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Abstract

Today rubber can be found in many different applications, such as vibration dampers, tyres,
clothes and gaskets. Two different types of rubbers are used today, namely the natural rubber
and synthetic rubber. Natural rubber is made of a milky substance called latex, which is obtained
from special trees found in tropical countries. Synthetic rubber is also made from latex, but the
latex is obtained in labs by combining different chemicals together. Different fillers can also be
added in order to change the properties of both natural and synthetic rubber, resulting in over
1000 different rubber materials with different characteristics and behaviours.

A standard hardness test is always done on rubber which classifies the hardness of the rubber and
is measured in either a Shore scale or IRHD scale.

The static and dynamic material parameters, which are used in finite element simulations, are
traditionally characterised using experimental methods which relies on homogenous stress states.
Simple shear test is most commonly used when both static and dynamic characterizations are
done, but in practice it is hard to obtain homogenous stress state because of several different
factors. The static material parameters are obtained by fitting a hyperelastic material model, such
as the Yeoh model, with the response (stresses and strains) obtained from experimental tests. The
dynamic parameters are obtained by fitting experimental data, such as dynamic shear modulus
Gayn and damping d, with viscoelastic-elastoplastic material models using a minimization

approach.

An alternative method has been evaluated in this project, where the standard hardness test is
modified into doing a displacement-controlled loading with the indentation force being
measured for a fixed number of indentation depths. The material parameters are then obtained
by using an energy balance equation, which contains:

o the response (force and displacement) measured from the experiments,

e the state of deformation obtained from finite element method and

e the unknown material parameters (hyperelastic constants for static analysis, Ggyy and d
for dynamic analysis).

When it comes to the static analysis of the modified hardness test it has shown to be a very good
method in a work done by Austrell [5], where three natural rubbers with different hardness values
where evaluated using the finite element method.

The dynamic analysis has been evaluated in this thesis, and three synthetic rubbers with different
responses were used. The goal is to be able to find the dynamic shear modulus Ggyp (Keq, f) and
damping d (K4, f) which are similar to the ones obtained from simple shear test in order to use

the same fitting procedure when obtaining the viscoelastic-elastoplastic material parameters.

The damping is calculated the same way as for simple shear test and should not be a problem to
calculate since it is insensitive to the boundary condition. The problem is to find a connection
between the indentation amplitude U4y, and the shear amplitude kg4y, and what was done in



this project was that pure compression was assumed for the modified hardness test, and the strain
invariants for compression and shear were put equal to each other resulting in the following

approximative connection

Ushear = \/§ *Ucompression

The basis of the dynamic analysis is the same energy balance as for the static analysis, but with a
slight modification in order to connect the tangential modulus Ky, from the modified hardness
test with the dynamic shear modulus G4y, from the simple shear test. Only the most influenced
elements were used in the energy balance equation, but the results obtained from this method
were not good at all. Dynamic shear modulus did not show any dependence of the frequency
nor the amplitude, and it also varied between the different types of materials. Therefore another
approach was tested, where Ky, was compared directly with Ggy, by assuming a linear
connection

a- Kdyn = Gdyn

This method showed to be very good since a single value of alpha was obtained for the different
rubber materials, and the frequency and amplitude dependence where almost spot on compared

to the simple shear test when the amplitude connection Ugpegr = V3 * Ucomp Was used.

The damping obtained from the modified hardness test showed a similar behaviour as for the
simple shear test when it comes to the frequency dependence, but there was a slight difference in
amplitude dependence, this when both the same amplitudes were used, and when the amplitude

connection Ugpeqr = V3 * Ugomp Was used.
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1 Introduction

1.1 Background

The traditional method of material testing and parameter identification is based on a
homogenous stress state. In order to achieve this different types of material testing’s
are performed, for example simple shear test and lubricated compression test. In
practice it is hard to achieve homogenous state and it is also expensive since special
testing specimens must be manufactured. Therefore a simpler method, which relies on
inhomogeneous state, is going to be investigated experimentally, theoretically and by
finite element method, namely the modified hardness test.

The FEM part aims at obtaining static and dynamic material parameters for two rubber
specimens, one using the modified hardness test and the other using a double shear
specimen as a reference. For quasi static loading the Yeoh constants, which are hyper
elastic parameters, will be determined and compared between the two different
specimens. For the dynamic harmonic loading the dynamic shear modulus and damping
are extracted from the two specimens and compared. The goal is to find the dynamic
shear modulus Gg,, and damping d as a function of amplitude and frequency in a

simpler and faster way.

The basis for the method is going to be an energy balance equation (external work =
stored strain energy). The quasi static part has already been evaluated theoretically by
Austrell [5], and the investigation was done using finite element simulations which was
working quite well, but it needs to be verified by physical testing. However, the dynamic
part has not been evaluated thoroughly which will be done in this project using the
finite element method.

1.2 Objective

The aim is to simplify the material characterization of rubber materials, where the
dynamic and static material parameters are to be used in FE-simulations.

1.3 Method

To evaluate the simplified method a literature study is initiated in order to gather
information regarding the behavior of rubber materials and how it is modelled using
the finite element method. Thereafter the traditional material testing (simple shear test)
and the modified hardness test are performed on different rubbers and the dynamic
shear modulus and damping are extracted and compared. The tests are performed in
ABAQUS, and the results are evaluated using MATLAB.

1.4 Limitations

The analysis in this thesis is focused on the dynamic characterization of material
parameters, since it has not been evaluated yet, and all the tests are performed using
ABAQUS. The geometry of all the models used in ABAQUS are obtained from real
experimental tests performed at Volvo Cars, and the material parameters are extracted
from the literature.






2 Material and mechanical properties of elastomers

In this chapter follows a brief description of the different types of rubber that are used
today as well as the typical mechanical properties that rubber exhibit. A brief history of
the rubber will also be presented below.

2.1 Brief history

Today there are thousands of different kinds of rubber used in many different
applications, ranging from waterproof shoes to car tires and dishwasher hoses. But
these different kinds of rubber typically fall into two different types, namely natural
rubber and synthetic rubber [1]. Generally rubber is also referred to as elastomers,
which means that they can be stretched out and retain their original geometry when
unloaded [7].

Rubber has been known to man for a very long time and was firstly discovered by
primitive people in Central and South America in 1600 B.C.E. These people started
making bouncing balls for games, and later discovered its waterproofing ability why
they started using it to make waterproof clothes. In year 1400 rubber was introduced
in Europe, but nobody knew what to do with it. It wasnt until 1764 when people
started using the rubber as pencil erasers in England, and in 1824 they started using it
as raincoats. Since the material was known to be sticky and smelly at that time the
usage was highly limited until a sulfur-based rubber processing called vulcanization was
discovered by accident in 1839 by an U.S. inventor called Charles Goodyear. This
process made the rubber less sticky, stiffer and more elastic, making it very useful in
engineering applications such as vehicle tyres or as shock absorbers [6] [9].

The rubber was entirely made from natural sources until year 1909, which is the year
when the first synthetic rubber was created by a team of chemists in Germany lead by
Fritz Hofmann. The reason behind the development of synthetic rubber was because it
was at this time when the use of bicycles expanded, and the demand of rubber tires
increased [2].

2.2 Molecular structure and manufacturing

Below the different manufacturing steps for both natural and synthetic rubber are
presented along with the molecular structure of vulcanized rubber.

2.2.1 Natural rubber
Natural rubber is a biosynthetic polymer consisting of very long molecular chains [4] [5].
It is made from a white liquid called latex, which is mainly obtained from a tree called
Hevea brasiliensis, also known as the rubber tree [1] [4]. Raw latex consists of both
water and rubber particles [1], and manufacturing natural rubber require different steps
which are listed below:

- First step is to obtain the latex from the rubber trees. This is done using a method

called rubber tapping, which means that a wide V-shaped cut is made into the
tree’s bark. This results in latex dripping out from the cut, and the rubber liquid
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is then collected in cups attached to the tree [1]. The reason behind the V-shaped
cut (with an angle of 25-30°) is to “sever the maximum number of latex vessels”
(Morton. M 1999, p. 181) [3], which ensures that the maximum amount of latex
can be obtained from the tree.

Figure 1. A picture showing a V-shaped cut on a rubber tree, where latex
(white fluid) is dripping into a cup. Source: [4]

- In the next step the rubber is filtered and washed, and then the material is
reacted with acid in order to make the rubber particles stick together. The rubber
is then pressed into slabs and dried, creating unprocessed rubber which mainly
consist of the polymer isoprene [1]. Since there are minimal bonds between the
molecular chains the material shows plastic behaviour when deformed [5].

- In the final steps the unprocessed rubber is turned into a more useful material
by making it stiffer and more elastic. Firstly, the unprocessed rubber is pressed
using mechanical rollers in order to make it easier to work with (makes it softer
and stickier). After that additives and chemicals could be added in order to
change the properties of the rubber to meet the desired behaviour [1]. One
example is carbon-black filler, which increases the stiffness of the material as
well as increasing the resistance to wear [5]. Finally, the rubber is compressed
into shape and vulcanized, which means that sulfur is added into the rubber
mix and then cooked in an industrial pressure cooker to around 140° - 170° C
[1] [5]. The sulfur creates chemical links between the molecular chains during
vulcanization, creating a highly elastic material [1].
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Figure 2. Molecular structure of vulcanized rubber with carbon-black filler.
The potato-shaped parts are the carbon-black filler, the solid lines are the
polymer chains and the dashed lines represent the crosslinks (sulfur).
Source: [5] (Chapter 1.3.1, Page 3)

2.2.2 Synthetic rubber

Synthetic rubber is a man-made rubber with the same molecular structure as natural
rubber, and the main raw material used during manufacturing is based on crude oil [7].

There are at least 20 different types of chemicals used today to create synthetic rubber.
These chemicals can be combined differently resulting in a lot of different types of
synthetic rubbers with different properties and uses [7].

