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Abstract

This project concerns an analysis of a hitherto untested method for determining the
modulus of elasticity (MoE) and shear modulus parallel to grain, as well as the rolling
shear modulus of cross laminated timber (CLT) through 3-point bending tests. A
review of analytical models and methods is included, followed by an evaluation of the
effect of the annual ring orientation and shear stress distribution at shear loading of
individual board cross-sections. Lastly a validation of the results using 2D and 3D
finite element (FE) models are presented.

A total of nine prismatic beams with a square cross section of 100×100 mm were cut
centrically from a CLT plate with respect to the longitudinal boards. The beams were
cut in two directions with respect to the outermost boards, resulting in two different
layups and lengths. Six beams were cut with the outermost board in the longitudinal
direction (with a length of 1500 mm), and three beams were cut with the outermost
board in the transverse direction (with a length of 900 mm).

Each beam was tested at in-plane loading, and out-of-plane loading for two different
spans, respectively, resulting in four tests for each beam and 36 tests in total. By
using the test data within the linear-elastic range and performing a linear regression
the equivalent stiffness could be evaluated. The results from the in-plane bending
tests were used to characterise the MoE and shear modulus parallel to grain by means
of Timoshenko theory. The results from the out-of-plane bending tests were used to
characterise the rolling shear modulus by means of the Gamma method or Timoshenko
theory.

The results were evaluated by comparing the calculated equivalent stiffness of FE-
models (with homogenised material properties corresponding to the characterised stiff-
ness properties) to the equivalent stiffness determined experimentally. The results
show a promising reliability and validity for the beams with a length of 1500 mm
when characterising the stiffness properties using Timoshenko theory, with respect to
the shear stiffness being calculated for the gross area of the cross section. Thus, con-
sideration of the shear stress distribution in the transverse boards should be reflected
by modification of e.g. the effective area. The rolling shear modulus was characterised
in the range of 64–89 MPa for the beams with a length of 1500 mm, with respect to
Timoshenko theory, indicating realistic values and that the effect of annual ring pat-
tern is accounted for. The Gamma method, however, resulted in characterised values
of the rolling shear moduli that were considered too low with respect to the effect of
annual ring pattern.

Keywords: CLT, cross laminated timber, in-plane loading, out-of-plane loading,
beam, rolling shear modulus, experimental tests, FE-modelling

I





Sammanfattning

Det här projektet behandlar en hittills obeprövad metod för att karakterisera elas-
ticitetsmodulen (E-modulen) och skjuvmodulen parallellt med fiberriktningen, samt
rullskjuvmodulen för korslimmat trä (KL-trä). Metoden g̊ar ut p̊a att testa balkar ge-
nom 3-punktsböjprovningar. Arbetet omfattar utvärdering av analytiska modeller och
metoder, utvärdering av årsringarnas orientering samt skjuvspänningsfördelningen i
enskilda lagertvärsnitt d̊a balkarna belastas i planet. Slutligen presenteras en valide-
ring av resultatet genom att jämföra med 2D och 3D finita element (FE) modeller.

Totalt nio prismatiska balkar med ett kvadratiskt tvärsnitt p̊a 100×100 mm s̊agades ut
centriskt fr̊an en KL-träskiva med avseende p̊a de longitudinella lamellerna. Balkarna
s̊agades i tv̊a riktningar med avseende p̊a de yttersta lamellerna, vilket resulterade i
tv̊a olika uppbyggnader och längder. Detta resulterade i sex balkar med de yttersta
lamellerna i balkens längsriktning (med en längd p̊a 1500 mm), och tre balkar med de
yttersta lamellerna i balkens tvärriktning (med en längd p̊a 900 mm).

Varje balk belastades b̊ade i planet, och ut ur planet för tv̊a olika spännvidder, vilket
resulterade i fyra provningar per balk, och 36 provningar totalt. Genom att utnyttja
resultatet fr̊an det linjärelastiska intervallet av mätdatan och sedan utföra en linjär
regression kunde den ekvivalenta styvheten för balkarna beräknas. Resultaten fr̊an
provningarna d̊a balkarna belastades i planet användes för att karakterisera E-modulen
och skjuvmodulen parallelt fiberriktningen genom Timoshenko teori. Resultaten fr̊an
provningarna d̊a balkarna belastades ut ur planet användes för att karakterisera rull-
skjuvmodulen genom antingen Gammametoden eller Timoshenkoteori.

Slutresultatet utvärderades genom att jämföra den beräknade ekvivalenta styvheten
fr̊an FE-modellerna (med homogeniserade styvhetsegenskaper motsvarande de karak-
teriserade styvhetsegenskaperna) med den ekvivalenta styvheten som bestämdes expe-
rimentellt. Resultatet visar p̊a en lovande tillförlitlighet och repeterbarhet för balkarna
med en längd p̊a 1500 mm d̊a styvhetsegenskaperna bestäms med Timoshenkoteori,
och d̊a skjuvstyvheten bestäms med avseende p̊a tvärsnittets bruttoarea. Följaktligen
bör hänsyn till skjuvspänningsfördelningen i de tvärg̊aende lamellerna beaktas ge-
nom t.ex. den effektiva arean. Rullskjuvmodulen kunde karakteriseras inom intervallet
64–89 MPa för balkarna med en längd p̊a 1500 mm genom Timoshenko teori, vilket
indikerar p̊a realistiska värden och att effekten av årsringarnas krökning återspeglas
i de karakteriserade värdena. Däremot resulterade användande av Gammametoden i
värden p̊a de karakteriserade rullskjuvmodulerna som ans̊ags vara för l̊aga med hänsyn
till inverkan av årsringarnas orientering.

Nyckelord: KL-trä, korslimmat trä, belastning i planet, belastning ut ur planet, balk,
rullskjuvmodul, experimentella tester, FE-modellering

III





Acknowledgements

I would like to thank my supervisor Henrik Danielsson and my examiner Erik Serrano
for their unwavering support throughout the project. Their vast knowledge, expertise
and interest in the subject has been a source of motivation for me which indubitably
changed the project for the better.
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Symbols and Notations

Roman

Symbol Description

L Longitudinal direction.

T Tangential direction.

R Radial direction.

x Global x-direction of the CLT-plate.

y Global y-direction of the CLT-plate.

z Global z-direction of the CLT-plate.

X Local X-direction of the CLT-beam.

Y Local Y -direction of the CLT-beam.

Z Local Z-direction of the CLT-beam.

E Young’s modulus (modulus of elasticity, MoE).

G Shear modulus (modulus of rigidity).

EL Modulus of elasticity parallel to grain.

ER Modulus of elasticity perpendicular to grain (R-direction).

ET Modulus of elasticity perpendicular to grain (T -direction).

GLR Shear modulus parallel to grain (LR-plane).

GLT Shear modulus parallel to grain (LT -plane).

GRT Rolling shear modulus.

E0 Modulus of elasticity parallel to grain.

G0 Shear modulus parallel to grain.

GR Rolling shear modulus.

GR,app Apparent rolling shear modulus.

Ix,net Net moment of inertia.

Ix,net,z Net moment of inertia (in-plane loading).

Ix,net,y Net moment of inertia (out-of-plane loading).

Ix,gross,z Gross moment of inertia (in-plane loading).

Ix,ef Effective moment of inertia (Gamma method).

VII



Roman

Symbol Description

Anet Net area of the cross section.

Agross Gross area of the cross section.

i Layer i of CLT.

ai Distance from global centre of gravity of CLT-plate to local

centre of gravity of considered layer.

P Load.

F Reaction force.

k Equivalent stiffness.

L Span length.

w Deformation (deflection).

u Translation.

std Standard deviation.

cov Coefficient of variation.

Greek

Symbol Description

v Poisson’s ratio.

γi Reduction factor (Gamma-factor).

κ Shear correction factor.

α Ratio between bending stiffness and effective shear stiffness.

θ Rotation.

γ Shear strain.

σ Stress vector.

ε Strain vector.

D Constitutive matrix.

C Compliance matrix.

G Transformation matrix.

σ̂ Global stress vector.

ε̂ Global displacement vector.

D̂ Global constitutive matrix.
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1 Introduction

1.1 Context

Cross laminated timber (CLT) (see Figure 1.1) is one of the latest of many engin-
eered wood products (EWP) that have been developed in the last 100 years. It was
developed in Central Europe about 30 years ago in order to provide an alternative
to concrete while also being renewable [1, 2]. Since then, the production of CLT in
Europe has increased exponentially due to its many advantages in terms of manufac-
turing, production, and environmental aspects. During the year 2018 more than one
million cubic meter CLT was produced worldwide [1], stating its important role in the
timber construction sector.

Despite this fact, the standardization of CLT is still in an early phase and extensive
work is currently being done in order to implement regulations and information re-
garding CLT into standards, as well as revising already established design codes. A
big issue to overcome is implementing the results from established research, while also
satisfying demands from engineers, industry, and authorities [1]. Recently, the ”COST
Action FP1402” project [1] was finished as a joint collaboration of researchers around
the globe, resulting in a collection of state of the art research on CLT. One of many
subjects within this research was “Testing and evaluation”. The purpose of this work
was to evaluate current methods used to test and verify mechanical properties of CLT.
This was done in order to highlight benefits and drawbacks of each method, respect-
ively, as well as pointing out where further development was necessary [1]. Inspired
by this work, Erik Serrano sparked the idea that brought upon this Master’s degree
project, namely the suggestion of an alternative method for determining the stiffness
properties of CLT.

The current method used to determine the stiffness properties of CLT according to the
current European assessment document (EAD) [3] is to perform a four-point bending

Figure 1.1: Schematic illustration of a cross laminated timber element.
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test of a plate. The parallel to grain stiffness is determined by evaluation of test
result using the so called Gamma method and an approximation of the rolling shear
modulus. The approximation is specified as 50 MPa in [3]. The structure of CLT,
where the fibre direction of the laminations is oriented perpendicular to the fibre
direction of each adjacent layer, results in the rolling shear modulus impacting the
stiffness and load bearing properties. The Gamma method enables analysis of CLT
using conventional Bernoulli-Euler beam theory, since shear deformations are taken
into account by using an effective moment of inertia with reduced stiffness contribution
from the longitudinal layers by weighted Gamma-factors. The Gamma-factors depend
on the thickness of the constituent layers, the modulus of elasticity (MoE) parallel
to grain, the rolling shear modulus, the span and boundary conditions of the beam.
The rolling shear modulus is typically many times lower than the longitudinal shear
modulus and displays the same uncertainty when it is measured as other material
properties for timber. Inaccurate assumptions of the rolling shear modulus could
lead to large deviations when determining other stiffness properties using the above
mentioned methodology.

In the proposed alternative method two consecutive three-point bending tests are con-
ducted on a CLT-beam for different span. The MoE parallel to grain, the longitudinal
shear modulus and the rolling shear modulus are then characterised by rotating the
cross section 90◦ about its longitudinal axis between the two tests. This is further
described in Section 1.3.
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1.2 Aim and objective

This project serves to analyse the possibility of using three-point bending tests to
determine the MoE and shear modulus parallel to the fibre direction and the rolling
shear modulus for the laminations of the CLT element. Given that it is a hitherto
untested method, focus was put on evaluating the reliability, i.e. if the results can
be reproduced when repeated under the same conditions, and the validity, i.e. how
well the results measure the intended parameters. The reliability was based of the
spread in the results from the experimental tests. The validity was evaluated by using
data from experimental tests together with analytical models and then comparing the
results with 2D and 3D finite element (FE) models. Out of the three determined
stiffness properties, the main focus was put on evaluating the validity of the rolling
shear modulus, and what main parameters that would affect the outcome.

The following sub-goals were defined to fulfil this purpose:

• Define suitable loading conditions and specimen geometry for the suggested test
method.

• Define suitable methods to apply the analytical models, with respect to the
Gamma method and Timoshenko theory.

• Create suitable FE-models corresponding to the specimen tested in laboratory.

• Study the effect of different material and geometry parameters when determining
the stiffness properties with the alternative method. This is done by using results
from experimental tests, analytical models and FE-models.

3



1.3 Method

The project can be divided into four parts. The first part consisted of a literature
study, where the main goal was to establish knowledge about wood in general, cross
laminated timber, analytical models (Gamma method and Timoshenko theory) and
how suitable FE-models could be established. The study was done with respect to
CLT as a beam. As CLT is traditionally used as wall or floor elements, load cases
and geometrical definitions were uniquely defined to serve the purpose of this project.
Preliminary calculations in order to define suitable loading conditions and geometry
for the suggested test method were conducted. Lastly, a study of how the annual ring
orientation affects the measured rolling shear modulus was conducted numerically in
order to gain a better understanding and to account for this later in the FE-models.

The second part consisted of experimental tests using the suggested method, see Figure
1.2. Nine beams were cut out of a CLT plate. Two consecutive 3-point bending
tests corresponding to two different spans were conducted for each beam, respectively.
Further, each beam was loaded both in-plane and out-of-plane (by rotating the beam
90◦ about its longitudinal axis), resulting in 4 tests for each beam, and 36 tests in
total. The results from the bending tests were obtained as force-deformation data. By
performing a linear regression on the linear part of the resulting curve the equivalent
stiffness k could be determined. By use of Timoshenko theory and the Gamma method,
the MoE and shear modulus parallel to grain to grain E0 and G0, as well as the
rolling shear modulus GR were determined for each beam. E0 and G0 were determined
from the in-plane bending tests. Similarly, GR was determined from the out-of-plane
bending tests. By use of the previously determined stiffness properties, GR could be
determined by use of either the Gamma method or Timoshenko theory.

P

X Y

Z

P

X

Out of plane

loading

In plane

loading

Z

Y

Z

Z

L/2 L/2

L/2 L/2

Figure 1.2: Test arrangement for measuring stiffness properties according to alternative
method.
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The third part consisted of FE-analyses where several models corresponding to the
tested beam specimen were established. The stiffness properties calculated analytically
from the test data were used in the models. Subsequently the validity of the stiffness
properties was studied by comparing the equivalent stiffnesses from the test data
and FE-models, respectively. A good correlation would indicate that the stiffness
properties were representative values for the constituent boards of the tested beams.
Furthermore, the shear stress distribution was studied for beams loaded in-plane by
means of FE-models, as it seemed to have a significant effect on the correlation of the
results mentioned above. This was done to investigate how the shear stress distribution
could be accurately represented in analytical beam models (Timoshenko theory). Two
suggestions were considered in this project: representing the shear stress distribution
by use of the gross area, or use of the net area signifying only the longitudinal boards.

The fourth part consisted of evaluating and comparing the results from the experi-
mental tests and analytical models with the results from the FE-models.

5



1.4 Limitations

The following limitations apply for this dissertation:

• The constituent boards of the CLT are assumed to be homogeneous and of equal
properties as the other boards oriented in the same direction.

• Only symmetrical layups with the same layer thickness throughout the cross
section are analysed in this project.

• The CLT is assumed to consist of clear wood boards only, meaning that potential
defects (such as knots) are not explicitly considered.

• For analytical beam models, bending stresses are assumed to only occur in the
longitudinal layers when the CLT is exposed to bending.

• The annual rings are assumed as a perfectly cylindrical pattern expanding from
the pith and outwards.

• Climate effects such as moisture or temperature are not considered.

• Duration of load (DOL) effects are not considered.

6



2 Background

2.1 Structural scales of wood

Wood is a biologically engineered product, that has been designed by nature for mil-
lions of years to best suit the needs of the tree itself. The stem and branches are
optimally designed to resist gravity and wind loads which mainly create stresses in the
direction parallel to the stem. Thus, the wood fibres have been adapted to provide
maximum strength in this direction, whereas the strength in the directions perpendic-
ular to the stem are quite low in comparison [4].

Wood is a complex material when it comes to its internal structure. It is anisotropic
meaning that the physical properties differ in different directions within the mater-
ial. The complexity of the material is augmented by the fact that anisotropy can be
recognized at different scales of material structure [5].

Four orders of structural variation can be recognized, namely: macroscopic, micro-
scopic, ultrastructural, and molecular [6]. This dissertation will only incorporate
modelling on the macroscopic level and emphasis will be put on how modelling can be
performed at that level. Everything beneath the macroscopic level will be regarded as
the microscopic level for simplification and will not be considered in this dissertation.

2.1.1 Macroscopic scale

When a tree is cut and the cross section is analysed, the macroscopic structure of the
wood can be seen clearly, see Figure 2.1. At the center of the stem is the pith from
which the growth of the tree can be traced, radiating outwards in a cylindrical pattern.
The growth-pattern is made up of annual increments alternating between lighter and
darker rings, so called annual rings. One annual ring is made up of earlywood and
latewood. Earlywood is formed when water supply is high and thus typically is lighter
due to its larger cell cavities. Latewood is formed when water supply is lower and is
darker and more dense. Resulting, the growth rings entail a variation of mechanical
properties, e.g. density or MoE parallel to grain, over the cross section [4]. When using
models to replicate the structural behaviour of timber elements on the macroscopic
scale, normally homogenized mean values of the strength and stiffness properties are
used as an approximation.

Tracing the growth of the tree on the macro scale, three principal directions can
be found: the longitudinal direction (L), the radial direction (R) and the tangential
direction (T), see Figure 2.1. The R- and T-directions are defined from the growth
ring orientation and the L-direction is defined aligned the direction of the wood fibres.
The L-direction does not necessarily align perfectly with the longitudinal direction of
the stem, due to occurrence of spiral growth [7].

7



L

T

R

LR

RT

LT

Pith

Annual rings

Figure 2.1: Cross section of a log where the annual rings are clearly visible. Main
directions L, R, T, and planes LR, LT and RT are defined accordingly.

The macro scale is commonly used to perform stress analysis of wood. For a 2D plane
strain or stress analysis wood is in the LR- and LT-planes commonly modelled as a
homogeneous and transversely isotropic material, while in the RT-plane it may involve
consideration of the cylindrical growth ring pattern [8]. The cylindrical growth pattern
is of great importance in this project and will later be proven to have a big impact on
the shear stiffness of CLT.

Imperfections such as knots, resin pockets, meddulary rays, cracks, compression wood
etc. are developed during the growth of the tree and could have a large impact on the
strength of wood when it is considered on the macro scale [4]. Explicit modelling of
such defects can be done, but is not included in the scope of this work. In modelling,
the material will instead be treated as clear wood, meaning that no such defects are
present. For the sake of clarity, wood that has been processed to fit construction
purposes, and that contains defects, will further on be denominated as timber. The
terminology ”wood” will be used as a more broad and general term. Clear wood has
different mechanical properties as opposed to timber, which is mentioned further in
Section 2.3.

Further studying Figure 2.1, the variation of the material principal directions (LRT )
in a board can be seen schematically. The variation depends on the sawing pattern
of the board, i.e. the geometrical size and orientation of the board cut-out, as well as
distance to the pith. The annual ring pattern affect the overall strength and stiffness of
the board, as well as its drying properties. The effect of annual ring pattern is shown
to have great impact on the rolling shear stiffness of individual board cross sections
and is further discussed in Section 3.6.1.
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2.2 Linear elasticity

When considering linear elastic materials in three dimensions, Hooke’s generalized law
may be applied. Through the following restrictions the application of Hooke’s law to
wood composites is simplified in this dissertation:

• Only small strains are considered.

• There is no variation in material parameters due to e.g. temperature variation,
moisture content or loading rate.

For orthotropic materials such as wood, where the three main directions are the lon-
gitudinal, radial, and tangential direction the linear relation between the stress and
the strain in local coordinates can be expressed as

σ = Dε (2.1)

or as the inverse relation
ε = D−1σ = Cσ (2.2)

where σ is the stress vector, ε is the (elastic) strain vector given by

σ =
[
σLL σRR σTT τLR τLT τRT

]T
(2.3)

ε =
[
εLL εRR εTT γLR γLT γRT

]T
(2.4)

and C is the compliance matrix according to

C =



1
EL

-vRL

ER
-vTL

ET
0 0 0

-vLR

EL

1
ER

-vTR

ET
0 0 0

-vLT

EL
-vRT

ER
- 1
ET

0 0 0

0 0 0 1
GLR

0 0

0 0 0 0 1
GLT

0

0 0 0 0 0 1
GRT


(2.5)

The constitutive matrices, C and D, contains the elasticity coefficients: three moduli
of elasticity, EL, ER, ET , three moduli of shear, GLR, GLT , GRT and six Poisson’s
ratios, vLR, vLT , vRL, vRT , vTL and vTR. The index of the moduli of elasticity and
shear denote what direction or plane the stiffness is regarding. For uniaxial loading
the first index of the Poisson’s ratio denote the loading direction and the second index
denote the strain direction [7]. Due to linear elasticity being considered the following
relations hold

vRL

ER

=
vLR
EL

,
vTL

ET

=
vLT
EL

,
vTR

ET

=
vRT

ER

(2.6)
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which results in symmetrical C and D matrices.

