LUN

UNIVERSITY

[
i

S
S—
[—
—
I
|\
)\
)\
—
—
1
]
]
]
[
[

W
t,,',',n

DEVELOPMENT OF VISUALIZATION
FUNCTIONS IN CALFEM FOR PYTHON

ANDREAS AMAND

Structural
Mechanics

Master’s Dissertation







DEPARTMENT OF CONSTRUCTION SCIENCES
DIVISION OF STRUCTURAL MECHANICS

ISRN LUTVDG/TVSM--22/5256--SE (1-95) | ISSN 0281-6679
MASTER'S DISSERTATION

DEVELOPMENT OF VISUALIZATION
FUNCTIONS IN CALFEM FOR PYTHON

ANDREAS AMAND

Supervisor: Dr JONAS LINDEMANN, Division of Structural Mechanics, LTH | Lunarc.
Examiner: Dr OLA FLODEN, Division of Structural Mechanics, LTH.

Copyright © 2022 Division of Structural Mechanics,
Faculty of Engineering LTH, Lund University, Sweden.

Printed by V-husets tryckeri LTH, Lund, Sweden, March 2022 (P).

For information, address:
Division of Structural Mechanics,
Faculty of Engineering LTH, Lund University, Box 118, SE-221 00 Lund, Sweden.

Homepage: www.byggmek.lth.se






Abstract

Visualizing results is an important part of Finite Element (FE) modeling. Many tools
exist for visualizing these results, they are often part of complete software packages for
FE analysis. These packages often rely on the user being familiar with FE analysis,
making them unsuitable for use in teaching the FE Method.

CALFEM (Computer Aided Learning of the Finite Element Method) is an FE toolbox
developed at LTH with an emphasis on teaching. It enables the user to implement the
steps that otherwise are done behind the scenes in commercial FE software. CALFEM
exists in two variants today, the original one implemented in MATLAB, while a Python
version is continuously being developed in parallel. The main aim of this thesis is to
develop visualization tools for the Python version of CALFEM. This will be integrated
into the existing toolbox, allowing users to visualize results from calculations and
aiding in the understanding of the FE Method.

To identify the needs for visualization, a study was conducted of the current visualiza-
tion tools available in CALFEM. Current visualization tools only allow for visualizing
of 2D problems. While CALFEM has support for many 3D elements, visualizing these
in full 3D is not currently possible. The focus for this thesis is therefore on 3D visu-
alization. Since using CALFEM requires manual scripting, visualizing geometries and
meshes before solving the problem is very helpful, and emphasis is therefore put on
visualizing all steps in the FE process. Another study was conducted to understand
the visualization needs using CALFEM at relevant departments at LTH.

Python has an extensive amount of libraries for visualizing scientific data structures.
A third study was conducted to find suitable libraries for implementing the identified
visualizations in CALFEM. As a result of this study, a library called Vedo, based on
the Visualization Toolkit (VTK) was chosen.

Using the libraries and results from the two first studies, several visualization functions
for several different element types were implemented. Care was taken to implement
these as seamlessly as possible into the Python version, following the same principles,
syntax, and naming of existing functions. Functionality for importing data for visual-
ization from the MATLAB version was implemented, along with export to VTK-files.
The export functions allow for visualization of the results in ParaView, a more ad-
vanced open-source visualization tool.






Sammanfattning

Visualisering &r en viktig del av finita elementmodellering (FE). Det finns manga
verktyg for att visualisera dessa resultat, dessa tillhor ofta mjukvarupaket for FE-
analys, vilket gor att de d&r mindre lampliga att anvédnda for att lara ut FE-metoden.

CALFEM (Computer Aided Learning of the Finite Element Method) &r ett finita ele-
ment paket utvecklat vid LTH med fokus pa undervisning. Verktyget ger en anviandare
mojlighet att implementera de steg som annars ar dolda i kommersiell FE-programvara.
Det finns idag tva varianter av CALFEM, orginalversionen i MATLAB, och en Python-
version som utvecklas parallellt. Huvudmalet med detta arbete ar att utveckla visu-
aliseringsfunktioner till Python-versionen av CALFEM. Dessa funktioner ska kunna
integreras med existerande funktioner, fér att ge anvindare maojligheten att visualisera
resultat fran berdkningar och underlatta forstaelsen for FE-metodik.

For att identifiera visualiseringsbehovet gjordes en studie av nuvarande visualiserings-
funktioner i CALFEM. Nuvarande visualiseringsfunktioner mojliggoér endast visualise-
ring av tvadimensionella problem. CALFEM stodjer dock manga 3D-element, men att
visualisera dessa dessa i tre dimensioner ar inte mojligt. Fokus for arbetet har dérfor
legat pa visualisering av 3D-problem. Eftersom att CALFEM kréver att anvandaren
skriver kod, &r visualisering av geometri och mesh innan berdkning vérdefullt. Vikt
har darfor lagts vid att kunna visualisera dessa stegen i FE-analysen. En undersckning
gjordes for att utreda behovet av visualisering med CALFEM hos de avdelningar pa
LTH som anvéinder CALFEM.

Python har en omfattande méangd bibliotek for att visualisera vetenskaplig data. En
tredje studie genomfordes for att finna lampliga bibliotek som kan anvéndas for att
implementera de identifierade visualiseringsbehoven i CALFEM. Resultatet av den-

na studie var att anvinda Vedo-biblioteket som &r baserat pa Visualization Toolkit
(VTK).

Men hjalp av biblioteken samt resultaten av de tva forsta studierna implementerades
flera visualiseringsfunktioner for ett antal elementtyper. Dessa har implementerats
med hénsyn till att kunna fungera bra med Python-versionen av CALFEM. Samma
principer, syntax och namngivning av funktioner f6ljs. Funktionalitet for att importera
data for visualisering fran MATLAB-versionen har implementerats, samt export till
VTK-filer. Exportfunktionaliteten mojliggor visualisering av resultat i ParaView, ett
mer avancerat visualiseringsverktyg baserat pa éppen kéllkod.

I1I






Acknowledgements

This dissertation is the result of work carried out during the Autumn semester of 2021
at the Division of Structural Mechanics, Faculty of Engineering, Lund University,
Sweden.

I would like to thank my supervisor Jonas Lindemann for help throughout the project,
for suggesting the idea and helping with coding issues on a short notice. I would also
like to thank the staff at the Divisions of Structural Mechanics and Solid Mechanics
for their input.

Finally, I would like to thank my family and friends for their persistent support
throughout my education.

Lund, January 2022

Andreas Amand






Notations and Symbols

Code

| Line break

< Line continues

Discontinuous code

Abbreviations

FE
CALFEM
VTK
OpenGL
API
Dim.
Def.
Undef.
Disp.

El.

DoF

Finite Element

Computer Aided Learning of the Finite Element Method
The Visualization Toolkit

Open Graphics Library

Application Programming Interface

Dimensions

Deformed

Undeformed

Displacement

Element

Degrees of Freedom

VII






Contents

Abstract I
Sammanfattning 111
Acknowledgements Vv
Notations and Symbols VII
Table of Contents IX
1 Introduction 1
1.1 Background . . . . . .. ... 1

1.2 Aim & Objective . . . . . . . .. 2
1.3 Limitations . . . . . . . . . .. 2

1.4 Method . . . . . . . . . e 2

1.5 Disposition . . . . ... 3

2 Existing visualization tools 5
2.1 Visualization in CALFEM for Python . . . . . . . ... ... ... ... )
2.2 Missing functionality in CALFEM for Python . . . . . ... ... ... 6
2.2.1 Import & export . . . . ... 6

2.2.2  Survey of visualisation needs . . . . . . . .. ..o 7

2.3 Considerations for Python libraries . . . . . ... ... ... ... ... 8
2.4 Python-libraries for visualization . . . . . .. ... ... ... ... .. 9
2.4.1 The Visualisation Toolkit - VITK . . . . .. ... ... ..... 9

242 Mayavi. . . . ... 11

243 PyVista& Vedo. . . . . . . ... ... 12

2.4.4 Polyscope . . . ... 13

2.5 Useful libraries for CALFEM for Python . . . . . ... ... ... ... 15

3 Development using VITK & Vedo 17
3.1 VTK . . 17
3.2 Vedo & VTK . . . . . . . . 19

4 Implementation 21
4.1 Geometry & Mesh . . . . . . . ... 21
4.1.1 Springs, bars & beams . . . . .. ... 22

4.1.2 Flow, solid & plates. . . . . . . . ... ... 22

4.1.3 Deformed mesh . . . . . .. .. ... 22

4.2  Color mapping for element & nodal values . . . . . . .. ... ... .. 23

IX



4.3 Vectors & Principal stresses . . . . . . . .. .. ... ... .. 24

4.4 Beam diagrams . . . . . . . . ... 24
4.5 Animations . . . . . .. .. 24
4.6 User interface & interaction . . . . . . ... ... ... ... 25
4.7 Forces & Boundary conditions . . . . .. ... 26
4.8 Utilities . . . . . . . 27
4.8.1 Keyboard shortcuts . . . . . .. ... ... L. 27

4.9 Rendering . . . . . . .. 28
4.9.1 Instantiation of Vedo classes . . . . . . . ... .. ... .. ... 29

4.10 Error handling . . . . . .. .. Lo 30
4.11 General issues during development . . . . . . .. ... ... ... 31

5 Usage examples 33
5.1 Simple spring model in 3D . . . . . .. ... 33
5.2 3D truss model using symmetry . . . . .. ..o 33
5.3 3D heat flowmodel . . . . . . ... 34
5.4 3D solid model using import & export . . . . . ... ... 35
5.5 Platemodelin3D . . .. ... ... 37

6 Discussion 39
7 Concluding remarks 41
7.1 Studies . . . ... 41
7.2 Visualization . . . . . .. ... 42

8 Future Work 43
Bibliography 45

A Vedo visualization in CALFEM

A.1 Installation & requirements . . . . . . . . . .. ... ... 1
A.2 Basic visualization . . . ... ... L 1
A.3 Animations . . . . . ... 3
A4 Tmport & export . . . . ... 3
A4.1 Import from Matlab . . . . . . ... ... ... ... ... ... 3
A42 Exportto VIK . . . . .. . .. 4
A5 Examples . . . . .. 4
A5.1 Example 1: Spring . . . . . . ... 5
A5.2 Example 2: Truss . . . . . . . . .. 7
Ab5.3 Example 3: Flow . . ... ... ... ... ... ... . ..... 13
A5.4 Example 4: Solid . . . . . . . . ... ... 18
A5.5 Exampleb: Plate . . . . . . . . ... ... 22
A.6 Interaction . . . . . . . . . . . .. 28
A.7 Function reference . . . . . . .. ... 29
A.7.1 Main functions . . . .. ... L 29
A.7.2 Import/Export . . . ... ... 33
A.7.3 Miscellaneous functions . . . . . . . . .. ... ... ... ... 33
A7.4 Utilities . . . . . .. 37



B MATLAB code

C Survey of tools for visualization

39

45

XI






1 Introduction

1.1 Background

In teaching engineering subjects, understanding physical phenomena are important
for students. Providing good visualizations of these can aid in understanding when
introduced to a new subject. With modern graphics hardware, many new improved
visualization techniques are possible. In a Finite Element (FE) analysis, visualization
is usually done mostly at the final stage, when results are obtained and analyzed.
There are however many steps along the way where visualizations are possible, see
Figure 1.1.

3 77777777777777 } Visualization i Visualization & i
| Geometry i / possible ' | Analysis of Results 3
3 ' 3 3 Forces & 3

3 Mesh ' | Boundary Conditions | | Solve

Figure 1.1: Typical Finite Element workflow & possible visualization stages

CALFEM is a FE toolbox for teaching developed at the Division of Structural Mechan-
ics, LTH [1]. It was originally developed for MATLAB in the late "70s, today there are
also versions available for other programming languages, including Python [2]. Both
MATLAB and Python versions implement functionality for visualizing results in 1-2
dimensions, visualizing 3D models is however lacking. 3D problems can be solved and
visualized using 2D plots, there is however no functionality for visualizing in 3D.

To aid in understanding the FE method, and results from FE analysis in CALFEM,
tools for visualization need to be improved and extended. Some visualization tools in
the Python version are also missing from the MATLAB version.

Python is an open-source high-level programming language. It has been highly adopted
for scientific programming [3], and therefore many libraries have been created for
different scientific applications. There are many options for visualization available in
Python.

The current functionality for visualization in CALFEM for Python also needs improved
error handling, as it gives the user little feedback if something goes wrong.

For more complex problems, exporting to more powerful visualization tools is often
required. In the Python version, exporting for use with the visualization tool ParaView
is possible, but requires manual scripting by the user.



1.2 Aim & Objective

The main aim of this project is to improve visualization functionality in CALFEM.
This can be broken down into a few parts. The first part is considering what visual-
izations functionality currently exists in CALFEM for Python.

The next part is to add visualization functionality with a focus on teaching and educa-
tion. Part of this is considering the visualization needs at departments using CALFEM
at LTH. Adding functionality here means adding support for more types of elements
and visualizations for these elements.

In the final part, functionality for importing/exporting data is to be improved in the
Python version. This accomplishes multiple things, making the Python version more
versatile. Importing/exporting should be handled in few steps and should be easy to
use. Export to ParaView and possibly other visualization tools are also implemented.
Also, as the MATLAB version of CALFEM is more widely used, being able to import
MATLAB data is therefore useful for making the visualization tools accessible and
possibly used more broadly at LTH. Adding functionality for importing MATLAB
data and exporting data will also make the Python version a bridge between MATLAB
and more powerful tools.

Before developing any additional functionality for visualization, some central questions
that will be in focus are:

e What can be visualized using the current functions in CALFEM for Python?
e What additional visualization functionality is needed in CALFEM for Python?

e What Python library/libraries are suitable to implement the above?

1.3 Limitations

Since this thesis in part involves identifying visualization needs, the additional func-
tionality to be implemented is mostly limited to these. This also means visualizations
already implemented will be overlooked. Possible exceptions to this are if some visu-
alizations are supported for only some elements and can therefore be expanded upon.

1.4 Method

To get an understanding of what functionality for visualization is available in CALFEM
for Python, current tools for visualization will be examined. Results from this study
will partially decide where the focus is put in terms of adding visualization tools. The
study of current visualization tools will be supplemented with a survey of visualiza-
tion needs in CALFEM at relevant LTH departments. This is done to get a better
understanding of what visualization is relevant for teaching courses.



When the initial two studies have finished, a survey of Python libraries for visualization
will be done. This is to get a better understanding of what existing libraries would
be useful for adding functionality for visualizing in Python. Since it is known 3D
visualization is lacking in CALFEM, Python libraries with support for 3D will be the
main focus. Various considerations regarding needs in CALFEM will be listed in the
study. When deciding on what tools to be used, these considerations will be referenced
in order to base the choice on what is needed for CALFEM.

When functionality is lacking in CALFEM and implementation libraries to use have
been chosen, additional tools for visualization will be developed. When developing
additional tools for CALFEM, care will be taken to add as little additional scripting
as needed by the end-user. This is because of the strong focus on usability and teaching
aspects of the project.

Exporting of results for viewing in ParaView (and possibly other tools) will be im-
proved by implementing functionality for automatic handling of this. This functional-
ity is considered central to the project, and important evaluation criteria when deciding
what Python libraries to use for development.

Importing of MATLAB data will be implemented using functions for reading '.mat’
files. This means a MATLAB user will only need to save workspace variables and
import them into CALFEM for Python, to visualize them.

1.5 Disposition

Chapter 2 contains the surveys of the current visualization tools in CALFEM for Py-
thon and the survey of visualization needs. Following these, the results from the survey
to find suitable Python libraries for visualization is presented, concluding with the as-
pects considered. Chapter 3 describes important aspects for the chosen libraries, along
with basic usage, also further expanding on aspects of why they were chosen. Chapter
4 describes how the implementation of functions into CALFEM is accomplished. Most
functionality of the tools is explained here, some choices made during development are
also presented, along with issues that caused them. Chapter 5 contains five examples
of different visualizations possible with the new functionality, along with basic ex-
planations of how they are done. Many aspects of the functionality implemented in
Chapter 4 are showcased here. Chapter 7 contains conclusions regarding what has
been implemented and what it can be used for. Chapter 6 discusses further aspects
of the development and the final results from it. Chapter 8 suggests possible ways to
expand upon the functions developed.

This is followed by references, and an Appendix A containing a manual for using
the functions. This Appendix contains more detailed descriptions (including relevant
source code) for examples in Chapter 5. To get a brief overview of what has been
implemented, over-viewing this Appendix (especially A.7) is suggested before reading
Chapter 4 and onward. The MATLAB code used for the solid example in Chapter 5.4
is extensive and can be found in Appendix B. The form used to conduct the survey in
Chapter 2.2.2 can be found in Appendix C.






2 Existing visualization tools

In this Chapter, the three previously mentioned studies are presented. In Chapters
2.1 and 2.2, the current state of visualization in CALFEM for Python is presented.
The survey of visualization needs is presented in Chapter 2.2.2. Chapter 2.3 presents
some considerations for the study of existing Python libraries to use in Chapter 2.4.
The results from this study is then presented in Chapter 2.5.

2.1 Visualization in CALFEM for Python

CALFEM for Python currently contains two modules for visualization, vis and
vismpl [2]. These modules are based on the Python libraries Visvis and Matplotlib
respectively. Some of the functions in these modules overlap and some are unique to
each module. A reference for what these modules contain are given in Table 2.1.

Function Dimensions | vismpl | vis
draw_geometry 2D v v
draw_mesh 2D v v
draw_displacements 2D v v
draw_element _values 2D v v
draw_nodal_values 2D v
draw_nodal_values_contour 2D v
draw_nodal_values_contourf 2D v
draw_nodal_values_shaded 2D v
eldraw?2 2D v v
eldisp2 2D v
eliso?2 2D v
elval?2 2D v

Table 2.1: Existing main functions for visualization in CALFEM for Python

The current focus of these modules is on 2D problems. The VisVis module will not
be supported in future versions of CALFEM in favor of Matplotlib. This module
will therefore form the basis for the 2D visualization in CALFEM moving forward.
Something to note from Table 2.1 is that some functions exist in both modules. In
addition, some of the functions also somewhat overlap in functionality. Functions
containing _-nodal_ are for instance plotting nodal data but implemented in slightly
different ways.

What functions exist for visualizing gives a limited overview of actual functionality.
For a further overview of what the functions can do, a breakdown based on different
element types is necessary. This is done in Table 2.2, based on both vis and vis mpl.



Element Mesh Scalar Ex. function

Type | Dim.! | Geo.? | Def.® | Undef.* || Disp.” | EL® | Nodal in CALFEM
Spring Element

Spring ‘ 1D H v ‘ v ‘ v H v ‘ v ‘ v H springle
Bar Elements
Bar 2D v v v v v v bar2e
3D - - - - - - bar3e
Flow Elements
Flow 2D v X v X v v flw2te
3D - X - X - - flw3i8e
Solid Elements
Solid 2D v v v v v v soli3e
3D - - - - - - plante
Beam Elements
Beam 2D v v v v - - beam2e
3D - - - - - - beam3e
Plate Elements
Plate ‘ 2D H v ‘ - ‘ v H - ‘ - ‘ - H platre

Table 2.2: Breakdown of visualization based on elements in CALFEM for Python.

Notation: ’v/’-supported, ’-’-unsupported, *x’-not possible.
'Dimensions, 2Geometry, *Deformed, Undeformed, 5Displacement, Element.

2.2 Missing functionality in CALFEM for Python

Visualizing geometry is currently not supported in 3D. Adding functionality for this
would allow verifying that a 3D geometry is correct. After meshing, it’s also useful to
be able to verify that the mesh corresponds to the geometry.