When manufacturing synthetic rubber, petrochemical feedstocks are used as the main
ingredient. Different types of gases can also be used when manufacturing synthetic
rubber. Two of the most commonly used gases are butadiene and styrene which creates
two different types of synthetic rubbers, namely the Butadiene Rubber (BR) and
Styrene Butadiene Rubber (SBR). Both butadiene and styrene are by-products from
petroleum, where butadiene is created during petroleum refining and styrene is
produced during either petroleum refining or in the cooking process. Mixing the
different chemicals together with soapsuds in a reactor creates a milky liquid called
latex, which is very similar to the latex obtained from the rubber tree. This liquid is then
processed in similar way as for the natural rubber, where the liquid is dried, washed
and coagulated into unprocessed rubber and finally vulcanized into a stiff and highly
elastic material [7].

2.3 Mechanical properties

The most common behaviour know for elastomers are the ability to sustain large
deformations and retain its original geometry with minimal permanent deformations.
Fillers are sometimes added in the rubber compound to increase stiffness and damping,
but the material becomes less elastic in the process. Other properties that are taken
advantage of in engineering applications are the vibration damping property and
resistance to lubrication [5].

The material behaves non-linear in tension and compression, while it is almost a linear
behaviour when in pure shear at relatively low straining [5]. Therefore, the shear



modulus is used instead of Young's modulus when defining elastic material properties
for rubber.
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Figure 3. Uniaxial loading (left) and simple shear (right) of a 60 IRHD rubber.
Source: [5] (Chapter 1.3.2, Page 7)

When rubber is loaded with a sine or cosine load (dynamic load) there will be a phase

shift between the loading and response curves, creating something that is referred to
as a hysteresis loop [5], see Figure 4.

2%y

Figure 4. Static and cyclic loading (simple shear) with a typical hysteresis loop.
Source: [5] (Chapter 1.3.2, Page 8)

The area enclosed by the loading and unloading curves are referred to as energy-loss in
the form of heat. This energy loss causes a decrease of displacement amplitude for an
elastomer in free vibration, why damping is introduced as material parameter for
rubber. As mentioned before, damping increases when fillers are added in the rubber
compound, meaning that the hysteresis loop increases in size [5].



The inclination of the hysteresis loop depends on the frequency of the cyclic loading.
This introduces the rate dependent behaviour of rubber, where higher loading
frequencies tend to increase the modulus of rubber [8]. The parameter used to describe
the inclination of the hysteresis loop is called dynamic shear modulus Ggy,, and it is
always equal or larger than the static shear modulus [5].

Figure 5. General hysteresis loops for different frequencies (f1 < f2 < f3). The
inclinations are heavily exaggerated in this diagram.

The damping is also dependent on the frequency of the cyclic loading. Damping
increases with increased frequency, but compared to Ggy, damping will start to

decrease after a specific frequency [8]. In Figure 6 the general frequency dependence
of dynamic shear modulus and damping can be observed.

‘(ffyn (MPa) A damping d
J(Hz f(Hz
I p } - I } p - I P } - I } p -
w” 10 1wt 1w’ 10 1wt
Figure 6. Frequency dependence of shear modulus and damping for a filled
rubber.

Source: [8] (chapter 3.5, page 10)

Damping can be interpreted as a relative thickness of the hysteresis loop, and based on
the hysteresis loop the damping as well as Gy, is calculated according to following [8]:



Figure 7. Typical hysteresis loop from a cyclic loading. Similar to Figure 3.2 in
[8] (Chapter 3.3, Page 8)

Dynamic shear modulus is defined as

_h
Gdyn _-KO
and damping is defined as
U
d = sin(§) = —
KT

with 1, being the shear stress amplitude, x, being the shear strain amplitude, U, being
the energy loss per unit volume and § being the phase angle between loading and
response curve.,

The dynamic shear modulus and damping also depend on the loading amplitude, which
is known as the Fletcher-Gent effect. With an increased amplitude the dynamic shear
modulus decreases, while for damping the behaviour is similar as for the frequency
dependence [8], see Figure 8.

‘(};,m (MPa) A damping d
I{I'} I{I'}
I I I I > I I I I -
-3 -2 —1 f -3 -2 —1 f
10 10 10 10 10 10 10 10

Figure 8. General strain amplitude dependence of shear modulus and damping
for filled rubber.
Source: [8] (Chapter 3.6, Page 10)
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Mullins effect is also an amplitude dependence which must be considered for
elastomers when doing experimental tests, and it is referred to as stress softening.
When a previously unloaded specimen is exposed to a cyclic loading up to a specific
strain amplitude, the stress level will decrease the first few cycles until it reaches a steady
state. And if the same specimen is exposed to a new cyclic loading with a higher strain
amplitude the stress will decrease again until it finds a new steady state. From a
molecular point of view this can be described as a gradual breakdown of molecular
crosslinks as well as changes in rubber network with increasing strain. Compared to the
Fletcher-Gent effect it is a more permanent effect of damage [5].

; a : i
% 5 10 15 20
Displacement (mm)

Figure 9. Cyclic loading on a rubber specimen (pure shear) with Mullins effect
in action (stress softening).
Source: [5] (Chapter 1.3.2, Page 5)

Another characteristic behaviour for rubber units are the incompressible behaviour,
meaning that the volume of the specimen stays the same when it is deformed. A
material acquires this type of behaviour when there is a large difference between shear
and bulk modulus, i.e. G << B. For rubber material the difference between the shear
modulus and bulk modulus are about 1 to 2000, resulting in a nearly incompressible
behaviour. A complete incompressible behaviour is therefore often a good assumption
when modelling rubber units [5].






3 Non-linear elastic modelling

When modelling non-linear elastic behaviour, the strain energy functions are used as
base functions when determining the stiffness of the material as well as the stress levels
during deformations. Also, since rubber can sustain very large deformations different
types of strain measures can be used when modelling the behaviour of rubber material.
The strain measures are presented in Appendix.

3.1 Strain energy functions

A material whose stresses can be defined by a strain energy function is termed as
hyperelastic material. Usually when modelling rubber, two different strain energy
formats are used, namely the polynomial form and the Ogden form. The difference
between the two formats is that the polynomial form contains the elastic constants in
a linear dependence while the Ogden form contains the constants in a non-linear
dependence as exponents. The Ogden format has shown to be the greater one when
fitting the model to experiments, but there is a special choice of the polynomial form
with three parameters that gives accurate results when fitting experimental data for
natural rubber [5]. In this thesis only the polynomial format will be used in the finite
element calculations, why only this format will be presented below.

3.1.1 Strain invariants

The strain measure used in the strain energy functions in this thesis is the left Cauchy-
Green deformation tensor B, and the theory behind this strain measure can be found
in Appendix in this Thesis (final chapter). A general assumption is that the strain energy
per unit volume in the undeformed configuration W is dependent of all components of
the strain measure [5], i.e.

W = W(B)

However, the state of deformation is determined by principal stretches and principal
directions, yielding the following [5]

W = W(Ay, Ay, Az, iy, mp,13)

Since rubber is regarded as an isotropic material there will be no directional dependence
and W is only depended of the principal stretches [5]

W= W(A1»A2»A3)

The strain energy function should not be dependent on the coordinate system, i.e. the
strain energy should always be the same no matter which coordinate system is used.
With the principal stretches being dependent on the choice of coordinate system, it is
more convenient to use coefficients that are independent of the choice of coordinate
system. The strain invariants are therefore introduced [5]:
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I, = trace(B) = A3 + A3 + A%

1
=5 (trace(B)? — trace(B?)) = A2A% + N2A3 + NSN3
I, = det(B) = A2 A2A2

Where B only contains stretches in the principle directions according to below

A2 0 0
B=|0 A} O
0 0 A3

In the case of incompressibility [5] there is no dependence on the third strain invariant
since it expresses the volume change, which results in the final form of strain energy
which will be used to describe the different strain energy functions used for rubber

W =W(,1)

Because of the condition of incompressibility the values of I; and I, cannot be chosen
freely and are instead restricted. Considering principal directions, the use of the
condition I; = 1 yields the restriction that the first 2 invariants have [5]:

1

A, =
T A,

L=M8+MN+5
S5 AfAS
1 1

I, =A%A%+A—%+F

1
Now the values of A; and A, can be chosen independently, and Figure 10 shows the
restriction that the invariants I; and I, has for all values of A; and A, [5].

J'Iz

I

1

3
3 4 5 f 7

Figure 10. Diagram showing the restricted values (greyed area) of the
invariants |; and I, for incompressible deforamtion.
Source: [5] (Chapter 3.2, Page 25)
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3.1.2 Polynomial form
The general form of the polynomial strain energy function [5] is given by the series
expansion

W= > ¢yl -3, —3)

i=0,j=0

With C;; being the unknown constants. Note that the sum goes up to infinity in above
equation, but usually only a few terms are used. Expanding the expression above with
the index sum being less or equal to 3 yields the explicit format [5]

W = Cio(I; = 3) + Co1 (I; = 3) + Cpo(I; — 3)* + €11 (I; = 3)(I; = 3) +
+Cop (I = 3)* + C30(I; = 3)° + € (I; = 3)*(1; — 3) +
+C1,(I; — 3)(U, — 3)2 + Cy3(I, — 3)3+....
Taking the first term yields the Neo-Hooke material model according to following [5]
W = Cy(l, —3)

With the constant C;, = G/2 and G is equal to the static shear modulus.

Even though the Neo-Hooke model only contains one term it has shown to give similar
results as experiments when it comes to compression and moderate shear [5]. The Neo-

Hooke material model is also known as the first order of deformation.

Taking the first 2 parameters from the series above yields the Mooney-Rivlin material
model [5] giving

W = Cyo(I; —3) + Cp1 (I, —3)

This material model has shown to be good for natural gum rubber, but less effective
for carbon-black-filled rubbers [5].

