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“ 

Through history, development of new materials has inspired engineers and architects to 

create new structures and new architecture. Structural performance and economy were 

leading design factors that in many cases led to elegant, material effective solutions. In 

the new architecture, the external shape is usually the priority. Material efficiency and 

structural solutions are only second. In this perspective, not all new architecture is 

aligned with the sustainability goal. If cooperation between architects and engineers in 

early stages of design is adopted, new architecture in line with the demands of this time 

is possible. 

” 

 

Sture Samuelsson, Ingenjörens konst (2014) 

[Translation by thesis author] 
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ABSTRACT 

Numerical methods are the norm in modern structural engineering practice Models based on 

elasticity theory offer powerful methods to analyse complex structural behaviours and accurately 

predict probable deformation behaviour. Numerical methods in general and particularly finite 

element methods offer great numerical accuracy. Yet the tendency is that with increased accuracy 

come the downside of decreased design capabilities. This is reflected in construction industry 

practice, where analysis by convention follow design in a largely linear process.  

Sketching and model interaction sometimes provide more insight and inspiration than complex 

models. Graphic statics naturally provides for a sketch-like analysis workflow. Graphic statics is a 

sandbox term including a variety of graphical structural analysis and design methods useful for 

understanding and exploring structures. The benefit of such a tool is potentially contribution to; 

material sustainability, architectural developments based in honest design and reduced projection costs. 

A simple suspension system, a barrel vault and a Gaussian vault are designed and analysed using 

traditional graphic statics methods. The effect of structural form on structural efficiency is 

illustrated and graphic statics form finding capabilities are explored.  

Computational graphic statics is explored from two perspectives; how it may be implemented and 

its application potential. A strategy for computer implementing graphic statics is presented. The 

algebraic graphic statics strategy successfully representing graphs and the reciprocal relationship but 

feature some limiting complexities concerning user control. The main benefit and potential of 

software implemented graphic statics the option to extend the inherent form finding capabilities 

and integration with optimisation strategies.  

It is finally concluded that besides some niche applications in practice, the greatest benefit of 

graphic statics is as an educational tool teaching model consideration and structural exploration.  
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PROBLEM STATEMENT 

To successfully leverage structural analytics as a source of creativity in architecture design practice; 

analytical tools that encourage structural exploration need to be developed and their potential recognised 

by engineers and architects alike.  

THESIS AIMS 

To contribute to increased awareness of structural engineering potential as inspiration of good 

architecture; considering values of sustainability, design honesty and economy. 

THESIS OBJECTIVES 

To present traditional graphic statics methods, future graphic statics methods and a strategy for 

computer implementation of the Graphic statics model.  

To illustrate the structural exploration capabilities of traditional graphic statics and the potential 

capabilities of future graphic statics. As such, illustrate the potential of graphic statics to enhance 

the form finding process. 

THESIS OUTLINE 

This thesis is divided into three parts where focus is on the first.  

The first part will introduce the graphic statics model and present the application of the traditional 

methods to a variety of structural systems. Three case studies of different structures typologies are 

presented. The case studies highlight the application of graphic statics at increasing levels of 

structural complexity and the structural exploration capabilities of traditional graphic statics. 

The second part serves to introduce a computational graphic statics strategy. A strategy for 

automatic reciprocal transformation between form and force graphs is presented and a proposed 

user interface implementation is presented as proof of concept. The purpose of this part is to form 

a basis of understanding of future graphic statics software methods. 

The third part is a literature review of pioneering developments and research intentions concerning 

graphic statics. The reviewed examples highlight the benefits of graphic statics model in structural 

exploration and optimisation software tools.  

THESIS LIMITATION 

The focus of this thesis is graphic statics methods related to funicular structures and structures that 

may be analysed in analogy with funicular structures.
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PART I 
TRADITIONAL GRAPHIC STATICS 
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1.1 Introduction 

Initially developed in the late 19th century and forgotten in the age of computers, graphic statics 

has made a recent comeback in pioneering structural engineering research and practice. The 

advantage of graphic statics is its interactive format and unification of form and forces.   

Graphic statics is as the name appropriately suggests a graphical approach to studying statics of 

structures. While numerical methods are essential for complex structural analysis; sketching and 

model interaction sometimes provide more insight and inspiration. Graphic statics can be used as 

a method of structural analysis that encourages sketching. Graphic statics is a sandbox term 

including a variety of structural analysis methods useful for understanding and exploring structures. 

Graphic statics is applicable to any structure that may be considered in analogy with systems of 

straight members connected in nodes. Although only a few types of structures may be accurately 

modelled as a system of axial members, many others may potentially be analysed for structural 

safety using the simple model analogy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Graphic statics utilises two graphs in parallel. One graph representing the structural form and the 

application of external forces and the other representing the equilibrium of internal and external 

forces in the structure. These graphs are referred to as Form- and Force- graphs.  

Form and force graphs are reciprocal. Figure 1 above illustrates this basic relationship. Graphs are 

said to be duals when the nodes in the first graph refer to the surfaces of the second the same way 

as the nodes of the second refer to the surfaces of the first. Since edge 1, 2 and 3 intersect node ‘A’ 

Figure 1. Reciprocal equilibrium systems. 
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and enclose surface ‘A’, the left and right graphs are duals. Since edges are also parallel, the graphs 

are also reciprocal. Reciprocity is the key concept of graphic statics.  

Equilibrium is understood in analogy with the graphic vector addition method. Any point in space 

may be analysed for force resultant as the vector sum of all forces intersecting that point. The 

resultant force in node ‘A’ in figure 1 is the vector resultant of force 1, 2 and 3. If node ‘A’ is in 

equilibrium the vectors form a closed polygon enclosing a surface we refer to as ‘A’.  

When a structure grows beyond the complexity of an independent node the graphic statics labelling 

convention called Bow’s notation is employed to organise the form and force graphs. The labelling 

convention guides the reciprocal relationship and is essential to any graphic statics methods. It is 

by applying and using Bow’s notation that one can transform the form graph to the force graph 

and vice versa.  

1.2 Suspension bridge 

A simple suspension bridge illustrated in figure 2 should be modelled and analysed using graphic 

statics. The forces ‘F’ in each vertical cable may be estimated to 13kN from static model (figure 3). 

The forces are shown in figure 4. The suspension system can be studied by use of graphic statics. 

The suspension system is accurately comparable to a network of axial members intersecting in 

nodes.  

 

  

Figure 2. Illustration of modelled suspension 
bridge. 

Figure 3. Statics model 

Figure 4. Form graph representation 
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1.2.1 Set up 

This section will review how the form and force graphs are set up by employing Bow’s notation. 

Bow’s notation convention is a method to organise the 

reciprocal transformation between the form and the force 

graph. It is also helpful to interpret the graphs. Considering 

reciprocity, surfaces in the form graph are reciprocal to nodes 

in the force graph. As such, the labelling follows that the form 

graph surface labelled ‘A’ will be the reciprocal to force graph 

node labelled ‘a’.  

The form graph edges in figure 4 divide the graph into surfaces. 

In this case, no surface is fully enclosed by edges, and as such 

these are referred to as external surfaces. Surfaces fully enclosed 

by edges, such as the internal parts of a truss form graph, are 

referred to as internal surfaces. The difference is mainly one of terminology when applying labels 

to surfaces using Bow’s convention; external surfaces are labelled first followed by internal surfaces. 

Form graph surfaces are by convention labelled using capital letters and sometimes numbers for 

internal surfaces.  

Corresponding edges in form and force graph are parallel. In this case, form graph edge A-B will 

be parallel to force graph edge a-b. With bows notation dictating the reciprocal relationship 

between the graphs it is possible to transfer edges from form graph to force graph and thus finding 

the magnitude of all forces.  

The construction of the force graph shown in figure 5 starts by the drawing a force line. The force 

line is constructed of all external forces applied to the structure. The labels in the force graph 

correspond to the labels given to surfaces in the form graph. For each force line, the head and tail 

node is given the labels of adjacent surfaces to corresponding form line. The force line is labelled at 

its tail by the form surface label to its left and at its head by the form surface at its right. 

External force ‘A-B’ is transferred to the force graph and will form the beginning of the force line. 

Node ‘a’ can be determined arbitrarily. As the force is vertical in the form graph so is the edge 

connecting node ‘a’ and ‘b’. The length of ‘a-b’ represents the force magnitude. As the force 

magnitude is determined as 13kN the force edge length should represent 13kN, thus defining the 

position of node ‘b’.  External force ‘B-C’ is transferred to force graph to form edge ‘b-c’. The 

direction and the magnitude is transferred and since ‘b’ is already defined, node ‘c’ is consequently 

defined.  

The magnitudes of internal forces ‘a-o’, ‘b-o’, ‘c-o’ and ‘d-o’ is initially unknown. The magnitudes 

are found by connecting respective edges to defined nodes ‘a’, ‘b’, ‘c’ and ‘d’. Point ‘o’ is found as 

the intersection of the edges adjacent to form surface ‘O’.   

  

Figure 5. Force graph 
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1.2.2 Structural exploration 

Two different structural variations will be explored for function and performance. First, different 

fastening locations against the rock wall will be explored for efficiency. Second, slack on the primary 

cables will be explored for efficiency.  

A simple evaluation criterion is useful to evaluate material efficiency considering a static load. The 

total system force length may be estimated and used for criteria. With member length ‘L’ gathered 

form graph and internal member forces ‘P’ gathered from force graph the evaluation criteria may 

be expressed by equation 1 (Beghini, 2014). An approximate average stress may be assumed. The 

total force length divided by the assumed stress gives an approximate total structural volume.  

(1) ∑ 𝑃௜𝐿௜
௡
௜ୀଵ      

Three different fastening positions will be considered. The right side fastening position; an elevated 

position, a medium and a low. The challenge is to find a funicular suspension line for each position. 

With the force line determined, funicular variations can be explored as a function of origo position 

in the force graph. How to proceed is a matter of personal preference. 

With the fastening positions and the force line given, a funicular may be constructed by simply 

selecting an arbitrary force graph origo ‘o’. Given ‘o’, edges ‘a-o’, ‘b-o’, ‘c-o’ and ‘d-o’ may be 

transferred to the form graph using bows notation.  

One way of finding a suitable ‘o’ considering the design space is to have form edges ‘A-O’ and ‘D-

O’ intersect at desirable approximate lower limit of the funicular suspension line. Here, ‘A-O’ and 

‘D-O’ are taken to intersect the lower edge boundary between spaces ‘B’ and ‘C’. The resulting 

funiculars are illustrated in figure 6 (left) single, double and triple dash-dot lines marking the 

elevated, the medium and the lower funicular respectively. 