After an FE problem is solved, the mesh can be displayed in an undeformed or de-
formed state. This is done in order to see the shape and/or get nodal/element values
from the model, typically at certain critical points in the model. In 2D, this can be
done using various functions from Table 2.1 in Chapter 2.1. This is not supported for

3D models, which means that the visualization part of the workflow is not currently
possible in CALFEM.

2.2.1 Import & export

Something of note regarding CALFEM, in general, is that the most widely used ver-
sion of the toolbox is the MATLAB version. This toolbox was originally written for it
and most courses at LTH still use the MATLAB version. In the interest of visualiza-
tion tools in CALFEM for Python being as widely used as possible, functionality for
visualizing data from the MATLAB version is useful. This is currently not supported
in the Python version.

For visualizing larger datasets and more complex problems, it is useful to export to
more powerful tools for visualization. ParaView is a sophisticated tool for visualizing

6



many types of scientific data (not a Python library). The current version of CALFEM
for Python allows for manual export to VIK to use in ParaView. This is however
not very easy to do and relies on the user saving the data correctly. To aid in using
CALFEM for a wider range of problems, implementing better functionality for export-

ing to the VTK format is useful. This would also allow the Python version to act as
a bridge between the MATLAB version and ParaView.

2.2.2 Survey of visualisation needs

To get some input on what tools would be useful in teaching using CALFEM, a survey
was sent to staff at LTH departments (see Appendix C). The survey is a digital PDF
with a form filled out digitally. It was formulated to be as short and simple as possible,
so that staff members would check what they wanted to visualize, also allowing for
additional comments if needed. The survey included what types of elements would be
useful and for those elements, what types of visualization would be useful for them.
The intention of doing a short survey was to get as many responses as possible, and
therefore fairly broad input.

A total of 5 responses from the departments of Structural and Solid Mechanics was
received. Because of the low amount of responses, the visualization tools cannot be
entirely based on this survey. The survey is still useful for input regarding what is
useful for specific courses and where the focus should be put. It was formulated based

on what types of elements are already implemented and types of visualizations possible
for these elements CALFEM.

Four staff members were currently involved in courses using some version of CALFEM,
and all participants would consider using it more for teaching if visualization tools were
improved. Notable results from the survey are that various 2D visualizations are the
most widely asked for. Also, animations of deformations and responses of structures
were considered useful by 4 staff members. One response also commented that most
visualizations in the survey should be useful for courses at the departments. An
overview of results is shown below in Table 2.3.

Visualization 1D | 2D | 3D

Undef. mesh 4 5 3

Element | 1D | 2D | 3D Def. mesh 4 5 3
Spring 3 - - Displacements 4 5 3
Bar 4 3 1 Scalar values 4 4 2
Flow 2 1 - Section forces 3 4 2
Beam - 5 2 Stresses 4 4 2
Solid - 3 1 Principal stresses - 3 1
Plate - 1 - von Mises stresses | - 3 1
(a) Breakdown by element types Contour plots B 3 1
Isolines - 1 -

(b) Breakdown by visualization types

Table 2.3: Results from survey



For visualizations of 1D elements, nearly every type of visualization possible for these
elements are asked for. The same is true for 2D elements. Here, a more clear breakdown
by element type can be seen. Some of the visualizations for 1D and 2D elements
are already possible in CALFEM for Python. However, these can be improved or
integrated into developed tools. The survey acts as guidance on what functionality for
1D and 2D can be improved.

From the survey it’s clear that for visualizations of 3D elements are least useful, some
basic functionality for mesh and deformations are asked for. Also, stresses and scalar
values appear to be useful. Since the scope of the project includes a focus on 3D
visualization. This survey will act as some guidance for implementing this functionality
in CALFEM for Python, by attempting to implement the most requested visualizations
using the library/libraries chosen.

As bars, beams, and solids were requested for 3D visualizations, these will be pri-
oritized. Undeformed and deformed meshes are essential for these. Displacements,
scalars, section forces (for beams) and stresses will also be prioritized. When these are
implemented, essentially everything in Table 2.3 will be attempted to try and make
the functionality as complete as possible, supporting multiple elements, dimensions,
and visualization types for these. Animations will also be attempted.

2.3 Considerations for Python libraries

Before moving on to surveying the Python visualization landscape and finding suitable
libraries to use for CALFEM, some criteria need to be considered. To find relevant
libraries, there are many considerations made, some more important than others.

Having functionality for visualizing both 2D and 3D is essential. This is because some
visualizations for 3D elements are still done in 2D because of the nature of plotting
some physical phenomena. An example of this could be 3D beam elements, which
still need sectional properties plotted on a 2D plane. Fortunately, most visualization
libraries that support 3D also support 2D, so focus can be put on 3D functionality.

Since CALFEM is an FE toolbox, focus is put on visualization of FE analysis. Any
library for visualizing 3D objects will be able to visualize FE geometry. However,
for visualizing meshes, deformations, contours, and animations, this functionality is
specifically required in the library (or underlying libraries). To evaluate what the
libraries can do, their documentation and examples are studied. Consideration is also
taken to whether the libraries are utilized by existing FE tools, as this gives additional
credibility.

Some considerations are made concerning the development process. For instance, good
and extensive documentation and ease of use in Python are evaluated. Since some lib-
raries are difficult to use, implementing different elements and visualizations can hinder
development. To allow for implementing as many element types and visualizations as
possible, this is an important aspect. This is also useful in further development of the
visualization tools down the line.



Some consideration is also taken to how established the package is, how well maintained
it is and who is maintaining it. Python development is moving ahead rapidly and
many libraries get updated often. These updates can break dependencies, cause errors
and make some functionality unusable. If a package is not well maintained or in
an abandoned state, this can be a possible problem. Considerations for how many
dependencies a library has are also made for the same reason, the fewer the better as
many dependencies updates regularly, often causing problems with reliability.

To simplify the use of the tools for the end-user, a user interface is helpful. This allows
for implementing functions for manipulating the model, importing and exporting easily
for example. A decision was made early on to utilize Qt via the PyQt5 (Python Qt)
binding for Python. This is a versatile, open-source, and proven cross-platform solution
built on C++ [4]. It also interfaces with many Python libraries, including visualization
libraries.

2.4 Python-libraries for visualization

Matplotlib has extensive functionality for 2D plotting. For some functionality within
the scope presented, it makes sense to use it. For 3D visualization, efficient 3D ren-
dering is needed. For this purpose, Matplotlib is limited. It can generate 3D plots,
however rendering more complex objects in 3D, is not efficient.

To overview the available tools for visualization that could be utilized, the PyViz [5]
project is a good resource. The project indexes most visualization tools built using
Python, by types of visualization tools and needs for the end-user. All tools they
reference are open-source libraries with permissible licenses. The existing tools utilized
by CALFEM for Python, Matplotlib, and Visvis are also indexed here. Scientific
visualization tools, mainly for 3D visualizations, are categorized under SciVis libraries.
SciVis is an abbreviation commonly used in the Python developers community referring
to visualizing any scientific data [6].

Most SciVis libraries are based on OpenGL (Open Graphics Library), an open multi-
purpose graphics standard for hardware-accelerated graphics. Some examples of SciVis
libraries utilizing OpenGL are VTK (The Visualization Toolkit), yt, VisPy, and glumpy

5].

2.4.1 The Visualisation Toolkit - VTK

VTK is maintained by Kitware inc. [7] and used by the ParaView application [8].
It was developed in the ’90s [9] and has become an established and well-maintained
library, and therefore widely used. However, it is relatively difficult to use, not designed
with usability in mind, and it has a complex data processing pipeline [10] (chain
of processing, see Figure 3.1). It is intended for developing powerful visualization
applications. It has very high computational efficiency thanks to its compiled C++
library [9]. See Table 2.4 for an overview.



Pros: - Capable of every type of visualization required for this project
- Extensive well written documentation available
- Support for PyQt5

Cons: - An older library with some functions only available in Python 2
- Most documentation is written for the C++ version of VTK
- Complicated scripting.

Table 2.4: Overview of VTK

® O @ \Visualization Toolkit - Cocoa #1

Figure 2.1: VTK example provided by VTK [7]

10



VTK is a strong candidate for this project, it can be used for visualizing FE-analysis.
Kitware provides examples of many types of visualizations, among them a visualization
of ten steps in a nonlinear-elastic analysis [7]. This example can be seen in Figure
2.1. Many open-source FE applications rely on VTK for visualization, for example,
MOOSE (Multiphysics Object-Oriented Simulation Environment) [11].

2.4.2 Mayavi

000 Mayavi Scene 1
Py DI DD EZED @ B K

>

Figure 2.2: Mayavi example

Another example of a widely used application/library utilizing VTK is Mayavi. It is
maintained by Enthought inc. [12] and meant to extend VTK to be more versatile,
being both scriptable in Python and giving users a built-in application to work with
visualizations. It also supports Jupyter notebooks, a useful tool for presenting Python
code and running it in a webpage [3]. Because of its versatility, it depends on many
other libraries [12][13], potentially making it difficult to install and maintain a working
installation. An example of a visualization using Mayavi can be seen in Figure 2.2,
note the built-in user interface at the top. See Table 2.5 for an overview.

11



Pros: - Capable of every type of visualization required for this project
- Very flexible, with support for PyQt5 & Jupyter

Cons: - Not a lot of documentation available
- Difficult to install and use because of many dependencies

Table 2.5: Overview of Mayavi

2.4.3 PyVista & Vedo

Figure 2.3: PyVista example

PyVista and Vedo are also part of the SciVis category of the PyViz repository. They
intend to maintain the powerful functionality of VIK while making it easier to use
and seamlessly integrate with it [14][15]. Both are developed by individuals working
in many different research fields. Both have modules integrating with the FEniCS
(Finite Element Computational Software) project [16], which is an open-source FE
application. This makes them good candidates for use in FE visualizations. Figures
2.3 and 2.4 show examples of what visualizations using them can look like. See Table
2.6 for an overview of both, as they are very similar.

12



@ [ ) vedo

Generate the silhouette of a mesh
as seen along a specified direction

Figure 2.4: Vedo example provided by Vedo [14]

Pros: - Utilizes the strengths of VTK
- More scripting friendly than VTK & Mayavi
- No dependencies other than VTK for base functionality
- Supports export to VTK file format
Cons: - Not full implementations of VTK
- Maintained by individuals/small teams

Table 2.6: Overview of PyVista & Vedo

2.4.4 Polyscope

Polyscope is a library for rendering 3D models interactively. Interaction means a user
can manipulate the model live to change the visualization or get information from the
model. It is compatible with Vedo and allows for extended and simple interactions.

13



vedo using polyscope

¥ Polyscope X

Reset View Screenshot ¥ Controls

(60.0 FPS)

¥V Structures

¥ Surface Mesh (1)
nesh

aces: 117360
mooth Edges
1.000 Width

scalar)

Enabled Options

V  Reset

Min: 4.209e+0 Max: 1.034e+(C

Figure 2.5: Polyscope example provided by Vedo [14]

Polyscope has two major drawbacks. Since it cannot use Qt, it means regular menus
for interacting with the model and other possible features, are not possible. If used for
visualizations in CALFEM, interaction would largely be limited to using Polyscope’s
built-in menus. This imposes many limitations. The greatest limitation is scripting
interactions with anything not related to the rendering, which is often not possible.
This is because Polyscope does not use underlying VTK classes when rendering, not
permitting any manipulation of the model apart from the menus it implements as
standard. This makes Qt more suitable for interaction, compared to Polyscope. Figure
2.5 shows an example using Polyscope, note the menus for interaction on the left side.

Polyscope does not render using VTK, instead relies only on OpenGL [17]. The model
would be created using VTK but rendered using different classes. If any VTK-based
library was used, the underlying classes for rendering would be accessible for scripting.
Polyscopes implementation has many drawbacks in itself. In general, the compatibility
between Vedo & Polyscope is not very good at this time. Even the examples using
Polyscope provided by Vedo open two different windows, one showing a rendering using
Polyscope, one using Vedo. This suggests a poor implementation of Polyscope-Vedo
interaction. See Table 2.7 for an overview.

Pros: - Extended interactivity compared to Vedo Comns: - No PyQt5
- Better looking renderings than Vedo - No VTK rendering
- Uses few computational resources

Table 2.7: Overview of Polyscope

14



2.5 Useful libraries for CALFEM for Python

All of the libraries mentioned so far in this Chapter have been tested to some extent,
mostly VTK, MayaVi, PyVista, Vedo and Polyscope. When evaluating them beyond
cited sources (documentation and academic papers), drawing simple objects was at-
tempted. Some manipulation of these via coloring/interaction was used for testing as
well. This is done in order to get an understanding of how the tools are intended to
work and how suitable they are for CALFEM.

VTK was first chosen for the project as it is powerful and well established. This was
before Vedo/PyVista had been fully tested. Other OpenGL-based libraries cannot be
considered as useful for visualization in CALFEM. The reason for this is that export-
ing to more powerful visualization tools is part of the requirements for the libraries.
ParaView is an excellent example of a tool that fulfills the criteria for this. Since it’s
based on VTK, building the CALFEM visualization tools on VTK is beneficial for
implementing export functionality. Other OpenGL-based libraries (like yt, VisPy etc)
were rejected for CALFEM, in part due to a lack of functionality for exporting to VTK
format.

After testing VTK alongside CALFEM, it became clear that the decision to base
the visualization on VTK was beneficial. It allows for building an intuitive class
structure in Python for rendering 3D graphics. However, since it is a library with fairly
experienced C++ programmers in mind, it is difficult to use its full potential due to its
complexity. It became clear that using standard VTK was hindering the development
of functionality for different elements and types of visualizations for these in CALFEM.
Since there are multiple libraries built upon VTK, meant to simplify development
while maintaining functionality, a decision was made instead to use a suitable VTK-
based library for further development. Further surveying libraries suitable for use
with CALFEM were therefore made. Mayavi was decided against using because of its
heavy reliance on external libraries. From testing Mayavi, it was also found to be too

unstable. This could in the end make it difficult to use for any staff/student using
CALFEM.

When further researching VTK-based libraries to use, PyVista and Vedo stood out.
Both are meant to simplify the use of VTK [14][15]. They were both found to be easy
to work with to develop visualization tools. In the end, Vedo proved to have the best
workflow suitable for CALFEM development. Because of its class structure, handling
data for visualizations worked very well, it proved to be very flexible. It is also easy
to interact with the VTK-classes and adding/removing objects to the renderer is very
efficient in code.

Because Vedo was chosen, further expanding upon it using Polyscope was considered.
Since Polyscope does not support PyQt5 or VTK rendering however, it was quickly
abandoned. using it would mean using a completely different rendering process than
normally used in a VTK-based application. Both visualizing using developed functions,
and exporting for use in ParaView are important. Using Polyscope would mean greater
discrepancies between the model visualized in CALFEM, and the one exported to
ParaView.

15






3 Development using VTK & Vedo

3.1 VTK

When developing an application using VTK, many classes are required to create a
working application [7]. Some of these can be seen in Figure 3.1. To visualize some-
thing, first, a source object has to be created. This can be one of VI'K’s many existing
source classes. If visualizing a cube is needed, then the class vt kCubeSource is used
as a source object. This source object defines the basic geometry. Next, a mapper
object is created. The mapper object is responsible for mapping the source object to a
representation in 3-dimensional space. This means the mapper contains the coordin-
ates of the source objects points (the eight corners of the cube). The source object is
given as input to the mapper. Finally, an actor object is needed. The actor is a class
for managing the rendering of an object in the scene. These stages are referred to as
the visualization stage in VTK [7]. See Listing 3.1 for an example of how many actors
can be created using a loop.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i Visualization Source data ~  Mapper - Actor |

A
=y
€]
=
o
[¢]
=
=
o
<
=
—
=
=
@D
=
o
@
=+
o
=

3 Rendering Renderer

Figure 3.1: Basic VTK application structure

def set_geometry (edof,coord,dof) :
node_actors = []

ncoord = np.size(coord, axis = 0)
for i in range (ncoord) :
node = vtk.vtkSphereSource () # Get source

node.SetCenter (coord([1]) # Set origin
node.SetRadius (0.05) # Set radius

mapper = vtk.vtkPolyDataMapper () # Create mapper
mapper.SetInputConnection (node.GetOutputPort ()) #
— Input source

node_actors.append(vtk.vtkActor()) # Create actor
node_actors[i] .SetMapper (mapper)) # Input mapper

Listing 3.1: Creating actors using the vtkActor-class

17



After an actor is created, the classes related to rendering in Figure 3.1 are required.
The process of generating an image on the screen is, in 3D graphics, refereed to as
rendering [18]. This is done in a similar way to the visualization stage, where each
class is created and used as input to the next. If a Qt window is used, a few extra
steps are required before the renderer is created, see Listing 3.2 for an example. The
renderer handles the actual rendering of the actor object (via OpenGL). The render
window contains the rendered image and the interactor allows the user to interact with
the model (rotate camera, manipulate objects, etc).

def vtk _initialize(self):
# Load UI
uic.loadUi ("QtVIKMainWindow.ui", self)

# Create container

self.vl = QtWidgets.QVBoxLayout ()

self.vtkWidget = QVTKRenderWindowInteractor (self.frame)
self.vl.addWidget (self.vtkWidget)

# Create renderer & render window

self.ren = vtk.vtkRenderer ()

self.renwin = self.vtkWidget.GetRenderWindow ()
self.renwin.AddRenderer (self.ren)

self.iren = self.renwin.GetInteractor ()
self.iren.SetRenderWindow (self.renwin)

# Setting frame
self.frame.setLayout (self.vl)

# Starting render
self.ren.ResetCamera ()
self.iren.Start ()

Listing 3.2: Creating the rendering classes in VI'K

Developing an application that is usable in VT'K requires the use of many more classes
than so far mentioned in this Chapter, and subsequent method calls on these classes.
VTK is heavily object-oriented [19] and has become very complex over time as very
specialized classes have been developed [10]. For instance, a separate class instance is
needed to transform an actor’s position.

Since VTK is written in C++, a lower-level programming language than Python, its
Python binding is also lower level and expressive compared to other Python libraries
[20]. This has advantages in computational efficiency but makes developing visual-
ization applications in VTK very complex [15]. A higher-level API would therefore
be beneficial for implementing the required functionality. For this reason, Vedo was
introduced into development.

18



3.2 Vedo & VTK

Vedo is a Python API (Application Programming Interface) above the VITK Python
binding. It uses its classes for interfacing with VTK, resulting in a more simple
developer pipeline. The class structure can be seen in Figure 3.2, along with the
corresponding VTK classes.

" Vedo Actor Plotter |
3 Source Actor  Renderer Interactor .
- VTK Mapper Render |
| Window |

Figure 3.2: Vedo application structure & VTK classes used by them

There are many more VTK-classes utilized by Vedo that are simplified in the same
manner as in Figure 3.2. To illustrate the differences in code, see Listing 3.3. Here, all
the Vedo & VTK classes in Figure 3.2 are used. Actors, along with all classes needed
for rendering, are created. The interactor is run, allowing the user to see the model
and interact with it.

import vedo as v
class VedoMainWindow () :
def render (self,edof, coord,dof) :
plt = v.Plotter() # Create a plotter
for i in range (np.size(edof, axis = 0)):
plt.add(v.Sphere()) # Add actors
plt.show (interactive=True) # Show plotter

Listing 3.3: Creating actors and a renderer in Vedo

Comparing the code in Listing 3.2 with the examples in Chapter 3.1, Vedo is very
efficient in providing the same functionality as VTK with very little code. This allows
for more efficient development as functions can be easily tested on the fly in Vedo,
without setting up everything that VTK requires. At the same time, if access is
needed to the underlying VTK-object, Vedo allows for this as well.

