UNIVERSITY

DYNAMIC SOIL-STRUCTURE
INTERACTION OF PORTAL
FRAME BRIDGE WALLS

FOR HIGH-SPEED RAILWAYS

HENRIK MALM

Structural
Mechanics

Master’s Dissertation







DEPARTMENT OF CONSTRUCTION SCIENCES
DIVISION OF STRUCTURAL MECHANICS

ISRN LUTVDG/TVSM--16/5219--SE (1-109) | ISSN 0281-6679
MASTER'S DISSERTATION

DYNAMIC SOIL-STRUCTURE
INTERACTION OF PORTAL
FRAME BRIDGE WALLS

FOR HIGH-SPEED RAILWAYS

HENRIK MALM

Supervisors: Professor PER-ERIK AUSTRELL, Div. of Structural Mechanics, LTH,
together with MAHIR ULKER-KAUSTELL, PhD and JOHAN OSTLUND, MSc, Tyréns AB.

Examiner: Professor KENT PERSSON, Div. of Structural Mechanics, LTH.

Copyright © 2016 Division of Structural Mechanics,
Faculty of Engineering LTH, Lund University, Sweden.

Printed by Media-Tryck LU, Lund, Sweden, October 2016 (P).

For information, address:
Division of Structural Mechanics,
Faculty of Engineering LTH, Lund University, Box 118, SE-221 00 Lund, Sweden.

Homepage: www.byggmek.Ith.se






Preface

This master’s thesis was initiated in cooperation between the Division of Structural
Mechanics at Lund University and the bridge department at Tyréns AB.

I would like to address my sincerest gratitude to my supervisor, Ph.D. Mahir Ulker-
Kaustell at Tyréns AB, for his enthusiasm and excellent support and guidance
throughout the course of this work. Thanks also to my supervisor Johan Ostlund, Ph.D.
student at KTH and Tyréns, who has been of huge help when I have been running into

trouble, and whose master’s thesis has been an enormous source of inspiration for me.

Furthermore, T would like to thank my supervisor at LTH, Prof. Per-Erik Austrell at
the Division of Structural Mechanics, for guidance and for invaluable knowledge in the
field of structural dynamics. My examiner, Prof. Kent Persson at the Division of
Structural Mechanics at L'TH has been of great help by letting me partake in a project,
enabling the whole thesis through access to the supercomputers of Lunarc. Thanks also
to Anders Sjostrom at Lunarc and L'TH, for help with troubleshooting when using the

supercomputers.

I would like to thank Scanscot Technology AB, for sponsoring me with a license to the
finite element software BRIGADE Plus. I am also very grateful to Tyréns AB for
providing me with workspace during the work with the thesis and I owe a special
thanks to the entire staff of the bridge department of said company for making the

time there much enjoyable.

Finally, I would like to thank my famly, friends and loved ones for the support they

have given me throughout my five years at L'TH.

Malmo, October 2016
Henrik Malm






Abstract

In Sweden, high-speed railways is a subject for public debate. The first stage of a high-
speed train network, Ostlanken between Stockholm and Linkoping, is under
investigation, and is planned to be trafficked in 2028. The high-speed railway is
intended to hold traffic with speeds up to 320 km/h. At such speeds, the design
requirements of the accelerations of the bridge superstructure become more stringent.
Previous studies show that the interaction between the bridge and the backfill soil can

reduce these accelerations.

In this thesis, dynamic soil-structure interaction (SSI) of portal frame bridge walls has
been studied. The SSI was represented by complex impedance functions that were

calculated and analyzed for different parameters of a bridge-embankment interface.

The impedances, representing dynamic stiffness and damping, were in this thesis
calculated in the frequency domain with finite element (FE) software, by performing
steady state analyses on 3D solid bridge-embankment models. To discretize the infinite
extent of an embankment, the standard viscous boundary method was used,
implemented by inserting infinite continuum elements at the boundary in the FE-
software ABAQUS. The method showed successful with mitigating waves at the
boundary. A parameter study was conducted, where the influence of geometries and
material properties were shown through a comparison of impedance functions. Both
embankments on a fixed boundary, representing bedrock, and embankments on circular

ground soil plates of various thickness and stiffness, were compared.

SSI showed to induce large amounts of dynamic stiffness and damping to a bridge
structure. A stiffer embankment, as well as a stiffer ground soil, has shown large
influence on the dynamic stiffness and is believed to reduce vibrations in a bridge deck.
The study suggested that proper material modeling is important for both the soil and
the concrete, to receive accuracy in the impedance functions. The work also indicates
that a properly designed bridge wall geometry could be an important step towards

developing the design of future high-speed railway bridges.

Keywords: SSI, soil-structure interaction, structural dynamics, high-speed railway

bridges, impedance, receptance, finite element method, portal frame bridge
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Sammanfattning

I Sverige ar hoghastighetsjarnvagar ett debatterat amme. Undersokningsarbeten har
startat for det forsta steget i ett hoghastighetsniat — Ostlanken mellan Jarna och
Link6ping — som planeras vara trafikerad ar 2028. Hoghastighetsjarnvagen ar avsedd
att tillata hastigheter pa 320 km/h. Vid sa hoga hastigheter blir dimensioneringskraven
for brobanans vibrationer strangare. Tidigare studier har visat att dessa vibrationer
kan reduceras om man tillgodoraknar sig interaktionen mellan bron och jordbanken.

Det har examensarbetet behandlar dynamisk jord-struktur-interaktion (SSI, fran Soil-
structure Interaction) fér ramben pé plattrambroar. SSI representeras hér av komplexa
impedansfunktioner som har berdknats och analyserats for olika parametrar i ett

granssnitt mellan jord och bro.

I examensarbetet berdknades impedanser, som representerar dynamisk styvhet och
dampning, i frekvensdoménen genom steady-state analyser pa tredimensionella FE-
modeller som utgjordes av ett ramben och en intilliggande jordbank. For att avgransa
den oandliga utstrackningen av en jordbank, anvandes den sa kallade standard viscous
boundary-metoden, vilken implementeras i FE-mjukvaran ABAQUS genom 3D-
element som simulerar oandlig utstrackning. Metoden visade sig effektivt kunna dampa
ut vagrorelser som nadde jordbankens bortre grians. En parameterstudie utfordes, dér
betydelsen av geometrier och materialegenskaper kunde pavisas genom att jamfora
impedansfunktioner. I parameterstudien jamfordes bade modeller med jordbank pa
berggrund och jordbank péa cirkuldra jordskivor av olika djup och styvhet med

varandra.

Studien visade att SSI kan bidra mycket till dynamisk styvhet och démpning fér en
vidhdngande struktur. Styvare jordbank, savil som styvare mark, visade sig i stor
utstrackning paverka den dynamiska styvheten, och tros kunna reducera vibrationerna
i den intilliggande brobanan. Studien antyder att noggrant valda materialegenskaper i
bade jorden och betongen ar viktigt for noggrannheten i uppskattning av impedansen.
Studien visade dven tendenser till att vidare utredning av utformningen av rambenen

ar ett viktigt steg for att utforma framtidens hoghastighetsjarnvagsbroar.

Sokord:  SSI, jord-struktur-interaktion, strukturdynamik, hoghastighetstag,

jarnvégsbro, impedans, receptans, finita elementmetoden, plattrambro






Abbreviations

Abbreviation

2D
3D
BC
CPU
DFT
DOF
FE
FEM
HEX
FFT
FRF
GPU
GUI
HSR
HSLM
OCR
SGI
SSH
SSI
TET

Description

Two-dimensional
Three-dimensional

Boundary Condition

Central Processing Unit
Discrete Fourier Transform
Degree of Freedom

Finite Element

Finite Element Method
Hexahedral

Fast Fourier Transform
Frequency Response Function
Graphics Processing Unit
Graphical User Interface
High-speed Railway
High-speed Load Model

Over Consolidation Ratio
Swedish Geotechnical Institute
Secure Shell

Soil-structure Interaction

Tetrahedral
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Chapter 1

Introduction

1.1 High-speed trains and portal frame bridges

In Sweden, high-speed railways (HSR) is a subject for public debate. High-speed
connections between Stockholm, Gothenburg and Malmo is supposed to relieve the
existing rail network in favor for freight traffic, as well as to satisfy a changed demand
for mobility with fast, environmental friendly connections to the rest of Europe. The
railway network is as of today planned to be stretched according to Figure 1.1, and
will with speeds up to 320 km/h make it possible to travel between Stockholm and
Gothenburg in 2 hours, and between Stockholm and Malmoé in 2.5 hours. The first
stage of the high-speed train network — Ostlinken between Stockholm and Linképing

— is under investigation, and is planned to be trafficked in 2028.

The high-speed line is intended to hold traffic with speeds up to 320 km/h. At such
speeds, the design requirements for railway bridges become more stringent. Reasons for
this is that increased speeds mean higher loading frequencies, which lead to higher risks
of hitting the bridge’s resonance frequencies. This might lead to several complications
due to the large accelerations in the bridge superstructure, including faster
deterioration of the tracks and the superstructure itself. In the future, it would be
highly desirable to be able to produce reliable predictions of vibrations in bridges along

high-speed railways.

In parallel, the demand for increasing train speeds on the existing train network grows
larger. Better understanding of the parameters influencing the dynamic behavior of
train bridges can reduce the costs for such projects, when existing bridges can be
validated to hold for increased speeds due to a lesser need for safety factors, which

today is the way of dealing with uncertainties in the design models.
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Figure 1.1: Planned high-speed network in Sweden, connected to the rest of Europe,
through Denmark. From Andersson and Karoumi (2015).

According to research made by, for example, Talkemiya & Bian (2007) and Ulker-
Kaustell (2009), soil-structure interaction (SSI) can have an important effect on the
stiffness and damping of the structural system, especially on short and stiff structures
such as portal frame bridges. It has been shown in previous research (Ostlund, 2016),
that including SSI as boundary conditions in end-frame bridges can limit the bridge’s
displacements and accelerations. The same is believed to hold also for portal frame

bridges.

One of the most commonly used railway bridge designs in Sweden is the portal frame
bridge. Portal frame bridges are commonly used for spans less than 30 meters and have
the advantage that the road or railway does not have to be elevated to cross an
obstacle. Such is the case in for example a railway crossing a pedestrian subway, or a
smaller road, as is illustrated in Figure 1.2. The bridge is cast in one piece and
embedded by backfill on both sides. Depending on the type of soil, the foundation can
either be deep (pile groups) or shallow (open or closed plate).
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Figure 1.2: Portal frame bridge in Dagstorp north of Lund. From BaTMan (2015).

Dynamic analyses of portal frame bridges are often performed with FE software using
shell and beam theory. Typically, no consideration of the interaction with the
surrounding soil is taken, due to increased computation cost, geotechnical uncertainties
and modeling complexities. In Figure 1.3, three ways to model a portal frame bridge
foundation are shown schematically. One of these is to model the effects of the
surrounding soil by applying static springs and dashpots to the foundation. Apart from
being a complex matter to determine the correct parameters of these springs and

dashpots, they do not take into account the moving nature of the masses of the backfill.

A way of taking the dynamic nature of the soil into account is to calculate impedance
functions, and then apply them to the bridge model as boundary conditions with
dynamic spring and dashpot coefficients. In the bottom figure, these boundary
conditions are obtained through the SSI in the interface between soil and the portal
frame bridge foundation. In this thesis, the same type of boundary conditions will be
obtained, but for the interface between the soil and the bridge wall. The difficulties
with this method is of the same nature as when using static springs, that more soil
parameters than those obtained through a regular geotechnical survey need to be

determined.
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Figure 1.3: Three different boundary conditions for the foundation in a 2D-model of a
portal frame bridge. Top: Clamped. Middle: Static springs. Bottom:
Dynamic springs and dashpot coefficients. From (Ulker-Kaustell, 2009).

1.2 Objective

Dynamic soil-structure interaction (SSI) of portal frame bridges will be studied. The
aim is to develop a numerical model for evaluation of dynamic impedance functions for
a variation of soil layer profiles, geometries and levels of detail in the model. The
impedance functions can then be used as boundary conditions in a simplified finite
element (FE) bridge-model.

