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Abstract

The purpose of this thesis is to investigate the effects of fluid-structure interaction on a submerged
oscillating structure. It is to be determined whether it is possible to model such effects with
acoustic fluid elements in LS-DYNA using Mat Acoustic. Experiments of an oscillating submerged
box were performed and the results were used to compare simulations of the same setups. The
setups comprised of 4 different oscillating frequencies and the optional addition of a plate inducing
more fluid-structure interaction. From the experiments, an analysis of the rate of decay was
performed and a two term exponential model was proposed.

The results showed that added mass is consistently underestimated by 15% in the FE-model.
Furthermore the plate resulted in an increase of added mass for the experiment and the FE-model.

Additionally, convergence studies regarding the required fluid volume to assume infinite depth
and fluid mesh sizing were performed and the results were presented as dimensionless quantities.
General guidelines on how to use Mat Acoustic and maintain stability were presented. Structure
shell elements proved to be particularly difficult to model in terms of stability.
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Sammanfattning

Målet med examensarbetet är att undersöka p̊averkan av fluid-struktur interaktionen för en svängande
kropp nedsänkt i vatten. Vidare är det undersökt huruvida det g̊ar att modellera denna typ av
fenomen med akustiska element i LS-DYNA med Mat Acoustic. Experiment med en svängande
l̊ada utfördes för att kunna jämföras med simuleringar av samma uppsättning. Experimenten in-
nefattade fyra olika svängningsfrekvenser och en bottenplatta kunde dessutom läggas till för att
öka fluid-struktur interaktionen. För experimentdatan utfördes en analys av dämpningen och en
exponentialfunktion med tv̊a termer föreslogs för att beskriva den.

Resultaten visade att den virtuella massan konsekvent underskattades med 15% i FE-modellen
för det givna fallet. Utöver det visades det även att tillägget av bottenplattan resulterade i en
ökning av virtuell massa för b̊ade experimentet och FE-modellen.

Konvergensstudier ang̊aende den volym som krävs för att antagandet oändligt vattendjup skall
vara giltig genomfördes även. Konvergensstudier genomfördes även för storleken av fluidelementen.

Generella riktlinjer för hur Mat Acoustic bör användas för att bibeh̊alla stabilitet presenteras
även. Strukturer modellerade med skalelement visade sig vara speciellt sv̊armodellerade med
hänsyn till stabilitet.
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1 Introduction

1.1 Background

Equipment mounted on the hull on the outside of a submarine may be subjected to shock loading
from different types of explosions. An underwater explosion will produce several shock waves and
will make the equipment exhibit a dynamic response. To accurately model the oscillations of the
equipment, it is important to capture the fluid-structure interaction between the equipment and
the surrounding fluid. Such models already exist and are based on the finite element method. It
is also common practice to use analytical methods. The Swedish shipyard Kockums is interested
in assessing acoustic elements in fluid modelling. This is of interest as the acoustic elements in
question only utilize one degree of freedom thus being very computationally efficient.

However, a model using acoustic elements has not been sufficiently validated with respect to
experimental data. A better understanding of the limitations when using acoustic elements will
help improve the design of mounted equipment and may be used in the development of the next
generation of submarines.

1.2 Objectives and Aim

The aim of this thesis is to assess how well the material model Mat Acoustic in LS-DYNA captures
the fluid-structure interaction of a submerged oscillating structure. Added mass in particular
is used as a quantification of the fluid-structure interaction. In order to assess Mat Acoustic,
experiments are to be conducted so that the results can be compared to a similar FE-model. The
FE-model will be created in LS-Prepost and the fluid is to be modelled using Mat Acoustic. The
model will then be solved using LS-DYNA R8.1.0 with an explicit solver. An analysis regarding
the limitations and accuracy of the acoustic model will be presented as well as convergence studies
on mesh sizing and fluid volume sizing.
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2 Theory

2.1 Mass-Spring System

To get a basic understanding of the experimental setup, the equations for a one degree of freedom
mass-spring system with no damping are here presented. Hooke’s law describes the force needed
to extend or compress a spring

F = −ku (2.1)

F is the force needed to change the length of a spring with the stiffness k a distance u. Newton’s
second law yields the equation of motion

mü+ ku = 0 (2.2)

By assuming a harmonic solution u = A sin (ωnt+ φ) and differentiating twice with respect to
time, eq. (2.2) can be written as

kA sin (ωnt+ φ) = mω2
nA sin (ωnt+ φ) (2.3)

If trivial solutions are ignored

ωn =

√
k

m
(2.4)

The natural frequency may thus be written as

fn =
1

2π

√
k

m
(2.5)

2.1.1 Damped Mass-Spring System

Only some key equations are presented here and the reader is referred to a book in engineering
mechanics for a more detailed explanation (e.g. [13]).

The damped angular frequency can be expressed as

ωd = ωn
√

1− ζ2 (2.6)

where ωn is the undamped frequency and ζ is the damping ratio. The function that represents
the exponential damping of the motion can be expressed in the following way

y(t) = Ce−ζωnt (2.7)

The damping ratio ζ can be determined experimentally by obtaining two successive amplitudes x1

and x2 [13, p. 590]. If eq. (2.7) holds then

x1

x2
=

Ce−ζωnt

Ce−ζωn(t+Td)
= eζωnTd (2.8)

where Td is the damped period. Defining the logarithmic decrement as

δ = ln
x1

x2
(2.9)

and inserting into eq. (2.8) yields
δ = ζωnTd (2.10)

which can be arranged to

ζ =
δ√

(2π)2 + δ2
(2.11)

using equation eq. (2.6) and that Td = 2π
ωd

. Eq. (2.11) can be used to calculate the damping ratio.

2.2 Finite Element Method

The finite element method is a numerical method used to solve differential equations in an approx-
imate manner. The differential equation describing a physical phenomena is said to hold over an
entire region [16, ch. 1]. The region where the differential equation is valid is divided into finite
elements. By dividing the region into smaller elements, approximations regarding the variation of
a certain variable in a specific element become simpler compared to approximations over the entire
region. The simpler approximation of each element enables an approximation for the entire region.
A system of equations can be assembled and solved which yields a solution for the entire region.

3



2.2.1 Structural Domain

To give a brief introduction of the theory behind the FEM, the FE-formulation for the structural
domain is presented as it is quite simple compared to the fluid domain. The notation used in this
derivation is based on [3]. The equations of motions for the structure can be expressed as

∇̃∇∇
T
σσσs + bbbs = ρs

∂2uuus
∂t2

(2.12)

where the displacement uuus, the stress σσσs, the strain εεεs and the body force bbbs can be written as

uuus =

us1us2
us3

 bbbs =

bs1bs2
bs3

 σσσs =


σs11

σs22

σs33

σs12

σs13

σs23

 εεεs =


εs11

εs22

εs33

2εs12

2εs13

2εs23

 (2.13)

The density of the structure is denoted ρs and

∇̃∇∇
T

=

 ∂
∂x1

0 0 ∂
∂x2

∂
∂x3

0

0 ∂
∂x2

0 ∂
∂x1

0 ∂
∂x3

0 0 ∂
∂x3

0 ∂
∂x1

∂
∂x2

 (2.14)

The constitutive and kinetic equations can be written as

εεεs = ∇̃∇∇uuus and σσσs = DDDsεεεs (2.15)

where DDDs is the constitutive matrix. To derive the weak form, eq. (2.12) is multiplied by a weight
function vsvsvs and integrated over the structural domain.∫

Ωs

vvvTs (∇̃∇∇
T
σσσs − ρs

∂2uuus
∂t2

+ bbbs)dV = 0 (2.16)

Using the Green-Gauss theorem yields the weak form of the differential equation:∫
Ωs

vvvTs ρs
∂2uuus
∂t2

dV +

∫
Ωs

(∇̃∇∇vvvs)TσσσsdV −
∫
∂Ωs

(vvvs)
T tttsdS −

∫
Ωs

vvvTs bbbsdV = 0 (2.17)

where the traction, ttts = SSSsnnns, n is the normal vector pointing outwards from the boundary of the
structural domain and

SSSs =

ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 (2.18)

By introducing element shape functions Ns, the nodal displacements of the structure can be ex-
pressed as

uuus = NNNsaaas (2.19)

Furthermore, the weight function can be written as

vvvs = NNNsccc (2.20)

where ccc is an arbitrary parameter. Combining eq. (2.19 and 2.15) yields

εεεs = ∇̃∇∇NNNsaaas = BBBsaaas (2.21)

Inserting eq. (2.19, 2.15, 2.20 and 2.21) into eq. (2.17) gives the finite element formulation for the
structure

MMMsäaas +KKKsaaas = ffff + fff b (2.22)

where

MMMs =

∫
Ωs

NNNT
s ρsNNNsdV KKKs =

∫
Ωs

BBBTsDDDsBBBsdV (2.23)

and

ffff =

∫
∂Ωs

NNNT
s tttsdS fff b =

∫
Ωs

NNNT
s bbbsdV (2.24)

The differential equation from eq. (2.12) has now been transformed into a set of integrals that can
be solved numerically for every element. The Finite element formulation holds for every element
and can be combined into a large set of equation for the entire domain.

4



2.2.2 Eulerian vs Lagrangian vs Arbitrary Lagrarian-Eulerian

There are different ways of formulating the frame of reference in a finite element program. Here,
a brief overview of the three different approaches is presented.

A Lagrangian mesh moves and deforms with the material. It is mainly used in structural
analysis and the method handles time dependant constitutive relations well. Inasmuch as the
mesh moves with the material, tracking of free surfaces and interfaces is easy [6, Ch. 14]. The
approach may however cause inaccuracies if the material experiences large deformations so that
the elements become distorted [14].

An Eulerian mesh is fixed in space and the behaviour is thus calculated with respect to the
original position. This type of formulation is commonly used in fluid dynamics. It models large
deformations more accurately, but at the expense of the resolution of the flow [6, Ch. 14].

An arbitrary Lagrangian-Eulerian mesh combines the Lagrangian and Eulerian method in an
effort to minimize the drawbacks of the two methods while maintaining their respective strengths
[6, Ch. 14]. An Eulerian formulation is used in Mat acoustic

2.3 Numerical Simulation

Dynamic simulations in LS-DYNA can be performed using both an implicit and an explicit solver.
An implicit solver requires the stiffness matrix to be inverted at least once per time step which
is an expensive operation for large models. Therefore an implicit solver is unsuitable when small
time steps are needed such as for transients. Inverting the stiffness matrix is not needed for an
explicit solver thus it is better suited for shorter simulations where small time steps are needed
[12]. The major drawback is that the explicit solver does not enforce equilibrium thus possibly
making the solution nonphysical.