The second order of deformation is found [5] by taking the first 3 terms in the series
above that include the invariants I, I and I, according to below

W = Cyo(Iy —3) 4+ Cor1(I; = 3) + Cpo(I; — 3)?

And the third order of deformation is found by taking 5 terms in the series that include
I!) If, 12,13 and (Il ' 12) gIVIng [5]

W = Cio(Iy — 3) + Co1 (I = 3) + Cpo(I; = 3)* + C11(I; — 3)(I; — 3) + C30(1; — 3)°
Yeoh [5] found that the second invariant I, in the third order of deformation gave bad
results for carbon-black-filled natural rubbers. By removing this invariant and only keep

the first invariant yields a material model with 3 parameters known as the Yeoh material
model, and it fits very well with experimental data for carbon-black-filled rubbers giving
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W = Cyo(I; — 3) + Coo(I; — 3)* + C50(I; — 3)3

The parameters in both the Yeoh model and Neo-Hooke model (Cyq, C,o and C3q) can
be obtained by a shear test or compression and tension test and then use a fitting
procedure according to Austrell (1997) [5], which will be explained later in this thesis.

3.2 Constitutive model

The constitutive law for hyperelastic, incompressible and isotropic material can be
derived using an energy principle, and the derivation will not be shown here. The
constitutive law is given by the following expression [5]

_2Y% p2
o=2(5" +11612)B 2 g2 4 pi (3.1)

Where o is the Cauchy stress tensor, B = FFT is the left Cauchy-Green deformation
tensor, I'is a unit matrix and p is the pressure defined as [5]

1
p= 5(011 + 03, + 033)

By using principle directions in equation (3.1) above it can be shown (by Rivlin [14]) that
a relationship between the stress differences can be expressed without using the
unknown pressure stress p. The left Cauchy-Green deformation tensor is expressed
according to the following [5]

A2 0 0 AY 0 0
B=FFT=|0 A% 0 B2=[0 A% 0 (3.2)
0 0 A2 0 0 A

By inserting the definition of the first invariant (see Ch. 3.1.1) and the definition of the
left Cauchy-Greens deformation tensor according to (3.2) into equation (3.1) yields the
following relation [5]

( ow ow

oy =2—N +2—((A2+ A2+ A2)A2 — A%) +p
ol al,
ow ow

{0, =2 N2 +2—((A2 + A3 + A2)AZ — A%) +p
ol al,
ow ow

— 2 2 2 2 4
L03_2611/\3 a12((/\ + A2+ A2AL - AL) +p

Rivlin’s relations can now be obtained by subtracting the equations with each other
yielding the following with the pressure stress p eliminated [5].
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(17%2 _ 9 (a_W A2 a_W)
A2—72 oI, + A3 al,
01703 _ o (AW | (2 a_W)

i =2 (a11 N33 (3.3)
92703 _ (a_W 2 a_W)

\AZ—A2 2 oI, + A1 I,

Homogenous stress-strain state is usually used when material parameters are
characterized, why the constitutive law for homogenous deformations are presented
next.

3.2.1 Tension and compression tests
For tension and compression tests the stress — stretch relation can be derived by
introducing stress and stretch in the principal directions [5].

3
F
A3
A e
=" [
L -0 !
2 - R
1 2
1 P

Figure 11. Tension and compression tests.
Source: [5] (Chapter 4.2.1, Page 35)

The stretch in the loading direction is calculated as

Lo+6
A=
Ly

With L, being the initial length of the specimen and § being the displacement. The
stretches in the other directions are determined by the condition of incompressibility
which is fulfilled when A; - A, - A; = 1, yielding the following [5]

A3:A

1
/\1:/\2:\/_K

The invariants for pure tension/compression is determined by inserting the stretch
relations above into the general expressions for the strain invariants giving the following

[5]
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P
o=—
a
0 0 O
=0 0 O
0 0 o

With a being the deformed cross-sectional area. The relation between the deformed
and undeformed area is given by a = A/A yielding the stress component that is
expressed by undeformed cross section as [5]

_PA
7=

By using one of the expressions in equation (3.3) the predicted stress-stretch relation
can be derived as [5]

5_2(6W+16W>(A 1)
~“\al, Aol A2

With S = P/A being the nominal stress.

3.2.2 Simple Shear
The state of deformation [5] for simple shear is obtained from the deformation gradient,
and for simple shear it is given by the following

1 0 «k
0 1 0

0 0 1

F =

and the left Cauchy-Green deformation tensor is given by the following

14+k%> 0 k 1+3k2+k* 0 2Kk+kx3
B=FF'=| o 1 0 B? = 0 1 0
K 0 1 2K + K3 0 1+«k?

Where k = tan6 and 6 according to Figure 12.
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Figure 12. Simple shear.
Source: [5] (Chapter 3.2.2, Page 27)

Using the definition for the strain invariants they are written as [5]

I, =tr(B) = 3 + k?

12=%0ﬂan—tﬂ36)=3+x2

Inserting the Cauchy-Green deformation tensor and invariants into the constitutive law
(equation (3.1)) yields the following [5]

011 012 013 oW awr[1+x* 0
[021 022 023] =2 (ﬁ + (3 +«?) W) 0 1 0] -
031 03 033 1 2 0 1
aw [1+3k*>+k* 0 2k+i3 1 0 0
_ZW 0 1 0 +p|0 1 0]
2l 2k +x3 0 1+k? 0 0 1

Compared to linear elasticity the normal stresses are present in all normal directions.
However, only two shear stress components are different from zero, namely 7 = a5 =
03, (see Figure 12). Therefore the shear stress relation for simple shear is found as [5]

_ 2(6W+6W>
t=2\o T )"

Simple shear test can be done in two different ways: quadruple shear or double shear

[5].
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l

Figure 13. Quadruple shear and double shear specimens.
Source: [5] (Chapter 4.3.2, Page 42)

The double shear specimen is made of cylindrical rubber pieces that are attached to
cylindrical steel parts. The quadruple shear specimen is made of 4 square rectangular
blocks of rubber that are attached to steel (see dimensions in Figure 13). On both tests
the force recorded is twice the shear force acting on the rubber pieces. However, the
displacement recorded is twice the deformation of a rubber block for the quadruple
shear, and for double shear the displacement recorded is the same as the deformation
of a rubber piece [5].

The nominal shear stress is calculated by dividing the shear force P with the rubber area
A that is parallel to the force direction and that is attached to the steel as [5]

Note that for simple shear the rubber area A does not change during deformation. The
shear strain k is calculated by dividing the shear displacement § with the thickness of
the rubber H as [5]

—tanf = —
K dan H

yielding the stress-strain relation for simple shear as [5]

P_Z(OW_I_OW)(S
A “\ai, " oL, /H
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4 Modelling general dynamic loads

When modelling the dynamic behaviour of rubber, the rate dependence and amplitude
dependence must be considered together with the elastic model. For simple shear it is
done by considering two one-dimensional material models. Using a method called the
Overlay method, these behaviours can be included in two- and three-dimensional finite
element models [8]. The finite element method used for the dynamic calculations is
presented in Appendix.

4.1 Rate dependence

Rate dependence is modelled using a viscoelastic model. It can be described with a
simple one-dimensional model. The simplest model used is the so called standard linear
solid (SLS) model. The model consists of a Maxwell element coupled in parallel with an
elastic spring giving both elastic and viscous properties, and it yields good result for a
small range of frequencies. In order to capture a larger range of frequencies multiple
Maxwell elements can be connected in parallel resulting in a so-called generalized
Maxwell model according to Figure 14 [8].

4’—_62 M%\;e — ——=

Figure 14. Generalized Maxwell model.
Source: [8] (Chapter 4.2, Page 14)

The total stress from the generalized Maxwell model is calculated by taking the sum of
all element stresses in parallel. The stress response is given by the following integral,
also known as the hereditary integral [8]

t

@O = [ G-t

— 00

dx

a0 dt

Where Gg, is the relaxation modulus for element / in the Maxwell model and given by
Gr,(t) = GYe e~ "/'mi

By the usage of the trapezoidal rule on the hereditary integral the viscoelastic stress for
a Maxwell element can be calculated in an incremental form as [8]

At At
At} = )¢ - <e_t_ri - 1) + GE K. (1 + e_q)
2 2 2
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Where G}°and t,, being material constants for Maxwell elements called viscoelastic

shear modulus and relaxation time, and t7¢ being the viscoelastic stress from previous
step.

4.2 Amplitude dependence

The one-dimensional amplitude dependence of rubber material is modelled using a
Coulomb frictional element that is coupled in series with an elastic spring, and the
elastoplastic response is based on kinematic hardening. A good fit for a large range of
amplitudes can be obtained by using multiple elastoplastic elements in parallel [8], see
Figure 15.

Figure 15. Generalized elastoplastic model.
Source: [8] (Chapter 4.3, Page 15)

This is the simplest elastoplastic model used for elastomers when considering amplitude
dependence in dynamic simulations. The stress response for one element can be
described in incremental form as [8]

ATP — { Gjep - Ak if elastic
J 0 otherwise

The total incremental stress response is then calculated by taking the sum of all parallel

elastoplastic elements.

For two- and three-dimensional models the elastoplastic response can either be
modelled using kinematic hardening based on the same hyperelastic model as
viscoelastic model, or by overlaying multiple non-hardening von Mises models [8].

4.3 Overlay method

From experimental findings [8] it has been shown that amplitude dependence and rate
dependence can be considered as two independent behaviours, making it possible to
couple the models in parallel and simplifying the calculations greatly. Figure 16 shows
an example of a one-dimensional viscoelastic-elastoplastic model [8].
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Figure 16. Generalized viscoelastic-elastoplastic model.
Source: [8] (Chapter 4.4, Page 16)

The total stress is then obtained by the sum of all stress contributions from all elements
[8].