19






4 Implementation

Vedo was chosen as the Python library for the new 3D visualization functions in
CALFEM. Different aspects of how it has been implemented will be shown in this
Chapter. Many of the visualization functions also utilizes NumPy [21]. This is a library
implementing most of the array features found in MATLAB [22]. Many implemented
functions utilizing Vedo are referenced in this Chapter, for descriptions and usage of
these, see Appendix A.

4.1 Geometry & Mesh

For visualising FE geometries, draw_geometry is implemented. This function re-
quires the use of the geometry module [23] in CALFEM for Python. It supports
rendering points, lines, and surfaces defined by the user when creating the geometry.
For an example utilizing this function see Chapter 5.3. CALFEM also supports in-
teractive editing of geometries in 2D [24], as this editor uses the existing geometry
module in CALFEM, visualizing geometry from this editor should also be possible.

For visualizing FE mesh using Vedo, two functions have been implemented, draw_mesh
& draw_displaced.mesh. These are similar in functionality, the main difference is
the latter one takes a global displacement vector as input. Both require Edof, Coord
& Dof matrices used in CALFEM [1] as input. Edof contains the element topology,
each row represents the degrees of freedom for an element. The global degrees of
freedom are stored in Dof, and the corresponding coordinates in Coord.

The two mesh functions also require an element_type variable. This determines
the type of mesh to be visualized. Based on the element type and matrices given as
input, each element is iterated through using a loop, and an actor is created to render
it. This is done by checking the row in Edof for all the degrees of freedom and then
finding the coordinates that correspond to those degrees of freedom. If for instance,
a beam element is to be rendered and matrices in Listing 4.1 are the input, then the
beam will be rendered from [0, 0, 0] to [3,0,0]. A node actor is also created for
each global coordinate unless the user disables it.

Edof = np.array ([ Dof = np.array ([ Coord = np.array ([
(1, 2, 3, 1, 2, 3, [0, 0, O],
~ 4, 5, 6, - 4, 5, 6], [3, 0, O]
- 7, 8, 9, 07y 80 9, 1)
~ 10, 11, 12] 7 10, 11, 12]
)

]

Listing 4.1: Edof, Dof & Coord example for a 3D-beam

21



4.1.1 Springs, bars & beams

These types of elements always have a single length along an axle, and can therefore
be modeled using a shape as Vedo refers to it. For bars and beams, this is done using
a cylinder, which simply draws a line from one point to another with a certain
thickness, see Figure 4.1. For a spring element, there is a Vedo class spring used
instead. This spring has the shape of a regular coil spring, but the user can also
render springs using cylinders by changing an input variable if this is preferred.

Nodes

(a) Theoretical element with nodes (b) Vedo visualization tool element

Figure 4.1: Spring/bar/beam element in CALFEM

4.1.2 Flow, solid & plates

For these types of elements, a different type of class is required. This is what Vedo
calls a mesh (not to be confused with an FE mesh). This is a special actor, created
by defining points in space, connecting them with lines, then defining which lines
constitute a surface. These surfaces represent a volume. For flow/solid elements,
these have one node in each corner of the rectangle, see Figure 4.2. For plates, there
is only 4 nodes in between —t/2 & t/2.

When drawing undeformed mesh, each element/node is its own mesh object, same as
for elements in Chapter 4.1.1. For drawing displaced mesh however, this is implemen-
ted in a different way, see Chapter 4.1.3.

4.1.3 Deformed mesh

For the deformed mesh, a similar procedure to undeformed mesh (see Chapter 4.1) is
done in order to find the global displacement for a node, then add it to the coordinates.
If a displacement is given where the second node of the beam is displaced —=0.1 in
the y-direction, the beam is rendered between [0,0,0] & [3,-0.1,0] instead.
Rotational degrees of freedom are ignored for the purposes of visualizing elements,
these are arbitrary.

A deformed mesh is handled the same as mesh for springs, bars, and beams (meaning
each element is its own actor). For elements with volumes or surfaces however, a
uniform mesh is created. This means that the whole mesh is one actor, with many
points, lines, and surfaces. This is done for two purposes. First, using an unstructured
grid for these elements enables better support for exporting to ParaView.

The other reason this is done is for color mapping (see Chapter 4.2). If each element

22



(a) CALFEM element (b) Vedo element

Figure 4.2: 3D flow/solid element in CALFEM

is its own actor, unique points are created to represent its nodes. When elements are
connected, this means there is a risk of discontinuities when mapping scalars as colors
to the nodes. This came up as an issue during development. Essentially, if a mesh of
solid elements was used for example, then each node would be eight nodes instead of
one. This means this point could have eight colors mapped to it, which is undesired.
Unstructured grids solve this by only allowing one point.

4.2 Color mapping for element & nodal values

In FE-modeling, results can be represented at nodes or different parts in an element.
For some element types such as 3D flow/solids, internal element values are calculated
at integration points, meaning each element has multiple values internally.

Vedo/VTK can map data at points and on surfaces [8]. Data values on surfaces will
color the entire surface with a corresponding color. If there are multiple values for
the stress in an element, for example, they either have to be interpolated to the nodes
for them to be visualized continuously, or a single internal element value has to be
calculated.

Due to the above-mentioned limitation in color mapping surfaces, visualizing element
values requires one value per element. This single value, let’s say stress, is then mapped
to each surface representing that element. Element values can therefore be visualized
by providing a column vector where each row contains the element scalar to be mapped
to the surfaces of each element.

For visualizing nodal values, two methods are implemented, either a one-dimensional
vector is provided, with as many rows as nodes. These are then applied globally.
This could for example be a global displacement vector for a flow problem. If a

23



multidimensional array is provided, with rows as elements and nodal values as columns,
a linear interpolation is done in order to map values to the global nodes.

There is no support for the input of scalar values at gauss points. If only two gauss
points per dimension are used, there will be as many gauss points as nodes in the
element (4 points in 2D, 8 points in 3D). This can be used as scalar input, but it
will be interpreted as nodal values. The user can make an assume that the scalar
values at the gauss points are approximate enough to be interpreted as nodal scalars.

The color mapping functionality is only implemented for displaced mesh, as the other
mesh function is not intended for showing results. If the results from a model are to
be visualized without displacements, the displacements can be omitted and the mesh
will not be rendered as displaced.

4.3 Vectors & Principal stresses

Both vectors and principal stresses are supported using their separate functions. They
function the same when rendering, they are rendered as cylinders in the middle of
elements. Both support deformed elements if displacements are provided. See Figures
5.3a & 5.4d for examples.

4.4 Beam diagrams

Drawing section forces for beams has been implemented. Depending on what section
force is plotted, dividing the beam into multiple segments (see Chapter 5.2) may be
necessary. Normal and shear forces are supported, along with moment. The axes are
inverted by default. The diagram’s x-axis is always along the beam. Figure 4.3 shows
an example of a moment diagram along a beam in the z-direction.

4.5 Animations

Animations have been implemented using linear interpolation between an undeformed
and deformed state. Think of it as animating between the two types of meshes in a
few steps. There are three different types of animations implemented, all using linear
interpolation. The default is a simple animation from undeformed to deformed, then
starting over again from the undeformed state.

The other ones essentially create a looping effect. The second option is to animate
by including backward steps once the deformed state is reached. This means the first
part of the animation goes from undeformed to deformed, then takes the same amount
of steps from deformed back to undeformed.

The final type of animation is adding negative deformations to the loop. This is

24



M,[kNm]

-125+
-93757
757
-5625T

-3757T

18751 I
1875 \\

(2]

375
5625
N
0 3
\
S
\ h
<= !
\/‘/\‘_;/ »

Figure 4.3: Moment diagram along 3D beam element divided into 8 segments

essentially what would be done for any dynamic model which is vibrating. When the
undeformed state has been reached as in the second animation type, the animation
repeats, but in the opposite direction.

The default amount of steps (between undeformed and deformed, for all types of
animation) is 10. The user can choose the animation rate in milliseconds, i.e. how
much time should pass between each frame. All 6 element types previously mentioned
in this thesis are supported.

Animations can also be exported for use in ParaView, this is built into the animation
function. When this is done, all steps are exported as individual files, which are then
interpreted as an animation timeline by ParaView automatically.

4.6 User interface & interaction

Initially, PyQt5 was intended to be used to implement a user interface for use with
developed functions. Vedo allows for this, as it supports PyQt5. However, there were
technical issues that couldn’t be resolved easily. This issue was related to the mouse
pointer and its position in the Vedo plotter. For some reason that has yet to be

25



resolved, the plotter interpreted the mouse pointer as being in a completely different
place than it was, seemingly at random.

When interactivity was to be implemented, PyQt5 became an issue. It was in-
stead chosen to implement interactivity using the Vedo method addCallback. This
method adds an observer [7] which looks for an event. The event could be for ex-
ample mouse movement, clicks, and keyboard input. By using a callback, clicking on
elements and nodes to get their number has been implemented into the draw_mesh
function.

Checking elements and nodes by number, along with highlighting them, has been
implemented for undeformed mesh, see Figure 4.4. This is by default done by clicking
elements/nodes, but figures can also be configured to highlight elements/nodes by
hovering. This is in order to allow the user to check the mesh. If forces should be
applied to a certain element/node, for example, the user can render the mesh and
check it manually. This has not been implemented for deformed mesh, as it is not
possible in Vedo unless each element is its own actor, see Chapter 4.1.3.

Element nr. 11 Node nr. 24

(a) Element numbering (b) Node numbering

Figure 4.4: Highlighting & numbering by clicking/hovering

4.7 Forces & Boundary conditions

If the boundary conditions are given as input to an undeformed mesh, the nodes with
a prescribed degree of freedom will be color-coded in red (instead of black, Figure 4.4).
This color-coding only indicates that one or more degrees of freedom are prescribed,
but not how many or which ones. In order to get this information, the nodes can be
interacted with as in Chapter 4.6. This allows the user to see which degrees of freedom
are prescribed, and what they’re prescribed as, see Figure 4.5a.

This functionality is also supported for forces. These are colored in blue by default
(colors for both boundary conditions & forces can be changed). Since forces can be
applied to both nodes and elements, both can be color-coded this way. If one or

26



multiple forces are applied to an element, the user can get the directions of these
forces in the same way as for nodes, i.e. by clicking. Figure 4.5b shows an example
where a few nodes have an applied force in the negative y-direction. Note the text
output at the bottom.

Node nr. 1, DoFs & BCs: [1: 0.0, 2: 0.0, 3: 0.0] Node nr. 227, DoFs & Forces: [679, 680: -5000.0, 681]

(a) Boundary conditions (b) Forces

Figure 4.5: Color coding nodes with boundary conditions & forces

4.8 Utilities

Various extra utility functions to supplement the visualized objects have been added.
These include adding 2D text in the rendering window, projecting a mesh to a plane,
scalar bars for color mapping, axes, etc. These are used in some examples in Chapter
5 and are described more in-depth in Appendix A. There are also some functions for
getting coordinates based on degrees of freedom etc. These are used in the example
presented in Chapter 5.4.

4.8.1 Keyboard shortcuts

Vedo supports so-called callbacks as mentioned in Chapter 4.6. The ones implemented
are related to mouse clicks. Vedo also supports some built-in keyboard commands.
Some of these are potentially useful for visualizations in CALFEM, while others are
less useful. These standard commands can be disabled as a whole, but not one by
one. Because some of them are useful, they have not been disabled. A full list of these
commands will be printed to the command line if h is pressed.

27



4.9 Rendering

So far, visualizing elements has been referred to as visualization. In order to visualize
elements in a window, Vedos Plotter class is required, see Chapter 3.3. In this
Chapter, the implementation of this class is presented. Rendering is part of what
the Plotter class handles. Multiple plotters can be used in order to have multiple
windows.

For starting and handling plotters, a class VedoMainWindow was created. This class
implements methods for interacting with the visualization and is required to have an
instance. Rendering is not started upon initialization of this class, but it contains the
method for this, (see Listing 4.4) The class mainly handles attributes and interaction.
In Listing 4.2, some variables used to store data are shown. When the user runs a
function that creates data to be rendered, these are appended to one of the lists here.

def _ init_ (self):
self.fig = 0 # Figures
self.meshes = [[]] # Meshes/elements
self.nodes = [[]] # Nodes
self.msg = [[]] # Optional text messages
self.proj = [[]1] # Optional projections
self.rulers = [[]] # Optional rulers

Listing 4.2: Initializing the VedoMainWindow-class.

This main class keeps track of an integer called fig, for figure. This variable allows
for the use of figures in a similar way to MATLAB. If the user only needs a single
figure for visualizing, using the visualization functions works straight away. If a user
wants to plot things separately however, the method in Listing 4.3 is used. This allows
for using figure (2) to render the output from the following functions in figure 2,
for example.

def figure(fig):
if fig < 1:
print ("Please give a positive integer (> 0)")
sys.exit ()

else:
plot_window.fig = fig - 1

Listing 4.3: Figure method for handling multiple Vedo plotters

28



The method created for rendering all figures is shown in Listing 4.4. This method loops
through the created figures and renders all actors associated with it. These actors are
created by the user indirectly by calling different functions, before this point. For
instance, each row of self.meshes is a list where each row contains all the Vedo
mesh-objects for the specific figure. If mesh objects have been created by draw_mesh
or draw_displaced._mesh, these are rendered.

def render(self):

for i in range(self.fig+l): # Loops through figures
opts = dict (axes=4, interactive=False, new=True,
— bg='k', title=f'Figure {i+l1l} - CALFEM vedo
— visualization tool') # Options for plotter
plt v.show (self.meshes[i1i], self.nodes[i],
—~ self.click_msg, =*=*opts) # Plotter
plt.addCallback ('mouse click', self.click) #
—~ Callback for mouse click

for j in range(len(self.msgli])):
plt.add(self.msg[i] [J]) # Add text

for 7 in range(len(self.proj[il)):
plt.add(self.proj[i]l [J]) # Add projections

for j in range(len(self.rulers[i])):
plt.add(self.rulers[i][]J]) # Add rulers

v.interactive () # Shows interactive visualization

Listing 4.4: render-method in the VedoMainWindow-class.

4.9.1 Instantiation of Vedo classes

The user starts the Vedo visualization by running the function show_and wait,
shown in Listing 4.5, at the end of their file. This runs the rendering in Listing
4.4. The rendering is started through the use of a class VedoPlotWindow which
handles class instances [25]. This class was created to make sure there is only one
instance of the VedoMainWindow class. This class is shown in Listing 4.6, it checks
if there is an instance of the VedoMainWindow class. If one exists it returns it. If
no instance exists, it creates one. This allows for very simple interfacing with the
VedoMainWindow instance. This is useful for implementing simple functions like the
ones in Chapter 4.8. If a class, like VedoMainWindow, is called directly, by default a
new instance is created [26]. In order for the visualization to work correctly, the user
must therefore always use show_and wait.

29



def show_and_wait () :
app = init_app ()
plot_window = VedoPlotWindow.instance () .plot_window
plot_window.render ()

Listing 4.5: show_and_wait function used for starting the Vedo visualization

def init_app():
global vedo_app
vedo_app = VedoPlotWindow.instance ()
if vedo_app is None: vedo_app = VedoMainWindow ()
return vedo_app

class VedoPlotWindow:

__instance = None

@staticmethod

def instance():
mmroStatic access method.
if VedoPlotWindow.___instance == None:
— VedoPlotWindow ()
return VedoPlotWindow.__ _instance

mmn

def @ init  (self):
"rw Virtually private constructor.
if VedoPlotWindow._ __instance is None:
VedoPlotWindow.___instance = self
self.plot_window = VedoMainWindow ()

mmn

Listing 4.6: Starting the Vedo visualization in the VedoMainWindow-class.

4.10 Error handling

Error handling for functions is implemented in a function called check_input. This
function ensures user input is correct in terms of the Edof, Coord and Dof matrices.
If the user applies a deformation, element or nodal values, these are also checked. For
example, if a user gives Coord- and Dof-marticies with different amount of rows, the
function will stop and return the following:

Beam element: Number of rows in Coord & Dof does not
< correspond, please check them along with number of nodes

This function is used by the functions for drawing meshes. Since the element types
affect the sizes of these matrices, they are checked following the element type the user

30



gave as input. If the user gives the wrong element type, the function cannot check
it correctly. This unfortunately also means that an error message can be returned,
indicating the wrong error. It is therefore important to make sure that the correct
element type is assigned by the user. To aid in this, the element type is also included
in the error message for all error messages of this kind, as above. If an element type
outside the 1-6 range is given, an error message will be returned listing the different
types. Error handling has not been implemented for various miscellaneous functions
such as adding text, scalar bars, etc. The focus has been on the more complicated
functions, as troubleshooting these would be very difficult for the user otherwise. This
is not a substantial issue for the simpler functions. If error handling is needed for
these, checking the manual/source is simple. Comments describing the input/output
for each function (intended to be called by a user) are also in the source code.

4.11 General issues during development

In the initial stages of development, cylinders were not used to represent bar and
beam elements. These were represented with simple line-actors instead. Both VTK
and Vedo allow for rendering these as cylinders. This would have simplified meshes for
these elements. However, it was discovered that the rendered cylinders don’t behave
as intended. They behaved as lines, which in VTK means that they remain the same
scale regardless of zoom level. This had the effect of rendering the beams/bars as tiny
upfront, and massively thick when zooming out. The creator of Vedo, Marco Musy was
contacted via Github for recommendations on proceeding. He explained that the lines
are still lines (see source object in Chapter 3.1), meaning changing their behavior is
not possible. This correspondence lead to the current implementation of these element
types. If rendering the lines as cylinders would have worked, an implementation using
a mesh object (in VTK), as for the other elements, would have worked. In this case,
the mesh would lack surfaces in modeling, only containing points and lines.

Vedo was first released in 2019 and is therefore fairly new in terms of libraries. Some
stability issues can be expected. There seem to be some issues with the Vedo plotter
class. The class works inconsistently depending on the use case, even when used
according to the manual. The implementation of this class has also changed a few
times, as new issues were encountered. One issue that couldn’t be resolved, involved
multiple figures on Linux, where only one figure could be interacted with. Once again
the creator was contacted for resolving this. He gave recommendations for VTK
versions to use, these are given in Appendix A.

31






5 Usage examples

This Chapter intends to show the variety of functionality implemented in this module
using a few examples. These examples have to a large extent been used during devel-
opment and testing. These examples are presented more extensively in Appendix A,
an overview is given in this Chapter.

The focus when creating these examples has been to illustrate what the visualization
module can do. These are not to be taken as guidance as to how actual FE analyses of
these problems should be done. For this reason, no verification that the FE modeling
is reasonable (such as convergence) has been made.

5.1 Simple spring model in 3D

This example implements a 1D spring but renders it in 3D-dimensional space. In
addition, it serves to show how offset works. The undeformed mesh is rendered, then
the displaced mesh is added but offset above the other mesh. This allows for visualizing
the displacements after solving, in the same figure. See Figure 5.1a. Some text is added
to the plotter to illustrate the stiffnesses of the different springs and the force applied.

5.2 3D truss model using symmetry

This is an example of implementing both 3D beam and bar elements. It shows how
to handle multiple meshes in the same figure using transparency, also text output
features in the corners of the plotter window. It demonstrates how different element
types can be visualized in the same figure.

The transverse beams at the bottom are loaded with a uniform load, which gives a
non-linear moment distribution along these. Therefore, the beams are divided into
8 segments (not separate elements). The CALFEM function beam3s then allows for
calculating the section forces in these segments. The draw_displaced.mesh func-
tion has been developed with this function in mind for beams, allowing for visualization
of varying section forces/stresses in beam segments. The beam is also loaded with a
point load sideways at the top. The resulting least favorable normal stresses are color
mapped to all elements. Measurements are drawn then finally, moment diagrams are
drawn along the transverse beams, see Figure 5.1b.