The intention of this study is to provide a finite element-model that can work as a
platform for future research, and to perform a parameter study on how different factors,

such as the material properties of the soil, influence the interaction with the structure.
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1.3 Dynamic design requirements to Eurocode

On railway lines with speed limits exceeding 200 km /h, a dynamic analysis is required
in addition to the static one required for all bridges (TRVK Bro, 2011). As mentioned
before, higher speeds lead to increased risk for resonance in the bridge. The main
difference between the static and dynamic analysis is that the dynamic consider the
effects of resonance. According to Eurocode — Basis of Structural Design (SS-EN 1990,

2002) — the following bridge responses must be checked in a dynamic analysis:
e Vertical bridge deck acceleration
e Vertical and horizontal displacements
e Rotations at bearings and supports
e Torsions

The maximum vertical bridge deck accelerations are 3.5 m/s? for a ballasted track and
5 m/s? for an un-ballasted track. The requirement is set lower for a ballasted track
because of risk for ballast instability from high accelerations. The requirements are also
set, in consideration of traveler comfort and for reducing risk of derailing. The maximum
displacement of the bridge depend on span length and train speed, and is obtained in
Eurocode (SS-EN 1990, 2002) through the diagram shown in Figure 1.4. The span
length versus displacement ratios obtained from Figure 1.4 should be multiplied with
a reduction factor depending of the type of bridge: 0.7 for simply supported bridges
with one or two spans, and for continuous bridges with two spans; 0.9 for continuous

bridges with three or more spans.
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Figure 1.4: Figure A2.3. in SS-EN 1990 (2002). The vertical axis gives the limiting ratio
between span length and displacement for a specific train speed.
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Concerning loading, the load model that should be used for dynamic analysis according
to Eurocode is the high speed load model, HSLM. It is subdivided into HSLM-A and
HSLM-B, where HSLM-B comprises a series of moving point loads with equal spacing,

and HSLM-A consists of sets of 10 different point load configurations, resembling real

trains, see Figure 1.5.
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Figure 1.5: HSLM-A. Train load model according to SS-EN 1991-2 (2003).



Chapter 2

Theory

In this chapter, a brief theoretical background to the methods used in this thesis will
be given. For a more detailed description of the finite element-method and structural
dynamics, the reader is referred to standard textbooks such as (Zienkiewicz & Taylor,
2000), (Ottosen & Petersson, 1992) and Chopra (2014), being the only sources that
sections (2.1) and (2.2) are based on.

2.1 The finite element method

The finite element method (FEM) is an approximate numerical method of solving
differential equations for field problems such as stress analysis, often encountered in
engineering mechanics. A one-, two-, or three-dimensional region, for which a certain
physical problem can be described by a differential equation, is divided in smaller parts,
so-called finite elements, assigned certain material properties. Through so-called shape
functions, the field variable within each element is prescribed a certain spatial
variation. The differential equation can thus be calculated for each element, and
through element nodes the elements can be assembled. The aim of the discretization of
the region into elements is that the approximate solution should converge towards the
exact, analytical solution when decreasing the element size (the convergence
requirement). In stress analysis, each node is assigned a freedom to translate and rotate
in a given way, which enables equilibrium equations to be formulated for each degree

of freedom. The equation to be solved in a static analysis is:

Ku=f (2.1)

where K is the stiffness matrix, u is the displacement vector and f is the loading vector.
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2.2 Structural dynamics

In some sense, all loads are of dynamic nature. Applying a static load will cause a
displacement in the loaded structure, and has thereby caused a dynamic movement. It
will, however, not cause a considerable acceleration of the structure, and Newton’s first
law of motion is applicable. The distinction between static and dynamic analysis is
made on the basis of whether the force gives enough acceleration compared to the
structure’s natural frequency. Large accelerations can emerge from periodic loading or
if the load is applied suddenly, i.e. through an impact. The dynamics of a single d.o.f.
system with a mass, a spring and a viscous damper, illustrated in Figure 2.1, is governed

by the equation of motion:

mii + cu + ku = f(t), (2.2)
where m is the mass, ¢ is the viscous damping coefficient of the dashpot, k is the spring
stiffness, f(t) is the time dependent loading and u, %t and i is the displacement, velocity
and acceleration respectively. If a system is subjected to a harmonic excitation, the
force f(t) in equation (2.2) can be written as f(t) = f, sin wt, where f; is the force

amplitude and w is the forcing angular frequency.

<
|
|
o — M =)
WL

Figure 2.1: Single degree of freedom system with a mass, a spring and a viscous damper.

In structural dynamics, the natural frequency is central for describing the response of
the system. The natural frequency, also called resonance frequency or eigenfrequency,
can be calculated by setting the force to zero, and is thus the frequency in which the
system tend to oscillate “by own means”. Harmonic loading frequencies near the natural
frequency amplifies the motions of the system and make it oscillate with larger
amplitude. For equation (2.2), ignoring the damping, the natural frequency can be

expressed as:
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Ignoring the damping is, however, a simplification. Introducing damping to the system

yields a damped natural frequency, calculated as:

Wy = Wp/1 — &2 (2.4)

where & is the damping ratio, defined as:

Fm (2:5)

For multiple degree of freedom systems, the equation of motion can be described as:

Mi + Cu + Ku = f(t) (2.6)
which is the FE-formulation for a dynamic system with damping, where M, C, and K
are the mass, damping and stiffness matrices, u, u, and i response vectors and f(t) is
a time dependent force vector. One way of discretizing the masses are to use lumped
mass, which means to divide the mass and lump it at the nodes. In this way the mass
matrix becomes diagonal, making the solution to the differential equation much

simpler.

2.2.1 Steady state dynamics

A common topic in structural dynamics is the response of a system to harmonic loading.
Understanding the system’s response behavior to harmonic excitation at different
frequencies also provide knowledge about the response to arbitrary load excitation
cases. A harmonic steady state excitation implies that the excitation has existed for a
long time, and thus that the transient vibration associated with the initial displacement
and velocity has decayed. This implies that only the particular solution for the
undamped version of equation (2.2),
fo 1
k

u,(t) == 5> sinwt W # Wy, (2.7)

1-(“/w,)
is of interest when the excitation is a sinusoidal load. Equation (2.7) is thereby

unaffected by the initial conditions and is called the steady-state vibration.
The steady-state dynamic response can be written as:
_Jo 1

T k|1— (w/wn)z

Varying the angular frequency @ can make the factor in brackets in equation (2.8)

u(t) sin wt, (2.8)

either positive or negative, which determines if the displacements will be in or out of
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phase with the applied force. Introducing damping to the equation of motion, the

steady-state response of a harmonic load with angular frequency o can be written as:

u(t) = u, sin(wt — @), (2.9)
which indicates that there is a phase lag between the force and the response of the
system. For elegance and computational ease, a frequency representation is more

convenient. A Fourier transform, explained in a subsequent section, yields:

f(&) = F(w)e'* (2.10)
and
u(t) = U(w)e't, (2.11)
with the derivatives:
u(t) = iwU(w)e't (2.12)
ii(t) = —w?U(w)e't (2.13)

Canceling the e™®! term in each of equations (2.10)-(2.13) gives the steady state

amplitude of a single d.o.f. system:

F(w)
[k — w?m + iwc]

U(w) = (2.14)

In equation (2.14), damping is as mentioned also considered giving the steady state

behavior of the system in Figure 2.1.

2.2.2 Damping

Damping is the process by which vibration steadily diminishes in amplitude. It arises
from strain energy and kinematic energy being dissipated due to various mechanisms.
All structures have a certain amount of damping that contribute to the vibrating
response to excitation. In a free vibration test, without damping the vibrations would
go on forever with constant amplitude and for a forced response at resonance

frequencies the amplitude would increase towards infinity.

The mechanisms causing damping in a structure are numerous but can for example
include opening and closing of micro cracks in concrete, friction between particles in
soil or friction between different structural elements or between structural and non-

structural elements. Identifying and mathematically describing each of these
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mechanisms seems next to impossible, why a highly idealized representation is used
when describing the damping of a structural system. A way of doing so is to let the
energy dissipated in all mechanisms be represented by a damping coefficient of a linear
viscous damper, called a dashpot. A more thorough description of the damping used in

the models of this thesis will be given in section 2.3.

2.3 Soil material models

Modeling of soil is a complex subject due to soil being a non-linear material, which is
described by Figure 2.2. Even under the assumption of small strains, when a linear
elastic material model may be used, the material properties must be properly estimated.
There are several in-situ methods known by geotechnical engineers for making these

estimations, some of which are described by Gazetas (1991).

What material model that can be used is highly dependent on the level of strain in the
soil. The range of application of different material models is illustrated in Figure 2.3.
For the smallest strains, less than 107, elastic soil models may be used. This is the
strains at which the maximum tangent modulus G, in Figure 2.2 may be used in the
material model. When the strains are increased, plastic deformations occur and the
shear modulus decrease non-linearly. The plastic behavior also leads to an increase in

damping due to higher energy dissipation.

T
ﬁ (vr ,,Tmax)

Tmax

Y o,

Figure 2.2: The non-linear variation of the shear moduli with strain. Tandy is the shear
stress and strain, G is the secant modulus and G is the maximum tangent
modulus, valid for small strains. From (SGI-i1, 2008).
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According to Ishihara (1996), for medium strains in the order of 10® and 10* the soil
can be analyzed with an equivalent linear method and a visco-elastic material model
can be used, see Figure 2.3. This model has a reasonable degree of accuracy where the
stress-strain relation is assumed linear, and the energy dissipated by the cyclically
loaded soil constitutes the damping. For strains less than 10, the soil material behavior
can be considered as nearly linearly elastic, and either the linearly elastic, visco-elastic
or the so called hysteretic material models may be used. This assumption has been

made when creating the FE-models in this thesis.

-8 -5 -4 -3 -2 -1
Shear 10 10 10 10 10 10
strain Small Medium Large Failure
strain strain strain strain
Elastic
Elasto-plastic

Failure q
Effect of
load repetition

Effect of
toading rate
Linear Visco - Load history
Model elastic elastic tracing type
model model model
Method of Linear Equivalent Step-by-step
response linear integration
analysis method method method

Figure 2.3: Material behavior of soils at different magnitudes of shear strain. The figure
indicates the span of shear strain in which a visco-elastic model can be used.
From (Ishihara, 1996).

The most widespread model for linear viscoelasticity is to represent the damping as a
linear spring and a viscous dashpot. This model is called the rate-dependent Kelvin

solid and can be seen in Figure 2.5.

Most materials, including soil and concrete, possess frequency and strain rate-
independent damping properties. For such materials, use of a modified version of the
Kelvin solid called the rate-independent Kelvin solid is widely used. The damping in
this material model is in geotechnical literature referred to as hysteretic damping, and
structural damping in the field of structural dynamics. To derive the equations for the
rate-independent Kelvin solid, one must start with understanding the theory behind
visco-elasticity and the rate-dependent Kelvin solid. The expressions following in this

section are derived from Ishihara (1996).
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2.3.1 General expression of the cyclic stress-strain relationship
A sinusoidal alternating shear stress can be expressed as:

T = T4Sinwt, (2.15)

and the resulting shear strain as:

Y =y, sin(wt — §), (2.16)
where 1, and y, is the amplitudes, ¢ is the time, w the angular frequency and § is the
angle of phase difference giving a time lag in strain response to the application of stress.

Introducing complex denotation gives:

T=14e%, 7=y,el@=9% (2.17)
The strain versus stress response
Yy  Tq T
Z_=—ae‘6 = -2 (cos & + isin §) (2.18)
T Ya Ya
can be written as:
Y o
%=‘Ll+l‘l,l :M (219)
by putting
Ta Ta .
p=-—cosd, p =-—sind (2.20)
a )/a

where u is the elastic modulus indicating the immediate response and u' is the loss
modulus representing the energy dissipating properties of the viscoelastic material. u*
is called the complex modulus, and from equation (2.19) it is shown that the absolute
value of the complex modulus indicates the dynamic shear modulus of the material so

that:

R 4
|,Ll | = % = Gdyn (2‘21)
Equation (2.20) can also be rewritten as
tané = 'u—_ = (2.22)
I

Here, 1 is called the loss coefficient, indicating the energy loss in the material. The loss

coefficient is related to the damping ratio of the material according to

n=2§ (2.23)
where € is the damping ratio. The loss coefficient 1 is also related to the ratio of energy

loss per hysteresis cycle, AW, and maximum stored energy, W, through:
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_1AW
T2nw

In Figure 2.4, a hysteresis stress-strain loop is presented. It is derived from the stress-

n (2.24)

strain relation of equations (2.15) and (2.16), by eliminating the term wt, divide the
shear stress into two components, 7; and 1, and rearranging the equation on elliptic
form. Each loading cycle represents one loop on the ellipse, and the area created by

the loop represents the loss of energy in each loading cycle.