 

 

 

 

 

 

  

Figure 6. Form graph (left) and force graph (right). Single-, double- and triple- dash-
dot line representing funicular variations. 
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The slack variation may be explored using the same method. Here four different slack depths are 

considered. With fastening positions and force line determined, designer preferences may guide 

funicular properties.  

Here, edges ‘A-O’ and ‘D-O’ are again taken to intersect at the lower edge boundary between 

surfaces ‘B’ and ‘C’ from which the position of ‘o’ is determined and the funicular is constructed. 

Resulting funiculars are illustrated in figure 7.  

Internal forces and member lengths are simply measured in the force and form graphs respectively. 

The results are presented in table 1 below.  

 

 

 

  

Figure 7. Form graph (top) and force graph (bottom). Single-, double- and triple- dash-
dot and dashed lines representing funiculars variations. 
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Slack variation 

 

Fastening position 

   

Edge 
Most 

shallow 

Less 

shallow 

Less  

deep 

Most 

deep High Medium  Low   

a-o 69 37 28 24 28 38 47 [kN] 

b-o 68 33 22 17 22 31 40  
c-o 69 35 23 18 23 29 36  
d-o 73 40 30 26 30 33 37  

         
A-O 6,2 6,8 7,9 9,2 7,9 7,9 7,9 [m] 

B-O 3,8 3,8 3,8 3,9 3,8 4,0 4,1  
C-O 3,8 3,9 4,0 4,2 4,0 3,8 3,8  
D-O 7,2 8,1 9,4 10,9 9,4 7,4 6,9  

         
∑ 𝑷𝒊𝑳𝒊

𝒏
𝒊ୀ𝟏   1473 837 680 651 680 782 923  [kNm] 

% of best 226% 129% 105% 100% 105% 115% 136%  
 

 

The total force length criteria indicate that total required structural volume significantly decrease 

with funicular depth. 

As one may intuitively expect shallow funiculars result in larger internal stress than deep funiculars. 

Force graph results suggest an exponential increase of stress for corresponding linear decrease of 

funicular depth. Notably, after a certain depth the further decrease of stress compared to further 

increase in depth of the arch is marginal.  

  

Table 1. Internal forces, edge lengths and resulting total force length of respective funicular variation. 
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1.2.3 Concluding remarks 

The example illustrates the fact that structural form greatly 

influences structural performance. As illustrated, even 

variations on the same topology result in significant 

differences in internal forces. This study excludes 

alternative topologies and alternative structural systems for 

which even greater performance may be possible.  

The significance of structural performance may not be a 

virtue on its own but rather it as an important means to 

an end. Considering the correlation between internal 

forces, member sizes and function, it is significant as a 

means to align vision with end result.  

If the structural form is not designed in line with structural 

performance it may result in awkward member sizes, 

uneconomical demand for high performance materials 

and affect the longevity of the structure (Beghini, 2014) 

The simplistic Graphic statics model also serves as a 

reminder of structural honesty. The notion of structural 

honesty is one where observers are assumed to have an 

intuitive sense of the properties of materials. Honest design considers it important to utilise 

materials in line with their characteristic properties. Structural honesty encourages the structural 

form to be developed in line with the properties of selected materials as to achieve harmony between 

form and forces. Materials not used in line with properties are considered decorative and to ’cheat’ 

the observer. As no material prefers bending to axial forces, graphic statics naturally encourages 

designs aligned with structural honesty.   

Utilising materials in line with their properties is also a key to achieving some spectacular designs. 

High performance structures have throughout history pushed the boundaries of what is possible 

with available materials. Either to achieve long spans, extreme height or expressive form; to push 

the limits of materials it is necessary to develop the structural form in line with the properties of 

selected materials. Exhibiting an elegance expressive funicular form, the Schwandbachbruecke 

(Picture 1) is one such structure testifying of the capacity of honest design.  

  

Picture 1. Schwandbach bridge by Robert 
Maillart 1933. (Source: Xpowa - Own work, 
CC BY-SA 3.0) 
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1.3 Barrell vault 

Nyhamnen is a part of the old industrial 

harbour in Malmö, Sweden. The area is under 

transformation to a modern mixed-use area. A 

design challenge was set up to gather 

conceptual designs of potential landmark 

buildings for the area.  

Architect Karolina Pajnowska envisioned a 

building that is ‘anonymous and timeless in its 

mainframe’ such that different cultures would 

relate differently and therefor create new use 

for the building during its lifespan. Drawing 

on the value of timelessness, the building is 

intended to stand the test of time (Pajnowska, 

2016). 

The study presented by the architect was 

intended as a vision and program of the 

building function. To develop the vision into 

a design, engineers were invited to collaborate 

in preliminary studies.  

The initial structural design vision includes several expressive structural barrel vaults and a large 

roof dome. To stand the test of time, the structural geometry and the correct utilization of the 

properties of bricks are essential. Graphic statics is an excellent tool to analyse structural behaviour 

of brick vaults. Such a process will be demonstrated in this case study. 

The example will illustrate two graphic statics methods. Alternative ideal arch geometries will be 

explored first. After that, the proposed semi-circle arch geometry will be analysed. It will be analysed 

for equilibrium and crack propagation.  

1.3.1 Model 

Although visually simple to comprehend arches are indeterminate (Heyman, 1995) and complex 

to analyse. Originally, geometric rules discovered by trial and error guided the design of arches 

(Block, 2005). In 1675 Robert Hooke discovered that arches may be analysed in analogy with 

hanging flexible lines. This analogy aided the design of rigid arches beyond the constraints of trial 

and error. Hooke elegantly expressed his discovery as:   

As hangs the flexible line, so but inverted will stand the rigid arch – Robert Hooke 1675. 

A flexible line will adapt its shape under a static set of loads. If the load distribution changes, so 

does the form of the flexible line. This force adapted form is referred to as funicular tensile line. 

What Hooke states is that for any rigid standing arch, a funicular thrust line may be identified 

within its boundaries.   

Picture 2, renderings of Nyhamnen project. Studied vaults 
shown. (Source: Karolina Pajnowska) 
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Hooke’s statement does not predict the true mechanics of a rigid arch. The true working mechanics 

are due to its width, imperfect geometry and inhomogeneous material highly indeterminate, thus 

unpredictable. 

To analyse a proposed arched design with Hooke’s analogy one may imagine a flexible line fixed 

between the arch supports and exposed to the arch set of static loads. The line will deflect to a 

funicular tensile form. If a funicular shape may be found that [mirrored] fit within the boundaries 

of the proposed arch design, one way of equilibrium is possible.  

If a single thrust line may be found within the boundaries of the arch a theoretical equilibrium 

between static loads and support reactions is possible (Block, 2006). When designed with sufficient 

capacity for internal forces in theoretical equilibrium, the arch may be considered rigid. 

The designed funicular thrust line does not represent the actual state of the built arch but it does 

provide a possible equilibrium state. 

1.3.2 Set up 

Utilising Hooke’s thrust line analogy we 

construct an initial form graph by roughly 

tracing the centre line of the vault illustrated in 

fig. 8. The arch is divided into ten pieces of equal 

horizontal length. This geometry is primarily 

used to create an initial force distribution. 

Using this preliminary form, we may calculate 

and apply the external forces. The external forces 

are calculated from a uniform (presumed) 

dominant load case and the tributary area of 

each node, resulting in the force line fig. 9. 

It may be noted that initial form is not in 

equilibrium with external forces. As all internal edges of the form graph face surface ‘O’, all edges 

in force graph except force line should intersect in ‘o’ for equilibrium.  

Due to the non-funicular geometry significant horizontal forces need to be included in order to 

achieve equilibrium in the form. The resultant increase in magnitude, from small at the crown to 

large at nodes closest to supports.   

The additional horizontal forces may be visualised by studying individual force polygons. Fig. 10 

show individual vectors sums belonging node B-C-O, C-D-O, D-E-O and E-F-O. The distance 

between the ‘O’s in each polygon is resultant force addition to the horizontal thrust developed in 

that segment.  

 

 

Figure 8. Initial approximate model  
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Figure 9. Incomplete force graph of approximate form and load case. Graph does not comply with 
Bows notation. 

Figure 10. Individual polygons B-C-O, C-D-O, D-E-O and E-F-O 
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1.3.3 Alternative funicular structures 

One strategy to achieve equilibrium is to modify the form. In this section three structural variations 

will be pursued; one where the thrust line is tangent top of semi-circle arch (fig 11, left), one where 

the angle of the lower parts of funicular tangent semi-circle angle close to support (fig 11, middle) 

and one that is a compromise between the two previous (figure 11, right). Exploration is limited to 

three alternatives for demonstration purposes. Of course, design variations are only limited by 

imagination and the proposed designs should inspire further collaborative explorations.  

The graphic statics pioneer William S. Wolfe laid out a general method to generate a funicular 

arch. His method is general in the sense that it works for any uniform or non-uniform load case 

(Wolfe, 1921). The generated funicular will pass through three assigned points with a geometry 

adapted to the specified load case. Table 2 describes and illustrates this method as applied to the 

case vault studied in later section of this thesis.  

Under certain circumstances a simplified method may be applied as described by Edward Allen and 

Waclaw Zalewski in Form and forces (2010). For this method to be applicable it is necessary that 

the loads are equally distributed along the horizontal component of the structure and the span to 

rise ration needs to be greater than or equal to 4:1. For any ratio less than 4:1 the method may still 

be applied under careful consideration of necessary degree of accuracy.  

An infinite number of funicular alternatives may be identified per load case using Wolf’s method. 

As stage 1 and 2 described below are related to the force graph, once ‘U’ and ‘V’ are located, their 

position may be reused to generate any number of form alternatives to the same load line. 

Alternatives are easily explored by repeating stage 3 and 4. Form constraints may be incorporated 

by experimenting with stage 3 and 4. 

Here, Wolf’s method requires three points to be prescribed, and which the funicular will intersect. 

Two points are predetermined as location of supports but third point remain a free variable. This 

method was used to generate alternative 1 and 3. 

When exploring structural alternatives to the same force line, one should be careful to consider that 

the force line is applicable in each case. Tributary area will vary a lot depending on the depth of the 

arch. An initial force line may be used to generate approximate funicular but for improved accuracy 

one should recalculate the load line as per specific approximate funicular and regenerate funicular. 

Figure 11 illustrates design alternatives generated using the methods and incorporating pursued 

geometric constraints. The funicular intersecting the crown at a tangent is easily achieved by 

prescribing point ‘Y’ to that position. The intersection is parallel with initial geometry due to 

symmetry. The other two alternatives require some iterations. Appropriate angles at support edges 

are found by testing different positions of ‘Y’. 
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Following steps 1-4 describe the process to develop a funicular geometry for a set of external 

forces. Two points are decided as fix support points for the funicular line and a third point 

between the two is decided where the funicular will intersect.  