2.3.1 The Central Difference Method

LS-DYNA uses the central difference method, which is an explicit solver, to solve the equation
of motion. In this section, a brief derivation of the method is presented [9]. The semi-discrete
equations of motion at time n are given by

MaMaMan = PPPn −FFFn (2.25)

whereMMM is the mass matrix, PPPn is external and body forces, and FFFn is the stress divergence vector.
Note that the hourglass resistance is not included here as it does not provide any further insight in
how the equations of motions are solved. Also note that this is a more general form of the equation
of motion in (4.1). In order to solve for the next timestep, the acceleration is calculated based on
(2.25).

aaan = MMM−1(PPPn −FFFn) (2.26)

The acceleration can be used to calculate the velocity half a time step later.

vvvn+ 1
2

= vvvn− 1
2

+ aaan∆tn (2.27)

This in turn can be used to calculate the new displacement

uuuu+1 = uuun + vvvn+ 1
2
∆tn+ 1

2
(2.28)

where

∆tn+ 1
2

=
(∆tn + ∆tn+1)

2
(2.29)

The geometry is updated by adding the displacements to the initial configuration

xxxn+1 = xxx0 + uuun+1 (2.30)

2.4 Butterworth Filters

In the analysis of the results, filters were used to process the data. Lowpass filters were used to
filter the data obtained in the simulations and highpass filters were used in the integration of the
acceleration.

Butterworth filters are specified by its cutoff frequency and its filter order. The filter order de-
termines the sharpness of the transition from the stopband to the passband at the cutoff frequency
[15]. A pre-written first-order filter in MATLAB was used to filter the data.

5



2.5 Fluid-Structure Interaction

To model fluid structure interaction in LS-DYNA the fluid is modelled as transient acoustic ele-
ments by use of Mat Acoustic.

2.5.1 Mat Acoustic

Mat Acoustic is a material model in LS-DYNA designed for low-pressure acoustic shock wave
propagation and can only be used with the acoustic pressure element formulation [8]. The elements
are linear and Eularian [5]. Mat Acoustic uses displacement potential to solve the acoustic wave
equation (sec. 2.5.3) and therefore only requires one degree of freedom per node [11]. This makes
Mat Acoustic cost effective compared to other formulations [8].

2.5.1.1 Timestep

A sufficiently small timestep needs to be chosen in order to guarantee stability of the system.
For Mat acoustic the timestep is affected by three variables; L, the smallest cross dimension of
a fluid-volume finite element, c, the acoustic velocity of water and β, the damped integration
coefficient.

First, the smallest timestep fulfilling the Courant-Friedrichs-Levy (CFL) condition is defined.
The Courant condition states that the timestep must be sufficiently small in order to guarantee
that information does not travel faster than the timestep times the smallest distance between two
nodal points. The Courant timestep hc can be expressed as

h ≤ hc = L/c (2.31)

Second, the stability effect of the damped integration factor β must be taken into consideration.
From analysis presented in [2] it can be shown that the largest possible timestep guaranteeing
stability is

hmax =
hc√

1 + 2β
(2.32)

2.5.1.2 Mesh Size

For Mat Acoustic there are two ways to couple the structure with the fluid. Either the nodes of
the structure are coincident with the nodes of the acoustic fluid or a mismatch coupling must be
used in LS-DYNA. The following condition must be satisfied for the fluid-structure coupling to be
stable:

2ρaD

ρsts
< 5 (2.33)

where ρa is the density of the acoustic medium, D is the thickness of the acoustic elements closest
to the structure, ρs is the density of the structure and ts is the thickness of the structural elements
[11]. If the structural elements are solids or thick shells, ts should be set to half the thickness of
the elements. Furthermore, if both sides are coupled, then ts should be half the element thickness.
Apart from the condition stated in (eq. 2.33) convergence studies are performed to determine the
required fluid mesh size in order for the solution to converge.

2.5.2 Displacement Potential

The displacement potential Ψ is the potential field whose gradient is the displacement.
Let X = (X,Y, Z) be the global-coordinate vector. Then x = x(X) is the fluid-particle dis-

placement field under dynamic conditions.
The fluid particle displacement u relative to a reference hydrostatic displacement xH is then

defined as
u = x− xH (2.34)

Displacement potential Ψ is then a scalar potential defined by

∇Ψ = −ρu (2.35)

By using displacement potential as the primary variable calculations per time step are almost trivial
as only one degree of freedom has to be computed [11]. To clarify, the hydrostatic displacement
is the displacement caused by the hydrostatic pressure. In the FE-model, xH = 0, as there is no
hydrostatic pressure due to the assumption of no gravity.
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2.5.3 Acoustic Wave Equation

In fluid structure interaction problems usually both the displacement u and the pressure p are
wanted. Solving the wave equation for u does not always provide p and vice verca. However by
introducing the wave displacement potential, solving it will provide both u and p.
Acoustic wave equation of displacement potential, Ψ [4]

∇2Ψ− 1

c2
∂2Ψ

∂t2
= 0 (2.36)

which yields u and p from

p = −∂
2Ψ

∂t2
= ∇2Ψc2 (2.37)

and
u = ∇Ψ (2.38)

Note that use of a displacement potential enforces flow without rotation as

∇× u = ∇×∇Ψ = 0 (2.39)

2.6 Concept of Added Mass

When a structure accelerates in a fluid kinetic energy is not only increased due to the movement
of the structure. Fluid in contact with the structure is also accelerated resulting in that work
associated with the kinetic energy of the accelerated fluid also has to be taken into account. This
additional kinetic energy, T , can be represented by

T =
ρ

2

∫
V

(u2
1 + u2

2 + u2
3)dV =

ρ

2

∫
V

uiuidV (2.40)

where ui(i = 1, 2, 3) represent the Cartesian components of the velocity and V is the volume
containing the fluid. As water is incompressible, ρ can be considered constant. Considering the
motion of the body to be of a straight line nature through fluid otherwise at rest it is clear that the
kinetic energy, T , is constant in time. Additionally it is clear that the kinetic energy of the fluid is
proportional to the square of the velocity, U , of the body. If this indeed is the case in addition to
the fact that a change of U will result in a change of direct proportion in ui. The kinetic energy
T can then be expressed as

T = ρ
I

2
U2 where I =

∫
V

ui
U

ui
U
dV (2.41)

where I is an invariant. This formulation holds for low Reynolds number Stokes flow. However at
complex flows or flows at intermediate Reynolds numbers this may no longer be true. To accelerate
the body, the rate of additional work required with respect to time can be stated as dT/dt. This
means that the acceleration of the fluid can be seen as a drag force, F , such that −FU simply
equals dT/dt. If the flow stays the same I remains constant and thus it follows that the added
drag force F is

F = − 1

U

dT

dt
= −ρI dU

dt
(2.42)

This formulation of F has the same form as the force required to accelerate the body, mdU
dt . It

is from this similarity that the accelerated fluid mass, ρI, can be seen as an ”added mass” to the
system. Note that there in reality is no such mass being accelerated to the same degree as the
body however this is an efficient abstract simplification [1, p. 2-3].

2.6.1 Natural Frequency in Fluid

Previously the natural frequency has been shown to equal (eq. 2.4)

ωn =

√
k

m
(2.43)

However, when accounting for the additional inertia of the system due to the displacement of the
surrounding fluid an added mass force is added to the equation of motion, eq. 2.2

(m+ma)ẍ+ kx = 0 (2.44)
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where ma is the added mass. With the addition of added mass the system can now be treated as
a regular spring-mass system and the natural frequency becomes

ω′n =

√
k

m+ma
(2.45)

2.6.2 Analytical Solution for Added Mass

The concept of added mass provides a simple and efficient method of dealing with accelerating
structures interacting with fluids. The only challenge is calculating the appropriate added mass
for a specific structure. For simple geometries there are a few analytical solutions; however there
are no analytical solutions for complex geometries.
For an idealized flow past an infinite thin plate accelerated normal to its surface the added mass
can be assessed as the mass of a cylinder with the height and diameter of a side length[1, p. 5].

mA =
ρs3π

4
(2.46)

where s is the side length of a square plate. In this report analytic added mass is calculated
according to (eq. 2.46). It is also common practice to assess the added mass as a sphere instead
of a cylinder, see (eq. 2.47).

mA =
ρs3π

6
(2.47)
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3 Experiments

3.1 Experimental Setup

In order to investigate the fluid-structure interaction, an experimental rig was built and used in a
water tank. The rig consisted of a frame, a box and a plate (fig. 3.1 & 3.2). The frame provided
the experiment with a stable submerged structure from which an object could be fastened.

Figure 3.1: The conceptual drawing of the frame (blue) and the plate (yellow). The profile used
for the frame was UNP100.

A metal box was constructed and used as the structure interacting with the water. The box
was mounted on four springs (fig. 3.3) on the frame which allowed it to oscillate freely.

Figure 3.2: The conceptual drawing of the box. The springs were mounted on the u-shaped feet
at the bottom of the box. The box’s sides were 5 mm thick.

In order to investigate changes of the fluid dynamics a plate was constructed which could be
mounted below the frame. The plate provided the experiment with an optional increase of fluid
structure interaction by hindering the flow of water. The plate can be seen in yellow in figure
(3.1). A key goal in the setup of the experiment was to reduce all oscillations except the vertical
translation as this was the motion of interest. To reduce unwanted translational and rotational
oscillations the two springs with the highest stiffness were placed diagonally.
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Figure 3.3: Here the box is mounted on the frame with the tank in the background and wires
connected to the measuring devices.

The box was lifted via four wires originating from its corners which is illustrated in figure (3.4).
Each wire was in turn connected to a turnbuckle and then to each other above the center of the
box. To achieve an even lift the length of the turnbuckles could be adjusted. The entire setup was
then via a series of crane slings attached to a traverse crane in the ceiling of the building. The
crane provided the initial offset of the springs which would allow the box to oscillate upon release.

Figure 3.4: The frame and the box are submerged under water and the pull mechanism is in place

The release mechanism is illustrated in figure (3.5) and consisted of a rope attached to a release
hook. Pulling the rope released the set of crane slings attached to the wire ropes. The release
mechanism was placed as far away from the box as possible to reduce the error from misalignment.
In the picture a slack catch-loop can also be seen. This loop was put into place in order to
prevent the lifting arrangement from falling on top of the box which would have interfered with
the oscillation.

The rope attached to the hook went all the way down to the tank and redirect by a pulley so
that it was possible to pull the rope horizontally while still pulling the hook vertically.
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(a) Loaded (b) Released

Figure 3.5: Pulling the yellow rope released the hook. The green crane sling makes sure the rest
of the slings only fall a short distance.

Figure 3.6: The traverse crane at the top of the picture is connected to the submerged box via a
set of crane slings

3.1.1 The Design of The Box

The box was made out of 5mm thick steel and painted to avoid rusting. The lid could be removed.
To avoid leakage the box was sealed using a type of plastic cover (fig. 3.7). Furthermore, shackles
could be attached to the corners on the top of the box in order to lift the box. Pressure gauges
and accelerometers were attached to the center of the lid and the bottom of the box. The pressure
gauges had to be connected to the computer via wires and an additional hole was thus needed which
was placed on one of the side walls. The hole was sealed with clay. Furthermore, the connection
between the gauges and the wires had to be sealed with clay as the connection was not water proof.
The position sensors were fastened to the side of the box and the frame (fig. 3.7).
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Figure 3.7: The blue plastic cover was used to prevent leaking when the empty box was submerged.
The gray clay sealant was used to protect the gauges from the water. The gauges are connected
to the computer via red wires.

3.1.2 Measuring Devices

The measuring devices used in the experiment were accelerometers, pressure gauges, position
sensors and a strain gauge. The placement of the measuring devices can be seen in (fig. 3.8) where
PS are the position sensors, P - the pressure gauges, A - the accelerometers and S the strain gauge.
The gauges at the bottom are placed in the same manner as the gauges at the top except there is
no strain gauge at the bottom.

