LLUND

UNIVERSITY

INELASTIC CAPACITY OF PIPE
RACK STRUCTURES

Study of Dynamic Response to Accidental
Explosion Events in an Offshore Topside
Environment

ADAM HALVORSEN STALMARCK

Structural
Mechanics

Master’s Dissertation







DEPARTMENT OF CONSTRUCTION SCIENCES
STRUCTURAL MECHANICS

ISRN LUTVDG/TVSM--15/5205--SE (1-146) | ISSN 0281-6679
MASTER'S DISSERTATION

INELASTIC CAPACITY OF PIPE
RACK STRUCTURES

Study of Dynamic Response to Accidental
Explosion Events in an Offshore Topside
Environment

ADAM HALVORSEN STALMARCK

Supervisors: Professor PER-ERIK AUSTRELL, Div. of Structural Mechanics, LTH, Lund
together with ARSWENDY ARSWENDY, Senior Structural Engineer, AET, Aker Solutions
and JAN CHRISTOFERSEN, Department Manager Structural, Aker Solutions.

Examiner: Professor KENT PERSSON, Div. of Structural Mechanics, LTH, Lund.

Copyright © 2015 Division of Structural Mechanics,
Faculty of Engineering (LTH), Lund University, Sweden.

Printed by Media-Tryck LU, Lund, Sweden, June 2015 (P).

For information, address:
Div. of Structural Mechanics, LTH, Lund University, Box 118, SE-221 00 Lund, Sweden.
Homepage: http://www.byggmek.Ith.se






Abstract

Steel structures in an offshore processing environment must be designed for an accidental explosion
event. The current verification procedure implemented at Aker Solutions (AKSO) enforces an elastic
single degree of freedom (SDOF) analogy to implicitly account for dynamic effects in linear static FE
analyses. The implication of this approach is that structures are designed to remain within their
elastic range during an explosion event, generating weight and cost inefficient designs. The objective
of this thesis was therefore to determine the inelastic capacity of a typical pipe rack structure
subjected to blast. A modified verification procedure was also evaluated to determine if this
unutilized capacity may be accounted for via incorporation of an inelastic SDOF-response model.

Research on the blast phenomena showed that the dominant load effects from interaction between a
pipe rack structure and a blast pulse were governed by the dynamic blast-pressure, idealized as a
symmetric triangular pulse-excitation to characterize the typical deflagration type explosion. This
pressure was converted to drag loads and assigned to structural members in the conducted finite
element analysis (FEA) study, aiming to reveal the true dynamic structural response to pulse

excitations of varying magnitudes.

A specific pipe rack design from a previous AKSO project was chosen for evaluation. The associated
piping configuration was accounted for implicitly in the FEA study via simplified calculations of
mass contribution and transfer of blast loading to the analyzed rack structure. Failure criteria were
also established to prevent rupture of safety critical pipe lines according to the defined post-blast
functionality requirements.

Results from full nonlinear FE analyses showed that the original pipe rack design remained
completely elastic during simulations of the design blast-pulse scenario. The validity of the current
verification procedure was thereby confirmed and the associated elastic SDOF-model was found to
prevail with great accuracy. Failure criteria were not exceeded until the original design-pulse had been
magnified by a factor of 4.8 to a corresponding peak pressure of approximately 1 barg and pulse
duration of 50 milliseconds. The amount of inelastic capacity possessed by the pipe rack at this load
level was quantified by the observed ductility ratio of 2.25. The expanded SDOF analogy failed to
capture the inelastic dynamic response with a satisfactory level of precision. However, conservative
estimates of a pipe rack structures full capacity were obtained when this inelastic SDOF-model was
incorporated into the modified verification procedure.
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1 Introduction

1.1 Background

Steel structures on off- and onshore processing facilities shall be designed for an accidental explosion
event according to safety regulations applicable to the oil and gas industry. These regulatory
documents provide a framework of general safety criteria, defining hazardous subsequent effects
associated with an accidental explosion to consider in the design and verification process. In order to
limit the consequential damages from an explosion, engineers must make use of analytical tools and
theoretical models accurately reflecting the structural response in such an event.

Research conducted in the academic environment on the topic of explosion effects and blast-resistant
design is sparse and much work was produced during the 1950s and 1960s. More extensive research
within this field tends to happen in the military sector and the U.S. Department of Defense has
made several publications on the topic of blast available to the public. In the realm of academics,
much more attention has been devoted to seismic effects on structures and the analytical toolbox

available for seismic design purposes is therefore more comprehensive.

However, many institutions within the industry and structural engineering community such as DNV,
AISC and ASCE offer guidelines and recommended practices on blast-resistant design and
verification procedures. A common suggested approach is to adopt approximate analytical methods

to predict the overall maximum dynamic response of a structure subjected to blast. These analytical
methods are based on a single degree of freedom (SDOF) analogy where the complexity of the
problem is reduced by idealizing both the structural system and the load scenario.

1.1.1 Verification Procedures for Accidental Explosion Events
The SDOF analogy is enforced in the verification procedure implemented at Aker Solutions (AKSO)

today, where the dynamic structural response in an accidental explosion event is implicitly accounted
for via an approximate analytical method developed by Biggs (1964). This specific analytical method
is consistently referred to as the Linear-elastic Biggs method within this report while the entire
verification procedure utilizing this method will be referred to as the conventional method.

The implication of the current verification procedure outlined by the conventional method is that
structural systems are designed to remain within their linear-elastic range during a blast event.
Consequently, the accidental explosion event governs the design of a large portion of steel structures
on processing facilities, generating very robust structural configurations that increase the total weight
and cost budget. This undesirable outcome is the main reason to why AKSO has initiated the study
conducted within this thesis, aiming to investigate the unutilized inelastic capacity possessed by



structures designed according to the conventional method and wheatear this capacity could be
accounted for via implementation of a modified verification procedure recently developed at AKSO.

This modified verification procedure will be referred to as the proposed method. It also enforces a
SDOF analogy via application of another approximate method developed by Biggs (1964) referred to
as the Elasto-plastic Biggs method.

Both the conventional method and proposed method verifies structures for accidental explosion events
through linear static FE analyses were the blast pressure is applied as static wind load. This procedure
does not comply with the dynamic nature of an accidental explosion event and is unfit to capture the
structural response to such a severe and rapid load scenario. Hence, dynamic effects associated with a
blast wave interacting with a structure must be incorporated into this static FE formulation somehow.
This is achieved through implementation of the two approximate methods as following chapters will
describe in detail.

The procedure defined as the conventional method account for the dynamic effects by applying a
dynamic amplification factor (DAF) to the calculated static blast loads, thus implicitly scaling all field
variables derived from the static FE simulation and implicitly accounting for an overall maximum
dynamic response. The DAF is obtained from the Linear-elastic Biggs method, an analytical approach
that determines the normalized dynamic response of an undamped, linear-elastic SDOF system
subjected to a triangular pulse excitation. The only input parameter needed to find the applicable
DAF through the Linear-elastic Biggs method is the ratio of blast pulse duration over the natural
period of the structural system.

The strategy of the proposed method is to establish an initial design of a structure from a verification
process accounting for all limit states and load scenarios except the accidental explosion event.
Through implementation of the Elasto-plastic Biggs method, the intention is to demonstrate that the
full capacity possessed by this initial design exceeds the capacity required to withstand loading
imposed by the design blast-pulse. The theory behind the Elasto-plastic Biggs method also relates to
the response of an undamped SDOF-system to a triangular pulse excitation. However, inelastic
capacity is built into the SDOF-model via an idealized resistance function implying that an allowable
response is no longer limited to the linear-elastic range within the proposed method.

1.1.2 Pipe Rack Structures

Processing facilities comprise of numerous of different load-bearing components, outfitting steel
structures and equipment. The scope of this thesis will be limited and focus solely on pipe rack
structures designed for an offshore topside environment. A pipe rack system consists of mainly two
structural components; (1) a rack structure and (2) the pipe lines containing hydrocarbons or other
fluid content which are supported by the rack structure. This structural system is of particular
interest since a ruptured pipe would act as a fuel resource, potentially intensifying fires caused by an
initial explosion or causing new explosions due to the highly ignitable and explosive nature of the
hydrocarbons.



Figure 1-1 show part of an offshore topside processing facility. A typical pipe rack configuration
located in an external area is highlighted in yellow. A more detailed view of its structural components
is provided by Figure 1-2.

Figure 1-1 Pipe rack structure located in external area of an offshore processing facility.

Figure 1-2 show how the pipe lines are locally supported by the specific rack structure. This rack
structure has two main levels where the pipe lines are drawn and attached to horizontal members via
pipe supports designed to constrain the pipe section relative the rack structure in specified directions.
The typical rack structure is a three-dimensional truss system of RHS profiles (Rectangular Hollow
Section) connected to the above deck structure.

Figure 1-2 Typical pipe rack configuration.

The only purpose of the rack structure is to offer support and protection to the attached pipe lines,
which are the critical components in this structural system. Failure of a safety critical pipe line shall
therefore govern any procedure aiming to verify an interactive response between a rack structure and
an attached pipe line configuration. A complex aspect of this problem to be addressed within the



thesis is how to account for this interactive response within the frame work of a manageable, efficient
and reliable verification procedure.