 

Step 1: 

- Divide design space into sections and calculate external forces from load  

case and tributary area. 

- Points X, Y and Z mark the three points that the funicular will intersect. 
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Step 2: 

- Choose any point p1 in force diagram. 

- From X and Y draw lines parallel to the force line resultant B-G. 

- Choose any point X’ along line parallel to force line resultant B-G  

originating from X. 

- From X’ construct reciprocal form corresponding to assumed p1 origo. 

- Locate Y’ as intersection of constructed funicular and line parallel to B-G originating 

form Y. 

- From Z, draw a line parallel to force line resultant G-L and locate Z’  

similarly to Y’. 
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Step 3: 

- From p1 draw line p1-U parallel to X’-Y’ and locate U along force line. 

- From U draw the line U’m parallel to X-Y. 

- From p1 draw line parallel to Y’-Z’ and locate V along force line. 

- From V draw the line V’m parallel to Y-Z. 

- Intersection U’m and V’m marks the desired origo p. 
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Step 4: 

- Construct desired funicular from origo p by transferring edges according to Bow’s 

notation 
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1.3.4 Semi-circle analysis  

An ideal arch may be considered structurally safe if a thrust 

line exist within the boundaries of the structure such that the 

resultant force at each joint lies within the cone of friction 

(H. Moseley, 1843). Although the proposed semi-circle 

geometry obviously is non-funicular it may be rigid in 

funicular equilibrium. However, conditions are not ideal and 

Moseley’s conditions are not enough in itself to judge 

structural safety.  

The proposed arch is supported on top of relatively slender 

columns. Although it is likely that a funicular exists within 

the arch such that Moseley's condition is satisfied, it is 

equally likely that the horizontal thrust of such a thrust line 

will cause significant cracking and deflection in columns, 

thus risking a loss of equilibrium.  

An upper bound analytical strategy is to compare the maximum horizontal thrust with column 

capacity. The horizontal thrust will cause a significant moment at the base of the columns. It is 

likely that the total limiting factor of the structural system is cracking due to tensile stresses 

developing at the base of the columns.  

The horizontal components of the funicular thrust line will cause a moment in the supporting 

columns. If the horizontal force is large enough the resulting moment will cause the columns to 

crack and deflect. The deflection of the columns must be limited in order to limit the crack 

propagation in the arch. The columns need to be designed with sufficient moment capacity, such 

that they are able to withstand without crack propagation a horizontal force larger than the 

horizontal funicular thrust component.  

In this case the column design is predetermined and as such also the moment capacity. To analyse 

the rigidity of the proposed design we may compare the capacity of the columns to withstand a 

horizontal force, to the maximum horizontal force component that may develop in the proposed 

arch.  

A thrust line with maximum horizontal thrust component is found using Wolfe’s method to 

generate funicular arches. The shallowest funicular is that which touches the lower boundary at the 

crown of the arch and fits within the outer boundary at the supports. Using the method, point ’Z’ 

is set at the crown lower boundary and support points are iteratively modified until a thrust line is 

found. The horizontal force component is constant throughout the arch and may be measured as 

the horizontal distance between the origo and the force line.  

The maximum horizontal thrust is 887N/m. This is significant in terms of serviceability and 

longevity. The force is enough to cause a 650kPa tensile stress in the base of the column which is 

significantly above the typical masonry tensile strength. The upper bound analytical method 

predicts a significant risk of crack propagation and degradation over time.   

Figure 13, proposed semi-circle vault 
design. 
(Source: Pajnowska, 2016) 
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Figure 14. Maximum and minimum thrust lines and corresponding force graphs. 
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1.3.5 Discussion  

The presented upper bound analytical method is unlikely to accurately predict the true failure 

mode. Due to the indeterminate nature of the structure it is impossible to predict the true force 

path, in fact it is probably not truly funicular.  

Even if cracking is initiated by the maximum thrust line, the system may possibly shift to any 

redundant thrust line that represents an equilibrium state after cracking. As such, it is possible that 

the structure may remain standing if the columns are capable of resisting the horizontal force 

exerted by the minimum thrust line. Opposite the maximum thrust line, the minimum thrust line 

is that which exerts the least horizontal thrust. Using the same procedure as with the maximum, 

the minimum is found with point ’Y’ as close to inner boundary at arch crown.  

Due to the minimal thickness of the arch, the minimum horizontal thrust is only marginally lower 

than the maximum. It is therefore concluded that the proposed structure is likely to develop 

significant deformations and alternative systems should be pursued in order for structure to stand 

the test of time, as intended. 
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1.3.6 Proposed structural system 

The development of cracks in the base of the columns are limiting the structure. It is therefore very 

beneficial to design the system so that horizontal equilibrium is achieved at the base of the arch 

without utilising the columns. The left and the right sides of the arch exert similar horizontal thrust. 

Equilibrium may be achieved by connecting the supports by a simple horizontal cable. This is 

perhaps the most simple and effective option.  

An alternative is to consider the global system with adjacent arches. Assuming equal live-load on 

each arch and similar active thrust lines, the horizontal force component of respective adjacent arch 

form a global system horizontal equilibrium. Thus global stability may be achieved by moving 

arches closer, such that the support each other at the base. This is a common solution found with 

many systems of arches. 

Summarising the findings, an alternative structure is proposed. The proposed structure is 

conserving initial design intentions but modified to better serve the ideal of standing the test of time. 

As tensile stresses should be avoided in brick work, longevity is best achieved with pure compressive 

thrust lines. This is achieved by incorporating the funicular arches generated previously and having 

them touch at the base. The proposed system is arguably an example of honest design. The 

proposed design should serve as inspiration to further develop the design. 

 

 

 

 

  

Figure 15. Proposed global system of arches. 
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1.4 Gaussian vault 

A Gaussian vault is a type of double curved 

masonry vault, pioneered by engineer 

Eladio Dieste. Characteristic of Gaussian 

vaults are their expressive undulating form 

and their elegant lightness.  

The vault span is large in relation to width, 

rise and thickness. Dieste’s vaults typically 

have a span to rise ratio between 10:1 and 

7:1, with a remarkable thickness of only 

130 mm in total!  

The construction developed by Dieste 

consists of a single 100 mm thick layer 

extruded hollow core clay bricks topped 

only by a 30 mm thick layer of lightly 

reinforced cement. Where the primary 

purpose of the cement was to provide 

weather tightness. The joints between 

bricks were filled with a high-grade 

cement-sand mortar and reinforced in 

both transverse and longitudinal direction. 

Perhaps equally characteristic of both the 

vaults he designed and characteristic of his 

own philosophy of construction is how the 

architecture was developed in synergy with the characteristics of the material. It was his belief that 

‘For architecture to be truly constructed the materials should be used with deep respect for their 

essence and consequently their possibilities’ (Pedreschi and Theodossopoulos, 2007).  

Dieste managed to turn traditional brickwork into a material suitable for the modern construction 

era. Not only was the construction economical and the process rational but the vaults also satisfied 

requirements for accuracy, efficiency in materials, prefabrication, reliability in performance and 

analytical rigour (Pedreschi and Theodossopoulos, 2007). 

Dieste continuously developed the Gaussian design during his career, gradually perfecting the 

analysis and construction process. His experience led over time to large projects such as the Growers 

Pavilion in Brazil (Picture 3) with an impressive span of 47m!  

The presented model and method is based on the work of Eladio Dieste as presented by Pedreschi 

and Theodossopoulos (2007) and Allen and Zalewski (2010). The combined used of graphic and 

numeric methods will be presented in an illustrative case study format, where a Gaussian vault 

spanning 30m will be designed. The following section should also dissect and discuss the model 

assumptions. 

Picture 3. Caputto Fruit Plant. Salto Uruguay.  
(Original source unkown) 
Growers pavilion, Brazil.  
(Source: Centrais de abastecimento do rio grande do sul) 
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1.4.1 Model  

Although different in its expression, the 

Gaussian vaultbehaves structurally very much 

alike the simple barrel vault studied in the 

previous section. Every section along the 

length of the vault is a thrust line in a 

funicular equilibrium with the supports.  

Although the structural behaviour is as simple 

as funicular thrust lines, the true structural 

behaviour is indeterminate and thus complex 

to analyse. It is the intention of this section 

to illustrate and discuss a  

simple model and interactive design method that supposedly allows the design of structurally safe 

Gaussian vaults.  

For thin vault structures, the maximum possible span is ordinarily severely limited by buckling. 

The Gaussian vaults elegantly resist buckling by recruiting the cross-section moment of inertia 

created by the transverse sections undulation. This is the elegant genius of the Gaussian vaults and 

the main reason as to why they may span such long distances without awkward bracing systems 

reducing the elegancy of the system.  

Designing the undulation against buckling is the main analytical challenge but one that Dieste 

managed to solve. His numeric formulas provide a uniformly distributed load under which the 

system would buckle. This approach is analysed and compared with a FE Analysis by Pedreschi and 

Theodossopoulos (2007) to satisfactory results.  

1.4.1 Method 

Three design cases are dominant and need to be considered for the design of a (so far presumably) 

safe Gaussian vault. First, the structural capacity considering the material properties shortly after 

the formwork is removed. At this point, the material strength has not had time to fully develop but 

the structure is exposed to the full load case. This should thus be used to determine appropriate 

funicular form between supports. The second condition to consider is capacity against non-uniform 

live load cases and the third is resistance against buckling. 

Dead loads should be considered the dominant load case and thus used for design of the funicular 

thrust lines. This is appropriate because during most of the structural life cycle dead loads will be 

the only acting force and even including wind, dead loads are still dominant. Other live-load 

dominant load cases may be perceived such as snowfall or earthquake. Surely the vault could be 

designed for a uniform snow distribution but non-uniform snow distribution (and earthquake 

loads) are arguably too unpredictable to be used in design. Because of this Gaussian vault may not 

be an appropriate structure for areas with either heavy snowfall or earthquakes. 

Figure 16. Illustration of a Gaussian vault. (Source: 
Pedreschi and Theodossopoulos, 2007)  
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The material design properties for brickwork under hardening used by Dieste was an Elastic 

modulus of 7GPa and brick compressive strength of approximately 8MPa (Pedreschi and 

Theodossopoulos, 2007). 