M N

e

T=1°+71" + 1% =Te+ZT}’e+Zij
i=1 j=1

For this to be achieved in finite element analysis the meshes are overlaid in parallel,
making it possible to obtain stresses from models that are hard to model in a single
mesh. This method is known as the Overlay method and in Figure 17 the principle of
the method is shown [8].
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Rheological model
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-Non-linear elasticity
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-Amplitude dependence

Figure 17. Principle of the overlay method.
Source: [8] (Chapter 4.4, Page 17)

» Hyperelastic FE-model

, Viscoelastic FE-model

3‘ Elastoplastic FE-model

The finite element models are created with the same topology. The stress summation
is then achieved by assembling each layer of elements into the same set of nodes [8].
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5 Material testing and parameter identification

Different types of experimental testing are performed on rubber in order to classify the
hardness of the rubber and determine the static and dynamic material parameters such
as hyperelastic constants, dynamic shear modulus and damping. Since rubber
manufacturers have many different recipes for rubber mixes the characterization of
material parameters requires a lot of laboratory testing. Below different types of
experimental testing are introduced as well as the methods used to determine the static
and dynamic constants needed for finite element analysis.

5.1 Standard hardness test

The stiffness of vulcanized rubber is classified based on the level of hardness. This is a
standard test that is always done for elastomers. There are two different methods used
to determine the hardness; the international rubber hardness degrees (IRHD), which is
also the ISO standard test, and the Shore Hardness test. Both tests give similar results
for rubber in the range of 30 — 80 IRHD, which is the range where most of rubber mixes
belong. The hardness is determined by measuring the indentation of a needle with a
spherical tip or a rigid ball with a constant force applied into a cylindrical rubber piece,
where the indentation is then converted into a value of hardness in IRHD scale or Shore
Hardness scale [5]. The minimum hardness value is O IRHD, which means that the
indentation § goes to infinity, and the maximum hardness value that a specimen can
have is IRHD=100, which means that the indentation § = 0 [5].

The hardness test gives an indirect measure of the elastic modulus. The ISO standard
specifies an empirical relation, which is derived by Scott [12], between indentation
depth § in mm, the indenting force F in Newton, the indenter radius r in mm and
elastic modulus E in MPa according to following:

F — 19 . 61'35 . T0'65 . E
There is also a relationship between the shear modulus G and hardness value (in IRHD

or SHORE) that is constructed by Lindley [13] according to Figure 18, and this is
sometimes the only material parameter that is known for a rubber specimen.
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% 10 50 60 70
IRHD or SHORE units
Figure 18. Relationship between shear modulus G and the hardness in IRHD or
SHORE units according to Lindley.

Source: [5] (Chapter 1.3.2, Page 6)

5.2 Experimental tests considering homogeneous deformations

In order to obtain the hyperelastic constants and dynamic material parameters, other
tests must be done besides the standard hardness test. Traditionally tests that only
consider homogenous strain-stress state have been done in order to fit the material
models to test data using different fitting procedures.

When it comes to the determination of hyperelastic constants, two different types of
experimental tests can be done; lubricated compression-tension test or simple shear test

[5].

25

[MPa)

L=
Y

2t

K=

= o P2

Ak

0 05 ; T 2 25 3 Yoz o4 08 o8 1 12 14 18 8
Figure 19. Homogeneous deformations of a 60 IRHD rubber. Left: Uniaxial test.
Right: Simple shear.

Source: [5] (Chapter 1.3.2, Page 7)
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The material parameters are then determined by a fitting procedure called /east squares,
which is based on fitting the experimental stress-strain relation with the constitutive
model used for rubber (example Yeoh model), where the only unknowns are the
hyperelastic constants [5].

When it comes to the determination of the dynamic parameters, such as viscoelastic
and elastoplastic material parameters, simple shear test is the most commonly used
method. The dynamic parameters are then determined using a method called
minimization of relative error, which is based on finding the minimum of a relative error
function ¥ containing both experimental data and the unknown material parameters

[5].

5.2.1 Hyperelastic constants
The hyperelastic constants are obtained by fitting the hyperelastic model with
experimental data using a fitting procedure.

Consider experimental data with n numbers of data points obtained from a tension and
compression test [5], see Figure 20.

f S=P/

L Se ok . ; iooa
2 : : 6

| F] : 11.5 ; 2.5
Figure 20. Test data from compression and tension test.
Source: [5] (Chapter 5.3.1, Page 59)

Every circle in the diagram correspond to a nominal stress and stretch value (A;,S;),
where i = 1, ...,n. The stress-stretch relation obtained from the constitutive model is
then closely fitted to the experimental data points by fulfilling the following condition

[5]

teor ., C€xp
SfeT ~

Using this condition together with the least squares method a fitting procedure, defined
as the minimum of the sum over all datapoints, is introduced [5]

n
2
Y= Z(Siteor _ SiexP)
i=1
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This square of errors can be normalized by rewriting the condition as

teor
Si

Sexp ~ 1

i

Yielding the following sum of squares [5]

n Siteor 2
b = Z (Se—xp - 1)

i=1 i
The theoretical stress Sf¢°" depends on the unknown hyperelastic constants found in
the strain energy function W (I, 1;). In practice this is usually solved numerically using
vectors and matrices. Multiple datapoints are recorded from experimental tests and a

linear system of equations are built up according to following [5]
Ac=b

With A being a (n x k) matrix consisting of the known strain invariants, ¢ being a (k x 1)
vector containing the unknown hyperelastic constants and b being a (n x 1) vector
containing the known forces obtained from experimental tests. n is the number of
datapoints recorded and k is the number of unknown hyperelastic constants. Usually
the number of datapoints are much greater than the number of unknown constants,
which makes it an overdetermined system of equations. This is easily solved using the
method of least squares for matrices and vectors combined with Gauss elimination
method [5]

ATAc=ATb

c = (ATA) \ (ATb)

5.2.2 Dynamic characterization

The fitting procedure used for the characterization of dynamic parameters can be
viewed as a least square minimization of the relative error between experimental data
and the one-dimensional viscoelastic-elastoplastic material model [8]. The error function
is defined as

L|J — (1 + a) Zﬁl (ddyn,i_dexp,i> +a Z?;l (Gdyn,i_Gexp,i) (5 1)

dexp,i Gexp,i

Where a is a scale factor that makes it possible to decide whether to emphasize a
correct modelling of the dynamic shear modulus Gg,, or damping d. Either the same

scale factor can be chosen for all measurements or individual scale factors can be
chosen for each measurement [8].

Gayn,i and dgyy; are calculated for the material model at different amplitudes and
frequencies with m being the number of measurements done. Since Ggyp; and dgyp ;

are dependent on the unknown material parameters the relative function becomes a
function of the unknown parameters as [8]
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Y = P(Goo, GY8, ty,y o, Gi T Ky, or)

Since the one-dimensional model consists of three different types of elements (elastic,
viscoelastic and elastoplastic element) the total dynamic shear modulus G55, and total

damping d,,; are calculated as the sum of the contribution from the different elements
[8].

Starting with the viscoelastic element, the damping and shear modulus are calculated
as [8]

1
di = Sin(6i) =
/1 + w?t?
242
Gre Gty

T T 0t

The different contributions can be plotted in the complex plane according to Figure 21.
The static element is also included with the viscoelastic elements [8].

Figure 21. The complex modulus for viscoelastic (Maxwell) elements. The
resulting complex modulus is also plotted as a dashed line.
Source: [8] (Chapter 3.2, Page 57)

By summing up the total dynamic contribution from the elastic- and all viscoelastic
elements results in the following expression [8]

N 2 N
Gayn = (Goo + Z Gayn, COS(5i)> + <Z Gayn, sin(6i)>
i=1 i=1

The viscous damping is summed up in similar way as

N
Jve — 1 Z GPew?tf,
— rve 3/2
Giyn & (1 + w?t2)”

2

Moving over to the elastoplastic elements, the dynamic shear modulus is calculated
according to following [8]
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Figure 22. Hysteretic loop for one elastoplastic element.
Source: [8] (Chapter 3.2, Page 58)

e
G; % !
coP = » if kg > Ky,
dyn; 0
e .
G°P otherwise

The total dynamic shear modulus from the elastoplastic elements is then calculated as

M
ep _ ep
Gdyn - Z Gdynj
j=1
And the total plastic damping is calculated according to following

M ep
j=1 UC]

M ep
TTKg j=1 TOJ'

der =

With Uff’ being the hysteretic work done by one elastoplastic element (the enclosed
area by the rhombus in Figure 22) and rf,f is the stress amplitude for one element and
calculated as [8]

ep .
U = {4KS].G]- (KO — Ky].) if kg > Ky,
! 0 otherwise

ep .
e {Gj Ky, if Ko > Ky,
Ty,
J

Gjep}co otherwise
Finally, the total contribution from the viscoelastic and elastoplastic elements (note that
the viscoelastic part contains the elastic part as well) can be represented in a complex

plane according to Figure 23, and using the approximation cos(8) = cos(6¢P) ~
cos (6v¢) the total dynamic modulus is calculated according to following [8]
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Figure 23. Approximative representation of viscoelastic and elastoplastic
response in the complex plane.
Source: [8] (Chapter 3.2, Page 59)

~ (F€P ve
Gdyn ~ Gdyn + Gdyn

Using trigonometry, and using d =sin(§) the total damping can be calculated
according to following [8]

GeP

ep ve Jve
dynd + GdYnd

Gdyn

ddyn ~

And by inserting the total damping and dynamic modulus into the error function (5.1)
together with experimental data of damping and dynamic shear modulus the material
parameters can be obtained. The experimental part in the error function is calculated
as

_ Texp,i
Gexp,i -
Kexp,i
Ue
dexp,i =

T Kexp,i " Texp,i

Where T.,; and kg,; are the nominal shear stresses and strains for different
frequencies and amplitudes.