33



T FOs,

(a) Spring model with undeformed & deformed (b) Truss model using bars & beams and color
meshes in the same figure using offset mapping least favorable normal stress

Figure 5.1: Spring, bar & beam examples

5.3 3D heat flow model

This example illustrates how the functions can be used alongside the geometry &
meshing modules in CALFEM for Python. First, a geometry is defined using the built-
in geometry module in the Python version, then it is visualized (Figure 5.2a). A mesh is
then created using the meshing module and is visualized for verification (Figure 5.2b).
Boundary conditions are prescribed using the same module, two arbitrary elements
are prescribed as heat sources. Then an FE analysis is done to visualize the heat flux
using vectors and color mapping (Figure 5.3a) along with temperature distribution
(Figure 5.3b). Nodes with prescribed degrees of freedom are shown in red in Figure
5.2b. Figures 5.3a & 5.3b also show use two different implementations of adding axes
to a visualization.

3 2 72
7 |
7 10 °
s
P
\O 41
b >3
4| |
P

(a) Geometry (b) Mesh

Figure 5.2: 3D flow example in CALFEM

34



" i

(a) Heat flux vectors (b) Temperature distribution

Figure 5.3: Results for 3D flow example in CALFEM

5.4 3D solid model using import & export

This is a more extensive example illustrating how a rectangular beam can be modeled
using solid elements. Multiple figures are used to visualize different aspects of the
beam model. The example mostly uses MATLAB code which is imported. One of the

rendered meshes is then exported to VT K-format for use with ParaView, exemplifying
a potential workflow from MATLAB to ParaView.

In the example, two different analyses are performed. One linear static model which
is loaded with uniform self weight and eccentric point loads (Figures 5.4c & 5.4d), and
one modal analysis (Figure 5.4b). Figures 5.4b & 5.4c uses deformation scalefactors.
For the linear analysis, two gauss points per dimension are used, eight in total.

The two analyses are done in MATLAB, then imported for visualization only. Calcula-
tions of von Mises stresses from the static analysis and displacements from the modal
analysis are converted to element scalars. The latter is done using functions from
Chapter 4.8, showing how a user can utilize them as well. Finally, the undeformed
mesh (along with nodes) is visualized (Figure 5.4a). Here, red nodes indicate nodes
with boundary conditions set to zero, and blue nodes indicate nodes where a point
load is applied. The modal analysis in Figure 5.4b also includes a 2D projection of

the deformation on the xz-plane. The von Mises stresses from the static analysis are
visualized using element scalars in Figure 5.4c.

35



(a) Undeformed mesh with color coded
boundary conditions & forces at nodes for
static analysis

(b) Deformed mesh showing the eigenvector for
the lowest eigenmode using deformation,
color mapping & a projection

[ SR /
=<

(d) Deformed mesh using wireframe mode with
principal stresses from static analysis at the

(c) Deformed mesh from static analysis with
color mapped von Mises stresses at elements center of each element

Figure 5.4: 3D solid example in CALFEM

Principal stresses are also calculated, then visualized as vectors in Figure 5.4d. This
visualization is similar to Figure 5.3a, however with three vectors instead, represent-
ing the principal stresses. Figure 5.4d uses wireframe mode and shows the principal
stresses at one edge of the beam. Note that the stresses are perpendicular to each
other, as would be expected.

This model has also been used as a basis for the implementation of animations. Figure
5.4b is animated as a vibration, meaning the negative deformation (deformed in the
other direction) is included. This is done in Vedo, and the result is exported to
ParaView and animated. The resulting visualization in ParaView can be seen in
Figure 5.5.

36



Figure 5.5: Modal analysis results from Figure 5.4b animated in ParaView

5.5 Plate model in 3D

Visualizing a plate in 3D allows for visualizing displacements in the third dimension,
and at the same time visualizing moments/stresses as a colormap applied to the ele-
ments or nodes. This is not possible in 2D, where the displacements would need to be
shown as a colormap.

In the example, a 3x3 m plate mesh is created, then visualized (Figure 5.6a). After
checking the mesh, boundary conditions and forces are applied and the problem is
solved. Two opposite edges of the plate are fixed. Along the other two edges, the mid
nodes degree of freedom in the z-direction is set to zero. This could be the effect of
support from columns here for example. After solving, the deformed mesh is visualized
and von Mises stresses are color mapped to elements, resulting in Figure 5.6b. A scale
factor is applied to the deformation and rulers are added to get the dimensions and
deformation.

775
s, B
agan|

L7

0e %

o
N,

THTALT
‘0 0"'

{7

7
%L

&%

300,

3 %0,

(a) Undeformed mesh (b) Deformed mesh & max. von Mises stresses

Figure 5.6: 2D plate example in CALFEM

37






6 Discussion

The survey of visualization needs unfortunately had few responses. The study was con-
ducted as a survey as opposed to an interview study to try and get as many responses
as possible. Conducting interviews would likely have given even fewer responses and
not much more information. The intention was to get relatively simple feedback from
many staff members, not in-depth input from a few. The study was still useful as it
gave input from two departments and some clear needs could still be identified. The
results were used as input on what elements and types of visualization to focus on.

Initially, after the study of visualization libraries in Python had been conducted, VTK
was chosen for development. It was at that point motivated by its extensive use and
reliability, vast amounts of documentation, and compatibility with ParaView. How-
ever, it became apparent that for this project, the workflow in VTK was not optimal.
This was due to the extensive amount of classes needed. As many types of visualiza-
tions for different elements were needed, the functions would become very complicated.
Using VTK and adopting it for CALFEM, would risk developing something Vedo-like
in the process, at least for the functionality needed. The documentation for VTK was
sometimes of little use as it is intended for use in C++.

At that point, the study was expanded and Vedo along with PyVista was evalu-
ated. This turned out to be a good decision. After evaluating Vedo and PyVista, the
functionality developed using VTK up to that point was able to be adopted for these
libraries with very little effort. This in itself proved that they were much more suitable
for use in the development. After studying both libraries, it is difficult to differentiate
them in many ways. This is why they are listed together in Chapter 2.4.3. In the end,
Vedo was used as it seemed to have a slight edge in ease of use. Either one could have
been used in the project.

The reason for using Qt, in the beginning, is that the visualization functionality was
conceptualized more as a complete tool with menus. As this was deemed to have
few benefits, compared to the amount of work it would take to implement, this was
disregarded in favor of adding additional functions in CALFEM for Python. Some
of the functionality would have been interaction with the model (like changing rep-
resentation of global axis during rendering, hiding objects, etc). Other things were
import/export. Some functionality that was initially supposed to use menus, turned
out to be easier to implement and even work better by using Vedo classes directly, as
querying element /node numbers. Qt also caused problems with interaction in Vedo
(see Chapter 4.6). The cause could not be determined, it could be due to an issue in
Vedo. This had little effect on the outcome of the project, as most of the functionality
mentioned above was implemented using Vedo instead.

Animations were not part of the initial goals, however seeing there was a demand
for it from staff, it was nevertheless implemented. The resulting animation function-
ality is limited (see 4.5). Vedo provides several examples of how animation can be

39



implemented, none of which provide a good way to exit animations. To visualize a
continuous animation, a keyboard press has to be used. This implementation was used
for CALFEM, the issue with it is it is not consistent with how other figures are closed.
Thanks to the implemented export functions, animations can be exported directly
to ParaView. This is arguably a better solution, as ParaView allows the user to do
much more with animations. There is however a value to being able to visualize it
immediately in CALFEM. The implemented animation function in CALFEM should
be considered experimental, and exporting animations to ParaView is recommended.

Visualization functions for most steps in the FE workflow have been developed for
CALFEM. Geometry, mesh, and many results are supported (see Figure 1.1). Visu-
alizing forces and boundary conditions are supported in a limited capacity. If vectors
with degrees of freedom are given to the draw_mesh function, the nodes containing
the degrees of freedom in this list are color-coded. To get the boundary condition/force
applied in the node, these can also be provided. This is a very simple implementation,
visualizing a force with a vector in a direction is not possible.

40



7 Concluding remarks

A recurring theme of this thesis is the focus on usage in teaching the Finite Element
Method. This philosophy of CALFEM has been a clear guideline. The developed
module and functions are meant to be a teaching tool, expanding CALFEM. As most
of the functionality is implemented as functions, documentation is a very important
aspect for it to be successfully used in a learning situation. Functions are documented
both in source code as well as online documentation provided with CALFEM for
Python, in addition to the manual in Appendix A.

7.1 Studies

The initial goal of this project was to conduct three studies to aid in the develop-
ment moving forward. These studies, consisting of analyzing the current visualization
functionality in CALFEM for Python, needs for further visualization functions, and
libraries to use, were conducted successfully. The study of current visualization func-
tionality helped in terms of development as it gave an increased understanding of the
intended functionality and use of functions in CALFEM for Python. The study of
needs for visualization tools had few responses. However, this study can be considered
supplementary, as some needs were already known. One of the identified needs besides
the survey where more 3D functionality, which has now been expanded.

The study of suitable Python visualization libraries was successful in evaluating a
suitable library for use in CALFEM for Python. Many options were studied and
evaluated for ease of use, performance, and stability. A very functional, simple-to-use
library, Vedo, was chosen for implementing the required functionality. After working
with it, it seems to be better maintained than initially thought. It is, in my view, an
excellent basis for expanding visualization in CALFEM further.

To summarize what has been studied:

v’ Existing visualization tools in CALFEM for Python
v Needs for visualization

v" Python libraries suitable for implementing visualization

41



7.2 Visualization

Regarding the actual visualization in CALFEM, much has been added in terms of
functionality in 3D. All element types from the MATLAB version can be visualized in
some way. Support for some elements is more limited, while flow, beam, bar, and solid
elements have extensive functionality. Export to VIT'K has been implemented, allowing
for visualization in the application ParaView. In addition, importing from Matlab has
been implemented. Both import and export are simple, single-line functions.

Some things beyond the initial scope of the project have also been implemented. Dur-
ing the second study on needed functionality, animations turned out to be a desired
feature. An effort was made to implement some sort of functionality for this, however
not extensively. Animations support all elements the other functions support. Three
different types of (linear) animations are supported, see Chapter 4.5.

To summarize what has been implemented:

6 types of elements (spring, bar, flow, solid, beam & plate)
Geometry, undeformed mesh & deformed mesh

Color mapping by scalars for nodes & elements

Vectors

Principal stresses

Section force diagrams for beams

Animations for all 6 element types

Import from MATLAB & export to ParaView

Error handling

2D mode

NN N N N N N N NN

Other utilities

42



8 Future Work

Throughout this work, a user interface built on PyQt5 was at times used to some
extent. In the end, it was decided to not implement this. The foremost reason was
that it interfered with the functionality related to the mouse pointer in Vedo. This
meant getting element/node information would be impossible if Qt was used. This
was considered too important to disregard for a real-world use case. Going forward,
this could be looked into and solved. If done, it would somewhat improve usability
and reduce the need for some scripting in Python.

Animations can be greatly expanded upon. The current implementation is fairly crude,
only using two different states of the mesh and linearly interpolating steps in different
ways. The Finite Element Method has many possibilities of dynamic, time-dependent,
and non-linear modeling. A few methods for this exists in the current versions of
CALFEM for both Python and MATLAB. Adding dedicated methods for this would
make this tool more complete for teaching, also for more advanced FE modeling. For
example, manually adding keyframes to the animation timeline could be added.

Vedo allows for interaction with the PyPlot library. This allows for plotting 2D graphs
in the 3D space of the Vedo plotter. This is not something that has been explored in
this thesis, however, some examples provided by Vedo show this possibility [14]. This
could then be used for more extensive plotting of graphs in the same figure as the
model.

Isolines have not been implemented in any form. Based on the survey of visualization
needs, (Chapter 2.2.2) it was deemed to be little demand for it for all element types.
If the tools are to be expanded for certain types of problems however, Vedo supports
implementing them.

43






Bibliography

[1] Per-Erik Austrell, Ola Dahlblom, Jonas Lindemann, Anders Olsson, Karl-Gunnar
Olsson, Kent Persson, Hans Petersson, Matti Ristinmaa, Goran Sandberg and
Per-Anders Wernberg. CALFEM - A Finite Element Toolbox version 3.4. KFS
i Lund AB, 2004.

[2] Jonas Lindemann. CALFEM for Python Documentation. 2021. URL: https://
calfem-for—-python.readthedocs.io/_/downloads/en/latest/
pdf/.

[3] Christoph Schéfer. Quickstart Python. An Introduction to Programming for STEM
Students. Tiibingen, Germany: Springer, 2021.

[4] Jonas Lindemann. Ingenjérens guide till Python. 2019.

[5] Philipp Rudiger, James A. Bednar, Julia Signell and Jean-Luc Stevens. Python
tools for data visualization. 2019. URL: https://pyviz.org.

[6] Daniel Weiskopf, Kwan-Liu Ma, Jarke J. van Wijk and Helwig Hauser. “SciVis
, InfoVis — bridging the community divide 7 !” In: 2006.

[7]  William Schroeder, K. Martin and William Lorensen. The Visualization Toolkit,
An Object-Oriented Approach To 3D Graphics. Jan. 2006.

[8] Andrew C. Bauer, Berk Geveci and Will Schroeder. ParaView Catalyst User’s
Guide. 2019. URL: https://www.paraview.org/paraview—downloads/
download.php?submit=Download&version=v5.9&type=data&os=
Sources&downloadFile=ParaViewCatalystGuide-5.9.1.pdf.

9] W.J. Schroeder, K.M. Martin and W.E. Lorensen. “The design and implement-
ation of an object-oriented toolkit for 3D graphics and visualization”. In: Pro-
ceedings of Seventh Annual IEEE Visualization °96. 1996, pp. 93-100. bor: 10.
1109/VISUAL.1996.567752.

[10] Berk Geveci, Will Schroeder, A Brown and G Wilson. “VTK”. In: The Archi-
tecture of Open Source Applications 1 (2012), pp. 387-402.

[11] Patrick O’'Leary, Sankhesh Jhaveri, Aashish Chaudhary, William Sherman, Ken
Martin, David Lonie, Eric Whiting, James Money and Sandy McKenzie. “FEn-
hancements to VTK enabling scientific visualization in immersive environments” .
In: 2017 IEEE Virtual Reality (VR). 2017, pp. 186-194. por: 10.1109/VR.
2017.7892246.

[12] Prabhu Ramachandran. Mayavi documentation. 2021. URL: https://mayavi.
readthedocs.io/en/latest/installation.html.

[13] Prabhu Ramachandran and Gaél Varoquaux. “Mayavi: a package for 3D visu-
alization of scientific data.” In: (2010). URL: http://ludwig. lub. lu.
se/login?url=https://search.ebscohost .com/login. aspx?
direct=true&AuthType=ip, uid&db=edsarx&AN=edsarx.1010.
4891l&site=eds—-1live&scope=site.

45


https://calfem-for-python.readthedocs.io/_/downloads/en/latest/pdf/
https://calfem-for-python.readthedocs.io/_/downloads/en/latest/pdf/
https://calfem-for-python.readthedocs.io/_/downloads/en/latest/pdf/
https://pyviz.org
https://www.paraview.org/paraview-downloads/download.php?submit=Download&version=v5.9&type=data&os=Sources&downloadFile=ParaViewCatalystGuide-5.9.1.pdf
https://www.paraview.org/paraview-downloads/download.php?submit=Download&version=v5.9&type=data&os=Sources&downloadFile=ParaViewCatalystGuide-5.9.1.pdf
https://www.paraview.org/paraview-downloads/download.php?submit=Download&version=v5.9&type=data&os=Sources&downloadFile=ParaViewCatalystGuide-5.9.1.pdf
https://doi.org/10.1109/VISUAL.1996.567752
https://doi.org/10.1109/VISUAL.1996.567752
https://doi.org/10.1109/VR.2017.7892246
https://doi.org/10.1109/VR.2017.7892246
https://mayavi.readthedocs.io/en/latest/installation.html
https://mayavi.readthedocs.io/en/latest/installation.html
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.1010.4891&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.1010.4891&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.1010.4891&site=eds-live&scope=site
http://ludwig.lub.lu.se/login?url=https://search.ebscohost.com/login.aspx?direct=true&AuthType=ip,uid&db=edsarx&AN=edsarx.1010.4891&site=eds-live&scope=site

[14]

[15]

[16]

[22]
[23]
[24]

[25]

46

Marco Musy et al. “Vedo, a python module for scientific analysis and visualiz-
ation of 3D objects and point clouds”. In: (2021). por: 10.5281/zenodo .
4287635. URL: https://doi.org/10.5281/zenodo.4287635

C. Bane Sullivan and Alexander Kaszynski. “PyVista: 3D plotting and mesh
analysis through a streamlined interface for the Visualization Toolkit (VTK)”.
In: Journal of Open Source Software 4.37 (2019), p. 1450. por: 10.21105/
joss.01450. URL: https://doi.org/10.21105/joss.01450.

Anders Logg, Kent-Andre Mardal, Garth N. Wells et al. Automated Solution of
Differential Equations by the Finite Element Method. Ed. by Anders Logg, Kent-
Andre Mardal and Garth N. Wells. Springer, 2012. 1SBN: 978-3-642-23098-1. DOI:
10.1007/978-3-642-23099-8.

Nicholas Sharp et al. Polyscope. 2019. URL: www.polyscope. run.

L. Stemkoski and Pascale M. Developing Graphics Frameworks with Python and
OpenGL. 1st edition. CRC Press, 2021. DOI1: 10.1201/9781003181378. URL:
https://doi.org/10.1201/9781003181378.

Johan Nysjo. Introduction to Python and VTK. 2014. URL: https://www.
cb.uu.se/~aht/Vis2014/lecture?.pdf.

William J Schroeder, Lisa Sobierajski Avila and William Hoffman. “Visualizing
with VTK: a tutorial”. In: IEEE Computer graphics and applications 20.5 (2000),
pp. 20-27.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del Rio, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke and Travis E. Oliphant. “Array
programming with NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357-362. DOI:
10.1038/s41586-020-2649-2. URL: https://doi.org/10.1038/
s41586-020-2649-2.

Andreas Ottosson. Implementering av CALFEM fér Python. swe. Student Paper.
2010.

Andreas Edholm. Meshing and Visualisation Routines in the Python Version of
CALFEM. eng. Student Paper. 2013.

Karl Eriksson. CALFEM Geometry Editor - Implementing an interactive geo-
metry editor for CALFEM. eng. Student Paper. 2021.

Mark Lutz. Learning Python : Powerful Object-Oriented Programming. Sebastopol,
United States: O’Reilly Media, Incorporated, 2013. 1SBN: 9781449355715. URL:
http://ebookcentral .proquest.com/lib/lund/detail.action?
docID=1224732.

