = s
4
≈ 15 m

Moment of inertia about the y-y axis, Iy Iy = wh3

12
= 9.23 · 1010 mm4

Moment of inertia about the z-z axis, Iz Iz = hw3

12
= 1.03 · 109 mm4
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C.2 Material Properties Design According to Eurocode 5

Elastic section modulus about the y-y axis, Wy Wy = wh2

6
= 1.03 m3

Elastic section modulus about the z-z axis, Wz Wy = hw2

6
= 0.011 m3

Radius of gyration about the y-y axis, iy iy =
√

Iy
A

= 0.52 m

Slenderness ratio about the y-y axis, λy λy = Le,y

iy
= 76

Torsional constant for the section, J
J = ab3

(
16
3
− 3.36 b

a

(
1− b4

12a4

))
=

[Young and Budynas, 2002] p. 410
using a = h/2, b = w/2 = 0.0038

C.2 Material Properties

Glulam strength class GL32h [SS-EN 1194]. Characteristic values:

Bending stress, fm,k fm,k = 32 MPa

Compression strength parallel to grain, fc,k fc,k = 29 MPa

Shear strength, fv,k fv,k = 3.8 MPa

Tension strength perpendicular to grain, ft,90,k ft,90,k = 0.5 MPa

Modulus of elasticity parallel to grain, E0.05 E0.05 = 13700 MPa

Shear modulus, Gk Gk = 850 MPa

C.3 Partial Factors

The partial coefficients address the uncertainty in load, material and variations in
cross-section measures.

Partial safety factor, γd [EKS 9] γd = 1.0

Partial safety factor, γG [EKS 9 table B-3] γG = 0.89 · 1.35 = 1.2

Variable actions, γQ γQ = 1.5

Material factor for glulam at ULS, γM γM = 1.25
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Design According to Eurocode 5 C.4 Actions

C.4 Actions

Two load cases are evaluated, uniform and triangular distribution, see Figure C.1.
All design loads are calculated according to STR-B [EKS9 table B-3, eqn 6.10b] with
snow as main variable load.

 

  

𝑞𝑠𝑒𝑙𝑓−𝑤𝑒𝑖𝑔ℎ𝑡 𝑞𝑠𝑒𝑙𝑓−𝑤𝑒𝑖𝑔ℎ𝑡 

𝑞
𝑠𝑛𝑜𝑤,𝑈𝐷𝐿

 𝑞
𝑠𝑛𝑜𝑤,𝑇𝑟𝑖𝑎𝑛𝑔𝑢𝑙𝑎𝑟

 

𝐴 𝐵 

Figure C.1: Load cases considered in the model studied. A: Uniformly distributed
load. B: Triangular distribution of snow.

Since the structure is statically determinate the partial safety factors are applied to
the internal forces, presented in Section 5.4, in order to obtain the design forces.

Xd = γd {1.2G+ 1.5Qk + 1.5ψ0,iQk,i} (C.1)

With safety class 3 and snow as the only variable load the design loads are calculated
as follows:

Xd = 1.0 {1.2G+ 1.5Qk} (C.2)

C.4.1 Load Case A

Load case A represent the maximum normal force in the arch.

1.0 {1.2 · 762 + 1.5 · 682} = 1938 kN at x = 0

Mmax,A ≈ 0 kNm

Vmax,A ≈ 0 kN
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C.4 Actions Design According to Eurocode 5

C.4.2 Load Case B

Load case B introduces bending moment in the arch while the normal force still is
large.

Table C.1: Summary of maximum internal forces for load case B.

Internal force Max value Position
Simultaneously

N V M

Nmax,B
1.0 {1.2 · 762 + 1.5 · 550}

0 62 kN 0 kNm
=1740 kN

Vmax,B
1.0 {1.2 · 0 + 1.5 · 72} ≈ L/2 1582 kN 522 kNm

=108 kN

Mmax,B
1.0 {1.2 · 0 + 1.5 · 811}

L/4 1620 kN 0 kN
=1217 kNm

Mmin,B
1.0 {1.2 · 0 + 1.5 · (−157)} ≈ 3L/5 1600 kN 0 kN

= −236 kN

C.4.3 Design Load

The design load in Table C.2 is found by the most onerous load combination for
each internal force.