Generally for wood the local coordinate system does not coincide with the global
coordinate system and a relation between the two has to be established. This can
be expressed the direction cosines between the respective coordinate axes of the two
coordinate systems, agloballocal . The transformations may be written as

σ̂ = GTσ (2.7)

ε = Gε̂ (2.8)

D̂ = GTDG (2.9)

where σ̂, ε̂ and D̂ are the stress respective strain vector and the constitutive matrix
with reference to global coordinates and G is the transformation matrix between local
and global coordinate systems [7] given by

G =



axLa
x
L ayLa

y
L azLa

z
L axLa

y
L azLa

x
L ayLa

z
L

axRa
x
R ayRa

y
R azRa

z
R axRa

y
R azRa

x
R ayRa

z
R

axTa
x
T ayTa

y
T azTa

z
T axTa

y
T azTa

x
T ayTa

z
T

2axLa
x
R 2ayLa

y
R 2azLa

z
R axLa

y
R + ayLa

x
R azLa

x
R + axLa

z
R ayLa

z
R + azLa

y
R

2axTa
x
L 2ayTa

y
L 2azTa

z
L axTa

y
L + ayTa

x
L azTa

x
L + axTa

z
L ayTa

z
L + azTa

y
L

2axRa
x
T 2ayRa

y
T 2azRa

z
T axRa

y
T + ayRa

x
T azRa

x
T + axRa

z
T ayRa

z
T + azRa

y
T


(2.10)

For the two-dimensional case, where the stresses in the out-of-plane direction are very
small or negligible, plane stress conditions can be applied meaning that only in-plane
stresses exist. Thus, Hooke’s generalized law in the local coordinate system reduces to

σ = Dε (2.11)

ε = D−1σ = Cσ (2.12)

σ =
[
σii σjj τij

]T
(2.13)

ε =
[
εii εjj γij

]T
(2.14)

C =


1
Ei

-
vji
Ej

0

-
vij
Ei

1
Ej

0

0 0 1
Gij

 (2.15)

where the indexes i and j denote the local ij-coordinate system of the constituent
boards that comprise the CLT-beam.
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2.3 Strength and stiffness properties

This section presents information about strength and stiffness properties of wood,
whereas Section 2.4.2 will focus more on strength and stiffness regarding CLT. The
presentation given hereafter is based on [2] and [4] where no other reference is given.

Norway spruce (Picea abies) and Scots pine (Pinus sylvestris) are the most commonly
used wood species for structural purposes in Sweden and fall into the category of
conifers. Wood produced from conifers is usually referred to as softwood. The analyses,
experiments and discussions in this dissertation will only relate to spruce which is a
softwood. However, due to the similar cell structure of conifers, the results are probably
applicable to other softwoods as well [7].

The strength and stiffness properties of wood are in general affected by geometry,
environmental conditions, load conditions and duration and defects. These properties
may vary spatially in both the plane of the cross section and also in the longitudinal
direction of the wooden board. For a clear wood specimen, the density and MoE tend
to increase from the pith and outwards. This increase of the MoE in particular can
be significant, where it is stated to be about a factor 2 from the pith and outwards
in [4]. When conducting bending tests the largest stresses occur at the edges of the
board. Thus, the measured MoE will mainly be governed by the stiffness of these areas.
Segments of clear wood are often found in timber. Therefore clear wood properties
such as density and annual ring width influence the MoE when conducting bending
tests.

However, for a timber specimen, defects such as knots, compression wood, slope of
grain, decay, bark pockets and resin pockets could heavily affect both the stiffness and
strength of the timber. A bending test measuring the MoE for timber is hence also
influenced by knots, slope of grain, and even compression wood and spiral wood if they
are severe. Of all the above mentioned defects, knots have the most influential effect
on the strength and stiffness of timber based on frequency of occurrence and impact.
The strength is mostly affected by knots where there is tension, whereas the effect on
the stiffness is caused by the slope of grain surrounding the knot.

Usually when loaded, failure of timber will occur where the timber has its weakest
link, and where the stress exceeds the local critical stress. As a larger geometry also
entails a higher probability of defects, the strength could be negatively influenced by
an increase in stressed volume. This increase is generally interconnected to the length
of the tested beam, whereas increases of width and thickness have a smaller impact in
comparison. This phenomenon is called the size effect and is usually included in design
with a correction factor. In modelling it can be included by e.g. probabilistic theories
such as Weibull theory. However, it is not included in the scope of this project.

Strength and stiffness properties for different softwoods are shown in Tables 2.1 and
2.2, respectively. The strength properties in Table 2.1 given for Norway spruce and
Spruce correspond to clear wood specimen, whereas the properties given for C24 timber
are characteristic values. The indices in Table 2.1 are defined as follows: t denotes
tension, c denotes compression and v denotes shear.
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Table 2.1: Material strength properties for different softwoods in MPa from the
compilation in [8].

Species fLt fLc fRt fRc fTt fTc fvLR fvLT fvRT

Norway spruce 63 29 4.9 3.6 2.8 3.8 6.1 4.4 1.6
Spruce 75 50 4.9 7.0 8.6
Timber, C24 14 21 0.4 2.5 0.4 2.5 4.0 4.0

Table 2.2: Stiffness parameters for Norway spruce at 12 % moisture content [7].

Parameter Measurements
EL,MPa 13500− 16700
ER,MPa 700− 900
ET ,MPa 400− 650
GLR,MPa 620− 720
GLT ,MPa 500− 850
GRT ,MPa 29.0− 39.0
νRL 0.018− 0.030
νTL 0.013− 0.021
νTR 0.24− 0.33

As can be seen in Table 2.2 the stiffness parallel to grain EL is by far the greatest.
The stiffnesses perpendicular to grain ER and ET are of similar magnitude, although
ER is in general greater than ET . One thing to note is the small shear stiffness GRT , a
typical property of softwoods [8]. GRT is also known as the rolling shear stiffness and
is further discussed in Section 2.4.
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2.4 Cross laminated timber (CLT)

2.4.1 General

CLT is an engineered wood product (EWP) that comprises at least three cross-wise ar-
ranged strength graded board layers [9] with individual thicknesses of 20 – 60 mm [2].
The compound structure is usually created by face gluing, i.e. applying adhesive bond-
ing in between the perpendicular layers. The intermediate layers can be manufactured
with or without a gap between each adjacent board. In the case without a gap the
boards can either be edge glued, i.e. with adhesive bonding in between the adjacent
boards, or non-edge glued. CLT sections are normally comprised of finger jointed
timber boards.

The structure of CLT is normally symmetrical and built up of either 3, 5 or 7 layers
[2, 9]. For defining the numbering and global (xyz) axes of the CLT plate it is referred
to [10], see Figure 2.2.
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z

s
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1

#4

#1

#2

#5

h

C
L
T
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5
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z

a

1

Figure 2.2: Definition of numbering and axes for a CLT cross section.

The following designations for the global directions are stated in [2]:

• the x-axis is parallel with the grain of the outermost layer of the boards.

• the y-axis is is perpendicular to the grain of the outermost layer of the boards,
and in the plane of the CLT.

• the z-axis is perpendicular to the xy-plane.

• 0 represents local axes for boards or layers, parallel with the grain.

• 90 represents local axes for boards or layers, perpendicular to the grain, and in
the plane of the board or layer.
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• 090 represents the local plane with a direction of 0 and 90, e.g. longitudinal shear.

• 9090 represents the local plane with a direction of 90 and 90, e.g. rolling shear.

The indices and positive directions of forces and stresses are also defined according to
[10], and illustrated in Figure 2.3.
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y

M

y
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90

90

90

0

90

z

V

xz

V

yz

σ
mx,y

σ
my,x

τ
v,xz,090,lay

τ
v,xz,9090,lay

Figure 2.3: Definitions of indices as specified in SS-EN-16351.

Furthermore, the stiffness properties are assumed to be homogeneous and the same
for all layers, and are denoted as:

E0,xlay,mean = E0 is the mean modulus of elasticity for a layer parallel

with the grain in the x-direction.

E0,ylay,mean = E0 is the mean modulus of elasticity for a layer parallel

with the grain in the y-direction.

G090,xlay,mean = G0 is the mean shear modulus along the x-axis.

G090,ylay,mean = G0 is the mean shear modulus along the y-axis.

G9090,xlay,mean = GR is the mean rolling shear modulus in the plane where

both axes are perpendicular to grain.

2.4.2 Strength and stiffness

The structure of CLT, where every other layer is oriented transversely, and each layer
consists of structurally graded timber boards, evens out the variability and property
differences of wood mentioned in Section 2.3. CLT elements have a greater charac-
teristic strength and less variability when compared to the timber boards of which
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it is comprised of [2]. The risk of the weakest cross sections coinciding in the same
direction of the CLT is small. This is referred to as the system effect and also includes
the increase in strength from the interaction between multiple boards. This is similar
to what is referred to as the laminating effect of glulam [4], which can be explained as
the compound effect of three different phenomena:

1. Due to inhomogeneities and defects a single board exposed to bending may
exhibit a certain deformation pattern. If the same board is constrained in a CLT
beam exposed to bending it would most certainly exhibit another deformation
pattern. This is called effect of test procedure.

2. The smearing of defects mentioned above, also referred to as the dispersion effect.

3. Stresses tend to distribute to areas of high stiffness. Thus areas of low stiffness or
areas that contains knots will be reinforced by adjacent boards, when contained
in CLT.

However, the impact of the dispersion effect may be questioned for CLT containing
boards with thicknesses of 20 - 50 mm, as knots fit into the same order of magnitude.
A significant impact would likely be attained from the dispersion effect for EWP
comprised of thinner boards [4].

In bending, it is often the tensile strength of the outermost layers and the rolling
shear strength of the transverse layers that are governing. In design, it is often the
characteristic 5-percentile values of the strength parameters that are used, whereas
for stiffness parameters it is often the mean values that are used. When compared
to other timber slab products, such as stress laminated timber decks, CLT has a
lower bending strength in the main direction in comparison. However, the transverse
bending strength is substantially higher.

The stiffness of finger joints is very high and often comparable to that of a clear wood
specimen. However, depending on the location of the finger joint the strength of CLT
could be heavily affected. A finger joint located in a bottom longitudinal layer exerted
to tensile stresses could lead to an early fracture. Furthermore, the adhesives that are
used today are usually extremely brittle, and will likely exhibit the same mechanical
properties as the wood itself.

A characteristic feature of CLT and some other timber composites is the apparent
stiffness. The apparent stiffness of CLT can be seen as the global stiffness, resulting
from the conjoint stiffness of the constituent boards in a particular direction or plane.
Given the significant impact of the rolling shear stiffness on CLT, the choice was
made to focus on the parameters affecting the rolling shear modulus GR, and the so
called apparent rolling shear modulus GR,app. In a report published by Aicher and
Dill-Langer [11] it is shown that the rolling shear modulus of CLT is not an intrinsic
material property but rather an apparent shear stiffness ”smeared” over the structural
element. The geometry, principal direction stiffnesses and distinctively the annual ring
orientation are shown to affect the apparent shear modulus of CLT. This is further
investigated within this project in Section 3.6.1 by means of the Finite element method.
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2.4.3 Loading

The plate can be seen as an orthotropic panel that can be exposed to two kinds of
loading: in-plane loading and out-of-plane loading. The type of loading is defined
based on the loading direction according to Figure 2.4. In-plane loading is defined
as loading in the xy-plane in Figure 2.4. Normally, this type of loading is occurring
for wall elements loaded by axial forces. Out-of-plane loading is defined as loading
perpendicular to the xy-plane in Figure 2.4. Normally, this type of loading is occurring
for floor elements loaded by forces acting perpendicular to the plane of the CLT.

As the purpose of this dissertation is to examine beam specimens cut out from a CLT
plate, some further definitions are needed in order to avoid discrepancies when applying
the above mentioned load cases to a beam, see Figure 2.4. Note that the global CLT
coordinate system is denoted with lowercase xyz, whereas the beam coordinate system
is denoted with capital XY Z.

x

y

z

P

P

X
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Z
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90° 90°

X

Y

Z

X

In plane loading

Out of plane
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Y

Z

Y

Z

P

P

Figure 2.4: Definitions of loading and coordinate systems of beam cut out of a CLT plate.

When considering a three dimensional CLT-beam as a one dimensional beam according
to beam theory, certain assumptions and approximations have to be made with respect
to the different load cases shown in Figure 2.4.
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Out-of-plane loading gives rise to the largest bending stresses in the boards with the
fibres parallel to the stressed direction, due to the MoE of wood parallel to grain
being approximately 20 times larger than the MoE perpendicular to grain [9]. Thus,
a commonly used approximation is to assume that the MoE perpendicular to grain is
negligible, and that no bending stresses are transferred through the transverse layers.
This assumption is also motivated by the fact that the transverse boards normally are
not edge glued, meaning that transfer of bending stresses cannot occur between two
adjacent boards. Worth noting here is that for beams where the outermost layer is
oriented in the transverse direction it can be assumed that no bending stresses nor
shear stresses occur in these layers. Thus, the outermost layers can be disregarded
from when calculating the moment of inertia, and the beam can be viewed upon as
containing only three constituent layers.

In-plane loading will also give rise to the largest bending stresses in the boards with
the fibres parallel to the stressed direction. This is due to the approximation that
the transverse boards are rigidly connected to the longitudinal boards, and that the
MoE perpendicular to grain is negligible. Thus, a commonly used approximation is to
disregard the contribution from the transverse boards when calculating the bending
stiffness. Based on the assumption of zero bending stresses in the transverse layers the
resulting shear stresses should also be zero in these layers, whereas the contribution of
these layers towards the stiffness should not be included. This was initially assumed
within this project, however, by means of FE-models it was shown that a considerable
portion of the shear stresses are transferred through the transverse layers for in-plane
loading. This is further elaborated in Section 3.6.2.

A key aspect deriving from the structure of CLT when it is exposed to out-of-plane
loading is rolling shear. Rolling shear occurs when the transverse boards are subjected
to shear stresses in the RT-plane, caused by a non-uniform bending moment [9]. This
causes the fibres to “roll” on top of each other. Rolling shear stiffness and strength
are several times lower than the other stiffness and strength parameters, see Tables
2.1 and 2.2, and thus play a significant role when determining the ultimate strength
and deformations of CLT. The ultimate strength of CLT is verified by comparing the
maximum stress towards the strength property of the individual constituent board.
The distribution of bending and shear stresses for the above mentioned load cases are
shown schematically in Figure 2.5.
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(b) In-plane loading, at a section between two
adjacent transversal boards.

Figure 2.5: Bending and shear stresses for symmetrical CLT layups based on initial
assumptions. Rolling shear occurs in transverse layers exposed to shear stress.

17



2.5 Analytical methods

For a clear main load direction, CLT can normally be treated like a beam, and beam
theory can be applied [2]. Generally, the out-of-plane stresses for a one-dimensional
beam model loaded perpendicular to its longitudinal plane are assumed as zero. This
is due to that Poisson’s ratio is assumed as zero and that no transverse contraction
occur. Thus, the only non-zero stresses in the beam are σX , τXY and τXZ , where it
is referred to Figure 2.6 for definition of directions. As pointed out in Section 2.4.3
the rolling shear stiffness of CLT is significantly lower than other stiffness parameters,
meaning that shear strains make up a large portion of the total strains for CLT. The
analytical models described in this section (The Gamma method and Timoshenko
theory) represent two methods of accounting for shear strains when evaluating the
stiffness of CLT. The Gamma method can only be applied for out-of-plane loading,
whereas Timoshenko theory can be applied for both in-plane and out-of-plane loading,
respectively.

2.5.1 Gamma method

The Gamma method is derived from the method described in Eurocode 5, Annex B
[12], where the transverse layers of the cross section are seen as flexibly connected to
the longitudinal layers by mechanical fasteners. The slip between two longitudinal
layers correspond to the rolling shear strains in the transverse layer. The Gamma
method is based on a number of assumptions that were not evaluated within this
project. For information regarding these assumptions, it is referred to [12].

The Gamma method accounts for shear strains in the transverse layers by replacing
the net moment of inertia Ix,net when calculating the bending stiffness EIx,net, with
an effective moment of inertia Ix,ef . The effective moment of inertia is calculated
by reducing the ”Steiner”-terms of the longitudinal boards by means of weighted
Gamma-factors. The Gamma-factors depend on the thickness of the constituent lay-
ers, the MoE parallel to grain, the rolling shear modulus, the span and boundary
conditions of the beam [2]. In this project, only prismatic beams containing boards
with equal thickness and stiffness properties in all layers are considered. Thus, the
expressions for the Gamma-factors can be simplified. For a 5-layer CLT beam meeting
the aforementioned criteria Ix,ef can be calculated as

Ix,ef =
bxt

3
1

12
+ γ1bxt1a

2
1 +

bxt
3
3

12
+
bxt

3
5

12
+ γ5bxt5a

2
5 = bx(

3 · t31
12

+ 2 · γ1t1a21) (2.16)

where

ai is the distance from the global centre of gravity (CoG) to the

local CoG for the constituent longitudinal boards i, see Figure 2.2.

γi is the reduction factor (denoted Gamma-factor), see Figure 2.2.

bx is the width of the beam. In this project bx = 100 mm.

Furthermore, if the considered 5-layer CLT-beam has the outermost layers oriented in
the longitudinal direction the parameters ai and γi will be identical for these layers
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and can be calculated as

a1 =
t1
2

+ t2 +
t3
2
, (a1 = a5) (2.17)

γ1 =
1

1 +
π2E0t1
l2ref

t2
GR

, (γ1 = γ5) (2.18)

where

lref is the reference length based on support conditions.

For simply supported conditions used in this project lref = L.

If the the outermost layers of the considered 5-layer CLT-beam are oriented in the
transverse direction, the beam can instead be seen as an equivalent 3-layer beam (con-
sisting of the innermost layers of the original 5-layer beam), based on the assumptions
made in Section 2.4.3. According to [2] the approach for a 3-layer beam is to reduce
the stiffness contribution of the second longitudinal layer, counting from the bottom
and up according to Figure 2.2). For a 3-layer CLT beam meeting the aforementioned
criteria Ix,ef can be calculated as

Ix,ef =
bxt

3
1

12
+ bxt1a1

2 +
bxt

3
3

12
+ γ3bxt3a3

2 = bx

(
2 · t31
12

+ (1 + γ3) t1a1
2

)
(2.19)

Consequently, the parameters ai and γi can be calculated as

a1 =
t1
2

+
t2
2
, (a1 = a3) (2.20)

γ1 = 1 (2.21)

γ3 =
1

1 +
π2E0t3
l2ref

t2
GR

(2.22)

The Gamma method is used in conjunction with Bernoulli Euler theory (BE-theory).
BE-theory is based on the fundamental assumption that plane sections remain plane
and normal to the beam axis throughout deformation, i.e. that the rotation of the
cross section θ equals the slope of the beam w′, see Figure 2.6. As this means that shear
strains are not taken into consideration, the only non-zero strain is the normal strain
εX . Contradictory to this statement, as stresses are normally derived from strains,
it does not mean that shear stresses do not exist in the beam. The shear stresses
are derived from equilibrium. As pointed out above, the contributions from the shear
strains to the total beam deflection are accounted for by replacing the conventional
term of the bending stiffness EIx,net with the effective bending stiffness EIx,ef .

For a simply supported beam, loaded by a load P at X = L/2 (see Figure 2.6), the
following equation can be derived for the deformation w according to BE-theory

w(X) =
P

12 · EIx,net
X3 − PL2

16 · EIx,net
X (2.23)
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Figure 2.6: Beam-model according to Bernoulli-Euler theory, where out-of-plane loading
of CLT is considered.

where

X is the considered position along the length of the beam L

in the interval of [0 ≤ X ≤ L/2].

Ix,net is the net moment of inertia.

E is the MoE in the parallel to grain direction E = E0.

Finally, by substituting the bending stiffness using either Equation 2.16 or 2.19 (de-
pending on the layup of the beam), Equation 2.23 can be rewritten as

w(X) =
P

12 · EIx,ef
X3 − PL2

16 · EIx,ef
X (2.24)

2.5.2 Timoshenko theory

Similar to BE-theory, Timoshenko theory assumes that plane sections remain-plane
during deformation. However, the cross section does not need to remain perpendicular
to the beam axis during deformation, i.e. the rotation of the beam is instead an
independent variable θ, see Figure 2.7. The shear strains can be derived from the
difference between rotation and the slope of the beam (θ−w′). For a simply supported
CLT beam, loaded by a load P at X = L/2 (see Figure 2.6), the following equation
can be derived for the deformation w according to Timoshenko theory

w(X) =
P

12 · EIx,net
X3 +

P

EIx,net
(− L

16

2

+
α

2
)X (2.25)
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where

X is the considered position along the length of the beam L

in the interval of [0 ≤ X ≤ L/2].

Ix,net is the net moment of inertia.

The parameter α is calculated as

α =
EIx,net
n∑

i=1

GiAiκ
(2.26)

where

n denotes the total number of layers in beam

Ai is the area of the considered layer i.

Gi is the shear stiffness of the considered layer i.

κ is the shear correction factor, calculated with Equation 2.27.