Figure 2.4: The hysteretic stress-strain curve of the linear visco-elastic model. From
Ishihara (1996).

2.3.2 Rate-dependent Kelvin solid

As earlier mentioned, the simplest and most widely used material model is the one with
a spring and a viscous dashpot connected in parallel, called the rate-dependent Kelvin
solid and presented in Figure 2.5. The rate-dependency stems from the dashpot which
is velocity dependent and thereby gives more damping on higher frequencies. In this
model, the strain is the same for the elements, while the stress 7 is divided into one
part for the spring, 7, and one part for the dashpot, 7,. Denoting the spring constant

G and the dashpot constant G’ the total stress becomes:

d
T=17,+17, = Gy+G’d—)t/ (2.25)
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If the complex expressions for the stress and strain in equation (2.17) is introduced for

7 and y, equation (2.25) becomes:

7,9 = (G + iwG")y,, (2.26)

which with reference to equation (2.20) can be rewritten as:

u+ip' =G+ iwG' (2.27)
Equation (2.27) indicates that

wG'
p=G, P =wG, n=tan6=T (2.28)

Figure 2.5: The rate-dependent Kelvin solid. From Ishihara (1996).

2.3.3 Rate-independent Kelvin solid

Soil is characterized by not having an increase of damping from increased time rate of
strain. A method for reflecting the behavior of soils to a good degree of accuracy is to
use a rate-independent dashpot and incorporate in the Kelvin solid. The rate-

independent Kelvin solid is written as:

7= (G+iG'y)y (2.29)
where G’ is the dashpot constant. The imaginary term iG'y does not have a physical
interpretation, but is necessary to represent a phase lag which is characteristic for
damping properties of soil. Following the same procedure as for the rate-dependent

Kelvin solid, the complex version of the stress can be written:

1, = (G +iG'y)y, (2.30)
and the elastic modulus y and the loss modulus u’ can be derived as:
G

u=6G, u=a',, n=tan6=? (2.31)



16 CHAPTER 2. THEORY

In equations (2.29) - (2.31), the w term has been cancelled out and all moduli take
constant values, making the model rate-independent. Using equation (2.31), one can

rewrite the complex modulus p* (equation (2.19)) as:

G=(1+in)G (2.32)

Equation (2.32) can be expressed in terms of Young’s modulus and damping ratio as:

E=(1+i28)E (2.33)
T

T ll T2 T
=

o led”

Figure 2.6: The Rate-independent Kelvin solid. The dashpot is here independent on
frequency. From Ishihara (1996).

2.3.4 Shear modulus

According to Hardin and Drnevich (1972), the most important factors to determine the
damping and stiffness of all types of soils are shear strain amplitude, effective stress
level and void ratio, and over consolidation ratio (OCR) and plasticity index for clays

specifically.

The shear modulus can either be expressed as the secant or the tangent of the shear

stress-strain relationship of a material as:

At

G=— (secant modulus) (2.34)
Ay
ot

G = 5 (tangent modulus)  (2.35)

where T is the shear stress and vy is the shear strain.

As mentioned in the introduction to section 2.3, the visco-elastic model uses a linear
stress-strain relationship. In the linear region, the tangent and secant shear moduli

have the same values and are called the maximum shear moduli or the initial static
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shear moduli. The maximum shear modulus, Gy, can be expressed empirically as a

function of the form:

Go = Cf1(€)2(OCR)(a'o)" (2.36)
where e is the void ratio, OCR is the over consolidation ratio, o' is the mean effective

stress, and n, C, f; and f, are material specific constants and functions. A formula on

this form is adapted in the methods chapter of this report.

The mean effective stress is calculated through the expression

1+ 2K,
0g= 3

where o', is the effective vertical stress component calculated as the weight density

o'y (2.37)

times the depth minus the pore water pressure as:

OJv = O'V —Uu (238)
For an embankment, the pore water pressure is typically zero as it is situated above
the ground water level. K|, is the at rest earth pressure coefficient which depends on

the drained frictional angle ¢’ and can for frictional soil be expressed as (Zhang,
Shamoto, & Tokimatsu, 1998):

Ky =1—sin¢’ (2.39)

2.4 Impedance functions

Impedance is a complex valued measure of how much a structure resist motion when
subjected to a harmonic force. The resistance to motion of a soil-structure interface can
be represented by impedance functions that can be represented by dynamic springs
(real part) and dashpot coefficients (imaginary part). The damping consists of both
material damping due to energy losses from hysteretic action of the soil, and of

radiation damping due to waves carrying energy out of the system.

The formulas following in this section can be generalized to harmonic forces and
moments in all directions, but the derivation, taken from Gazetas (1991), is given for

a vertical force only.

In Figure 2.7, the concept of soil-structure interaction and interface impedance is
presented. In the figure, a rigid foundation block of mass m, underlain by linearly
deforming soil layers, is subjected to a vertical harmonic force F,(t). The foundation is
affected by the harmonic force, the inertia force and the soil reaction resultant. The

soil reaction resultant consists of both damping and stiffness. Vibrations from the
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harmonic force F,(t) will induce wave motions in the soil. In this way, energy is
transferred away from the structure in the soil, which damps the vibrations in the

structure.

The foundation block is symmetric around the z-axis and hence it will only have vertical
harmonic displacements u,(t). In the figure, the motion of the foundation block and

that of the soil is separated through a free-body cut. Newton’s second law gives

F,(t) — P,(¢t) = mii,(¢) (2.40)

for the mass, or with complex denotation:

E,— P, = —w?mii, (2.41)

For the foundation, the equivalent equation of equilibrium can be summarized as:

P, =%R,u,, (2.42)
where R, is the dynamic vertical impedance determined for this specific soil-layer

profile. If equation (2.42) is rewritten as

R, ==, (2.43)

it is clear that the impedance is the force-over-displacement ratio, and thus a form of
ground stiffness. The complex modulus in equation (2.32) is proportional to the

complex ground stiffness, which then can be written as

k,=k(1+in) (2.44)
for the rate-independent material model used in this thesis. Here, k and n are functions
of the angular frequency w. If we let the resisting force from the static stiffness and
damping of the soil be expressed as fs,z = k(1 + in)ii, = k,ii,, then the vertical

equilibrium of the soil-foundation interface becomes:

P, = k,ui, — w?mii, (2.45)
Combined with equation (2.42) the expression for the impedance becomes:

B, = R, U, = k,il, — w?mil,

=>R, =k, — w*m=k(1+in) — w?’m (2.46)
Generally, the impedance can be expressed as:
R, =K, +iwC,, (2.47)

where the real part K, is the dynamic stiffness, which reflects the stiffness and inertia
of the supporting soil, and the imaginary part wC, is the angular frequency times the

“dashpot coefficient” reflecting radiation and soil-material damping.
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A combination of equations (2.41), (2.42) and (2.44) gives the complex displacement

F

e in) —w?m (2.48)
and the amplitude of oscillation for a particular frequency can be obtained as
_ F,
u, = || = (2.49)

JE2(1 +in)? + w2m?

Applied force

Inertia Force m U,(t)

Resultant of
Soil Reactions

Resultant of
Foundation Actions

; usz
]}

s WY TR
g jj 1 . . J
B

. 4

¥ «

Figure 2.7: Dynamic equilibrium of a vertically oscillating foundation block. From
Gazetas (1991).

Equation (2.48) makes it possible to compute the impedance from known stiffness and
damping parameters. The formulas derived in this section can, as explained above, be

generalized to all directions and rotations.

A way of computing the impedance functions is to first compute the complex frequency-
response function (FRF) H,(w), called the receptance, which contain the steady state
responses of displacements. Again consider the equation of motion for a single d.o.f.
system, expressed in equation (2.2). If a harmonic steady state unit load is applied such

as F(t) = 1e'“t, the steady-state response can be expressed as:
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u(t) = Hy(w)e™t (2.50)
By cancelling the et term and inserting the unity load into equation (2.48), the

receptance is obtained as:

_ 1
H = , )
() = e ) (2.51)
which is the inverse of the impedance and can thereby also be written as:
_ 1 1
H,(w) = (2.52)

R(w) - K(w) + iwC(w)’
By first computing the receptance as the steady state response of displacements, one
can thus obtain the impedance functions by inverting the receptance. The dynamic
stiffness and dynamic damping is thereafter obtained as the real and the imaginary

part of the impedance, respectively.

2.5 Wave propagation in elastic solids

A vibrating structure emits waves into the supporting soil. A wave can be defined as
a transmission of disturbance from one particle of the medium to the next. There are
four major types of waves in elastic solids, all of which are illustrated in Figure 2.8 to
Figure 2.10. The primary wave, or P-wave, is the fastest one and has a soil motion in
the same direction as the wave propagation. The phase velocity of the primary wave is
calculated through (Gazetas, 1991):

VP = -, (253)

where M, is the compression modulus, related to the Young’s modulus F as:

_ E(1-v)
S (A+v)(1-2v)’

Mc¢ (2.54)

with v being the Poisson’s ratio. In shear waves, or S-waves, the particles move
perpendicular to the wave direction. The shear wave speed is typically about 0.5V, but
may be even lower in, for example, organic soils (Andersen, 2006). This is due to the
fact that shear waves only propagate through the soil particles and cannot propagate

through water.

The phase velocity of the S-wave is defined as
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Ve = |— (2.55)

where p is the mass density and G is the shear modulus, defined as

E

“=2a+w

(2.56)

Both P-waves and S-waves are non-dispersive (i.e. not depending on the wavenumber)
and can propagate in an unbounded solid. The Rayleigh wave, on the other hand, are
a so-called surface wave and can only propagate in half-spaces, defined as a
homogeneous space which extends only under a plane. The Rayleigh wave may be
compared to the surface waves of water, and has elliptical soil motions. Rayleigh waves
have a lower energy attenuation than other waves, and is thus dominant on large
distances from the source. The phase velocity of the Rayleigh wave is typically
around Vi = 0.9Vs.

The wavelength A at a specific wave speed and frequency is calculated through:

A== (2.57)

where V; is the speed of any of the above described waves and f is the frequency of

vibration.

Compressions Undisturbed medium

&

Dilations

C rscsr—— P Wave

Figure 2.8: The P-wave, also called the primary, dilatational, or compression wave
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Figure 2.10: The Rayleigh wave.

2.5.1 Radiating boundary

During a dynamic analysis, a wave propagating against a boundary will reflect into the
discretized domain, producing so-called spurious waves (Kausel, 2005). Spurious waves
occur not only at boundaries, but in all interfaces where the stiffness or damping is
changed. When travelling through layers of different stiffness, a fraction of the wave
will be reflected with a small change of angle compared to the original direction of the

wave.

There are several methods of dealing with this problem and thereby fulfill this part of
the so-called radiation condition, some of which are the plane wave approximation,
perfectly matched layers, the absorbing region and the standard viscous boundary. In
this thesis, the standard viscous boundary is used as it is implemented in ABAQUS
and has shown good results in previous studies (Ulker-Kaustell, 2009). The standard
viscous boundary was developed by Lysmer and Kuhlemeyer (1969) to replace an

infinite continuous system with a finite one, by implementing a boundary condition
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simulating the energy absorption of the infinite medium. The boundary condition was
made up by a set of viscous dampers that absorbed the energy of the waves entering

the boundary.

The method works close to perfect for primary and secondary waves entering the
boundary at angles greater than 30°, but less satisfactory for smaller angles and for
Rayleigh waves. These two drawbacks of the method can be circumvented by choosing
an appropriate geometry and size of the model. To avoid too acute angles of the
incoming waves, it is suggested to model either a half-sphere for deep soil-models, or a
circular plate for shallow soil-stratum near bedrock. In the circular plate, the waves
will either enter the infinite boundary in a near right angle, or reflect against the
bottom of the model, as they would when entering the bedrock. In the half-sphere, the
waves will enter the boundary at a near right angle at any location in the model, and

behave like in a very deep soil deposit.