Figure 3.8: The drawing at the top is the box from the side, depicted below is a view of the box
from above.

The accelerometers were piezoelectric which yielded an electric discharge perms−2. The charges
from the accelerometers were connected to a charge amplifier which converted the electrical charge
into a voltage (3.9). The charge amplifiers were in turn connected to a data acquisition unit which
converted all the analog signals into digital signals (fig. 3.10). The data acquisition unit was
connected to a computer where the digital signals were saved and analyzed in an experimental
software. The pressure gauges were also piezoelectric and connected in the same manner as the
accelerometers. The position sensors were always fastened 5 by 5 centimeters from a bottom corner.
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Figure 3.9: The charge amplifiers used by both the accelerometers and the pressure gauges were
connected to the data acquisition unit.

The position sensors were linear variable displacement transformers which converted an input
voltage depending on the displacement. The output voltage from the position sensors was amplified
and then plugged into the data acquisition unit. The strain gauge could measure strain in one
direction and used a Wheatstone bridge in order to amplify small changes in resistance due to
material strain.

Figure 3.10: The data acquisition unit makes pleasurable clicks when you turn it on click click
click click.

3.2 Experimental Procedure

In order to increase the quality of the results all equipment were first carefully weighed and cali-
brated. The heavy objects were weighed using a dynamometer with an approximate tolerance of
100 g and the smaller objects such as screws and measuring devices were weighed on a scale with
a tolerance of 1 g. The scales were never calibrated further than observing that there were no
offset errors. The position sensors were calibrated using an electronic caliper and it was noted that
the highest accuracy was when the displacement was half of the maximum displacement available.
The position sensors also added some mass to the box which was included in all calculations.

The accelerometers and pressure gauges used were recently calibrated by Kockums. Further-
more the accelerometers were initially placed next to the position sensors and the double inte-
gration of the acceleration was the same as the displacement from the position sensors when the
acceleration was filtered through a high pass filter.

The springs were measured in a tensile tester, yielding values of the spring constants in both
tension and compression. After calibrating the equipment, the springs and the box were mounted
onto the frame with spacers. The spacers were added to make sure that the maximum difference in

13



length between the springs were 2mm. The frame was then lowered into the tank. The water level
in the tank was raised to a level where it no longer affected the motion of the box. A motivation
for the chosen water level is presented in 3.7.1

The frame was fastened to the tank and the crane was centered using a folding ruler. The
measuring devices were zeroed out and the box was lifted without the release mechanism. The
positions were noted and the turnbuckles were adjusted iteratively in order to lift the box as evenly
as possible; the largest acceptable difference between two position sensors was 2mm. The release
mechanism was then mounted onto the crane and the box was lifted 20mm which was controlled
using the position sensors. The collection of data was then initialized and the release mechanism
was triggered using the rope which was attached to the hook.

The experiments were performed using two different types of springs. The mass of the box could
also be altered by filling it with water. These adjustments yielded four different experimental setups
aimed to change the natural frequency. For each setup there were three different experiments to
be performed: in air, in water and in water with a plate. All in all this produced 12 different
experiments which are presented in table (3.1). Here the number indicates the combination of
spring constant and mass, and the letter a means that the experiment took place in air, w - in
water and p - in water with a plate.

Table 3.1: The total spring constant and the mass of the box were used together with the analytical
added mass (sec. 2.6.2) to calculate an analytic frequency (eq. 2.45). A third of the mass of the
springs is included in mBox

Lc kTotal [kN/m] mBox [kg] fAnalytic [Hz] mAdded [kg]
1 a 154.4 35.6 10.5 0
2 a 154.4 64.6 7.8 0
3 a 281.6 36.0 14.1 0
4 a 281.6 65.0 10.5 0
1 w 154.4 35.6 6.7 50.3
2 w 154.4 64.6 5.8 50.3
3 w 281.6 36.0 9.1 50.3
4 w 281.6 65.0 7.9 50.3
1 p 154.4 35.6 6.7 50.3
2 p 154.4 64.6 5.8 50.3
3 p 281.6 36.0 9.1 50.3
4 p 281.6 65.0 7.9 50.3

Initial experiments in air showed that the mass of the springs could not be neglected after
comparing the analytical and measured frequency. The effective mass of an ideal uniform spring
can be derived to be one third of the mass of that spring. The mass of the springs were measured
and one third was added to the mass of the box.

3.2.1 Sources of Error and Assumptions

The initial conditions of the oscillation are critical to the overall quality of the measurement. A
purely translational motion is desirable and anything which could introduce rotational modes is
of concern. During the release of the box, the ropes in which the box was suspended were pulled
horizontally. Horizontal displacements of the ropes pulling the box could occur during release.
This would in turn alter the angle at which the box was being pulled.

Another problem was the centering of the pulling force. This was an issue as the force was to
be divided into four equal parts at each corner. This proved difficult as the central pulling force
was not perfectly in the center above the box. The wires attached to the corner were also not
necessarily of the same length. The turnbuckles made it possible to reduce this effect..

The interpolation of the displacement eliminated rotational modes around the center of the box.
Rotational modes around the sides of the box were not eliminated, nor could they be reduced.

The horizontal stiffness of the springs constricted translational modes in the horizontal di-
rections. Rotational modes can form as a result of varying spring constants. The springs were
measured by a tensile tester with a high degree of accuracy and the largest difference was 2.5% for
the weak springs and 1% for the strong springs. To minimize rotational modes the stiffest springs
were placed diagonally.
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The experiments in air were conducted without some of the gauges that were used in water, this
altered the mass. All components attached to the box were included in the box’s mass but there
were some sources of errors for the mass. The weight of the pull arrangement was not included in
the box’s mass and the effective mass of the springs was also an approximation.

Regarding the pressure gauge and the accelerometer no calibration took place as they had
recently been calibrated by Kockums. An issue was that water could seep through the sealant
and affect the measuring devices. This would render the device useless but the upside was that
it was easy to detect. This happened to one of the pressure gauges which is why some of the
measurements only contain one pressure.

3.3 Experimental Results in Air

Measurements of the same quantities were taken in air and water. However as it is the fluid
structure interaction that is to be investigated only the displacement is presented in this section.
The displacement is measured by averaging the data from two diagonal position sensors (fig. 3.11).

Figure 3.11: The displacement was interpolated from two diagonal position sensors so that the
displacement in the center could be calculated.

It is from the measurement of the displacement that the frequency was calculated. The average
frequency of a measurement was calculated by averaging a set of wavelengths in the middle of the
sample. The frequencies for all the different experiments in air are presented in table (3.2).

Table 3.2: Not much variation can be observed within a case.

1 a f [Hz]
Trial 1 10.57
Trial 2 10.58
Trial 3 10.57

2 a f [Hz]
Trial 1 7.76
Trial 2 7.76

3 a f [Hz]
Trial 1 13.89
Trial 2 13.89

4 a f [Hz]
Trial 1 10.44
Trial 2 10.44
Trial 3 10.44

3.4 Experimental Results in Water

There were four different combinations of springs and masses for the box and each experiment
was conducted with and without the bottom plate in place. In this section the results for one
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setup with and without the plate are presented. The chosen setup is using the weaker springs and
the heavier mass, 2 w & 2 p. In order to compare the effects of the addition of the plate both
measurements are plotted in the same figure.

3.4.1 Displacement

The displacement was measured by averaging the data from two diagonal position sensors (fig.
3.12). The results are similar with and without the plate although a small change of frequency
occurs.

(a) The evolution of the displacement is similar
with or without the plate.

(b) When taking a closer look the frequency is
slightly decreased when the plate is added.

Figure 3.12: The starting amplitude is typically 0.02m and then decays in a nonlinear fashion.

With the addition of the plate the frequency decreases due to an increase of added mass.

3.4.2 Acceleration

The acceleration is measured at the top and bottom centre of the box (fig. 3.13 & 3.14). At the
bottom of the box accelerations are initially higher with the plate.

(a) The acceleration at the bottom of the box
is similar with and without the plate.

(b) The noise in the signal with the plate is
initially higher compared to the signal without
the plate. Otherwise they are of similar am-
plitudes starting at around 23m/s2 and then
decreasing.

Figure 3.13: The acceleration is defined as positive upwards. The frequency with the plate is
slightly lower compared to without the plate

The accelerations at the top are initially higher but after one wavelength the signals coincide
except for a small change of frequency.
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(a) The acceleration at the top of the box is
similar with or without the plate.

(b) The noise in the signal with the plate is
initially higher compared to the signal without
the plate. Otherwise they are of similar am-
plitudes starting at around 25m/s2 and then
decreasing.

Figure 3.14: The acceleration is defined as positive upwards. The frequency with the plate is
slightly lower compared to without the plate

3.4.3 Pressure

The pressure is measured at the bottom center of the box (fig. 3.15).

(a) The evolution of the pressure is similar with
or without the plate.

(b) The signal with the plate contains more
noise and is of higher values than the one with-
out a plate.

Figure 3.15: Depicted is the dynamic pressure.

The pressure at the bottom of the box contains more noise and higher values when the plate
is introduced. The gauge placed at the top was not working properly and its data is therefore not
presented.

3.4.4 Strain

The strain is measured at the top surface, in the middle approximately 5 cm from the edge (fig.
3.16).
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(a) As strains are low, noise has high influence
on the measurement. With time the wave does
not oscillate around zero.

(b) Initially the strain wave can clearly be seen
although there is a lot of high frequency noise.

Figure 3.16: It can be observed that the strain oscillates with the same frequency as the rest of
the box.

In the end of the signal the center is no longer around zero as it should be since the signal was
zeroed before the experiment. This is due to a problem with the strain gauge causing it to drift
over time. It can be observed that the strain oscillates with the same frequency as the rest of the
box.

3.5 Added Mass

From the calculated frequency, the known mass and the spring constants; added mass was calcu-
lated for each experiment from eq. (2.45). The added mass for each trial is presented in table
(3.3)

Table 3.3: The left table presents the frequency and added mass for the four cases and all trials
without the plate. The right table presents the same cases with the plate. The added mass was
calculated from eq.( 2.45)

1 w f [Hz] ma [kg]
Trial 1 6.53 56.0
Trial 2 6,53 56.1

2 w f [Hz] ma [kg]
Trial 1 5.69 56.0
Trial 2 5.70 56.0

3 w f [Hz] ma [kg]
Trial 1 8.74 57.3
Trial 2 8.74 57.3
Trial 3 8.74 57.3

4 w f [Hz] ma [kg]
Trial 1 7.63 57.4
Trial 2 7.63 57.7
Trial 3 7.62 57.7

1 p f [Hz] ma [kg]
Trial 1 6.45 58.5
Trial 2 6.44 58.8
Trial 3 6.45 58.4

2 p f [Hz] ma [kg]
Trial 1 5.64 58.5
Trial 2 5.63 58.8
Trial 3 5.64 58.5

3 p f [Hz] ma [kg]
Trial 1 8.65 59.3
Trial 2 8.65 59.2
Trial 3 8.65 59.3

4 p f [Hz] ma [kg]
Trial 1 7.57 59.6
Trial 2 7.57 59.4
Trial 3 7.57 59.6

As can be seen in table (3) added mass remains constant for each type of spring. The added
mass is heavier for the larger spring constants.