The term GAκ is in this project denoted as effective shear stiffness. The bending
stiffness EIx,net signifies the resistance of the beam toward bending, where the moment
of inertia Ix,net is calculated for the layers transferring bending stresses. Similarly the
effective shear stiffness is a measure of the combined resistance of the constituent layers
toward shear deformations. The area A should correspond to the cross sectional area
transferring the shear stresses when the beam is exposed to loading. The area assumed
to be transferring the shear stresses is denoted ”effective area” in this project. For out-
of-plane loading the effective area is defined as the area enclosed by (and including)
the outermost longitudinal layers of the beam. For in-plane loading the effective
area is harder to define, as the shear stress distribution in the transverse layers was

Beam centerline

(Ѳ-w')

w'

Rotation according to BE-theory

Ѳ

w'

Vertical line

Figure 2.7: Shear strains according to Timoshenko theory for a beam model in
accordance with Figure 2.6.
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shown to vary in the longitudinal direction of the beam. This is further elaborated
in Section 3.6.2, whereas two areas will be defined here. The area consisting only of
the longitudinal layers, denoted net area Anet, and the area of the entire cross section,
denoted gross area Agross.

The correction factor κ accounts for that the stiffness is being overestimated due to
the assumption that plane sections remain-plane. The correction factor depend partly
on the geometrical shape and is for rectangular and homogeneous cross sections where
the transverse contraction is negligible equal to 5/6. It was assumed in Section 2.4
that CLT beams loaded in-plane can be regarded as rectangular cross sections where
only the longitudinal boards contribute to the bending stiffness. Thus, κ = 5/6 is a
consistent approximation.

For CLT loaded out-of-plane the expression for κ becomes more complex as the stiffness
and geometry of each constituent board is accounted for according to [2]

κ =
(
∑

(EI + EAa2))
2∑

Gibti ·
∫
h

S2(z)E2(z)

G(z)b(z)
dz

(2.27)

The expression on the right hand side of the denominator in Equation 2.27 contains a
double integral involving the static moment S(z).∫

h

[E(z) · S(z)]2

G(z) · b
dz =

∫
h

[
E(z) ·

∫
A · z dz

]2
G(z) · b

dz (2.28)

The double integral in Equation 2.28 can be determined layer by layer using poly-
nomials and then summed [13]. Equation 2.29 illustrates this process for one layer
considered∫ zi,u

zi,o

[E · S]2dz =
E2

i b
2

60

(
3 · z5i,u − 10 · z2i,oz3i,u + 15 · z4i,ozi,u − 8 · z5i,o

)
+

+ [E · S]i
b · Ei

60

(
20 · z3i,u − 60 · z2i,ozi,u + 40 · z3i,o

)
+

+ [E · S]2i (zi,u − zi,o)

(2.29)

where

zi,o is the z-coordinate from the upper edge of the considered layer to the global CoG.

zi,u is the z-coordinate from the lower edge of the considered layer to the global CoG

Ei is the MoE in the stressed direction.

The index i denotes the currently considered layer of the CLT plate. Only the MoE
parallel to grain E0 was considered in this project, and the MoE perpendicular to
grain E90 was assumed as zero for beam modelling approaches. The term containing
the statical moment [E · S]i is calculated by summing the distances from the upper

22



and lower edge, respectively, to the global centre of gravity. The summation is done
for layer k starting from either the upper edge to the currently considered layer i. As
the static moment is considered, only n− 1 layers have to be calculated.

[E · S]i =
n−1∑
i=1

[E · S]zi,uzi,o
(2.30)

In Equation 2.30 the contribution of each individual layer k is given as

[E · S]zi,uzi,o
= Eib ·

(
z2i,u
2
−
z2i,o
2

)
(2.31)

The process of solving κ described by Equations 2.27-2.31 is done numerically by the
means of a MATLAB -script, see Appendix D. The script was originally created by
doctoral student Gustaf Larsson (et al.), and later modified by senior lecturer Henrik
Danielsson, from whom it was received from.

For in-plane loading the bending stiffness is calculated with respect to bending around
the global z-axis of the CLT-beam (see Figure 2.5), where the corresponding moment
of inertia is denoted Ix,net,z. The effective shear stiffness is calculated with respect to
the shear modulus parallel to grain G0, the effective area A and the assumption of
κ = 5/6. Consequently using Equation 2.26 the parameter α can be expressed as

α =
6 · EIx,net,z

5 ·G0A
(2.32)

For out-of-plane loading the bending stiffness is calculated with respect to bending
around the global y-axis of the CLT-beam (see Figure 2.5), where the corresponding
moment of inertia is denoted Ix,net,y. The effective shear stiffness is calculated with
respect to the shear moduli of the constituent boards considered, the effective area A
and the assumption of κ = 5/6. Depending on the layup the parameter α will differ.
For a 5-layer beam, with equal thickness of all boards and the same stiffness properties
for boards oriented in the same direction, the parameter α can be expressed as

α =
EIx,net,y

bxt(2 ·GR + 3 ·G0)κ
(2.33)

where
t is the layer thickness. In this project t = 20 mm.

bx is the width of the beam. In this project bx = 100 mm.

For a 3-layer beam, with equal thickness of all boards and same the stiffness properties
for boards oriented in the same direction, the parameter α can be expressed as

α =
EIx,net,y

bxt(GR + 2 ·G0)κ
(2.34)
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2.5.3 Simplified shear correction factor

The shear correction factor κ involves complicated equations and even the alternative
method according to Equation 2.29 proves rather complex. Approximate values for
the shear correction factor have been suggested by Jöbstl and are given in [13]. The
values are representative for symmetrical layups with equal layer thicknesses and a
shear moduli ratio of G9090/G0 = 1/10. The suggested values are for three layers
κ = 0.21 and for five layers κ = 0.24. By using Equations 2.27–2.31 and iterating
for different values of GR the relation between κ and GR can be illustrated. This is
done for two symmetrical CLT beams with equal layer thicknesses of 0.02 m, where
one beam has the outermost boards in the longitudinal direction and the other beam
has the outermost boards in the transverse direction. It can be seen in Equation 2.27
that the MoE does not affect the value of κ if the transverse MoE is assumed as zero,
leaving the shear moduli GR and G0 as the remaining varying factors if the geometry
is held constant. Figures 2.8 and 2.9 illustrate how κ varies with GR for different
values of G0. The values suggested by Jöbstl are also illustrated as rings for each line,
respectively.
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Figure 2.8: Relation between κ for different values of G0 for a five layer beam with the
outermost boards in the longitudinal direction.

2.5.4 Comparison between analytical methods

As the analytical methods are used to evaluate the stiffness parameters of a beam later
in this dissertation it is of great interest to study the differences between the two meth-
ods. The main difference between using BE-theory in conjunction with the Gamma
method, as opposed to Timoshenko theory, is that Timoshenko theory accounts for
shear strains in the beam, whereas the Gamma method amplifies the deformation pat-
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Figure 2.9: Relation between κ for different values of G0 for a five layer beam with the
outermost boards in the transverse direction.

tern of BE-theory through a reduced moment of inertia. This can be illustrated by
plotting the deformation patterns using equations 2.23 and 2.25.

The deformation pattern is illustrated for both in-plane loading and out-of-plane load-
ing for two different spans L1 and L2, respectively. The spans that are illustrated
represent some of the spans that were used for the experimental tests. However, only
layups where the boards of the outermost layer oriented in the longitudinal direction
are illustrated here. Layups where the outermost layer is oriented in the transverse
direction could have also been included here. Although, the cross section of such a
beam can be simplified to only consist of three constituent layers. This is due to the
fact that the outermost layers are assumed not to transfer any bending or shear stresses
during bending. Therefore it is superfluous to illustrate the deformation pattern of
such beams here, as it will be similar to that of a 5 layer CLT beam. The following
deformation patterns are illustrated below.

1. Beam loaded out-of-plane, L1 = 1.0 m, see Figure 2.10.

2. Beam loaded out-of-plane, L1 = 1.4 m, see Figure 2.11.

3. Beam loaded in-plane, L1 = 1.0 m, see Figure 2.12.

4. Beam loaded in-plane, L1 = 1.4 m, see Figure 2.13.

The stiffness parameters in this study were set to: EL = 12000 MPa, GLT = 690 MPa,
GRT = 50 MPa for all illustrations. The deformations in Figures 2.10 – 2.13 were
normalised in comparison to BE-theory deformations using the net moment of inertia
in order to show the relative difference in deformation between the analytical methods
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used. As can be noted from the graphs the deformation only differs substantially in
the middle. Thus, when using these methods to evaluate stiffness properties from
deformation curves obtained by experimental tests, measuring the deformations in the
mid span would be of most interest.

Considering that linear elastic conditions are applied, and that the stiffness parameters
are held constant, Gamma method and Timoshenko theory will yield the same relative
increase of deformation compared to BE-theory for loading in-plane and loading out-
of-plane, respectively. This is illustrated for different beam spans in Figures 2.14 and
2.15, respectively.
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Figure 2.10: Deformation pattern for different analytical methods. Beam loaded
out-of-plane, L1 = 1.0 m.
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Figure 2.11: Deformation pattern for different analytical methods. Beam loaded
out-of-plane, L2 = 1.4 m.
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Figure 2.12: Deformation pattern for different analytical methods. Beam loaded in-plane,
L1 = 1.0 m.
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Figure 2.13: Deformation pattern for different analytical methods. Beam loaded in-plane,
L2 = 1.4 m.
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Figure 2.14: Max. deformation in relation to BE-theory for a beam loaded out-of-plane,
where constant stiffness parameters are applied.
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Figure 2.15: Max. deformation in relation to BE-theory for a beam loaded in-plane,
where constant stiffness parameters are applied.
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2.6 Bending stiffness (according to Eurocode)

The European assessment document (EAD) [3], which is the currently harmonized
technical specification of solid wooden slabs, refer to Eurocodes [12] and other stand-
ards [14, 15] as a method of determining the bending stiffness EI of CLT. It is specified
that the Gamma method may be used when determining the bending stiffness through
a 4-point bending test, according to Figure 2.16. The rolling shear modulus GR should
then be approximated as 50 MPa. However, three potential difficulties have been iden-
tified in the above mentioned methodology. Firstly, for determining the MoE of the
CLT the relative deformation between the two point loads is measured, as no shear
strains occur in this span. For relatively short CLT beams this deformation is usually
a few millimeters at most, whereas high accuracy and possibly high-end equipment is
needed to correctly measure these deformations. Secondly, as can be seen in Section
3.6.1 the conventional value of 50 MPa proved to be rather conservative when the
annual ring orientation of the boards are considered. Lastly, the rolling shear mod-
ulus exhibits the same uncertainty when measured as other mechanical properties of
wood, whereas a static approximation might yield deviating results for lower or higher
percentile values of GR.

In conclusion, the difficulty of correctly measuring the deformation as well as the lower-
end approximation of GR might yield an overly deviating bending stiffness. Methods
where the rolling shear modulus can be measured in accordance to the other stiffness
parameters might yield more accurate results.
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l = 18h ± 3h

h

l

1

 = 5h

P P

Figure 2.16: Test arrangement for measuring bending stiffness according to [14]
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3 Finite element modeling

3.1 General

Most of the problems within engineering mechanics can be described by differential
equations. Generally these equations are too complicated to solve analytically whereas
a numerical approach can be utilised. The finite element method (FE-method) is an
effective way of solving complicated problems numerically.

The FE-method is based on the assumption that differential equations, describing the
physical phenomena, hold over a certain region which may be one, two or three dimen-
sional. Conventionally, a studied body is often divided into smaller parts, so called
finite elements, whereas the differential equations hold for each element, respectively.
The collection of elements over the considered body is called a finite element mesh.

A variable varying in a non linear fashion over a body, may instead be modelled
with a linear variation in each element, respectively. Given that the body is divided
into a fine enough mesh, this approximation will converge toward the exact solution.
The approximation which is to be applied over each element is chosen depending on
the problem at hand. The approximation is based on the number of nodal points
in the element, i.e. points where the variable are determined, and is expressed as
an interpolation between these points. These nodal points are often located at the
boundary of the element. The interpolation is usually polynomial and may be of linear,
quadratic or cubic variation etc. When the approximations have been established for
each element, the elements are patched together following certain rules in order to
provide an approximate solution for the entire body. For further explanation of the
FE-method, and derivation of the numerical model equations that make up the FE-
method it is referred to [16].
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3.2 Scope and limitations

The main purpose of the FE-models was to study the validity of the characterised
stiffness properties calculated by applying analytical methods, presented in Section
2.5, to the experimental data obtained from conducting experimental tests. Therefore
the FE-models were created in as close resemblance as possible to the experimental
setups, in order to not compromise the efficacy. Given that a large number of tests were
conducted, simplifications concerning the geometry of the models were made where
the efficiency would be improved as a result. Furthermore, as wood is a heterogeneous
and anisotropic material, with a large variety in material properties with respect to the
spatial distribution of the beam, some general assumptions and simplifications were
made in order to reduce the complexity of the models. The general assumptions and
simplifications, applying to all FE-models, are listed below:

• Variation in material properties due to moisture content or temperature is not
accounted for.

• Linear elastic material behaviour is assumed, plasticity or other nonlinear ma-
terial behaviour is not included.

• Homogeneous material properties are considered.

• Plane stress is considered in the 2D-models.

• Glue lines are not modelled explicitly. There is assumed to be no difference in
elastic coefficients in the interfaces between the boards compared to the rest of
the cross section.

Assumptions and simplifications applying to the FE-models presented in Sections 3.4.1
and 3.4.2 are listed below:

• Symmetry is utilized with respect to the X-direction for the 2D-models.

• Symmetry is utilized with respect to both the X- and Y -directions for the 3D-
models.

• Roller supports were modelled with respect to symmetry for the 2D- and 3D-
models.

• Contact conditions between transverse boards in the same layer were not mod-
elled.

• Annual ring pattern is not modelled. The effect of annual ring pattern is as-
sumed to be reflected by the use of the characterised value GRT , according to
Section 3.6.1.

• The width of the transverse boards was measured as 147 mm but modelled with
a width of 150 mm as a simplification. Furthermore only uncut boards were
assumed in the transverse layers as a simplification.

• The overhang of all beams is modelled but the effect not studied explicitly.
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3.3 Abaqus

There are several different commercial softwares available on the market today that
utilise the FE-method. In this project the software suite Abaqus FEA was used for pre-
processing, analyzing and post-processing. The program consists of different software
applications where the following were used in this project:

Abaqus/CAE [17] A software application for modelling, assigning mechanical

properties and meshing of elements (pre-processing). It also

includes a visualising tool after the analysis have been

performed where pertinent parameters can be highlighted

graphically (post-processing).

Abaqus/Standard [18] A FE-analyzer that utilises implicit integration to solve

equation systems. Suitable for e.g. static problems.

A characteristic feature of Abaqus is that units are not specified explicitly. Typically,
unit conventions are used in order to specify input parameters and receive output
parameters of correct measure. Dimensions in this project were modelled in milli-
meters, whereas the stiffness properties were specified in MPa resulting in the output
parameter of e.g. the equivalent stiffness k being calculated in N/mm.

The Abaqus/CAE kernel is Python based. Every action performed in the graphical
user interface (GUI) generates a Python code that is sent directly to the kernel. These
code segments are stored in a .rpy-file for each active session of Abaqus. By copying
pertinent segments from the .rpy-file and assembling them into a script, macros can
be created in order to automatize certain functions. This has been utilised effectively
throughout the FE-analysis of this project.
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3.4 Representative beam models

3.4.1 2D models

The beams exerted to out-of-plane loading were modelled as two-dimensional (2D).
Based on the fact that the width of the beam is relatively small in comparison to
the length of the beam, and that deformation in the out-of-plane direction is not
prevented, plane stress was assumed for all constituent elements. Thus, the 2D-model
represent the stress distribution as homogeneous throughout the entire width of the
(3D) beam, which should be a reasonable assumption. A illustration of the FE-model
(corresponding to point 4 in the list below) is shown in Figure 3.1.
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Figure 3.1: Schematic illustration of the 2D representative beam model.

The boundary conditions shown in Figure 3.1 apply to all the 2D-beam models,
whereas the span, length and layer composition of the beams vary. When model-
ling the beams, symmetry was utilised along the X-axis, meaning that only half the
beams were modelled. Thus, the degrees of freedom (dofs) along the symmetry plane
were prevented to move in the X-direction (uX = 0), see Figure 3.1. The beams were
modelled in accordance with the tested beam specimen in the out-of-plane direction
and corresponded to four different models:

1. Beam with a length of 750 mm (with respect to symmetry in the X-direction).
The distance between the centre point of the support and the outer edge is 250
mm. This corresponds to the 1500 mm beams with a span of 1000 mm tested
for out-of-plane loading.
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2. Beam with a length of 750 mm (with respect to symmetry in the X-direction).
The distance between the centre point of the support and the outer edge is 50
mm. This corresponds to the 1500 mm beams with a span of 1400 mm tested
for out-of-plane loading.

3. Beam with a length of 450 mm (with respect to symmetry in the X-direction).
The distance between the centre point of the support and the outer edge is 150
mm. This corresponds to the 900 mm beams with a span of 600 mm tested for
out-of-plane loading.

4. Beam with a length of 450 mm (with respect to symmetry in the X-direction).
The distance between the centre point of the support and the outer edge is 30
mm. This corresponds to the 900 mm beams with a span of 840 mm tested for
out-of-plane loading.

The longitudinal and transverse boards were defined as two individual parts, where a
local Cartesian coordinate system was created for both parts. Both local coordinate
systems were oriented in the same way, however, the axes were defined for different
material directions, as can be seen in Figure 3.1. The MoE and shear modulus parallel
to grain and rolling shear modulus were variables determined from the experimental
tests, whereas other variables were kept constant. The stiffness properties used are
shown in Table 3.1 for the longitudinal and transverse boards, respectively.

Table 3.1: Mechanical properties used for the longitudinal and transverse boards, where
GLT = GLR. A fixed value signifies a permanent value, whereas ”var.”
represents a varying property.

Longitudinal boards Transverse boards
E1 = ET [MPa] 800 E1 = ER [MPa] 800
E2 = EL [MPa] var. E2 = ET [MPa] 500
ν12 = νLT 0.02 ν12 = νRT 0.3
G12 = GLT [MPa] var. G12 = GRT [MPa] var.
G13 = GRT [MPa] var. G13 = GLT [MPa] var.
G23 = GLR [MPa] var. G23 = GLR [MPa] var.

The element type used are called shell elements or more specifically ”CPS4 - four node
bilinear plane stress quadrilateral” according to Abaqus naming convention [19, 20].
This means that it is a four node isoparametric element with linear variation for
the shape functions in both the X- and Y -direction. The out-of-plane thickness is
specified as 100 mm. Furthermore, full integration is applied in order to avoid ”hour-
glass modes”. Hour-glass modes are also called spurious zero-energy modes and can
occur when reduced integration is used for isoparametric elements. The phenomena is
derived from the fact that internal strain of the element can not be represented by the
gauss points (integration points) of the reduced integration and thus no elastic energy
is created by these modes. Therefore, these modes tend to disturb the FE-model as the
elements provide no resistance at all towards the zero energy modes [16]. Constraints
between the longitudinal and transverse boards were modelled as ties, meaning that
there is no relative motion between the connected dofs along the contact surface [21].
The surface of the longitudinal boards were always taken as master surface.
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The supports were modelled as analytical rigid surfaces [22] (see Figures 3.1 and 3.2)
and were connected to a reference point governing the surface motion of the analyt-
ical rigid surfaces. The dimensions of these corresponded to that of the steel plates
used in the experimental tests, with a width of 50 mm. The corners were modelled
with a fillet in order to avoid stress concentrations. The reference point was modelled
at a distance of 30 mm from the analytical rigid, serving as the centre of rotation
(CoR), corresponding to the CoR of the support used in the laboratory. Furthermore,
translation in the Y -direction was prevented (uY = 0) in the reference point. Con-
sequently the analytical rigid surface is also prevented translate Y -direction. However,
it was still free to rotate around the CoR and translate in the X-direction, theoret-
ically simulating a roller support. For the tests both a fix (uX = uY = 0) and roller
(uY = 0) support were used, but preventing translation in the X-direction resulted
in non realistic tensile stresses between the analytical rigids of the support and load
application.
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Figure 3.2: Boundary conditions and dimensions for the analytical rigids that apply to all
the 2D beam models.

The load application surface was also modelled as an analytical rigid surface, and
geometrically modelled the same way as the supports (see Figures 3.1 and 3.2), but
rotated 180◦. However, only half of the load application surface was in contact with the
opposite boards, whereas the other half was protruding the symmetry plane. Utilising
symmetry in this manner, as opposed to modelling a full beam (analogous to the
symmetry beam), could result in small discrepancies in the results between the two
models due to the difference in the surface area between the frictional constraints.
This difference, however, was deemed negligible and was not further investigated.

The reference point connected to the analytical rigid (load application surface) was
prevented to translate in the X-direction (uX = 0) as well as rotate around the Z-axis
(θZ = 0) due to symmetry in the mid plane. The deformation in the reference point
was specified as 2 mm in the Y -direction (uY = −2), governing the deformation of
the entire beam. The deformation corresponded to a unit deformation multiplied by a
factor two, with respect to symmetry in the X-direction. The resulting reaction force
in the Y -direction was extracted from the reference point in the post-processing. Due
to the aforementioned use of unit deformation the reaction force corresponded to the
equivalent stiffness k (N/mm) for the beam model. It should be noted, that extracting
the reaction force for a deformation of 1 mm and 2 mm, respectively, should result in
a factor 2 between the results due to linear elastic conditions. However, very small
discrepancies were found between the resulting reaction forces (< 0.1%), which were

36



assumed to be a result of the non linear behaviour due to the frictional constraint of
the analytical rigids. This difference was deemed negligible, and too small to affect
the results.