Because it is a surface wave, the Rayleigh wave cannot be mitigated by the standard
viscous boundary with the same efficiency as primary waves or shear waves that
propagate in unbounded solids. The solution to the problem with Rayleigh wave
reflections is to choose a sufficiently large computational domain. It is important to
mention that, even with sufficient length, not all waves are completely mitigated and

the boundary cannot be considered silent, but instead be considered as quiet.

2.6 Fourier transform

The Fourier transform is used to transform data from the time domain to the frequency
domain. The interface between the time and frequency domain is shown and explained
in Figure 2.11, from where it can be read that the frequency domain represent an

extraction of the frequencies of the signals.

The basis for the Fourier transform is the Fourier series, with which one can express
arbitrary periodic functions as series of trigonometric functions. The Fourier series of

a periodic function can be expressed:

f) =a, +Zaj cosjw0t+2bj sin jwyt (2.58)
j=1 j=1

where

1 (To
a=—| f(odt, (2.59)
To )y
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To
aj=— | f(t)cosjwetdt j=1,2,3,.. (2.60)
Ty Jo
2 (o
bj=—| f()sinjwetdt j=1,23,.. (2:61)
Ty J,
The fundamental harmonic frequency w, is expressed:
2m
Wy = T_o (2.62)

When the excitation f(t) is not periodic, it can instead be represented by the Fourier

integral, here expressed with complex denotation:

1 (® .
@O =5 | F@e“do (2.63)
where
F(w) = j f(t)e @tdt (2.64)

Equation (2.63) is also referred to as the inverse Fourier transform of the frequency
function F (w), and equation (2.64) as the Fourier transform of the time function f(t),

also known as the direct Fourier transform.

The response to an arbitrary excitation of a linear system can be determined by
combining the responses to individual harmonic excitation terms in the Fourier integral
iwt

given in equation (2.63). The response of the system to the excitation P(w)e'®! is given

as:

U(w) = H(w)P(w)e't (2.65)
where H(w) is a complex frequency-response function. The time domain response is

given by superposing the responses to all harmonic terms in equation (2.63), as in
equation (2.66).

[ee)

u(t) = %f U(w)e®tdw (2.66)

This is known as the frequency-domain method for analysis of structural response to
arbitrary excitation, and requires that both the Fourier transform of f(t) and the
inverse Fourier transform of U(w) are determined. Except for simple systems with
excitations described by simple, continuous functions, analytical evaluation of these
direct and inverse Fourier transforms is not possible. In FE modeling and signal
analysis, values are sampled digitally and the complex frequency response is described
numerically. Hence, analytical evaluation of the integrals in equations (2.64) and (2.66)

is not possible and an adaptation for discrete sampling is needed. A method for
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numerical evaluation is the discrete Fourier transform (DFT), which requires
truncating the Fourier integrals over infinite range to a finite range. The discrete

Fourier transform is given by:

N-1
1 . .
P(0) =5 ) pa(t)emCmIm (2.67)
n=0

And the inverse DFT is given by:

N-1
Pu(t) = Z Pje!Gmni/N) (2.68)
=0

where p,, is an array describing the discretized forcing function p(t) as a superposition

of N harmonic functions.

Practical use of the computation of the Fourier transform was made possible after
Cooley and Tukey (1965) published an algorithm called the fast Fourier transform
(FFT). The FFT is a highly efficient and accurate algorithm for calculating the DFT

and inverse DF'T, without expensive computational cost.

Amplitude
. ud/

()

Frequency E‘ ﬂeq\)e“c\‘

Amplitude

b) Time

Figure 2.11: The relationship between the time and frequency domains. a) Three
dimensional coordinates showing amplitude, frequency and time. b) Time
domain. c¢) Frequency domain. From Hewlett-Packard (2000).






Chapter 3

Modeling and method of analysis

To analyze how the soil-structure interaction can affect the dynamic analysis of a
railway bridge, a solid finite element bridge-embankment-model was made to obtain
impedance functions. In this thesis, only a part of the portal frame bridge has been
modeled, namely the bridge wall and the wing walls connected to the bridge wall. This
was decided in order to reduce the computational capacity needed and to reduce the
risk of errors due to details in the bridge model. By modeling the whole bridge, the
bridge’s own vibration behavior would be taken into account, which would disturb the
results of the analysis. The loading of the embankment soil need to be controlled, and
should be applied as unity loads either directly to the soil or to the bridge wall in

contact with the soil.

In Figure 3.1, the methodology of obtaining impedance functions is described through
a flow chart. To obtain the impedance functions, the FE software ABAQUS together
with mostly Python, but also Matlab was used. The steps in the flow chart will be

described more thoroughly in this chapter.

A comparison was made between two types of models of different size. The smaller
model consisted of a bridge wall and embankment only, and the bigger model consisted
of the small model plus a circular soil plate with the same radius as the length of the
embankment, plus a foundation that the bridge wall rested on. The choice to develop
two different models was made for several reasons, among which the most important
was to be able to compare results and determine if the differences in results were
relevant in contrast to the extra computational costs related to the bigger model. The
smaller model was also used in time saving purpose during the convergence tests, under
the assumption that if a parameter converges in the small model it will also do so in

the bigger model.

27
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Receptance
H w(w)

Impedance
R(w) = Hy(w)™!

Figure 3.1: Flow chart describing the procedure of obtaining impedance functions.

3.1 Modeling procedure in ABAQUS

In order to make the bridge geometry as relevant as possible, the dimensions of an
existing bridge was used in the bridge-embankment-models. The bridge is situated in

Désjebro, 5 km outside of Lund and is shown in Figure 1.2.

During the work with this thesis, the finite element-software BRIGADE Plus has been
used. BRIGADE Plus is a software package for structural analysis and design of bridges
and civil structures. BRIGADE uses the kernel of ABAQUS but supplies tools for
performing dynamic analyses according to Eurocode. As the tools specific for Brigade
were not used in this thesis, the methods used are applicable even using ABAQUS. To
avoid confusion, hereafter the software used will be denoted ABAQUS.

The models were first developed in the ABAQUS graphical user interface (GUI) and
then reworked in the Python script-files to make all geometries and material properties
variable. This made the parameter test easier to perform and will ease the recreation

for those interested in using the model in future research.
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3.1.1 Geometry

Some dimensions of the embankment model were varied in a parameter study and some
were set through convergence tests and then kept constant. Presented in this section
is only the methods for deciding the default dimensions given to the embankments
models in the convergence study. The general geometry and features of one of the
bridge-embankment models is shown in Figure 3.2, and the features of the big model

is shown in Figure 3.3.

The embankment that is placed on the ground soil layer in the big model has the same
dimensions as the final geometry of the embankment, which depend on the results from
the convergence study. In the following sections, the geometry and features of the
models as well as the methods used to derive the impedance functions, will be given a

more thorough description.

Infinite boundary

Reference point | /% Soil layers

Coupled surface

Bridge wall

Wing walls

Figure 3.2: Geometry and features of one of the small models used in the parameter

study.
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Soil plate

Bridge foundation

Infinite boundary

Figure 3.3: The big model, cut in half and slightly translucent. The features of the
embankment are the same as for the small models, only with a foundation
embedded in the soil plate.

Length of embankment

The length of the calculative domain, meaning the length of the embankment up to
where the infinite boundary starts (I in Figure 3.2), depend on the longest expected
wave length. The default length of the embankment (and thereby also the radius of
the soil plate) was set to a fourth of the longest wavelength. The longest wavelength
occur, according to equation (2.57), from the highest wave speed at the lowest

frequency.

Height and width of embankment and bridge wall

Depending on if the bridge is one- or two-tracked, the width will be different, either
around 6 meters or around 12 meters. In this thesis, both 6 and 12 meter wide

embankment models were analyzed in the parameter study.

A few alternations of the element mesh had to be done to be able to create the HEX-
model (see section 3.1.7) with a 6 meters wide embankment. This was due to an
unknown error occurring when running a MATLAB script for creating the infinite
boundary. As it turned out from the convergence study (see section 3.2.2), the meshing
technique plays a rather insignificant role as long as the element size is kept constant.
Therefore, the models were still able to be compared to each other even with the use

of slightly different meshing techniques.

The height of the bridge depends on what is intended to pass under it. A railway bridge
overpassing a railway track needs typically to be higher than one overpassing a road.
To stick to the aim to represent a real bridge, the height of the portal frame bridge in

Dagstorp, mentioned earlier, was chosen, and no comparison between different bridge
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heights was made. The height of the embankment was set to the same as the bridge

wall, 5 meters.

Inclination of slopes

A usual value for the inclination of embankment slopes of Swedish railways is 1:1.5, so
this value was chosen in this study. An idea was to vary the inclination in the parameter
study to see its influence on the wave propagation, but this had to stand aside due to

lack of time.

Wing walls

The main use of a bridge wall is to resist the soil pressure of the slopes, but the wing
wall also have the side effect of increasing the bending moment of the bridge wall.
Depending on the type of slopes, the wing walls of a bridge, connected and stretching
from the sides of the bridge wall, can have different shapes. In this thesis, two types of
bridge walls have been modeled: One without wing walls, and one with wing walls bent
in an angle of 45° backwards, as can be seen in Figure 3.2. Another type of wing wall,
that was not modeled in this thesis but is worth mentioning, is one that stretch at a
right angle from the bridge wall, parallel to the railway tracks. This type would induce
higher stiffness of the bridge wall which could be beneficial for the bridge-soil

interaction.

Depth of foundation

As mentioned above, only the big models included a bridge foundation. The dimensions
of the foundation were based on a typical portal-frame bridge and was not varied
throughout the study. The foundation was a shallow slab-foundation consisting of a
concrete plate placed about 2 meters below ground level. In real cases the foundation
would be casted upon a layer of compressed sand and gravel, but in this thesis the
model was simplified so that the soil beneath the foundation had the same properties

as the whole circular ground soil plate.

Depth of ground soil plate

The very last analysis performed within this project, was for the model with both
embankment, foundation and a circular soil plate beneath. The first idea was to perform
the same parameter tests on the big model as on the small, model. However, limited
time and computational resources made it necessary to reduce the analysis so that only
different depths and values of the soil stiffness were tested. The depths modeled were
5, 10 and 15 meters.
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3.1.2 Material properties

As previously mentioned in section 3.1, the geometry of the models were taken from
an existing bridge, situated outside of Lund. The material properties, however, was not
taken from the geotechnical survey of the same bridge. Most Skane soils, including the
one beneath the bridge in Dosjebro, are massive layers of clay till, over-consolidated
from the last ice age. A soil profile more generally found in Sweden, namely moraine,

were instead chosen for the soil plate.

As stated in section 2.3, soil can be modeled as a linear, viscoelastic material for small
strains. Using the assumption of small strains implies that a maximum shear modulus
may be used. In this thesis, two techniques of modeling the stiffness of the soil in the
embankment have been used, and been compared in a parameter study. The first
technique is to calculate an average maximum shear modulus for the whole

embankment.

Constant, average shear modulus

From equations (2.53), (2.54) and (2.56) it is obvious that the Young’s modulus and
shear modulus of the soil can be calculated from knowing the P-wave speed, mass
density and Poisson’s ratio. While the latter two are well known parameters, the wave
speed can be harder to obtain reliable values for. The main reason for this is that if the
soil is saturated, the P-wave will have the velocity of water. The P-wave speed of water
is, as can be seen in Figure 3.4, much higher than that of sand and gravel, why for
saturated soils, the stiffness gets highly over exaggerated. The S-wave cannot travel
through water, only through the soil’s skeleton, and will therefore give the same result
regardless of the soil being saturated or not, and is thereby a more reliable material
property to use for obtaining the soil stiffness. In this thesis, the S-wave speed for sand
and gravel has been used to first calculate the Young’s modulus through equations
(2.55) and (2.56) and then insert in equations (2.53) and (2.54) to obtain the P-wave
speed.

In the parameter study, the lower and upper values for the S-wave speed for frictional
soils such as sand and gravel were used for obtaining the largest and smallest average
shear modulus. In Figure 3.5 it can be seen that the shear wave velocities of frictional

soils span from about 150 m/s to 400 m/s, which with equation (2.55) give a maximum
average shear moduli, Gy, between 40.5 MPa and 288 MPa.
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Figure 3.4: P-wave speeds in different mediums. After Bengtsson et al. (2000).
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Figure 3.5: Shear wave speeds in different mediums. After Bengtsson et al. (2000).