Once preliminary funicular thrust lines are determined for the uniform dominant load case, non-

uniform load cases must be controlled. The structural capacity against non-uniform load cases is 

accounted for by a variation of Moseleys condition for arch stability (“if a thrust line runs entirely 

inside the arch and the resultant at each joint lies within the friction cone, the arch is clearly stable” 

(Moseley, 1843)). The variation of this condition posed by Allen and Zalewski (2010) argues that 

the vault is stable if a funicular per possible load cases may pass within the middle one third of the 

vault undulation amplitude. This condition will be analysed in the discussion. 

Dieste produced design charts that may be used to determine the characteristic vault slenderness𝜒, 

from which the characteristic buckling load may be determined by equation 2-5. To use the design 

charts one simply must determine the value ɣ as a function of the medium vault spring angle at 

supports and 𝑣 the ration between moment of inertia at the crown and at supports. 

 

(2) 𝜒 =
௤௟య

ாூ
    

(3) ɣ =
ଵ

୲ୟ୬ (ఝబ)
    

(4) 𝑣 =
ூ೎ೝ೚ೢ೙

ூೞೠ೛೛೚ೝ೟
    

(5) 𝐼 =
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Figure 17. Design charts for buckling capacity of Gaussian vault.  
(Source: Dieste, E. 1985. Ediciones de la banda oriental. Montevideo, Uraguay)   
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1.4.3 Case introduction 

To illustrate the presented design 

procedure a Gaussian vault spanning 

30 meter will be designed. Each vault 

will have an approximate width of 4m. 

The method could be used to explore 

architectural variation but this section 

will focus on one form like that of 

Diestes architecture. The structure is 

not site-specific but simply presumed 

to be exposed to design wind speed of 

25 m/s. Snow and earthquake loads 

are not accounted for.  

In Gaussian Vault design, it is perhaps 

more important to accurately 

determine the distribution of forces 

than it is to determine the precise 

magnitude of forces. In the graphic 

statics model the dead load force 

applied in each node should be 

specific to each segment length. Due to the low vault rise, the non-uniform force distribution may 

be approximated to a uniform force distribution with only about 5% inaccuracy. Funiculars 

designed for true dead load distribution should have somewhat higher rise than produced with this 

model 

A wide range of possible live-load distributions may be analysed for effect but it is here assumed 

that the worst case non-uniform load case is that when the wind hit with equal but opposite force 

perpendicular to leeward- and windward-side respectively, illustrated in figure 3.  

Since wind is applied perpendicular to the surface, a surface needs to be assumed so that the wind 

may be applied perpendicular to it. Here, two different funiculars are assumed. One approximately 

representing the upper boundary of crown transverse undulation and the other representing the 

lower boundary. 

The force magnitudes are estimated as a high boundary value. Pressure coefficients corresponding 

to an average roof angle of 15 degrees per Eurocode is CPe +0,7 windward side and -1,0 leeward 

side worst case combination. This is a high bound estimate compared to proposed pressure 

coefficients proposed by Melbourne W. H, that is CPe -0,5 and +0,4 (Melbourne, 1995). 

As the wind pressure tends to quickly switch between pressure and suction it is appropriate to 

perform a detailed wind analysis before detailed design. Such an analysis should include the effects 

of vibrations. 

  

Figure 18, Force distribution. Dead load, wind load and 
resultant asymmetric combined load. 
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1.4.4 Design process 

The vault is designed in iterations where the geometry is assumed, analysed and modified until 

satisfactory results are achieved. Initially, a transverse cross section somewhere along the length of 

the vault needs to be presumed. Using graphic statics, Wolfe’s method may be used to identify any 

number of funiculars intersecting both supports and the presumed cross section. From this simple 

geometric construct, all equation (2-5) variables may simply be measured. In this case, a crown 

transverse cross section is presumed.  

The highest and the lowest rise funiculars are 

important variables to satisfy the middle 1/3 criteria 

for resistance capacity to asymmetric loads and the 

undulation should be designed accordingly.  Here 

the lower boundary funicular is assumed with a span 

to rise ratio of 7:1 and upper boundary to 12:1. The 

assumptions are based on the most typical span to 

rise ratios of Diestes vaults; 7:1-10:1. The cross 

section presumed here is illustrated in figure 19.  

All individual funiculars are despite varying rise 

presumed to be exposed to the same load 

distribution. This is a simplification and the 

preliminary funiculars should as such be recalculated 

with the appropriate loads before detailed design. 

However, for preliminary design it is a reasonable 

simplification.  

Funiculars are easily projected to 3D in a CAD 

environment, where the initial springing angle and section length at both support and crown may 

be measured. From the crown and support transverse sections, respective 𝑙௦ and h is measured.  For 

proposed design 𝑙௦ measure 4,7m at the crown and 4,01m at supports with h measuring 0,46m at 

crown and ~0m at supports. The spring angle 𝜑଴ is measured close to supports between funiculars 

and horizontal plane. Here angles vary between 18,8 to 30 degrees, with a weighted average of 24,5 

degrees. The buckling capacity is calculated using the equations (2-5) and diagrams (figure 17) 

provided by Dieste. 

Presuming a sufficiently large critical buckling load one may proceed and check the middle 1/3 

criteria. It is an iterative process where an origo is assumed and tested for funicular compliance. 

The process may be solved as a constrained optimisation problem utilizing parametric design tools 

available in common CAD packages such as Autocad Architecture 2016 used here.  

If Wolfe’s method is used to generate the funiculars, parametric constraints may be used to make 

the iterations quicker. ‘X’, ‘X’’, ‘Z’ and ‘Z’’ should be fixed positions. Lines ‘X-Y’ should intersect 

‘Y-Z’ and ‘X’-Y’ should intersect ‘Y’-Z’’. ‘X-Y’ are constrained to be parallel with ‘X’-Y’’ and ‘Y-Z’ 

constrained to be parallel with ‘Y’-Z’.  

Figure 19. Presumed crown transverse undulation. 
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1.4.5 Results 

Out of three conditions two are satisfied completely. Equilibrium under main determining load 

case is satisfied and so is resistance against buckling. The middle 1/3 criteria for non-uniform load 

case equilibrium proved hard to satisfy.  

Out of all the funicular thrust lines for the determining uniform load case, the stresses reach a 

maximum of 3.1 MPa (lower boundary thrust line at supports). That is a 2.5 factor of safety against 

material failure compared to a conservative brick compression failure design value of 8MPa. 

Here the buckling load is calculated to 4kN/m as for a 1-meter wide strip. Compared to design 

uniform load of 3.5kN/m, that is a 1.14 factor of safety against buckling. 

Fig 19 illustrates a thrust zone (hatched in figure) required to fit all non-uniform thrust lines with 

minimum variation in funicular rise over each transverse section. The thrust zone is the result of 

many iterations and a good approximation of best compliance with condition. Clearly only a small 

section of the thrust zone fit within the middle 1/3 of undulation and as such the condition is not 

satisfied. At the same time, the result illustrates that it is possible to fit even the worst-case non-

uniform thrust lines within the boundary of the undulation. 

The vault geometry is illustrated in fig 20 and case roof concept is presented in figure 22. 

 

 

Figure 20. Minimum ‘thrust zone’ 
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Figure 21. Gaussian vault geometry. 

Figure 22. Perspectives on roof system 
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1.4.6 Discussion of model  

The purpose of this discussion is to bring to the attention the limitations of presented model. As 

any model, the presented one does not help predict reality but it is useful when designing a structure 

that will work. As George E.P Box famously stated, “All models are wrong, but some are useful”.  

Gaussian vaults carry the loads that they are exposed to by funicular compressive thrust lines to the 

supports. Although compressive axial stresses are the primary type of stresses within the Gaussian 

structure, other types of stresses must occur to achieve equilibrium. To guarantee the structural 

safety it is necessary to include this aspect in analysis. Either explicitly by calculation or implicitly 

by proving the in-plane shear- and out of plane moment-forces can be neglected. In the presented 

method, these forces are implicitly assumed neglected on three occasions: 

First, when constructing the Gaussian vault with the presented method it is assumed in the model 

that adjacent funiculars work in discrete independence of each other. Each longitudinal section is 

subject to, and determined by external loads alone. Yet, all theoretical funicular sections are part of 

a continuous material where no such discrete sectional boundaries exist. Any transverse section 

(other than an arbitrary horizontal line) is along its length subject to different levels of stress normal 

to its cross-section surface. Presented with varying normal stresses; shear forces should develop 

perpendicular to the transverse section surface.  

The finite element analysis presented by (Pedreschi and Theodossopoulos, 2007) shows a 

significant difference in stress distribution compared to the stress distribution the studied structure 

was designed for. It is the interpretation of this thesis author that this stress distribution difference 

in part is due to FE-model allow stress redistribution by transverse and moment internal forces. 

Second, when determining the moment of inertia for the crown and the support section it is 

assumed that all transverse sections work as a unit and stresses may be distributed within the section 

appropriately. Resistance against buckling is achieved by undulating the surface of the vault in the 

transverse direction and utilizing the cross-sectional moment of inertia. By Diestes equation, the 

moment of inertia is primarily determined by the thickness of the vault and the height of its 

undulation. Thus, it is assumed that the transverse cross section may be analysed as a unit. This 

assumption also relies on an assumed sufficient shear force capacity.  

Last, it is assumed that if all the funicular thrust lines fit within the boundaries of the undulation, 

the structure will be in equilibrium. This assumption is in conflict the principle of thrust lines. The 

uniform thrust lines, on which the geometry is based, are symmetrical. The non-uniform load cases, 

such as those including wind, are asymmetric. To simply fit an asymmetric thrust line ‘within the 

undulation of the structure’ is not an easy task. Either the asymmetric thrust line may be found on 

a diagonal within the structure or other modes of action than thrust lines are relied upon to achieve 

equilibrium for the non-uniform load case.  

The capacity for in-plane shear and out of plane moment for masonry structures are well 

documented and proved significant (In plane shear and out of plane bending capacity interaction 

in brick masonry walls). It is beyond the scope of this thesis to apply these related studies to 

presented model. 
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1.4.7 Discussion of results 

Satisfying the requirement posed by Zalewski and Allen (2010) proves close to impossible due to 

the simultaneous practical restriction on feasible vault rise. The two restrictions are not easily 

consolidated and thus the presented method is severely limited if both these rules are to be followed 

completely. It may be the case that both rules do not need to be abided precisely but that they may 

be taken as guiding principles and supplemented by case by case conclusions.  

In this case, it is the opinion of this thesis author that the middle one third rule may be considered 

a flexible recommendation. The rule and the reasoning behind this opinion should however be 

properly analysed before forming conclusions. The reasoning is presented in purpose to inspire 

constructive criticism of presented method and also to inspire future development. 