The contact condition between the analytical rigids and the opposite boards were
created where the normal behaviour was defined as hard contact [23], the out-of-
plane geometry was specified for a width of 100 mm and the tangential behaviour was
modelled as penalty, [24] with a friction coefficient of µ = 0.25. The analytical rigid
was chosen as master surface for the interaction, whereas finite sliding was specified
for the constraint. This interaction between the analytical rigid and a deformable
body gives rise to a complex non linear behaviour [25] which was not studied in this
project. The friction coefficient is dependant on several different factors, e.g. value of
applied pressure, angle of load to grain, moisture content and plate roughness [26],
making it hard to establish a correct value. However, based on [26] choosing a value
of µ within the interval of 0.2 ≤ µ ≤ 0.3 was deemed reasonable. The combination of
the frictional constraint and the symmetry condition also prevented rigid body motion
of the beam.

3.4.2 3D-models

The beams exerted to in-plane loading were modelled as three-dimensional (3D). This
was done mainly due to the fact that stress distribution in the out-of-plane direction is
not homogeneous due to the difference in mechanical properties between the transverse
and longitudinal layers. The model is therefore a representative geometrical body of
the complete beam used for the tests. A illustration of the FE-model (corresponding
to point 3 in the list below) is shown in Figure 3.3.
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Figure 3.3: Schematic illustration of the 3D representative beam model.
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The boundary conditions shown in Figure 3.3 apply to all the 3D-beam models,
whereas the span, length and layer composition of the beam vary. When modelling
the beams, symmetry was utilised along both the X-axis and the Y -axis meaning that
a quarter of the beams were modelled. Encastre was used to model the symmetry on
the symmetry planes. The dofs on the XZ-symmetry plane were prevented to move
in the X-direction (uX = 0) and rotate around the Y - and Z-axis (θY = θZ = 0). The
dofs on the Y Z-symmetry plane were prevented to move in the Z-direction (uZ = 0)
and rotate around the X- and Y -axis (θX = θY = 0). The beams were modelled in
accordance with the tested beam specimen in the in-plane direction and corresponded
to four different models:

1. Beam with a length of 750 mm and a width of 50 mm (with respect to symmetry
in the X- and Z-direction, respectively). The distance between the centre point
of the support and the outer edge is 250 mm. This corresponds to the 1500 mm
beams with a span of 1000 mm tested for in-plane loading.

2. Beam with a length of 750 mm and a width of 50 mm (with respect to symmetry
in the X- and Z-direction, respectively). The distance between the centre point
of the support and the outer edge is 50 mm. This corresponds to the 1500 mm
beams with a span of 1400 mm tested for in-plane loading.

3. Beam with a length of 450 mm and a width of 50 mm (with respect to symmetry
in the X- and Z-direction, respectively). The distance between the centre point
of the support and the outer edge is 150 mm. This corresponds to the 900 mm
beams with a span of 600 mm tested for in-plane loading.

4. Beam with a length of 450 mm and a width of 50 mm (with respect to symmetry
in the X- and Z-direction, respectively). The distance between the centre point
of the support and the outer edge is 30 mm. This corresponds to the 900 mm
beams with a span of 840 mm tested for in-plane loading.

The longitudinal and transverse boards were defined as two individual parts, where a
local Cartesian coordinate system was created for both parts. Both local coordinate
systems were oriented in the same way, however, the axes were defined for different
material directions, as can be seen in Figure 3.3. The MoE and shear modulus parallel
to grain and rolling shear modulus were variables determined from the experimental
tests, whereas other variables were kept constant. The mechanical properties used are
shown in Table 3.2 for the longitudinal and transverse boards, respectively.

The element type used are called solid elements or more specifically ”C3D8 - eight
node brick element”, according to Abaqus naming convention [27]. This means that it
is a eight node isoparametric solid element with linear variation for the shape function
in the X-, Y - and Z-directions. Full integration is applied similarly to Section 3.4.1,
where in this case eight integration points are used. This element type is more resource
intensive compared to shell elements, which motivated the use of two symmetry planes
instead of just one.

The constraints between the longitudinal and transverse boards were modelled in ac-
cordance to Section 3.4.1.
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Table 3.2: Mechanical properties used for the longitudinal and transverse boards, where
GLT = GLR. A fixed value signifies a permanent value, whereas ”var.”
represents a varying property.

Longitudinal boards Transverse boards
E1 = ET [MPa] 500 E1 = EL [MPa] var.
E2 = EL [MPa] var. E2 = ET [MPa] 500
E3 = ER [MPa] 800 E3 = ER [MPa] 800
ν12 = νLT 0.02 ν12 = νLT 0.02
ν13 = νRT 0.3 ν13 = νLR 0.02
ν23 = νLR 0.02 ν23 = νRT 0.3
G12 = GLT [MPa] var. G12 = GLT [MPa] var.
G13 = GRT [MPa] var. G13 = GLR [MPa] var.
G23 = GLR [MPa] var. G23 = GRT [MPa] var.

The supports were modelled as analytical rigid shells (see Figures 3.3 and 3.4 with a
width of 50 mm, as described in Section 3.4.1. The analytical rigids were also modelled
with a width in the Z-direction of 50 mm, corresponding to half the total width of the
beam. The corners were modelled with a fillet in order to avoid stress concentrations.
A connection was made to a reference point, offset 30 mm from the geometrical centre
point of the analytical rigid. In order to simulate a roller support and account for the
symmetry in the Z-direction, only movement in the X-direction and rotation around
the Z-axis were allowed (uY = uZ = 0 and θX = θY = 0).

RP2

RP1

2 (Y)

1 (X)3 (Z)

Analytical rigid shell

(Boundary)

Analytical rigid shell

(Load application)

30.0 mm

30.0 mm

RP1

U2= 0

U3= 0

UR1= 0

UR2= 0

RP2

U1= 0

U2= -4

U3= 0

UR1= 0

UR2= 0

UR3= 0

50.0 mm

50.0 mm

Global coordinate system

Figure 3.4: Boundary conditions and dimensions for the analytical rigids that apply to all
the 3D beam models.

The load application surface was also modelled as an analytical rigid shell, geometric-
ally modelled the same way as the supports (see Figures 3.3 and 3.4, but rotated 180◦

corresponding to the description in Section 3.4.1.

The reference point connected to the analytical rigid (load application surface) was
prevented to rotate around all axes, and only allowed to move in the Y -direction
(uX = uZ = 0 and θX = θY = θZ = 0), due to symmetry in both the longitudinal
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and transverse mid plane of the beam. The deformation in the reference point was
specified as 4 mm in the Y -direction (uY = −4), governing the deformation of the
entire beam. In similarity to Section 3.4.1, a unit deformation was specified and then
multiplied by a factor four, with respect to symmetries around the X- and Z-planes.
Thus, the reaction force corresponded to the equivalent beam stiffness k (N/mm) for
the beam model.

The contact condition between the analytical rigids and the opposite boards were
created in similarity to Section 3.4.1, with the exception of the out-of-plane geometry
not being specified.
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3.5 Convergence study

In order to examine the sensitivity of the FE-models towards the size of the finite
element mesh the equivalent stiffness k was calculated for four different beam models
of varying mesh density. In order to include the size of the FE-model as a parameter
in the study, two beam lengths were examined for the 2D and 3D models, respectively.
The models included in the convergence study were:

1. 2D model. Beam with a length of 450 mm. The distance between the centre
point of the support and the outer edge is 150 mm. This corresponds to the 900
mm beams with a span of 600 mm tested for out-of-plane loading.

2. 2D model. Beam with a length of 750 mm. The distance between the centre
point of the support and the outer edge is 50 mm. This corresponds to the 1500
mm beams with a span of 1400 mm tested for out-of-plane loading.

3. 3D model. Beam with a length of 450 mm and a width of 50 mm. The distance
between the centre point of the support and the outer edge is 150 mm. This
corresponds to the 900 mm beams with a span of 600 mm tested for in-plane
loading.

4. 3D model. Beam with a length of 750 mm and a width of 50 mm. The distance
between the centre point of the support and the outer edge is 50 mm. This
corresponds to the 1500 mm beams with a span of 1400 mm tested for in-plane
loading.

The element size was chosen so that only rectilinear quadrilateral or cubic elements
would be generated. A starting value of 10 mm for the element side length was chosen,
whereas this value was then halved for each subsequent test. Analyses were carried out
until the limit of 250000 nodes due to the restriction of the Abaqus teaching licence
was exceeded. Due to the significant amount of FE-analyses conducted in this project,
the efficiency of each model was also studied by including the computational time.

What is deemed sufficient convergence in a project usually depends on the problem
at hand and the purpose of the FE-analysis. In this project, the intention of the
numerical models is to verify the analytical models used to calculate certain stiffness
properties. The accuracy of the models were thought to improve if any deviation due
to mesh density could be eliminated. However, considering the significant amount
of FE-models and analyses that were conducted, sufficient convergence was assumed
when a finer mesh resulted in small deviations of k, and the computational time was
heavily affected. The result of the convergence analysis can be seen in Figures 3.5 and
3.6 for the 2D models, and Figures 3.7 and 3.8 for the 3D models.

The models corresponding to the shorter beams seemed more sensitive to the mesh
density. This can be seen clearly for the 2D models, as k converges towards a certain
value for the model corresponding to Figure 3.6, but not for the model corresponding
to Figure 3.5. This could be due to the fact that the relative size between the mesh-
element and model is greater for the short beams in comparison to the long beams.
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Generally, for models exerted to static loading the stiffness decreases for a greater
mesh density. This is due to the fact that more dofs are introduced in the model, thus
making it more ”flexible”. This is the case for the longer beams. However, for the
shorter beams, the stiffness is increasing with a greater mesh density, see Figures 3.5
and 3.7. This discrepancy is thought to be a result of the nonlinear behaviour between
the analytical rigids and boards, however it was not examined further in this project.

It can be seen in Figure 3.7 that even though symmetry across two planes were used
for the 3D models, they quickly become quite cumbersome. For a model with a mesh
containing elements with a size of 2.5 mm it takes almost two hours to complete the
analysis. However, the absolute difference between the resulting stiffness k of using
elements with a size of 5 mm as opposed to 2.5 mm proved less than 10 N/mm, and
the relative difference less than 0.2 %. Therefore, an element size of 5 mm was used
for the 3D models representing the short beams. As the models representing short
beams proved more sensitive to mesh density, an element size of 5 mm was also used
for the 3D models representing the long beams.

An element size of 2.5 mm were used for the 2D models representing the longer beams
as a finer mesh resulted in a absolute difference of k less than 0.1 N/mm. Referring to
Figure 3.5 the absolute difference of k with respect to using a mesh with an element
size of 1.25 mm as opposed to 0.625 mm proved less than 4 N/mm, and the relative
difference less than 0.2 %. Taking this into consideration, together with the 450 %
increase of the computational time for the corresponding mesh refinement, the element
size of 1.25 mm was deemed more efficient and was used for the 2D models representing
the shorter beams.
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Figure 3.5: Five tests were performed corresponding to an element size of 10 mm, 5 mm,
2.5 mm, 1.25 mm and 0.625 mm from left to right.
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Figure 3.6: Five tests were performed corresponding to an element size of 10 mm, 5 mm,
2.5 mm, 1.25 mm and 0.625 mm from left to right.
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Figure 3.7: Three tests were performed corresponding to an element size of 10 mm, 5 mm
and 2.5 mm from left to right.
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3.6 Preliminary finite element analysis

3.6.1 Simple shear model

It has been previously mentioned in Chapter 2 that the rolling shear modulus has a
significant impact on the stiffness of CLT, when out-of-plane loading is considered.
Based on Section 2.4.2 the rolling shear modulus is not an intrinsic material property,
but rather an apparent property, governed by the geometry, principal direction stiff-
nesses and annual ring orientation. This section investigates the effect of the annual
ring orientation on the apparent rolling shear modulus GR,app.

The setup was based on idealized conditions of a transverse board when the CLT is
exposed to bending. The board is modelled in Abaqus where the CPS4 - four node
bilinear plane stress quadrilateral elements are used (the same elements used for the
analyses presented in Section 3.4.1).

The board is exposed to simple shear as shown in Figure 3.9. The board is completely
fixed (ux = uy = 0) along the lower edge, whereas a unit deformation (∆ux = 1)
was applied along the complete length of the upper edge. This, in turn, resulted in a
resultant shear force F along the upper edge. It should be noted that the boundary
conditions used differ from a real bending situation, but are deemed to provide a valid
representation of the basic influences that were considered.
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2
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Figure 3.9: Simplified model for determining apparent rolling shear modulus,
measurements in mm.

An apparent shear modulus GR,app was calculated according to

GR,app =
τ

γ
=

Fh

b∆ux
(3.1)

where

τ is the shear stress along the upper surface of the board, whereas τ = F/A.

A is the top area of the board, calculated as A = bt.

t is the out-of-plane thickness (in this case the shear force was calculated

per mm thickness), here t = 1 mm.

γ is the shear strain of the board, calculated as γ = ∆ux/h.

45



The geometry and the principal direction stiffness coefficients were kept constant, in
order to only regard the annual ring orientation. The stiffness properties in this study
were set to: ER = 600 MPa, ET = 700 MPa, GRT = 50 MPa, resulting in a ratio of
ER:ET :GRT =1:1.16:0.083, and vTR = 0.4. The local orthotropic coordinate system
was represented by a cylindrical coordinate system, originating from the pith. The
global Cartesian coordinate system was set to the bottom edge of the board. Thus,
the individual material coordinate systems were aligned according to Figure 3.10.

T
R

d
h

z

x

Pith

y

ϕ

b/2

r

-

Figure 3.10: Definition of global Cartesian coordinate system and local cylindrical
coordinate system.

A parametric study was conducted where the distance from the global coordinate
system to the pith was increased by increments of 2 mm in the upwards direction
(negative z-direction), whereas the apparent shear modulus was calculated according
to Equation 3.1 for each pith position. The results were normalized in relation to a
reference value of 50 MPa [3] and is shown in Figure 3.11.

In Figure 3.11 it can be seen that the board configurations containing the pith (0 ≤
d ≤ 20 mm) have a lower apparent rolling shear modulus compared to configurations
where the pith is relatively close (d ≤ 84 mm). The maximum value of GR,app is
almost 3 times greater than the prescribed value of the material stiffness GRT . The
idealized board configuration with horizontal annual ring orientation converges with
the prescribed rolling shear modulus of 50 MPa.

Based on the results above, a viable alternative to including the annual ring orientation
in 2D FE-models by use of a cylindrical coordinate system, is to instead model the
transverse layers with a Cartesian coordinate system and homogeneous orientation of
the material principal directions. A higher value of GRT in the model would then
correspond to an increase in pith distance (up to a certain point).

Furthermore, based on Figure 3.11 the value of the apparent rolling shear modulus is
likely to be in the range of 1.4GRT ≤ GR,app ≤ 2.8GRT for realistic pith configurations.
It should be noted that this range is derived from idealised boundary conditions, a
perfectly cylindrical annual ring orientation, and a board with a width of 100 mm.
The specimen tested in this project had a width of 150 mm. Taking these facts into
consideration, the aforementioned range should serve more as an indication that the
characterised rolling shear moduli (by means of analytical models) should be higher
than the principal direction rolling shear modulus GRT .
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Figure 3.11: Influence of annual ring orientation on apparent rolling shear stiffness GR,app

of a transverse board. Five of the analyzed sawing patterns are illustrated
for clarity where d =∞ represents a board with horizontal annual rings.

3.6.2 Shear stress distribution

Based on Section 2.4.3, the shear stress distribution in the transverse layers were
assumed as zero for in-plane loading considered (see Figure 2.4). This assumption
was based on the assumption of no bending stresses being present in these layers.
As a consequence, the stiffness contribution of these layers should be neglected and
only the area of the longitudinal layers Anet should be considered when calculating
the shear stiffness. This section investigates the shear stress distribution by means of
representative 3D-models corresponding to two of the tested Specimen. The purpose
is to analyse how well the assumed shear stress distribution of a one-dimensional beam
model corresponds to the shear stress distribution of a three-dimensional FE-model.

The analysis was based on the hypothesis that the shear stress distribution in the lon-
gitudinal direction τLT (corresponding to τ12 for the global directions defined in Figure
3.12) would vary mainly depending on the layup and span of the beam. Therefore,
in order to highlight these parameters in the analysis, the 3D-models corresponding
to point 2 (with a span of 600 mm) and point 3 (with a span of 1400 mm) in Section
3.4.2 were tested. Note that the layup of these beams were partly different, as shown
in Figure 3.12. Boundary conditions according to Figure 3.3 and 3.4 apply for both
models.

The shear stress distribution τLT in the models was analysed by defining a set of paths
throughout the beam. Data pairs, in terms of τLT and the corresponding nodal co-
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ordinate in the path direction, was then extracted from all nodes along the path. The
paths were specified by defining the end points corresponding to the global coordin-
ate system in which the elements were assembled. Three paths (1–3) were defined
throughout the entire length of the beam in the X-direction, as shown in Figure 3.12.
These paths were located in the middle of each constituent layer in the transverse
directions of the beam (both in the Y - and Z-directions). Two additional paths (4–5)
were defined throughout the width of the model in the Z-direction. Path 4 was defined
along the middle of a joint between two adjacent transverse boards, and Path 5 was
defined as a cut-through the mid section of the most central transverse board in the
X-direction. The coordinates used to define the paths are shown in Table 3.3.

Table 3.3: Path coordinates for the long beam (Specimen 1) and the short beam
(Specimen 2).

Specimen 1 Specimen 2
Start End Start End

Path 1 (-600, 50, 10) (150, 50, 10) (-600, 50, 30) (-150, 50, 30)
Path 2 (-600, 50, -10) (150, 50, -10) (-600, 50, 10) (-150, 50, 10)
Path 3 (-600, 50, -30) (150, 50, -30) (-600, 50, -10) (-150, 50, -10)
Path 4 (-150, 50, 20) (-150, 50, -30) (-300, 50, 40) (-300, 50, -10)
Path 5 (-225, 50, 20) (-225, 50, -30) (-375, 50, 40) (-375, 50, -10)
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Figure 3.12: Path definitions and global coordinates for the corner points of the beam
models.

48



Figures 3.13 and 3.14 show the stress distribution for the Specimen 1 beams, and
Figures 3.15 and 3.16 for the Specimen 2 beams. The mechanical properties used in the
analysis are equal to those of Table 3.2, and where EL = 15622 MPa, GLT = GLR =
261 MPa and GRT = 79 MPa were used for the Specimen 1 beams. Accordingly,
EL = 9968 MPa, GLT = GLR = 279 MPa and GRT = 134 MPa were used for the
Specimen 2 beams. The shear moduli presented above represent the values calculated
analytically with Timoshenko theory, according to Equations 4.12 and 4.14. For the
shear moduli parallel to grain, the gross area Agross was used in the Equation 4.12.
Furthermore, the values correspond to those of beam 1, and beam 4 presented later in
Chapter 5.

As a comparison, the shear stresses were calculated according to BE-theory with re-
spect to a rectangular cross section. The max shear stresses occur in the middle of
the cross section and considering the gross area Agross and gross moment of inertia
Ix,gross,z the expression takes the following form

τXY =
3

2

VY
Agross

(3.2)

where

VY is the shear force, calculated with respect to the symmetry planes in

the X- and Z-directions as 4F/2, where F is the reaction force calculated in

the reference point.

Agross is the gross area, 0.01 m2 for the Specimen 1 and 2 beam, respectively.

The reaction force F was calculated as 1134 N for the Specimen 1 beam, and 5187 N
for the Specimen 2 beam. According to Equation 3.2 this results in a shear stress τXY

of 0.34 MPa and 1.56 MPa for the Specimen 1 and Specimen 2 beam, respectively.

It can be seen from Figures 3.14 and 3.16 that the area beneath the curves of the shear
stresses corresponding to BE-theory and Path 5 are seemingly equal, indicating that
the total shear flow is the same in the mid section, and that the gross area is a good
representation of the shear stress distribution in the middle of the transverse boards.
Considering Path 4 in Figures 3.14 and 3.16, the shear stresses assume different values
at certain coordinates. Furthermore, the shear stresses should equal to zero in the
transverse layer (0≤Z≤40) and the gradients between the points could be misleading
at the intersections as these are connected linearly. These discrepancies are a result
of the coarse mesh in combination with the extrapolation and approximation of the
stresses in the integration points [28, 29].