With the addition of the plate added mass increased by 2.5kg for the weaker springs and 2kg
for the stiffer springs. The results from the different mass spring setups are averaged in table (3.4).
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Table 3.4: The two tables present the added mass with and without the plate calculated as averages
of the different trials.

f [Hz] ma [kg]
1 w 6.53 56.1
2 w 5.70 56.0
3 w 8.74 57.3
4 w 7.63 57.6

f [Hz] ma [kg]
1 p 6.44 58.6
2 p 5.63 58.6
3 p 8.65 59.3
4 p 7.57 59.5

Here it can be clearly seen that added mass increased with stiffer springs and with the addition
of the plate.

3.6 Summation of Results

The results from the analytical solutions, experiments in water and air are presented in table (3.5).

Table 3.5: The analytical added mass is constant between the cases and appears to be independent
of the natural frequency. The measured experimental results are presented next to the analytical
results.

Lc kTotal [kN/m] mBox [kg] fAnalytic [Hz] mAdded [kg] fMeasured [Hz] mAdded [kg]
1 a 154.4 35.6 10.47 0 10.57 0
2 a 154.4 64.6 7.78 0 7.76 0
3 a 281.6 36.0 14.07 0 13.89 0
4 a 281.6 65.0 10.48 0 10.44 0
1 w 154.4 35.6 6.75 50.3 6.53 56.1
2 w 154.4 64.6 5.83 50.3 5.70 56.0
3 w 281.6 36.0 9.09 50.3 8.74 57.3
4 w 281.6 65.0 7.87 50.3 7.63 57.6
1 p 154.4 35.6 6.75 50.3 6.44 58.6
2 p 154.4 64.6 5.83 50.3 5.63 58.6
3 p 281.6 36.0 9.09 50.3 8.65 59.3
4 p 281.6 65.0 7.87 50.3 7.57 59.5

The analytical frequencies were close to the frequencies from the experiments in air but differed
most for 3 a where the analytical frequency was 1.3 % higher than the experimental value.

The added mass for 1 w and 2 w were similar and used the same springs, the same holds for 3 w
and 4 w but with a higher added mass. This was also true for the cases with the plate. The largest
differences in added mass were 3 % without the plate and 2 % with the plate. Furthermore, it can
also be observed from table (3.5) that the added mass increased when the plate was introduced.
The largest difference was observed for case 2 where the added mass of 2 p was 5 % higher than
for 2 w. The remaining cases differed by at least 3 %. Moreover, the experimental added mass
for 4 w was 15 % higher than the analytical added mass which was the largest difference. The
smallest difference in added mass was observed for 2 w which was 11 % higher than the analytical.
For the plate, the added mass for 4 p was 18 % larger and for 1 p it was 17% larger. Keep in mind
that for these results the analytical added mass is assessed as a cylinder, if a sphere was to be used
instead the assessment would be 33% lower.

3.7 Validation of Results

In order to assess the quality of the measurements a validation of the results and the experimen-
tal setup was performed. In the measurements, the frequency is considered the most important
variable. It is calculated as the average time for the displacement to change sign 9 times. This
provides a robust but still time dependent measurement of the frequency. When the frequency is
noted as a single number the average is calculated for the middle of the signal.

3.7.1 Influence of Water Level

Results where an infinite water pillar can be assumed are desired as that would make the results
more general. In order to rule out the effect of having a limited water pillar above the box, tests
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were made with different heights of water. From the tests the frequency of the displacement was
measured and considered a significant variable for controlling overall change. If the frequency did
not change when the water level was raised, the assumption of infinite water height was considered
to hold.

Figure 3.17: A clear change of the frequency can be seen as the water level is raised to 21cm
compared to a height of 15cm above the box. The different starting times are due to measurements
starting before the box was released.

As can be seen in fig. (3.17) using a water level of 15cm above the box does not satisfy the
assumption of infinite water height as the frequency is not constant.

Figure 3.18: As the water height was increased to 42cm from 21cm the change of frequency became
small.

From the increase of 6 cm in figure (3.17) the change of frequency can clearly be seen. When
regarding the figure (3.18) where a larger difference in water height, 21 cm, takes place the effect
on the frequency becomes insignificant. From these tests it can be concluded that an increase in
water height eventually has no influence on the frequency of the box. This occurs in a nonlinear
fashion however further testing has to take place in order to determine the mechanics behind this
phenomenon. In the experiments performed, a water height of 42 cm above the box was used. The
above tests are empirical evidence that show that an infinite water height can be assumed for the
results attained. Furthermore the experimental setup made it unpractical to raise the water level
further.
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3.7.2 Influence of Amplitude

In order to decide at what height the box should be released at, tests had to be performed. Three
different tests were conducted using amplitudes of 20, 10 and 5mm with an otherwise identical
experimental setup. In addition a ratio between the largest and the second largest rotational or
translational mode was created. The ratio was introduced in order to quantify the quality of a
measurement. A large ratio was desirable as it meant that the translational mode which we are
interested in is large compared to other modes which might interfere with our measurements.

Table 3.6: With higher amplitude the ratio increases according to these measurements. The
frequency remained constant

Amplitude Analytical eigenfreq. Measured eigenfreq. Ratio between largest modes
5mm 10,491 Hz 10,573 Hz 2,624
10mm 10,491 Hz 10,583 Hz 4,055
20mm 10,491 Hz 10,565 Hz 4,623

From table (3.6) it can be seen that the most accurate frequency compared to the analytical
solution is when using 20mm amplitude. Furthermore the largest ratio is measured when using
the largest amplitude. It should also be stated that the data contained in the smaller starting
amplitude waves can be considered to be part of the largest starting amplitude wave as amplitudes
for a 20mm wave will eventually become 10mm and 5mm as the wave decays. From this analysis
it was concluded that all experiments should be performed using 20mm as the initial amplitude.
Even larger initial amplitudes would be desirable however the springs will deform plastically at
30mm making it unpractical.

3.7.3 Verification of Acceleration and Displacement

The acceleration of the box was measured at the top and bottom and will in this section be used
to verify that the measured acceleration and displacement yield similar results for 1 w.

The plotted accelerations in fig. (3.19) illustrates that the phases are indeed similar. However,
it turns out the acceleration on the top of the box decays faster than on the bottom which could
be due to the oscillation of the lid.

Figure 3.19: The two accelerations are in phase but slightly different in amplitude as time pro-
gresses.

The accelerations were integrated twice which yielded the displacement of the box (fig. 3.20).
A Butterworth high-pass filter was used to eliminate drifting errors.
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Figure 3.20: Illustrates the measured displacement of the box as well as the two computed dis-
placements. The frequency of the motion is similar for the three sensors.

There is yet again some difference in amplitude between the two accelerometers as well as the
position sensors which could be due to the box not being a rigid body. Nevertheless, they are
in-phase with one another. In order to verify that the accelerometers and the position sensors
yield the same frequency, the different frequencies were plotted in (3.21).

Figure 3.21: The three frequencies plotted as running averages over 9 wavelengths. The frequencies
follow each other closely.

The frequency can also be plotted in the frequency domain which yielded a similar value (fig.
3.22).

Figure 3.22: Here, the motion of the position sensor is transformed into the frequency domain
using an FFT.

As evidenced by figure (3.21), all three frequencies are almost identical and the measurements
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are therefore satisfactorily similar. The calculated frequencies are based on displacement and not
acceleration in this report.

3.7.4 Decay

It is evident from the experiments that the oscillating motion of the box is subjected to damping
(fig. 3.23).

(a) The motion continues to decay over the en-
tire time span.

(b) An image zoomed in for the first 10 peaks
better illustrates the behavior of the damping
at the start.

Figure 3.23: (a) illustrates decay for 2 w and (b) illustrates the decay for the first 10 peaks.

Values for the 10 first peaks for a 2 w experiment (fig: 3.23b), not including the starting
displacement, were observed and presented in table (3.7). The first peak was not included as it
may have been affected by disturbances when the motion was initialized.

Table 3.7: The amplitudes can be used to calculate the damping ratios.

Amplitude (mm) 17.3 15.5 14.2 13.0 12.1 11.3 10.5 9.9 9.4 8.8

The values in table (3.7) were inserted into equation (2.11) to calculate the damping ratios
(table 3.8).

Table 3.8: The calculated damping ratios decrease as the motion decays over time. Note that the
ratio decreases with time, meaning that the damping decreases.

ζ 0.0173 0.0142 0.0138 0.0116 0.0110 0.0117 0.0083 0.0087 0.0099

It has previously been discussed that the damping affects the natural frequency. This poses
the question as to whether this effect is significant or not. Equation (2.6), can be used to calculate
the damped frequency for the highest damping ratio.

fd = 0.99985fn

The difference between the damped frequency and the natural frequency is considered too small
to be relevant.

The damping can be described as an exponential function that corresponds to the envelope of
the signal. The envelope was generated with the MATLAB command envelope, and an exponential
curve on the following form was generated with cftool in MATLAB

f(t) = aebt (3.1)

where a is the starting amplitude and t is the time. Generally, the decay of the sinusoidal wave’s
envelope can be expressed as an exponential function but it was not possible for the entire signal
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as evident from fig. (3.24a). It was however possible to find a better fit for the first 1.6 seconds
(3.24b) with the following constants:

a = 0.01846 m b = −0.459 s−1 (3.2)

(a) The envelope (data) and the fitted curve.
It turns out one term does not provide a good
fit.

(b) When only looking at the first 10
peaks, one term provides a better fit.

Figure 3.24: The decay and a fitted curve with one exponential term for the entire signal (a) and
the beginning (b).

To get a better fit for the entire signal, a second term was added to the exponential function
resulting in (3.3) with constants presented in eq. (3.4). The fitted curve is shown in fig. (3.25).

f(t) = aebt + cedt (3.3)

with the following constants

a = 0.007603 m b = −1.344 s−1 c = 0.01166 m d = −0.207 s−1 (3.4)

Figure 3.25: Two exponential terms yields an exponential function that much better fits the
envelope.

The same analysis was performed for all the different cases and the constants are presented in
table (3.9) and (3.10). It should be noted when interpreting the data that some of the constants
may be highly dependant on the starting amplitude. Constants a and c should together be equal
to the starting amplitude.
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Table 3.9: Generated constants for the four different cases without a plate. Some variation can be
observed even within the same case, for example for 1 w and 3 w.

1 w a b c d
Trial 1 0.0094 -1.42 0.00878 -0.1878
Trial 2 0.008349 -1.722 0.01072 -0.2564

2 w a b c d
Trial 1 0.007603 -1.344 0.01166 -0.207
Trial 2 0.008009 -1.386 0.01201 -0.2037

3 w a b c d
Trial 1 0.01137 -1.868 0.008297 -0.2782
Trial 2 0.01193 -1.595 0.006681 -0.206
Trial 3 0.01557 -2.232 0.005803 -0.5629

4 w a b c d
Trial 1 0.01259 -1.376 0.008678 -0.1971
Trial 2 0.01135 -1.216 0.007721 -0.1773
Trial 3 0.01267 -1.197 0.007706 -0.1609

Table 3.10: Generated constants for the four cases with a plate. Yet again, variations can be
observed, even within the same case.