The dynamic response of a pipe rack structure in an accidental explosion event has been studied in
pervious theses conducted by Aargnes and Nilsson (2014) and A. Su (2012). However, these
publications primary focus is on evaluation of the Linear-elastic Biggs method and its associated linear-
elastic SDOF analogy. With this thesis, the study is extended to a dynamic response within the
inelastic range and evaluation of a SDOF-model accounting for inelastic capacity.

1.2 Objective

The main objective of this thesis is to determine the extent of the inelastic capacity possessed by a
typical pipe rack configuration subjected to an accidental explosion event. To achieve this, it is

critical that the interactive response of the entire structural assembly is accounted for in the process.

Furthermore, the thesis aims to evaluate and conclude on the accuracy of the approximate analytical

methods incorporated into the two verification procedures referred to as the conventional method and
the proposed method. How well do the analytical methods based on a SDOF analogy account for the

complex nature of this problem?

The validity of the two different verification procedures shall also be confirmed within the scope of
this thesis. Is a pipe rack design verified in accordance with the conventional method going to remain
elastic during the design explosion event? Will the proposed method be successful in providing a
reliable estimate of a pipe rack structures inelastic capacity?

1.3 Method

A comprehensive FEA study was conducted within the scope of this thesis. The commercial FE
software Abaqus and its specific analysis product Abaqus/Standard was used to run all simulations
within this numerical study. Linear static analyses and Eigen frequency analyses were conducted for
evaluation of the conventional method and the proposed method. Full nonlinear ' analyses were
performed to reveal the “true” response of the pipe rack structure and to determine its full inelastic
capacity.

A literature study on the topic of explosions and structural response to blast was also conducted.
Recommended practices and guidelines provided by the industry were consulted along with
textbooks and publications from distinguished authors within the academic environment. The basics
of fundamental theoretical aspects within the fields of explosion effects, dynamics, material response
and inelastic behavior were studied and explained. The knowledge gained from these studies was used
to define the physical problem numerically in the FEA study and thus ensure that the FE simulations

would generate reliable results.

' A full nonlinear FE formulation accounts for dynamics, plastic material behaviour and nonlinear kinematics.
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The underlying theory behind the approximate analytical methods developed by Biggs (1964) was
explained and a numerical Matlab script was created for calculating DAFs in accordance with the
Linear-elastic Biggs method.

1.4 Limitations

The numerical study is limited to evaluation of one specific pipe rack configuration, verified
according to the conventional method in a previous AKSO project.

Among the load effects associated with the blast phenomena, only the generated pressure-pulse was
considered. Secondary effects such as impact from flying objects were excluded from the scope.

Structural steel is the material mainly utilized in the design of a pipe rack assembly. Exceptions are
found for some pipe lines designed from an anisotropic, non-metallic material. However, the
theoretical and numerical study is limited to steel material models.

No other approximate methods than the SDOF analogies defined by the Linear-elastic Biggs method
and Elasto-plastic Biggs method were studied.

1.5 Outline

Chapter 2 contains a theoretical study on characteristics of explosions and load effects on structures
at interaction with a blast wave.

Chapter 3 covers fundamental theory within the field of structural mechanics associated with a severe

dynamic structural response during an accidental explosion event.

Chapter 4 describes the theory behind the approximate analytical methods evaluated within this
thesis. Verification procedures utilizing these analytical methods are also outlined in detail.

Chapter 5 and referenced appendices provides a complete documentation of the FEA study
conducted within this thesis.

Chapter 6 contains results and conclusions associated with the FEA study and evaluated verification

procedures.

Chapter 7 discusses the results and conclusions presented in the preceding chapter and provides
recommendations on further work.






2 Characteristics of Explosions

2.1 Types of Explosions

An explosion is defined by CCPS (1996) as the phenomena of blast-pressure pulse generation
through rapid release of energy. The energy that has been stored prior to release can be of various
forms such as chemical, nuclear or electrical, but independent of source the energy release may only
be defined as “explosive” if it produces a pressure-pulse that can be heard (CCPS, 1996). Except
from the audible blast, coupled into the air as airblast and into the ground as ground shock, the
general explosion is also characterized by a flash due to energy release through thermal radiation
according to Alfawakhiri and Marchand (2004). However, the component of the explosion mainly
responsible for structural damage to a building is the generated pressure-pulse, propagating outwards
into the surrounding atmosphere as illustrated in Figure 2-1 (ASCE, 2010). This will be made

evident when discussing load effects associated with accidental blast scenarios later on.

Direction of pressure-
4 pulse propagation

Figure 2-1 Propagation of blast-pressure pulse from explosion occurring at ground surface.

Most of the material on structural blast-resistance is developed considering explosion events such as
acts of terrorism, where the explosions originate from the use of TNT or other high-yield explosives
in military applications. However, these types of explosions are not necessarily of the same nature as
the accidental explosion events that govern the possible blast scenarios in petrochemical facilities
(ASCE, 2010). This observation is confirmed by (CCPS, 1996), stating that chemical energy is the
most relevant energy source to be considered for such scenarios. However, it is important to
understand that the source of energy itself does not necessarily govern the load effects generated by
an explosion. The governing factor is wheatear the explosion can be categorized as a detonation or a
deflagration, the former being associated with high-yield explosives such as TNT.

The chemical energy release can be categorized as either a deflagration or a detonation, where the
difference between them lies in the mechanism of energy transfer from reacted material to unreacted
material. The energy transfer in a deflagration happens through heat and mass transfer and the
explosive reaction propagates relatively slowly into the surrounding unreacted material as it is heated



above autoignition temperature. The speed of energy transfer through this process is always less than
the speed of sound. On the contrary, the process of energy transfer to unreacted material in a
detonation is very rapid, with supersonic propagation speeds. The governing transfer mechanism for

detonations is through shock compressive heating (CCPS, 1996).

As a first step in the process of determining blast loads for structural design in a petrochemical
environment, the most relevant types of accidental explosions must be identified. ASCE (2010)
provides this information categorized into four basic types; (1) Vapor Cloud Explosions (VCE), (2)
Pressure Vessel Explosions, (3) Condensed Phase Explosions and (4) Dust Explosions. Among these
four types, vapor cloud explosions are considered the primary concern for processing plants. VCEs
are gas explosions that generate pressure-pulses through the combustion process of a premixed gas
cloud. They are often categorized as deflagrations, but if extremely energetic in nature, they are better
defined by the mechanisms of a detonation. Consequently, both detonations and deflagrations are
possible accidental events in petrochemical facilities and both phenomena are therefore to be

described further.

For detailed descriptions of the four types of explosions mentioned above, reference is made to
publications such as (CCPS, 2010). For the purpose of this thesis, focus is shifted towards the
different blast pressure-pulses that the various explosion types give raise to. As described in (ASCE,
2010), these pressure-pulses have the characteristics of either a; (1) Shock wave, associated with
detonations, or (2) Pressure wave, characteristics of a deflagration.

2.2 Blast Pressure-Pulses

As a result from the distinct differences between the two energy release processes, the characteristics
of the blast-pressure pulse generated by a deflagration (shock wave) or a detonation (pressure wave)
will evidently be different in nature (CCPS, 1996). As summarized by (ASCE, 2010), the shock wave
is characterized by an instantaneous rise in overpressure? while the pressure rise for a pressure wave
happens gradually. Overpressure is also referred to as incident pressure or static pressure, as it defines
an isotropic state of pressure. This is made clear as the features of both pressure waves are studied
more thoroughly. It should be noted that the features described within this section capture the initial
blast wave characteristics, prior to any interaction with obstacles or other disturbances. At this state,

the term free-field blast wave is adopted.

The characteristics of a nuclear-blast (shock wave), originating from an explosion at or near the
ground surface, is explained by Biggs (1964) as a circular chock front propagating from the epicenter
of the surface burst. The shock wave created from the blast has the same distribution of overpressure
Ds at any instant in time, traveling with a velocity U along a radial line in all directions from the
epicenter or ground zero (GZ). Its pressure-pulse profile is given by Figure 2-2, where the peak
pressure p, is found at the chock front.