5.3 Modified hardness test

A modification of the standard hardness test has shown to give more information by a
small extra effort. The hardness test is modified in a way that instead of applying a
constant load and measuring indentation, the force is instead measured for several fixed
indentation depths. Previous work done by Austrell [5] has shown that it is possible to
obtain the hyperelastic constants by considering energy balance between external work
done by the needle and the internal work done by the deformation of the rubber
specimen. However, when it comes to the characterization of dynamic parameters it
has not been evaluated yet which will be done in this thesis.
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5.3.1 Hyperelastic constants

For the static characterization the proposed method is based on an energy balance
between external work done by the needle and internal energy which depends on the
state of deformation and obtained from a finite element analysis. An assumption is
made that the state of deformation is independent of rubber material due to the
incompressible behaviour of rubber. This assumption has been proven to be correct in
finite element simulations done in previous work [5], see Figure 24.
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Figure 24. Strain invariants I; and I, (dimensionless) for the most influenced
elements given with element numbers used in the model on the x-axis.
Source: [5] (Chapter 7.2.4, Page 95)

This makes it possible to create tabulated values of strain invariants for several
indentation depths that can be used to calculate the internal energy without any further
computational calculations [5].

The deformed mesh and external force P as a function of indentation depth u are shown
in Figure 25.

. —'\—! s . V‘
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Figure 25. The deformed mesh from and indentation of a needle on the left,
and external force P as a function of depth u on the right.
Source: [5] (Chapter 7.2.3, Page 92)
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The external work done by the indentation force is represented as the area under the
curve and calculated by integrating the function P(u) from zero to a depth u,, and the
internal work is calculated as the total strain energy stored in the deformed body. From
a numerical point of view it is more advantageous to calculate the work done in an
incremental form, meaning that the external work and internal energy are calculated
as an energy increase when the indentation depth increases from u; t0 ug,, [5]
resulting in the following equation

Uk+1 e . .
| paode =y Wiy - wl) v
Uk i=1

Where V; is the volume of one element and W} is the strain energy density for element
i at indentation depth w. Using a linear approximation for the external work [5] the
energy balance can be rewritten as

P P i i
Pt 4 gy — we) = N0, (Whiy — W) -V, (5.2)
By obtaining values for several different indentation depths a system of equations can
be derived with only the hyperelastic constants being unknown, which can be solved
using the least square solution for matrices and vectors [5] as

ATAc=ATb

Where A is a matrix or vector (depending on the choice of hyperelastic model)
consisting of known values from the strain energy function, b being a vector consisting
of the incremental external work and ¢ being a vector or a scalar consisting of the
unknown hyperelastic constant(s) [5].

5.3.2 Dynamic characterization

For the dynamic characterization the proposed method is the same energy balance as
for the static characterization. The goal is to obtain an equivalent dynamic shear
modulus and damping as for the simple shear test that is later used in the same error
function v in order to obtain the dynamic material parameters used in finite element
analysis. The damping is insensitive to boundary condition why it should be the same
as for simple shear [15]. The damping is calculated according to the following

TR

With U, being the area enclosed by the hysteresis loop and u, = —Au;‘“
APjyq

2

as well as Py, =

The dynamic shear modulus can be obtained from the energy balance equation. By
using equation (5.2) and adding an extra term 2P, Au,,; on both sides of the equal sign
gives the following expression [15]
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Ne

(Pes1 + P)Auyyq — 2P Aty = 22 AWy 1 Vi = 2Py

i=1
With Aty = (uger — wg) and AW, = (Wi, — WiE). This gives

Ne

APy Bty =2 ) AWV = 2Pty

i=1

The tangential stiffness is introduced, representing the inclination of the force-
displacement curve as [15]

APk+1

Ktang —
Atjeyq

And inserting this into the modified energy balance equation yields the following
K9 (A 1)? + 2P Dy = 2305 AWV, (5.3)

The simplest way to add the shear modulus in the equation above is by assuming Neo-
Hooke model which is directly connected to the shear modulus as €, = G/2. Below
the strain energy density for neo-Hooke material model is written

G
W==(h-3)

And inserting this into equation (5.3)

Ne

Ktang(Auk+1)2 + ZpkAuk+1 =G Z A(Il);.c+1Vi

=1

The assumption is that if K*"9 is replaced by Ky, (u, f) from experimental data the
shear modulus G will be replaced by Gy (Keq, f). The goal is to find Gy (Keq, f) as
well as the phase angle §(k.,, f) with k., being the equivalent shear amplitude for the
dynamic load and f being the load frequency [15].

Alternative method:
There is also a second proposed method for obtaining the equivalent dynamic shear
modulus directly from Ky,,,, by multiplying with a scale factor a.

a - Kdyn w,f) = Gdyn (Keq»f)

Hopefully a single value for alpha can be found for all frequencies and amplitudes and
that is same for all types of rubber materials. In order to find a several K;,,,, and Ggyn
with matching frequencies and amplitudes can be obtained from experimental tests or
finite element analysis and two vectors K4y, and Gg,, can be built up. And by using
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the method of least squares combined with Gauss elimination method, a can be
calculated.

a- Kdyn = Gdyn
- a= (Kgyanyn) \ (KgynGdyn)

The problem will be to find a connection between the indentation depth u and shear
strain k. One possibility would be to try a fixed number of amplitudes for modified
hardness test, and then loop several different amplitudes for simple shear test and
compare the results in order to find the best matching amplitudes. This will however
take a long time to do, why it might be easier to assume pure compression for the
modified hardness test and put the first invariant for simple shear and pure compression
equal;

U,
—

[/

Figure 26. Relationship between compression- and shear amplitude.

Il,comp = Il,shear

Li,com =E+A2 I = 3+ K2
) P A 1,shear

By using the nominal strain, the stretch can be rewritten as

2 2
A=1+¢ - Il,comp:1—H+(1+8)

And without going too much into detail, the first term in the strain invariant for
compression can be simplified into the following

~ . _ 2
T+ e 2-(1—¢e+4+¢%)

Which simplifies the expression significantly. The connection between the nominal
strain and shear strain can now be obtained

Licomp=2-1—e+e>)+ (1 +2e+e%)=......=3+3¢?
3+ Kk? =3+ 3¢&?

k=3¢



With k = % and € = % t, is the thickness of the compressed rubber and t, is the
thickness of the sheared rubber.
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6 Finite element analysis of modified hardness test

Both static and dynamic parameters were analysed using the finite element software
ABAQUS. For the dynamic analysis the overlay method was used in order to include
both amplitude dependence and frequency depends on the rubber. The static analysis
has already been evaluated in a previous work done by Austrell [5], why only the
dynamic analysis has been done in this thesis. The static analysis will however be
summarized in this chapter.

Dynamic stiffness and damping were extracted from both simple shear test and
modified hardness test and compared. The goal is to be able to find the dynamic shear
modulus Gayn(keq f) and damping d(k.q, f) computationally from the modified
hardness test that is similar to the simple shear test, which can then be used in the error
equation presented previously (see equation 5.1, Ch. 5.2.2).

6.1 Static analysis

Previously a method was proposed for the characterization of Yeoh constants from a
modified hardness test by using an energy balance equation. This method has already
been tested and verified by doing a finite element analysis in [5], and it will be
summarized.

6.1.1 Evaluation of hyperelastic parameters

Three different rubber materials with different hardness (IRHD) were used for the
analysis: 40 IRHD, 50 IRHD and 78 IRHD. The different rubber materials also had
different contents of filler materials added. The hyperelastic constants (Yeoh model)
used in the analysis were evaluated in cooperation with different rubber manufacturers
from Sweden using homogeneous strain tests in both lubricated compression and
simple shear test [5]. The hyperelastic constants are presented in Table 1.

Table 1. Hyperelastic constatns in MPa for 3 different rubber materials. Source:
[5] (Chapter 7.2.4, Page 93)

40 IRHD 50 IRHD 78 IRHD
C1o 0.2885 0.5079 1.0543
Cao -0.0394 -0.0593 -0.0779
Cao 0.0074 0.0086 0.0241

The rubber disc used for the analysis has a radius of 25 mm and a height of 10 mm.
The needle is modelled as a rigid surface with a diameter of 2.5 mm and the contact
between the rigid ball and rubber elements is modelled as frictionless corresponding to
lubricated indentation test. Because of the symmetry of both the rubber specimen and
loading conditions, and because incompressibility is assumed 4-noded axisymmetric
elements with hybrid formulations are used for the model (CAX4H) [5]. The model
consists of 19 x 14 = 266 elements and is presented in Figure 27.

35



Figure 27. Model with 4-noded axisymmetric elements with hybrid formulation
used for static analysis. Radius of rubber disc is 25 mm and diameter of rigid
ball is 2.5 mm.

Source: [5] (Chapter 7.2.4, Page 94)

Different indentation depths and reaction forces were then recorded from the rigid
surface. The hyperelastic constants are then obtained by using the incremental energy
balance [5] according to below

Ne

Uk+1 . .
| pawdu =Y Wi, - wi)-v,
Uk

i=1

By inserting the Yeoh model in the energy balance the following is obtained

Uk+1 e .
f P(w)du = Cyo - AEH? Z(I{ -3V +
U i=1

And in matrix formulation it can be rewritten as

Ac=Db

With A being a (n x 3) matrix consisting of the principal stretches (A,’i“Z?jl(lf —

3)3Vi), ¢ being a (3 x 1) vector consisting of the unknown hyperelastic constants and b

being a (n x 1) vector consisting of the incremental external energy. The row number n
represents the amount of indentation depths recorded. With the state of deformation
being the same for all rubber materials (because of the incompressible behaviour) the
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matrix A will always be the same for the different test subjects, and it is obtained using
the 50 IRHD material parameters [5].

When there are more equations than unknowns, i.e. when n > 3, an overdetermined
system of equations is obtained. This type of problem is solved using the method of
least squares combined with Gauss elimination method [5] according to the following

ATAc =A"h
c=(ATA)\ (A"h)
In the finite element analysis, the rigid ball was pressed down to a total displacement

of 1.8 mm. The indentation force P was recorded at 6 different depths and plotted as
a function of the indentation depth according to Figure 28 for the three different rubber

materials.