Hans Petter Langtangen. A Primer on Scientific Programming with Python. 4th.
Springer Publishing Company, Incorporated, 2014. 1SBN: 3642549586.


https://doi.org/10.5281/zenodo.4287635
https://doi.org/10.5281/zenodo.4287635
https://doi.org/10.5281/zenodo.4287635
https://doi.org/10.21105/joss.01450
https://doi.org/10.21105/joss.01450
https://doi.org/10.21105/joss.01450
https://doi.org/10.1007/978-3-642-23099-8
www.polyscope.run
https://doi.org/10.1201/9781003181378
https://doi.org/10.1201/9781003181378
https://www.cb.uu.se/~aht/Vis2014/lecture2.pdf
https://www.cb.uu.se/~aht/Vis2014/lecture2.pdf
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
http://ebookcentral.proquest.com/lib/lund/detail.action?docID=1224732
http://ebookcentral.proquest.com/lib/lund/detail.action?docID=1224732

Appendix A: Manual

Vedo visualization in CALFEM

This Appendix is only for the Vedo visualization tools in CALFEM for Python. For
full CALFEM for Python documentation, please see:

https://calfem-for-python.readthedocs.io/en/latest

CALFEM for Python source code and examples in this Appendix can be found at:
https://github.com/CALFEM/calfem—-python

For viewing exported models, see ParaView documentation at:

https://docs.paraview.org/en/latest

Contents
A.1 Installation & requirements . . . . . . . . ... ... L. 1
A.2 Basic visualization . . . ... .. ... L 1
A.3 Animations . . . .. ... 3
A4 TImport & export . . . . .. L 3
A.4.1 Import from Matlab . . . .. ... ... ... ... ... ... 3
A42 Exportto VIK . . . . . . . ... . 4
A5 Examples . . . . .. 4
A5.1 Example 1: Spring . . . . .. .. ... 5
A5.2 Example 2: Truss . . . . . . . . . .. ... 7
A53 Example3: Flow . . . ... ... .. ... ... ... ...... 13
A54 Example 4: Solid . . . . . . . ... 18
A5.5 Example b: Plate . . . . . . . . ... 22
A.6 Interaction . . . . . . . . . . . .. 28
A.7 Function reference . . . . . . . ... 29
A.7.1 Main functions . . . . ... ... 29
A.7.2 TImport/Export . . ... .. ... 33
A.7.3 Miscellaneous functions . . . . . . ... .. ... L. 33

Ar4 Utilities . . . .o o 37


https://calfem-for-python.readthedocs.io/en/latest
https://github.com/CALFEM/calfem-python
https://docs.paraview.org/en/latest




A.1 Installation & requirements

Some form of Python installation is required, a scientific Python distribution like
Anaconda can be used, or a regular installation of Python. Python 3.8 or later is
recommended as the tools have been tested on these versions. Vedo version 2022.0.1
or later is required for all features and VTK version 9.1 or later is recommended.
Issues with interaction using multiple figures can occur on VTK versions 9.0.X.

Using the visualization tools requires Vedo and the Python version of CALFEM. These
can be installed in Anaconda by running the following in the IPython terminal:

conda install wvedo
conda install calfem

For installing natively using Python, the following can be run in the terminal of your
operating system:

pip install vedo
pip install calfem

The module can be imported by writing import calfem.vedo in your Python file.
To avoid potential conflicts with other packages, the package can be imported with a
reference as well. This is done by writing import calfem.vedo as cfv.

A.2 Basic visualization

The main visualization functions are dependent on the Edof, Dof & Coord matrices
widely used in CALFEM. Each row in Dof describes the degrees of freedom for each of
the nodes, the rows in Edof assign these degrees of freedom to the elements. Coord
describes the coordinates for the nodes. The functions use the Python version of the
Edof matrix, which means there is no indication for the element number in the first
column, instead the row number denotes the element number. In addition to this,
specifying the element type is required when visualizing any mesh. The element types
are given below in Table A.1.

Type Element Ex. function in CALFEM

1. Spring springle
2. Bar bar2e
3. Flow flw3i8e
4. Solid soli8e
5. Beam beam3e
6. Plate platre

Table A.1: Element types


https://www.anaconda.com
https://www.python.org

In order to visualize, one or more of the main functions draw_geometry, draw_mesh,
draw_displaced._mesh or animate must be run first. After any of these functions,
the visualization is run using show_and wait. The user can run as many main
functions as they want, before showing the renderings using show_and_wait. If this
is done using figure, each visualization will open in separate windows. Essentially,
running functions adds objects (actors, text etc) to the figure currently selected (1 by
default), and the objects are then rendered using show_and_wait.

The mesh functions draw_mesh and draw_displaced_mesh have many optional in-
put parameters. In the following example, only basic functionality is shown, with some
optional parameters. For complete explanations of all functions and input paramet-
ers, see the function reference A.7. Section A.5 contains more extensive and complete
examples.

Let’s go through a simple example where a geometry, undeformed mesh, and de-
formed mesh is visualized. The geometry is created using the CALFEM for Python
module for it. Points, lines & surfaces are visualized. Points are required, the others
are optional. If surfaces are included, lines are also required. This is done as follows:

g = cfg.Geometry ()

points = g.points
lines = g.curves
surfaces = g.surfaces

cfv.draw_geometry (points, lines, surfaces)

When meshing is done, the user has the Edof, Coord and Dof matrices available.
Let’s use solid elements, (element type 4, see Table A.1) now the user can visualize
the undeformed mesh in a separate figure:

cfv.figure (2)
cfv.draw_mesh (edof, coord, dof, 4)

After the FE problem is solved, the results can be visualized in a third figure. Let’s
say the displacement (a) is quite small and needs to be increased to see the deformed
shape properly. An optional scale factor of 10 is therefore applied and noted using
text in the top-left corner. If von Mises (vM) stresses have been calculated in each
element, these can be visualized as scalars using a colormap and adding a scalar bar.
If a scalar bar is used, it must be added after draw_displaced.mesh. Finally, all
created figures are shown. This is done as follows:

cfv.figure(3) # Omit this to use same figure as undef. mesh
ds = 10

cfv.add_text (f'Def. scale: {dS}',pos="top-left')
cfv.draw_displaced_mesh (edof, coord,dof, 4,a,vM,def_scale=dS)
cfv.add_scalar_bar ('von Mises stress [MPal]')
cfv.show_and_wait () # Starts visualization



A.3 Animations

Animation is done by linear interpolation in a few steps between an undeformed and
a deformed state. The number of steps can be chosen, as well as the time difference
between each step. The default is 10 steps (excl. undeformed mesh) with 50ms in
between. The results can be exported to ParaView. Animations start over once
finished, and has to be exited by pressing ESC.

Three animation modes are supported. By default, the animation starts at the unde-
formed state (0) and animates steps to the deformed state (1). The loop animation
mode also includes backward steps from the deformed to the undeformed state. The
negative mode does what the loop mode does, but when the undeformed state is
reached, the animation is reversed to the negative deformed state (-1) instead. This
is essentially representing a vibration. See below:

Default: 0 — 1
Loop: 0 — 1 — O

Negative: 0 — 1 — 0 — (-1) — 0

Note that the number of steps used as input for the animation function denotes how
many steps are used between each state (incl. deformed). This means that the loop
mode has approximately double the total amount of steps as the default mode. The
same applies when going from loop to negative mode.

Let’s continue the example from Section A.2. The last step (results) can be animated.
The number of steps is given after the deformation. Let’s use 8 steps with 100ms in
between. A loop is used and the animation is exported for use in ParaView. This can
be done as follows:

cfv.figure(4) # Animations require separate figure
cfv.animate (edof, coord, dof,4,a,vM, 8,dt=100, loop=True,def_sca
— le=dS,export=True, file="anim/exvi"')

cfv.show_and wait () # Starts animation

A.4 Import & export

A.4.1 Import from Matlab

Before any CALFEM data can be imported, it needs to be saved to a .mat-file in
Matlab. This is be done as follows:

save ('exv4.mat', '"Coord', 'Dof', "Edof'")

For importing Matlab data, import_mat is used. It allows for importing .mat-files
in a way that is suited to CALFEM. Its suggested use is:



8

9

10

Edof,Coord,Dof = import_mat('file', ['Edof', 'Coord', 'Dof'])

It takes one required argument, the file name to be imported (with or without .mat-
extension). It also takes an optional argument in the form of a list. The output will
be ordered the same as the list. This ensures the data is imported correctly, omitting
this list risks swapping around the variable names (for example Edof could become
Coord etc).

A.4.2 Export to VTK

Exporting (apart from animations) requires that draw_displaced mesh has been
run first, and the mesh has been returned. For example, this can be done for a
displaced 3D-solid:

mesh = draw_displaced_mesh (Edof,Coord,Dof,4,a, vM)

Now the displaced mesh is saved as a variable. Now export_vtk is run to save the
data as a .vtk-file. First the filename is given, then the mesh, according to:

export_vtk ('exported_mesh', mesh)

If multiple meshes are to be exported and visualized as the same object in ParaView,
a list can be given like this:

export_vtk ('exported_mesh', [meshl, mesh2, mesh3])

Exporting any type of mesh is supported, but it is recommended to export meshes from
draw_displaced mesh, as this function is optimized for creating a mesh suitable
for export.

A.5 Examples

In order to aid in following the examples, the lines are numbered according to the
actual lines in the source code. The examples can be found in the CALFEM for Python
source code (see exvl.py — exv5.py under examples). All of the examples relies
on importing of the following packages at the start:

import numpy as np
import calfem.core as cfc
import calfem.vedo as cfv



12
13
14
15
16
17

32

35
36
37
38
39
40

42
43

A.5.1 Example 1: Spring

This is the example from Chapter 5.1. It is a simple spring model with three elements
in a single row. They are connected to four nodes, one of the nodes at the ends is
fixed and the node at the other end has a force applied. The springs have differing
stifnesses. The undeformed and deformed meshes are visualized in the same figure,
then animated in a different figure.

To begin with, the coordinates, and degrees of freedom are defined, along with ele-
ments.

coord = np.array ([ 19 dof = np.array ([ 26 edof = np.array ([
[0,0,07, 20 [1, 27 (1, 21,
[0.5,0,07, 21 21, 28 (2, 31,
[1,0,01, 22 [31, 29 [3, 4]
[1.5,0,0] 23 [4] 30 1)

1) 24 ])

Next, material parameters (stiffness) are defined.

k = 1000 #N/m 33 ep = [3xk, k, 8xk]

Global stiffness matrix is created and assembled.

ndof = dof.shape[0]+dof.shapel[l] # Number of dofs
nel = edof.shape[0] # Number of elements
K = np.zeros([ndof,ndof])
for i in range(nel):
Ke = cfc.springle(ep[i])
K = cfc.assem(edof[i], K, Ke)

Global force vector is defined, along with boundary conditions. The system of equa-
tions is solved.

f = np.zeros([ndof,1]) 45 DbcPrescr = np.array([1])
f[3,0] = 500 #Newton 46 a,r = cfc.solveqg(K, f, bcPrescr)

Now for the visualization, first the undeformed mesh is added. This is followed by the
displaced mesh, offset by 20cm in the y-direction. Some text annotations are added
to indicate stiffness and force. The displaced mesh is returned and then exported.



48
49
50

51
52
53
54
55
56
57

59
60
61

62

63

64
65

cfvv.figure(l,flat=True) # 2D-mode

cfv.

mesh

N
cfv.
cfv.
cfv.
cfv.

draw_mesh (edof, coord, dof, 1)

= cfv.draw_displaced_mesh(edof,coord,dof,l,a,offset=[O,O.2,O],rendeJ
r_nodes=True)

add_text_3D('k=3 kN/m',[0.15,-0.1,0],size=0.03)

add_text_3D('k=1 kN/m', [0.65,-0.1,0],size=0.03)

add_text_3D('k=8 kN/m',[1.15,-0.1,0],size=0.03)

add_text_3D('F_x =500 N',[1.55,-0.02,0],si1ze=0.03)

# Export the mesh

cfv.

export_vtk ('export/exvl/exvl', mesh)

The visualization is also animated with 20 steps to achieve a smooth animation. Then
the visualization is started, the results can be seen in Figure A.1.

cfv.

figure (2)

steps = 20

cfv.
—
cfv.

—

add_text (f'Looping bewteen undef. & def. state w/ {steps}
steps',pos="'top-middle"')
animation(edof,coord,dof,l,a,loop=True,steps=20,dt=O,export=True,filJ
e='export/exvl/anim/exvl")

#Start CALFEM-vedo visualilization

cfv.

show_and_wait ()

Figure A.1: The resulting spring visualization for example 1



12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

46
47
48
49
50
51
52
53

A.5.2 Example 2: Truss

This is the example from Chapter 5.2. It is a truss bridge model consisting of both
beam and bar elements. The bridge is 3m wide, 3m tall and 18m in length. It is
modeled using symmetry, menaing the length of the model is 9m. Horizontal and
vertical elements are mostly beams, bars are placed diagonally to resist deformation
in tension, and transverse at the top. The degrees of freedom at the end are fixed.
Transverse beams at the bottom are loaded by a uniform load from a concrete deck,
and a point load is applied in the transverse direction at the top in the middle of the
bridge.

The model is visualized by rendering undeformed and deformed meshes in the same
figure, applying a transparency to the undeformed mesh. The deformed mesh are color
mapped by the least favorable normal stress (from both normal force and moment
when applicable). The moment diagrams for the beams are also plotted along the
undeformed beams. Some measurements are added. The meshes are then animated
in a separate figure, and exported.

This example contains both bars and beams. They will be handled separately, using
different edof:s, but sharing coord and dof. First, the common global matrices are
defined:

coord = np.array ([ 29 dof = np.array ([
[o, o0, 01, 30 (1, 2, 3, 4, 5, 61,
[3, 0, 01, 31 (7, 8, 9, 10, 11, 127,
[6, 0, 01, 32 (13, 14, 15, 16, 17, 181,
[, o0, 01, 33 (19, 20, 21, 22, 23, 24],
[3, 3, 01, 34 [25, 26, 27, 28, 29, 301,
[6, 3, 01, 35 (31, 32, 33, 34, 35, 361,
[9, 3, 01, 36 [37, 38, 39, 40, 41, 421,
[0, 0, 31, 37 (43, 44, 45, 46, 47, 48],
[3, 0, 31, 38 (49, 50, 51, 52, 53, 541,
[, 0, 31, 39 [55, 56, 57, 58, 59, 601,
[9, 0, 31, 40 [61, 62, 63, 64, 65, 661,
[3, 3, 31, 41 [67, 68, 69, 70, 71, 721,
[6, 3, 31, 42 (73, 74, 75, 76, 77, 781,
[9, 3, 3] 43 (79, 80, 81, 82, 83, 84]

Now the edof for beams. Then number of nodes, degrees of freedom, and elements
are calculated. Coordinates are then extracted:

edof_beams = np.array ([

"'"'"Left side'''

(., =2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 121,
t7?, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 181,
(13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 2417,
(L, 2, 3, 4, 5, 6, 25, 26, 27, 28, 29, 301,
(7, 8, 9, 10, 11, 12, 25, 26, 27, 28, 29, 301,
(13, 14, 15, 16, 17, 18, 31, 32, 33, 34, 35, 361,



54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

20,
26,
32,
""" '"Right
44,
50,
56,
44,
50,
56,
62,
68, 69,
74, 75,
"'"'Bottom''"'

21,
27,
33,
side
45,
51,
57,
45,
51,
57,
63,

22,
28,
34,
46,
52,
58,
46,
52,
58,
64,
70,
76,

23,
29,
35,

[19 24,
(25, 30,
[31 36,
47,
53,
59,
47,
53,
59,
65,
71,
77,

48,
54,
60,
48,
54,
60,
66,
72,
78,

4,

10,
16,
22,

[l/ 5/ 6/
(7, 11, 12,
[13, 17, 18,
[19 23, 24,
1)

nnode = np.size(coord, axis =
ndof = np.size(dof, axis =
nel_beams =

ex_beams, ey_beams, ez_beams =

Next, orientations of beams and material parameters. Then the global stiffness and

37,
31,
37,

49,
55,
61,
67,
67,
73,
79,
73,
79,

43,
49,
55,
61,

0)

np.size (edof_beams,

38,
32,
38,

50,
56,
62,
68,
68,
74,
80,
74,
80,

44,
50,
56,
62,

0) *np.size (dof,
axis

39,
33,
39,

40,
34,
40,

41,
35,
41,

51,
57,
63,
69,
69,
75,
81,
75,
81,

52,
58,
64,
70,
70,
76,
82,
76,
82,

53,
59,
65,
71,
71,
77,
83,
77,
83,

45,
51,
57,
63,

46,
52,
58,
64,

47,
53,
59,
65,

axis = 1)

= 0)

cfc.coordxtr (edof_beams, coord, dof)

force vectors are created and forces declared:

eo = np.array ([
(0, 0, 11,
(o, 0, 11,
[o, o, 11,
[o, o, 11,
[o, o, 11,
(o, o, 11,
(0, 0, 11,
[o, o, 11,
[o, o, 11,
[o, o, 11,
(0, 0, 11,
(0, 0, 11,
[o, o, 11,
[0, 0, 11,
[o, o, 11,
(0, 0, 11,
(0, 0, 11,
[o, o, 11,
[-1, 0, 01,
[-1, 0, 01,
[_l/ O/ O]/
[-1, 0, O]
]

107
108
109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124

125
126
127

128
129

E = 210000000 # Pa
v = 0.3

G = E/ (2% (1+v)) # Pa
#HEA300-beams

A_beams = 11250%x0.000001 # m~2
A_web_beams = 2227x0.000001 # m~2
Iy = 63.1x0.000001 # m~4
hy = 0.29%0.5 # m
Iz = 182.6x0.000001 # m~4
hz = 0.3%x0.5 # m
Kv = 0.856%x0.000001 # m~4
ep_beams = [E, G, A_beams, Iy, Iz,
— KV]

K = np.zeros([ndof,ndof])
f np.zeros ([ndof,1])

# 1
— at symmetry (top)

f[38] = 1000 # N

# Transverse beams at y=0

# Dead load of 3x3 m concrete, t =
-~ 0.2 m, 25 kN/m"2

g = 25%1000%0.2+3 # N/m

eq = [0,-91,0,0]

kN point load in z-direction



133
134
135

136
137
138

139

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158
159

181
182
183
184
185
186
187
188
189
190

The global matrices are assembled, first with only beams. If the beam is not loaded
with uniform load (<18), no uniform load is included.

for i in range(nel_beams):
if i < 18:
Ke = cfc.beam3e (ex_beams[i],
— ep_beams)

ey_beams[i], ez_beams[i], eol[i],

K = cfc.assem(edof_beams[i], K, Ke)
else:
Ke, fe = cfc.beam3e(ex_beams[i], ey_beams[i], ez_beams[i],
— eol[i], ep_beams, eq)
K, f = cfc.assem(edof_beams[i],K,Ke, f, fe)

Bar elements are not going to be added to the model. The element matrix and cor-
responding coordinates are created manually.

edof_bars =
14,

np.array ([ 161
15, 25, 26, 27

, 162 [

20,
56,
62,
26,
32,
38,

21,
57,
63,
27,
33,
39,

31,
67,
73,
67,
73,
79,

.array ([

32,
68,
74,
68,
74,
80,

163
164

[
[
165 [
166 [
167 [
168 [
169 1)
170
171 ezZ_bars
172 [
173 [
174 [
175 [
[
177 [
178 [
179 1)

Number of elements are calculated, material parameters are defined. Then the global
stiffness matrix is assembled using bars as well. Then the system of equations is solved.

nel_bars = np.size(edof_bars, axis = 0)
#Solid 100mm circular bars

A_bars = 0.05+np.pi*np.pi # m~2
ep_bars = [E, A_bars]

for i in range (nel_bars):
Ke = cfc.bar3e(ex_bars[i], ey_bars[i],

, ez_bars[i],
K = cfc.assem(edof_bars[i], K, Ke)

ep_bars)



191
192

193
194

196
197
198

200
201
202
203
204
205
206
207

208

210
211
212
213
214
215
216

218
219
220
221
222
223

224
225

bcPrescr = np.array([l, 2, 3, 4, 5, 6, 19, 22, 23, 24, 37, 40, 41, 42,
- 43, 44, 45, 46, 47, 48, 61, 64, 65, 66, 79, 82, 83, 84])

a,r = cfc.solveq(K, f, bcPrescr)

Now the beam section forces are calculated. This is done by dividing the beam into
12 segments, this means the forces are calculated at 13 points along each beam (2 at
ends, 11 along its length). The forces are saved as separate variables.

ed_beams = cfc.extractEldisp (edof_beams, a)