Analysing Figures 3.13 and 3.15 a transfer of shear stresses between the longitudinal
and transverse layers can be seen, where the edge-gap between the transverse boards
are located. This is a consequence of shear stresses not able to transfer between
non-edge glued boards, and results in the spikes seen in the graphs, where these are
more distinct for the longitudinal layers encased between two transverse layers. By
looking at Figures 3.14 and 3.16 it can be seen that the shear stress distribution in
the mid section of the transverse layer analysed is rather homogeneous. A comparison
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between the shear stresses of the mid section of the transverse and longitudinal layers
(i.e. Z =10 mm, Z =30 mm and Z =50 mm) in Figures 3.14 and 3.16 were made for
for path 5. In both cases the shear stresses in the longitudinal layer compared to the
transverse layer did not exceed 40 %.

Based on the results of this chapter, compared to the assumption made in Section 2.4.3
(where it is assumed that no shear stresses are transferred in the transverse layers for
in-plane loading), it is more likely that a upper bound value of the area, closer to
Agross would produce better results than using Anet.
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Figure 3.13: Path definitions and global coordinates for the corner points of the
Specimen 1 beam model. The X-coordinates for the centre points of the
support and load application are 50 mm and 750 mm, respectively.
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Figure 3.14: Path definitions and global coordinates for the corner points of Specimen 1
beam model. The longitudinal boards are located within the ranges of
Z = 0–20 mm and Z = 40–50 mm. The transverse boards are located within
the range of Z = 20–40 mm.
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Figure 3.15: Path definitions and global coordinates for the corner points of Specimen 2
beam model. The X-coordinates for the centre points of the support and
load application are 150 mm and 450 mm, respectively.
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Figure 3.16: Path definitions and global coordinates for the corner points of Specimen 2
beam model. The longitudinal boards are located within the range of
Z = 20–40 mm. The transverse boards are located within the ranges of
Z = 0–20 mm and Z = 40–50 mm
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4 Testing and evaluation methods

4.1 Specimen preparation

A 5-layer symmetrical CLT plate was used for the beam cut-outs. The constituent
boards of the plate were 20 mm thick and approximately 146–147 mm wide. The
total thickness of the plate was 100 mm. The material was provided by a Swedish
manufacturer, Södra [30] and originated from cut-outs for door openings. The wood
was produced from Norway spruce and the boards were of quality C24. In production
Polyurethane was used for face gluing and no structural edge gluing was performed.
There were also no edge gaps between the boards. Boards containing finger joints were
used, and can be assumed to be present in each beam, respectively.

Nine prismatic beam specimen with a square cross section of 100×100 mm2 were
cut out from the CLT, see Figure 4.1. The beams were cut in two directions with
regard to the outermost boards: in the direction of the boards and perpendicular
to the boards. Thus, the cut out beams had the outermost boards oriented in the
longitudinal direction of the beam (denoted Specimen 1) or in the transverse direction
of the beam (denoted Specimen 2). Specimen 1 was cut to a length of 1500 mm and
Specimen 2 was cut to a length of 900 mm. Cutting was done centrically in regards to
the longitudinal boards, resulting in only one board being present in the longitudinal
layers of the beam. As the beams were somewhat shorter in length than the original
length and width of the CLT plate, the outermost transverse layers of the beams were
asymmetrical in the regard that they were of different width. This was mainly affecting
the Specimen 2 beams.
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Figure 4.1: CLT plate and cut-out pattern of the beams.

Before the tests, each beam was also measured to control the that the length, width
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and height coincided with the prescribed dimensions. The weight was measured in
order calculate the density. The moisture content (MC) was measured with a testo-
606-2 moisture meter in six different locations of each beam. Three times on the side
of the beam in one of the middle longitudinal layers: in the middle and 5 cm from each
end. Three times on the top of the beam, if the top layer consists of a longitudinal
board: in the middle and 5 cm from each end. The moisture meter could only measure
the MC in the interval of 8.8 % to 54.8 % in relation to the dry weight (0 % MC) of
the wood. As the beams were initially very dry from acclimatizing too fast, containing
drying cracks both in the longitudinal and transverse boards, a subjective grading of
the cracks was created in order to note possible deviations due to severe cracks. The
grading is as follows:

1. A few cracks in the transverse and longitudinal layers. No cracks exceed 1 mm
in width.

2. A few cracks in the transverse and longitudinal layers. Some cracks exceed 1 mm
in width.

3. Many cracks in the transverse and longitudinal layers. Many cracks exceed 1 mm
in width.

The result of the measurements are presented in Tables 4.1 and 4.2.

Table 4.1: Geometric measurements (including weight and density) for each beam.

Beam
Length

[m]
Weight

[g]
Cross section, b×h

[m]
Density
[kg/m3]

1 0.901 3980.0 100×99 446
2 0.900 4474.8 100×99 502
3 0.901 4414.2 100×99 495
4 1.500 7386.7 100×99 497
5 1.500 7731.7 100×99 521
6 1.500 7269.2 100×100 485
7 1.500 6992.5 100×100 466
8 1.499 7164.4 99×99 488
9 1.499 6589.2 99×99 448

Table 4.2: Moisture content and subjective grading of drying for each beam.

Beam
Mean moisture content

[%]
Grade

[-]
1 <8.8 3
2 <8.8 3
3 <8.8 3
4 <8.8 2
5 <8.8 3
6 <8.8 1
7 <8.8 1
8 <8.8 3
9 <8.8 2
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4.2 Equipment

The tests were carried out using a ”MTS 810 servo-hydraulic testing machine” [31]
under displacement control (in resemblance to what was done in a similar project [32]).
A pre-fabricated loading rig, consisting of an I-beam welded to a clamping plate was
mounted on the MTS machine. The boundaries and the beam were then mounted on
top of the I-beam. Steel plates of size 50×100 mm2 were placed at the supports and
loading point to reduce local indentations. The test setup is shown schematically in
Figure 4.2, and pictures from experimental tests can be seen in Appendix B.

P

w

L

Figure 4.2: Schematic illustration of the test setup.

The bottom piston governs the translation of the I-beam in the upwards direction,
whereas the relative deformation w of the beam is measured in the linear variable
differential transformer (LVDT) of the bottom piston. The beams were loaded to an
extent where the maximum bending or shear stress in any point of the beam did not
exceed approximately 40 % of the expected capacity, according to Table 2.1. The
load was applied through a steel cylinder, assuming a line load over the width of
the beam. The loading rate was adjusted accordingly in order to reach the max-
imum load value after a period of 3–5 minutes. However, due to the high variance of
mechanical properties of the beams, the maximum load value in reality was reached
after 3–12 minutes. The sampling rate used was 5 Hz and the cross-head speed var-
ied between 0.004–0.010 mm/s including the first tests where the loading speed, span
length and sensitivity of the tests were calibrated.

The test parameters relating to maximum stress (or load) and loading rate were de-
rived from specifications SS-EN 408 [14]. However, these specifications are stated for
methods with different loading conditions and were used as reference but not strictly
followed. Therefore, some discrepancies may occur within this project, e.g the stresses
being slightly higher at some point of the cross section, or that the max load is reached
after a time slightly exceeding the specifications for some tests. The following specific-
ations are stated in [14]:

• The maximum load applied shall not exceed 0.4 Pmax of the capacity.

• Load P shall be applied at a constant rate of loading-head movement so adjusted
that the load Pmax is reached within (300 ± 120) s.
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4.3 Specimen setups

Each beam was tested with two different spans, denoted as setups, where the supports
were adjusted symmetrically around the centre of the beam in the longitudinal direc-
tion. Furthermore, each beam were tested for both in-plane loading and out-of-plane
loading. Thus, each specimen was tested two times for each setup, i.e. four times in
total. For the nine beam specimen that were cut out, a total of 36 tests were per-
formed, excluding any tests that were done for calibration purposes. The setups for
each specimen, respectively, are shown in Figures 4.4 and 4.5, where both the local
coordinate system for the beam (X, Y ), and the global coordinate system for the plate
is illustrated (x, y) as well.

The following naming pattern were used to quantify the measured data from the
experiments, see Figure 4.3

Specimen 1 tests

beam4_l10_00_01

beam4_l10_90_01

beam4_l14_00_01

beam4_l14_90_01

.

.

.

.

.

.

.

.

.

.

.

.

beam9_l10_00_01

beam9_l10_90_01

beam9_l14_00_01

beam9_l14_90_01

Specimen 2 tests

beam4_l10_00_01

beam nr. cut out

from CLT plate

span length, l060 = 0.60 m

l084 = 0.84 m

l10 = 1.0 m

l14 = 1.4 m

beam rotation, 00 = out-of-plane loading

   90 = in-plane loading

beam test nr, 00 = acclimatization test

            01 = measured test

beam1_l060_00_01

beam1_l060_90_01

beam1_l084_00_01

beam1_l084_90_01

.

.

.

.

.

.

.

.

.

.

.

.

beam3_l060_00_01

beam3_l060_90_01

beam3_l084_00_01

beam3_l084_90_01

Figure 4.3: Naming pattern for quantifying experimental data. Note that the lists only
show the measured data used. For every measured test, a calibration test was
performed before.
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(d) Setup 2, rotated 90◦.

Figure 4.4: Setups for the Specimen 1 tests.
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P

L

4

 = 0.84 m

X

Z

Y

Z

z

y

(c) Setup 4.

P

L

4

 = 0.84 m

X

Z

Y

Z

x

y

(d) Setup 4, rotated 90◦.

Figure 4.5: Setups for the Specimen 2 tests.
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4.4 Evaluation methods

In order to characterise the stiffness properties of the CLT beams, the analytical expres-
sions established in Sections 2.5.1 and 2.5.2 were applied. By reformulating Equations
2.24 and 2.25 with respect to the mid span of the beam (X = L/2), Equations 4.1
and 4.2 are obtained. Equation 4.1 signifies the mid span deformation according to
the Gamma method

w(L/2) =
P

12 · E0Ix,ef
·
(
L

2

)3

− PL2

16 · E0Ix,net
· L

2

w =
PL3

48 · E0Ix,ef

(4.1)

and Equation 4.2 signifies the mid span deformation according to Timoshenko theory

w(L/2) =
P

12 · E0Ix,net

(
L

2

)3

− P

E0Ix,net
(
L

16

2

− α

2
) · L

2

w =
PL3

48 · E0Ix,net
+

PLα

4 · E0Ix,net

(4.2)

where

E = E0 is the MoE parallel to grain.

Ix,net is the net moment of inertia with respect to the global axes

and load cases, as shown in Figure 2.5. It is calculated as

Ix,net,z when in-plane loading is considered, and as

Ix,net,y when out-of-plane loading is considered.

Considering the constituent stiffness properties that govern Equations 4.1 and 4.2, it
can be seen that Equation 4.1 is governed by E0 and GR through Ix,ef . Equation
4.2 is governed by E0, G0 for in-plane loading, and E0, G0 and GR for out-of-plane
loading. As mentioned previously in Section 1.3, the approach was to first characterise
E0 and G0 from in-plane bending tests, whereas Equation 4.2 was used. Consequently,
Equation 4.2 was simplified by using Equation 2.32

w =
PL3

48 · E0Ix,net,z
+

3 · PL
10 ·G0A

(4.3)

where

A is the assumed effective area of the cross section, given

by either Anet or Agross, according to Section 2.5.2.

κ = 5/6 is the shear correction coefficient of a rectangular

cross section.

SS-EN 408 [14] specifies that the MoE for a beam exerted to 4-point bending can be
characterised from force-deformation data obtained experimentally, where the section
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between 0.1Pmax < P < 0.4Pmax should be used. This methodology was adopted with
discrepancies due to the different loading conditions in this project. For example,
the interval was changed to 0.5Pmax < P < Pmax as the tested specimen in this
project are only loaded to approximately 40 % of their characteristic strength in total.
Using all the data points within this interval a linear regression was performed using
MATLAB [33], and the built in function fitlm [34], see Appendix D. The resulting
relation between load and deformation for the regression takes the following form

P̄ = w̄k + q (4.4)

where
P̄ is the total applied load.

w̄ is the deflection.

k =
∆P̄

∆w̄
is the slope of regression line.

q is the intercept of regression line.

SS-EN 408 [14] also states that the coefficient of correlation r must be 0.99 or higher
for the regression line, if the slope k is to be used to characterise the MoE. If this is
not fulfilled, the regression has to be disregarded. The slope k can also be seen as the
equivalent stiffness of the beam, with respect to linear elastic conditions. Reformu-
lating Equation 4.3 with respect to k, and solving for either E0 or G0 results in four
expressions for in-plane loading and Timoshenko theory considered

E0 =
10 ·G0AkL

3

480 ·G0Ix,net,zA− 144 · Ix,net,zkL
(4.5)

G0 =
144 · E0Ix,net,zkL

480 · E0Ix,net,zA− 10 · AkL3
(4.6)

E0 =
kL3

48 · Ix,net,z
+
E0

G0

3 · kL
10 · A

(4.7)

G0 =
G0

E0

kL3

48 · Ix,net,z
+

3 · kL
10 · A

(4.8)

Two methods of utilising Equations 4.5 and 4.6 to characterise E0 and G0 were con-
sidered. The simpler of the two methods is to assume a value of G0 in Equation
4.5 and solve for E0, and correspondingly, assume a value of E0 in Equation 4.6 and
solve for G0. This method requires only one test, as the Equations are solved for
one unknown parameter, respectively. However, the drawback of this method is that
the characterised properties are sensitive to the assumptions. The other method is to
establish equation systems based on the data of two individual tests, corresponding
to testing two different span of the same beam with respect to in-plane loading. The
equation systems were solved numerically with the built in MATLAB function fzero
[35]. More specifically, the equation system with respect to Equation 4.5 would be
used to characterise G0, and the equation system with respect to Equation 4.6 would
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be used to characterise E0. The equation systems are presented later in Section 4.5 as
Equations 4.11 and 4.12.

Equations 4.7 and 4.8 were solved by assuming a relation between E0 andG0. Relations
between the stiffness parameters can be found in literature and design codes. One
example is derived from [36], where a relation between E0/G0 = 16 can be found for
C24 timber, although it is not explicitly stated. This method suffer the same drawback
of the first method described above, namely, that it is sensitive to the assumption of
the ratio. Assuming the wrong ratio might result in non-realistic values of E0 and G0.

In accordance to the procedure above for characterising E0 and G0 from data obtained
from in-plane loading tests, similar expressions can also be formulated for character-
ising GR from data obtained from out-of-plane loading tests. These expressions also
include the equivalent stiffness k, uniquely determined for each tested span and beam,
with respect to out-of-plane loading. Furthermore, these expressions are based on
that the parameter E0 (and G0 when Timoshenko theory is utilised) have been previ-
ously characterised. As GR is embedded in the parameters Ix,ef in Equation 4.1, and
κ in Equation 4.2, solving the equations for GR in accordance to Equations 4.5–4.8
becomes quite cumbersome. However, by using MATLAB and fzero the equations
for characterising GR can be formulated differently. By reformulating Equations 4.1
and 4.2 with respect to k, two expressions for solving GR are obtained. Equation 4.9
represents the Gamma method with respect to out-of-plane loading

kL3

48 · EIx,ef
− 1 = 0 (4.9)

where
Ix,ef is the effective moment of inertia calculated with

Equation 2.16 for a 5-layer CLT-beam, or

Equation 2.19 for a 3-layer CLT-beam.

Equation 4.10 represents Timoshenko theory with respect to out-of-plane loading

kL3

48 · E0Ix,net
+

kLα

4 · E0Ix,net
− 1 = 0 (4.10)

where
α is the ratio between the bending stiffness and

effective shear stiffness, calculated with

Equation 2.33 for a 5-layer CLT-beam, or

Equation 2.34 for a 3-layer CLT-beam.

When characterising GR according to Equation 4.10, κ can either be calculated with
Equations 2.27–2.31, according to Section 2.5.2, or assume the approximated values
according to Section 2.5.3. Use of Equations 4.9 and 4.10 is presented in Section 4.5
by Equations 4.13 and 4.14.
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4.5 Preliminary testing

The alternative test method could be sensitive to loading speed, sampling frequency,
boundary conditions, loading conditions, accuracy of measurements, beam inhomo-
geneities, stress distribution, local indentation and possibly other not mentioned para-
meters. All of these parameters could affect the reliability, i.e. to what extent the
results can be reproduced when repeated under the same conditions, and the validity,
i.e. how well the results measure what they are intended to measure. For a complete
collection of the preliminary test results, as well as the corresponding load-deformation
graphs, it is referred to Appendix A.

In order to test the reliability a beam specimen was chosen at random (beam number
5, according to Figure 2.4), whereas a number of tests both in-plane and out-of-plane
were performed according to Figure 4.4, a) - d). The tests were conducted for span
lengths of 1.0 m and 1.4 m, corresponding to a height to length ratio of 10:1 and 14:1,
respectively. For the results of the preliminary tests, see Appendix A. Most of the tests
were performed in a sequence, meaning that the beam was loaded, unloaded and then
directly loaded again. For some of the tests considering a span of 1.4 m the sensitivity
to measurements were also controlled for. This was done by remounting the beam in
between each test. For these tests the beam was also rotated 180◦ as opposed to the
previous setups. As can be seen from Table 4.3 the coefficient of variation is below 3
% for all tests, indicating a good reliability. Furthermore, by looking at the results of
Table A.1 in Appendix A, a slight increase in the stiffness coefficient k can be noted
after each subsequent test.

Table 4.3: Mean values, standard deviation and the coefficient of variation of the
measured stiffness coefficients.

Beam5 l10 00 01-05 l10 90 01-03 l14 00 01-06 l14 90 01-05
mean, k 2476 2851 1212 1193
std 49 66 16 18
cov 1.97 % 2.32 % 1.35 % 1.53 %

In order to test the validity of the different analytical methods, the data from the pre-
liminary test was used in conjunction with the methods presented in Section 4.4. The
purpose was to evaluate if the resulting stiffness properties are characterised within
a reasonable interval, e.g. according to Table 2.2. Note that Table 2.2 was only used
for reference as the presented stiffness properties are derived with respect to Norway
spruce and clear wood. Considering Equations 4.5–4.8, these equations were based
on assumptions being made for the different moduli or ratio. These assumptions
are presented below, along with definitions of the different characterised moduli with
respect to each method, respectively. Furthermore, the MoE was also calculated ac-
cording to BE-theory, using Equation 4.1 with respect to Ix,net,z instead of Ix,ef . This
was used as a comparative lower-end reference value, as the characterised MoE by
means of Timoshenko theory were expected to be of greater value.
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The following definitions refer to Table 4.4 and concern the MoE and shear modulus
parallel to grain (E0 and G0).

E0,1 was calculated with BE-theory, as mentioned previously.

E0,2 was calculated with Equation 4.5, where G0 was assumed as

700 MPa according to Table 2.2.

E0,3 was calculated with Equation 4.7, where a ratio of E0/G0 = 16

was assumed according to Section 4.4.

G0,1 was calculated with Equation 4.6, where E0 was

assumed as 14000 MPa according to Table 2.2.

G0,2 was calculated with Equation 4.8, where a ratio of G0/E0 = 1/16

was assumed according to Section 4.4.

Table 4.4: Moduli of elasticity, and longitudinal shear moduli with respect to the data
from the preliminary tests. Note that each value corresponds to one test, see
Figure 4.3.

Pmax

[N]
k

[N/mm]
r
[-]

q
[N]

E0,1

[MPa]
E0,2

[MPa]
E0,3

[MPa]
G0,1

[MPa]
G0,2

[MPa]
Beam5 l10 90 01 4014 2776 0.999 -2171 11565 13127 12898 479 806
Beam5 l10 90 02 4035 2875 0.999 -1887 11981 13665 13361 598 835
Beam5 l10 90 03 4007 2901 0.999 -1930 12087 13803 13480 637 842
Beam5 l14 90 01 2864 1167 0.999 -840 13345 14349 14129 1047 883
Beam5 l14 90 02 2869 1204 0.999 -893 13761 14832 14570 2964 911
Beam5 l14 90 03 2867 1216 0.999 -812 13899 14993 14716 7099 920
Beam5 l14 90 04 2862 1187 0.999 -834 13575 14617 14373 1644 898
Beam5 l14 90 05 2869 1191 1.000 -792 13622 14671 14423 1855 901

As can be seen from Table 4.4 seemingly reasonable values are obtained for all meth-
ods except for G0,1, where the assumption of E0 resulted in non-realistic results. By
analysing Figures A.1 and A.2 in Appendix A a distinct shift in slope in the begin-
ning of the curves can be noted. This is most likely mainly caused by a slight gap
between the one end underlying steel plate and the cylindrical solid used to apply
the load, as shown in Appendix B. The gap was measured as approximately 1 mm,
which corresponds to the slope of Figures A.1 and A.2 in Appendix A. Furthermore,
after the load is evenly applied, a slight shift in slope can be seen before the curves
assumes a constant slope. This is probably caused by redistribution of stresses and
irregularities. However, due to the interval chosen for the regression, the irregularities
and imperfections did not seem to affect the equivalent stiffness k, and consequently
the stiffness properties.