25 1 T T T iy T 1 T
*-78 IRHD
20 7
+ - 50 IRHD
0 - 40 IRHD
15+ g
o
8
8
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£
L
bed
w
5 -
_5 1 7 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

depth (mm)
Figure 28. Indentation force P [N] as a function of indentation depth [mm].
Source: [5] (Chapter 7.2.5, Page 96)

The solid lines in Figure 28 are third order polynomials that were fitted to the datapoints.
The total external work was then calculated by integrating the third order polynomial
from O mm indentation to a specific indentation depth [5], and the results are presented

in Table 2.

Table 2. Total external work in millijoule [mJ] at different indentation depths.
Source: [5] (Chapter 7.2.5, Page 97)

Depth (mm) 40 IRHD 50 IRHD /8 IRHD
0.3 0.082 0.1424 0.2957
0.6 0.4021 0.7020 1.4642
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0.9 1.0345 1.8239 3.8174
1.2 2.0204 3.5763 7.5496
1.5 3.3657 5.9570 12.738
1.8 5.0430 8.8918 19.340

With the total external work calculated the incremental external work b can be
calculated for the three different rubber materials [5]

0.0820 0.1412 0.2957
0.3201 0.5608 1.1685
b = 06326 , _|11219 , _ 123532
0.9857 50 7 11.7524 78 7 13.7622
1.3453 2.3807 5.1579
1.6773 2.9348 6.6026

The strain invariants from the energy balance equation are calculated using finite
element analysis at the same indentation depths as in Table 2. As said before, the strain
invariants are calculated once using the 50 IRHD material parameters. The incremental
strain invariants, or the A matrix from the energy balance equation, is set up according
to below.

0.2497 0.0081  0.0005 T
1.1158 0.1102 0.0206
A= 2.3050 0.5596 0.2233
3.6491 1.6873 1.3063
5.1895 4.9489 7.1565
L6.6290 11.3516 27.6477-

Finally, the unknown hyperelastic constant vector cis set up as

Cio
¢ =|[Cy
Cso

And by using the method of least squares combined with Gauss elimination method
the hyperelastic constants for the different rubber materials are calculated from the
energy balance equation and compared with the original constants in Table 1. Below
in Table 3 the calculated Yeoh constants are presented [5].

Table 3. Hyperelastic constants in MPa calculated from the matrix format of
energy balance equation.
Source: [5] (Chapter 7.2.5, Page 98)

40 IRHD 50 IRHD 78 IRHD
C1o 0.2859 0.5056 1.0616
Ca0 -0.0413 -0.0670 -0.1121
Cs0 0.0091 0.0124 0.0302

By comparing the numbers in both Table 1 and Table 3 it is shown that the calculated
constants are very similar to the “correct” hyperelastic constants. A graphical
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comparison was also made by looking at the response in compression/tension and
simple shear, see Figure 29.
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Figure 29. Comparison of hyperelastic constants between modified hardness
test (dotted line) and the "correct" hyperelastic constants used in the finite
element analysis (solid lines).

Source: [5] (Chapter 7.2.7, Page 100)

From the graphical comparison the calculated hyperelastic constants have very similar
behaviour (up to 100% similarity) as the “correct” hyperelastic constants when it comes
to stress-strain relation [5].
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6.2 Dynamic analysis

6.2.1 Material parameters

Three different synthetic rubber specimens were used in the dynamic analysis: HNBR
(hardness ~72), EPDM (hardness ~94) and HGSD85 (hardness ~85). The material
parameters were obtained from [8] and are presented in Table 4.

Table 4. Material parameters for three different rubbers. The values are given
in [MPa] except for t, which is given in [s]. Source: [8] (Page 74)

HNBR EPDM HGSD85
Geo 3.94 9.08 4.52
Gy 0.991 1.88 1.21
Gy 0.762 1.30 1.38
Gy 8.31 3.55 0.190
Gy - - 6.08
tr, 0.0105 0.0816 0.0648
tr, 0.00399 0.00975 0.00622
tr, 0.000528 0.00130 0.00496
tr, - - 0.000551
G 7.15 10.1 0.875
Gy’ 3.21 1.49 0.401
Gy" 0.701 1.89 -

Ty, 0.0236 0.0477 0.00423
T, 0.0807 0.0303 0.0119
Ty, 0.0493 0.122 -

Also, since dynamic calculations are performed it is required to add the weight of the
rubber in Abaqus, which is assumed to be 1100 kg/m?[18].

6.2.2 Material models

The hyperelastic model used is the Yeoh model. In Abaqus the Yeoh model consists of
6 different coefficients according to following [16]

W = Co(I; —3) + 0Ty —3)% + C30(I; — 3)* +
1 1 1
el_12 el_14- el_16
b U =D 4O = D G - 1)

D;, D, and D; were set to O since incompressible behaviour was assumed. The first
coefficient governs the initial shear modulus as

C _ b=
10_2

The two other coefficients are usually decided using ratios C,y/Cyo and Cso/Cyq, but
since these ratios weren't available the following approximative relations were used
instead
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The elastoplastic model used for the rubber is multiple plastic models (meshes) with
isotropic hardening. The elastic base used for each plastic model is the Yeoh model.
The yield stress for each elastoplastic model is added in Abaqus as von Mises yield stress,
and for pure shear it is calculated as

0y, = Tr,V3
When it comes to viscoelastic model, the parameters included in Abaqus are relaxation
time t, and dimensionless shear relaxation modulus g [16] which is calculated as

G°P

L

gRi= G

0
Where
Go=0Go+ ) G

6.2.3 Abaqus models for dynamic analysis
Two models have been created in Abaqus; one for simple shear test used as reference,
and the other for the modified hardness test.

The simple shear test specimen is modelled as a solid disc. With the deformations being
homogenous only a few elements are needed. The model is created using 8-noded 3D-
solid elements with 26 elements in total, and on one side the rubber disc is attached to
a rigid surface representing the moving steel part from experimental tests. The other
side of the rubber specimen is fixed. The dimension of the rubber is the same as for real
test specimens used in the labs at Volvo Cars: thickness t = 6 mm and radius R = 12.5
mm.
Rigid part

Rubber disc
Figure 30. Model used for simple shear test in ABAQUS
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The model used for modified hardness test is also modelled as a solid cylinder, but since
an energy balance is used for the parameter identification more elements are used. The
model is created using 4-noded axisymmetric solid elements with an axisymmetric rigid
surface representing the needle pressing down on the rubber. The contact between the
rubber and rigid surface is set as frictionless. The rigid surface has a radius of 2.5 mm
while the rubber specimen has a radius of 14.25 mm and a thickness of 6 mm, which
are the same dimensions as for real test specimens used in the lab at Volvo Cars in
Gothenburg. The model can be seen in Figure 31 and has a total of 25x30 = 750
elements.

Symmetry line

Rigid part

Rubber disc

Figure 31. Model used for modified hardness test in ABAQUS.

Since incompressibility is assumed for both models it is required that the elements have
a hybrid formulation. With this said the element types used are C3D8H (8-node linear
brick with hybrid formulation) for simple shear test specimen and CAX4H (4-node
bilinear axisymmetric quadrilateral with hybrid formulation) for modified hardness test
specimen [16].

6.2.4 Overlay method

Since ABAQUS can’t use viscoelastic and elastoplastic material models for the same
mesh the overlay method described earlier must be implemented for both the simple
shear test model and the modified hardness test model when evaluating the dynamic
parameters.

Four sets of meshes were created using the same nodes for HNBR and EPDM. One mesh
was assigned the elastic and viscoelastic material model, and the remaining 3 meshes
were used for the elastoplastic material model with isotropic hardening and using Yeoh
model as the elastic base.

For HGSDS85 three sets of meshes were created instead, with one mesh used for elastic

and viscoelastic material model while the remaining meshes were used for the
elastoplastic material model.
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6.2.5 Evaluation of dynamic shear modulus and damping using the energy

balance equation

Both implicit and explicit solvers were tested in ABAQUS when performing the modified
hardness test and simple shear test. The responses were identical, but the implicit solver
was faster why it was used for the analysis.

Firstly, the needle was prepressed to 1.8 mm (static load), and directly after that the
dynamic load was applied in the form of a displacement-controlled sinus load according
to the following

u = ug - sin (2rf)

Where u, is the amplitude and f is the frequency. The test is performed by combining
different frequencies with amplitudes and plotting the frequency and amplitude
dependence of damping and dynamic shear modulus in a diagram. The different
frequencies used are in a range of 1 — 100 Hz and the different amplitudes used are in
a range of 0.06 —0.72 mm according to Table 5.

Table 5. Frequencies and amplitudes used for the dynamic loads in the finite
element analysis.

Uo
f (Hz) (mm)
1 0.06
5 0.18
20 0.42
50 0.72
100

In Figure 32 an example of the response curve for the needle can be seen.

150 |
= 100
o
50 | 7
__},,f
P
0 = . . . .
0 0.5 1 15 2 25

u (mim)
Figure 32. Response curve for a needle pressing into HNBR rubber with a sinus-
load (f=20Hz and u,=0.42mm).
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Starting off with the dynamic shear modulus, it is calculated from the energy balance
equation by assuming Neo-Hooke material model as

Ne

K™ (At 1)? 4+ 2P Augyg = Gayn Z A 41V

i=1

K" (Attg11)? + 2PpAyeqq

- Gdyn =

Z:l=e1 A(Il);'cﬂvi

APpiq

W|th Kdyn = and Auk+1 = Ug4q1 — Ug

Uk+1
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Figure 33. Hysteresis loop (blue curved line) for modified hardness test. Figure
showing where to find the different values used in the energy balance
equation.

Figure 33 shows the values used in the energy balance equation. According to [15] it is
not possible to use the whole model when determining equivalent shear strain, why
only the most influenced elements according to Figure 34 are used instead.
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Figure 34. Finite element model used for modified hardness test. The
highlighted elements are the most influenced elements when the needle is
pressing down into the rubber piece.