To illustrate a flexible interpretation of the rule three transverse sections are considered. One on 

windward side, one at the crown and one on the leeward side. On the windward side, it is 

appropriate that the non-uniform thrust line tangent the upper boundary as the wind hits the upper 

boundary the hardest. A transverse section at the crown of the vault is also appropriately passed 

mid height of the undulation at an intersection with the structure. On the leeward side, the non-

symmetry funicular passes through the lower part of the transverse section, close to the lower 

boundary undulation. Thus, non-uniform thrust lines may be able to form on a diagonal across the 

vault. 

Irrespective of if the rule should be considered as strict or a flexible recommendation, the conflict 

does illustrate an important point where the model does not accurately predict the structural 

behaviour. It may still accurately predict structural safety.  

The true structural behaviour is very likely to include stresses other than compressive in the 

longitudinal direction. To resist non-uniform loads, the vault must distribute the stresses to the 

stiffest path between supports. This distribution requires in-plane shear and out of plane moments. 

This complexity effectively must be comprised within the predictions of simplistic the middle one 

third rule. 

If in-plane shear and out of plane moments may be recruited to achieve equilibrium under non-

uniform load cases, then the presented non-uniform thrust zone may be argued to predict a safe 

structural behaviour. Although argument should be proved.  

The designed vault has a larger rise and deeper undulation than Diestes as presented in (Pedreschi, 

and Theodossopoulos, 2007). This would explain the, in comparison, large buckling load – since 

undulation is the main variable for buckling resistance. This difference should be properly 

examined so that the increased transverse angles does not inexplicitly violate any preconditions for 

calculations.  
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2.1 Introduction 

The following section will introduce two pioneering examples of modern structural exploration 

research utilizing Graphic statics.  

As head engineer of leading design firm Skidmore, Owings & Merrill, William F. Baker is 

responsible for some of the world’s most extreme structures such as the Burj Khalifa. Constantly 

searching for ways to push the limits of high-performance structures, the need for structural 

exploration and performance optimisation naturally arises. In Structural exploration using graphic 

statics (Beghini, 2013), the authors (including Baker) present an optimisation method intended to 

solve otherwise complex optimisation problems and to expand the possible design space.  The 

presented tool utilizes the graphic statics reciprocal relationship between form and force, to 

optimise using force domain variables.  

Digital structures group led by Caitlin Mueller at MIT are pioneering algorithms that apply 

computational genetic evolution to design of structures. Evolutionary algorithms are a general 

computational strategy mimicking the biological evolutionary selection process for optimisation 

and computer learning. The intention of the presented tool is to integrate preliminary analysis and 

design and inspire alternative forms. The tool allows structures to be generated and evaluated on a 

complex set of criteria combining architectural and engineering priorities.   

2.2 Structural optimization using graphic statics 

According to Baker, a structure may be defined on three system levels of detail (Baker, 2015). In 

the most detailed level; the size of structural members is considered and designed. This is the lowest 

level of influence on the performance of the structure because of its marginal effect on the 

distribution of forces within the structure. On the holistic level; the topology of a structure is 

considered and designed. The topology describes for example the boundaries, number of nodes and 

connectivity in a frame, or the number of supports and extension of a plate. This is the highest level 

of influence on the performance. In the intermediate level is the shape of a structure. Using the 

same examples, the shape would describe the position of the nodes in a frame or the position of 

supports under a plate.  

Baker’s theoretical studies and practical work both show the importance of engineering the 

topology and shape of a structure. In Connecting architecture and engineering through structural 

topology optimisation (Beghini, 2014) the authors discuss the importance of close discipline 

cooperation where engineers join the exploration of structural form. It is the perspective of Beghini 

et.al. that cross-discipline projects may either result in a project where neither is satisfied with the 

result or one where synergy is achieved and the result is better than what either discipline may have 

managed on its own. It is his view that synergistic results are achieved in close discipline 

collaboration where structure is explored together and respective perspective and ideas inform and 

enforce the each other’s work (Beghini, 2014).   

Topology optimisation tools are effective as means of enhancing the interactive rational process 

where architects and engineers may more effectively incorporate each other’s ideas where they have 

the best effect. Thus, achieving synergistic results (Beghini, 2014)  
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In Structural optimisation using graphic statics (Beghini, 2013) the authors present a topology 

optimisation strategy utilizing the Graphic statics model. Building the optimisation algorithm on 

the Graphic statics model has several interesting advantages compared to algorithms building on a 

Finite elements model (as is common).  

Where most optimisation methods use form domain variables, it is possible with Graphic statics 

model to use force domain variables. Partly the benefit of force domain optimisation relates to 

decreased processing time. Force domain optimisation tend to require less variables than form 

domain (Beghini, 2013). It is therefore possible to use the saved processing time to explore more 

structure alternatives or larger structures. As the processing time usually increase exponentially with 

the number of variables, this is a significant benefit.  

Perhaps the primary benefit of force domain optimisation using graphic statics relates to 

maintaining equilibrium during exploration. Subject to the constraints of reciprocity, a structure 

will always be in equilibrium while all force graph polygons are closed. Optimising with force graph 

nodes as variables, resulting structure will always satisfy equilibrium (if initial structure satisfies 

equilibrium).  

The principles relating form and forces in a Finite element model are by comparison much more 

complex and linear from form to force. By optimising the form of a FE model, it is possible that 

resulting forces are not in equilibrium.  

Readers are referred to “Connecting architecture and engineering through structural topology 

optimisation” and “Structural optimisation using Graphic statics” for introduction to common 

topology optimisation tools and methods and full comparison.  

Many optimal design problems concern primarily axial member structures (Beghini, 2013). Such 

structures may not necessarily be fully triangulated as the flexural stiffness provide sufficient stiffness 

to the structure, making it stable. Yet it is necessary to triangulate the geometry in the model or the 

model structure may become numerically “unstable”. Numerically unstable structures often result 

Figure 23. Triangulated lenticular truss (top). “Unstable” 
lenticular truss (bottom) 
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in a singular finite element stiffness matrix, and as such the equilibrium equations may be 

unsolvable.  

The paradox of stable yet ‘unstable’ structures may be illustrated by studying the force graph 

belonging to the lenticular truss in figure 23 (top). The truss is subject to a uniform load applied 

to the top chord. 

The force graph reveals that the triangulating web members are not subjected to any force. 

Individual force polygons are read by following a clockwise orientation around the studied node. 

K connects to L, that connects to 111 but no edge connecting to 011 is visible. This is because the 

length of diagonal member 111-011 is zero in the force graph.  

The lenticular truss could as such be reduced as illustrated in figure 23 (bottom). In theory, this 

truss is optimal and stable for exact load case but unstable for any other load case. Modelling a 

stable yet ‘unstable’ structure might seem unpractical but as it serves a purpose in preliminary 

design.  

When generating and optimising in preliminary design it is beneficial to design per a single 

dominant load case. This may result in a structure that is unstable for any other load case. Which 

is why in detailed design it is essential to consider all relevant load cases and reinforce structure 

where needed. In detailed design, it may be necessary to consider torsional capacity or even add 

additional members. Non-the less, structures optimised for dominant load case alone tend to be 

very efficient (Beghini, 2013).  

  

Figure 25. Individual node and reciprocal force polygon. 

Figure 24. Force graph of triangulated lenticular truss. 
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In Structural optimisation using Graphic statics, authors present a simple six step process for 

structural optimisation utilizing the graphic statics force domain, as follows: 

1. Given a specified general geometry and connectivity of a structure (form diagram), draw 

the corresponding reciprocal force diagram. Determine which node degrees of freedom in 

force diagram are restrained.  

2. Assign design variables to each node degree of freedom in force diagram that is not 

restrained by reciprocal relationships. 

3. Compute the sensitivities of the design variables (if necessary) and update the design 

variables using suitable optimisation algorithm.  

4. Update the reciprocal force diagram, and use this to construct new form graph. 

5. Calculate the length of the lines in both diagrams. 

6. Calculate the objective function based on the line lengths and repeat until convergence is 

achieved. 

A project utilizing the force domain structural optimisation is illustrated in Structural optimisation 

using Graphic statics. The example applies the optimisation process to a large span truss. The 

example truss is part of a series of trusses intended to carry the load of a large convention centre 

roof as expressive parts of the architecture. Each truss span a total of 162m resting on two supports. 

Main span is 90m and two cantilevers on each side reach 45m and 27m respectively. Dominant 

load case is assumed uniform. 

Several alternative truss topologies were considered in a preliminary study. It was concluded that a 

9-meter-deep truss with X-bracing web members (figure 26a) was approximately optimal for the 

problem and applicable as initial layout for optimisation.  

The pursued optimum is minimum of total steel volume. Assuming constant stress the objective 

function is formulated with equation 6, where L and L* are form and force edge lengths 

(6)           min
௫

𝑉 = min
௫

𝑉
1

𝜎
෍ 𝐿௜𝐿௜

∗ 

To account for buckling, the allowable compressive stress was calculated each iteration considering 

the slenderness of each member. Total steel volume could thus be calculated each iteration as the 

sum of individual member internal force divided by allowable stress.  

The form graph constraints allow the user to experiment with different shapes. Only the bottom 

chord of the truss was initially constrained. This resulted in a baseline optimum truss with only 

55% of the steel volume compared to original X-braced truss.  

Optimum structures often correspond to irrational structures that neither satisfy architectural or 

constructability criteria. Unconstrained base-line truss is very efficient but entirely unpractical. It 

is possible to explore efficient alternatives experimenting with constraints that may also satisfy 

architectural and constructability criteria. Some alternative constraint set ups and resulting 

structural volume explored by Baker and team are illustrated in figure 26 b-e. Alternative ‘e’ is 

selected as proposed preliminary design. 
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The proposed design will require further analysis in detailed design. As described the process only 

considers a single assumed dominant load case, it is critical that the proposed design is analysed for 

possible asymmetric load cases. The detailed analysis will likely require some members to be upsized 

and possibly even adding some member for increased redundancy. However, it is the experience of 

Baker and fellow authors that these additions are marginal on total structural volume. It is as such 

concluded that optimising the preliminary structure for a dominant load case does result in very 

efficient and rigid structures. 

 
Figure 26. Design alternatives developed for a long span-
truss. (Source: Beghini, 2013) 
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2.3 Evolutionary design space exploration  

As Mueller and Ochsendorf explain in Combining structural performance and designer preferences in 

evolutionary design space exploration (2015), designers must consider a wide range of goals for their 

intended design. They define some criteria as ‘quantifiable’. Such as amount of material, costs etc. 