* Overpressure is defined relative ambient atmospheric pressure
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Overpressure

Feon
Py

_—--‘--—.—-—'-F H
Distonce
Figure 2-2 Shock wave propagating from GZ of a nuclear surface burst. Biggs (1964, p.277)

As the chock front strikes an object, Biggs (1964) breaks down the total loading effect into three
components; (1) initial diffraction effect, (2) effects from general overpressure ps and (3) drag effects.
Although a separate section has been devoted to discuss these effects, the drag effects are briefly
expanded upon at this stage in order to continue the discussion on blast wave characteristics. As
explained in (AISC, 2013), a dynamic pressure will develop behind the shock front as a result of air
particle movement and impose drag loads on the structure similar to those caused by a wind gust.
This dynamic pressure is denoted pg by Biggs (1964), who illustrates the variation of overpressure
and dynamic pressure over time in Figure 2-3. The durations of the positive phases of overpressure
tap and dynamic pressure tqq4 are shown for purposes that will be explained later on.

o 750
£
a

Pgo

d
Ps Ir dd
lip~— " Time
Figure 2-3 Pressure-time curves for shock wave overpressure and dynamic pressure at a fixed point on ground.
Biggs (1964, p.277)

Biggs (1964) also show the important relation of how the peak values and durations of the pressure
components, i.e. Psg, Pao» tap and tqq , vary with the distance from GZ. Figure 2-4 shown below
account for the effects imposed specifically by a weapon size of 1 megaton (1-MT), and the pulse
durations shown for the nuclear blast are many orders of magnitude greater than those applicable to
blast-resistant designs in a petrochemical environment. Still, it serves the purpose of illustrating
general trends. It is seen that as the distance from point of burst increases, the peak overpressure

decays and the pulse duration lengthens. These relations apply in general to any type of explosion, for
both shock and pressure waves, according to (ASCE, 2010) and (AISC, 2013).

In addition, the velocity of the blast-pulses will decrease as the distance from GZ increases.
According to (Bjerketvedst, et al., 1993), a shock wave typically propagates at an initial velocity of



1500-2000 meters per second whereas for a pressure wave the range is much wider and from the
order of 1-1000 meters per second.

1000 — T TTTTT T T TTTTT H =
700} -
aoof- \ ]
. T \ - s
% 100k | £4q (Dynamic pressure)
§ nof E
: F 7 4 o .
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s \ ] ] ot pad
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Distance from ground zero, f+
Figure 2-4 Variation of shock wave parameters with distance from ground zero. Biggs (1964, pp. 278-279)

The distribution of overpressure characterizing a pressure wave, to be compared to the shock wave in
Figure 2-3, is illustrated in Figure 2-5. Note that only the positive phase duration t is shown, but

that a negative phase exists similar to what was shown for the shock wave profile.

P

tg lt

Figure 2-5 Pressure-time curve for a pressure wave. ASCE (2010, p.15)

The pressure wave has a finite rise time to peak overpressure Py,. Compared to a shock wave, its peak
overpressure is smaller in magnitude and the wave duration is longer (CCPS, 1996). It should be
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noted that a pressure wave eventually will develop a shock front and acquire the characteristics of a
shock wave. The theory behind this phenomenon is described in (CCPS, 1996) and illustrated in
Figure 2-6. As the higher-pressure intervals of the wave contains higher temperature material and
thus travels with a greater speed, the arbitrary wave configuration shown in Figure 2-6 (a) will
gradually transform into the wave configuration shown in Figure 2-6 (c).

Pressure
Pressure

DA g

Direction of Travel ———= Direction of Travel ——= Direction of Travel ——
(a) (v) (©

Figure 2-6 Development of shock front in arbitrary pressure wave. CCPS (1996, p.133)

Since the process of energy transfer for a deflagration is slow in nature, the shock front might not be
fully developed until the wave is at a significant distance from GZ, which for a weak deflagration

could imply that the magnitude of the blast wave at this point in time has decayed to that of a sound
wave (CCPS, 1996).

Considering that the siting conditions on an offshore facility is characterized by a very limited
amount of space, one can conclude that no mitigating effects due to large distances from GZ and the
structure to be analyzed can be accounted for. The initial characteristics of a pressure wave shown in
Figure 2-5 must therefore be assumed to define the governing blast-pulses that structures offshore
might experience.

The severity of structural damage caused by an explosion is mainly governed by the peak pressure and

positive phase duration, which define the idealized blast-pulse illustrated in Figure 2-7 (CCPS, 1996).

a) Shock Wave b) Pressure Wave

Figure 2-7 Idealized triangular blast-pulses for (a) shock waves and (b) pressure waves. ASCE (2010, p. 19)

The idealized blast pulses are useful tools in blast-resistant design procedures, as they may be
converted into impulses to load structural components in analyses. Through linearization of the
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overpressure profiles shown in Figure 2-3 and Figure 2-5, triangular blast pulses are defined
according to Equation (2.1) by the area under the pressure-time curves in SI units Pascal-seconds.
These represent the free-field blast-pulses prior to interaction with a structural component, and are
denoted Ip within this thesis.

ta
Ip = f P(t) dt =0.5 P, - tg (2.1)
0

where P;(t) define the function of overpressure over time; Py, is the peak overpressure; and ty is the
positive phase duration.

The impulse I, which quantifies the total loading that a structural component will feel, has SI units
Newton-seconds. The impulse must be specified in relation to the component being subjected to the
pulse excitation, and is obtained by multiplying the pressure-time integral in Equation (2.1) by the
area A of the structural component facing the blast wave according to Equation (2.2).

]
Iy= Af P(t) dt =A-05- P, - tg (2.2)
0

Blast data is naturally provided on the format prior to interaction with the structure to be analyzed,
specified as pulses. As shown later on, many simplified methods of defining blast pulses for analyses
involve manipulating Equation (2.1) to obtain an expression for the phase durations, given by

Equation (2.3):
t, = 2Ip/Pyy (2.3)

As seen in Figure 2-7, the negative phases of overpressure have been excluded when idealizing the
blast waves. Most of the literature agrees on the validity of this approach since it is assumed to reduce
the structures peak response in the general case. As stated by Biggs (1964, p.278), the negative phase
give rise to less significant suction effects that “may normally be ignored for structural design
purposes”. However, there is an exception to the rule as explained in (AISC, 2013). If the structure
subjected to the impact has a short fundamental period relative the pulse duration, the time span
where suction forces are present might concur with the structure’s rebound phase, thereby causing a
new extreme response scenario. Both (AISC, 2013) and (DOD, 2014) states that open-frame
structures, such as pipe racks, are especially vulnerable to these effects. However, this thesis will not

cover any simplified methods available to account for the negative phase and reference is made to
(DOD, 2014) for further reading on the topic.

2.3 Load Effects on Structures
An implication of the research having focused on explosions from use of TNT or other high-yield
explosives is that most available data and empirical methods used for simplified blast load calculation
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relate to shock waves. Numerous of design charts and simplified equations are provided by (DOD,
2014) to help estimate free-field shock wave parameters that govern the blast design loads. Although
this thesis primary focus is not directed towards evaluating or documenting these empirical methods,
some of the material covered by the literature is reproduce as it would help broaden the general
understanding of blast load effects.

Figure 2-8 illustrate the principle of “equivalent shock loading” that can be applied to a pressure

wave in order to make use of some of the empirical relations related to shock waves.

pl

P, [ Equivalent Shock Loading
P R Blast Loading
t; ty t

Figure 2-8 ustration of “equivalent shock loading”. ASCE (2010, p.20)

The equivalent shock-pulse is assigned the same peak overpressure Py, as the pressure wave. A
fictitious duration, denoted t4 in Figure 2-8, is then calculated from the constraint that both pulses
must be of the same magnitude according to Equation (2.3).

The remaining part of this section will be devoted to the load effects imposed on a structure as it
interacts with the blast wave. It should be mentioned that other damaging effects are associated with
explosions, such as fragments from a bursting vessel or ground shock loads. However, the most
destructive component of an explosion will usually be the blast wave (DOD, 2014) and no other
components will be considered further.

It is found that one specific type of structure is widely used within the literature when discussing and
illustrating load effects on structures. The structure referred to is an above-ground rectangular
building without openings, with one side facing the shock wave which is assumed to act
perpendicular to the front wall of the building. Furthermore, GZ of the explosion is assumed to be at
or near the ground surface, a conservative assumption compared to an airblast according to (DOD,

2014) as peak overpressures will see amplification effects due to ground reflection.

When the blast wave interacts with an object, a sequence of events that constitute the total load
effects follows as illustrated in Figure 2-9. The main three components defined by Biggs (1964) in
previous sections are further explained by Rogers (1959). As the shock front reaches the building,
Figure 2-9 (b), the blast wave is reflected on its front face, subjecting it to a reflected pressure in
addition to the peak overpressure found at the shock front. Next, the blast wave is diffracted around
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the sides of the building, Figure 2-9 (c), meaning that the amplified pressure initially acting on the
front face due to reflection effects, rapidly drops off to the initial peak overpressure value, which is
the load that the sides and the roof of the building will see. At this stage, the rear face of the building
has not yet been subjected to any pressure loads. Consequently, a pressure differential between front
and rear faces exist which give rise to net translational forces in the direction of the wave travel. This
pressure differential is referred to as the diffraction effect. In addition, the previously discussed
dynamic pressure will generate drag forces on all structural components that lie in the path of the

blast wave.
shock front
shock front
7, o/
a) Shock front approaches structure
rarefaction
vonex . WAVE e, shock front
rarefaction . shock front f l
wave ) reflected
shock
reflected &
shiock front L
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front A7 77

b) Shock reflected from front surface and diffracts over structure

shock front shock front
vortex: . .
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shock shock

front
front ?
FI7ETP7T. I vortex

¢) Diffraction continues across rear surface

shock front shock front
vortex IS
7777I7TTTITI7I7: vonex?

d) Diffraction is complete. Shock front passes beyond structure

Figure 2-9 Blast wave interaction with rectangular building. ASCE (2010, p.23)
The significant difference between a typical pipe rack structure and a solid rectangular building must

be addressed. Focus is therefore shifted towards clarifying what load effects are dominant and
applicable to open frame structures such as a pipe rack.
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Important conclusions are found in the literature on blast, stating that the drag loads from the
dynamic pressure will emerge as the dominant load effect for open-frame structures (ASCE, 2010).
Loads arising from diffraction effects will not be as critical since all structural components will
experience a rapid equalizing of overpressure (Rogers, 1959). Specific recommendations are provided
by OMEA (2003, p. 5), stating that diffraction and reflection effects can be neglected for obstacles
with dimensions smaller than 0.3 meters. Concluding that the dynamic pressure will indeed be a
governing factor in the process of determining blast loads on pipe racks, it is given more attention
when defining simplified tools and equations that can be used to estimate the different loading

components.