1 p a b c d
Trial 1 0.009157 -1.949 0.01041 -0.271
Trial 2 0.008023 -2.085 0.01111 -0.3105
Trial 3 0.009875 -1.797 0.0102 -0.2688

2 p a b c d
Trial 1 0.00982 -1.134 0.009675 -0.1864
Trial 2 0.008124 -1.716 0.01254 -0.2626
Trial 3 0.008512 -1.233 0.01085 -0.2277

3 p a b c d
Trial 1 0.01184 -1.844 0.007586 -0.2562
Trial 2 0.01225 -1.781 0.007547 -0.2615
Trial 3 0.008524 -2.908 0.01155 -0.6109

4 p a b c d
Trial 1 0.01139 -1.312 0.008041 -0.1876
Trial 2 0.01044 -1.496 0.009224 -0.2325
Trial 3 0.01177 -1.372 0.008215 -0.1969

From table (3.9) the follow damping model has been proposed for oscillations in water by
averaging all constants except from the most deviating trial

y = 0.01036e−1.458t + 0.0092e−0.2082t (3.5)

For oscillations in water with a plate (table 3.10) the following equation of decay is proposed

y = 0.01011e−1.6114t + 0.0096e−0.1995t (3.6)

3.7.5 Decay in air

As a short comparison to the decay in water, 2 a is here presented to investigate differences in
damping between air and water.

A plot of the envelope and a fitted exponential curve shows that an exponential function with
one term can be used to model the damping of the system (fig. 3.26a) and an even better fit can
be generated for the first 1.6 seconds (fig. 3.26b). The constants for the exponential function for
the first 1.6 seconds are presented below:

a = 0.01937 m b = −0.1851 s−1 (3.7)
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(a) A one term exponential fit can be used to
give an estimate of the decay of the displace-
ment.

(b) For the first 1.6 seconds an even better fit
can be achieved with an exponential fit.

Figure 3.26: (a) depicts the envelope and a fitted one term exponential function and (b) depicts a
one term fitted exponential function for the first 1.6 seconds of the motion.

Values for the 10 first peaks for a 2 w experiment (fig: 3.27), not including the starting dis-
placement, were observed and presented in table (3.11). The first peak was not included as it may
have been affected by disturbances when the motion was initialized.

Figure 3.27: The displacement for the first 10 peaks.

Table 3.11: The peak amplitudes of the displacement not including the starting displacement.
Note how the difference between two successive peaks may vary.

Displacement (mm) 18.98 18.70 17.91 17.60 17.13 16.86 16.43 16.05 15.60 15.26

The displacement peaks were used to calculate the damping ratio. The damping ratio was
calculated for every second peak due to the values for two successive peaks being too similar.

Table 3.12: Damping ratios calculated between every second value, starting with 18.98 and 17.91.

ζ 0.0046 0.0035 0.0033 0.0041

By comparing the damping ratio for air and water in the selected time span, it can be observed
that experiments in water experiences a larger amount of damping.
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3.8 Discussion

From the data seen in the added mass tables it is evident that added mass increases with the
addition of the plate. The addition of the plate blocks the previous path of the displaced water
forcing it to change direction. This effect causes an increase of inertia in the system which is
interpreted as added mass.

Although an increase in added mass does occur the overall results are similar whether the plate
is in place or not. The difference is that the additional added mass does result in a slightly lower
frequency. It was noted in (5.4) that the increase in added mass was between 5 and 3 %. This
behavior can be seen across all measurements and it is clear that it represents the change in added
mass for this particular setup. A setup with a different distance to the plate and with a different
geometry of the oscillating object would experience a different fluid-structure interaction, resulting
in a different added mass.

Table (3.3) illustrates that the deviation in frequency between trials is low. Therefore, com-
parisons between cases can be made even though the amount of trials is low.

In table (3.5) it can be seen that the added mass is larger for the stiffer and larger springs.
Added mass is therefore likely related to choice of springs. The stiffer springs are larger which
could cause more viscous effects. The distance to the frame also increases with stiffer springs which
could change the results of the experiment. However added mass actually decreases when the box
is further away from the frame, something that contradicts the observations made when the plate
was introduced. One hypothesis is that the stiffer springs also have more stiffness in the radial
and vertical direction which means that they are less susceptible to rotational modes. The ratio
between the largest modes confirm that rotational modes are more prevalent in the results with
weaker springs. The added mass also appears to increase slightly when the mass is increased but
this is not investigated further. Another possibility is that the stiffer springs results in a higher
force acting on the frame, making it oscillate and disrupts the motion of the box.

The acceleration of the box initially contains more noise when the plate is present compared
to without it. This is likely due to a more chaotic flow as the plate changes the direction of the
displaced water. This effect is disappearing as the signal loses amplitude indicating that the fluid
structure phenomena is highly dependent on the distance to the structure.

The pressure at the bottom is of higher amplitude with the addition of the plate. This is
believed to be from the impulse of the water acting on the box as the displaced water downwards
has to change direction due to the plate blocking the way. The signal also contains more noise
indicating a more chaotic flow.

The strain increases with the addition of the plate. This goes hand in hand with an increased
pressure as an increased pressure results in higher loads on the box and higher loads cause larger
strains.

The decay function in water required two terms to accurately describe the envelope of the
displacement which is an indication that there are two damping phenomena. Conversely, the
damping in air could more accurately be described using one exponential term. The decay rate
was also higher in air than in water. For 2 w, it it can be seen in table (7) that the two time
constants b and d are of a different order of magnitude. This means that the two damping effects
are of different nature. The term with the large time constant b will become zero quickly which
means that this damping takes place in the beginning of the signal when the velocity is high and
the distance to the structure is low. The second term has a much smaller time constant, thus
this damping effect is dominant as amplitudes are lower and the distance to the structure becomes
increasingly large. To determine the exact physical mechanisms behind the damping effects further
studies have to be performed. An idea would be to increase the amplitude of the signal and see
how an increased velocity affects the damping. It would also be of interest to increase the fluid
structure interaction to see whether this would affect damping.
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4 Modelling

To determine how accurately fluid structure interaction can be simulated a model of the experi-
mental setup was constructed. The experiments were performed in LS-DYNA where the element
formulation mat acoustic is to be validated.

4.1 Model Setup in LS-Prepost

The creation of the model was made with the intent to resemble the experimental setup as closely
as possible. The dimensions of the box and frame were thus the same as for the experimental setup.
In an effort to speed up the simulation, only one quarter of the actual geometry was modelled (fig.
4.1). Symmetry planes were added to only model one quarter and this also prohibited the box
from rotating which was beneficial as it removed all modes but the oscillation that was to be
investigated. A full model was also tested to verify that the assumption of symmetry was valid.

Figure 4.1: Parts with different colors have different thicknesses. The distance to the frame is
different for the two different springs.

The frame and the box were constructed in Creo Parametric as shells and could be imported
as 3D models. The intent was initially to import the 3D-model to LS-Prepost as a STEP-file and
then mesh the model. However, meshing the frame in LS-Prepost proved to be disadvantageous
and instead our supervisor helped us mesh in Hypermesh; in addition, the water was meshed in
LS-Prepost. A hollow space where the box was placed was also added to the fluid part. The actual
tank containing the water was modelled as a rigid boundary. Furthermore, the frame, which rests
on the top of the tank in the experimental setup was locked by constraining the motion of the
nodes that would have rested on the tank.

When the tetrahedral fluid mesh had been created, another issue presented itself; the fluid
elements and the frame’s elements did not share a boundary. This prevented the usage of the
fluid-structure coupling between the fluid and the frame. The solution was to remove additional
fluid sections according to figure 4.3, thus making the fluid and the structure share surfaces at the
locations that were deemed necessary to include in the model. As a result, only the part of the
frame beneath the box was coupled to the fluid. An additional weakness with this solution was
that the ”feet” of the box were filled with air rather than water hence making the box ”lighter”
in the simulations. Therefore, the mass of the removed water was added to the mass of the box
by scaling the density. When the added mass was calculated, the extra weight from the feet was
included as added mass and removed from the actual mass of the box.

The plate under the frame was modelled as rigid by cutting off part of the fluid mesh when
needed (fig.4.2). The tank and the plate were locked in place with an SPC Boundary.
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Figure 4.2: A print screen of the fluid mesh with the frame and box submerged in the fluid. In this
case, the bottom part of the fluid volume is removed and the boundary represents the addition of
the plate.

The experimental setups performed in water were also used in the simulations. The weight of
the box was easily modified simply by changing the density of box. The stiffness of the springs were
also changed in a similar manner; however, different 3D-models were needed for the two springs due
to the springs not being the same length. The motion of the box was initialized by the introduction
of an offset for the springs. In addition, part of the fluid volume was, as previously stated, removed
to emulate the effect of the plate. All in all, two different 3D models were imported, each with the
possibility to add the plate. Hence resulting in four different meshed geometries where the density
of the box could be changed, adding up to eight different simulations as desired.

Figure 4.3: The entire fluid mesh is here presented. Note that some parts of the volume have been
removed.

The coupling was added with a keyword called Boundary Acoustic Coupling Mismatch which
can be used even though the nodes do not coincide, nor do they need to be merged. In order
to identify the structural surfaces that was to be coupled with the acoustic elements, a segment
set had to be created. The coupling between the fluid and the structure is shown in figure (4.4).
Segment set normals must point toward the fluid volume the structure is supposed to couple with.
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Figure 4.4: Shows the parts of the box and frame that were coupled to the fluid. However, only
the side in contact with the fluid was coupled. This was controlled with the section normals.

4.2 Implemented Keywords

In this section, the different options used in the modelling in LS-DYNA are presented. The reader
is referred to the appendix for the input parameters in the implemented keywords.

4.2.1 Box and Frame

The box and the frame were modelled with shell elements with the desired thickness. Element
formulation 16 was used. Moreover, the material model used was Mat Elastic. The density of the
box was scaled in order to match the weight of the box in the experiments.

4.2.1.1 Element Formulation 16

Shell type 16 requires approximately 2.5 times more CPU than type 2 shells. However, the accuracy
is in many cases higher. The advantage of element formulation 16 is that it uses full integration
except for the transverse shear, where it uses one point integration. Therefore, it reduces hour-
glassing as well as shear-locking. Moreover, element type 16 yields the correct solution for warped
elements when used with hour-glass control 8 [10].

4.2.2 Acoustic Volume

The fluid elements are solid tetrahedral elements and the material model Mat Acoustic was used
together with element formulation 8.

4.2.2.1 Mat Acoustic

Mat Acoustic is a material model utilizing the single degree of freedom displacement potential
formulation. Mat acoustic is appropriate for tracking low pressure stress waves in an acoustic
media such as air or water. This element formulation is rather new in LS-DYNA and has the
benefit of being very cost effective [7].

4.2.3 Discrete Elements

The springs were created as discrete spring elements. The stiffness of the springs corresponded to
the average spring constant and was chosen in the material keyword Mat Spring Elastic.

4.2.4 Hourglassing and Control Keywords

In order to further increase the accuracy of the FE-model the Hourglass and Control keywords
were implemented. The Hourglass keyword reduces hour-glassing and was used for the box and
the frame.
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The Control Accuracy option is recommended for shell elements even though it has a higher
cost. [7].

The bulk viscosity keyword was used as it is recommended when treating shock waves. It adds
a viscous term to the pressure in order to smear shock discontinuities into rapidly varying yet
continuous transition regions [7]. The reader is referred to the LS-DYNA theory guide [9] for a
more detailed explanation.