Table C.2: Design internal forces.

Internal force Max value Load case Position
Simultaneously

N V M

NEd 1 938 kN A 0 0 kN 0 kNm
VEd 108 kN B ≈ L/2 1582 kN 522 kNm
M+

Ed 1 217 kNm B L/4 1620 kN 0 kN
M−

Ed −236 kNm B ≈ 3L/5 1600 kN 0 kN
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Design According to Eurocode 5 C.5 Modification Factors

C.5 Modification Factors

C.5.1 General Modification Factors

Factor for medium-duration loading and service
kmod = 0.80

class 2, kmod [SS-EN1995-1-1 table 3.1]

Size factor based on maximum depth =
kh = 1.0

1800 mm, kh [SS-EN1995-1-1 eqn 3.2)]

Deformation factor for service class 2,
kdef = 0.80

kdef [SS-EN1995-1-1 table 3.2]

Reduction of cross-sectional width due to,
kcr = min

{
3.0
fvk

= 0.79

1.0
= 0.79

kcr [EKS 9]

C.5.2 Reduction due to Bent Lamellas

Reduction due to initial stress in bent lamellas is defined in SS-EN1995-1-1 equation
6.49 as:

kr = min

{
1 for rin

t
≥ 240

0.76 + 0.001 rin
t

for rin
t
< 240

(C.3)

where

r inner radius ≈ 54 m
t thickness of lamellas, usually 45 mm [Carling, 2008]

kr = 1

No reduction is needed with respect to bent lamellas.

C.5.3 Reduction due to Curved Beam

Stress distribution factor for the apex zone, kdis, according to SS-EN 1995-1-1 equa-
tion 6.52:

kdis = 1.4
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C.5 Modification Factors Design According to Eurocode 5

Factor applied to obtain bending stress in the apex zone, see Section 3.3.4, kl [SS-
EN1995-1-1 eqn 6.43]:

kl = k1 + k2

(
hap
r

)
+ k3

(
hap
r

)2

+ k4

(
hap
r

)3

= 1.01 (C.4)

where

k1 = 1 + 1.4tan(αap) + 5.4tan2(αap) = 1
k2 = 0.35− 8tan(αap) = 0.35
k3 = 0.6 + 8.3tan(αap)− 7.8tan2(αap) = 0.6
k4 = 6tan2(αap) = 0
αap = 0 for curved beams
hap = h = 1800 mm
r ≈ 54 m

Factor applied to obtain the tensile stress perpendicular to grain, kp [SS-EN1995-1-1
eqn 6.56]:

kp = k5 + k5

(
hap
r

)
+ k7

(
hap
r

)2

= 0.008 (C.5)

where

k5 = 0.2tan(αap) = 0
k6 = 0.25− 1.5tan(αap) + 2.6tan2(αap) = 0.25
k7 = 2.1tan(αap)− 4tan2(αap) = 0

Volume factor, kvol [SS-EN1995-1-1 eqn 6.51]:

kvol =

(
V0
V

)0.2

= 0.23 (C.6)

where

V0 = 0.2tan(αap) = 0

V
stressed volume in the apex zone, max of 2/3Vbeam , where Vbeam is the
volume of the member. V is assumed to be greater than the maximum, hence
2/3Vbeam = 2/3Asarch = 2/3 · 1.8 · 0.19 · 63.4 = 14.5 m3
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Design According to Eurocode 5 C.6 Stresses in Apex

C.6 Stresses in Apex

C.6.1 Bending Stresses

The bending stresses in apex zone should be limited by [SS-EN1995-1-1 eqn 6.41]:

σm,d ≤ krff,d = 20.5 MPa (C.7)

where

kr = 1

ff,d =
kmodkhfm,k

γM
= 20.5 MPa

Stresses in apex zone should be calculated according to EC5 [SS-EN1995-1-1 eqn
6.42]:

σm,d ≤ kl
6Map,d

bh2ap
= 12 MPa (C.8)

where

kl = 1.01
Map,d = M+

Ed = 1217 kNm

Bending strength in the apex zone is satisfactory.