From fluid mechanics it is known that the dynamic pressure simply depends on the air density and
particle velocity. Enforcing the wind analogy, a shape factor is used to convert the dynamic pressure
to a drag load q,, acting on a structural component as suggested by Biggs (1964) in Equation (2.4).
Drag loads are directional, i.e. they are mathematically defined by a vector in space that may strike
the surface of an object from an infinite number of angles depending on location of GZ and the

direction of wave travel.
o = Pa-Ca (2.4)

where py = Epv2 is the dynamic pressure; p is the density of the air particles; v is the particle velocity;

and C, is the drag coefficient associated with the structural component.

Simplified methods that relate dynamic pressure to overpressure are often provided in the blast-
literature. A dynamic design pressure may be taken as 1/3 of the peak overpressure according to
(OMEA, 2003), with a duration calculated according to Equation (2.3) using the overpressure-pulse
as input. An alternative approach is given by (DOD, 2014) in Figure 2-10, illustrating the empirical
relationship between peak dynamic pressure and peak shock-wave overpressure.

A typical pipe rack configuration is a structural system that consists of individual components (frame
members and piping) typically smaller than 0.3 meters, indicating that drag pressures according to
Equation (2.4) should be assigned to each individual member. However, the configuration itself is
very congested, as an extensive amount of piping is usually fitted within the frame structure. Hence,
mitigating shielding effects might prevail when considering the entire pipe rack as one structural unit.
Conclusions on this topic, relating specifically to pipe rack structures, are drawn by FABIG (2005). It
is stated that conventional design codes for wind load may be consulted to calculate dynamic blast-
pressure loads and shielding effects, as the two load cases may be considered equivalent.
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Figure 2-10 Peak shock wave overpressure versus peak dynamic pressure, density of air and particle velocity.
DOD (2014, Figure 2-3)

The phenomenon of reflected pressure is further explained in (Bjerketvedt, et al., 1993). When the
blast wave hits the surface of an obstacle, the dynamic pressure following the wave has to come to an
immediate stop. At this point, the dynamic pressure is transformed into a static pressure which in
principle constitutes the total reflection effect. The peak reflected pressure P can be determined
empirically by factoring the peak overpressure Py, with a reflection coefficient C, according to
Equation (2.5). The coefficient depends on the magnitude of the peak overpressure, angle of incident
of the wave front relative to the reflecting surface and the type of blast wave. €, will always be greater
than 2 if the wave front strikes perpendicular to the surface and may be determined from design

charts provided by ASCE (2010, p. 18).

P = Pso'Cr (25)
The reflected pressure will impose an additional impulse loading on small objects subjected to free-
field shock waves as described by (Bjerketvedt, et al., 1993). Figure 2-11 illustrates this contribution

to an idealized, free-field drag-pulse where the dynamic pressure has been converted to drag pressure
through Equation (2.4). The trace of the modified pressure-pulse in Figure 2-11 is really the shape of
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the impulse loading that the object will feel. The duration of the reflective pulse is roughly obtained
by calculating the time it takes for the blast wave to pass the object, i.e. dividing the dimension of the
object in direction of wave travel with the wave’s propagation speed. Hence, the impact of this
additional impulse loading will be less significant if the dimension of the object, in this case the pipe
diameter, is small.

Shock wave
Reflected Pressure
o
5
1) 2) 3)
Time
Figure 2-11 Modification to idealized blast-pulse due to reflection effects ar interaction with small object.

Bjerketvedt, et al. (1993, p.111)

2.4 CFD and Design Load Output

The design loads used for structural verification in an accidental explosion event at AKSO are
provided by safety consultants and have been derived through computational fluid dynamics (CFD)
software. This approach is common within the offshore industry as facility layouts are very confined
and complex in nature (ASCE, 2010). It is of great importance for engineers to be able to interpret
the provided design loads for application to specific structural analyses, as the load output itself is
currently delivered to AKSO’s structural department in a very general format, with little information
on the process behind the load derivation. Hence, a descriptive summary of the process of safety
assessment and CFD analysis that generate the design load output utilized by the conventional and
the proposed method will be covered next.

CFD will allow for simulations of blast wave propagation in a dense environment full of obstacles,
typical features of the governing siting conditions at an offshore installation (ASCE, 2010). The
design blast loads provided to AKSO are based on CFD simulations of cloud explosions, i.e. VCE, by
the use of FLACS code. The formation and dispersion of the gas cloud is analyzed, where the FLACS
code account for the complex interaction between the gas flow and obstacles in its path. The FLACS
analysis can provide many output parameters characterizing the blast-pulses, the most important
being the pressure-time curves of incident and dynamic pressure (Bjerketvedst, et al., 1993).

The information provided below is obtained from two typical types of project documents that are
established by safety consultants for each AKSO project. The document referred to as load
specification is utilized by structural engineers for analyses and contain design-pulse parameters in
tabular form. The extensive process of safety assessment and blast simulation from where the design

loads are established is documented in the report referred to as the rotal safety assessment.
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More than a hundred simulations are usually performed within each module of the platform, taking
into account different gas cloud sizes, location of leakage points and ignition points, degree of
confinement, venting and congestion in the area, and several other factors that determine the nature
of the explosion. The size of the modelled gas clouds typically vary from 2%-50% of the total volume
of the module being analyzed. As a result of the many input parameters, a great number of blast-
pressure pulses are obtained, varying in magnitude, duration and location of origin.

It is also important to emphasize that the process of blast-load determination is probabilistic in
nature, governed by international standards such as (NORSOK Z-013, 2010). As an example taken
from a rotal safety assessment report, the ignition events with explosive potential were determined to
occur every 676 years on average. Such probability data will be considered when calculating pressure
exceedence curves, which are used to determine the design loads referred to as dimensioning accidental
load when illustrated in Figure 2-12. In addition, a safety margin will be added to obtain the final
design loads to be implemented in the structural analyses. Note that this safety margin is only
applicable to the magnitude of design pressures, not the pulse durations. This approach is a
requirement from the Petroleum Safety Authority (PSA) and shall account for analytical uncertainties,
future modifications and design changes.

0,35
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01
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Figure 2-12 Safety margin in blast design loads.

The idealized blast-pulse shown in Figure 2-13 illustrates the assumed characteristics of the pressure-
time curves (both incident and dynamic pressure), derived from a safety assessment process in an
offshore topside environment. The graphical illustration is provided in the load specification along
with design blast-pressures and phase durations relating to a specific topside module. In general, only
the positive phase parameters, p; and t; , are specified by the safety consultant. For each of the
defined modules in the topside analysis model, the following is usually included in a load

specification:
i.  Local overpressure
ii.  Global overpressure
iii. ~ Dynamic pressure
iv.  Positive phase durations
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Figure 2-13 Idealized design blast-pulse from load specification report.

The blast wave components listed above are calculated for each explosion simulation in FLACS, at
specific target areas given by either pressure panels or monitor points. Local overpressures are
calculated at different 3x3 meter areas, such as a region of a blast wall. For global overpressure
calculations, the panels have the size of an entire deck or wall. The overpressure data account for all
the load effects discussed in previous sections, both reflective pressures and pressure differentials. The
dynamic pressure is calculated at a large number of monitor points. The magnitude of the dynamic
design-pressures, prior to adding the margin load, is obtained by first excluding local peak values at
the most severe monitor points, before calculating the maximum average value in all of the 5x5x5
meter volume blocks that define the total module volume. An interesting note is that the highest
dynamic pressures on offshore topside modules are often registered near vent openings.

The dynamic pressure is calculated in FLACS according to the formula of py given in association
with Equation (2.4). Naturally, these calculations do not account for reflective or diffraction load
effects arising from interaction with the specific structure to be analyzed, e.g. a pipe rack. For
circumstances where only the dynamic pressure-component may be considered for structural analyses,
the studied safety assessment documents provide the same recommendations as (OMEA, 2003),
limiting the allowable object dimension to less than 0.3 meters.