The second technique for modeling the soil stiffness was to use a shear modulus varying

with depth, described below.

Shear modulus varying with depth

A way to empirically describe the shear modulus with depth on the form presented in
equation (2.36) is given in SGI-il (2008) as:

625
= —m—mmmmm— k ro. 1
Go= 0350702 0CR V0 Pa (3.1)

where OCR is the over consolidation ratio, e is the void ratio, p, the atmospheric

pressure set to 100 kPa, o' the mean effective principal stress and k is a factor
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depending on the plasticity index, I,,, ranging from 0 for friction soils to 0.5 for cohesion

soils with I, > 80 %.

In the parameter study it is desirable to be able to compare the results with constant,
average shear modulus and shear modulus varying with depth. If the formula in
equation (3.1) were used, the mean value of the shear modulus in the embankment
would differ between the models and a comparison would be rather deceptive.

Therefore, a modified formula created by Ostlund (2016) was implemented:

GO,mod = Kmoa OJO (3'2>

Here, the K,,,,4 term is chosen as a constant so that the mean value of the shear moduli
for a given number of depths become the same as the maximum average shear modulus
given in the previous section. The model were divided into 10 layers of equal thickness
and each layer were given a shear modulus corresponding to the depth in the middle
of the layer. 10 increments were believed to be enough to receive small enough
increments in stiffness to avoid spurious waves and fulfill the radiation condition. As

it turned out, this assumption were correct (see section 4.1.1).

450 Shear moduli as a function of depth
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Figure 3.6: Shear modulus as a function of depth. Upper curve: High modulus with
mean value of 288 MPa. Lower curve: Low modulus with mean value of 40.5
MPa. Dashed lines are the average shear moduli calculated from the shear

wave speeds of 150 and 400 m/s.
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Material damping

As described in section 2.3, the damping used in the rate-independent Kelvin model is
structural damping. The damping ratio, &, is set to 1.5 %, corresponding to a loss factor,
n, of 3 %. This is a low value that may affect the results in the way that ripples can
occur when plotting the impedance and receptance. The same damping was chosen for

both the embankment soil and the ground soil.

Concrete and circular soil plate

The Young’s modulus of the concrete was set to 34 GPa, a frequently encountered
value for un-cracked concrete. In reality the concrete is less stiff due to small cracks in
the bridge and the modulus can have to be more thoroughly investigated for each
analysis. The stiffer the concrete is in comparison to the soil, the more evenly the loads
applied to the bridge wall will be distributed to the soil. This was why the highest

modulus stated above was chosen.

For the circular soil-plate in the big model, the shear modulus was given different
constant values, calculated from the shear wave speed as presented above. The values
chosen will be presented in section 3.2.4. The damping and mass density of the ground

soil were set as the same values as for the embankment soil.

3.1.3 Constraints and boundary conditions

To connect parts with each other, and to get the desired type of interaction between
them, different constraints can be used in ABAQUS. The constraints used in the models

within this thesis will be described in this section.

TIE constraint

In all models, all parts that were not created through partitions were connected to each
other with ABAQUS’ TIE constraints, where no sliding or friction were allowed,
meaning that the connected nodes have full interaction. For connecting parts of same
material, for example the embankment to the soil plate or the bridge wall to the bridge
foundation, the TIE constraint should not constitute a very big simplification of the
reality. When connecting the bridge wall to the embankment, however, assuming full
interaction is a simplification that could affect the results due to friction being ignored.
This simplification is necessary primarily for keeping the computational costs down, as

allowing friction would demand another material model.
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One apprehension when using the TIE-constraint is that it may prevent wave
propagation in the embankment. This was proven to not constitute a problem when

comparing different models, as will be presented in section 3.2.2.

Coupling constraint

An area of the upper part of the bridge wall, corresponding to the area that would be
casted together with the bridge deck in a real bridge, was subjected to a coupling
constraint to a reference point (RP). The coupling constraint couples the motion of a
collection of nodes on a surface to the motion of the reference node. This allows the

application of a point load that affects a whole area.

3.1.4 Loads

The receptance is calculated through equation (2.51), where the numerator, the number
1, is a unity load. A unity load was therefore applied in the model. Six unity loads were
created where three was unity forces for the X-, Y- and Z-direction and three was unity
moments for bending around each axis. The loads were inserted in the reference point
and were thereby coupled to the upper part of the bridge wall. This was to resemble
how real loads would influence the bridge wall and emit waves that spread and

propagate in the soil.

3.1.5 Boundary conditions

In this section, the boundary conditions used in the models will be described.

Prescribed translations

In both the big and the small models, the translations of the bottom part were
prescribed to zero. For the small models, this is equivalent with assuming that the
embankment rests on bedrock. This requires that no sliding can occur, which was found
reasonable for the comparatively small loads applied to the models. For the big model,
the embankment rests on a soil layer of varying thickness, which in its turn rests on
bedrock. The outer part of the soil plate and the end of the embankment had so-called

infinite boundaries, described next.

Infinite boundary

The technique used for radiation damping, using the standard viscous boundary as

described in section 2.5.1, was implemented by using so-called infinite elements in
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ABAQUS. The infinite elements are used to discretize an unbounded domain without
having to truncate it and thereby fulfill the radiation condition. As previously
mentioned, the infinite boundary cannot be considered completely silent but has a huge
advantage of reducing the number of elements significantly, and thus giving a reduced

computational cost.

The quadratic infinite element that can be viewed in Figure 3.8 is basically a quadratic,
20 node brick element where the outside of the element is removed, resulting in a 12
node brick element with infinite extent. This element is not present in the standard
element library of ABAQUS and has to be created separately by changing the topology
in the input file. As can be seen in Figure 3.8, the face with node numbers 1-8 is the
one that should be connected to the other finite elements. To satisfy this, a MATLAB
script was used to change the topology and element names in the ABAQUS input file.

The model was then regenerated, now containing the infinite boundary.

Again looking at the elements in Figure 3.8, one can draw the conclusion that the
bottom face of the infinite element has the same shape and number of nodes as the
faces of the HEX element, but not the TET element, thus making the HEX element
compatible and the TET element incompatible with the infinite element. This made it
possible to create the infinite part of the HEX-model as a partition of the soil part and
assign the sections different element types. In the TET model, the infinite soil instead
had to be created as a separate part, and then be tied together with the rest of the

embankment using the TIE constraint.

Efficiency of the infinite boundary

In Figure 3.7, the effect of using the infinite boundary is shown. In the figure, the
imaginary part of the impedance — corresponding to the dynamic damping and
indicating the loss of force and moments in the reference node — is plotted against the
frequencies. The dark blue and green lines belong to models with the same elements at
the boundary as in the rest of the embankment, i.e. models without an infinite
boundary. The purple and orange lines have the infinite elements applied to the

embankment boundary.

The ripples that can be seen especially in the blue line, but also at the highest
frequencies of the green line, are due to the waves reflecting back into the embankment,
resulting in distorted impedance plots. With the infinite boundary, almost no ripples
are shown, even for the highest frequencies. The small distortions that still can be seen
in the plots with infinite boundary are believed to depend on the Rayleigh waves not

being completely mitigated. It can also depend on that the material damping was given
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a low value. Less ripples are seen in the plots of the models with the stiffer
embankment, even without the infinite boundary. This is because most of the waves

have already attenuated when reaching the boundary, due to material damping.
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Figure 3.7:  Dynamic damping from forces (FX, FY, FZ) and moments (MX, MY, MZ)
in the reference node. Models with and without the infinite boundary plotted

against each other.
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3.1.6 Element size

To fulfill the radiation condition, a small enough mesh of the soil is needed. The
shortest wavelength, stemming from the highest frequency of excitation, occurs near
the excitation source and is quickly attenuated by the soil material damping. It is
therefore possible to reduce computational costs by having a courser mesh density far

away from the source, where the shortest wavelengths are attenuated.

The problem related to the element size is called numerical dispersion. Dispersion is a
phenomena where waves of different frequencies travel at different speeds. As the S-
and P-waves are non-dispersive, they travel at the same speed regardless of the
frequency. Numerical dispersion refers to dispersion introduced by the finite mesh size
when using, for example, the finite element method or the finite difference method. In
FEM, the numerical dispersion occurs due to a mismatch in phase between the exact
and the numerical solution. This can be avoided by using a sufficient number of nodes

per wavelength.

There are different opinions about how many nodes per wavelength that is sufficient
to avoid numerical dispersion. A rule of thumb says that at least eight nodes per
wavelength is needed to receive a good enough representation of the wave propagation
(Lysmer, 1978). According to Andersen (2006), theory requires that at least four nodes
should be used to describe each wave, but that it has been suggested to use more to
obtain good results in practice. The same author claims, that in order to achieve
satisfactory results, at least 4-5 quadratic elements, or 10-12 linear elements, should be
used. This indicates that with use of quadratic elements, fewer nodes per wavelength

is sufficient.

The element size of the final models in this thesis was determined from convergence

tests that are presented in section 3.2.2.

Apart from the radiation condition, the interface between the concrete and the soil
needs to provide a good approximation of the contact stress- and strain distribution.

To handle this, smaller elements were assigned to the part closest to the bridge wall.

3.1.7 Mesh technique

In this thesis, different meshing techniques have been used to determine how they affect
the results. The soil plate was, due to a geometry making a structured meshing
technique complicated to implement, meshed with tetrahedral elements, in ABAQUS

called TET elements. TET elements can be used on any geometric shape and are
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therefore suitable for both the soil plate and for the wing walls of the bridge. The
bridge wall and embankment, however, is of less complicated geometries, and can be
meshed with either the WEDGE or the HEX elements of ABAQUS which are wedge
shaped and hexahedral (brick) elements, respectively. The different elements used in

the models in this thesis, with labels and explanations, are shown in Figure 3.8.

Where possible, reduced integration is used instead of full integration in order to avoid
too stiff solutions and to reduce the computational costs. Using quadratic brick
elements with reduced integration gives 8 integration points (Gauss points) instead of
27 (Dassault Systémes, 2012). Out of the elements used in the models in this thesis,

only the HEX-elements can be used with reduced integration.

4

Vices 9 ~
face 1

Figure 3.8: Different element shapes used in the ABAQUS model. Top: The quadratic
tetrahedron (TET) element C3D10 (Continuum 3D 10-node element).
Bottom left: The quadratic brick (HEX) element C3D20R (Continuum 3D
20-node element with reduced integration). Bottom right: The infinite
quadratic brick element CIN3D12R (Continuum Infinite 3D 12-node
element with reduced integration). From (Dassault Systémes, 2012).

Apart from the two techniques described in the following paragraphs, tests were carried
out on the influence of using a biased mesh. As the shortest waves are believed to
attenuate close to the vibration source, a courser mesh might be sufficient a distance
away in the model. With a biased mesh, the element size increase with the distance,

and the model might be less computationally expensive with preserved accuracy.
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A problem that arises when the geometries are complicated in one section of the model
but more simple in another, is that it gets impossible to use the same element types
throughout the whole model, unless it is meshed with TET elements only. Using only
TET elements has the disadvantage that even sections where a structured mesh would
be possible have to be meshed with TET elements, and a less structured mesh is
obtained. Using different meshing techniques, however, has the disadvantage that many
elements, such as the TET and the HEX elements are not compatible with each other
due to their shapes. Thus, the model first have to be divided into different parts and
meshed separately, and then be connected using the ABAQUS TIE constraint, which

allows incompatible regions to be meshed together.

In order to study the influence of different meshing techniques, both of the above
described modeling techniques were tested. The division of the model was carried out
in two different ways, resulting in two different models which had to be studied
separately. Here follows a description of the two models. The soil plate was modeled in

the same way, with TET-elements, regardless of the elements used in the embankment.

HEX-model

The HEX-model, illustrated in Figure 3.9, is named from it being divided in one small
part containing the bridge wall including wing walls and the embankment up to the
end of the wing walls, and one part with the rest of the embankment plus the infinite
boundary. The first part is, due to the complicated geometry, meshed with TET
elements and the second part with HEX elements, resulting in a model containing
mostly HEX elements. The advantage of this model was believed to be that the greater

part of the model was given a structured mesh, and thus a lower computational cost.