# Number of points along the beam
nseg=13 # 13 points in a 3m long beam = 250mm long segments

es_beams = np.zeros ((nel_beams*nseg, 6))
edi_beams = np.zeros((nel_beams*nseqg,4))
eci_beams = np.zeros((nel_beams*nseqg, 1))

for i in range (nel_beams) :
if i < 18:
es_beams[nseg*i:nsegxit+nseqg, :], edi_beams[nsegxi:nsegxi+tnseqg,:],
— ecli_beams[nseg*i:nseg*itnseqg, :]
N cfc.beam3s(ex_beams[i],ey_beams[i],ez_beams[i],eo[i],ep_beamJ
- s,ed_beams([i], [0,0,0,0],nseqg)

else:

es_beams[nseg*i:nsegxit+nseqg, :], edi_beams[nsegxi:nsegxi+tnseqg,:],
— eci_beams[nsegxi:nsegxitnseg,:] = cfc.beam3s(ex _beams[i],ey_|
— beams[i],ez_beams[i],eo[i],ep_beams,ed_beams[i],eq,nseq)

N_beams = es_beams[:,0]

Vy = es_beams[:, 1]

Vz = es_beams|[:, 2]

T = es_beams/([:, 3]

My = es_lbeams|[:,4]

Mz = es_beams[:, 5]

The above step is repeated for the bars. These are not (and cannot be) segmented.

ed_bars = cfc.extractEldisp(edof_bars, a)
es_bars = np.zeros((nel_bars, 1))
for i in range (nel_bars):

es_bars[i,:] =

— cfc.bar3s(ex_bars([i],ey_bars[i],ez_bars[i],ep_bars,ed_bars[i])

N_bars = es_bars

Now the normal stresses are calculated. Steiner’s formula is used. Since The beams
have two moment-components contributing to normal stress, the normal force direction
needs to be checked to get the least favorable stress. If the beam is in tension from

10



227
228
229
230
231
232

233
234

235
236
237
238
239
240

242
243
244
245
246
247
248
249
250
251
252
253
254

255

260
261
262
263

normal force, the moment-components are added as tension as well. This stress will
only occur at one corner of the beam, where both moments are positive. If the normal
force is compressing, the negative moments are used instead. Bars have no moments.

normal_stresses_beams = np.zeros (nel_beams*nseq)

# Stress calculation based on element forces
for i in range (nel_beams*nseq) :
if N_beams[i] < O:

normal_stresses_beams[i] = N_beams[i]/A_beams -

— np.absolute(My[i]/Iy*hz) - np.absolute(Mz[i]/Iz+xhy)
else:

normal_stresses_beams[1i] = N_beams[i]/A_beams +

— np.absolute(My[i]/Iy*hz) + np.absolute(Mz[i]/Iz+hy)
normal_stresses_bars = np.zeros(nel_bars)
for i in range(nel_bars):

# Calculate least favorable normal stress
normal_stresses_bars[i] = N_bars[i]/A_bars

In order to color code the beams that are loaded, the eg_els matrix is created. It
contains element numbers and is used as input to draw_mesh along with eq. It works
in a similar way to bcPrescr and bcval, see CALFEM for Python documentation.
Both undeformed and deformed meshes are then added to the figure.

eq_els = np.array ([[18]1,[19],[201,[21]11])
eq = np.zeros([nel_beams,4])

# For color-coding elements with force applied

eqgleq els[0,:]] = eq
eqleg_els[l,:]1] = eq
eqleqg_els[2,:]] = eq
eqgleq_els[3,:]] = eq
bcPrescr = np.transpose (bcPrescr)

cfv.draw_mesh (edof_beams, coord, dof, 5,nseg=nseg,alpha=0.2, eq_els=eq_els,
— eg=eqleq_els])

beams = cfv.draw_displaced_mesh(edof_beams,coord,dof,5,a,normal_stressesJ
— _beams/1000000,nseg=nseg, scalar_title='Max normal stress
- [MPal"')

In order to visualize the bars, the element matrix for these need updating to include all
6 degrees of freedom for each node. This is a current limitation to the vedo visualization
module. An alternative solution is to use two different Dof-matrices instead.

edof_bars = np.array ([
[13, 14, 15, 16, 17, 18, 25, 26, 27, 28, 29, 301,
(19, 20, 21, 22, 23, 24, 31, 32, 33, 34, 35, 361,
[55, 56, 57, 58, 59, 60, 67, 68, 69, 70, 71, 721,

11



264
265
266
267
268

270
271
272

274
275
276
277
278

279

280

281

283
284

286

287

[61, 62, 63, 64, 65, 66, 73, 74, 75, 76, 77, 78]

[25, 26, 27, 28, 29, 30, 67, 68, 69, 70, 71, 72]

(31, 32, 33, 34, 35, 36, 73, 74, 75, 76, 77, 781,

[37, 38, 39, 40, 41, 42, 79, 80, 81, 82, 83, 84]
1)

Now the bars are added to the figure. For the color mapping to work correctly for
deformed bars, the minimum/maximum scalar values have to be used as input. This
makes sure that the colormap scale is the same for both element types.

cfv.draw_mesh (edof_bars, coord,dof, 2, alpha=0.2)

vmin, vmax = np.min(normal_stresses_beams), np.max(normal_stresses_beams)
bars = cfv.draw_displaced_mesh(edof_bars,coord,dof,2,a,normal_stresses_bJ
— ars/1000000,vmin=vmin, vmax=vmax, scalar_title='Max normal stress

- [MPal]"')

Next, the moments are extracted for the 4 beams loaded with uniform load. The
diagrams are then added to the figure along with rulers for measurements.

Mz_beams = np.zeros((4,nseq))

eci_beams_upd = np.zeros((4,nseq))

for i in range (Mz_beams.shape[0]):
Mz_beams[i] = Mz [ (18+1i)*nseg: (18+1i) »nseg+tnseq]
eci_beams_upd[i] =
< np.transpose (eci_beams[ (18+1i) »nseqg: (18+1) rnseg+nseqg])

cfv.eldia(ex_beams[18:22],ey_beams[18:22],ez_beams[18:22],Mz_beams/lOOO,J
— eci_beams_upd, label="M x

— [kNm]")

cfv.add_rulers ()

The animation is (and has to be) done in a separate figure. 20 steps are used, this
should be adapted to the displacement. The elements need to be added in two steps.
The scalar bar title is used as input to the animation, this is optional but allows
ParaView to name the scalars correctly after export. Then the visualization is run
and the meshes from the first figure are exported. Note that the meshes are exported
in a list, which exports them to the same file.

cfv.figure (2)

steps = 20

cfv.add_text (f'Looping from undef. to def. state w/ {steps}

— steps',pos="top-middle')
cfv.animation(edof_beams,coord,dof,5,a,normal_stresses_beams/lOOOOOO,nseJ
— g-nseqg,dt=125, steps=20, export=True, file="export/exv2/anim/exv2_beams |
— '",scalar_title="'Max normal stress

- [MPal'")
cfv.animation(edof_bars,coord,dof,2,a,normal_stresses_bars/1000000,nseg:J
— nseg,dt:l25,steps:ZO,export:True,file:‘export/exv2/anim/exv2_bars',sJ
— calar_title="Max normal stress

. [MPa]', vmax=vmax, vmin=vmin)

12



288
289
290
291
292
293
294

cfv.add_scalar_bar ('Max normal stress [MPa]')

#Start CALFEM-vedo visualization
cfv.show_and_wait ()

#Export the mesh
cfv.export_vtk ('export/exv2/exv2', [beams,bars])

The resulting visualization for the first figure can be seen in Figure A.2

Figure A.2: The resulting truss visualization for example 2

A.5.3 Example 3: Flow

This is the example from Chapter 5.3. This is a heat flow problem in a 400x400mm
concrete element, 1m tall. The top and bottom surfaces are 20 degrees, and two
arbitrary elements inside the model have heat supplied.

This example plots geometry, undeformed and deformed meshes, then an animation.
The undeformed mesh also shows nodes with boundary conditions and elements with
force (heat supply). Heat flux using both scalars and vectors are visualized, along with
a contour plot of the temperature. Two different ways to add axes to a figure are also
shown.

13



11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For flow problems, the mesh cannot be ’deformed’. But for the sake of consistency
and avoiding confusion as to which functions are used, it is referred to as deformed.
Whenever a ’deformed’ mesh is visualized, draw_displaced_mesh is used.

This example requires a few extra CALFEM modules at the start. After these are
defined, the geometry is created using the CALFEM geometry module.

import geometry as cfg
import mesh as cfm
import utils as cfu

1 =1

h = 0.4

w = 0.4

n_el x =4

nel y =4

nel z = 10

g = cfg.Geometry ()

g.point ([0, 0, 0], 0)

g.point ([w, 0, 01, 1)

g.point ([w, 1, 0], 2)

g.point ([0, 1, 0], 3)

g.point ([0, O, h]l, 4)

g.point ([w, 0, h], 5)

g.point ([w, 1, h], 6)

g.point ([0, 1, hl, 7)

g.spline ([0, 1], 0, el_on_curve = n_el_x)

g.spline([1, 2], 1, el_on_curve = n_el_z)

g.spline([2, 3], 2, el_on_curve = n_el_ x)

g.spline([3, 0], 3, el_on_curve = n_el_ z)

g.spline ([0, 4], 4, el_on_curve = n_el_y)

g.spline([1l, 5], 5, el_on_curve = n_el_y)

g.spline([2, 6], 6, el_on_curve = n_el_y)

g.spline([3, 7], 7, el_on_curve = n_el_y)

g.spline([4, 5], 8, el_on_curve = n_el_ x)

g.spline([5, 6], 9, el_on_curve = n_el_z)

g.spline([6, 71, 10, el_on_curve = n_el_x)

g.spline([7, 4], 11, el_on_curve = n_el_z)

marker_bottom = 40

marker_top = 41

marker_ fixed_left = 42

marker_back = 43

marker_fixed_right = 44

marker_front = 45

g.structuredSurface ([0, 1, 2, 3], 0, marker=marker_bottom)
g.structuredSurface([8, 9, 10, 11], 1, marker=marker_top)
g.structuredSurface ([0, 4, 8, 5], 2, marker=marker_fixed left)
g.structuredSurface([1l, 5, 9, 6], 3, marker=marker_back)
g.structuredSurface([2, 6, 10, 7], 4, marker=marker_fixed_ right)
g.structuredSurface ([3, 4, 11, 7], 5, marker=marker_front)

14



61

63
64

66
67

68
69
70
71
72

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

91
92
93
94
95
96
97

99
100

g.structuredvolume ([0,1,2,3,4,5], 0)

Now the mesh is created using the CALFEM me sh module. Coordinates are extracted.

el _type = 5
dofs_per_node = 1
elSizeFactor = 0.01

coord, edof, dof, bdof, elementmarkers = cfm.mesh(g, el_type,
— elSizeFactor, dofs_per_node)

ex, ey, ez = cfc.coordxtr (edof, coord, dof)

nnode = np.size(coord, axis = 0)

ndof = np.size(dof, axis = 0)*np.size(dof, axis = 1)

nel = np.size(edof, axis = 0)

Material parameters and forces are defined. The global matrices are then assembled.
The elements numbers for the elements with heat flow are found by first visualizing
the undeformed mesh.

Lambda = 1.4 # Thermal conductivity for concrete
D = np.identity (3) *Lambda

K = np.zeros((ndof, ndof))

f = np.zeros([ndof,1])
eq = np.zeros([nel,1])

eq_els = np.array([[70],[89]11)

eqleqg_els[0]] = 30000
eqgleq_els[1]] = —-30000

for eltopo, elx, ely, elz, egs in zip(edof, ex, ey, ez, eq):

Ke, fe = cfc.flw3i8e(elx, ely, elz, [2], D, egs)
cfc.assem(eltopo, K, Ke, £, fe)

Boundary conditions are defined and the problem is solved.
bc = np.array ([],'i")
bcval = np.array([],'i")

bc, bcval = cfu.apply_bc_3d(bdof, bc, bcVal, marker fixed_left, 20.0)
bc, bcval = cfu.apply_bc_3d(bdof, bc, bcVal, marker_ fixed right, 20.0)

T,r = cfc.solveq(K, f, bc, bcval)

Displacements are extracted and heat fluxes calculated.

ed = cfc.extract_eldisp(edof,T)

15



101
102
103
104
105
106

109
110
111

112
113

115
116
117
118
119
120
121
122
123
124

126
127

es = np.zeros((8,3,nel))
edi = np.zeros((8,3,nel))
ecli = np.zeros((8,3,nel))

for i in range (nel):
es[0:8,:,1], edi[0:8,:,1i], eci[0:8,:,1

;1]
— cfc.flw3i8s(ex[i],eyl[i],ez[1],[2],D,ed[1i])

Flux vectors are calculated using the average from the gauss points. Total element
flux is calculated to use as a scalar colormap.

flux = np.zeros((nel,3));

flux_tot = np.zeros((nel,1));
for i in range(nel):

flux[i,:] = [np.average([es[:,0,1]1]), np.average([es[:,1,1]]),
< np.average([es[:,2,1]1]1)]

flux_tot[i] = np.sqrt(flux[i,0]*%2 + flux[i,1]»x2 + flux[i,2]**2)

Points, lines, and surfaces are now extracted and the geometry is visualized.

# For simple point coordinates of geometry
points = g.points

# For lines with point connectivity
lines = g.curves

# For surfaces with line connectivity
surfaces = g.surfaces

cfv.draw_geometry (points, lines, surfaces)

Next, the undeformed mesh is visualized along with forces and boundary conditions.
The forces (heat supply) are applied in elements inside the model. These can be
revealed by either applying a transparency or by clicking adjacent elements and then
pressing the |- or x-key (see Section A.6).

cfv.figure (2)
cfv.draw_mesh (edof, coord, dof, 3,alpha=1,scale=0.005,bcPrescr=bc,
— bc=bcVal, eqg_els=eq_els, eg=eqleqg_els])

Now the first figures are visualized (see Figure A.3). Figure 3 is a deformed mesh using
wireframe and color mapped using the total heat flux scalars. In the same figure, the
heat flux vectors are added. Figure 4 is a deformed mesh showing the temperature
distribution at the nodes. The amount of colors are reduced to 5 (default is 256) in
order to produce a contour effect. Both figures also use some form of 3D axes, showing
how this can be done in different ways. The resulting visualizations can be seen in
Figure A 4

16



131
132

133
134
135
136
137

.
7S
;7 10 %
‘ | ; j
| |
L
\O A ;‘
lo,: -
4| ;‘:
, 8 7

(a) Geometry (b) Mesh

Figure A.3: Resulting geometry and mesh visualizations for example 3

4t

(b) Temperature

(a) Heat flux

Figure A.4: Resulting flux and temperature visualizations for example 3

cfv.figure (3)
cfv.draw_displaced_mesh(edof,coord,dof,3,scalars=flux_tot,colormap='coolJ
— warm',wireframe=True)

cfv.add_axes (xrange=[-0.1,0.5], yrange=[-0.1,1.1], zrange=[-0.1,0.5])

cfv.add_scalar_bar ('Heat flux [W/m"2]")
cfv.elflux(ex,ey,ez, flux,colormap="'coolwarm')

17



138
139

140
141

146
147

148
149
150
151
152
153
154

11
12

cfv.figure (4)

mesh = cfv.draw_displaced_mesh(edof,coord,dof,3,scalars:ed,colormap:'cooJ
— lwarm',colors=5,scalar_title="'Temp.

= [C]")

cfv.add_mesh_axes (mesh)

cfv.add_scalar_bar('Temp. [C]")

The color distribution is then animated in the last figure. The visualization is started.
Finally, the mesh with temperature scalars is exported.

cfv.figure (5)
cfv.animation(edof,coord,dof,3,scalars:ed,dt:250,steps:ZO,colormap:'coolJ
. warm',colors:S,export:True,file:'export/exv3/anim/exv3',scalar_titlej

— ='Temp.
= [C]")
cfv.add_scalar_bar('Temp. [C]")

#Start CALFEM-vedo visualization
cfv.show_and_wait ()

# Export the mesh
cfv.export_vtk ('export/exv3/exv3', mesh)

A.5.4 Example 4: Solid

This is the example from Chapter 5.4. It demonstrates import from CALFEM for
MATLAB, for the source code of the MATLARB file, see Appendix B. It’s a 5m long
beam consisting of 600 elements. The cross-section is 300x400mm. The beam is fixed
at both ends.

Two analyses are done for this beam, one static analysis using self-weight and an
eccentric load an edge on top on the beam, representing a line load. The line load is
approximately half of the beam length and applied in the middle along it. Element
von Mises stresses and principal stresses are calculated and visualized in a deformed
state.

The second analysis is a modal analysis using both stiffness and mass of the beam to
find the lowest eigenfrequency, along with the corresponding eigenmode. The eigen-
mode is visualized as deformed mesh.

Before visualizing results from both analyses, the undeformed mesh is visualized along
with forces and boundary conditions for the static analysis. Results from both analyses
are also animated.

This example uses some additional utilities imported at the start. Then MATLAB

results are imported and coordinates extracted.

import vedo_utils as cfvu

18



13

14
15

17
18
19
20
21
22
23
24
25
26
27
28

29

30
31
32
33

37
38
39
40

44
45
46
47
48
49
50
51
52
53
54
55
56

edof, coord,dof, a,ed,bc, f_dofs,Stress_tensors,vM, lamb,eig =
— cfvv.import_mat('exv4',[‘edof','coord','dof','a‘,'ed','bc','force_doj
— fs','Stress_tensors', 'vM', 'lambda', 'eig'])

ex,ey,ez = cfc.coordxtr (edof,coord, dof)

The first eigenmode is chosen, then total deformations for it are calculated in order to
map it as scalars later.

eigenmode = 0 # Choose what eigenmode to display in figure 5/6

ndof = np.size(dof, axis = 0)+*np.size(dof, axis = 1)
ncoord = np.size(coord, axis = 0)
nel = np.size(edof, axis = 0)

mode_a = np.zeros((nel, 1))
tot_deform = np.zeros(8)
for i in range(nel):

coords = cfvu.get_coord_from_edof (edof[i, :],dof,4)
for j in range (8):
deform =

— cfvu.get_a_from_coord(coords([j],3,eig[:,eigenmode])
tot_deform[j] = np.sqrt(deform[0]*%2 + deform[l]**2 +
— deform[2]**2)

mode_al[i, :] = np.average (tot_deform)

Freg=np.sqgrt (lamb[eigenmode]/ (2+np.pi))
Principal stresses are calculated based on the stress tensors imported from MATLAB.

ps_val = np.zeros((nel,3))
ps_vec = np.zeros((nel,3,3))
for i in range(nel):
ps_valli,:], ps_vecl[i,:,:] = np.linalg.eig(Stress_tensors[:,:,1i])

Total displacements from the static analysis are calculated in order to visualize them
as scalars later.

upd_ed = np.zeros((nel, 8))
for i in range(nel):

upd_ed[i,0] = np.sqgrt( ed[i,0]**x2 + ed[i,1]**2 + ed[i,2]**2 )
upd_ed[i,1] = np.sqgrt( ed[i,3]**2 + ed[i,4]**x2 + ed[i,5]**2 )
upd_ed[i,2] = np.sqgrt( ed[i,6]**2 + ed[i,7]**x2 + ed[i,8]*%2 )
upd_ed[i,3] = np.sqrt( ed[i,9]**2 + ed[1,10]%%2 + ed[i,11]*%x2 )
upd_ed[i, 4] = np.sqgrt( ed[i,12]**2 + ed[i,13]1%%2 + ed[i,14]*%2 )
upd_ed[i,5] = np.sqgrt( ed[i,15]**2 + ed[i,16]*%x2 + ed[i,17]*x2 )
upd_ed[i,6] = np.sqrt( ed[i,18]**2 + ed[1,19]%%x2 + ed[i,20]*%2 )
upd_ed[i, 7] = np.sqgrt( ed[i,21]*%2 + ed[1,22]*%2 + ed[i1,23]*%2 )

19



58
59
60

62
63
64
65

66
67
68
69
70
71
72
73

74
75

76
7
78

Boundary conditions are converted, a force vector is created in order to color code
nodes where the eccentric line load is applied.

bcPrescr = bc
bc = np.zeros((np.size(bc[:,0]),1))
f = -5000+«np.ones ((np.size(f_dofs[:,0]),1))

Now for the first two visualizations. In this example, all figures are visualized one-
by-one. This means the user has to close them before the next one is rendered. The
first figure is the undeformed mesh with forces and boundary conditions for the static
analysis. The second plot is the deformed mesh for the static analysis, with von Mises
(vM) stresses. The visualizations can be seen in Figure A.5.