FLACS code is not capable of calculating pressure-time curves that capture the load effects from wave
interaction with small objects (<0.3 meters), as the mesh size of the analysis model is too course.
However, it is possible to capture these effects for pipe rack structures, where many small objects are
grouped close together. The “true” pressure-variance across a specific pipe rack section could
therefore be calculated by locating monitor points inside and immediately outside the rack section. If
this approach is adapted, the FLACS load output would account for all interactive effects, including
shielding effects and the effects of flow acceleration through the dense rack environment. The latter
effect of flow acceleration is associated with an increase in turbulence as the fluid passes through a
dense environment of obstacles, resulting in an increase of pressure across the length of the rack in

direction of the wave travel. Hence, the shielding and flow acceleration effects counteract each other

(FABIG, 2005).
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It has been discovered that no distinction between phase durations of incident and dynamic pressure-
time curves was made in certain load specification documents. In general, the range of 50 to 200
milliseconds was attached to all design-pulses. These blast wave durations are calculated according to
Equation (2.3) for each panel or point where the non-idealized, true pressure-pulse has been recorded
in the FLACS analysis. The magnitudes of the dynamic pressure-pulses are obviously used as input in
Equation (2.3) when calculating drag-pulse durations. Figure 2-14 show pulse duration plots where
data from all simulations in a specific module have been included.
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Figure 2-14 Pressure-duration plots calculated from FLACS analysis.

It is clear that the dynamic pressure-pulses (plot labeled “Drag”) tend to have shorter durations than
those derived from the general overpressure (calculated as local pressures acting on ceiling, deck and
wall for the data shown in Figure 2-14). This trend has been observed for all of the analyzed modules
and must therefore be considered to hold in general for topside-environments offshore. Note that the
unit of pressure is given in barg or bar(g), where 1 barg equals 100 kPa.

2.5 Concluding Remarks

The first conclusions to be drawn relate to the characteristics of the blast-pulses applicable for
analyses of pipe rack structures in an offshore environment. It is concluded that pressure waves
generated by deflagration type explosions, such as cloud explosions, are the most relevant. The free-
field, idealized blast pulse that best captures the “true” nature of this blast scenario is given by Figure
2-7 (b). An identical idealization is associated with the pulse parameter data provided in the load
specifications in order to define the design blast-pulse to be implemented in the structural analyses

and verification process.
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As made evident in previous sections, the shape and magnitude of the impulse that will load a
specific component in a structural system depend on what load effects have been accounted for. For a
pipe rack structure, it is concluded that the dynamic pressure will be the dominant load component
and that reflected and differential pressures are less significant when defining the impulse to be
assigned individual members. Hence, a design-pulse specified from dynamic pressure-curve data may
be directly considered in analyses of a pipe rack without accounting for other load effects.

An important conclusion is that dynamic blast-pressures and ordinary wind gusts may be treated as
equivalent load scenarios. This implies that the methods developed for wind load application to
structural systems, found in all international design codes, may be used to calculate drag loads on
structural members. These codes may also be used along with sound engineering judgment to
account for shielding effects in the structural assembly.

Conclusions should also be drawn in relation to the study of the tozal safety assessment and load
specification documents, as well as the method of CFD analysis. First, the phase durations of the
dynamic pressure-pulses documented in safety assessment reports have been found to be shorter
compared to those provided in the corresponding load specification. This observation should be
discussed further with the people responsible for providing the load specification in an attempt to
increase the accuracy of the load output associated with drag-critical structures.

The accuracy of the load specification could be further improved considering pipe rack structures, as
FLACS code has the ability to calculate the pressure variance through a specific rack section located
within a module, thus accounting for all effects from interaction with the structure. However, the
level of detail in the current FLACS analysis approach would have to be increased in order to obtain
such specific load output. Naturally, any change in the volume of the safety assessment scope will
induce increased costs. To establish if such cost would exceed possible benefits, further studies on the
topic is suggested, aiming to compare the design-loads implemented in structural analyses with the
results from a detailed FLACS analysis of a specific pipe rack.

An important general note to be made in relation to blast loads is that any process of determining
design-pulses is full of uncertainties. Even though the most sophisticated methods available is used to
determine the design loads in AKSO projects, the safety assessment process and blast simulation
through CFD have their flaws. These are defined primarily by the sensitivity to how well the analysis
model corresponds to actual siting conditions and the probabilistic nature of the load derivation
process. If an actual explosion event occurs, chances are that the generated blast-pulse that will
impose loading on a pipe rack will be different from the design-pulse accounted for in the analysis
and verification process. Again, it is stressed that this fact persists although the best available methods
have been employed and that the conducted safety assessment is in accordance with international
standards that govern such processes. However, this inescapable level of uncertainty that is associated
with determining blast loads is often referenced within the blast literature to justify implementation
of approximate analytical methods such as the Linear-elastic Biggs method and Elasto-plastic Biggs
method.
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3 Structural Mechanics in Blast Scenario

3.1 Structural Dynamics

Many of the available blast-resistant design guides, such as (ASCE, 2010) and (AISC, 2013) refer to
the publication by Biggs (1964) when discussing the dynamic aspect of the blast phenomena. Biggs
himself states in that same publication that there is no distinction to be made between explosions and
other dynamic loading scenarios in terms of the governing fundamental theory of structural dynamics.
For simplicity, and due to the fact that the theory on structural dynamics is well established, the

work of Chopra (2011) is implicitly used as the main reference for this introductory subsection on

structural dynamics unless mentioned otherwise.

The most fundamental aspect of structural analysis in general is that displacements, stresses or other
field variables of interest must be obtained during a state of system equilibrium. Using an example
that many structural engineers are familiar with, field quantities in a simply supported two-
dimensional beam, such as shear or moment distribution, may be obtained by simply solving the
equations of static equilibrium of forces.

For dynamic problems, equilibrium is governed by the equation of motion (EOM) which is derived
from Newton’s second law of motion, shown in Equation (3.1) for a linear-elastic SDOF system.
The EOM applies to both single degree of freedom systems (SDOF) and multi degree of freedom
systems (MDOF) as shown in the following subsections.

mii(t) + cu(t) + ku(t) = p(t) 3.1)

where i, 4 and u are the time-dependent accelerations, velocities and displacements of each DOF;
m is the mass associated with the DOF; c is the damping associated with the DOF; k is the stiffness
associated with the DOF; and p(t) is the time-dependent (i.e. dynamic or transient) external force.

Since this thesis focus is on inelastic structural response, the governing format of the EOM as shown
in Equation (3.1) will have to be slightly modified to account for the subsequent effect that the
stiffness of the structural system will be displacement-dependent. For inelastic dynamic systems,
Equation (3.2) prevails.

mii(t) + cu(t) + k(wu(t) = p(t) (3.2)

The EOM is central in the development of a dynamic numerical FE formulation implemented in
analysis software such as Abaqus. How to construct such a FE formulation will not be explain within
this thesis. For general information on the topic, reference is made to Krenk (2009) where nonlinear
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FE formulations are developed for different numerical elements such as beams and continuum using
the theory of minimum potential energy to define the weak form formulation of the EOM. For
information on the implicit, dynamic FE formulation governing simulations conducted in
Abaqus/Standard within this thesis, reference is made to (Abaqus, 2015b).

3.1.1 Damping in Blast Scenario

When considering a dynamic structural response to pulse excitation, important conclusions with
respect to the damping of the system, denoted ¢ in Equation (3.2), should be drawn already at this
stage. The damping coefficient/matrix (SDOF/MDOF) serves the purpose of quantifying the
combined effects of a system’s energy-dissipating mechanisms. Consequently, damping is the
phenomena accounting for the gradual decay of dynamic motion in a system that has been subjected
to external loading over a finite period of time. If a structural system would not see any damping
effects, it would simply enter a steady-state of free-vibration, oscillating back and forth about its
initial equilibrium position in eternity. The sources of energy-dissipation in a structural system are
many, such as friction between components in a steel connection design, thermal radiation due to

repeated elastic straining or air resistance.

Damping effects are usually ignored in dynamic analyses of explosion events. Since the peak response
of a structure subjected to blast loading will occur almost instantly and within the first cycle of
motion, damping effects will have little impact on the peak displacements and are small relative to
the effects of inelastic deformation (ASCE, 2010). As explained by Chopra (2011), damping effects
are critical when evaluating a structure subjected to a harmonic excitation frequency close to its own
natural frequency. For this scenario, the amount of damping will control both the amplitude of the
system’s steady-state response and the rate at which it is obtained. However, for structures subjected
to pulse-type excitations such as blast waves, Chopra (2011) concludes that the level of conservatism
in neglecting damping is small and that the accuracy in the computed response is not very
compromised by doing so.