However, as previously mentioned the stiffness properties found in Table 4.4 are gov-
erned by assumptions. Every tested beam specimen will posses large varieties in ma-
terial properties, which in turn will be reflected by the measured equivalent stiffness k.
Based on the assumption made, the characterised stiffness properties would be more
or less accurate depending on the tested beam specimen. Thus, utilising assumptions
would require knowledge about the stiffness properties of the beam prior to testing it.
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A more consistent method of characterising E0 and G0 is through equation systems,
as described in Section 4.4. In order to test this method the mean value of k was
calculated for each setup and orientation, see Table 4.3. Equations 4.5 and 4.6 were
utilised in order to create the equation systems by determining E0 and G0 from a
system of two equations based on two tests performed on the same beam, but using
different span lengths (L1 and L2). Based on tested setups, see Figure 4.4 (b) and (d),
the equation system took the following form

144 · E0Ix,net,zk1L1

480 · E0Ix,net,zA− 10 · Ak1L3
1

− 144 · E0Ix,net,zk2L2

480 · E0Ix,net,zA− 10 · Ak2L3
2

= 0 (4.11)

10 ·G0Ak1L
3
1

480 ·G0Ix,net,zA+ 144 · Ix,net,zk1L1

− 10 ·G0Ak2L
3
2

480 ·G0Ix,net,zA+ 144 · Ix,net,zk2L2

= 0 (4.12)

where

k1 is the mean equivalent stiffness of the setup 1 in-plane tests.

k2 is the mean equivalent stiffness of the setup 2 in-plane tests.

L1 is the span of the beam according to setup 1.

L2 is the span of the beam according to setup 2.

A is the gross area, Agross.

The resulting stiffness properties were characterised as E0 = 16760 MPa and G0 =
294 MPa, corresponding to a ratio of E0/G0 = 57. This method yielded a substantially
higher MoE, and lower shear modulus parallel to grain, when compared to Table 4.4.
Furthermore, these stiffness properties were used in conjunction with the mean values
of k for the out-of-plane bending tests, with respect to the two tested span (see Table
4.3). The rolling shear modulus GR was calculated for with the Gamma method
according to Equation 4.9

kjL
3
j

48 · EIx,ef
− 1 = 0 (4.13)

and with Timoshenko theory according to Equation 4.10

kjL
3
j

48 · E0Ix,net
+

kjLjα

4 · E0Ix,net
− 1 = 0 (4.14)

where

j denotes the considered setup (span), with respect to out-of-plane loading.

kj is the (mean) equivalent stiffness of the considered tests for setup j.

Lj is the span of beam for the considered setup j.

Using the Gamma method (Equation 4.13) resulted in the rolling shear moduli being
characterised as GR = 54 MPa for both span, L1 = 1.0 m and L2 = 1.4 m.

Using Timoshenko theory (Equation 4.14), where κ was calculated numerically, res-
ulted in the rolling shear moduli being characterised as GR = 87 MPa and GR = 84
MPa for both span, L1 = 1.0 m and L2 = 1.4 m.
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Using Timoshenko theory (Equation 4.14), where κ was approximated as 0.24 ac-
cording to Section 2.5.3, resulted in the rolling shear moduli being characterised as
GR = 768 MPa and GR = 742 MPa for both span, L1 = 1.0 m MPa and L2 = 1.4 m.

A high validity of the characterised stiffness properties using equation systems was
indicated by the consistent yield of values within the ranges suggested by Table 2.2. It
should however, be noted that the MoE parallel to grain resulting from the equation
systems was slightly higher than expected, whereas the shear modulus parallel to
grain was significantly lower than expected. The rolling shear moduli characterised
by means of the Gamma method were slightly lower than expected. Considering
Timoshenko theory, the method using the approximate value of κ was disregarded,
as it resulted in non-realistic values of the rolling shear moduli. The most significant
results were obtained from using Timoshenko theory, with respect to κ being calculated
numerically. Realistic values of the rolling shear moduli were obtained, which based
on the slightly higher values, also indicated that the annual ring pattern was taken
into consideration.

In conclusion, the analytical approach using equation systems referring to Equations
4.11–4.14 was considered the most practical approach considering the consistency of
the method. The analytical methods based on Equations 4.5–4.8 were disregarded and
not further evaluated within this project, due to the inconsistency of the characterised
moduli with respect to the assumptions made.

Lastly, conclusions were also made for the tested setup. The height to length ratio
of 1:10 and 1:14, with respect to the Specimen 1 beams, was deemed appropriate for
further tests. Correspondingly, this relation was also applied to the Specimen 2 beams.
As the equivalent height of these beams are 60 mm (out-of-plane loading considered),
the corresponding spans were chosen as L1 = 0.6 m and L2 = 0.84, respectively.

The loading speed, sampling frequency, boundary conditions and loading conditions
used were also calibrated through the preliminary tests, whereas the final results have
been previously described in Section 4.2. The same conditions were applied for both
the Specimen 1 and 2 tests.

The size of the steel plates used to reduce local indentations were controlled for by
calculating the local deformation for the beam with the greatest load. The local
indentation was assumed to only occur in the outermost layer, with a thickness of
20 mm. This resulted in a maximum local deformation within the range of 10−5 m,
which was deemed negligible.

In order to account for the slight increase of k after each consequent test, as can be seen
in Appendix A, an ”acclimatization test” where the beam is loaded to approximately
40 % of its capacity was performed prior to every measured test henceforth.
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5 Results

5.1 Stiffness properties

The stiffness properties presented in this section are based of the analytical method
using Equation systems 4.11–4.14, as described in Sections 4.4 and 4.5. The MoE in
the longitudinal direction E0 is obtained as a single value for each beam, respectively.
The longitudinal shear moduli, G0,net and G0,gross depend on the cross-sectional area
used in the analysis, whereas the relation between the two moduli equals that of the
corresponding two areas Anet and Agross. For the Specimen 1 beams the relation is
Anet/Agross = 0.6 and for the Specimen 2 beams the relation is Anet/Agross = 0.4.
Consequently, using Timoshenko theory the rolling shear moduli will differ depending
on what value of the longitudinal shear modulus is used in the equation system. Fur-
ther, as Equation systems 4.13 and 4.14 are based on a single unknown parameter,
GR, one modulus can be calculated for each span of the tested beams. Therefore, the
rolling shear moduli using Timoshenko theory are presented as GR1,net or GR1,gross for
the short span beams, and GR2,net or GR2,gross for the long span beams. The rolling
shear moduli calculated with the Gamma method is independent of G0. Therefore,
only two rolling shear moduli, GR1, and GR2 are presented for the two spans of each
beam, respectively.

5.1.1 Specimen 1 beams

The results for the Specimen 1 beams, corresponding to the tested beams 4 – 9 (with
a total length of 1.5 m) in terms of E0, G0,net and G0,gross are given in Table 5.1.
The variables k1 and k2 signify the measured equivalent stiffness for L1 = 1.0 m and
L2 = 1.4 m, respectively. Equations used for calculations are also given in the table.

The results in terms of GR1, GR2, GR1,net, GR2,net, GR1,gross and GR2,gross are given in
Table 5.2, where the indices 1 and 2 correspond to a span of L1 = 1.0 m and L2 = 1.4
m, respectively. Equations used for calculations are also given in the table.

Studying the mean values of the stiffness parameters given in Table 5.1 and 5.2 shows
that using G0,gross instead of G0,net corresponds to an increase of approximately 10 %
for the resulting rolling shear moduli, whereas the longitudinal shear moduli decreases
with 40 %, due to the 40 % difference in assumed effective area.
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Table 5.1: Moduli of elasticity E0 and longitudinal shear moduli G0 for the Specimen 1
beams, calculated analytically with Timoshenko theory.

k1
[N/mm]

k2
[N/mm]

E0

[MPa]
(4.11)

G0,net

[MPa]
(4.12)

G0,gross

[MPa]
(4.12)

Beam 4 2629 1120 15622 435 261
Beam 5 2910 1216 16419 556 334
Beam 6 2506 1018 13220 597 358
Beam 7 2280 927 12063 537 322
Beam 8 2623 1087 14497 533 320
Beam 9 2001 814 10599 469 282
mean 2490 1031 13737 521 313
std 314 144 2202 59 35
cov 12.62 % 13.94 % 16.03 % 11.31 % 11.31 %

Table 5.2: Rolling shear moduli GR for the Specimen 1 beams, calculated analytically
with the Gamma method or Timoshenko theory.

Gamma method
Timoshenko theory

(calculated with G0,net or G0,gross)

k1
[N/mm]

k2
[N/mm]

GR1

[MPa]
(4.13)

GR2

[MPa]
(4.13)

GR1,net

[MPa]
(4.14)

GR2,net

[MPa]
(4.14)

GR1,gross

[MPa]
(4.14)

GR2,gross

[MPa]
(4.14)

Beam 4 2343 1127 52 50 76 71 85 79
Beam 5 2509 1212 57 56 81 78 89 85
Beam 6 2205 1025 55 52 77 71 83 77
Beam 7 2012 909 50 44 70 59 76 64
Beam 8 2293 1053 54 47 76 65 83 70
Beam 9 1883 844 51 45 72 63 79 69
mean 2208 1028 53 49 75 68 83 74
std 228 136 3 5 4 7 4 8
cov 10.33 % 13.20 % 4.87 % 9.24 % 5.07 % 10.00 % 5.34 % 10.72 %

5.1.2 Specimen 2 beams

The results for the Specimen 2 beams, corresponding to the tested beams 1 – 3 (with
a total length of 0.9 m) in terms of E0, G0,net and G0,gross are given in Table 5.3.
The variables k1 and k2 signify the measured equivalent stiffness for L3 = 0.6 m and
L4 = 0.84 m, respectively. Equations used for calculations are also given in the table.

The results in terms of GR1, GR2, GR1,net, GR2,net, GR1,gross and GR2,gross are given in
Table 5.4, where the indices 1 and 2 correspond to a span of L3 = 0.6 m and L4 = 0.84
m, respectively. Equations used for calculations are also given in the table.

Studying the mean values of the stiffness parameters given in Table 5.3 and 5.4 shows
that using G0,gross instead of G0,net corresponds to an increase of approximately 24 %
for the resulting rolling shear moduli, whereas the longitudinal shear moduli decreases
with 60 %, due to the 60 % difference in assumed effective area.
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Table 5.3: Moduli of elasticity E0 and longitudinal shear moduli G0 for the Specimen 2
beams, calculated analytically with Timoshenko theory.

k1
[N/mm]

k2
[N/mm]

E0

[MPa]
(4.11)

G0,net

[MPa]
(4.12)

G0,gross

[MPa]
(4.12)

Beam 1 5001 2165 9968 697 279
Beam 2 6518 2954 14659 734 294
Beam 3 6295 3070 17559 549 220
mean 5938 2729 14062 660 264
std 819 493 3830 98 39
cov 13.80 % 18.05 % 27.24 % 14.84 % 14.84 %

Table 5.4: Rolling shear moduli GR for the Specimen 2 beams, calculated analytically
with the Gamma method and Timoshenko theory.

Gamma method
Timoshenko theory

(calculated with G0,net or G0,gross)

k1
[N/mm]

k2
[N/mm]

GR1

[MPa]
(4.13)

GR2

[MPa]
(4.13)

GR1,net

[MPa]
(4.14)

GR2,net

[MPa]
(4.14)

GR1,gross

[MPa]
(4.14)

GR2,gross

[MPa]
(4.14)

Beam 1 2336 1066 20 52 108 114 134 144
Beam 2 2833 1356 -12 29 102 99 123 120
Beam 3 2828 1479 -40 15 88 95 111 122
mean 2666 1300 -11 32 99 103 123 128
std 286 212 30 19 10 10 12 13
cov 10.72 % 16.32 % - 58.40 % 10.04% 9.74% 9.45 % 10.44 %

5.1.3 Summary

All of the stiffness properties calculated for beams 1–9 are presented in Table 5.5,
together with non-weighted mean values of each property, respectively. Furthermore,
a comparison between the clear wood properties, referring to Table 2.1 in Section 2.3,
and the characterised properties is given in Table 5.6.

Table 5.5: Summary of stiffness properties presented in Sections 5.1.1 and 5.1.2.

E0

[MPa]
G0,net

[MPa]
G0,gross

[MPa]
GR1

[MPa]
GR2

[MPa]
GR1,net

[MPa]
GR2,net

[MPa]
GR1,gross

[MPa]
GR2,gross

[MPa]
Beam 1 9968 697 279 20 52 108 114 134 144
Beam 2 14659 734 294 -12 29 102 99 123 120
Beam 3 17559 549 220 -40 15 88 95 111 122
Beam 4 15622 435 261 52 50 76 71 85 79
Beam 5 16419 556 334 57 56 81 78 89 85
Beam 6 13220 597 358 55 52 77 71 83 77
Beam 7 12063 537 322 50 44 70 59 76 64
Beam 8 14497 533 320 54 47 76 65 83 70
Beam 9 10599 469 282 51 45 72 63 79 69
mean 13845 567 296 32 43 83 79 96 92
std 2445 91 40 33 12 13 18 20 27
cov 17.66 % 16.10 % 13.34 % 104.60 % 28.50 % 15.14 % 22.36 % 20.88 % 29.45 %
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Table 5.6: Comparison between clear wood properties and corresponding characterised
properties of CLT beams.

Clear wood prop. Characterised stiffness prop.
Norway spruce [7]

[MPa]
Specimen 1

[MPa]
Specimen 2

[MPa]
EL 13500 – 16700 E0 10599 – 16419 9968 – 17559

GLT 500 – 850 G0,net 435 – 597 549 – 734
G0,gross 261 – 358 220 – 294

GRT 29 – 39 GR 45 – 57 -40 – 52
GR,net 59 – 81 88 – 114
GR,gross 64 – 89 111 – 144
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5.2 Finite element models

The results presented in the tables of this section are calculated with the FE-models
described in Sections 3.4.1 and 3.4.2. For every beam tested in laboratory, a com-
bination of stiffness properties E0, G0 and GR have been presented according to the
Gamma method or Timoshenko theory, see Table 5.5. These combinations of stiffness
properties were used in the FE-models where the combinations depend on the load
case, specimen type or span length. The load case is characterised by either out-of-
plane loading, corresponding to the 2D-models, or in-plane loading, corresponding to
the 3D-models. The specimen type is characterised by either the Specimen 1 beams
(with a length of 0.9 m), or the Specimen 2 beams (with a length of 1.5 m). The
span is either L1 = 1.0 m or L2 = 1.4 m for the Specimen 2 beams, or L3 = 0.6 m or
L4 = 0.84 m for the Specimen 1 beams.

Tables depicting the varying stiffness properties used for each combination are presen-
ted, followed by tables presenting both the measured equivalent stiffness kt as well as
the calculated equivalent stiffness km from the FE-model. The ratio between km and
kt signify how well the stiffness properties derived by analytical models correspond
to the total stiffness of the FE-models. The ratio can be used to analyse the valid-
ity of the calculated stiffness properties. Tables 3.1 and 3.2 from Sections 3.4.1 and
3.4.2 are shown below in order to illustrate the assumed constant and varying stiffness
properties used for each model, respectively.

Table 5.7: Stiffness properties used for the longitudinal and transverse boards in the
2D-models, where EL = E0, GLT = GLR = G0 and GRT = GR.

Longitudinal boards Transverse boards
E1 = ET [MPa] 800 E1 = ER [MPa] 800
E2 = EL [MPa] var. E2 = ET [MPa] 500
ν12 = νLT 0.02 ν12 = νRT 0.3
G12 = GLT [MPa] var. G12 = GRT [MPa] var.
G13 = GRT [MPa] var. G13 = GLT [MPa] var.
G23 = GLR [MPa] var. G23 = GLR [MPa] var.

Table 5.8: Stiffness properties used for the longitudinal and transverse boards in the
3D-models, where EL = E0, GLT = GLR = G0 and GRT = GR.

Longitudinal boards Transverse boards
E1 = ET [MPa] 500 E1 = EL [MPa] var.
E2 = EL [MPa] var. E2 = ET [MPa] 500
E3 = ER [MPa] 800 E3 = ER [MPa] 800
ν12 = νLT 0.02 ν12 = νLT 0.02
ν13 = νRT 0.3 ν13 = νLR 0.02
ν23 = νLR 0.02 ν23 = νRT 0.3
G12 = GLT [MPa] var. G12 = GLT [MPa] var.
G13 = GRT [MPa] var. G13 = GLR [MPa] var.
G23 = GLR [MPa] var. G23 = GRT [MPa] var.
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5.2.1 Specimen 1 beams

For the Specimen 1 beams four different combinations of stiffness properties based
of the results from Section 5.1 were tested. These are denoted ”Test A–D” and are
specified further below. For a collection of the stiffness properties used it is referenced
to Table 5.5.

Test A – Timoshenko theory (net area) & Gamma method

The longitudinal shear moduli G0,net are calculated with Timoshenko theory and are
based of the net area Anet = 0.006 m2. The rolling shear moduli GR1 and GR2 are
calculated with the Gamma method. Table 5.9 shows the stiffness properties used for
each model and the results from the FE-analysis are given in Table 5.10.

Table 5.9: Stiffness properties used in FE-models for test A.

E0

[MPa]
G0,net

[MPa]
GR1

[MPa]
GR2

[MPa]
Beam 4 15622 435 52 50
Beam 5 16419 556 57 56
Beam 6 13220 597 55 52
Beam 7 12063 537 50 44
Beam 8 14497 533 54 47
Beam 9 10599 469 51 45

Table 5.10: Equivalent stiffnesses and the corresponding ratio for test A.

In-plane (3D-models) Out-of-plane (2D-models)
kt

[N/mm]
km

[N/mm]
Ratio,

km
kt

kt
[N/mm]

km
[N/mm]

Ratio,
km
kt

Beam 4
L1 = 1.0 m 2620 2991 114.1 % 2343 2108 90.0 %
L2 = 1.4 m 1120 1219 108.8 % 1127 1033 91.7 %
Beam 5
L1 = 1.0 m 2910 3262 112.1 % 2509 2286 91.1 %
L2 = 1.4 m 1216 1309 107.6 % 1212 1120 92.4 %
Beam 6
L1 = 1.0 m 2506 2761 110.2 % 2205 2033 92.2 %
L2 = 1.4 m 1018 1085 106.6 % 1025 959 93.6 %
Beam 7
L1 = 1.0 m 2280 2518 110.4 % 2012 1854 92.2 %
L2 = 1.4 m 927 990 106.7 % 909 854 94.0 %
Beam 8
L1 = 1.0 m 2623 2927 111.6 % 2293 2098 91.5 %
L2 = 1.4 m 1087 1166 107.3 % 1053 976 92.7 %
Beam 9
L1 = 1.0 m 2001 2220 110.9 % 1883 1734 92.1 %
L2 = 1.4 m 814 872 107.1 % 844 789 93.5 %
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Test B – Timoshenko theory (gross area) & Gamma method

The longitudinal shear moduli G0,net are calculated with Timoshenko theory and are
based of the gross area Agross = 0.01 m2. The rolling shear moduli GR1 and GR2 are
calculated with the Gamma method. Table 5.11 shows the stiffness properties used
for each model and the results from the FE-analysis are given in Table 5.12.

Table 5.11: Stiffness properties used in FE-models for test B.

E0

[MPa]
G0,gross

[MPa]
GR1

[MPa]
GR2

[MPa]
Beam 4 15622 261 52 50
Beam 5 16419 334 57 56
Beam 6 13220 358 55 52
Beam 7 12063 322 50 44
Beam 8 14497 320 54 47
Beam 9 10599 282 51 45

Table 5.12: Equivalent stiffnesses and the corresponding ratio for test B.

In-plane (3D-models) Out-of-plane (2D-models)
kt

[N/mm]
km

[N/mm]
Ratio,

km
kt

kt
[N/mm]

km
[N/mm]

Ratio,
km
kt

Beam 4
L1 = 1.0 m 2620 2637 100.6 % 2343 2007 85.7 %
L2 = 1.4 m 1120 1130 100.9 % 1127 1000 88.8 %
Beam 5
L1 = 1.0 m 2910 2926 100.6 % 2509 2192 87.3 %
L2 = 1.4 m 1216 1227 100.9 % 1212 1089 89.9 %
Beam 6
L1 = 1.0 m 2506 2529 100.9 % 2205 1963 89.0 %
L2 = 1.4 m 1018 1032 101.3 % 1025 938 91.5 %
Beam 7
L1 = 1.0 m 2280 2305 101.1 % 2012 1790 89.0 %
L2 = 1.4 m 927 941 101.4 % 909 836 91.9 %
Beam 8
L1 = 1.0 m 2623 2643 100.7 % 2293 2015 87.9 %
L2 = 1.4 m 1087 1098 101.0 % 1053 952 90.4 %
Beam 9
L1 = 1.0 m 2001 2032 101.5 % 1883 1671 88.7 %
L2 = 1.4 m 814 829 101.8 % 844 771 91.3 %
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Test C – Timoshenko theory (net area)

The longitudinal shear moduli G0,net are calculated with Timoshenko theory and are
based of the net area Anet = 0.006 m2. The rolling shear moduli GR1,net and GR2,net

are calculated with Timoshenko theory. Table 5.13 shows the stiffness properties used
for each model and the results from the FE-analysis are given in Table 5.14.

Table 5.13: Stiffness properties used in FE-models for test C.