The Control Energy keyword controls the type of energies that are to be included in the energy
balance [7].

4.3 Sources of Error in Simulations

Several simplifications and assumptions were made with regards to the experimental setup. As
previously mentioned, fluid mesh was removed inside the ”feet” of the box. The weight of this
water was accounted for by adding it to the mass of the box and this is believed to be an acceptable
approximation. Not coupling other parts of the frame to the fluid except the bottom beam was
believed to be acceptable as no significant fluid structure interaction should take place elsewhere.
No fluid coupling was included for the tank or the plate. Instead, those surfaces were approximated
as rigid surfaces resulting in reflective boundaries. An infinite water depth was assumed for the
fluid in the FE-model which was supported by the convergence study on fluid volume size in section
4.7.3.

Large displacements and deformations introduce errors as the fluid structure coupling is fixed
in space.

In the experiments a heavier box was achieved by filling it with water. In the model the inside
of the box was instead kept empty and the heavier mass was emulated by a scaling of the density
for the edges of the box. It was believed that this should not impact the motion of the box which
is also confirmed by simulations for different densities. However, the dynamic response of the
box’s walls could be affected due the walls not having the right density and not having water on
both sides. If the density is incorrect, that means the inertia of a wall oscillating is incorrect, the
vibration of the walls are therefore not modelled correctly. In addition, having water on both sides
would provide additional stiffness to the walls, something that is not accounted for in our model.

Another assumption that could affect the results is that viscous effects are not included in the
model which is evident from the fact that the motion is not damped. The damping not only affects
the amplitude but also the frequency which should be taken into consideration when interpreting
the results. The change of frequency has been shown (3.7.4) to be insignificant.

The springs were modelled as discrete springs and the actual geometry of the springs was not
accounted for in the FE-model.

A ratio between the mesh size and the structure size of 0.025 was chosen for the FE-model for
practical reasons. The convergence study performed in section 4.7.2 showed that the frequency
had not converged fully for that ratio. The specific ratio was close to convergence but minor
inaccuracies could have been introduced.

4.4 Modelling Results

From the simulated model the same results as from the experiment were collected. This was done
in order to have experimental data to compare the model to.

4.4.1 Displacement

The difference of the displacement is small for motions with and without an added bottom plate
(4.5). At the end of the wave a small decrease in frequency can be seen when adding the plate.
The period of the wave is around 0.17s.
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Figure 4.5: The displacement is extracted from nodes located in the center of the box at the top
and the bottom, the displacement is only extracted in the same direction as the main oscillation.
The amplitude is prescribed as double the offset of the springs in the model and is 0.04m hence
the wave is oscillating around −0.02m.

4.4.2 Velocity

The velocity at the top of the box consists of waves of two different frequency and on top of that
there is high frequency noise (fig. 4.6). The low frequency wave has a period around 0.16s and
an amplitude of 0.8m/s. On top of the low frequency wave, a wave of low amplitude and of a
higher frequency can be seen. That wave has a period of around 0.01s and an amplitude of around
0.1m/s. The addition of the plate does not seem to have any clear influence on the velocity.

(a) The velocity measurement consists of a
large sinusoidal wave of a period around 0.16s
and an amplitude of 0.8m/s

(b) On top of the large wave a smaller wave of
a higher frequency can be seen. That wave has
a period of around 0.009s and an amplitude of
around 0.1m/s

Figure 4.6: The velocity at the top is extracted from a node in the middle of the bottom of the
box. The presented velocity is the velocity in the same direction as the main oscillation.

The velocity at the bottom consists of waves of two different frequency and on top of that
there is high frequency noise (fig. 4.7). The low frequency wave has a period around 0.16s and
an amplitude of 0.8m/s. On top of the low frequency wave, a wave of low amplitude and of a
higher frequency can be seen. The wave has a period of around 0.003s and an amplitude of around
0.1m/s. The addition of the plate does not seem to have any clear influence on the velocity at the
bottom.
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(a) The velocity measurement consists of a
large sinusoidal wave of a period around 0.16s
and a amplitude of 0.8m/s.

(b) On top of the large wave a smaller wave of
a higher frequency can be seen. That wave has
a period of around 0.0033s and an amplitude
of around 0.1m/s.

Figure 4.7: The velocity at the bottom is extracted from a node in the middle of the bottom of
the box. The presented velocity is the velocity in the same direction as the main oscillation.

4.4.3 Acceleration

The acceleration at the top changes values from -1000 m/s2 to 1000 m/s2 in milliseconds. The
acceleration is similar with or without a plate (fig. 5.3).

Figure 4.8: The acceleration is seemingly randomly varying around zero although initially decreas-
ing in value. The acceleration can alter between very high positive and negative values in a short
amount of time.

The acceleration at the bottom of the box changes values from -1000 m/s2 to 1000 m/s2 in
milliseconds. The acceleration is similar with or without a plate (4.11b).

Figure 4.9: The acceleration is seemingly randomly varying around zero although initially decreas-
ing in value. It alternates between very high positive and negative values in a short amount of
time.

4.4.4 Pressure

The pressure at the top of the box consists of a low frequency sinusoidal wave with a period of
around 0.16s and an amplitude of roughly 8kPa (fig. 4.10). Around this low frequency wave there
is a wave of a higher frequency. The high frequency wave has an amplitude of 5kPa and a period
of 0.01s. It is a signal with high frequency noise it which can be seen in the zoomed in image
below.
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(a) The pressure consists of a larger sinusoidal
wave with a period of around 0.16s. Around
this large sinusoidal wave there is a wave of a
higher frequency.

(b) The high frequency wave is a signal with a
amplitude of 5kPa. The high frequency wave
is full of noise of an even higher frequency.

Figure 4.10: The pressure is measured at the first of seven integration points of a solid element
located above the top center of the box.

The pressure at the bottom of the box consists of a low frequency sinusoidal wave with a period
of around 0.16s and an amplitude of roughly 5kPa (fig. 4.11). Around this large sinusoidal wave
there is a wave of a higher frequency with an amplitude of 10kPa and a period of 0.003s.

(a) The pressure consists of a larger sinusoidal
wave with a period of around 0.16s. Around
this large sinusoidal wave there is a wave of a
higher frequency.

(b) The high frequency wave is a signal with
an amplitude of 10kPa and a period of 0.003s.
There is noise in the signal.

Figure 4.11: The pressure is measured at the first of seven integration points of a solid element
located beneath the bottom center of the box.

Fringe plots of the pressure in the water are presented below in order to compare with the
experiments. The first three figure (4.15, 4.16 and 4.17) are three consecutive data dumps of the
pressure while the box is travelling upwards. The data dumps are 4ms apart in time. Here it
can be seen that there is a higher pressure in the direction of the box’s velocity and also in an
area between the frame and the box. There are areas of low pressure present beneath the box.
Furthermore it is noted that there are occurrences of large pressure changes from one figure to the
next, especially from figure (4.16) to figure (4.17) where an area of high pressure between the box
and the frame disappears.

The following three figures (4.12, 4.13 and 4.14) are images of when the box is travelling
downwards. Here there is a high pressure zone in the direction of the bow’s motion in the first
image (fig. ref1down) and areas of low pressure above the box in the two following images (fig.
4.13 & 4.14). The most notable change here is that between figure (4.13) and (4.14) a zone of high
pressure beneath the box disappears in the following images. It should be noted that the time
between the data dumps is much longer than the time step used in the calculations. The red grid
in the figures is the box which is made transparent.
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Figure 4.12: The image is taken at t=0.16968 Figure 4.13: The image is taken at t=0.17371

Figure 4.14: The image is taken at t=0.17776 Figure 4.15: The image is taken at t=0.08887

Figure 4.16: The image is taken at t=0.09291 Figure 4.17: The image is taken at t=0.09695

4.5 Frequency Domain and Filtering

It is evident from the previous section that the generated data from LS-DYNA contain signals of
different frequencies. Spectograms for a fast Fourier transform of the different signals are used to
illustrate the different frequencies contained in a signal (4.18).

4.5.1 Velocity

At the top of the box frequency peaks can be observed at both 5 and 100 Hz. Some smaller peaks
at higher frequencies can also be observed. At the bottom of the box there is a large peak at 5 Hz
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and a smaller peak at 300 Hz. With and without plate have similar spectra for both the top and
the bottom.

(a) A larger frequency peak can be observed at
roughly 5 Hz and smaller peaks at 100 and 500
Hz. 2 w and 2 p have similar spectra.

(b) A large peak at 5 Hz and a smaller peaks
at 300 Hz can be observed. 2 w and 2 p have
similar spectra.

Figure 4.18: Both graphs have similar peaks at 5 Hz but a much larger peak is observed at 100 Hz
for for the top whilst a larger peak can be observed at 300 Hz for the bottom velocity (4.18a)

It appears the top and bottom share the first mode and then have different natural frequencies
for higher modes.

4.5.2 Acceleration

The acceleration at the top of the box contains several peaks as can be seen in figure (4.20). The
frequency peaks with and without the plate coincide. It is evident that the lower frequencies are
covered in high frequency noise.

Figure 4.19: The frequency spectrum for 2 w and 2 p. The spectrum coincides well for the two
cases. Peaks can be seen at 5, 100, 300 and 500 Hz as well as noise at high frequencies.

The acceleration at the bottom of the box also has a small peak at 5 Hz but also a large peak
at 300 Hz. Like the top acceleration the bottom acceleration contains several peaks of higher
frequency.
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Figure 4.20: The frequency spectrum for 2 w and 2 p. The spectrum coincides well for the two
cases. A small peak at 5 Hz and a large peak at 300 Hz is observed. The figure also illustrates
noise at high frequencies.

To extract a low frequency acceleration, a 20 Hz low-pass filter was used. The filter produces
a signal of roughly 30m/s2 in amplitude and around 6Hz in frequency at both the top and the
bottom. Some filter artifacts can be seen in the figures due to the choice of filter.

(a) A filter of the first order was used which is
why traces of higher frequencies than 20 Hz are
present.

(b) After 0.02s the filtered wave becomes sinu-
soidal.

Figure 4.21: The filtered signals are sinusoidal except in the beginning and the end. Some artifacts
can be seen.

4.5.3 Pressure

The pressure at the top contains peaks at 5, 100, 300 and 500 Hz (4.22). There are also peaks at
higher frequencies which are not regarded. The pressures were extracted from fluid element next
to the center of the box.

Figure 4.22: The frequency spectrum for 2 w and 2 p. The spectrum coincides well for the two
cases. Peaks can be seen at 5, 100, 300 and 500 Hz as well as noise at high frequencies.

At the bottom of the box the pressure peaks at 5, 100 and 300 Hz (4.23).
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Figure 4.23: The frequency spectrum for 2 w and 2 p. The spectrum coincides well for the two
cases. Peaks can be seen at 5, 100, and 300 Hz.

The pressure was filtered using a first order low pass filter to extract the pressure variation
of low frequency. Here it can be seen that the sinusoidal pressure at the bottom and the top are
separated in phase by π. The pressure at the top and bottom are both roughly 4500Pa.

(a) The pressure with and without the plate
coincide.

(b) The pressure is slightly higher with the
plate.