Damping will therefore be ignored in any analyses carried out within the scope of this thesis, and the
governing EOM is reduced to the format given by Equation (3.3):

mii(t) +k@u(t) = p(t) (3.3)

3.1.2 SDOF System

The SDOF system naturally consists of one DOF, defining the one-dimensional motion of a single
mass component m subjected to an external load component. The mass component is assumed to be
supported by a massless structure, providing stiffness k in the direction of motion. Damping
properties are also idealized and incorporated into the one-dimensional EOM through the damping
coefficient, ¢. No structural system is this simple in nature, as the mass, stiffness and damping
properties in reality will depend on the combined contribution from all structural elements. However,
the SDOF analogy is frequently used for simplified dynamic analyses and most of the approximate
analytical methods developed for explosions events are based on this idealization.
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Chopra (2011) demonstrates how the SDOF analogy can be applied to a two-dimensional frame
shown in Figure 3-1 to determine its lateral displacement time-history response.

m I)({) ,’I - - p(r)
fs =
fo <=~ fo <=
(a) (b) (c)
Figure 3-1 Hlustration of a two-dimensional frame as a SDOF-system governed by the EOM. Chopra (2011,

p- 14)

Figure 3-1 illustrate the components of the EOM as given by Equation (3.1) in terms of forces,
where the externally applied force p(t) must be equal to the sum of inertia forces f; = mii, internal
forces fs = ku, and damping forces fp = ctt for equilibrium to hold. Reference is made to Chopra
(2011) for guidance on simplified methods to use when establishing the scalar values of mass,
stiffness and damping properties of the frame shown in Figure 3-1 that allows for a SDOF analogy
response to be evaluated.

The SDOF-system is often visualized by the mass-spring-damper model shown in Figure 3-2. Closed
form solutions of a SDOF-response are available in textbooks such as Chopra (2011) for different
types of standardized external excitations. The derivations consist of solving the second order
differential equation defined by the governing EOM along with applicable initial conditions. The
linear-elastic SDOF response to pulse-excitation will be discussed in detail within Chapter 4, as the
Linear-elastic Biggs method is based on this idealized response-model. A modified SDOF-model
accounting for inelastic capacity is also included in Chapter 4 as the theory behind the Elasto-plastic
Biggs method is explained. However, the mathematical process of solving differential equations
governed by initial value problems is excluded from the scope, and closed-form solutions will simply
be reproduced in their final format. Reference is made to Chopra (2011) for description of the full
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Figure 3-2 Mass-spring-damper model illustrating the components of a SDOF-system. Chopra (2011, p.20)
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3.1.3 MDOF System

In order to expand the dynamic analysis and thus obtain more information on the overall response of
a structural system, the analytical model must be discretized using multiple DOFs. When more
DOFs are added to the analytical model, i.e. when the mesh is refined, the level of detail in the
analysis increase and more data can be extracted. However, a fine mesh will increase the
computational cost and is not always required to achieve the purpose of the individual analysis task.

For the MDOF-system, the EOM is formulated in terms of matrices and vectors, as the response of
multiple DOFs is being considered simultaneously. The general format given by Equation (3.1) for
an elastic system is written according to Equation (3.4), where upper case bold letters denotes a

matrix and lower case bold letters denotes a vector.
Mii(t) + Cu(t) + Ku(t) = p(t) (3.4)

where i, %t and u contain accelerations, velocities and displacements related to each DOF; M is the
mass-matrix; € is the damping-matrix; K is the stiffness-matrix; and p(t) contains the external force
components acting at each DOF.

The field variables to be solved for will usually be coupled through the off-diagonal terms in the
mass-, damping-, and stiffness-matrices, implying that analytical closed-form solutions for SDOEF-
responses cannot be directly applied to individual DOFs. The method of modal analysis can be used
to uncouple the system of equations by identifying its natural modes of vibration. For each separate
mode of vibration, the EOM will be uncoupled and the response may be computed at each DOF
according to the closed-form solutions applicable to SDOF-systems. The modal responses will then
be combined to obtain the total response.

The concept of natural modes of vibrations is explained in the section on dynamic properties of
structural systems below, but the method of solving for MDOF-response through modal analysis will
not be discussed further as a full nonlinear FE formulation will be utilized within this thesis. Modal
analysis is only applicable to linear-elastic systems where it can be preferred over direct integration
methods in numerical solution software due to savings in computational cost (Abaqus, 2015a).

3.1.4 Dynamic Properties of Structural Systems

The dynamic response of a structural system will depend on the nature of the external loading, but
also on the dynamic properties of the structure itself. The nazural period of vibration of a structural
system, denoted T;, and commonly referred to as natural period only, define the time required for an
undamped system to complete one cycle of vibration. As discussed previously, an undamped system
subjected to a finite dynamic excitation will eventually enter a steady-state of free-vibration as the

force is removed, as illustrated in Figure 3-3.

In order to calculate the natural period of a system, its natural circular frequency of vibration has to be
determined according to Equation (3.5).
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wn=\/% [rad/s] (3.5)

where w,, is the natural circular frequency; k is the stiffness of the structural system; and m is the
mass.

The natural period T, may now be defined according to Equation (3.6) in units of seconds.

21

Tp=— (3.6)

Wn

For completeness, the dynamic property defining the number of cycles per second is provided in
Equation (3.7). This property is referred to as a systems natural cyclic frequency of vibration f,,, in
units of cycles per second or hertz.

fn=g =1 (3.7)
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Figure 3-3 Free vibration of undamped, linear-elastic SDOF system. Chopra (2011, p.40)

When defining dynamic properties of damped systems undergoing free vibration, the terms critical
damping coefficient and damping ratio are employed. These properties are important for certain load

scenarios, but may be ignored in analysis of response to pulse-excitations for reasons provided in
Section 3.1.1.

The dynamic properties covered by Equations (3.5) to (3.7) relate to the free vibration phase of a
linear-elastic, undamped structural system, and depend on its stiffness and mass. For SDOF-systems,
the application of these equations is straight forward. For MDOF-systems however, the dynamic
properties cannot be entirely defined by a single set of scalar function values. When discussing
dynamic properties of MDOEF-systems, the term natural modes of vibration must be introduced. The
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concept of natural modes of vibration also relate to the free vibration response of an undamped,
elastic system.

Contrary to the free vibration of an SDOF-system shown in Figure 3-3, the corresponding response
of an MDOF-system cannot be defined by a single harmonic motion. Instead, the dynamic motion
of the entire system must be defined from the harmonic response of each individual DOF within the
system, which will be different in nature depending on the governing natural mode of vibration.

A MDOFEF-system’s natural modes of vibration may be defined as follows. If the system’s DOFs are
given initial displacement conditions prior to release that define a specific deflected shape maintained
during the following vibration phase in a simple harmonic motion, then this deflected shape and
associated motion constitute a natural mode of vibration. The fact that the deflected shape, also
referred to as the mode shape, is maintained also implies that the simple harmonic motions of all
individual DOFs vibrate in the same phase. Hence, explicit values of the natural cyclic frequency w,,
and the natural period T,, may be associated with each natural mode of vibration.

The definitions of the natural period and natural cyclic frequency given in relation to Equations (3.5)
and (3.6) apply to each individual natural mode of vibration in the MDOF-system. Determining the
dynamic properties of a MDOF-system is a matter of solving the eigenvalue problem, where the
mode shapes are given by the eigenvectors and the natural cyclic frequencies by the associated
eigenvalues. The algebraic equation which defines the mazrix eigenvalue problem is given by Equation

(3.8).
[K — w2 M]p,, =0 (3.8)

where K and M are the stiffness and mass matrices; ¢, is the natural mode vector of the n™ mode;
and wy, is the n™ scalar valued natural cyclic frequency.

Equation (3.8) represents a set of N algebraic equations corresponding to the analyzed N-DOF
system. The non-trivial solutions to Equation (3.8) are obtained from the characteristic equation

defined by Equation (3.9).
det[K — w2 M] =0 3.9)

A polynomial of order N in w3 is obtained when Equation (3.9) is expanded from where the N real
and positive roots of w2 can be solved for due to the symmetrical and positive definite properties of
the mass and stiffness matrices. When the N number of eigenvalues w,, (n=1,2,...,N) are known,
Equation (3.8) is used to solve for the corresponding N number of natural modes of vibration ¢,,.
The natural modes may only be determined and expressed in terms of relative response quantities, e.g.
displacements, and not absolute values.
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The natural frequencies are conventionally labeled in ascending order, starting with the lowest
frequency w;. The corresponding mode shape, i.c. ¢, is referred to as the fundamental mode whereas
higher order modes relate to the higher values of natural frequencies. According to Austrell (2015),
the modes that are triggered by the external loading in a MDOF-system, and thus characterizing its
dynamic response, depend both on the loads spatial distribution and its variation with time.

3.2 Nonlinear Material Behavior

As stated in (ASCE, 2010), the most important feature of a blast-resistant structure is the ability to
absorb a large amount of blast energy without complete failure of structural integrity. Such structures
are said to possess a high level of ductility, a term that is explained further in following sections.
Structural steel is the material used in design of pipe rack members and the only material to be
evaluated in this thesis. The material used for design of piping will vary depending on its content,
and the characteristics of certain common pipe line materials will deviate from the structural steel
behavior discussed herein. This issue will be addressed as the material models implemented in the FE

analyses are discussed later on.