E0

[MPa]
G0,net

[MPa]
GR1,net

[MPa]
GR2,net

[MPa]
Beam 4 15622 435 76 71
Beam 5 16419 556 81 78
Beam 6 13220 597 77 71
Beam 7 12063 537 70 59
Beam 8 14497 533 76 65
Beam 9 10599 469 72 63

Table 5.14: Equivalent stiffnesses and the corresponding ratio for test C.

In-plane (3D-models) Out-of-plane (2D-models)
kt

[N/mm]
km

[N/mm]
Ratio,

km
kt

kt
[N/mm]

km
[N/mm]

Ratio,
km
kt

Beam 4
L1 = 1.0 m 2620 3004 114.7 % 2343 2461 105.1 %
L2 = 1.4 m 1120 1222 109.1% 1127 1156 102.6 %
Beam 5
L1 = 1.0 m 2910 3275 112.6 % 2509 2637 105.1 %
L2 = 1.4 m 1216 1312 107.9 % 1212 1242 102.5 %
Beam 6
L1 = 1.0 m 2506 2770 110.5 % 2205 2312 104.8 %
L2 = 1.4 m 1018 1087 106.8 % 1025 1050 102.5 %
Beam 7
L1 = 1.0 m 2280 2527 110.8 % 2012 2110 104.9 %
L2 = 1.4 m 927 992 107.0 % 909 935 102.8 %
Beam 8
L1 = 1.0 m 2623 2938 112.0 % 2293 2403 104.8 %
L2 = 1.4 m 1087 1169 107.5 % 1053 1085 103.0 %
Beam 9
L1 = 1.0 m 2001 2227 111.3 % 1883 1961 104.1 %
L2 = 1.4 m 814 874 107.4 % 844 866 102.6 %
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Test D – Timoshenko theory (gross area)

The longitudinal shear moduli G0,gross are calculated with Timoshenko theory and
are based of the gross area Agross = 0.01 m2. The rolling shear moduli GR1,gross

and GR2,gross are calculated with Timoshenko theory. Table 5.15 shows the stiffness
properties used for each model and the results from the FE-analysis are given in Table
5.16.

Table 5.15: Stiffness properties used in FE-models for test D.

E0

[MPa]
G0,gross

[MPa]
GR1,gross

[MPa]
GR2,gross

[MPa]
Beam 4 15622 261 85 79
Beam 5 16419 334 89 85
Beam 6 13220 358 83 77
Beam 7 12063 322 76 64
Beam 8 14497 320 83 70
Beam 9 10599 282 79 69

Table 5.16: Equivalent stiffnesses and the corresponding ratio for test D.

In-plane (3D-models) Out-of-plane (2D-models)
kt

[N/mm]
km

[N/mm]
Ratio,

km
kt

kt
[N/mm]

km
[N/mm]

Ratio,
km
kt

Beam 4
L1 = 1.0 m 2620 2652 101.2 % 2343 2423 103.5 %
L2 = 1.4 m 1120 1134 101.2 % 1127 1149 102.0 %
Beam 5
L1 = 1.0 m 2910 2941 101.1 % 2509 2603 103.7 %
L2 = 1.4 m 1216 1231 101.2 % 1212 1234 101.8 %
Beam 6
L1 = 1.0 m 2506 2540 101.3 % 2205 2282 103.5 %
L2 = 1.4 m 1018 1035 101.6 % 1025 1046 102.1 %
Beam 7
L1 = 1.0 m 2280 2314 101.5 % 2012 2087 103.7 %
L2 = 1.4 m 927 943 101.7 % 909 933 102.6 %
Beam 8
L1 = 1.0 m 2623 2655 101.2 % 2293 2371 103.4 %
L2 = 1.4 m 1087 1101 101.3 % 1053 1077 102.3 %
Beam 9
L1 = 1.0 m 2001 2040 101.9 % 1883 1939 103.0 %
L2 = 1.4 m 814 831 102.1 % 844 863 102.2 %
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5.2.2 Specimen 2 beams

For the Specimen 2 beams three different combinations of stiffness properties based
of the results from Section 5.1 were tested. These are denoted ”Test E–G” and are
specified further below. The rolling shear moduli obtained through use of the Gamma
method were not included in the tests, as they in some cases were represented by
negative non-realistic values. For a collection of the stiffness properties used it is
referenced to Table 5.5.

Test E – Timoshenko theory (net area)

The longitudinal shear moduli G0,net are calculated with Timoshenko theory and are
based of the net area Anet = 0.004 m2. The rolling shear moduli GR1,net and GR2,net

are calculated with Timoshenko theory. Table 5.17 shows the stiffness properties used
for each model and the results from the FE-analysis are given in Table 5.18.

Table 5.17: Stiffness properties used in FE-models for test E.

E0

[MPa]
G0,net

[MPa]
GR1,net

[MPa]
GR2,net

[MPa]
Beam 1 9968 697 108 114
Beam 2 14659 734 102 99
Beam 3 17559 549 88 95

Table 5.18: Equivalent stiffnesses and the corresponding ratio for test E.

In-plane (3D-models) Out-of-plane (2D-models)
kt

[N/mm]
km

[N/mm]
Ratio,

km
kt

kt
[N/mm]

km
[N/mm]

Ratio,
km
kt

Beam 1
L3 = 0.60 m 5001 6410 128.2 % 2336 2881 123.3 %
L4 = 0.84 m 2165 2567 118.6 % 1066 1251 117.3 %
Beam 2
L3 = 0.60 m 6518 8615 132.2 % 2833 3472 122.6 %
L4 = 0.84 m 2954 3549 120.2 % 1356 1553 114.5 %
Beam 3
L3 = 0.60 m 6295 9021 143.3 % 2828 3524 124.6 %
L4 = 0.84 m 3070 3910 127.4 % 1479 1685 113.9 %
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Test F – Timoshenko theory (gross area)

The longitudinal shear moduli G0,gross are calculated with Timoshenko theory and
are based of the gross area Agross = 0.01 m2. The rolling shear moduli GR1,gross

and GR2,gross are calculated with Timoshenko theory. Table 5.19 shows the stiffness
properties used for each model and the results from the FE-analysis are given in Table
5.20.

Table 5.19: Stiffness properties used in FE-models for test F.

E0

[MPa]
G0,gross

[MPa]
GR1,gross

[MPa]
GR2,gross

[MPa]
Beam 1 9968 279 134 144
Beam 2 14659 294 123 120
Beam 3 17559 220 111 122

Table 5.20: Equivalent stiffnesses and the corresponding ratio for test F.

In-plane (3D-models) Out-of-plane (2D-models)
kt

[N/mm]
km

[N/mm]
Ratio,

km
kt

kt
[N/mm]

km
[N/mm]

Ratio,
km
kt

Beam 1
L3 = 0.60 m 5001 5177 103.5 % 2336 2820 120.7 %
L4 = 0.84 m 2165 2251 104.0 % 1066 1242 116.5 %
Beam 2
L3 = 0.60 m 6518 6608 101.4 % 2833 3357 118.5 %
L4 = 0.84 m 2954 2996 101.4 % 1356 1535 113.2 %
Beam 3
L3 = 0.60 m 6295 6364 101.1 % 2828 3360 118.8 %
L4 = 0.84 m 3070 3085 100.5 % 1479 1656 112.0 %
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Test G – Timoshenko theory (gross area) & mean values

A good correlation could be found between kt and km for the 3D-models when the shear
moduli corresponding to the gross area were used, as shown in Table 5.20. However,
this did not significantly improve the correlation between kt and km for the 2D-models.
An assumption was made that these models were mainly governed by the rolling shear
moduli. It was seen fit to instead test the rolling shear moduli derived from the tests of
the Specimen 1 beams. Therefore, a third test was conducted where the mean values
of GR1,gross and GR2,gross from Table 5.5 would be used. The other stiffness properties
were the same as for Test F. Table 5.21 shows the stiffness properties used for each
model and the results from the FE-analysis are given in Table 5.22.

Table 5.21: Stiffness properties used in FE-models for test G.

E0

[MPa]
G0,gross

[MPa]
GR1,mean

[MPa]
GR2,mean

[MPa]
Beam 1 9968 279 83 74
Beam 2 14659 294 83 74
Beam 3 17559 220 83 74

Table 5.22: Equivalent stiffnesses and the corresponding ratio for test G.

In-plane (3D-models) Out-of-plane (2D-models)
kt

[N/mm]
km

[N/mm]
Ratio,

km
kt

kt
[N/mm]

km
[N/mm]

Ratio,
km
kt

Beam 1
L3 = 0.60 m 5001 5126 102.5 % 2336 2497 106.9 %
L4 = 0.84 m 2165 2228 102.9 % 1066 1092 102.4 %
Beam 2
L3 = 0.60 m 6518 6538 100.3 % 2833 2982 105.3 %
L4 = 0.84 m 2954 2966 100.4 % 1356 1359 100.2 %
Beam 3
L3 = 0.60 m 6295 6310 100.2 % 2828 3065 108.3 %
L4 = 0.84 m 3070 3051 99.4 % 1479 1448 97.9%
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6 Discussion

6.1 Test method

The scatter in measured equivalent stiffness proved to be very low, with a coefficient of
variation of less than 3 % for the preliminary test results of the Specimen 1 beam, see
Table 4.3. Some of the preliminary tests included remounting the beam, and rotating
it 180◦ about its longitudinal axis compared to the previous tests, indicating that the
reliability is overall good for the Specimen 1 beams considering the tested setups.

However, a small increase in the coefficient of variation was noted for a decreasing span
of the Specimen 1 beam, which implies that the reliability may be negatively affected
by a shorter span. In hindsight, preliminary tests should also have been conducted
for a Specimen 2 beam. It should also be noted that the same sized steel plates
(50×100 mm) were used at the supports and loading point for both the Specimen 1
and 2 beams, respectively. Local indentations were assumed to be negligible for both
the Specimen 1 and 2 beams. However, the decrease in span due to the width of
steel plates, relative to the beam length, should be more noticeable for the Specimen
2 beams. The effect of this was not studied within this project.

Furthermore, a small increase of the measured equivalent stiffness was noted from the
results of each subsequent test conducted during the preliminary tests. For all tests
considered, this increase was not greater than 5 %, where the majority of the increase
was measured between the first and second test. Performing only one acclimatization
test was therefore deemed adequate, given the time span of this project.

Due to a slight slope in the transverse direction of the test rig used for the MTS-
machine, the load was unevenly applied in the beginning of each test. Before each
test, the steel cylinder used for the load application was mounted so that one edge was
barely in contact with the underlying steel plate, see Appendix B. This resulted in a
1 mm gap between the the opposing edge of the steel cylinder and plate, respectively.
This can be seen in the beginning of the load-deformation curves in Appendix A, where
the incline of the slope is lesser until a deformation of approximately 1 mm. It is also
illustrated in Appendix B. However, by testing the beams to approximately 40 % of
their assumed capacity and then performing the regression including only the values
between 0.5Pmax < P < Pmax, it is assumed that initial imperfections of the test rig
(or beam specimen) did not have an impact on the end results.
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6.2 Stiffness properties

Three different methods of characterising the MoE and shear modulus parallel to
grain (E0 and G0) from in-plane bending tests using Timoshenko theory were tested
in this project. The methods were based on either: assuming a certain value of the
MoE or shear modulus parallel to grain, assuming a certain ratio between the two
aforementioned moduli, or establishing equation systems and using test results from
two independent tests. Based on the inconsistency of the characterised properties
according to the first two methods, these proved not suitable for this test method.

Assumptions using conventional values or a ratio of the two moduli were tested for the
first two methods. However, based on the third method the characterised moduli de-
viate from the conventional values, significantly so when considering the ratio between
the moduli. Thus, the first two methods are likely to result in inaccurate moduli, and
will not be further discussed within this project.

Three different methods of characterising the rolling shear modulus (GR) from out-of-
plane bending tests were studied in this project: using the gamma method or using
Timoshenko theory with respect to the shear correction factor κ either being approx-
imated or calculated numerically. The simplified analytical model using Timoshenko
theory and approximate values of κ did not yield representative values of the rolling
shear modulus. By analysing the rolling shear moduli determined by the more complex
method, where κ was calculated according to Equations 2.27 – 2.31, showed that these
moduli normally resulted in values above 70 MPa. Considering Figures 2.8 and 2.9 it
could be seen that the approximate value of κ, suggested by Jöbstl [13], corresponded
to much lower values of the rolling shear moduli than those determined by the more
complex method. Consequently, using the lower κ-value would result in a significant
overestimation of the rolling shear moduli.

6.2.1 In-plane loading

The MoE parallel to grain were mostly characterised in the expected range of values,
13500–16700 MPa according to Table 2.2. Albeit, these values were somewhat low
for some specimen, it could simply be the result of some specimen possessing lower
stiffness properties. It could also be the result of the different cutting pattern of the
boards, in accordance with what is presented in Section 2.3.

The characterised shear modulus parallel to grain vary depending on how the shear
stiffness is calculated. Timoshenko theory assumes an equivalent shear stiffness of the
cross section governed by the parallel to grain shear modulus, and assumptions of κ
and the effective area. Kappa was assumed as 5/6 based on the initial assumption
that shear stresses would only be transferred in the longitudinal layers. The corres-
ponding effective area was assumed to be rectangular consisting of the longitudinal
layers only, denoted net area Anet. However, the shear stresses were analysed by means
of FE-models in Section 3.6.2, showing that a great portion of shear stresses are also
transferred through the transverse layers. In order to study the effect of the area
governing the shear stiffness, the gross area Agross was considered as an upper limit
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value. This resulted in the characterised shear moduli parallel to grain being signific-
antly lower than the conventional values presented in Table 5.6. However, according
to [37] the shear stiffness is lower for a CLT beam, compared to e.g. a homogeneous
beam, due to discontinuities and the traction free surface of the narrow-face edges in
the transverse layers. Furthermore, the shear stress distribution varies both in the
width and longitudinal direction of the beam. It can be seen in Figures 3.13–3.16 that
the shear stresses decreases significantly at the intersections of the transverse layers,
where in theory the effective area should be that of the longitudinal layers only Anet.
It is therefore likely that the shear stress distribution depends on the transverse board
width, the width of the gap between transverse boards, and the number of transverse
layers, which in turn should be reflected by the effective area used. As the gross area
is a upper limit value, it is also likely that the characterised shear moduli parallel to
grain are underestimated. Consequently this would also mean that the rolling shear
moduli characterised with Timoshenko theory are slightly overestimated.

Comparing the mean shear modulus parallel to grain, characterised with respect to
the gross area for the Specimen 1 and 2 beams, respectively, shows that the modulus
for the Specimen 2 beam is approximately 20 % lower. This further implies that
the number of transverse layers impact the shear stress distribution and therefore
the effective area. Most likely the effective area should be lower for the Specimen 2
beams, as these contain three transverse layers as opposed to two when regarding the
Specimen 1 beams.

6.2.2 Out-of-plane loading

Based on the FE-analysis conducted in this project with respect to the effect of annual
ring pattern, the values of the characterised rolling shear modulus were expected within
the range of 1.4GR – 2.8GR. This results in values between 70 – 140 MPa, when the
principal direction rolling shear modulus GRT is assumed to be 50 MPa, according
to the conventional value stated in [3]. However, the same comparison can be made
when the principal direction rolling shear modulus is assumed to be that of clear wood
GRT = 29 – 39 MPa, according to Table 2.2. This results in values between 40.6 –
109.2 MPa. Thus, it is hard to determine an exact range in which the resulting rolling
shear moduli should be characterised. Furthermore, the FE-analysis was based on a
simple shear model, whereas the shear deformation of the transverse boards will differ
in a CLT plate exerted to bending. However, this information provides an indication
of the effect of the annual ring pattern, and whether or not the characterised rolling
shear moduli reflect this phenomenon.

Considering the Specimen 1 beams, the mean value of the rolling shear moduli char-
acterised using Timoshenko theory with respect to the gross shear modulus parallel to
grain G0,gross were in the range of 74 – 84 MPa. The corresponding range of the mean
values for the Specimen 2 beams were in the range of 123 – 128 MPa. Given that the
values presented for the Specimen 2 beams correspond to an upper limit value of the
ranges discussed above, this would require that the transverse layers of the Specimen 2
beams are comprised mainly of boards with optimum pith distance, with respect to the
apparent rolling shear stiffness. This was not studied explicitly, but regarded as highly
unlikely. Furthermore, it was mentioned in the previous section that the assumption
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of the effective area could result in the the rolling shear stiffness being significantly
overestimated for the Specimen 2 beams. The rolling shear moduli for the Specimen
1 beams are therefore likely to be more representative values of the CLT-beams.

Characterising the rolling shear moduli using the Gamma method resulted in lower
values compared to using Timoshenko theory. For the Specimen 2 beams even negative
(non-realistic) values were obtained. The Gamma method is based on Bernoulli-Euler
theory, where shear strains are assumed as zero. Instead, the shear strains are accoun-
ted for by a reduction of the moment of inertia using Gamma factors, which are partly
governed by the span of the beam. A shorter span will in general result in relatively
larger shear strains, which is compensated by the Gamma method as a larger reduc-
tion of the moment of inertia. However, compared to Timoshenko theory the Gamma
method assumes a more stiff behaviour for the tested span of this project, as can be
seen in Figures 2.10–2.15. It seems that the Gamma method can only be applied to a
certain extent based on the span and measured stiffness, if the rolling shear modulus
is to be characterised. Most likely, considering the Specimen 2 beams, the Gamma
method could in most cases not predict the large shear strains, which resulted in the
aforementioned negative (non-realistic) values.

There is a slight increase in the values of the rolling shear moduli for the Specimen 1
beams, given a longer span. For the Specimen 2 beams the opposite is true, namely, a
longer span results in a slight decrease of the rolling shear moduli. It is hard to determ-
ine the reason of this discrepancy. As the phenomena is present when characterising
the rolling shear moduli according to both the Gamma method and Timoshenko the-
ory, a hypothesis is that it is caused by the difference in layups of the beams, which is
partly reflected in the analytical models by the difference of the moment of inertia.

Lastly, a significant decrease in the shear moduli parallel to grain resulted in a relatively
small decrease of the rolling shear moduli when using Timoshenko theory. Thus,
indicating that the equivalent stiffness of the beam is mainly governed by the rolling
shear modulus. By studying the mean values of the results in Tables 5.1 and 5.2,
it can be seen that for the Specimen 1 beams a 40 % decrease of the longitudinal
shear moduli resulted in an increase of the rolling shear moduli by 8.8 – 10.7 %,
depending on the span. For the Specimen 2 beams (see Tables 5.3 and 5.4) a 60
% decrease of the longitudinal shear moduli resulted in an increase of the rolling
shear moduli by 24.2 – 24.3 %. By comparing the decrease of the longitudinal shear
moduli, relative to the increase of the rolling shear moduli for the aforementioned
cases, the corresponding ratio for the Specimen 1 beams (approximately 40/10) was
4:1, compared to (approximately 60/24) 2.5:1 for the Specimen 2 beams. This indicates
that the equivalent stiffness of the Specimen 1 beams is governed by the rolling shear
modulus to a greater degree than the Specimen 2 beams. This may sound counter-
intuitive as two transverse layers are assumed to be exposed to rolling shear for the
Specimen 1 beams, as opposed to one layer for the Specimen 2 beams. However, as
the Specimen 2 beams are significantly shorter in length, the equivalent stiffness of
these beams are likely to also be significantly affected by longitudinal shear strains.
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6.3 Validity of results

The validity of the characterised stiffness moduli discussed in the previous section
are evaluated in this section mainly depending to two parameters: the difference in
measured equivalent stiffness and calculated equivalent stiffness (denoted ratio), and
the consistency in the determined ratio for each test, respectively.

The former parameter indicates if the stiffness properties characterised by the analyt-
ical model are representative values for the constituent layers of the CLT-beam. It
should however be noted that the results are based of FE-models where the properties
of each board are considered as homogeneous and where the longitudinal shear moduli
are assumed to be of equal value.

The latter parameter indicates if the variation in mechanical properties between the
tested beam specimen are consistently reflected by the characterised moduli of each
beam, respectively.

6.3.1 Specimen 1 beams

The best overall correlation was obtained for Test D, through use of Timoshenko theory
and by calculating the shear stiffness with respect to the gross area. The 3D-models
only overestimated the measured stiffness by up to 2.1 %, and the 2D-models only
overestimated the stiffness by up to 3.7 %. These results indicate that the shear stress
distribution, and in turn the shear stiffness of the cross section is better represented
by the gross area in comparison to the net area. However, it does not mean that the
gross area is the best representative value, but rather implies that the area should be
close to a upper bound value of the gross area.

The 2D-models corresponding to Test A and Test B, where the Gamma method was
used to characterise the rolling shear moduli, underestimated the measured stiffness
by up to 14.3 %. Thus, further implying that the rolling shear moduli characterised
by use of the Gamma method are underestimated.

The best consistency in ratios was obtained for Test D. The deviation of the ratios for
the 3D-models did not exceed 0.3 %, and correspondingly for the 2D-models did not
exceed 2 %.