# First plot, undeformed mesh
cfv.figure(l)

cfv.draw_mesh(edof,coord,dof,4,scale=0.OO5,bcPrescr=bcPrescr[:,O],bc=bc[J
— :,0],fPrescr=f_dofs[:,0],f=f[:,0])

cfv.add_text ('Undeformed mesh + Forces & BCs for static analysis')
cfv.show_and_wait ()

# Second plot, deformed mesh with element stresses
cfv.figure(2)

scalefact = 3 #deformation scale factor

static = cfv.draw_displaced_mesh(edof,coord,dof,4,a,vM/lOOOOOO,def_scaleJ
«— =scalefact,scalar_title='von Mises

— [MPal'")

cfv.add_text ('Static analysis: self-weight & ecc. vertical load',

— pos='top-left')

cfv.add_text (f'Deformation scalefactor: {scalefact}',pos="'top-right')
cfv.add_scalar_bar ('von Mises [MPa]')

cfv.show_and_wait ()

. (b) Deformed mesh for static analysis
(a) Undeformed mesh with forces and with von Mises stresses

boundary conditions for static analysis

Figure A.5: Resulting mesh visualizations for example 4

20



80
81
82
83
84

85
86

87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106

In the third plot, the static analysis results are animated. In the fourth, the principal
stresses are plotted inside the elements (Figure A.6a). This is done with a deformed
wireframe mesh in the same figure, in order to see the outlines of the elements. This
wireframe is also color mapped with the total deformation from this analysis.

# Third plot, animation of figure 2
cfv.figure (3)
scalefact = 3 #deformation scale factor

cfv.animation(edof,coord,dof,4,a,vM/lOOOOOO,def_scale:scalefact,export:TJ
— rue,file='export/exvd/anim/exvi_static',scalar_title='von Mises
. [MPal"')

cfv.add_text ('Static analysis: self-weight & ecc. vertical load',
— pos='top-left')
cfv.add_text (f'Deformation scalefactor: {scalefact}',pos="'top-right')

cfv.add_scalar_bar('von Mises [MPa]')

#Start Calfem-vedo visualization
cfv.show_and_wait ()

# Fourth plot, principal stresses for static analysis
cfv.figure (4)

# Return the mesh for export
cfv.draw_displaced_mesh (edof, coord,dof,4,a,upd_ed+x1000,wireframe=True)
cfv.elprinc(ex,ey,ez,ps_val/lOOOOOO,ps_vec,ed,colormap='coolwarm',unit=‘J
- MPa')

cfv.add_scalar_bar ('Deformation [mm]")

cfv.add_text ('Static analysis',pos='top-left')

cfv.add_text ('Deformation scalefactor: 1',pos='top-right'")

cfv.add_text ('Princ. stress vectors',pos='top-middle')

#Start Calfem-vedo visualization
cfv.show_and_wait ()

o
e

(a) Principal stresses for static analysis (b) Deformed mesh for modal analysis

Figure A.6: Resulting stress and mesh visualizations for example 4

21



108
109
110
111
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

128
129
130
131
132
133
134
135

12
13

The last two plots are for the modal analysis. The first shows the deformed mesh with
the total element displacement color mapped, with a large deformation scale factor
applied (Figure A.6b). The last figure is an animation of this. The deformed meshes
from both analyses are then exported as separate files.

# Fifth plot, first mode from eigenvalue analysis
cfv.figure (5)

scalefact = 100 #deformation scale factor

modal = cfv.draw_displaced_mesh(edof,coord,dof,4,eig[:,eigenmode],mode_aJ
— %1000,def_scale=scalefact, lines=True, scalar_title="'Tot. el.

— displacement [mm]")

cfv.add_text (f'Modal analysis: {eigenmode+l}st mode',pos='top-left')
cfv.add_text (f'Frequency: {round(Freql[0],2)} Hz")

cfv.add_text (f'Deformation scalefactor: {scalefact}',pos='top-right')
cfv.add_scalar_bar('Tot. el. displacement [mm]"')
cfv.add_projection(plane='xz"',rulers=True)

cfv.show_and_wait ()

# Sixth plot, animation of figure 5
cfv.figure (6)

cfv.add_text (f'Modal analysis: {eigenmode+l}st mode',pos='top-left')
cfv.add_text (f'Frequency: {round(Freq[0],2)} Hz")
cfv.add_text (f'Deformation scalefactor: {scalefact}',pos='top-right')

cfv.animation(edof,coord,dof,4,eig[:,eigenmode],mode_a*lOOO,def_scale:st
— alefact,negative=True, scalar_title='Tot. el. displacement
— [mm]',export=True, file="'export/exvd/anim/exv4_modal')

cfv.add_scalar_bar('Tot. el. displacement [mm]")

#Start CALFEM-vedo visualization
cfv.show_and_wait ()

# Export the two meshes
cfv.export_vtk ('export/exvd/exv4d_static', static)
cfv.export_vtk ('export/exvd/exv4d_modal', modal)

A.5.5 Example 5: Plate

This is the example from Chapter 5.5. It’s a 3x3m plate consisting of 900 elements. It
is loaded with self-weight. Two edges opposite each other are fixed. Along the other
edges the degree of freedom in the z-direction is prescribed in the middle, representing
columns. Element von Mises stresses are calculated and mapped as element scalars
on the deformed mesh. The undeformed mesh is also visualized, along with animating
the deformed mesh.

First, since the platrs-function is currently not supported, it is converted to python
for later use.

# Adaptation of platrs from version 3.4 for MATLAB
# This function is not in the Python version currently

22



39
40
41
42
43
44

45

46
47
48
49

51
52
53
54
55
56
57
58
59
60
61
62
63

# Only es 1is included as it's the only needed output
def platrs(ex,ey,ep,D,ed):
Lx=ex[2]-ex[0]

Ly=eyl[2]-ey[0]
t=epl0]
=((tx%3)/12) *
Al=D[1,1]1/2/Ly
A2=D[0,0]1/2/Lx
A3=D[0,1]1/2/Ly
A4=D[0,1]1/2/Lx
A5=D[2,2]/2/Ly
A6=D[2,2]/2/Lx

A7:4*D[2,2]/Lx/Ly

Bl=6«D[1,1]/Ly/Ly/Ly
B2=6%«D[0,0]/Lx/Lx/Lx
B3=-3«D[1,1]/Ly/Ly
B4=3«D[0,0]/Lx/Lx
B57D[O,l]/Lx/Ly

mx=A3x (-ed[1l]-ed[4]+ted[7]+ed[10]) +A2x (ed[2] —ed[5]-ed[8]
my=Alx (-ed[l]-ed[4]+ed[7]+ed[10])+A4d* (ed[2]-ed[5]-ed[8]
mxy=A6+* (ed[1l]-ed[4]-ed[7]+ed[10])+A5«% (-ed[2]-ed[5]+ed[8
— (ed[0]-ed[3]+ed[6]-ed[9])

ml=0.5* (mx+my) +np.sqrt (0.25* (mx-—my) x*2+mxy**2)
m2=0.5% (mx+my) —np.sqgrt (0.25% (mx-—my) **2+mxy**2)
alfa=0.5+x180/np.pi*np.arctan2 (mxy, (mx-my) /2)

vx=B5x (-ed[l]+ed[4]-ed[7]+ed[10]) +B4dx (ed[2
— —ed[0]+ed[3]+ed[6]-ed[9])

]+ed[5]+ed[8]

vy=B3x (ed[1l]+ed[4]+ed[7]+ed[10])+B5* (ed[2]-ed[5]+ed[8]
— ed[0]-ed[3]+ed[6]+ed[9])
es=np.transpose (np.array([mx, my, mxy, vx, vyl))

return es

+ed[11])
+ed[11])
]+ed[ll])+A7*J
+ed[111)+B2x* (|
—ed[11])+Blx (-

Next, the mesh is created, starting by defining the width and thickness of each plate
element. Then the coord and dof matrices are created using loops.

d=0.1
t=0.05
ncoord_x = 30+1
ncoord_y = 30+1

ncoord_init = ncoord_x*ncoord_y
coord = np.zeros ([ncoord_init,2])
row = 0
for y in range (ncoord_y):

for x in range (ncoord_x) :

23



64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

ncoo

dof

it =
dofs

rd

coord[row, :] = [x*xd,y*d]
row = rowt+l
np.size(coord, 0)

= np.zeros ([ncoord, 3])

1

[

0,1,2]

for row in range (ncoord) :
for col in dofs:

ndof

nel_x =

nel_y

edof
bc =

Next, the edof matrix is assembled. Boundary conditions along edges are created in

dof[row,col] = it
it = it + 1

np.size(dof,0)*np.size (dof, 1)

(ncoord_x-1)
(ncoord_y-1)

np.zeros ((nel_x*nel_y,4%3))
np.zeros ((ncoord_y#*2x3%x2-12,1))

the same loop.

x_st
y_st

it =
bec_1i

node

for

24

ep
ep

0
t =

row
for

0

ncoord_x

0

in range(nel_y):
el in range (nel_x):

edof[it,0:3] = dof[node, :]

if el == 0:
bc[bc_it, 0] = int (dof[node,0])
bc_it = bec_it + 1
bc[bc_it, 0] = int (dof[node,1])
bc_it = bc_it + 1
bc[bc_it, 0] = int (dof[node,2])
bc_it = bc_it + 1

node = node+x_step

edof[it,3:6] = dof[node, :]

if el == nel_x-1:
bc[bc_it, 0] = int (dof[node,0])
bc_it = bc_it + 1
bc[bc_it, 0] = int (dof[node,1])
bc_it = bc_it + 1
bc[bc_it,0] = int (dof[node,2])
bc_it = bc_it + 1

node = node+y_step;
edof[it,6:9] = dof[node, :]



117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

144
145
146
147
148
149

151
152
153
154

156

159
160
161
162
163
164
165
166
167
168

if el == nel_x-1:
bc[bc_it,0] = int (dof[node,0])
bc_it = bc_it + 1
bc[bc_it,0] = int (dof[node, 1])
bc_it = bc_it + 1
bc[bc_it, 0] = int (dof[node,2])
bc_it = bc_it + 1

node = node-x_step

edof[it,9:12] = dof[node, :]

if el ==
bc[bc_it,0] = int (dof[node,0])
bc_it = bc_it + 1
bc[bec_it,0] = int (dof[node, 1])
bc_it = bc_it + 1
bc[bc_it, 0] = int (dof[node,2])

bc_it = bec_it + 1

if el == nel_x-1:

node = node-y_step+t2
else:

node = node+x_step-y_step
it = it+1

Now material parameters and loads are defined.

edof = np.int_ (edof)

nnode = np.size(coord, axis = 0)

ndof = np.size(dof, axis = 0)+*np.size(dof, axis = 1)
nel = np.size(edof, axis = 0)

ep=[t]

E=25%1000000000
v=0.2
eq=-250x1000

D = cfc.hooke(l,E,Vv);

Coordinates are extracted and global matrices are assembled.

ex, ey = cfc.coordxtr (edof,coord,dof)

=
I

= np.zeros ((ndof,ndof))
= np.zeros((ndof, 1))

Hh
|

for eltopo, elx, ely in zip(edof, ex, ey):
Ke, fe = cfc.platre(elx, ely, ep, D, eq)
# Transposing fe due to error in platre
fe = np.transpose (fe)
cfc.assem(eltopo, K, Ke, f, fe)

25



170
171
172

174
175

177

179
180
181
182

184
185
186
187

189
190

191

192
193

194
195
196
197
198

199
200
201
202
203
204

Extra boundary conditions are applied, representing columns in the middle of remain-
ing edges. Global matrices are assembled.

bc = be[:,0]

bc = bc.astype (np.int64)

extra_bcs = np.array ([15%x3+1,945%x3+1])
bc = np.concatenate((bc, extra_bcs))

a,r = cfc.solveqgq(K, £, bc)

Displacements are extracted, element stresses are calculated using the converted platrs
function. After this, von Mises (vM) stresses are calculated for each element.

ed = cfc.extract_eldisp (edof, a)
es = np.zeros((nel,b))

for i in range(nel):
es[i,:] = platrs(ex[i],ey[i],ep,D,ed[i])

vM = np.zeros((nel, 1))
for i in range(nel):

sigma_xx = es[i,0]/t
sigma_yy = es[i, 1]/t

sigma_xy = es[i,2]/t

sigma_1 = (sigma_xx+sigma_yy) /2 + np.sqrt (

N ((sigma_xx+sigma_yy) *+2) /4 + sigma_xy**2)

sigma_2 = (sigma_xx+sigma_yy)/2 — np.sqrt(

—  ((sigma_xx+sigma_yy)**2)/4 + sigma_xy=**2)

vM[i] = np.sgrt(sigma_lx*2 -sigma_l*sigma_2 + sigma_2+*%*2)

Now for the visualization. The undeformed mesh is rendered in its own figure. Then
the deformed mesh, along with rulers and some text, is rendered. The resulting visu-
alizations can be seen in Figure A.7.

cfv.draw_mesh (edof, coord,dof, 6, scale=0.005)

cfv.figure(2)

def_scale = 5

mesh = cfvv.draw_displaced_mesh(edof,coord,dof,6,a,scale:O.OOZ,t:t,def_sJ
— cale=def_scale,values=vM/1000000)

cfv.add_rulers ()

cfv.add_scalar_bar('Max. von Mises [MPa]')

cfv.add_text (f'Defomation scale: {def_scale}')

#Start CALFEM-vedo visualization
cfv.show_and_wait ()

26



206
207
208

209
210
211
212
213
214
215
216

300,,,

(b) Deformed mesh

(a) Mesh

Figure A.7: Resulting mesh visualizations for example 5

The deformed mesh is now animated with 20 steps, 250ms between. The deformed
mesh is then exported.

cfv.

cfv.

—

—

cfv.
cfv.

figure (3)

animation(edof,coord,dof,6,a,vM/lOOOOOO,def_scale=def_scale,dt=250,SJ
teps=20, export=True, file="export/exv5/anim/exv5', scalar_title="'von
Mises [MPal]')

add_scalar_bar('von Mises [MPal]')

add_text (f'Defomation scale: {def_scale}')

#Start CALFEM-vedo visualization

cfv.

show_and_wait ()

# Export the mesh

cfv.

export_vtk ('export/exv5/exv5', mesh)

27



A.6 Interaction

Vedo includes some keyboard shortcuts for interacting with the model by default.
Some potentially useful shortcuts are listed in the table below. The global shortcuts
affect the whole rendering. The actor shortcuts can be used on all or a single actor (if
one is highlighted). These can function inconsistently as all actors don’t support all
shortcuts. For instance, a cutter tool doesn’t support surface meshes, which means it

will not work for plate elements.

Key(s) | Description | Use
Global
5/6 Change background color | Cycle through background colors
+/- Change axis style Change axis representation (bottom left)
A Toggle anti-aliasing Smooth edges (can slow rendering)
D Toggle depth-peeling Hides actors behind transparent actors
a Toggle actor mode Disables camera (only actor interaction)
r Reset camera Resets camera zoom & rotation
C Print camera settings For debugging
S Save screenshot Save as .png in working directory
q Exit interaction Disables camera
Esc Abort execution Stop animation loops
Actor
—/— Reduce/Increase opacity Change transparency
w/s Wireframe/solid rendering | Wireframe shows only lines
1 Toggle edges Show /hide lines
x Toggle visibility Hide actor
X Cutter tool Cut an actor (partially hide)
1/2 Change color Cycle through actor colors
k Change lighting style Remove shadows etc.
K Change shading style Change actor appearance
n Show surface normals Add vectors representing surface normals

28




A.7 Function reference

A.7.1 Main functions

Drawing geometry

draw_geometry (points=None, lines=None, surfaces=None,
< scale=0.05)

Displays geometry as defined by the geometry module. Input variables points,
lines and surfaces are as defined in the module. If surfaces are given, 1ines
and points are required. Points are always required.

Input Return
@t s: Geometry points -
lines: Geometry lines

surfaces: Geometry surfaces

scale: Radius for lines. Point radius is 1.5x this scale

Drawing mesh

draw_mesh (edof, coord, dof, element_type, scale=0.02,

— alpha=1, render_nodes=True, color='yellow',

—~ offset=[0,0,0], bcPrescr=None, bc=None, bc_color='red',
— fPrescr=None, f=None, f_color='blue6t', eqg_els=None,

—~ eg=None, spring=True, nseg=2)

Draws undeformed mesh element-wise. Supports visualization of elements/nodes where
forces/boundary conditions are applied, by coloring. NOTE: If the model has a large
number of elements, it is recommended to use draw_displaced mesh (if possible)
instead.

Element types: 1 — Spring, 2 — Bar, 3 — Flow, 4 — Solid, 5 — Beam, 6 — Plate

Input

edof: Element-wise degrees of freedom

coord: Node coordinates

dof: Degrees of freedom by node

element _type: Element type

scale: Radius for beam/bar/spring. Node radius is 1.5x this scale
alpha: Transparency. 0 is invisible, 1 is fully visible
render_nodes: If set to True, nodes will be rendered

color: Color of element, supports text strings and RGB, see here
offset: Offset elements in any direction

29


https://matplotlib.org/stable/gallery/color/named_colors.html

bcPrescr:

bc:
bc_color:
fPrescr:
f:
f_color:
eqg.els:
eq:
spring:
nseg:

Return

Prescribed boundary conditions

Boundary conditions

Color for denoting nodes with BCs applied

Prescribed forces

Forces

Color for denoting nodes/elements with forces applied
Elements with forces

Element forces

If true, springs are coil springs

Number of segments for internal element values for a beam

mesh: List containing meshes by element

Drawing displaced mesh

draw_displaced _mesh (edof, coord, dof, element_type, a=None,
-~ scalars=None, scale=0.02, alpha=1l, def_scale=1,

!

render_nodes=False, color='white', offset=[0,0,0],
only_ret=False, lines=False, wireframe=False,
colormap="'jet', colors=256, vmax=None, vmin=None,
scalar_title='scalar', spring=True, nseg=2)

Draws deformed mesh using an unstructured grid. Can be color mapped with results
at elements and nodes. For flow, solid and plate elements, a single actor is created.
For other elements, one actor per element is created, as in draw_mesh.