Steel is a very ductile material due to its significant strength and inelastic capacity, allowing it to
undergo large plastic deformations prior to brittle failure modes such as fracture. It is defined as an
elasto-plastic material characterized by the behavior illustrated in the stress-strain diagram in Figure

3-4.
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Figure 3-4 Elasto-plastic material behavior. Ottosen and Ristinmaa (2005, p. 203)

As described by Ottosen and Ristinmaa (2005), the behavior of steel is linear-elastic until the initial
yield stress gy, is reached. The stiffness of the material associated with the linear part of the response
curve is equal to the Young’s modulus E, and the elastic strains developed in this region are fully
reversible after unloading, i.e. no permanent deformations occur. The constitutive relation in the
linear-elastic range is simply given by Hook’s Law in Equation (3.10).

oc=E-¢ (3.10)
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When an elasto-plastic material is loaded beyond initial yield to an arbitrary stress level gy, at point A,
the response becomes nonlinear and plastic strains develop. Plastic strains are irreversible and cause
permanent deformation which is illustrated in Figure 3-4 as unloading occurs at point A. The path of
unloading in the plastic region will always occur elastically with stiffness E, graphically revealing the
amount of irreversible plastic strains e” reached at point A as the path intersects the strain-axis at
point B. If the material is once again loaded, the response will follow the elastic unloading-path from
B to A until it reaches the highest previously recorded stress a,,. At this point, the behavior will
continue to follow the nonlinear response curve as additional plastic strains develop until failure

p

. e . : g
occurs at the point defined by rgiure = €° + €¢gy1r - The stress level associated with failure is

commonly referred to as the ultimate stress, denoted oy,

Figure 3-4 illustrates how the yield stress 0y, in a material fiber increases as plastic strains develop.
This phenomenon is referred to as strain hardening. It is important that the material model
implemented in a nonlinear analysis account for the material’s true constitutive relation and strain
hardening behavior. This is made evident as Ottosen and Ristinmaa (2005) define the strain energy
W of the material as the area under the stress-strain curve shown in Figure 3-5.

o
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Figure 3-5 Material strain energy for uniaxial loading. Ottosen and Ristinmaa (2005, p. 69)

As Figure 3-5 show, the strain energy may be quantified according to Equation (3.11). It defines the
internal energy developed in the material as it deforms, which will be utilized to absorb the external
energy component in the system’s EOM originating from the blast wave. The inelastic or plastic
capacity of the material is therefore defined by the amount of allowable plastic strain prior to failure
and the strength of the material defined by the stress developed under the elastic range as well as the
plastic, strain hardening range.

W= | o(e)de (3.11)
|

The true material behavior illustrated in Figure 3-4 is often idealized in simplified analytical methods.
The elastic-ideal plastic material model shown in Figure 3-6 is a common idealization of structural
steel characteristics. This idealization fails to account for strain hardening, assuming that the stress
remains constant at initial yield oy, as the plastic strains develop. Compared to the elasto-plastic
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behavior, the elastic-ideal plastic model underestimates the inelastic capacity of the material as the
developed strain energy defined by Equation (3.11) will be lower for all values of strain in the
inelastic range, suggesting that the idealization is on the conservative side.

o
J
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Figure 3-6 Idealized elastic-ideal plastic material behavior. Ottosen and Ristinmaa (2005, p. 204)

However, the conservatism in ignoring the strain hardening effects is not definite when considering
verification of a structural system as a whole. As discussed further in Section 3.3 below, the internal
forces developed at plastic hinges will be underestimated if such an approach is chosen, implying that
the forces induced on other members or connections in the structural system will not be
representative to the true internal force distribution. As the full nonlinear analyses to be conducted
within this thesis aim to be as representative to the actual conditions as possible, numerical

implementation of the idealization given by Figure 3-6 is not sufficient.

Bi- or tri-linear idealizations of the elasto-plastic material model will account for strain hardening
effects and may be used as an alternative to a precise stress-strain function derived from laboratory
test data. Such idealizations are shown in Figure 3-7.
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Figure 3-7 Bilinear (a) and trilinear (b) idealization of elasto-plastic material behavior.

Material specifications provided by suppliers or design codes will usually include values of yield stress,
ultimate stress, Young’s modulus, plastic strain data etc. to define the elasto-plastic material behavior
according to one of the material models shown above. However, these values are in general associated

with a nonlinear material response to conventional static loading.

Rapid dynamic loading will affect the mechanical properties of steel material due to the phenomenon
of strain rate sensitivity. As explained in (ASCE, 2010), the nature of the blast loading will cause the
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material to deform rapidly, at a rate which is still however slower than that of the applied loading.
This will increase the inelastic material strength and cause the stress-strain curve to shift upwards as
shown in Figure 3-8. The dynamic strength values associated with the initial yield state and the
ultimate state are therefore larger than the corresponding static strength values. Consequently, the
blast-resistance of the structure will increase as the material’s strain energy capacity will increase,

given that the strain levels associated with yield and failure remain unaffected.
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Figure 3-8 Effect of strain rate on mechanical properties of structural steel. ASCE (2010, p. 57)

According to (ASCE, 2010), the increase in strength is positively correlated with the rapidity of the
strain rate, i.e. how fast the material deforms. It is negatively correlated with increased static yield
strength of the material, i.e. steel grade. The excess dynamic strength can be on the order of 10-30%
and is more significant for the initial yield state than the ultimate stress state. Ignoring it will have the
same implications as ignoring the strain hardening phenomena as discussed previously. A Dynamic
Increase Factor (DIF) is commonly used in blast-resistant design to scale static strength values and
thus account for the strain rate effects. Reference is made to (ASCE, 2010) or (DOD, 2014) for

further information on implementation of DIFs in a blast-resistant design procedure.

The blast-resistant design literature agrees on the above documented effects of rapid strain rates. In
addition, there is a general consensus that the Young’s modulus is unaffected by the rapid loading as
seen in Figure 3-8. However, the effects on steel material strain levels associated with failure were
found to be formulated differently in studied publications. While (ASCE, 2010) states that strain
levels are relatively unaffected by a rapid material response, Dusenberry (2010) argues that the level

of elongation associated with rupture is reduced as a consequence of this phenomenon.

3.3 Inelasticity and Failure in Simple System
The previous section explained how the inelastic capacity of the material was defined by the amount
of strain energy developed prior to failure. This section aims to identify additional components

32



governing the inelastic capacity of an entire structural system. As explained in (ASCE, 2010), this
capacity is defined by the total strain energy available in the system which is a function of material
properties, member section properties, properties of the global structural system and the amount of
allowable plastic deformations.

The capacity at material level has already been covered. The next step is therefore to define a measure
of inelastic capacity at member level. Structural members in a pipe rack configuration comprise of
slender beam elements, where the rack structure is commonly designed using RHS-members with
rectangular hollow cross-sections. Assuming that a uniformly applied blast-pressure will trigger a
predominantly flexural structural response, the inelastic capacity of an individual member may be
defined by the plastic moment-resisting capacity of its cross-section, M,,.

In conventional design codes, M,, for uniaxial bending of a symmetric section is defined by the
idealized stress distribution shown in Figure 3-9 (c). Figure 3-9 (a) show the general stress
distribution in a symmetric cross-section for bending within the elastic range. When the outer fibers
reach initial yield, the maximum elastic bending capacity defined by M,, is exceeded. The maximum
stress level is assumed to remain at initial yield for increased loading and progress inward towards the
neutral axis, as shown in Figure 3-9 (b), until the rectangular stress distribution characterizing a fully
plastified section is reached in Figure 3-9 (c). In reality, the stress in the outer fibers will continue to
increase due to strain hardening effects but this additional resistance is usually not considered in
design codes defining moment-resisting capacity of beams in the inelastic range (DOD, 2014).

According to fundamental beam theory described by Gustafsson (2014), the moment at any point

along a beam axis is obtained by integrating the axial stress distribution over the cross-sectional area.
Hence, beam section moments defined above may be determined according to Equation (3.12).

fds fds fds
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Figure 3-9 Stress distribution in gradually plastified beam cross-section. DOD (2014, p. 5-26)

M= J o(ey) dA (3.12a)
A

M, = S0y, (3.12b)

M, =2 gy (3.12¢)
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where M is the uniaxial bending moment for an arbitrary distribution of axial bending stress o (&,);
M,, is the yield moment calculated from the elastic section modulus S; My, is the plastic moment-
resisting capacity calculated from the plastic section modulus Z; and g, is the initial yield stress.

Note that (DOD, 2014) uses the notation f4s contrary to gy, in Figure 3-9. The notation fg is used
to define the ultimate dynamic moment-resisting capacity My, where the static initial strength value
defined by g, has been scaled with a DIF to account for strain rate effects as discussed in previous
section. Additional manipulation is required to derive the dynamic design stress fz5 and reference is
made to (DOD, 2014) for a complete definition. For the purpose of this thesis, it is sufficient to
inform that minor adjustments are made to Equation (3.12¢) in simplified blast-resistant design
procedures in order to estimate an idealized moment-capacity of a beam cross-section undergoing a

severe dynamic flexural response.

The final step is to define inelastic capacity at the system level. In order to so, a simple system that
comprise of a beam with fixed ends illustrated in Figure 3-10 is considered. The inelastic capacity of
this simple system is determined in Appendix E through the method of sztic pushover analysis as
explained by Kanvinde (2014).