C.6.2 Radial Stresses

Radial stress in the apex zone should be limited by [SS-EN1995-1-1 eqn 6.50]:

σt,90,d = kdiskvolft,90,d = 0.69 MPa (C.9)

where

kdis = 1.4
kvol = 0.23

ft,90,d =
kmodkhft,90,k

γM
= 2.1 MPa
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C.7 Compression Strength Design According to Eurocode 5

Largest tensile stress perpendicular to grain is calculated according to EC5 [SS-
EN1995-1-1 eqn 6.54]:

σt,90,d = kp
6Map,d

bh2ap
= 0.1 MPa (C.10)

where

kp = 0.008
Map,d = M+

ED = 1217 kNm

Tensile strength perpendicular to grain in the apex zone is satisfactory.

C.7 Compression Strength

Design compression strength, fc,0,d fc,0,d =
kmodkhfc,0,k

γM
= 18.6 MPa

C.7.1 In-plane Buckling

Buckling resistance condition [SS-EN1995-1-1 6.3.2]:

Relative slenderness ratio about the y-y
λrel,y = λy

π
·
√

fc,0,k
E0.05

= 1.12
axis [SS-EN 1995-1-1 eqn 6.21]

Since the relative slenderness ratio is greater than 0.3, consideration of buckling is
needed. The conditions in SS-EN1995-1-1 6.3.2 are used:

Factor βc for glulam. Considers demand for
βc = 0.1

straightness. [SS-EN 1995-1-1 eqn 6.29]

Factor ky [SS-EN 1995-1-1 eqn 6.28] ky = 0.5 (1 + βc (λrel − 0.3) + λ2rel) = 1.17

Reduction factor with respect to kc = 1

ky+
√
k2y−λ2rel

= 0.67
buckling, kc. [SS-EN 1995-1-1 eqn 6.26]
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Design According to Eurocode 5 C.8 Bending Strength

C.7.2 Out-of-plane Buckling

Since the extrados of the arch is restricted from lateral displacement the out-of-
plane buckling will be due to torsional buckling, see Section 6.4. An analogy to a
cruciform strut subjected to compressive force is used to estimate the buckling load
of the arch.

 

𝜎𝑐𝑟𝑖𝑡    𝜎𝑐𝑟𝑖𝑡   

ℎ = 2 ∙ 1.8m   

𝑤 = 0.19m   
𝐿 

Moment of inertia, I I = Iy = Iz ≈ wh3

12
+ hw3

12
= 0.74 m4

Polar moment of inertia, I0 I0 = Iy + Iz = 2I = 1.48 m4

Warping constant, Iw Iw ≈ 0 for open cross-sections

Torsional constant for the open
J =

∑
bt3

3
= 41.8·0.193

3
= 0.016 m4

cross-section, J [Gustafsson, 2012]

MOE reduced for ULS, Emean,fin = Emean

(1+ψ2kdef)
= 11 810 MPa

Emean,fin. [SS-EN 1995-1-1 2.3.2.2]

Shear modulus reduced for ULS, Gmean,fin = Gmean

(1+ψ2kdef)
= 733 MPa

Gmean,fin. [SS-EN 1995-1-1 2.3.2.2]

Critical stress for torsional σRd,cruciform = 1
I0

(
Emean,finIw

π2

L2 +Gmean,finJ
)

=

buckling, σRd,cruciform = 8.14 MPa

C.8 Bending Strength

Design bending strength, fm,d fm,d =
kmodkhfm,k

γM
= 20.5 MPa

Design bending strength taking lateral torsional buckling into account [SS-EN 1995-
1-1 6.3.3], kcrit:
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C.9 Shear Strength Design According to Eurocode 5