Figure 4.24: The filtered pressure is in the order of magnitude of kPa. Some artifacts from the
filtering can be seen.

From the pressure it can be concluded that the box is travelling downwards as the pressure is
negative at the top and positive at the bottom. This is indeed the case. Furthermore, the pressure
for 2 w and 2 p are more coincident at the top than the bottom; the pressure for 2 p is higher than
for 2 w in figure (4.24b). Moreover, the pressure in figure (4.24a) has a second shorter frequency.

4.6 Added Mass Simulations

The frequencies and corresponding added masses for the simulations are presented in table (4.1).

Table 4.1: The simulated results without the plate are presented in the left table and the results
with the plate in the right table. The added mass is higher when the plate is present.

f [Hz] ma [kg]
1 w 6.99 48.4
2 w 5.99 48.4
3 w 9.42 48.4
4 w 8.07 48.5

f [Hz] ma [kg]
1 p 6.94 49.6
2 p 5.96 49.5
3 p 9.37 49.2
4 p 8.04 49.4

As evident from table (4.1), the added mass remains constant for 1 w-4 w. On the other hand,
the added mass decreases slightly for 3 p-4 p compared to 1 p-2 p.

An increase in added mass can be observed when comparing simulations with and without the
plate. The added mass for the simulations with the plate is roughly 2 % larger than without the
plate.
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The added mass in the simulations is 48-49 kg:s but how does it compare to the analytical
added mass? Without the plate, the analytical added mass is 4 % larger than the simulated added
mass. For the simulations with a plate, the same number is 1-2%. Keep in mind that the analytical
solution does not account for the effect of the plate.

4.7 Convergence studies

4.7.1 Fluid Mesh Size for Solid Elements

As the majority of elements in the model are fluid elements the mesh sizing of the fluid elements
is of great importance in regards to decrease the computational time. Simulations with a simpli-
fied model were conducted in order to determine the effect of using different element sizes. The
simplified model is a box submerged in a cubic fluid volume which is oscillating due to 4 initially
offset springs. In the model the box was locked in horizontal displacement along the edges. The
model can be seen below (fig. 4.25).

Figure 4.25: The simplified model is used to explore the mechanics behind acoustic fluid elements.
The box is 0.2*0.2*0.1 in size and the water volume is 0.4*0.4*0.33. The box is solid and centered
inside the fluid.

The simulations used different sizes of the fluid elements and as a consequence the frequency
changed, the results can be seen below (fig. 4.26).

Figure 4.26: The results are from the same LS-DYNA model where everything is equal apart from
the side length of the fluid mesh. It can clearly be seen that the frequency decreases with larger
fluid elements. See the previous image for the geometry of the model.

As can be seen in the figure above, the period decreases with a increase in fluid element size.
However when the fluid elements become very large, d = 0.08mm the period increases compared
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to the second largest size d = 0.04. This could be from a general inaccuracy when using large
fluid elements. Simulations were also conducted using elements of larger sizes than 8mm but those
wouldn’t work due to a lack of contact nodes between the fluid and the structure.

Table 4.2: The structure side length is 0.2m. The frequencies are presented for the fluid mesh
side length and a dimensionless parameter defined in the table. The frequency converges at the
dimensionless number 0.075.

Fluid mesh side length (m) 0.005 0.01 0.015 0.02 0.03 0.04 0.08
Fluid mesh side length/structure side length 0.025 0.050 0.075 0.100 0.150 0.200 0.400

Frequency (Hz) 10.55 10.55 10.55 10.58 10.62 11.22 10.81

Figure 4.27: The data from the scatter plot suggests that the characteristic length for the fluid
mesh should be kept smaller than 7% of the characteristic length of the structure surface.

4.7.2 Fluid Mesh Size for Shell Elements

The modelling of a structure can also be performed with shell elements and a convergence study
for such a case is here presented. The study was performed similarly to how the study for solid
elements was performed and the motion of the box for the different element sizes are presented
in fig. (4.28). To get a more accurate frequency, some of the data had to be fitted as a Fourier
series. Graphs with poor resolution have not been fitted with a Fourier series. The keyword
Control Bulk Viscosity was also included in the mesh study for the shell elements. The different
mesh sizes are referred to as their dimensionless quantities unless otherwise stated (table 4.3). Note
that the box was locked in horizontal displacement along the edges.
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Figure 4.28: The displacement of the top of the box for the different tests. The frequency decreases
and 0.05, 0.025 and 0.02 yield plots that are of similar frequency. 0.05 became unstable after the
plotted time interval.

It was found for some cases that the structure started to deform and oscillate in ways that were
not expected and were therefore not included in figure (4.28). All cases and their corresponding
frequencies are presented in table (4.3). The simulation with an element side length of 0.01m did
not start deforming until after one wavelength and was therefore included in figure (4.28) even
though it was not stable for the entire simulation. The entire motion for element size 0.01m can
be seen in figure (4.29)

Table 4.3: The structure side length is 0.2m. The results are presented for the mesh side length and
the dimensionless number. The symbol −means that the structure started to deform unexpectedly.
0.05 did deform but the deformation did not start until after a full wavelength. The simulation
has not fully converged at 0.02.

Fluid mesh side length (m) 0.004 0.005 0.01 0.015 0.02 0.04 0.08
Fluid mesh side length/structure side length 0.02 0.025 0.05 0.075 0.1 0.2 0.4

Frequency (Hz) 19.53 19.55 19.65 - - 20.33 21.36

Figure 4.29: The model appears to be stable one and a half wavelength but then breaks down.
The resolution of the motion is unfortunately quite poor but it is linked to the amount of times
the results were updated and not the actual displacement of the model.

Figure (4.28) illustrates that the displacements for 0.025, 0.02 and 0.05 are close and table (4.3)
reveals that the frequency is converging but not yet fully. It is important to keep in mind that
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0.05 was only reliable for the time presented in figure (4.28). Another interesting observation was
that the simulation was stable for 0.2 and 0.4 even though the simulation for 0.1 was not.

Illustrated in figure (4.30) is the deformation of the box for a failed simulation, in this case for
0.015 m in element size. From left to right the images shows the structure at t=0.021, 0.024 and
0.027 seconds.

Figure 4.30: 0.015 m in element size makes the simulation unstable causing the following deforma-
tions as time progresses.

In figure (4.31) a fringe plot of the pressure right before the deformation illustrates how pressure
peaks are generated in a pattern next to the box’s walls. It should also be noted that the values
of the peaks are much higher than the pressure for cases where no deformation occurs.

Figure 4.31: Pressure zones alternate between high and low pressure in a regular pattern. The
pressure is also higher than for stable simulations.

To investigate whether an increase of stiffness would stop the model from deforming Young’s
modulus was increased 10 times. Figure (4.32) illustrates the motion for the element size 0.02 m
after the structure has been made stiffer. The resolution is once again quite poor but it can be
observed that the frequency for the higher E-modulus is the same as for the lower E-modulus until
the lower E-modulus breaks down. It can also be seen from the figure that the model with the
higher stiffness remains stable.

Figure 4.32: The model with the higher E-modulus is more stable than the same model with a
lower stiffness. It should also be noted that the frequency is the same.

Finally, the ratio between the element side length and the characteristic length was plotted
versus the corresponding frequency (fig. 4.33).
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Figure 4.33: The graph suggests a linear condition between frequency and mesh size.

From figure (4.33), it can be seen that the frequency decreases linearly with the element size.
Moreover it shows that the results have not converged yet. The frequency for the lowest ratios are
however of similar value.

4.7.3 Fluid Volume

How large fluid volume is required in order to assume infinite fluid depth? Simulations with a
simplified model (fig. 4.34) were conducted in order to determine the required fluid volume in
order for the vibration characteristics to remain constant to a small change of fluid volume. The
box was a solid modelled using elastic solid elements. The box was locked in horizontal displacement
along the edges.

Figure 4.34: The same model used in the fluid mesh size experiments was used. However this time
the fluid mesh size remained constant and the fluid volume was changed instead.

In fig. (4.35) it can be seen that frequency decreases with D. After D reaches 1.4 infinite water
fluid depth is reached as an increment in D does not change the frequency. This can be seen as
D = 1.4 and D = 2.225 coincide.
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Figure 4.35: The same model used in the fluid mesh size experiments was used. However this time
the fluid mesh size remained constant and the fluid volume was changed instead.

4.8 Discussion

Table (4.1) show that the added mass is roughly the same for the different cases. In other words,
the stiffness of the springs and the mass of the object has no effect on added mass, only a small
difference in added mass can be seen for simulations with a plate. This is likely due to a change of
distance to the plate which occurs when springs are changed.

A comparison between the added masses in table (4.1) reveals that the added mass increased
when the plate was introduced. A theory as to why the added mass increases is that the in-
troduction of a rigid boundary reflects pressure waves on to the box resulting in an increase of
inertia.

From comparing figure (4.6) and (4.7), one can see that the frequencies of the high frequent
waves seen in the velocity and the pressure for the top and bottom are different. It turns out
the frequency of the high frequent waves calculated at the bottom is higher than at the top. The
high frequent waves are believed to be vibrations in the sides of the box. This implies that the
stiffness of the lid is lower than the stiffness of the bottom part, as natural frequency increases with
stiffness. This is intuitive since the feet at the bottom of the box help stiffen that area, making it
less susceptible to bending.

From the fringe plots of the fluid pressure it is clear that large pressure differences occur in short
amounts of time. This is due to the acoustic modelling of the pressure where transient pressure
waves propagate through the fluid at 1500 m/s2. The pressure at the bottom boundary in the
fluid is low indicating that the addition of the plate is of low significance in the FE-model. In
figure (4.16) high and low pressure can be seen in the region between the box and frame below.
This indicates that the interaction in this area dominates as a source of fluid structure interaction
compared to the bottom plate.

Three different convergence studies were performed for Mat Acoustic. The study regarding
mesh size when the structure was modelled as a solid yielded a ratio of 0.075 between the element
side length and structure side length for the frequencies to convergence.

The study for infinite water depth for the solid structure yielded a ratio of 1.4 between the
structure side length and the distance to any outer fluid boundary. Fluid elements modelled
further away than this distance have no effect on the results of the model if the boundaries are not
rigid.

For certain shell elements sizes the structure was deformed and subjected to unreasonably high
pressures. Interestingly, these stability issues occurred with both small and large element sizes,
leading to the conclusion that smaller element sizes are not necessarily more stable. The unexpected
deformation is believed to be due to Mat Acoustic not handling deformations in the material well
since a higher value for Young’s modulus decreased the deformation. After decreasing the mesh size
to 2.5 % of the structure length and beyond, only a small change in frequency could be observed.
Choosing values below 2.5 % becomes a trade off between accuracy and computational cost.
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5 Comparison between Experiment and Simulation

5.1 Displacement

A plot of the displacement from the experiment and the simulation is here presented to better
visualize the motion for the different cases (fig. 5.1).

Figure 5.1: The experimental wave is not a perfect sine due to the influence of rotational modes.

From figure (5.1), a few observations can be made. Firstly, only the experiments are affected
by damping which can be seen as the wave propagates. Secondly, it is clear that the frequency for
the simulations are higher than for the experiments. Lastly, the plate decreases the frequency for
both the experiments and the simulations.