6.3.2 Specimen 2 beams

Based on the results for the Specimen 1 beams, Test F (corresponding to Test D) was
assumed to produce the best result for the Specimen 2 beams. The 3D-models for Test
F showed good correlation, only overestimating the stiffness by up to 4.0 %. However,
the 2D-models showed significantly worse correlation, overestimating the stiffness by
up to 20.7 %. Based on the previous section, the Specimen 2 beams should be affected
by the assumption of the effective area to a greater extent compared to the Specimen 1
beams. The consequences would most likely be that the shear modulus parallel to grain
is underestimated, whereas the rolling shear moduli is overestimated. The combination
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of these inaccurate moduli could partly explain the significant overestimation of the
stiffness for the 2D-models. Another plausible explanation could be that Timoshenko
theory is not entirely applicable for the Specimen 2 beams, due to the bending and
shear stresses being highly non-linear throughout the majority of the beam. The
increase in deviation when comparing the test results between the shorter span and
the longer span of the Specimen 2 beams, respectively, could be an indication of this.

In Test G the mean values of the rolling shear moduli for the Specimen 1 beams were
tested together with the other stiffness properties used in Test F. The correlation im-
proved for both the 3D-model and 2D-model. Significantly so for the 2D-model, where
the difference in equivalent stiffnesses did not exceed 8.3 %. It has been previously
noted that both the shear modulus parallel to grain and rolling shear moduli could
be inaccurate, whereas these results serve more as an indication that the rolling shear
moduli should be significantly lower for the Specimen 2 beams.

The best consistency in ratios was obtained for Test F. The deviation of the ratios for
the 3D-models did not exceed 3.5 %, and correspondingly for the 2D-models did not
exceed 8.7 %.
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7 Conclusion

7.1 Concluding remarks

This project comprise an analysis of a suggested alternative method where 5-layer
cross laminated timber (CLT) beams have been tested at in-plane and out-of-plane
loading, respectively. The tested beam specimens were prismatic and of equal cross-
sectional dimensions, whereas the length and layup of the beams varied. The analysis
was conducted with respect to defining the effect of different material and geometry
parameters, determining the reliability of the method and the validity of the resulting
stiffness properties.

In total 9 different beams were tested, whereas 6 had a length of 1500 mm and the out-
ermost boards in the longitudinal direction (denoted Specimen 1), and 3 had a length
of 900 mm and the outermost board in the transverse direction (denoted Specimen 2).

Considering the validity of the results, different methods for the analytical models were
tested and evaluated. The effects of annual ring pattern and shear stress distribution
were studied by means of FE-models, as these parameters were considered to have a
high impact on the outcome. The stiffness properties characterised by means of the
analytical models and results of experimental tests were used as input parameters in
FE-models with homogenised properties, where the calculated equivalent stiffness was
compared to the equivalent stiffness measured from experimental tests.

Remarks on reliability & test method

The reliability for the Specimen 1 beams was very good, with a coefficient of variation
of only 3 % concerning the equivalent stiffness measured from the preliminary tests.
The increase of the coefficient of variation due to a decrease in span, and the increase of
measured equivalent stiffness after each subsequent test should be considered if further
testing are to be conducted.

Remarks on shear stress distribution

The shear stress distribution in the transverse layers should be considered when char-
acterising the shear modulus parallel to grain by means of Timoshenko theory. This
could be reflected by the use of an effective area when calculating the shear stiffness.
The width of the transversal boards, the gap between these boards and number of
the transverse layers should be considered when assuming the effective area. How-
ever, further analysis is needed to determine the impact of these parameters. Based of
the correlation between the test results and the FE-models, the use of the gross area
serves as a good approximation when characterising the shear moduli with Timoshenko
theory (with respect to the Specimen 1 beams).
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Remarks on annual ring pattern

The annual ring pattern has a large impact on the apparent rolling shear modulus
and should be considered when establishing FE-models corresponding to the tested
beam specimen. Using a Cartesian coordinate system, and assuming the rolling shear
modulus equal to that of the apparent rolling shear modulus proved to be a viable and
simple method of accounting for the effect of typical annual ring pattern in FE-models.

Remarks on stiffness properties

The characterised moduli for the Specimen 2 beams showed large deviations from the
expected range of values and should not be regarded as representative values. For
future tests, a larger span should be considered.

Characterisation of the rolling shear moduli with respect to Timoshenko theory (and
with respect to the shear modulus parallel to grain being calculated for the gross area)
resulted in values of 64–89 MPa. These values indicate a high validity with respect to
the effect of annual ring pattern and suggests that the rolling shear modulus should
be higher than the conventional value of 50 MPa.

Characterisation of the rolling shear moduli by means of the Gamma method consist-
ently resulted in underestimated values for the Specimen 1 and 2 beams, respectively.
The cause of this was assumed to be the inherent overestimation of the beam stiffness
when using the Gamma method for the beam specimen considered in this project.

Remarks on validity of results

The validity with respect to the ratio of measured and calculated equivalent stiffness
was very high for Test D. The validity with respect to the consistency of the differ-
ent ratio for each beam within a Test was high when considering the Test D, and
significantly lower when considering the Test F.
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7.2 Further analysis

It is indicated within this project that the use of the gross area, when evaluating
the shear stiffness of the cross section according to Timoshenko theory, yields a more
representative value of the parallel to grain shear modulus. However, depending on
the type of support, loading and geometry and layup of the beam, the shear stress
distribution could differ. Further analysis could improve the understanding of what
parameters govern the shear stress distribution, and how the corresponding effective
area should be approximated.

The method is based on a number of assumptions that were not evaluated within this
project. Some of these assumptions are stated in Eurocode 5, Annex B [12]. Further
understanding of these assumptions could possibly introduce a means of characterising
the stiffness properties using the Gamma method for this test method.

Certain parameters were not included within this project because of the complexity it
would add, or as a result of the limited time span. The parameters considered most
pertinent for further studies are presented below:

• The MoE perpendicular to grain is assumed as negligible and zero for the analyt-
ical models as a simplification. However, non-zero MoE perpendicular to grain is
still regarded in the FE-models. The impact of this assumption could be studied
by including the MoE perpendicular to grain in the analytical models.

• As a simplification the contact restraints between the transverse boards in the
FE-models were not modelled, as these surfaces were assumed not to transfer
shear stresses. However, compressive normal stresses are likely to occur between
transverse boards without a gap as a result of bending. The effect of this could
be modelled as a contact restraint (for the upper boards) within a FE-model for
further analysis.

• As two spans were tested for each beam, the shorter span resulted in a significant
overhang which could induce restraints against shear deformations at the edges.
The effect of this should be included in further analysis.
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Appendix A

Test results

A.1 Preliminary tests

Table A.1: Measured data from preliminary experimental tests. Tests marked in bold
correspond to tests where the beam was remounted after each subsequent test
and/or mounted 180◦ as compared to previous tests.

Test
Ellapsed time

[s]
Max def.

[mm]
Max force

[N]
r
[-]

q
[N]

k
[N]

Beam5 l10 00 01 385 3.1 4964 0.9999 -2417 2392
Beam5 l10 00 02 386 3.1 4964 0.9999 -2691 2476
Beam5 l10 00 03 354 2.8 4953 0.9999 -2139 2498
Beam5 l10 00 04 342 2.7 4968 0.9999 -1910 2505
Beam5 l10 00 05 330 2.7 4965 0.9999 -1945 2509

Beam5 l10 90 01 556 2.2 4014 0.9997 -2171 2776
Beam5 l10 90 02 513 2.1 4035 0.9998 -1887 2875
Beam5 l10 90 03 511 2.0 4007 0.9997 -1930 2901

Beam5 l14 00 01 383 3.8 3771 1.0000 -764 1183
Beam5 l14 00 02 364 3.6 3776 1.0000 -690 1225
Beam5 l14 00 03 358 3.6 3775 1.0000 -622 1230
Beam5 l14 00 04 380 3.8 3773 1.0000 -822 1211
Beam5 l14 00 05 380 3.8 3778 1.0000 -821 1209
Beam5 l14 00 06 374 3.7 3766 1.0000 -769 1213

Beam5 l14 90 01 352 3.2 2864 0.9999 -840 1167
Beam5 l14 90 02 347 3.1 2869 1.0000 -893 1204
Beam5 l14 90 03 336 3.0 2867 1.0000 -812 1216
Beam5 l14 90 04 345 3.1 2862 1.0000 -834 1187
Beam5 l14 90 05 341 3.1 2869 1.0000 -792 1191
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Figure A.1: Load-deformation curves for beam specimen 5 exerted to in-plane bending.
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Figure A.2: Load-deformation curves for beam specimen 5 exerted to in-plane bending.
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Figure A.3: Load-deformation curves for beam specimen 5 exerted to out-of-plane
bending.
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Figure A.4: Load-deformation curves for beam specimen 5 exerted to out-of-plane
bending.
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A.2 Main tests

Table A.2: Measured data from tests of Specimen 1 beams.

Test
Ellapsed time

[s]
Max def.

[mm]
Max force

[N]
r
[-]

q
[N]

k
[N]

beam4 l10 00 01 362 2.9 4971 0.9999 -1808 2343
beam5 l10 00 01 349 2.8 4980 0.9999 -2036 2509
beam6 l10 00 01 358 2.9 4956 1.0000 -1365 2205
beam7 l10 00 01 401 3.2 4963 0.9999 -1500 2012
beam8 l10 00 01 337 2.7 4976 0.9999 -1208 2293
beam9 l10 00 01 421 3.4 4969 0.9999 -1373 1883

beam4 l10 90 01 653 2.6 4008 0.9997 -2868 2620
beam5 l10 90 01 466 1.9 4014 0.9998 -1429 2910
beam6 l10 90 01 577 2.3 4011 0.9998 -1789 2506
beam7 l10 90 01 549 2.2 4007 0.9998 -1012 2280
beam8 l10 90 01 563 2.3 4032 0.9998 -1882 2623
beam9 l10 90 01 689 2.8 4146 0.9999 -1377 2001

beam4 l14 00 01 432 4.3 3775 1.0000 -1092 1127
beam5 l14 00 01 376 3.8 3768 0.9999 -795 1212
beam6 l14 00 01 433 4.3 3776 1.0000 -668 1025
beam7 l14 00 01 482 4.8 3772 1.0000 -607 909
beam8 l14 00 01 421 4.2 3777 1.0000 -658 1053
beam9 l14 00 01 521 5.2 3776 1.0000 -624 844

beam4 l14 90 01 397 3.6 2862 0.9999 -1151 1120
beam5 l14 90 01 316 2.8 2862 0.9999 -595 1216
beam6 l14 90 01 410 3.7 2865 1.0000 -887 1018
beam7 l14 90 01 397 3.6 2865 1.0000 -449 927
beam8 l14 90 01 367 3.3 2868 1.0000 -726 1087
beam9 l14 90 01 501 4.5 2868 1.0000 -809 814
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Table A.3: Measured data from tests of Specimen 2 beams.

Test
Ellapsed time

[s]
Max def.

[mm]
Max force

[N]
r
[-]

q
[N]

k
[N]

beam1 l060 00 01 340 1.7 2608 0.9996 -1372 2336
beam2 l060 00 01 277 1.4 2615 0.9995 -1318 2833
beam3 l060 00 01 296 1.5 2625 0.9994 -1576 2828

beam1 l060 90 01 379 1.5 4457 0.9995 -3124 5001
beam2 l060 90 01 289 1.2 4472 0.9992 -3100 6518
beam3 l060 90 01 406 1.6 4504 0.9991 -5750 6295

beam1 l084 00 01 436 3.1 2611 0.9999 -647 1066
beam2 l084 00 01 365 2.6 2608 0.9999 -857 1356
beam3 l084 00 01 346 2.4 2609 0.9999 -973 1479

beam1 l084 90 01 342 2.4 3334 0.9998 -1852 2165
beam2 l084 90 01 232 1.6 3177 0.9997 -1612 2954
beam3 l084 90 01 256 1.8 3190 0.9997 -2325 3070
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Figure A.5: Load-deformation curves for in-plane loading of Specimen 1 beams.
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Figure A.6: Load-deformation curves for out-of-plane loading of Specimen 1 beams.
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Figure A.7: Load-deformation curves for in-plane loading of Specimen 1 beams.
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Figure A.8: Load-deformation curves for out-of-plane loading of Specimen 1 beams.
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Figure A.9: Load-deformation curves for in-plane loading of Specimen 2 beams.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Deformation, w [mm]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

L
o

a
d

, 
P

 [
N

]

Figure A.10: Load-deformation curves for out-of-plane loading of Specimen 2 beams.
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Figure A.11: Load-deformation curves for in-plane loading of Specimen 2 beams.
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Figure A.12: Load-deformation curves for out-of-plane loading of specimen 2 beams.
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Appendix B

Experimental setups

Figure B.1: Test setup for in-plane loaded Specimen 1 beam.

Figure B.2: Test setup for out-of-plane loaded Specimen 1 beam.
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Figure B.3: Test setup for in-plane loaded Specimen 2 beam.

Figure B.4: Test setup for out-of-plane loaded Specimen 2 beam.
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(a) Fix support with a steel plate mounted on
top.

(b) Roller support with a steel plate mounted on
top.

Figure B.5: Support conditions for the test setups.

(a) Slope of I-beam test rig. (b) Example of slope of a CLT-beam.

Figure B.6: Example of slopes due to both CLT-beam imperfections, and test rig
imperfections.
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Figure B.7: Initial load application conditions due to slope of test rig and CLT-beam, see
Figure B.5.

106



Appendix C

Shear stress distribution

C.1 Specimen 1 beam

Figure C.1: Path 1 illustrated in a cut of the xy-plane showing the outermost
longitudinal layer.

Figure C.2: Path 2 illustrated in a cut of the xy-plane showing the outermost transverse
layer.
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Figure C.3: Path 3 illustrated in a cut of the xy-plane showing the centre longitudinal
layer.

Figure C.4: Path 4 illustrated in a cut of the xz-plane showing the mid section of the
beam.
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Figure C.5: Path 5 illustrated in a cut of the xz-plane showing the mid section of the
beam.
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C.2 Specimen 2 beam

Figure C.6: Path 1 illustrated in a cut of the xy-plane showing the outermost transverse
layer.

Figure C.7: Path 2 illustrated in a cut of the xy-plane showing the outermost
longitudinal layer.
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Figure C.8: Path 3 illustrated in a cut of the xy-plane showing the centre transverse
layer.

Figure C.9: Path 4 illustrated in a cut of the xz-plane showing the mid section of the
beam.
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Figure C.10: Path 5 illustrated in a cut of the xz-plane showing the mid section of the
beam.
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Appendix D

Matlab code

D.1 Script for calculating shear correction factor

1 function [I,G,Kappa]=Stiffness timo(n,d,MOE)
2 % [I,G,Kappa]=Stiffness timo(n,d,MOE)
3 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 % PURPOSE
5 % Compute CLT element stiffness using Timoshenko theory with shear
6 % correction factor
7 %
8 % Equation nomenclature and references are made to
9 % pro:holz Cross−Laminated Timber structural design, Annex 2. (p. 184)

10 %
11 % INPUT: (SI units)
12 % n = [n]; number of layers (n=3,5,7,9)
13 % d = [d]; thickness of each layer
14 % (d=scalar −> same thickness throughout)
15 % (d=vector −> individual layer thicknesses,
16 % first scalar is top layer)
17 %
18 % MOE = [EL ET GLT GRT]; timber stiffnesses
19 % EL: Long. stiffness
20 % ET: Trans. stiffness
21 % GLT: shear stiff. LT/LR
22 % GRT: shear stiff. RT
23 %
24 % OUTPUT:
25 % I = [IL IT] Eff. stiffness / meter width, long. and transv. dir
26 % G = [GL GT] Eff. shear stiffness / meter width, long. and ...

transv. dir
27 % Kappa = [KappaL KappaT]]
28 %
29 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
30 % Copyright (c) Division of Structural Mechanics and
31 % Division of Structural Engineering.
32 % Lund University
33 %
34 % Modified by Henrik Danielsson, 2020−02−03
35 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
36

37 if isscalar(d)==1
38 d=d*ones(1,n);
39 end
40 w = 1; %Stiffnesses / meter width
41

42 for k=1:2
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43 % Position of CoG in each layer (from upper edge)
44 for i=1:n
45 if i==1
46 zBar(i) = d(i)/2;
47 else
48 zBar(i) = sum(d(1:(i−1)))+d(i)/2;
49 end
50 end
51

52 % Position of global CoG (from upper edge)
53 if k==1
54 modi = 1;
55 else
56 modi = 0;
57 end
58 for i=1:n
59 if mod(i,2)==modi %Longitudinal layers
60 E(i) = MOE(1);
61 G(i) = MOE(3);
62 else %Transverse layers
63 E(i) = MOE(2);
64 G(i) = MOE(4);
65 end
66 end
67 zBars = sum(E.*d.*zBar) / sum(E.*d);
68

69 % Distance of individual layer CoG to the global CoG
70 z = zBar−zBars;
71

72 % Distance of individual layer top to the global CoG
73 zo = z−d/2;
74

75 % Distance of individual layer bottom to the global CoG
76 zu = z−d/2+d;
77

78 % Index of the layer containing the CoG
79 m = median(d);
80

81 % Moment of inertia
82 A = w.*d;
83 I k = sum(E/MOE(1).*w.*d.ˆ3/12) + sum(E/MOE(1).*A.*z.ˆ2);
84

85 % Shear correction coefficient
86 ESi = E.*w.*(zu.ˆ2/2−zo.ˆ2/2); %(eqn 19)
87 for i=1:n %Tabular calculation of the double integral (eqn 17,18)
88 Poly(i) = E(i)ˆ2*wˆ2/60 * ...
89 (3*zu(i)ˆ5−10*zo(i)ˆ2*zu(i)ˆ3+15*zo(i)ˆ4*zu(i)−8*zo(i)ˆ5) ...
90 +sum(ESi(1:(i−1)))*w*E(i)/60*(20*zu(i)ˆ3−60*zo(i)ˆ2*...
91 zu(i)+40*zo(i)ˆ3) ...
92 +sum(ESi(1:(i−1)))ˆ2*(zu(i)−zo(i));
93 Poly(i) = Poly(i)/(G(i)*w);
94 end
95 IntPoly = sum(Poly);
96

97 KappaZ = sum(G.*A)/(MOE(1)*I k)ˆ2 * IntPoly;
98

99 % Shear correction factor
100 Kappa temp = 1/KappaZ;
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101

102 % Shear stiffnes of the CLT panel
103 Sclt = Kappa temp * sum(G.*w.*d); %Total shear stiffness GA
104 G k = Kappa temp .* G; %Eff shear stiff of ...

individual layer
105 Kappa(k) = Kappa temp;
106

107 % Generate output results
108 I(k) = I k; %Second moment of inertia
109 Geff(k) = Sclt/w/sum(d); %Avg shear stiffness of the panel
110 G = Geff;
111 end
112 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− end ...

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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D.2 Script for performing linear interpolation

1 % Master's thesis − 30 hp %
2 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
3 % 5−Layer CLT−beam %
4 % Linear Interpolation %
5 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
6 % Purpose: %
7 % %
8 % Script that imports test data %
9 % from CSV−files and cuts away the %

10 % testdata outside of the interval %
11 % | 0.5 * Fmax − Fmax | %
12 % Afterwards a linear interpolation is %
13 % performed within this interval and the %
14 % values are saved as output parameters %
15 % %
16 % Created by: Emil Nilsson %
17 % 2020−03−31 %
18 % −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− %
19

20 function [output] = Linear Interpolation(input1, input2, input3)
21

22 format shortG
23 % Separating the data values into three vectors
24 time = input1;
25 deformation = input2;
26 force = input3;
27

28 % Flagging for different lengths of vectors
29 ctrlvar = isequal(size(deformation), size(force)) | | ...

(isvector(deformation) && isvector(force) && ...
numel(deformation) == numel(force));

30 if ctrlvar 6= 1
31 disp('*************** ERROR − Measurement data sets have ...

different lengths ***************')
32 return
33 end
34

35 % Maximum values
36 ellapsedtime = max(time);
37 maxdeform = max(deformation);
38 maxforce = max(force);
39

40 % Creating new vectors within the prescribed intervals
41 forcelim = 0.5 * maxforce;
42 separator = force≥forcelim;
43 deformation = deformation(separator);
44 force = force(separator);
45

46 % Performing a linear interpolation using built in function fitlm
47 mdl = fitlm(deformation, force);
48

49 % Plotting the linear interpolation (uncomment to visualize)
50 % figure(1)
51 % plot(deformation, force); hold on
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52 % x1 = linspace(deformation(1), deformation(end), ...
length(deformation));

53 % y = −2417 + 2392 * x1;
54 % plot(x1, y)
55

56 % Extracting statistical data from mdl struct (Tables)
57 r = corrcoef(deformation, force); r = r(1,2);
58 Rsquared = mdl.Rsquared.Ordinary;
59 Intercept = mdl.Coefficients(1,1); Intercept = table2array(Intercept);
60 x1 = mdl.Coefficients(2,1); x1 = table2array(x1);
61

62 % Creating output vector
63 % [output] = Linear Interpolation(input1, input2, input3)
64 output = [ellapsedtime, maxdeform, maxforce, r, Rsquared, ...

Intercept, x1];
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