Quantifiable criteria are relatively easy to implement in a computer optimization algorithm. Some 

criteria are not quantifiable but rather ‘qualitative’. They define qualitative criteria to include such 

criteria as aesthetics, constructability and contextual appropriateness. These criteria are hard to 

encode in algorithms and would usually require human evaluation. Their evolutionary algorithms 

are part hard coded optimisation on quantifiable criteria and part user driven selection process on 

qualitative criteria.  

It is also the view of Mueller and Ochsendorf that an important aspect of the design process is how 

the process itself influences the direction of development. One may set out with an initial design 

idea but during the process of exploring that idea may very well give birth to alternative related 

ideas worth exploring. A truly empowering design tool should as such encourage the pursuit of 

alternative related design ideas. 

The team has developed a tool called StructureFIT that combines the optimisation and exploration 

aspect of the design process. Integrating evolutionary algorithms StructureFIT encourages the 

designer to explore a wide range of alternative structures and to find to ones best suited for intended 

use.  

Figure 27. Screen caption from StructureFIT illustrating design generations and selection. 
(Source: Mueller and Ochsendorf, 2015) 
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In analogy with how the random genetic mutation 

of DNA sometimes produces successful new 

properties in organisms, the structural geometries 

may be mutated at random to explore possible 

alternatives. As with genetic evolution, digital 

genetic evolution will usually produce unsuccessful 

mutations but every so often something brilliant 

evolves. 

The strategy used by Mueller and Ochsendorf 

implements five steps in repeat to mimic the 

evolutionary mutation process. First, a generation of 

design alternatives are produced from seed designs. 

Second, the generation is analysed for the 

quantifiable criteria. In a lucky evolution, the user 

may at this stage be satisfied with the alternatives 

provided and would thus be allowed to end the 

selection process. If not satisfied, the user will select 

favourite alternatives (on qualitative criteria) which 

will become the parent generation of next iteration. 

Continuous mutation and selection will over several 

generations evolve the structures towards a more 

desirable optimal design.  

In the selection phase of their digital evolution strategy, the user is allowed to actively modify the 

generated structures as desired before progressing with the evolution. The breeding phase also 

includes features to modify the breeding stage by manipulating the generation size and mutation 

frequency.  

Their case studies show that low mutation rate combined with large generation sizes set up the 

evolution for generating high performing designs close in appearance to the initial design. This set 

up is ideal when optimising on hard factors such as cost or performance. Their case studies also 

show that smaller generation sizes combined with high mutation rate set up the evolution for 

generating imaginative designs with similar or slightly better structural performance compared to 

initial design.  

To illustrate the potential of each approach, design variations of a frame (figure 30) are produced 

each using either a performance optimisation approach, a hybrid approach or a free form 

exploration.  

It is their conclusion that in practice, a hybrid design approach combining medium mutation rates 

and large generation sizes are likely the most useful approach. In the selection phase the user selects 

variations on both structural performance and qualitative aspects. This is likely to produce design 

offspring that resemble the initial design but perform significantly better. Thus, providing 

Figure 28. Proposed standard evolutionary algorithm. 
(Source: Mueller and Ochsendorf, 2015) 
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structures in line with the architect’s intentions but that require significantly less materials or cost 

less.  

Illustrated in figure 31 are the design generations of the hybrid approach and the selected 

alternatives for each generation. From a population of 90 alternatives, the top then performing 

alternatives are pictured. Note that the alternatives featuring the top performance are not 

immediately selected as seeds for next generation. Rather the alternatives judged as acceptable 

performance and featuring desirable qualities are selected as seeds for next generation.  

By the first few generations the mutation rate is relatively high to produce variation. From the 

generated variations, desirable design directions are selected as seeds. When approximate desirable 

forms designs have been achieved, the mutation rate is decreased for a few generations while 

alternatives are selected for performance.  

 

 

 

 

 

 

 

 

 

  Figure 29. Comparison of structural efficiency 
over evolution. (Source: Mueller and 
Ochsendorf, 2015) 

Figure 30. (Source: Mueller and Ochsendorf, 
2015) 

Figure 31. Screen caption from StructureFIT illustrating design generations and selection 
(Source: Mueller and Ochsendorf, 2015) 
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2.4 Discussion 

It is concluded by Mueller and Ochsendorf that the 

future work to develop the method further should 

focus on including more quantitative goals in the 

optimisation process. They suggest further focus on 

energy, daylight performance, constructability and 

embodied energy.  

An interesting aspect of the constructability goal is the 

translation from conceptual structural model to 

detailed structural design model. Obviously, a frame 

model is ideal for frames such as the one presented in 

the hybrid example. The preliminary model is directly 

applicable in detailed design analysis. Yet the 

illustrated structures resulting from the hybrid design 

exploration (figure 32) are reinforced concrete frames. 

The detailed analysis model is not in perfect analogy 

with the frame model. Aligning the preliminary design 

model with the detailed design model is a key factor 

of the constructability goal. 

As model complexity is prone to produce design errors 

and significant project costs, complexity is usually 

avoided in practice in favour of simplistic upper 

boundary models. As the full complexity of the intended 

design is reduced to practical upper boundary models it 

is often desired to change the intended design to fit the 

desired model. Thus, expressive structures risk degradation if not designed in alignment with the 

requirements of analysis model and constructability principles.  

Important questions to consider for constructability evaluation strategy are; how would one 

automatically evaluate the complexity of a detailed analysis based on the conceptual model?  

 

 

 

 

 

 

Figure 32. Result of hybrid design exploration. 
(Source: Mueller and Ochsendorf, 2015) 
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PART III 
COMPUTATIONAL GRAPHIC STATICS 
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3.1 Introduction 

As illustrated by the examples in first and second part of this thesis, graphic statics is useful in both 

the original form and as a computerised model. By computer implementation it is possible enhance 

and extend the capabilities of graphic statics by integration with other software based methods. As 

illustrated in second part of this thesis, one such synergy is found by extending graphic statics form 

finding capabilities with optimisation algorithms. 

The computer implementation of the graphic statics requires a reinterpretation of graphic geometry 

to a format that may be processed by algorithms. Different implementation strategies are possible. 

Currently two approaches are competing for popularity.  

A fully geometric approach to interactive constraint based structural equilibrium design (Fivet and 

Zastavni, 2014) present one approach. This approach has topology represented by five types of 

geometric data sets; points, constraints, Boolean constraints, forces and rods. From this data 

construction, it is possible to interactively create form and force graphs from either domain.  

The algebraic approach is examined in this thesis. The algebraic approach has topology represented 

by matrices and reciprocity constraints solved by algebraic equations. This approach allows form 

to force interactive manipulation without breaking the reciprocal relationship. This approach is 

presented by Tom Van Mele and Philippe Block in Algebraic Graphic statics (2014). It is their 

specific strategy and algorithm that is examined in following section 

The algebraic approach is in the following section presented as applied to the suspension bridge 

previously studied in first part of this thesis. Topological representation and reciprocity calculations 

using algebra should be presented. A strategy for user interface integration is proposed by this 

author and explored as a proof of concept.  

3.2 Definitions 

The dual of a graph is a graph that has a node for every surface of the original. The dual nodes are 

connected by an edge whenever corresponding surfaces in the original share a separating edge.  

Form and force graph are referred to as G and G* respectively.  

Graph connectivity refers to how edges are connected between graph nodes. Matrix C represents the 

directed connectivity of form graph. C* represent the directed connectivity of force graph. 
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3.3 Algebraic graph representation 

The first stage of the setup is the 

construction of connectivity matrices. 

The second is that vectors containing 

node coordinates should be constructed.  

Initially, nodes, edges and surfaces need 

to be indexed. Each type is indexed by its 

own system. No particular indexation 

order is necessary but a systemised 

approach is strongly recommended. In 

addition to surface index a positive cycle 

direction should be defined. Here clockwise is used.  

From edge and node index, edge direction may be defined. In theory, the direction may be defined 

arbitrarily but for clarity Block proposes a direction convention. Proposed direction convention has 

low index node as edge tail and high index node as edge head. This is used in following example.  

Due to their defined dual relationship, both C and C* may be constructed from an indexed form 

graph. In addition to encoding the connectivity of form and force graphs, the matrices also encode 

the edge direction following the definitions (6) and (7) respectively. Traversed refer to the reading 

the enclosing edges around a surface. Edges are read in turn of the defined cycle direction.  

(6)          𝐶௜௝ =  ൝
  +1 if vertex is head of edge j
  −1 if vertex is tail of edge j
     0 otherwise

   

(7) 𝐶௜௝
∗ =  ൝

  +1 if edge j is traversed in the same direction as its orientation
  −1 if edge j is  traversed in opposite direction as its orientation
     0 otherwise

   

The resulting matrix structures are of size [𝑣 𝑥 𝑒] and [𝑣∗𝑥 𝑒] where 𝑣∗ is the number of form 

graph surfaces as well as the number of force graph nodes. A third connectivity matrix is constructed 

to represent the connectivity of only the internal nodes in force graph. This is simply constructed 

by extracting rows corresponding to internal edges from C. Correct set up of example case will 

produce matrices as presented below.  

  

Figure 33. Bow’s notation applied to form graph. 
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Node coordinate vectors x and y represent defined form graph node positions. Coordinates may be 

defined as absolute position or normalised position, as only relative position is of interest. From 

node coordinates it is important to note drawing scale as this is essential to determine force 

magnitude later. 

3.4 Reciprocity and equilibrium conditions  

Two conditions should be encoded in the algebraic transformation calculation. The first condition 

requires the dual force graph polygon to be closed if corresponding form graph node is in 

equilibrium. This is algebraically encoded such as the vector sum of each force graph polygon to 

equal zero. Second, corresponding edges should be parallel between form and force graph. As graphs 

are dual by set up definition, second conditions effectively graph reciprocity if satisfied. 

Vector sum of each respective force polygon may be calculated as 𝑪௜𝒖
∗ for x-axis and 𝑪௜𝒗

∗ for y-

axis. The vectors u* and v* as well as u and v are referred to as coordinate difference vectors. System 

equilibrium (and first condition) is satisfied if equation 8 is satisfied. 

(8)          ൜
𝑪௜𝒖

∗ = 0
𝑪௜𝒗

∗ = 0
 

The parallel edge constraint may be algebraically represented as equation 9, where Q is a diagonal 

matrix encoding the edge length differences. Edge length difference may also be referred to as force 

density. 

(9)          ൜
𝒖∗ = 𝑸𝒖
𝒗∗ = 𝑸𝒗

 

u* and v* are initially unknown and in fact the solution objective. When these are identified, the 

force graph node coordinates may simply be calculated by solving equation 11 and 12 for x* and 

y* respectively. 