TET-model

The TET-model is divided in one part with the whole embankment up to the infinite
boundary, meshed with TET elements, and the infinite part meshed with HEX
elements, resulting in a model with a majority of TET elements, see Figure 3.10. The
advantage of this model was believed to be that there were less need for TIE constraints
compared to the HEX-model.
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Figure 3.9: The HEX-model, meshed mainly using hexahedral elements. The model is
divided in two parts: One with the more complicated geometry of the bridge
wall, and one where a structured mesh is possible.

Figure 3.10: The TET-model, meshed mainly with tetrahedral elements. One part is the
embankment up to the infinite boundary, and the other part is the infinite
boundary that requires a structured mesh.
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Bias

In ABAQUS, there is a possibility to use so-called bias functions. These are functions
that create a mesh that is finer in one end and courser in the other, with a defined
increase in-between. The shortest wavelengths, governing the elements size as described
in 3.1.6, attenuate close to the source of vibration. As mentioned, that is why a courser
mesh can be used at a distance from the source. In this thesis, linear bias functions
were used and compared to models with a constant element size in a convergence study,

presented in section 3.2.2.

When running analyses on the biggest models, the ones with embankment and circular
soil plate, the number of degrees of freedom, and hence the computational costs,
increase rapidly with the depth of the plate. To save costs, one wants to let the elements
increase in size both in the radial direction and with the depth. No technique was found
working for using a built-in bias function on the rather complicated geometry of the
soil plate. Instead, the soil plate geometry was partitioned, where the parts closest to
the vibrating source was given a finer mesh than the ones at a far distance, see Figure
3.11. The depth of the plate was divided into two layers, for ensuring that the depth
will be divided in at least two elements even at the outer boundaries. To make the
mesh finer in the center, each layer was partitioned with a circle, inside which the

elements size was set smaller than outside.

Figure 3.11: Partitions of the ground soil plate, making the mesh finer close to the source

of vibration. Left: Slightly translucent bottom view where the partition lines
are visible as the circle in the middle and the line dividing the depth in two
parts. Visible in the middle is the foundation slab, seen from under. Right:
Mesh of the soil plate created with the partitions, bottom view.
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3.2 Method of analysis

As was described in Chapter 2, the impedance functions are obtained by inverting the
receptance received from a steady state analysis. In ABAQUS, a steady state analysis
of frequencies in a range from 1-30 Hz is carried out, with small enough frequency
increments to capture enough details in the curves. In this case, 180 increments were
used, i.e. frequency increments of 1/6 Hz. Real-valued unity loads (input) were applied
in the reference point coupled to the bridge wall, where also the displacements (output,
the receptance) were recorded. The receptance and the real and imaginary parts of the
impedance were then plotted against the frequency and constitute the results of this
thesis, presented in the next chapter, and in Appendix A. A closer description of the
method of computing the receptance and impedance functions is given in the next

section.

The analysis was carried out both on a personal computer and on Lunarc (2016a), the
center for scientific and technical computing at Lund University, which is more adapted
to solve computationally expensive problems and handle large amounts of data. Lunarc
stands for Lund University NIC (Numeric Intensive Computation) Application
Research Center and provides computational resources through supercomputers and
computer clusters for academia in Sweden. Lunarc deploys SLURM (Simple Linux
Utility for Resource Management) for managing the resources of the computers. With
SLURM the user can submit jobs from a PC through a job description file, stating
resource and wall time requirements, software modules needed (in this case ABAQUS)
and input files to run the analyses on. The chosen computer system, either Erik or the
newly employed Aurora will then calculate what is stated in the input file and return
output files that can be copied from the Lunarc local directory to the user’s PC through
a SSH file transfer protocol, SETP. Aurora is a cluster system of 180 nodes with 2x10
CPU cores and 64 GB of memory per node. A node on the smaller system Erik consists
of two 8-core CPU’s, either 64 or 96 GB memory and offers the usage of GPU’s
(Graphics processing units). More about Lunarc and the job submission methods can

be found on the Lunarc Documentation pages (2016b).

3.2.1 Computing receptance and impedance functions

In Figure 3.12, the wave propagation in one of the embankment models for a specific
frequency and load component (point load in the axial direction, FX) is shown. The

model used is the one with stiff, homogeneous soil, and wing walls included. In the
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figure, the waves have attenuated when reaching the boundary, not giving any

reflections back to the reference point.

In the load input node (RP, described in section 3.1.3), the displacements and rotations
(the receptance) in all 6 degrees of freedom and for all frequency increments were
extracted through a Python script. In this script, a tree dimensional matrix (with the
dimensions 6x6x180 where each row indicate the load/moment direction, each column
indicate the displacement/rotation direction, and the length indicate the frequency)
were created, and thus containing all the components of the receptance. As the
components in the diagonal of the matrix (i.e. longitudinal displacement for load in the
longitudinal direction, bending around the vertical axis for a moment around the
vertical axis, etc.) are big compared to the rest of the components (for example bending
around the vertical axis for a load in the transversal direction), only the diagonal
vectors are presented and compared to each other in the results chapter. The rest of
the vectors in the matrix will contribute to the SSI when applying them to a bridge
model as boundary conditions, but would be hard to interpret when only looking at

the receptance and impedance functions as in this thesis.

The receptance is made up by complex numbers, but the real and imaginary parts do
not contain any useful information separately. Instead the absolute value were
calculated, and plotted against the frequencies, yielding the magnitude of the
receptance. One could also choose to plot the real part of the receptance, which would

look very similar to the curves with the magnitude, as the imaginary part is small.

The impedance were calculated by inverting the receptance. The real and imaginary
part of the impedance were then plotted against the frequencies separately, as the real
part contains the dynamic stiffness and the imaginary part contains the dynamic

damping.

In Figure 3.13, the receptance and the real and imaginary parts of the impedance are
plotted for an embankment model. The plots show a characteristic appearance of
impedance functions for loading in the vertical direction. At low frequencies, both the
receptance and impedance hold constant values. When the loading rate gets closer to
its first natural frequency, in this case about 11 Hz, the receptance increases rapidly,
as is the nature of the resonance phenomena. At this point, the dynamic stiffness (real
part of the impedance) of the system has decreased to zero, and the dynamic damping
(imaginary part of the impedance) has increased to a high enough value to dampen the

first resonance, still at a very low value.
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U, Magnitude

+3.226e-10
+2.957e-10
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+1.613e-10
+1.344e-10
+1.075e-10
+8.066e-11
+5.377e-11
+2.689e-11
+0.000e+00

Step: SteadyState
Load Case: FX; Inc: 159; Frequency: 26.60
Primary Var: U, Magnitude Complex: Real
Y Deformed Var: U Deformation Scale Factor: +1.000e+10

Figure 3.12: Wave propagation in the embankment model.

When the frequency is further increased, the damping is increased towards its highest

value, taking place at about 12 Hz, called the anti-resonance frequency.

The receptance undertakes its lowest value at the same frequency. Between the
resonance frequency and the anti-resonance frequency, the value of the dynamic
stiffness jumps from a large negative value to a large positive value. This is due to the
nature of complex numbers, when the real component of the receptance goes from a

small negative to a small positive number, passing zero.

The system reaches its second resonance frequency at about 18 Hz. When the frequency
is further increased, the dynamic damping increases and the dynamic stiffness

decreases.
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Figure 3.13: The frequency response function, receptance, and the complex components
of its inverse, the real and imaginary parts of the impedance. Dashed lines
indicate the first resonance and anti-resonance frequencies.

3.2.2 Convergence study

To ensure that the model quality is sufficient in order to fulfill the radiation condition,
it is important to perform convergence tests. As mentioned in section 2.1, the
convergence criterion means that the numeric solution should converge towards the
exact, analytical solution when increasing the number of elements. In this thesis, where
the exact solution is not available, the convergence criterion will instead be considered
to be fulfilled when the solution no longer shows any difference due to a change in
element size, meshing technique, geometry, etc. The increase of elements will either be

from a decrease in mesh size or an increase of the size of the model.

The convergence study was performed on both the HEX- and the TET-model with the

properties stated earlier in this chapter and summarized in Table 1.



48 CHAPTER 3. MODELING AND METHOD OF ANALYSIS

Table 1: Properties of bridge-embankment model. Constant values and default values
of properties to be determined in convergence study.

Constant properties

helnb 5 [m]
Wemb 12 [m]
Vs 150 [m/s]
Inclination of slopes 1:1.5

Wing walls Yes

Default values to be varied in convergence study
Mesh size embankment Am"”/ 4 [m]
Mesh size bridge wall Wallthickness/z [m]
Length embankment Amax/ 4 [m]

Length of embankment

The length of the embankment plays an important role according to theory, as an
increase of the length can both help to better fulfill the radiation condition, and to
decrease the relative element size, i.e. the size of the elements in relation to the size of
the whole model. The latter one is, however, believed to be less important in the models
in this project, as the element size will be more dependent on the shortest wave length,

which will be constant when varying the length of the model.

As can be seen in Figure 3.14, the length of the embankment plays an important role
for the model quality. The ripples in the receptance curves stems from wave reflections
on the infinite boundary and decreases with increased length. Full convergence was not
achieved even with the longest embankment which was much longer than the
theoretical length believed to be sufficient. This held true both for the HEX- and the
TET-model. Between the lengths of Amax/2 and Amax/44-80 meters, however, very small
deviations were observed, so the former length was considered sufficient. The remaining
ripples were believed to depend on the mesh size, which was studied in a subsequent

convergence test.
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Convergence: Length embankment, HEX-model
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Figure 3.14: Magnitude of the receptance in the x-direction (longitudinal) for a load in
the same direction (FX). The importance of the length of the model is
illustrated by the disturbances in the receptance curves that are larger for
shorter models.

Element size

Several tests of convergence were performed to determine a sufficient element size
throughout the model. The first one was to determine the mesh size of the embankment
soil. Here, the importance laid in capturing the wave motion, governed by the shortest
wave length. In Figure 3.15, the impedances are presented for a model with all

parameters except the element size kept constant.

The first diagram shows the model where mainly HEX elements are used, and the
second shows the model with TET-elements. For both models, the elements size seem
to be insignificant at lower frequencies. This is because the lower frequencies yield

longer wave lengths, and thereby no need for a fine mesh.
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Convergence: Mesh density soil, HEX-model
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Figure 3.15: Importance of element size shown through a convergence test of the
imaginary part of the impedance. Top: HEX-elements. The lines are
considered to converge at a fourth of the shortest wave length. Bottom:
TET-elements. A finer mesh seems to be needed when using the TET-

elements.



3.2. METHOD OF ANALYSIS o1

At high frequencies, however, deviations can be seen in the curves with element sizes
of A/2 and 4/3, and for the TET-model even A/4. The reason for this that the HEX-
elements introduce more nodes to the model, reducing the numerical dispersion. The
fact that the TET-models show deviations for a finer mesh than the HEX-model
indicates that the HEX-model is advantageous to use to save computational costs. This
is further confirmed by the fact that the models with TET-elements took longer to
compute than the models with HEX-elements of the same size. The HEX-elements have

the advantage of enabling reduced integration, which reduces the computational time.

Mesh technique

Some different techniques for creating the elements mesh were tried in this study. As
was concluded by the convergence test above, four elements per wave length were
sufficient for capturing the wave motions in the soil. A finer mesh is however believed
to be needed closer to the bridge wall to be able to capture the strains in this area. In
Figure 3.16, some different techniques used for meshing the model are illustrated, and
in Figure 3.17, the real part of the impedance is plotted for said techniques with
different elements sizes and bias relations. In the latter figure, ¢ stands for the wall
thickness and indicates the element size in the part closest to the bridge wall, and
Lambda is the shortest wave length. The first four curves do not deviate at any
frequency, why the conclusion is drawn that an element size of half the wall thickness
in sufficient. It can also be concluded that the HEX- and TET- models do not differ
from each other, which means that the TTE-constraint does not prevent the waves from
propagating in the embankment, as was suggested in section 3.1.3. Because the same
results were received regardless of using the TET- or the HEX-model, and the HEX-
elements converged at a courser mesh, as was concluded in the last convergence study,

the models in the parameter study was chosen to be meshed with HEX-elements.