Since incompressibility is assumed, the strain invariants are calculated once for the
different amplitudes for HNBR and used for all rubber materials. The results are shown
in Figure 35.
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Figure 35. Dynamic shear modulus obtained from energy balance equation
(Harndess test) and compared with results from simple shear test.

From the results it is evident that there is neither amplitude nor frequency dependence
for the results obtained from the energy balance equation (or a very small dependence).
Since the element volume and strain invariants are constant for the different rubber
specimens there might be scaling factors that can be used to hit the ‘correct’ values
from the simple shear test and that is the same for all types of rubber materials, but
even this gave bad results since the scale factors are varying for the different materials,
see Table 6.

Table 6. Ratio between Gg,, from the simple shear test and the modified
hardness test (energy balance equation).

46

HNBR Ratio (GsimpIeShear/

GhardTest) 1Hz 5Hz 20 Hz 50Hz 100 Hz
uo =0.06 mm 2.07 2.08 2.23 2.40 2.57
Uo=0.18 mm 1.70 1.72 1.86 2.02 2.20
Uo=0.42 mm 1.26 1.28 1.42 1.59 1.75
Uo=0.72 mm 1.01 1.03 1.14 1.28

EPDM Ratio (Gsimpleshear /

GhardTest) 1Hz 5Hz 20Hz 50Hz 100 Hz
Uo =0.06 mm 1.62 1.75 1.86 1.96 2.03
Uo=0.18 mm 1.31 1.44 1.55 1.64 1.73
uo=0.42 mm 1.13 1.25 1.36 1.45 1.53
uo=0.72 mm 0.96 1.07 1.17 1.24



This was also tested for different amplitudes for the simple shear test (u = u, - v3) and
the results are presented in Table 7.

Table 7. Ratio between Gg,, from the simple shear test and the modified
hardness test, but with different amplitudes for the simple shear test.

HNBR Ratio (Gsimpleshear /

GhardTest) 1 Hz 5Hz 20 Hz 50Hz 100 Hz
uo =0.06 mm 1.86 1.88 2.07 2.23 241
up=0.18 mm 1.39 1.41 1.59 1.77 1.95
uUo=0.42 mm 1.07 1.09 1.27 1.43 1.60
Uo=0.72 mm 0.90 0.91 1.07 1.20

EPDM Ratio (Gsimpleshear /

GhardTest) 1 Hz 5Hz 20 Hz 50Hz 100 Hz
uo=0.06 mm 1.44 1.56 1.67 1.77 1.85
uo=0.18 mm 1.21 1.33 1.44 1.54 1.62
uo=0.42 mm 1.02 1.14 1.25 1.34 141
Up=0.72 mm 0.89 1.01 1.10 1.17

6.2.6 Alternative method

With the energy balance equation not working very well for the dynamic
characterization the alternative method is analyzed instead. The tangential stiffness
K4y i1s directly compared to the dynamic shear modulus obtained from the simple shear
test by assuming a linear connection between the two quantities. By calculating multiple
Kgyn and Ggy, two vectors can be built up, and the ratio that connects the two
quantities is then calculated using the method of least squares combined with Gauss

elimination method;
a- Kdyn = Gdyn

—a= (Kgyanyn) \ (KgynGdyn)

Firstly, the same amplitudes are used for both simple shear test and modified hardness
test, and the results are presented in Figure 36.
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HGSD85 dyn. modulus (« = 1/23)
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Figure 36. Dynamic modulus for modified hardness test (blue solid lines) and
simple shear test (red dashed lines), alternative method with same set of
amplitudes.

From the results in Figure 36 it is evident that there is an obvious relationship between
the tangential stiffness Kj,, and dynamic shear modulus Gg,,,, and the scaling factor
a is tending to hit (almost) the same constant for the different rubber materials.
However, the lines don’t seem to align perfectly which is probably due to the amplitudes
not matching. Previously a relationship between the amplitudes was obtained by
assuming pure compression for modified hardness test according to following

comp __ yshear
Lo = I

u
comp \/§

t

- K =

or
Ushear = Ucomp * V3 (same thickness)

A finite element analysis was therefore made with the assumed relationship between
the amplitudes according to above and the following results were obtained.
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HGSD85 dyn. modulus (o = 1/24)
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Figure 37. Dynamic modulus for modified hardness test (blue solid lines) and
simple shear test (red dashed lines), alternative method with different sets of
amplitudes.

From the results in Figure 37 it is now possible to see that the solid blue lines and dashed
red lines from the different tests fit each other better than before. The constant « is
also the same for all the tested rubber materials.

Next up is damping, and it is calculated for simple shear test as

And for modified hardness test as

Tuy P,

Firstly, the damping is obtained for identical amplitudes for simple shear test and
modified hardness test. The results from the finite element analysis are presented in
Figure 38.
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HGSD85 damping
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Figure 38. Damping from modified hardness test (solid blue lines) and from
simple shear test (dashed red lines).

Just like for the dynamic shear modulus, the lines (blue solid lines and red dashed lines)
seem to have the same shape, but they do not align to each other very well. A new set
of amplitudes are tested for the simple shear test, and in Figure 39 the results can be

viewed.
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HGSD85 damping
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Figure 39. Damping from modified hardness test (solid blue lines) and from
simple shear test (dashed red lines).

From Figure 39 above the damping for the modified hardness test seem to align more
accurately to the damping for the simple shear test. However, there is still some
difference in the damping values between the simple shear test and modified hardness
test, which is most likely due to the amplitude not quite matching perfectly.
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7 Conclusion and further work

By using the modified hardness test, it is proven that the use of energy balance equation
works well for static characterization of elastomers, but not so well for the dynamic
characterization. However, the alternative method which assume a direct connection
between dynamic stiffness Ky, and dynamic shear modulus Ggyp, as @ - Kgyn = Gayn
proved to be a much better method when finding the equivalent dynamic shear
modulus Ggyy, (keq, f), since a single value alpha could be found for all frequencies and
amplitudes independently of the material type.

Also, a relatively good connection between the indentation depth u and shear strain k
was found (when finding G4y, (keq, ) by assuming pure compression for the modified
hardness test and putting the first invariants of both compression and simple shear
equal.

The damping for modified hardness test is calculated the same way as for the simple
shear test, since the boundary condition should not affect the damping of the material.
By looking at the results it is evident that the damping for modified hardness test has
the same frequency dependence as for simple shear test. However, the amplitude
dependence of damping for modified hardness test did not match the damping for
simple shear, meaning that there probably is a better amplitude connection that could
be found in order to obtain better results for the damping. But with an error that looks
to be small the used amplitude connection is still a good approximation.

There is more work to be done when comparing the modified hardness test with simple
shear test, and a few examples are listed below

e The amplitude connection between shear amplitude k and indentation depth u
could be investigated further. This could be done by assuming a linear
connection between the modified hardness test amplitude and simple shear test
amplitude as Uy nara.test = B Usimpieshear aNd doing a sweep of different g-
values.

e The modified hardness test should be verified for both static and dynamic
characterization by doing experimental tests with other rubber materials than
those tested using finite element analysis.

e One could also investigate how different dimensions might affect the result for
the modified hardness test (example: different radius and thickness of the rubber
specimen, different indentation radius for the needle and different preload
before the dynamic load is applied).
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9 Appendix

The strain measures used when modelling large deformations are presented in this
chapter. Also, the finite element method is briefly explained along with the different
time stepping procedures used for dynamic calculations.

9.1 Strain measures

Considering a simple bar with constant cross-sectional area A, and initial length 1.
Load can only be applied through its centre end point resulting in homogenous
deformation throughout the bar. After loading is applied the bar length changes to [,
and the size of the new length depend on the size of the load. With this the stretch
measure can be introduced [10]

A=—
Lo

With the stretch measure introduced the strain measure can be considered which is
independent of rigid body motion and rotation. The strain can be determined by
introducing a function that only depends on the stretch [10]

£=f()

where it is required that f(1) = 0 which means that there is no strain when the length
of the bar is kept unchanged, df (1) /dA = 1 which ensures that all choices of functions
degenerates to the same infinitesimal strain tensor when the stretch is close to 1, and
that £ (A) is a smooth monotonic function which ensures that there is a unique relation
between the strain and the stretch. With this said a general format of the strain
measures can be considered according to below [10]:

1 m
em) — E(A —1) m+0
In(A) m=0

And the most common strain measures used are listed below [10]:

1
e-D = 2 (1-A"2%) Almansi’s strain
gD =1 A1 (no name found in literature)
e©® =1n(A) Logarithmic strain or Hencky strain
eMW=A-1 Nominal strain or Biot strain
1
e@ = 2 (N2 —-1) Lagrangian strain or Green's strain

Inserting the definition of the stretch in the strain measures yield a function that
depends on the lengths, for instance the nominal strain and Green's strain [10]

Sl:A_].:




12— 12

1
— 2 _1) =
W=D ==p

Eg—E

9.2 Strain energy

Considering an arbitrary geometry, there is energy stored in every point in the material
which is released when the molecules rearrange themselves during deformation,
introducing the strain energy. The increment in strain energy is defined as [10]

dw = o -de
where ¢ denotes the stress and de denotes the incremental strain. When integrating

the above equation from undeformed state to deformed state yields the total strain
energy [10]

w = .l:a(s) de

dw = ode

()

Figure 40. Incremental strain energy and strain energy for uniaxial loading.
Source: [10]

Based on above there exist a potential function which is dependent on the strain [10]
w = w(e)
and the stress strain relation is given by

B dw(e)
T de

If the stress-strain relation is derived from a strain energy function the material is called
hyperelastic material [10].