Effective length of the beam,
lef = Le,z · 1.0 + 2h = 19.5 mlef , including effect of loading

on the compressed face.
[SS-EN 1995-1-1 table 6.1]

Critical bending stress,σm,crit σm,crit =
My,crit

Wy
= π

√
E0.05IzG0.05J
lefWy

=

[SS-EN 1995-1-1 eqn 6.31] 10.7 MPa

Relative slenderness for bending, λrel,m λrel,m =
√

fm,k

σm,crit
= 1.73

[SS-EN 1995-1-1 eqn 6.30]

Lateral stability factor, kcrit kcrit =
[SS-EN 1995-1-1 eqn 6.34]

=





1 for λrel,m ≤ 0.75
1.56− 0.75λrel,m for 0.75 < λrel,m ≤ 1.4

λ−2rel,m otherwise
kcrit = 0.33

C.9 Shear Strength

Design value for shear force, Vd Vd = 108 kN

Design shear strength, fV,d fV,d =
kmodkhfV,k

γM
= 2.4 MPa

Effective width, weff [EKS 9 7.b§] weff = kcrw = 0.79 · 190 = 150 mm
Design shear strength, VRd VRd = 2

3
weffhfV,d = 437.7 kN

Since VRd = 438 > VEd = 108 shear forces are within limits.

C.10 Combined Stress Condition

In order to evaluate the combined stress condition of the whole arch specific sections
where bending moment and axial forces act simultaneously are verified, see Figure
C.2.
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Design According to Eurocode 5 C.10 Combined Stress Condition

 A 

B 

Figure C.2: Sections where combined stress condition is verified.

C.10.1 Section A

Compressed edge is restrained from lateral buckling.

Design compression stress, σc,0,d σc,0,d = NEd

A
= 1620

0.34
= 4.7 MPa

Design bending stress, σm,y,d σm,y,d =
My,d

Wy
=

M+
Ed

Wy
= 1217

0.103
= 11.9 MPa

Design bending stress, σm,z,d σm,z,d =
Mz,d

Wy
= 0 MPa

Simultaneous bending and axial force [SS-EN 1995-1-1 eqn 6.23-24]:

σc,0,d
σRd,cruciform

+ km
σm,y,d
fm,y,d

+
σm,z,d
fm,z,d

=
4.7

9.4
+ 0.7

11.9

20.5
+

0

20.5
= 0.99 < 1.0 (C.11)

σc,0,d
kc,yfc,0,d

+
σm,y,d
fm,y,d

+ km
σm,z,d
fm,z,d

=
4.7

0.67 · 18.6
+

11.9

20.5
+ 0.7

0

20.5
= 0.96 < 1.0 (C.12)

C.10.2 Section B

Compressed edge is free to buckle laterally and the risk of lateral torsional buckling
needs to be considered. Stress condition since risk of lateral torsional buckling,
λrel,m > 0.75 [SS-EN 1995-1-1 eqn 6.35]:

Design compression stress, σc,0,d σc,0,d = NEd

A
= 1600

0.34
= 4.7 MPa

Design bending stress, σm,d σm,d =
My,d

Wy
=

M−
Ed

Wy
= 236

0.103
= 2.3 MPa

(
σm,d

kcritfm,d

)2

+
σc,0,d

kc,zfc,0,d
=

(
2.3

0.33 · 20.5

)2

+
4.7

0.67 · 18.6
= 0.49 ≤ 1.0 (C.13)
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Appendix D