It can be observed that the usage of bias functions does not affect the precision of the
results significantly. This is likely to have its explanation in the attenuation of the
smallest wavelengths close to the source of vibration and thus the lesser need for a fine

mesh at a certain distance from the source.
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Figure 3.16: Meshing techniques. Green parts are TET-elements and beige are HEX-
elements. First: HEX-model with constant mesh in bridge part (green) and

soil part (beige). Second: HEX-model with a bias relation of 1:4. Third:
TET-model with constant mesh. Fourth: TET-model, bias ratio of 1:4.

A tendency for distortion of the curves can however be observed when using large bias
ratios (orange and light green curves in Figure 3.17). This could either be due to the
elements growing too large for being able to capture the waves at the end of the model,
or the linear bias function being unsuitable for the wave attenuation. It is possible that
the waves attenuate in a non-linear fashion, and the elements increasing in size too
close to the source. How large bias ratio that can be used, and what bias function is

best suited, without reduction of precision, must therefore be further investigated.

An interesting observation is that the curve belonging to the TET-model with a bias
ratio of 1:3 (purple line) shows larger deviation from the rest of the curves than the
same bias ratio in the HEX-model. This further confirms that the HEX-model is a
better choice in this study.



3.2. METHOD OF ANALYSIS 53

Convergence: Mesh techniques
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Figure 3.17: Impedances with different meshing techniques. Only deviations show, except
for the highest frequencies for TET-elements with a bias ratio of 1:3 and 1:4
(light green and purple lines) and HEX-elements with a bias ratio of 1:4
(orange line).

Non-dimensional impedance functions

A way of checking if convergence is reached is to compare the impedances of models
with different shear modulus. To do this, the plots need to be re-scaled as they
otherwise would show different values at different frequencies and be hard to compare.
A re-scaling is possible due to the linear nature of the calculations, and results in non-
dimensional functions of impedance and receptance. Convergence is reached if the re-
scaled plots coincide, otherwise the models must be refined in some of the aspects

mentioned in the previous convergence studies.

In Figure 3.18, the receptance and impedances are plotted for two embankment models
with the same geometrical features but with different shear moduli. As can be seen,
the curves do not completely coincide when plotting the imaginary part of the
impedance. The damping seems slightly underestimated for the stiff embankment, or

overestimated for the soft one. The model used in this study was one that was
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subsequently removed from the thesis, based on the fact that it did not constitute a
very realistic representation of a real portal frame bridge. The model had a 5 meters
high bridge wall and embankment, resting on a 5 meter extra soil layer (not to be

confused with the soil plate of the big model), more resembling an end-frame bridge.

The ripples that can be seen on the purple line are probably due to the radiation
condition not being completely fulfilled for the soft soil. The lines do no completely
coincide at 0 Hz, i.e. for the static case. A possible explanation for this is that the mesh
of the bridge wall and the soil in contact with it, is not fine enough to capture the
stress concentrations in the interface between the bridge wall and the soil, where the

stiffness decreases abruptly.

An interesting, and somewhat unsettling discovery was that the models with
embankment directly on bedrock did not show the same tendency to converge as the
embankments on 5 meters of intermediate soil, which is illustrated in Figure 3.19. This
was surprising, as the previous convergence studies were carried out on these exact
models and gave satisfactory results. The damping seems to be right, as the curves
plotted for the dimensionless dynamic damping (middle right plot) converged. The
stiffness, however, is either overestimated for the soft embankment, or underestimated
for the stiff model, when plotting the dimensionless curves. This convergence test was
carried out on the model with 6 meters wide embankment, homogeneous soil and wing

walls included, but gave similar results for all models with embankment on bedrock.

The lack of convergence were, after several trial-and-error attempts, found to be due
to the soil-concrete interface. In the soft embankment, the relation between the Young’s
modulus of the soil and that of the concrete were 1:365, which could be considered
infinite. For the stiff embankment, however, the relation was only 1:51, which

apparently could not be considered infinite.

To gain convergence, all parameters except the stiffness had to be kept constant, and
with different stiffness relations, this was not the case. When trying to increase the
concrete stiffness so that the relation became the same as for the soft soil, convergence
were reached, see Figure 3.20. The plotted lines go together perfectly, indicating that

both models behave in the same fashion.

The discovery that convergence could be reached by increasing the concrete stiffness
reassured that the models were of good quality, even when using the lower stiffness
values. It also indicates that the stiffness of the concrete is more important when having
a high stiffness in the soil. This will be further addressed in the discussion in Chapter
5. To not use any un-realistic material values, the Young’s modulus of 34 GPa were

used for all models in the subsequent parameter study.
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3.2.3 Final models

The models used for calculating the impedance functions for a soil-bridge interface are
illustrated in Figure 3.21. The mesh is finer close to the source of vibration, and

increases in size towards the infinite boundary.

Figure 3.21: One of the big models used in the parameter study. The infinite extent of
the boundary elements are represented by the absence of exterior edges in
the ground soil plate.
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As will be explained in the next section, the embankment resting on the soil plate were

analyzed separately, to reduce the time consumption for the parameter study.

The length of the embankment, and thereby the radius of the soil plate were set to
Amax/2. For the stiff soil with a shear wave speed of 400 m/s, this meant a length of
312 meters, and for the soft soil with a shear wave speed of 150 m/s, 117 meters. These
lengths were measured up to where the infinite boundary started. The element sizes of
Amin/4 meant about 1.2 meters for the soft soil and 3.2 meters for the stiff soil. This
resulted in a large amount of d.o.f’s, about 3.4x10° for the models with only

embankment, and 1.6x10° for the models with embankment and ground soil plate.

3.2.4 Parameter study

The influence of different factors was studied through a parameter screening. The
parameter screening was carried out as a two-level factorial test where each variable
factor was investigated in only two levels. All combinations of the levels of the factors
were investigated, resulting in 2" tests. Each test was carried out on four embankment
models with varying level of detail, giving a total of 4x2" tests. The factors varied in

the parameter screening were:

e Width of embankment and bridge wall: 6 or 12 meters

e Shear wave speed: 150 or 400 m/s
The levels of detail, illustrated in Figure 3.22, were:

e Homogeneous soil in embankment, no wing walls.

e Homogeneous soil in embankment, wing walls included.

e Soil stiffness increasing with depth, no wing walls

e Soil stiffness increasing with depth, wing walls included
Hence, the total number of tests on the small models were: 4x2°=16.

Apart from the two-level factorial test on the small models, further tests were
performed on the big model. These were carried out in a similar manner, but with less
variations of the model’s level of detail. The main aim was to determine the influence
of the depth of the soil plate, why three different values were given, 5, 10 and 15 meters.
The second variable was the stiffness of the soil, where the most interesting way of
comparing the models were considered to be to vary the relation between the

embankment soil stiffness and the ground soil stiffness. These tests were carried out
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with the soft-soil embankment with a shear modulus of 40.5 MPa. It was also desirable
to also include the stiff-soil embankments, but these models became too big even for

the super computers of Lunarc.

wl o
il b

Figure 3.22: Variation of detail levels. Top left: Homogeneous soil, no wing walls. Top
right: Homogeneous soil, wing walls included. Bottom left: Layered soil, no
wing walls. Bottom right: Layered soil, wing walls included.

In the models, the embankment shear modulus (Geu) were set to a constant value of
40.5 MPa, corresponding to the lower shear wave speed of 150 m/s. The ground soil
was given three different values of the shear modulus (Ggoud): Geround=Gemn/4,
Geroumnd=Gemp and Geroumnd=Gemn X 4. These values stems from choosing shear wave speeds
of half of, same as, and double the shear wave speed of the embankment soil. The lower

value could represent a clay, and the higher ones moraine, according to Figure 3.5.

With the two parameters varying between three values, the total number of tests for

the big model were: 3?=9.



Chapter 4

Results

In this chapter, some of the impedance functions calculated in the parameter study will
be presented and analyzed. The data is presented in the form of diagrams of the real
and imaginary parts of the impedance. The parameter study resulted in 21 figures, each
with 6 plots of impedances and receptance and it is obvious that not all of them can
be presented here. Instead, the importance of each individual parameter will be

presented. The rest of the computed impedance functions can be found in Appendix A.

4.1 Parameter study

In this section, the parameters that showed to affect the impedance of the models will
be presented. The figures presented are the ones that showed the most characteristic

deviations when the parameters or levels of detail were changed.

4.1.1 Detail level

Whether including the wing walls or not, or using constant or varying soil stiffness,
showed to give differences in the impedance and receptance. The model used in Figure
4.1 and Figure 4.2 is presented as Model-4 in appendix A, where also the receptance
can be viewed. In the figures, the real and imaginary parts of the impedance,
corresponding to stiffness and damping are shown. It is from those figures clear that
modeling a layered or constant shear modulus do not have the same influence as

including wing walls or not.
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Figure 4.2: Variation in dynamic damping due to levels of detail. Dashed lines indicate

models with a homogeneous soil profile.

The homogeneous soil profile induced more ripple to the impedance curves than the
layered soil profile. This could be due to the more drastic change in stiffness between
the soil and the bedrock in the homogeneous models. The layered soil had higher
stiffness close to the bedrock and hence less spurious waves were induced. The layered

soil had 10 layers of soil with increasing stiffness. As mentioned in section 2.5.1, this



64 CHAPTER 4. RESULTS

change in stiffness could induce spurious waves, but apparently the increments were

small enough to avoid this phenomena.

The stiffness increase when including the wing walls. This holds true for all directions
for this specific model, but as will be apparent in Appendix A, some exceptions exist.
For most directions, also the damping increase when including the wing walls. The
exceptions in this model were the vertical direction (FZ) and for some frequencies also
in bending around the transversal axis (MY). The increased stiffness is believed to
depend on the increased bending moment of the bridge wall when wing walls are

applied.

From the figures, it is hard to say whether a layered soil profile will give better results
on the bridge accelerations. It can, however, be assumed that the layered soil gives a
more realistic representation of the stiffness of the embankment. The fact that there
are discrepancies between the layered and homogeneous soil profiles, indicates that the

method of modeling the soil stiffness is important.

4.1.2 Width of embankment

In Figure 4.3, the imaginary part of the impedance for models with 6 and 12 meters
wide embankments are presented. It seems like whether having a one- or two-tracked
embankment effects the dynamic damping in the way that the two tracked induces
more damping to the structure at high frequencies (compare purple and blue or orange

and green lines). The width also seems to affect the resonance frequency.

In Figure 4.1, the largest differences are seen when comparing the models with wing
walls with the ones without. In Figure 4.3, it seems like the width of the embankment
can be even more considerable, as the curves belonging to different widths deviate more
from each other than the curves belonging to the different detail levels. The clearest
differences are, not surprising, shown when both the width and the level of detail are
varied. It is notable that the inclusion of wing walls in the narrow embankment model
seem to induce more dynamic damping in the transversal direction (FY), than in the

other directions.

From Figure 4.4 it is clear that the two-tracked embankment induces more dynamic
stiffness to the structure than the one-tracked embankment, which is not surprising as
the static stiffness of the bridge wall increase with the width. One exception exists, and
that is that when including wing walls in the narrow embankment, the dynamic
stiffness in the longitudinal direction (FX) is highly affected, making the stiffness higher

than in the wider tracked embankment without wing walls.
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Figure 4.3: Dynamic damping for models of varying width and levels of detail.
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Figure 4.4: Dynamic stiffness for models of varying width and levels of detail.



4.1. PARAMETER STUDY 67

4.1.3 Stiffness

The effects that the soil stiffness can have on the impedance will be presented in this
section, first for the small models with embankment only, and then for the big models
with embankment and soil plate. The models with included wing walls were used for

these comparisons.

Embankment stiffness

In Figures 4.5 and 4.6, the real and imaginary parts of the impedance are plotted for
embankment models of varying stiffness and methods of modeling the shear modulus,

homogeneous or constant.

The first natural frequency differs quite much between the soft and the stiff soil. For
the soft soil, resonance would occur at slower train speeds. Only looking at the
impedances is however not enough, to say that modeling the soil softer than what is
expected, always is conservative. The natural frequencies and mode shapes of the bridge
are important, and must be investigated with applied impedance functions before such

conclusions can be drawn.

One can again see that the way of modeling the soil stiffness — homogeneous or layered
— has influence on the impedance and receptance. For both the stiff and the soft soil,
there are differences in the resonance frequency depending on whether the soil is

homogeneous or layered. The differences seem larger on the stiffer models.