Since there are different types of strain measures used when modelling non-linearity in
materials, different types of energy conjugated stresses can be obtained [10], for
example the nominal stress g; is obtained using nominal strain g, and Green’s stress g,
is obtained using Green's strain g,.
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Although there exist different types of strains and stresses, the strain energy will always
stay the same independent of the choice of strain measure according to following [10]

dw =0, dg =0, - dgg

From previous section it is noted that all strain measures can be written in the stretch
quantity [10], which means that the strain energy function also can be rewritten as

w = w(A)

and with the nominal strain and Green'’s strain as examples one can derive the stresses
according to the following [10]

B dw B dw
=g, T dn

and
dw B dw 1

% = 3z, ~ dAA

The stretch measure is commonly used when deriving strain energy functions for
materials sustaining large deformations, i.e. elastomers.

9.3 Deformation gradient

Previously the stretch measure and strain measures has been introduced for a one-
dimensional system. When modelling 2- or 3-dimensional systems, something called
deformation gradient is used instead, which will be introduced in this chapter.

Reference configuration Current configuration, fixed time

P(x,t)

€,
Figure 41. Displacement u from reference configuration x° to current
configuration x at fixed time. Source: [10]

In Figure 41 above we have an arbitrary system in its undeformed configuration,
denoted as reference configuration. Each point in the reference configuration is
identified by its material coordinates x° = (x°,y°,2z°%) or x° = (x{,x9,x3). After the
reference configuration has been deformed it will enter the deformed configuration,
denoted as current configuration in Figure 41. Each point in the deformed configuration
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are now identified by its new material coordinates x = (x,y,z) or x = (xy, X3, x3).The
flow/movement over time of all particles in the system can be described with a flow-
equation @(x°,t). At initial time (t = 0) the flow is equal to the initial coordinates, e.g.
@(x°,0) = x°. With this said, a function of the new material coordinates at a fixed time
t can be described with the following relation [10]

x(x°,t) = @(x°t) = x° + u(x°t) (9.1)

Where u(x?,t) is the displacement vector. Let's consider the change in distance
between two particles close to each other. The distance in the undeformed
configuration is denoted dx® and the same distance in the deformed configuration is
denoted dx. Since x = x(x9, t) it follows that dx can be rewritten as [10]

dx = F - dx° (9.2)
Where
F =V,x

F is defined as the deformation gradient and is sometimes also called deformation
tensor or deformation matrix. The deformation gradient is a square and invertible
matrix, and can be written in tensor notation as [10]

axi
Tensor notation is a general way of describing vectors and matrices, for instance the
material coordinates in deformed configuration can be denoted in tensor notation as
[x] = [x;] whereiisanumber from 1 to 3. The deformation gradient is written in matrix
format according to following [10]:

[0x  Ox  0x

dx° 0dy° 0z°

0x; dy 0dy 0dy

F =[F] = [axjol = 0x° 0y° 0z°
dz 0z 0z

[0x° Jy° 0z°]

Where
[x:] = (e, x2,x3) = (x,¥,2)
[x¢] = (xf, %8, %9) = (x°,y°,2°)

Moreover, returning to equation (9.1) it is found that the change in distance can be
written as follows [10]:

dx =dx° + Vou-dx° = (I+ V,u) - dx°
And comparing with equation (9.2) one can conclude that the following holds [10]

F=I1+V,u
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Where I'is the unit matrix and V,u is the displacement gradient and is defined as [10]

0w, 0du, O0u,

dx° 0dy° 0z°

(V] = laui _|ou, Ou, Ou,
0x; dx° dJy° 0z°

du, Jdu, Jdu,

[0x° 0dy° 0z°]

With the deformation gradient introduced the deformation of a body can be
determined where distances will be considered. Considering the distances between two
particles, the length of vector dx® can be denoted by dl° and the length of vector dx
can be denoted by dl. The following is then obtained [10]

dl°? = dx° - dx°
dl? =dx-dx

Taking advantage of (9.2) we have
dl> =dx°-F"-F-dx°
Using the definition for Green’s strain the deformation can be written

dl? — dl°?

>—=n°-E-n’°

2dl°
Where n° is a constant unit vector, which makes it evident that the deformation is
characterized by E, also called Green'’s strain tensor [10]. This tensor is defined as

1 1
E=§(C—I)=E(FT-F—I)

Where C is the right Cauchy-Green’s deformation tensor. Reversing the order of the
multiplication one can obtain the left Cauhy-Green deformation tensor and is defined
as[11]

B=FF"

These deformation tensors are usually used to describe stress-strain laws for materials
that can sustain large deformation in two- or three-dimensional models, because they
have shown to be independent of pure rotation of a body. Below follows a brief
explanation of how pure rotation is cancelled out in the left and right Cauchy Green's
deformation tensors.

9.3.1 Polar decomposition

With the deformation gradient F being a square and invertible matrix, it can be
decomposed into a product of two matrices using polar decomposition, one being an
orthogonal tensor and the other being a positive definite symmetric tensor [11]:
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F=R-U=V-'R

Where R is the orthogonal tensor, i.e. R™! = RT and detR = +1, representing the
rotation, and U and V being the positive definite symmetric tensors, i.e. x-U-x =0
and x-V-x = 0, representing the right (U) and left (V) stretch tensors [11].

l’
l
l

Deformed
configuration

K(B)

Undeformed
configuration

=

1, X1
Figure 42. Polar decomposition presented graphicly. Source: [11]

Because of the orthogonality of R it follows that [10]
R-RT=1

Therefore, when using Green'’s strain as the strain measure results in a cancelation of
the translation term, leaving only the deformation term in the strain tensor as

C=F'F=U"U or B =FF" =yvT
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9.4 Finite Element Method

Here the derivation of the finite element method is briefly explained along with the
different time stepping procedures used for dynamic calculations.

9.4.1 Equation of motion

Consider a three-dimensional body loaded by a body force b(x,t) and a traction force
t(x,t) [17].

u(x,t)

t(x,t)

Figure 43. Arbitrary body with body force and surface traction force.

The loading causes displacements u(x,t) and stresses a(x,t) in the body. The
equilibrium equation according to Newton’s second law can be written as [17]

Vo + b = pil
Where
r d _
— 0 0 — — 0 O
0x dy 0z Oyy b
~ d 4] 4] O, x
V=0 — 0 — 0 —|;0=|s|; b=|by
dy 0x 0z xy b
0 d dJ Oy, z
Z 0 = =
00 3 ox dy. -Tyz-

The equation above is known as the strong form of the equilibrium equation. Deriving
the FE-formulation used in the FE-codes the strong form must be rewritten into the
weak form first [17].

Starting off by multiplying with a time-independent weight vector w(x) and integrating
over the volume of the body [17]

fwTva v + fwa v = fpru v
4 14 14
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The first term in the equation above can be rewritten using Gauss divergence theorem
[17]

ijVO' av = fth ds — f (VW)TO' av
v s v

Where t = §Tn, S being the stress tensor and n being the unit vector.

Yielding the weak formulation of the equilibrium equation
ijt ds + fwa av = ijpu av + j (Yw) & av
S 14 14 14

FE-approximation can now be introduced and included in the weak form by adopting
the Galerkin method [17]

w=N-c
u=N~N-a
u=N-a
VN =B

Where N are the shape functions, ¢ being an arbitrary constant vector, a is the nodal
displacement vector and & is the nodal acceleration vector. The weak formulation is
rewritten according to following [17]

chNTtderchNdeV:chNTdev-chfBTadV
S %4 \%4 |4

Since ¢ is arbitrary it can be cancelled out. Also, all the terms on the left side of the
equal sign describe the applied forces and reaction forces on the body, why they can
be simplified into the force vector f = [(NTt dS + [, N"bh dV. The mass matrix is also

introduced as M = fV NTpN dV, and finally the FE-formulation (without damping) used
for dynamic calculations can be written [17]

f=Md+fmde
14
For static calculations the equation above can be reduced to
f= fBTa dv
|4

This formulation is valid for all constitutive relations @. The term on the right side of the
equation above can be reduced to [, B"@ dV = Ka with some manipulations done,
where K is the stiffness matrix and a is the displacement vector. For static calculation,
if the geometry or material is non-linear the stiffness matrix will change when load is
applied and the geometry is deformed making it dependent on the displacement vector
a, why it is required that an incremental load or displacement procedure is adopted.
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This is not the case for a linear material model and geometry. For dynamic situations it
is usually required that an incremental time-stepping procedure is adopted.

9.4.2 Time-stepping procedure
When doing dynamic FE-calculations a time stepping procedure has to be implemented
with initial conditions such as initial displacement and acceleration. There are two
different types of time stepping procedures used in today’s FE applications: explicit
method and implicit method [17].

For implicit calculations the equation of motion is solved by finding the displacement
vector a in the current time step (n) first and then calculating the rest of the unknown
quantities by using the information that is already known in previous time step (n-7).
This method is also known as the Newmark iteration scheme which uses Newton-
Raphson iterations in order to enforce equilibrium of external and internal forces before
moving forward to the next time increment, making it both an iterative and incremental
algorithm. The advantage with this method is that the scheme is relatively stable for
large time steps making it unconditionally stable. The advantage with this is that large
timesteps can be used if smaller time steps won't make the results more accurate. The
disadvantage however is that since the displacement vector a is solved directly it is
required that the inverse of the stiffness matrix K is calculated, which is a very expensive
calculation since the stiffness matrix can be very complex. This is especially valid for
nonlinear geometries and material models; the stiffness matrix must be updated after
every increment since it is dependent on the displacement vector a [17].

For explicit calculations, instead of solving the equation of motion for displacement
vector a it is instead solved for the acceleration vector &. This is very advantageous since
the inverse of the stiffness matrix is avoided and only the mass matrix must be inverted,
which is less expensive when it comes to calculation costs. Also, since lower order
elements are usually used for explicit calculations the mass matrix is lumped, meaning
that it is a diagonal matrix and therefore makes the calculation of the inverse much
faster. However, since Newton-Raphson iterations aren’t done for explicit calculations
(explicit scheme is only incremental) it is conditionally stable, meaning that very small
time-steps, sometimes extremely small time-steps, must be used for accurate results
[17].
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