(10)          𝒖∗ = 𝑪∗௧𝒙∗ 

(11)          𝒗∗ = 𝑪∗௧𝒚∗  

C 0 0 0 -1 0   0   0 

[v x e] -1 0 0 1 -1 0 0 

 0 -1 0 0 1 -1 0 

 0 0 -1 0 0 1 -1 

 0 0 0 0 0 0 1 

 1 0 0 0 0 0 0 

 0 1 0 0 0 0 0 

 0 0 1 0 0 0 0 

 

        

        

C* 0 0 0 -1 -1 -1 -1 

[v* x e] 1 0 0 1 0 0 0 

 -1 1 0 0 1 0 0 

 0 -1 1 0 0 1 0 

 0 0 -1 0 0 0 1 

 

  -1 0 0 1 -1 0 0 

[vi x e] 0 -1 0 0 1 -1 0 

 

0 0 -1 0 0 1 -1 

𝑪𝒊
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To identify u* and v* an equilibrium equation is formulated and solved. Combing both reciprocal 

condition equations 8 and 9. Using Qu = Uq and Qv = Vq, where U and V are the diagonal 

matrices of u and v equilibrium equation 13 may be formulated. 

(12)          ൜
𝑪௜𝑼𝒒 = 𝟎
𝑪௜𝑽𝒒 = 𝟎

 

Or,  

(13)          A𝒒 = 𝟎 where      𝑨 =  ቚ
𝑪೔𝑼

𝑪೔𝑽
ቚ   

A is referred to as the equilibrium matrix and q referred to as the force density vector (or edge length 

difference vector). U and V are constructed as the diagonal matrices of u and v. This is found by 

equations 14 and 15. With Ci, U and V known; A may be constructed. 

(14)          𝒖 = 𝑪௧𝒙   

(15)          𝒗 = 𝑪௧𝒚  

 

    

A      [2𝑣௜ ∗ 𝑒] 

0 0 0 6379 -3750 0 0 

0 0 0 0 3750 -3750 0 

0 0 0 0 0 3750 -6662 

2954 0 0 -3463 429 0 0 

0 2954 0 0 -429 -1172 0 

0 0 2954 0 0 1172 -4926 

 

Solving the equilibrium equation 𝑨𝒒 = 𝟎 requires different methodology depending on the shape 

of the system. Solution methodology is discussed in detail by authors in Algebraic graphic statics 

(2014). 

With connectivity matrices, form coordinates and force density vector defined and identified, G* 

node coordinates may be identified by solving equations 10 and 11 for x* and y*. Due to algebraic 

complexities, the equation may not be solved directly but are first transformed to equation 16 and 

17 where 𝑳∗ =  𝑪∗𝑪∗௧. 

  

u   0   v -2954 

[e x 1]  0   [e x 1] -2954 

  0  -2954 

  6379  -3463 

  3750  -429 

  3750  1172 

  6662  4926 

     

x 0  y 13748 

[v x 1] 6379  [v x 1] 10285 

 10129   9856 

 13879   11028 

 20541   15954 

 6379   7331 

 10129   6902 

 13879   8074 
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(16)          𝑳∗𝒙∗ = 𝑸𝒖  

(17)          𝑳∗𝒚∗ = 𝑸𝒗  

 

L 4 -1 -1 -1 -1 

[v x v] -1 2 -1 0 0 

 -1 -1 3 -1 0 

 -1 0 -1 3 -1 

 -1 0 0 -1 2 

 

3.5 System self-stress and independent edges 

An important aspect of the equilibrium equation is that it does not differentiate between internal 

edges and external forces. Both are simply treated equally as edges. As such the equilibrium matrix 

encodes both structure and external forces equally as ‘structure’.  

Forces are introduced into the system through so called system self-stress. System self-stress may be 

understood in analogy with a steel truss where specific members are heated so that they expand. 

The expansion causes connecting joints to adapt a new state of equilibrium where force exerted by 

expanding member cause resultant forces in adjacent members. Because of the expansion, the 

system is in an induced state of self-stress. Analogous to heating a structural member, system self-

stress can be induced in the equilibrium equation by modifying the force density vector q.  

Each element of q encodes the length ratio between form and force graph dual edges, the magnitude 

of forces may be controlled by the user by modifying specific elements of q. In the implementation, 

the elements of q are a functions of force magnitudes and interface drawing scale.  

𝑞௜ =
௙௢௥௖௘ ௚௥௔௣௛ ௦௖௔௟௘

௙௢௥௠ ௚௥௔௣௛ ௦௖௔௟௘
∗

௙௢௥௖௘ ௠௔௚௡௜௧௨ௗ௘

௙௢௥௠ ௚௥௔௣௛ ௘ௗ௚௘ ௟௘௡௚௛௧
  

Edges with force densities prescribed by user are referred to as independent edges. Modifying 

independent edges, different states of equilibrium may be explored for given structure. The 

independent edges are not an arbitrary selection, instead possible sets of independent edges are 

uniquely determined for each structure. Adding to the complexity, it is not obvious which sets are 

possible but instead some user experimentation may be necessary.  

As self-stress is necessary for any solution but the arbitrary q = 0, prescription of independent edges 

is required. The required number of independent edges is equal to the system degree of static 

indeterminacy, k. In Structural computations with the Singular value decomposition of the equilibrium 

matrix (1993), author S. Pellegrino shows that the rank-nullity theorem can be applied to 

equilibrium matrix to find the degrees of static and kinematic (in)determinacy, 𝑘 and 𝑚, according 

to 18 and 19 where r refers to the matrix rank of A. 
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(18)          𝑘 =  𝑛௖ − 𝑟   

(19)          𝑚 =  𝑛௥ − 𝑟  

The rank, 𝑟, is understood as the number of linearly dependent columns (or rows) of the 

equilibrium matrix 𝐴. Some columns are linear combinations of the other columns, these are said 

to be linearly dependent columns. Those that cannot be found to be a combination of the other 

columns are said to be linearly independent columns. Linearly dependent columns are also known 

as pivots and linearly independent as non-pivot columns. The rank of A is the number of pivots of A 

One way to find the rank of A is to rearrange it to its row echelon form (see below), the pivots are 

easily identified as columns containing the leading non-zero element in each row.  

The values of 𝑘 and 𝑚 determine how the equilibrium equation should be solved and interpreted. 

For any solution to be available it is kinematic determinacy and static indeterminacy is required, 

𝑚 = 0 and 𝑘 > 0. The interpretation of k and m and its implications are further explored in 

Algebraic graphic statics. 

 

3.6 Structural exploration 

 

 2954 0 0 -3463 429 0 0 

rref(A)    0 2954 0 0 -429 -1172 0 
[2𝑣௜ ∗ 𝑒] 0 0 2954 0 0 1172 -4926 

 0 0 0 6379 -3750 0 0 

 0 0 0 0 3750 -3750 0 

 0 0 0 0 0 3750 -6662 

 

 

By reduced row echelon form of A in studied case we find that the rank of A is six. Equation 18 

informs that the degree of static indeterminacy is one and equation 19 inform that degree of 

kinematic indeterminacy is zero.  

At this point the user is free to experiment with different sets of independent edges. In this case, 

since the static indeterminacy is one, one element of q must be prescribed. Not all variations of q 

will be a solution to the equilibrium equation. Which combinations that will produce a solution is 

unintuitive at best. A measure of user-experimentation is required to find a suitable variation of q 

to both satisfy the user exploration goals and equation solution.  

A viable combination of independent edges in q can be found by studying the non-pivot columns 

of the reduced row form of matrix A. If it proves hard to identify a viable independent edge by 

experimentation, this may provide a viable but restricted solution. In this example we know from 
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studying the non-pivot columns of A, that a system with edge seven independent does solve for 

variable states of self-stress. 

Form exploration with independent edges as variables is limited to exploration of force magnitude 

variations. Since the value of an independent edge translate to the magnitude of corresponding 

force, any variation in independent edge scale result in a corresponding shift in force graph 

magnitudes.  

Given that the shape of a funicular is determined by the set of external loads it is exposed to, any 

variation of independent edge value will return a corresponding scale of force graph.  

Different funiculars are found by geometrical construct. As such, the generation of different 

funiculars is a matter of front end GUI implementation. When a form is generated it is easily 

analysed for forces by exporting form node coordinates to back end algorithm. 

The design force in edge one, two and three are known to be 13kN. In terms of self-stress this 

correspond to an equivalent force density of 4.4.  

𝒒𝟏 =
௙௢௥௖௘ ௚௥௔௣௛ ௦௖௔௟௘

௙௢௥௠ ௚௥௔௣௛ ௦௖௔௟௘
∗

ଵଷ଴଴଴

ඥ𝒖𝟏
మା 𝒗𝟏

మ
=  

ଵ

ଵ
∗

ଵଷ଴଴଴

√଴మା ଶଽହସమ
= 4.4   

Solving the equilibrium equation with 𝒒𝟏 prescribed to 4.4 results in q = [4.4; 4.38; 4.38; 4.76; 

8.09; 8.09; 4.56] thus resulting in force graph coordinate difference vectors, force graph node 

coordinates and force graphs below; 

u* 0 v* 13000 

[e x 1] 0 [e x 1] 13000 

 0  13000 

 -30330  16470 

 -30330  3470 

 -30330  -9530 

 -30330  -22530 

 

 

 

  

X*  30330 Y* -16470 

[v* x 1] 0 [v* x 1] -39000 

 0  -26000 

 0  -13000 

 0  0 

    

Figure 34. Resulting force graph from reciprocal 
transformation. Labelling (left) and magnitudes (right) 
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3.7 Discussion 

A significant difference between computational and manual graphic statics method is the edges that 

are free to be used in exploration. The computational method is limited to a specific set of 

independent edges. The manual method on the other hand is not limited by any such technical 

requirements.  

Using the manual method, one is free to modify both direction and magnitude of any edge. The 

only limitation is dictated by Bow’s notation reciprocity. A change in either direction or magnitude 

will dictate a reciprocal change in another graph. Manual exploration in force graph may very well 

cause changes in form diagram.  

The computational method is limited to downstream exploration from the form graph. In a full 

implementation the user is free to explore the effect of different forms by iterating different nodal 

positions or graph connectivity, but one is also limited the independent edges dictated by the 

equilibrium matrix.  

The equilibrium matrix is generated from prescribed form graph and the equilibrium equation 

solved to produce the force graph. While this computational method produces quick calculations 

and accurate results it does not permit form graph to be generated from a prescribed force graph.  