The differences in resonance frequencies indicates the importance of well-known
material parameters when taking dynamic effects on a bridge into account. Here, two
extreme values of the embankment soil shear modulus have been compared, and shown

to induce large differences in frequencies of resonance.

In especially the plots of the softer soil, ripples occurred. This can be due to the
radiation condition not being completely fulfilled for the shorter model (shorter wave
lengths in softer soil). Some of the Rayleigh waves could still bounce back into the

model.
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Figure 4.5: Dynamic stiffness for embankment models with varying stiffness and level
of detail.
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Figure 4.6: Dynamic damping for embankment models with varying stiffness and level
of detail.

Ground stiffness

In figures 4.7 — 4.9, the receptance and the real and imaginary parts of the impedance
are plotted for four different models: The embankment with prescribed translations in
the bottom face, and three embankments on 5 meters deep ground soil plates of various
stiffness. The embankment has a constant shear modulus of 40.5 MPa (vi=150 m/s)
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and the ground soil has a modulus corresponding to the values of half, same as, and
double the shear wave speed of the embankment. The embankment with prescribed

translations corresponds to an embankment on infinitely stiff bedrock.

A clear pattern can be seen in the real part impedance plots, being the dynamic stiffness
increase with increased static ground stiffness Gy,. An equally clear pattern cannot be
seen in the imaginary part impedance plots. It can, however, be seen that the dynamic
damping tend to decrease with increased static ground stiffness. In all plots, it seem as
if the first natural frequency might differ with about 3 Hz when only comparing the

models with ground soil plate.

When looking at the receptance for the FY-, FZ- and MX-directions, there seems to be
an error in the plots for the embankment on bedrock, as the receptance seems constant
for all frequencies. This is not the case, but a consequence of the receptance being many
times smaller for this model compared to the others. The reason for this gets clear
when looking at the dynamic stiffness in Figure 4.8, where the stiffness for the
embankment on bedrock is several times higher than for the rest of the models. This
indicates that there is a big difference between having a fixed foundation as the one on
bedrock, and a foundation embedded in soil. This has previously been concluded by
Ulker-Kaustell (2009). The differences are not as large when looking at the directions
that induces bending in the weak direction of the bridge wall (FX and MY), which is

more governed by the stiffness of the bridge wall.

In Appendix A, one can compare the impedance and receptance for the soil plates with
the tree depths of 5, 10 and 15 meters. It is there observable that, the depth of the
ground soil influence the dynamic stiffness somewhat, in the way that the stiffness
decreases from the shallowest to the deepest soil plate. For some directions, these effects

were scarcely visible, and for some directions, quite clear.

When increasing the ground stiffness, the solutions for the dynamic stiffness and
damping seem to converge towards the infinitely stiff solution, reassuring the quality
of both the small and the big models. This is visible in, for example, the real part of
the impedance in the MY- and MZ-directions.
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Figure 4.7: Receptance for the big models with varying ground soil stiffness and

constant embankment soil stiffness.
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Figure 4.9: Dynamic damping for the big models with varying ground soil stiffness and
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4.1.4 Depth of the model

In Figure 4.10, the receptance and impedances in the FX-directions are plotted for

embankment models on 5, 10, and 15 meters of ground soil. The soil stiffness is

constant, and set to the same as in the embankment. When increasing the depth, the
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static stiffness of the ground soil decrease. This affects the dynamic damping in the
same way. As in the previous comparison, when keeping the depth constant and
increasing the shear modulus of the ground soil, the dynamic damping does not seem
to be as affected as the dynamic stiffness. The resonance frequency seem to behave in
the same manner as when increasing the shear modulus of the ground soil: deeper soil
layer yields less stiffness and thereby a lower resonance frequency. The amplitude of
the receptance at resonance frequency seems, however, to increase with the stiffness of
the ground soil. This is opposite the behavior in the previous comparison, again making
it complicated to draw any conclusions on how a bridge would respond in terms of

vibration amplitudes due to the ground conditions.
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Figure 4.10: Receptance, real part impedance and imaginary part impedance for three

models with embankment and circular soil plate.



Chapter 5

Discussion and further research

In this chapter, conclusions drawn from the work with this thesis are presented and
discussed. The main aim of the thesis was to perform a parameter study on
embankment models, whose quality were assured through convergence tests. This work
was intended to provide a platform for future research by studying the effects which
different modeling techniques can have. The results related to this aim are the
impedance functions presented in Appendix A with the comparisons made in the

previous chapter.

5.1 Conclusions

As stated in the previous chapter, only looking at the impedances in one direction at a
time is not sufficient to draw conclusions about the bridge response to high-speed
traffic. There are many assumptions made regarding material parameters, and possible
errors in the models that need to be investigated. Further studies also need to be
performed where the impedance functions are included in a bridge model, to see the
real effects from all components combined. These models need further validation by
comparing them to measurements. This model will in its turn rise new insecurities, for
example the influence of the train-bridge interaction and possible errors in the bridge
model. However, the impedance functions can give indications on how the bridge’s

accelerations would be affected by including SSI.

The main conclusions drawn from the work with this thesis will here be presented in

list form, divided between the convergence study and the parameter study.
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Convergence study

For the embankment models in this thesis, HEX elements were shown to be
beneficial compared to TET elements. The former ones tended to converge at a
courser element size and allowed a larger bias ratio. The TIE constraint that
had to be used in the soil to connect TET and HEX elements did not show to
affect the wave propagation. Computational costs can therefore be reduced by

using a structured mesh.

The infinite boundary can effectively reduce the wave reflections at the

boundary.
A very large modeling domain is needed to reduce Rayleigh wave reflections.

A large number of degrees of freedom are needed to model a shallow foundation
embedded in soil. The number of d.o.f’s in the model with embankment and

ground soil plate in this thesis were 1.6x10°.

Parameter study

Reconance frequencies are highly dependent on the embankment and ground

soil stiffness.

SSI contribute to the damping and stiffness of a structure. The damping

increases after the first resonance frequency for all models tested in this thesis.

A careful estimation of the shear modulus seems important to calculate the
impedance functions with proper accuracy. Discrepancies were shown between
the models with constant shear modulus and models with shear modulus

increasing with depth.

Wing walls yield more dynamic stiffness — and for most directions also more

dynamic damping — to the structure.

A two-tracked embankment seem to induce more dynamic stiffness and damping

to a structure than a one-tracked.

The dynamic stiffness is highly influenced by the ground conditions. The
dynamic stiffness increase with the static stiffness of the soil, and decrease with

the depth of the ground soil plate.
The dynamic damping tend to decrease with increased ground soil stiffness.

The foundation embedded in soil cannot be considered as fixed.



5.2. DISCUSSION 77

5.2 Discussion

Validity of the results

Several assumptions have been made in the modeling procedure in this thesis. Better
understanding of how these assumptions influence the results need to be supplied
through further research. The assumption of full interaction between the bridge wall
and backfill soil requires that no sliding occur between the two mediums, which in its
turn requires that the strains in the interface are sufficiently small. A control
measurement on the strains in the volume closest to the bridge wall was not performed
in this thesis due to lack of time. Measuring the strain rate is also important to ensure
that the chosen material model with the rate-independent Kelvin solid is valid. All
assumptions were made based on experiences gained in previous studies, but still need

to be checked for the specific models within this thesis.

Due to time constraints, the same convergence tests that were carried out on the small
models could not be made on the big models. The mesh of the ground soil plate may
have been too course, resulting in more ripples in the impedance plots. The bias, making
the elements increase in size towards the infinite boundary, were probably given a too
large ratio. However, when plotting models with only embankment on bedrock with
models on ground soil plate, the results seemed to converge towards the same solution
when increasing the ground soil stiffness, ensuring that the big models were of good

quality, if only with too large elements.

Discussion on the conclusions drawn from the study

Using the infinite elements on the model boundary reduced the wave reflections in the
models. A very large modeling domain was however still needed to properly reduce the
wave reflections that the infinite boundary could not handle. It would have been
interesting to compare the effectiveness of the infinite boundary with other methods of
discretizing the infinite extent of the embankment, for example the method of using an
absorbing region, which has shown to demand a shorter modeling domain and thus

reducing the computational cost.

How much influence a small increase in embankment stiffness has for the resonance
frequencies could not be shown, as no values between the softest and the stiffest soil
were tested. It was however indicated that the resonance frequency would increase even

for a small increase in static stiffness. The resonance frequencies in the bridge-soil
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structure depend on all geometry- and material parameters combined, and trustworthy

predictions would demand a massive work with validating the models.

It was concluded that the shallow foundation could not be considered as fixed when
embedded in soil, as the impedances in directions most vulnerable of the foundation’s
boundary conditions showed large deviations between the embankment on bedrock and
embankment on ground soil plate. The movements of the foundation in the ground soil
was, however, probably overestimated as the foundation was modeled without fill

material.

5.3 Further research

To draw general conclusions that can give advice on how to best design the future

high-speed railway bridges with SSI included, extensive research is needed.

Validation

The first step for research following the work in this thesis would be to validate the
models used. An effort for doing this that was not included in this thesis due to time
limits, is to check the strains in the embankment. The material model used is only
valid up to a certain strain rate, and exceeding these limits could lead to unreliable

results.

An effort for validating the conclusions drawn from analyzing the impedance plots,
would be to apply the functions to bridge models and compare the response from the
train load models HSLMA1-10 according to Eurocode. The effects from the soil’s
dynamic stiffness and damping can then be viewed in terms of acceleration amplitudes

in the bridge deck, and be compared to the response without SSI.

The accelerations in the bridge deck then need to be compared to controlled
measurements on a real bridge. Field measurements of the soil conditions in the actual
embankment and ground beneath the bridge need to be conducted, and applied in
updated SSI models. Otherwise, a bridge with soil parameters as close to the ones used

in this thesis need to be found, and used to validate against.

Continued parameter screening

The effects of SSI need to be investigated on more soil types, assumptions and
geometries. The shear modulus may be modeled dependent on depth according to
different empirical formulae than the one used in this thesis. Comparing these methods

with each other can give important understanding on the importance of a properly
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modeled shear modulus. The assumption of full interaction between the bridge wall
and the embankment can be investigated by comparing with models including different

amount of friction in the interface.

As the stiffness of the concrete wall showed to be of great importance, a study on the
influence that the geometrical entities of the wall can have, should be conducted.
Established methods for increasing the bending stiffness of a wall, for example with
wing walls parallel to the railway tracks, or with buttresses behind the bridge wall, can
be optimized for the specific purpose of decreasing the vibrations in the bridge deck. If
the vibrations of the bridge can be reduced by increasing the stiffness of the bridge
wall, this could be a simple effort to design future bridges to hold for high speed railway
traffic. A parameter screening is therefore suggested, where the impedances are

compared for various types of bridge wall geometries.

Furthermore, the transition zones close to the bridge wall need to be investigated.
Usually, stiffer filling material is placed in a volume close to the bridge wall to make
the transition between the concrete and soil less contrasted. This was not considered
in this thesis, but as the stiffness of the concrete wall showed to have a large influence,

one can expect the transition zones to have too.

In the future, it is desired that the methodology used in this thesis will lead to a more
realistic, yet conservative method for including SST when analyzing the dynamics of

bridges according to building codes.
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Appendix A

- Impedance functions

Presented in this appendix are the diagrams with receptance and impedance that are
the results from the parameter study performed in this thesis. In Table A. 1, the
geometrical and material properties of each model in the parameter study are described,
along with references to the corresponding figures. The first four models are the ones
with an embankment on bedrock, where the diagrams for each model number are

presented for the four levels of detail. The last three models are the ones with

embankment and ground soil plate with varying ground stiffness and depth.

Table A. 1: Parameters of each model in the parameter study. Each model number

refers to three figures with diagrams for receptance, real part of the
impedance and imaginary part of the impedance, including all 6 load
components.

Small models Vs [m/s] Wemp [m] Hews [m] Figures
Model number
1 400 12 5 Al1-A3
2 150 12 5 A4-A6
3 400 6 5 AT-A9
4 150 6 5 A10- A.12
) vs embankment | vi ground soil Hsoiplate .
Big models Figures
[m/s] [m/s] [m]
Model number
5 150 75/150/300 5 A13-A.15
6 150 75/150/300 10 A.16 - A.18
7 150 75/150/300 15 A19-A21
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