FE Analysis Support Calculations

D.1 Stiffness of Extrados Lateral Support

D.1.1 Characteristic Maximum Force

Calculated according to Eurocode 5 [SS-EN 1995-1-1 8.2.3]. The strength of the tim-
ber to metal connection is dependent on the thickness of the steel plate. Depending
on the thickness different failure modes will occur, see Figure D.1.
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'��(�����"	������������&�')&�'���&�'��(�����*"	����+��	��������&�������������&�')&�'���&�'�����),-./01234)����	�
������5��������&�')&�'���&�'������' 678 69:;;<88=>? 8=@? 8=A? 8=;?8=B?��������������	��� ����!�����"����!"��#�������"�������"	���),(CD*)������������(�	��#����������#��	����E�������F&���)1G/HI-JKLM23NOPM23QRO' ,(SD*TUCVW�S*XIYXZ ����&�'&YU[YY',(SD*TYCY�\]̂ !SD*XW�S*XZ_,�̀SD*V ����&
'&YU[Y]',(SD*TW�S*XIYXZab]_ V̂ !SD*W�S*XI]YXZcYd_,�̀SD*V ����&�'&YU[Ye',(SD*T]Ce\ !̂SD*XW�S*XZ_,�̀SD*V ����&�'&YU[YV',(SD*TW�S*XIYXZ ����&�'&YU[Y�'&fJKI-K/1Z'Figure D.1: Failure modes for steel-timber connections. Source: [SS-EN 1995-1-1
figure 8.3].

Thin steel plates will fail according to mode a or b whereas a thick steel plate will
have a failure mode according to c-e. A steel plate is considered thin if the thickness
is less than or equal to 0.5d, where d is the diameter of the fastener.
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D.1 Stiffness of Extrados Lateral Support FE Analysis Support Calculations

D.1.2 Geometric and Material Properties of the Connection

Thickness of steel plate
tsteel = 1.04 mm

[Lindab, 2014]

Diameter of fastener. Screw, Unifast
d = 6.5 mm

A21 6.5x51 [Unite, 2014]

Penetration depth of screw, Unifast
t1 = 51− 1.04 = 50 mm

A21 6.5x51

Type of steel-timber connection
type =

{
tsteel = 1.04 < 0.5d = 3.25 thin
tsteel = 1.04 ≯ d = 6.5 thick[SS-EN 1995-1-1 8.2.3 (1)]

type = thin

Characteristic density of glulam GL32h
ρk = 430 kg/m3

[SS-EN 1194]

Tensile strength for each screw, Unifast
fu,k = 1022 MPa

A21 - AISI 1018-1022 [Unite, 2014]

D.1.3 Strength Properties of Glulam and Screw

The lateral support will apply a shear force perpendicular to the fibre direction.

Characteristic embedment strength parallel
fh,0,k = 0.082(1− 0.01d)ρm = 33 N/mm2

to grain [SS-EN 1995-1-1 eqn 8.32]

Angle between force and fibre direction α = 90◦

Embedment factor for softwood
k90 = 1.35 + 0.015d = 1.45

[SS-EN 1995-1-1 eqn 8.33]

Characteristic embedment strength with
fh,90,k =

fh,0,k
k90sin

2(α)+cos2(α)
= 22.8 N/mm2an angle to fibre direction

[SS-EN 1995-1-1 eqn 8.31]

Characteristic yield moment of the screw
My,Rk = 0.3fu,kd

2.6 = 39 · 103 Nmm
[SS-EN 1995-1-1 eqn 8.30]

D.1.4 Load Carrying Capacity

Since a thin steel-timber connection is used only failure modes a-b in Figure D.1
will be verified.

Fv,Rk = min

{
0.4fh,kt1d = 4286 N (a)

1.15
√

2My,Rkfh,kd = 3949 N (b)
(D.1)

Fv,Rk = 3950 N
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FE Analysis Support Calculations D.2 Stiffness of Intrados Lateral Support

D.2 Stiffness of Intrados Lateral Support

150 mm

75 mm

7 m

Figure D.2: Principle view of lateral support at intrados with cross-section constants.

With assumption of tension action and linear increase in supporting force:

k =
EA

L
=

13700 · 150·75
106

7
≈ 18 000 kN/m (D.2)
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