F
i 10 20 E
Figure 3-10 Two dimensional beam with fixed ends subjected to an eccentric point load.

The static pushover analysis defined by the stepwise analytical process outlined in Appendix E may
be summarized by the associated pushover curve shown in Figure 3-11. The pushover curve defines an
important concept in blast-resistant design and is generally referred to as a resistance curve. Figure
3-11 shows the downward deflection u at the point of load application versus the externally applied
point load, F.
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Figure 3-11 Pushover curve illustrating inelastic capacity of simple system.

The resistance curve shows the internal forces Fi,; developed within the simple system, defining its
total inelastic capacity. The analysis conducted in Appendix E has successfully tied the material-,
member- and system levels together to show how the characteristics of the resistance curve depend on
the global properties of the structural configuration as well as the material and section properties of
the beam element. The internal work developed within the system is given by the area under the
resistance-deflection curve. Since both the stress and the deflection of the member is a function of
strain, so are the internal forces Fj,,;. Hence, the total amount of available resistance up to a certain
level of displacement (indirectly strain) is defined by the amount of internal work, i.e. amount of
total strain energy, developed within the system.

Figure 3-11 is again referenced as the ductility ratio of a structural system is defined. The ductility
ratio  is calculated according to Equation (3.13) and provides an alternative measure of a structure’s
inelastic capacity. If failure of the simple system associated with Figure 3-11 is defined by the
deflection Apq, reached at the external load level F3, the ductility is calculated as the ratio of this
maximum allowable deflection over the deflection attained at first yield, i.e. at load level F1.

o = bmax (3.13)

Ayield

where p is the ductility ratio; Ap,qy is the maximum allowable displacement associated with failure;
and Ay;¢1q is the displacement associated with first initial yield in any structural member.

It was briefly stated in Section 3.2 that the internal force distribution in a system will be
underestimated if effects from strain hardening and rapid strain rates are ignored, and that such an
approach is not always on the conservative side. This is made evident from Figure 3-11 and
associated theory outlined above. In the analytical model of the simple system, the fixed supports will
experience internal forces that depend on the magnitude of M,,. Such support loads or connection
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forces will naturally be underestimated if an increased material strength is not accounted for. This
should be considered in procedures aiming to verify support configurations based on the internal
force-capacity of adjoining members.

The inelastic capacity defined from the static pushover analysis in Figure 3-11 is not necessarily
representative to a dynamic response scenario and was merely included to define and describe the
concept of inelastic behavior. Deformation patterns in the dynamic scenario will be governed by the
triggered mode shapes and the transient nature of the external loading as explained in Section 3.1.
FEA software may be utilized to perform more sophisticated pushover analyses that account for both
geometric and material nonlinearity effects associated with an inelastic response to blast. However,
the load is still applied slowly to the structure implying that dynamic effects are not accounted for.

When defining the full capacity of the simple system in Figure 3-11, it was assumed that the highly
stressed locations were able to develop their full resistance. However, the full inelastic capacity of a
structural system is only ensured if premature failure modes are successfully avoided. These

premature failure modes are also referred to as secondary modes of failure and consist of two main
categories according to (DOD, 2014):

1. Instability modes of failure
2. Brittle modes of failure

Instability modes of failure occur at both system level and member level. At system level, instability is
associated with bifurcation. Bifurcation in a structural system is caused by a sudden change in the
structural configuration, generating large displacements that eventually lead to failure through
excessive deformations or collapse. Instability at member level consists of lateral torsional buckling or
local buckling. Brittle failure is associated with the complex fracture phenomena, and is strongly

related to detailing of connections (DOD, 2014).
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4 Analytical Methods and Verification

Procedures

4.1 Linear-Elastic Biggs Method

The Linear-elastic Biggs method is based on the response of a linear-elastic, undamped SDOF-system
subjected to a symmetrical triangular pulse. In Chapter 2, it was concluded that such an idealized
triangular pulse should be used to define the blast-loading imposed on the pipe rack members within
this study. The symmetry in the pulse is defined by the peak force (or peak pressure) occurring at
time t = t,4/2. Since damping is excluded, the governing format of the EOM and the associated
analytical model is given by Equation (4.1) and Figure 4-1.

mii(t) + ku(t) = p(t) (4.1)
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Figure 4-1 Analytical SDOF model for Linear-elastic Biggs method. Chopra (2011, p.148)

T

The closed-form solution to the response associated with the Linear-elastic Biggs method is given by
Equation (D.1) in Appendix D, and it is reccommended that this appendix is studied in conjunction
to this section. The response governed by Equation (D.1) is provided by Chopra (2011) on the form
of normalized dynamic displacement, i.e. the dynamic response at time t divided by the amplitude of
the static equilibrium position of the dynamic oscillation. The amplitude of the static equilibrium is
calculated according to Equation (D.2) of Appendix D and is defined by the displacement resulting
from static application of the peak pulse-force p, shown in Figure 4-1. The term Dynamic
Amplification Factor (DAF) is therefore adopted in substitute to the term normalized dynamic
response, as it reveals the overall maximum amplification of the static response when dynamic effects
are accounted for.

A Matlab script was developed and attached to Appendix D, calculating and visualizing the full time-
history response governed by Equation (D.1) for user specified input values of t4/T,. The response is
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divided into the three main phases of the pulse loading, i.e. the period of pressure rise governed by
Equation (D.1a), the period of pressure decay associated with Equation (D.1b) and the period of
free-vibration response calculated according to Equation (D.1¢).

Before drawing important conclusions on key parameters and their effect on the response governed
by Equation (D.1), the concept of pure impulse excitation as defined by Biggs (1964) will be discussed.
If a pulse is considered “pure”, calculations of the SDOF-response may be simplified further. As
explained by Biggs (1964), a pure impulse is characterized by having a duration that is much smaller
than the natural period of the structural system to be analyzed. The ratios of t;/T;, that define a pure
impulse will be covered after providing the fundamental theory behind the concept.

Chopra (2011) uses Newton’s second law of motion to quantify the rate of change in momentum for
a body being subjected to a force p(t), given by Equation (4.2).

d, .
2 (i) = p(t) (4.2)
where m is the mass of the body; u denotes the velocity; and p(t) is the external force.

If the mass is constant, Equation (4.3) prevails where il denotes the acceleration of the mass.
mii = p(t) (4.3)

Integrating both sides yields:

t2

[ p© at = m@i, - 2, = mav 4.4)

ty

The term on the left hand side in Equation (4.4) is the magnitude of the impulse as shown previously,
equal to the change in momentum. The same relation is obtained if the stiffness and damping terms
in the EOM given by Equation (3.1) are neglected prior to integrating both sides. Considering a
scenario where the pulse duration is very small, Biggs (1964) explains that very little spring resistance
(fs = ku) and damping resistance (fp = ct) will develop during the short time-period of loading, and
that the relation provided by Equation (4.4) alone may by be assumed to govern equilibrium in the
system during this time. Hence, when the pulse is characterized by an infinitesimal duration, the
relation given by Equation (4.4) may be idealized according to Equation (4.5).

I, = mAt = mi(0) > u(0) = IE (4.5)
It is seen that a pure impulse excitation may accurately be treated as an initial value problem, where a
mass at rest (u(0) = 0) is given an initial velocity #(0) calculated according to Equation (4.5) that
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will govern the following free-vibration response of the SDOF-system. The overall maximum
response Uy under this free-vibration phase is calculated according to Equation (4.6).

Ug = lo =] 2 (46)

mwqy 0 kT,

Using Equation (2.2) and Equation (D.2) to rewrite the expression, the DAF for triangular pure
impulse excitation is given by Equation (4.7).

DAF = X =pX (4.7)

(ustdo B Th

As made evident in the paragraphs above, the ratio between pulse-duration and the systems natural
period will govern the SDOF-response. This ratios impact on the dynamic response is graphically
illustrated in a shock spectrum shown in Figure 4-2.
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Figure 4-2 Shock spectrum for three different pulse-shapes of equal magnitude. Chopra (2011, p.153)

Figure 4-2 show the overall maximum response of a linear-elastic, undamped SDOF-system
subjected to three different pulses of equal area. The vertical axis is scaled to the DAF of the
triangular pulse. The graph related to the symmetric triangular pulse is obtained by extracting the
maximum DAF calculated according to Equation (D.1) for different ratios. The linear part of the
graph that prevails for small ratios t4 /T, is defined by Equation (4.7).

The first conclusion to be drawn in relation to Figure 4-2 is that the shape of the pulse has no impact
on the dynamic response if the duration is short relative to the natural period, i.e. if the structure is
being subjected to a pure impulse excitation. Chopra (2011) provides the limiting range of

tq/Tp < 1/4 to define this specific load scenario where Equation (4.7) provides an accurate solution

of the DAF.
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The overall maximum response illustrated in the shock spectrum is either found during the forced
vibration phase, Equation (D.1a)/ (D.1b), or the free-vibration phase, Equation (D.1¢). For the
triangular pulse, the maximum overall response will develop under the forced vibration phase
ifty/T, > 1/2, implying that the pulse shape will have a great impact on the response. For the larger
va