5.2 Acceleration

To compare the acceleration between the model and the experiment new data of the acceleration
from the model was derived from the displacement. From considering the displacement to be a
harmonic wave.

y = Acos(ωt) +B (5.1)

The acceleration was derived to be
y′′ = −Aω2cos(ωt) (5.2)

By the assessment of the acceleration from the model the values between the model and the
simulation can now be compared.

Figure 5.2: For both the simulation and the experiment there is no significant change in the
acceleration when the plate is added.
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As can be seen in fig (5.2) the acceleration is larger in the model. However this could be a
consequence of frequency not being constant in the comparison. To investigate this further the
simulated acceleration is adjusted in both frequency and amplitude to the ratio of fexp/fsim. From
(eq. 5.2) it follows that for a change in frequency the amplitude should be adjusted by the square
of the ratio.

Figure 5.3: The simulated acceleration is here adjusted to the frequency of the experimental
acceleration. Note that the decay is not considered in the case of the simulation.

5.3 Pressure

From analyzing the fringe plots presented in 4.4.4 one can conclude that the pressure in the model
is very different from the pressure in the experiments. The pressure measured in the experiments
resemble a harmonic wave (fig.3.15) whereas the pressure in the model can change dramatically
from high to low in milliseconds. In the experiment the highest pressure is measured to be around
10kPa. In the model the pressure can be higher where values of 20kPa and above have been noted.
A filtered pressure signal is presented in section 4.5.3

5.4 Summation of Results

The frequencies for all different cases were calculated from the displacement and are presented in
table (5.1) on the next page. The added masses correspond to the previous frequency in the table.
At a first glance it can be concluded that the model underestimates added mass by around 9kg or
15%. The added mass in the experiments is roughly 60kg and in the model it is roughly 50kg. As
the plate is introduced added mass increases in the experiment by 2kg. In the model it increases
by 1kg.
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Table 5.1: The results of the experiments averaged into single values are presented here.
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5.5 Discussion

A fundamental difference in the results from the experiments and the model is that the frequency
differs. This has effects on the amplitude of the acceleration and the values of the pressure. When
the acceleration from the model was adjusted to the frequency of the experiment the results are
similar. A difference is the reduction in amplitude for the experimental values, this is due to decay
in the wave which is not present in the model.

The measured pressure is different from the modelled and the results shows that the pressure
behaves in a different way. It is believed that the sudden changes in pressure in the FE-model are
due to acoustic waves transmitting pressure at a speed of 1500m/s. These pressure waves are not
captured properly in the fringe plots as the time step is too large.

From (5.1) it can be seen that there is a clear difference in added mass between the experiments
and the models. What is interesting is that according to the analytical solution added mass should
be constant between all the load cases. However the experiments capture an increase in added
mass as the box becomes heavier and as the springs change from weak to strong. The increase
in added mass from the change of springs does not necessarily follow as a result of an increased
spring constant. Depending on what springs are used the distance between the box and the frame
changes from 77mm for the weaker springs and 94mm for the stronger. It could also be due to
more viscous effects that the stiffer springs introduce due to being larger. Unfortunately it can not
be determined whether it is the distance to the plate, the spring constant or viscous effects that
influences added mass.

As the plate is introduced added mass for both the experiments and the simulations changes
slightly. The addition of the plate increases added mass in both the experiment and in the sim-
ulations. This shows that the model interprets the effect of the plate in the same way as in the
experiments.

50



6 Conclusion

In fluid structure interaction, added mass is a central concept regarding movement of a structure
in water. This report provides an assessment of modelling of added mass using the element for-
mulation Mat Acoustic in LS-DYNA. Experiments were conducted with an oscillating submerged
box using different spring constants and mass. A model of the experiment was constructed and
simulated in LS-DYNA. The results from the simulations were compared to the experimental data.
It is shown that added mass is consistently underestimated by 15% in the FE-model. The used
analytical solution and Mat Acoustic provide similar lower estimates of the added mass. If the
analytical assessment using a sphere was to be used instead of a cylinder the FE-model would
outperform the analytic assessment as the spherical assessment provides an added mass more than
40% lower compared to the experiments. Keep in mind that for more complex geometries ana-
lytical solutions are not available. In those cases Mat Acoustic can be used as it allows for an
approximation of the added mass.

There are other ways to model fluid structure interaction in use by Kockums today. The
main advantage of Mat Acoustic is that it uses only one degree of freedom per fluid element node
resulting in a computationally efficient model. This allows for computation of added mass for
large and complex models which otherwise would have been too expensive. A change in the fluid
structure interaction was introduced by the mounting of a plate beneath the box. The results from
the addition of the plate were studied for both the experiment and the model. In the experiments
the plate resulted in a 4 ± 1% increase of added mass. Whereas in the model the plate resulted
in a 2 ± 0.5% increase of added mass. Mat acoustic succeeds to represent tendencies of the fluid
structure interaction as it was observed in the experiment.

Three convergence studies were performed. The required fluid size to validate the assumptions
of infinite fluid volume was tested for an oscillating solid box. It was found that infinite fluid
volume can be assumed when there is fluid in all directions a distance of 1.4 times a characteristic
length.

A fluid element size study was also performed. This time for an oscillating shell structure. Here
it was discovered that for certain element sizes the model was unstable as the structure deformed
unexpectedly. The deformation could be avoided by increasing the stiffness of the structure. As
the model becomes unstable an interference pattern in the fluid pressure was observed in the
convergence study. It is not known whether the interference pattern causes the instability or
is consequence of it. The frequency was found to decrease linearly with element size but full
convergence was not reached. However, the frequency for ratios between the structure and the
fluid elements under 0.025 were of similar value and determining a mesh size becomes a trade off
between computational cost and required accuracy.

The same study was also performed for a solid box. Here it was found that the fluid elements
should be kept smaller than 7% of the structure’s characteristic length for the results to converge.
The structure experienced no deformation or stability issues as a solid.

In the model, the coupling between the fluid and the structure does not change position as the
structure moves. For small deformations this assumption holds however with large deformations
Mat Acoustic should be used with caution as the load on the structure is calculated as if no
deformation has occurred. This explains why the modelling of shell elements is more unstable
compared to solids as solids experience less deformation.

The damping in the experiments was measured and it was found that the decay can accurately
be approximated by two exponential terms. The approximation shows that there are two damping
phenomena in the experiment, one dominating in the beginning and one in the end. Constants for
the decay approximation were generated for all experiments and are available for future use.
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7 Recommendations for Use of Mat Acoustic

In this thesis, experimental data was gathered and compared to simulations using Mat Acoustic.
Moreover, convergence studies studies for basic models were performed. The knowledge from the
simulations combined with the acquired experience from trial and error resulted in the following
set of recommendations for Mat Acoustic.

• Symmetry can be used to speed up the FE-model without affecting the results.

• Density scaling can be used without affecting the added mass.

• Use Spc Set to model rigid boundaries.

• Leave surfaces that should be modelled as infinite water or as water in contact with air
untouched.

• For a solid structure the results converge at a mesh size of 0.075 times a characteristic length
of the structure.

• For a shell structure small element sizes should be used to maintain stability in the FE-model.
Convergence of results was never fully achieved. In terms of stability, fluid element sizes of
less than 0.025 times a characteristic length are recommended.

• Modelling of fluid further away from the structure than 1.4 times a characteristic length of
the structure has no effect on the results if the boundary is not rigid.

• Large displacements of the structure can be modelled however large deformation can cause
instability. Increasing Young’s modulus is an option to increase stability.

• Acoustic mismatch has been found to work well. To use the mismatch coupling, the fluid
mesh needs to adjoin the structure. The only thing which needs to be controlled is that the
normal of the structure segment set points towards the fluid. Difficulties have arisen when
coupling a shell element to both sides due to fluid elements penetrating the shell element.

In general Mat Acoustic is a fast model to approximate added mass for complex geometries where
analytic solutions are not available. However the results should be used with caution as models
can be unstable. Furthermore the results should be seen as an approximation, as the model has
been found to underestimate the added mass by 15% in the analyzed case.
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8 Future work

The effect of the plate was rather small and it would be interesting to investigate the fluid-structure
interaction of the plate for a more drastic case. This would be beneficial as the fluid-structure
interactions of the frame is believed to dominate in the current setup. What happens if the plate
is moved closer to the box, how well will the FE-model then be able to capture the interaction?

For the investigated box geometry added mass is underestimated. Is this specific to the geome-
try or is this a reoccurring result? To investigate this further it is proposed that different geometries
of the box should be tested. This would provide more general conclusions in Mat Acoustics capa-
bilities of calculating added mass.

Frequencies ranging from 5.6 to 8.7 Hz have been tested in water. A larger frequency span
would allow for more definitive conclusions regarding the effects of frequency on added mass. How
does the frequency affect damping? A model of decay has been proposed but more trials are
required in order to determine its parameters. For use in design perhaps only a model of the initial
damping would suffice.

In the convergence study with shell elements some models failed. The reason for failure is
not determined although it is believed to be related to deformation of the structure. Failure was
dependent of fluid mesh size however further investigation would increase the knowledge of stability
of different meshes.

As the coupling between the fluid and the structure is fixed in space, errors are introduced with
displacements of the structure. How does the displacements influence the results? It would be of
interest to perform a convergence study of different amplitudes to investigate this source of error.
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A Keywords

A.1 Box and Frame

Figure A.1: A print screen of the different parameters for Mat Elastic. RO is the density, E is the
Young’s Modulus and PR is Poisson’s Ratio, all in SI-units. The density shown here was used for
the frame whilst the density of the box was scaled to change its mass.

Figure A.2: A print screen of the different parameters for the shell sections. Some things to keep
in mind are that element formulation 16 is used, SHRF is set to the recommended value of 5/6
(not default) and 7 NIP are used. T1-T4 denotes the thickness which in this case is the thickness
of the box.

A.2 Fluid Volume

Figure A.3: A print screen of the different parameters for Mat Acoustic. RO is the density, C is
the speed of sound in water, and beta is a damping coefficient used to make the computations
more stable and to reduce frothing.

Figure A.4: A print screen of the different parameters for Section Solid. Acoustic elements
(ELFORM 8) are used for Mat Accoustic.

59



A.3 Springs

Figure A.5: Only default options were used.

Figure A.6: The spring constant could be adjusted depending on the springs.

A.4 Hourglassing and Control Keywords

Figure A.7: IHQ=8 is often used together with element formulation 16.

Figure A.8: INN=2 is recommended in the Control Accuracy keyword

Figure A.9: Note that TYPE=-1 is not a default value

Figure A.10: The following settings includes all energies in the energy balance and was used.
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B Measuring devices

Information about the used measuring devices are presented in the table below.

Table B.1: Used measuring devices

Device Type Serial Additional device Type Serial
Position Sensor 1 ACW200013/7 3636 Power Supply S7AC 33001
Position Sensor 2 ACW200013/7 3641 Power Supply S7AC 33002
Position Sensor 3 ACW200013/7 3637 Power Supply S7AC 32329
Accelerometer Top 4382 2227392 Charge Amplifier 2635 2002863
Accelerometer Bottom 4382 2227395 Charge Amplifier 2635 2002864
Pressure Top - 47012 Charge Amplifier 2635 2002862
Pressure Bottom - 48050 Charge Amplifier 2635 1575692
Strain Gauge - - - - -
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