It is interesting to note that the algorithm is not simple invertible, as to produce a form graph from 

a prescribed force graph. In Blocks Algebraic graphic statics it is stated that such a backwards 

transformation is a matter of constrained optimisation problem. It is unknown to this author exactly 

why this is. One factor may be how the form graph has leaf nodes and the force graph does not. It 

may be that leaf nodes are necessary to achieve a state of self-stress in the system. An alternative 

viewpoint is that there may exist multiple form graphs to the same force graph. Any algorithm 

capable of transforming from force to form would thus have to handle selection between alternative 

solutions.  

3.8 User interface  

The reciprocity transformation algorithm may be implemented into a variety of user interfaces 

(UI). In this thesis, the mathematics software GeoGebra was tested for compatibility. A strategy for 

passing information between UI and back-end code should be presented and a proof of concept 

implementation illustrated. 

Three factors make GeoGebra a suitable candidate as a user interface. First, it features a dynamic, 

easy to use yet powerful graph interface. Second, the software focus is on geometry and algebra and 

third, the software has an open source code and extensive scripting capabilities. With the back-end 

code running from a Python code IDE (integrated development environment) the integration 

challenge is a matter of Python code to GeoGebra communication.  

For a fully integrated user experience, the UI needs to integrate simultaneous displays of both form 

and force graphs, the capability to draw and modify nodes and edges dynamically and to define 

independent edges. GeoGebra feature built in tools that potentially may be used in implementation 

for these purposes. 
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Primarily it is the graph- connectivity, topology and independent edges that should be passed 

between the Python code and GeoGebra. Form graph information should be passed from 

GeoGebra at drawing update to Python code; processed for reciprocal transformation and force 

graph information communicated back to GeoGebra. A possible strategy for passing information 

would utilize the Geogebra save file as a medium from which information can be read and written 

by both GeoGebra and Python code. This strategy should be examined in following section. 

3.9 Proof of concept  

The GeoGebra file format ‘.gbb’ is a zip-file containing three XML files, a thumbnail and a 

JavaScript file. The XML file named ‘geogebra.xml’ contains all information created in GeoGebra 

project files and the JavaScript file is initiated by GeoGebra at initiation of main program. These 

two files form the basis of this implementation strategy. A static communication system may be set 

up by reading and writing to- and -from the XML file whenever a form or force graph is updated.  

 

 

Reading and writing .XML files is a task that Python is well suited for. Many code modules are 

available that makes the process easy by translating the XML format to an easy to read data-tree 

format. In the XML data tree a constructions branch contain all geometrical information created in 

GeoGebra. Relevant data may be extracted from the XML file by filtering for the sub-branch 

elements with type “point” and sub-branch command with name “Segment”. Writing the force 

graph- connectivity and topology to the XML file utilize the same code modules and follow the 

same procedure.   

Figure 35. Section of XML file contained in .ggb file.  
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Using this method of passing information only a minimum of data interpretation is necessary. Only 

the indexing system requires a translation (from lettering system to vector element index) which is 

easy to achieve.  

The form geometry is easily created in GeoGebra using the ‘segment’ tool. If desired it is possible 

to specify exact node positions using the algebra interface. The algebra interface is also useful to 

determine the form graph drawing scale. Figure 36 illustrates a form graph representing the 

suspension system carrying the bridge studied previously.  

As the length of edges connected to leaf nodes are function of force densities, it is not necessary to 

specify exact magnitude of edges representing external forces. Instead the form graph length of 

independent edges is noted and compared to intended magnitude. In this case external force, ‘edge 

j’ should be prescribed to 13kN. The Algebra interface shows the length of ‘j’ as 1, thus the form 

graph scale is 1:13 [kN]. 

 

 

After saving the file, the geometry can be passed to Python using the presented XML method. 

Figure 37 illustrates the geometry as interpreted and indexed by Python code. As users are only 

concerned with the length and orientation of edges, only edges are labelled. We now know that we 

want to prescribe edge ‘4’ as independent.  

  

Figure 36. Approximate form geometry in GeoGebra  
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q4 is here manually calculated after having Python print u and v. 1:1 force graph drawing scale is 

presumed. 

 

𝒒𝟒 =
13

1
∗

1

√0ଶ +  −1ଶ
= 13 [𝑁] 

 

The degrees of static and kinematic indeterminacy is calculated by an implementation following 

the algorithms proposed by Van Mele and Block in Algebraic graphic statics (2014). In this 

implementation, the user is presented with a Python console print out of degrees of indeterminacy, 

the reduced row echelon form of A and the prompt to select independent edge and prescribe force 

density.  Resulting q, x* and y* are calculated using presented back-end strategy, from which the 

force graph is generated. The results for illustrated case are presented below. 

As the equilibrium equation was solvable given prescribed independent edge we know that the 

given geometry is funicular and in equilibrium. Notably this is not under the assumed load case of 

equal vertical forces (edge 4-6) but instead the geometry is funicular under different vertical forces 

(24kN, 19kN and 13kN).  

 

u   1.5 v -1.0000   

[e x 1]  0.9978   [e x 1] -0.2563   

  1.0049  0.3691   

  1.3485  1.5331   

  0.0000  -1.0000   

  1.0252  -1.2436   

  4.6159  -0.8128   

       

Figure 37. Left: GeoGebra approximate geometry. Right: Precise funicular geometry 
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Figure 38. Python console print out prompting selection of independent edge(s). 

Figure 39. Resulting force graph from approximate geometry. Labeling (left) and magnitudes (right). 
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3.10 Discussion 

Using the proposed XML method, geometric information may be passed between GeoGebra and 

python. The ‘static’ information exchange is successfully implemented. The form graph geometric 

data may be passed from GeoGebra interface to Python. The XML strategy also works well for 

passing geometric data from Python to GeoGebra. This method is easy to implement and only 

limited measures are required to translate between data formats.  

The XML method strategy incorrectly supposed that any geometry update would automatically 

update the XML file, instead GeoGebra utilizes a system of temporary files embedded with the 

source code. The proposed method requires the user to actively save GeoGebra file to pass 

geometric data for reciprocity transformation. The data passed from Python to XML file cannot be 

automatically updated in runtime. The user is required to restart GeoGebra for graph update. A 

‘dynamic’ data exchange is not achieved with proposed XML method.  

An automatic graph update from XML file could potentially be solved by incorporating GeoGebra 

script observer classes through Java script. The JavaScript file contained within the .ggb file is 

automatically initiated when .ggb file is loaded. Native GeoGebra script methods are available 

through the JavaScript. Incorporating the GeoGebra observer classes this way, it may be possible 

to manage UI redraws and automatically initiate force graph recalculations. 

The results from the presented transformation illustrate a significant flaw in the proposed user 

interface implementation. As funiculars are very form sensitive, accurate calculations require 

accurate funicular geometry. Using the proposed point-and-click interface with GeoGebra, 

geometry is easily generated and visually accurate. The form graphs illustrated in figure 37 are 

visually indistinguishable (besides length of external forces). Figure ‘a’ is the geometry generated 

using GeoGebra interface and ‘b’ the exact funicular form generated using Wolfe’s methods. At 

worst, this approximation corresponds to a force magnitude error of 40%. 

This error may be circumvented in the current implementation by utilizing the large Geometry 

toolbox availably in GeoGebra. Wolf’s method of generating funiculars may be used to create the 

specific form required for a specific load case. From this geometry, the presented back-end strategy 

is very capable of accurate transformation to force graph. 

The result also demonstrates a significant difference to the traditional methods. In the manual 

methods, external forces are defined in the force line and a suitable form found to satisfy 

equilibrium. Or alternatively, from a proposed form an external load case may be found that satisfy 

equilibrium.  

The automatic method does not differentiate so clearly between form- or force- exploration. In 

each iteration of the transformation calculation independent edges are determined from input form 

geometry. The user has only a limited say in what independent edge to use. External and internal 

forces are the same to the equilibrium equation. It may be that the independent edges are either 

force- or form- edges or both.  
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This complexity is illustrated by the resulting magnitudes of the presented transformation. The 

approximate geometry failed to accurately represent the funicular geometry for the intended load 

case, the transformation algorithm calculated a load case for which the structure is funicular.  
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4. CONCLUSION 

Initially developed as a practical method for structural analysis and design, and later effectively 

antiquated in the computational age; graphic statics is making a come-back in the context of 

structural exploration.  

As demonstrated in first part of this thesis, traditional graphic statics methods are still viable as a 

means of understanding and exploring structures. The graph interface and the simultaneous 

interaction with form and forces offer a great interface to explore structures. The simplistic nature 

of the graphic statics requires the user to understand the disparity between model and reality. The 

simplistic model should as such encourage the user to create form that utilise the material in line 

with their properties.  

The second part of this thesis has illustrated two pioneering developments in structural exploration. 

The examples show that cross discipline topology design is key to creating new form. By integrating 

analysis and design it is possible to identify new structural form that fulfil a broad spectra of design 

criteria.  

The third part of this thesis has illustrated a strategy for representing graphs and graph reciprocity 

in software. The strategy does successfully represent reciprocal graphs but in a significantly different 

way than traditional graphic statics. The computational strategy is limited by how many and what 

combinations the user can prescribe to magnitude of.  

Graphic statics features some interesting methods that unfortunately will have limited use in 

practice. The simplistic model is both its strength and its greatest weakness. The simplicity allows 

greater interactivity and encourages designs in line with material properties. Yet the model is only 

applicable to a very limited set of structures (mainly pin jointed structures and thin vaults). Other 

types of structures may be modelled in analogy with a graphic statics model but for the most 

common types of building structures it is not applicable. 

It was suggested that Graphic statics might contribute to material sustainability, architectural 

developments based in honest design and reduced projection costs. While it certainly has the appropriate 

features for such a contribution; considering the niche applications, the total contribution is 

marginal. Graphic statics is perhaps most relevant as an educational tool teaching important aspects 

of structural engineering.  

As an educational tool, Graphic statics methods serve to highlight the possibilities available in the 

topology and shape analysis to reduce material consumption and achieve greater performance. 

Teaching graphic statics methods serves to integrate analysis and design. 

It is the view of this thesis author it is fundamental to understand model assumptions and 

presumptions. Considering the model-reality is an essential process to develop knowledge. Working 

with the Graphic statics model is an excellent educational process to reflect on the model-reality 

disparity. The simplistic nature of the model forces the user to think outside of the calculation 

process and consider model assumptions.  
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In conclusion; besides some niche applications in practice, the greatest benefit of Graphic statics is 

as an educational tool teaching model consideration and benefits of structural exploration. By 

developing the engineering mindset, Graphic statics may indirectly contribute to material 

sustainability, architectural developments based in honest design and reduced projection costs. 
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