Element types: 1 — Spring, 2 — Bar, 3 — Flow, 4 — Solid, 5 — Beam, 6 — Plate

For colormapping, different color maps are available. See Vedo documentation at:

https://vedo.embl.es/autodocs/content/vedo/

Input
edof:
coord:
dof:

Element-wise degrees of freedom
Node coordinates
Degrees of freedom by node

element _type: Element type

a:
scalars:
scale:
alpha:

def_scale:

Global displacement vector

Global displacement vector

Radius for beam/bar/spring. Node radius is 1.5x this scale
Transparency. 0 is invisible, 1 is fully visible

Deformation scalefactor

render_nodes: If set to True, nodes will be rendered

color:
offset:

30

Color of element, supports text strings and RGB, see here
Offset elements in any direction


https://vedo.embl.es/autodocs/content/vedo/
https://matplotlib.org/stable/gallery/color/named_colors.html

only._ret: Only return mesh for export

lines: Draw lines

wireframe: Wireframe mode, only lines

colormap: Name of colormap, see here

colors: No. colors

vmin: Manual minimum for colormap

vmax: Manual maximum for colormap

scalar_title: Scalar title for export

spring: If true, springs are coil springs

nseq: Number of segments for internal element values for a beam
Return

mesh:  List of meshes (1/2/5) or merged mesh (3/4/6)

Animation

animation (edof, coord, dof, element_type, a=None,

—

A

scalars=None, steps=10, loop=False, negative=False,
dt=50, animate_colormap=True, scale=0.02, alpha=1,
def_scale=1, only_ export=False, export=False,
file="anim/CALFEM_anim', colormap="'jet', colors=256,
vmax=None, vmin=None, scalar_title='scalar',
spring=True, nseg=2)

Creates a timeline between undeformed and deformed states and animates it. Number
of steps and rate is given by the user. This function relies on draw_displaced mesh,
and runs this function to create each step. Exporting of animations is built-in. The
following modes are available:

Default: 0 — 1
Loop: 0 — 1 — O

Negative: 0 — 1 — 0 — (-1) — 0

Element types: 1 — Spring, 2 — Bar, 3 — Flow, 4 — Solid, 5 — Beam, 6 — Plate

NOTE: Animating color maps for spring, bar, and beam elements currently not sup-

ported.
Input
edof: Element-wise degrees of freedom
coord: Node coordinates
dof: Degrees of freedom by node

element_type: Element type

a:

Global displacement vector

scalars: Scalars

31


https://matplotlib.org/1.2.1/_images/show_colormaps.png

steps:
loop:
negative:
dt:

animate_colormap:

scale:
alpha:
def_scale:
only_export:
export:
file:
colormap:
colors:
vmax:

vmin:
scalar_title:
spring:
nseg:

Return

Selecting figure

figure (fig,

bg='white',

Total number of steps in animation

Loop mode

Negative mode

Time difference between steps

Include colormap in animation
Element/node scale

Transparency. 0 is invisible, 1 is fully visible
Deformation scalefactor

Export to ParaView, no CALFEM animation
If True, will export animation as keyframes for ParaView
Path of folder/file to export to

Name of colormap, see here

No. colors in colormap

Scalar maximum

Scalar minimum

Scalar title for export

If true, springs are coil springs

No. segments for beams

flat=False, hover=False)

Selects which figure to add elements to. Everything in this Section that is run after this
adds objects to the specified figure, including things such as text. If a black background

is used, colors for some objects are inverted.

If 2D-mode is used, interaction by

hovering is used automatically.

Return

Input

fig: Figure number
bg: Background color
flat:  2D-mode

hover:

Running visualization

show_and_wait ()

Get node/element info by hovering

Show all figures created, starts VTK rendering event loop.

Input

32

Return


https://matplotlib.org/1.2.1/_images/show_colormaps.png

A.7.2 Import/Export

Importing from Matlab

import_mat (file, list=None)
Imports data from ’.mat’ files. If any form of Edof is detected, its formatting is
automatically converted to CALFEM for Pythons version.

Input Return
file: Path to file -
list: List of variables to import, and order of them

Exporting to VITK /ParaView

export_vtk (file, meshes)

Exports a mesh or many meshes to a single file. If many meshes are provided, they
will be automatically merged.

Input Return
file: Path to file -
meshes: Mesh/list of meshes to export

A.7.3 Miscellaneous functions

Adding a scalar bar

add_scalar_bar (label, pos=[0.8,0.05], font_size=24,
< color="black")

Adds a scalar bar for a displaced mesh with a colormap. NOTE: If a displaced mesh
is added to the same figure as a geometry /mesh, the displaced mesh has to be added
first for scalar bars to work.

Input Return
label: Text label -

pos: Text label pos, see add_text
font_size: Text size

color: Text color

Adding text
add_text (text, color='black', pos='top-middle', size=1)

33



Add 2D text in the rendering window. Position can be a descriptive string like top-left’
or a 2D vector like (0.2,0.8).

Input Return
text:  Text -
color: Text color

pos: Position in rendering window

size:  Text size

Adding 3D text

add_text_3D(text, pos=(0,0,0), color='black',6 size=1,
< alpha=1)

Add 3D text in the rendered scene.

Input Return
text:  Text -

pos: Position in 3D

color: Text color

size:  Text size

alpha: Transparency

Adding a projection

add_projection(color="black', plane='xy', offset=-1,
— rulers=False)

Adds a projection of model to a plane. Recommended to run after main functions.

Input Return
color:  Color of projection -
plane:  Plane to project to (xy/xz/yz)

offset: Offset plane

rulers: Automatically add rulers if True

Adding rulers

add_rulers ()

Automatically adds rulers to figure. Recommended to run after main functions.

Input Return

34



Adding axes

add_axes (xrange=[0,117,

— Xtitle:’X’,
xyGrid=True,
yzGrid2=False,

e

ytitle="'y"',
yzGrid=True,
zxXGrid2=False,
yzGridTransparent=True,
xyGrid2Transparent=True,
zxGrid2Transparent=True,

yrange=[0,1], =zrange=[0,1],
ztitle='z"', htitle='"",
zxGrid=True, xyGrid2=False,
xyGridTransparent=True,
zxGridTransparent=True,
yzGrid2Transparent=True,
numberOfDivisions=10)

Adds custom axes to a figure.

Input
xXrange:

yrange:

zrange:

xtitle:

ytitle:

ztitle:

htitle:

xyGrid:

yzGrid:

zxGrid:

xyGrid2:

yzGrid2:

zxGrid2:
xyGridTransparent:
yzGridTransparent:
zxGridTransparent:

xyGrid2Transparent:
yzGrid2Transparent:
zxGrid2Transparent:

numberOfDivisions:

Return

Adding axes for a mesh

add_mesh_axes (mesh)

Min/max for x-axis

Min/max for y-axis

Min/max for z-axis

Title for x-axis

Title for y-axis

Title for z-axis

Main title

Grid pattern on xy-plane

Grid pattern on yz-plane

Grid pattern on xz-plane
Secondary grid pattern on xy-plane
Secondary grid pattern on yz-plane
Secondary grid pattern on xz-plane
Transparency for xyGrid
Transparency for yzGrid
Transparency for zyGrid
Transparency for xyGrid?2
Transparency for yzGrid?2
Transparency for zxGrid2

No. markers per axis

Automatically adds axes to figure based on a mesh. Recommended to run after main

functions.

Input

Return

mesh: Mesh for adding axes to -

35



Section force diagram for beams

eldia(ex, ey, ez, es, eci, dir='y', scale=1, thickness=5,
< alpha=1, label='y', invert=True)

Draws a section force diagram along a beam in 3D.

Input Return
ex: x-coordinates -
ey: y-coordinates
ez: z-coordinates
es: Section force
eci: Points along beam
dir: Direction if diagram y-axis (x/y/z)
scale: Diagram scale
thickness: Line/point scale
alpha: Transparency
label: Label diagram
invert: Invert diagram
Vectors

elflux(ex, ey, ez, vec, ed=None, scale=.1, colormap='jet',
<& unit='w/m"2")

Draws vectors mid-element in 3D. Support deformed meshes if ed is used.

Input Return
ex: x-coordinates -

ey: y-coordinates

ez: z-coordinates

vec: Vectors

ed: Element displacements

scale: Vector scale

colormap: Colormap for vectors

unit: Vector unit (output when clicking/hovering)

Principal stresses

elprinc(ex, ey, ez, val, vec, ed=None, scale=.1,
< colormap="'jet', unit='Pa')

Draws principle stresses mid-element in 3D. Support deformed meshes if ed is used.

36



Input Return
ex: x-coordinates -

ey: y-coordinates

ez: z-coordinates

val: Eigenvalues

vec: Eigenvectors

ed: Element displacements

scale: Vector scale

colormap: Colormap for vectors

unit: Vector unit (output when clicking /hovering)

A.7.4 Utilities

These functions require import wvedo_utils.

Get coordinates for element

get_coord_from_edof (edof_row, dof, element_type)

Get element coordinates for single element based on type.

Input Return
edof_row: Element number coords: Coordinates
dof: Degrees of freedom by node

element type: Element type

Get displacements for node

get_a_from_coord(coord_row_num, num_of_deformations, a,
-~ scale=1)

Get displacements (from global vector) for a single node.

Input

coord_row_num: Node number

num_of deformations: Degrees of freedom per node
a: Global displacements
scale: Deformation scale

Return

dx: Displacement x-axis

dy: Displacement y-axis

dz: Displacement z-axis

37






© 00 N O U s W N =

R R R R W W W W W W W W W W N NN NNNN NN R e e e e e e e e
AW N H O © N O Uk W N HFE O O 0O R W N FE OO OOt R W NN = O

Appendix B: Solid example

MATLAB code

This Appendix contains the MATLAB source code for the example in Chapter 5.4.

oo oo

Author: Andreas Amand

% ——— Creating mesh —--—-—

d=0.1; % Elements are 100 mm x 100 mm x 100 mm

% No. elements per direction
nel_x = 50;

nel_y = 4;

nel_z = 3;

nel = nel_x*nel_yxnel_z;

oo
=
o}

nodes per direction
nnode_x = nel_x+1;

nnode_y = nel_y+1;

nnode_z = nel_z+1;

nnode = nnode_x*nnode_y*nnode_z;

% ——— (Creates Coord matrix ——-—

coord = zeros (nnode, 3);
row = 1;
for z = O:nnode_z-1
for y = O:nnode_y-1
for x = O:nnode_x-1

coord (row, :) = [xxd,yxd,z=xd];

row = rowt+l;
end
end
end

% ——— Creates Dof matrix —-—-—

dof = zeros (nnode, 3);
it = 1;
for row = 1:nnode
for col = 1:3
dof (row, col) = it;
it = it + 1;
end
end

CALFEM Vedo Visualization example (exv4)

39



ndof = size(dof, 1) *size(dof,?2);

—-—— Creates Edof and Boundary Condition matrices —-—-—
Boundary conditions: DoFs at x = Om & x = 50m have a displacement of 0

oo oo

x_step = 1; % Next node in x-direction
y_step = nnode_x; % Next node in y-direction

Q

z_step = (y_step)*nnode_y; % Next node in z-direction

it = 1; % Element number for loops (used as index in edof)
bc_it 1; % Iteration for bc (used as index in bc)

force_dof_it = 1; & Iteration for point load dofs (used as index in
— force dofs)

)

node = 1; % For keeping track of node

" ~e

edof = zeros(nel_xx*nel_yxnel_z,8x3+1);
bc = zeros (nnode_y*nnode_zx2%3,2);
force_dofs = zeros(25+1,1); % for saving dofs to apply point loads to
for col = 0:nel_z-1 % Loops through z-axis
node = 1l+z_step=*col;

o)

for row = 0O:nel_y-1 % Loops through y-axis
for el = O:nel_x-1 % Loops through x-axis
edof (it,1) = it; % Element number, first row in Edof
% ——— First node —-—-—
edof (it,2:4) = dof(node, :); ¢ Dofs for first element node
if el == 0 % If element is at x = 0, save bc
bc(bc_it,1) = dof (node,1);
bc_it = bec_it + 1;
bc (bc_it,1) = dof (node,?2);
bc_it = bc_it + 1;
bc (bc_it,1) = dof (node, 3);
bc_it = bc_it + 1;
end

)

% ——— Second node —-—-
node = node+x_step; ¢ Gets node number
edof (it,5:7) = dof(node, :); % Gets dofs for node
if el == nel_x-1 % If element is at x = 5, save bc
bc(bc_it,1) = dof (node,1);
bc_it = bc_it + 1;
bc(bc_it,1) = dof (node,?2);
bc_it = bc_it + 1;
bc (bc_it,1) = dof (node, 3);
bc_it = bec_it + 1;
end

% ——— Third node —-—-—

node = node+ty_step;

edof (it,8:10) = dof (node, :);

if el == nel_x-1
bc(bc_it,1) = dof (node,1);
bc_it = bc_it + 1;
bc (bc_it,1) = dof (node,?2);
bc_it = bc_it + 1;
bc(bc_it,1) = dof (node, 3);
bc_it = bc_it + 1;

end

40



102
103 % If elements at x = 0 and top row, save y-dofs for later

104 if (col == 0 && row == 3 && ismember(el, (13:38)) == 1)
105 force_dofs (force_dof_it) = dof (node, 2);
106 force_dof_it = force_dof_it + 1;
107 end

108

109 % ——— Fourth node ——-—

110 node = node-x_step;

111 edof (it,11:13) = dof (node, :);
112 if el ==

113 bc(bc_it,1) = dof (node,1);
114 bc_it = bc_it + 1;

115 bc (bc_it,1) = dof (node,?2);
116 bc_it = bc_it + 1;

117 bc (bc_it,1) = dof (node, 3);
118 bc_it = bc_it + 1;

119 end

120

121 % ——— Fifth node —-—-

122 node = node+z_step-y_step;

123 edof (it,14:16) = dof (node, :);
124 if el ==

125 bc(bc_it,1) = dof (node,1);
126 bc_it = bc_it + 1;

127 bc (bc_it,1) = dof (node,?2);
128 bc_it = bc_it + 1;

129 bc(bc_it,1) = dof (node, 3);
130 bc_it = bc_it + 1;

131 end

132

133 % ——— Sixth node —-—-

134 node = node+x_step;

135 edof (it,17:19) = dof (node, :);
136 if el == nel_x-1

137 bc (bc_it,1) = dof(node,1);
138 bc_it = bc_it + 1;

139 bc(bc_it,1) = dof (node,?2);
140 bc_it = bc_it + 1;

141 bc(bc_it,1) = dof (node, 3);
142 bc_it = bc_it + 1;

143 end

144

145 % ——— Seventh node ——-

146 node = node+y_step;

147 edof (it,20:22) = dof (node, :);
148 if el == nel_x-1

149 bc(bc_it,1) = dof(node,1l);
150 bc_it = bc_it + 1;

151 bc(bc_it,1) = dof (node,2);
152 bc_it = bc_it + 1;

153 bc (bc_it,1) = dof (node, 3);
154 bc_it = bc_it + 1;

155 end

156

157 % ——— Eighth node —-—-

158 node = node-x_step;

159 edof (it,23:25) = dof (node, :);



160
161
162
163
164
165

167
168
169
170
171
172

173
174

176
177
178
179

181
182
183
184

186
187
188
189

191
192
193
194
195
196
197
198
199
200
201
202

204
205
206
207

209
210
211
212
213
214
215
216

if el == 0
bc(bc_it,1) = dof (node,1);
bc_it = bc_it + 1;
bc (bc_it, 1) = dof (node,?2);
bc_it = bc_it + 1;
bc (bc_it,1) = dof (node, 3);
bc_it = bc_it + 1;

end

% Reset node

if el == nel_x-1 % If last element
node = node-z_step-y_step+2;

else % Otherwise, first node for next el.

— current
node = node+x_step-y_step-z_step;
end
it = it+1;
end
end
end
% ——— Creating Global Stiffness & Force matrices ——-—

[ex,ey,ez] = coordxtr (edof,coord,dof, 8);

ep = [2]; % No. integration points

oo

Material parameters for steel

E = 210000000; % Modulus of elasticity [Pa]
v = 0.3; % Poisson's ratio

D = hooke(4,E,v); % Material matrix

% Loads

g=9.82; % Gravitational constant
rho = 7850; % Density [kg/m~3]

eq = [0; -gxrho; 0]; % Distibuted load vector [N/m"3

f = zeros(ndof,1);

K = zeros (ndof);

for i=(l:nel) % Assembling
[Ke, fe] = soli8e(ex(i,:), ey(i,:), ez (i, :), ep,
[K,f] = assem(edof(i,:), K, Ke, f, fe);

end

% ——— Applying point forces ——-—

point_force = -5000; ¢ N

f(force_dofs) = f(force_dofs) + point_force;

oo

oo

a = solveq(K, £, bc);

42

1

D,

second node for

eq);

First a linear analysis is done (self-weight + eccentric line load)

—-—— Solving system of equations & Extracting global displacements



217 ed extract (edof, a);

218

219 % ——— Extracting global displacements & Calculating element stresses ——-—

220

221 es = zeros (epxepxep, 6,nel);

222 et = zeros (epxepxep, 6,nel);

223 ecl = zeros (epxepxep,3,nel);

224 for i=(1l:nel)

225 [es(:,:,1),et(:,:,1),eci(:,:,1)] =
— soli8s(ex (i, :),ey(i,:),ez(i,:),ep,D,ed(i,:));

226 end

227

228 % ——— Calculating Stress Tensors & von Mises ——-

229

230 Stress_tensors = zeros(3,3,nel);

231 VM = zeros(nel,l);

232 for i=(1l:nel)

233 s_xxXx = mean(es(:,1,1));

234 sS_yy = mean(es(:,2,1));

235 s_zz = mean(es(:,3,1));

236 s_xy = mean(es(:,4,1));

237 s_xz = mean(es(:,5,1));

238 s_yz = mean(es(:,6,1));

239

240 Stress_tensors(:,:,1) = [S_XX S_XY S_XZ; S_XY S_YY S_VYZ; S_XZ S_XY
— s_zz];

241 vM (i) = sgrt( 0.5% ((s_xx—s_yy) 2 + (s_yy—-s_zz) 2 + (s_xx—-s_yy) 2) +
— 3x(s_xy 2 + s_xz"2 + s_yz"2) );

242 end

243

244

245

246 % Now an eigenvalue analysis of the model is done

247

248 % ——— Gauss points from soli8e/so0li8s ———

249

250 gl1=0.577350269189626;
251 gp(:,1)=[-1; 1; 1;,-1;-1; 1; 1;-1]1=gl;

252 gp(:,2)=[-1;-1; 1; 1;-1;-1; 1; 1]l=xgl;

253 gp(:,3)=[-1;-1;-1;-1; 1; 1; 1; 1lxgl;

254

255 xsi=gp(:,1); eta=gp(:,2); zet=gp(:,3);

256

257 ¢ ——— Masses for element ——-—

258

250 m = zeros (8);

260 for i = (1:8)

261 for j = (1:8)

262 m(i,J) = (rho*d*d*d/8)*(1+(1/3)*xsi(i)*xsi(j))*(1+(1/3)*eta(i)*ej
-  ta(j))*(1+(1/3)*zet (1) *zet (J));

263 end

264 end

265

266 % ——— Element mass matrix —-—-—

267

28 iter_i = 1;

260 1ter_j

Il
—
~.

270

43



271 Me = zeros (3%8);
272 for i = (1:3:3%8)

273 iter_j = 1;

274 for j = (1:3:3%8)

275 Me (i, J) = m(iter_i,iter_3j);

276 Me (i+1, j+1) = m(iter_i,iter_7j);
277 Me (1i+2, j+2) = m(iter_i,iter_3j);
278 iter_j = iter_j+1;

279 end

280 iter_i = iter_i+1;

281 end

282

283 $ ——— Global mass matrix ——-—

284

285 M = zeros (ndof);

286 for i=(l:nel)

287 M = assem(edof (i, :), M, Me);

288 end

289

200 % ——— Figenvalue analysis ——-—

291
202 [lambda,eig] = eigen(K,M,bc(:,1));

293
204
295
206 ¢ ——— Results from both analyses are saved in a .mat-file ——-—
297

298 save('exv4.mat','coord','dof',‘edof','bc',‘force_dofs‘,'a','ed',‘Stress_J
— tensors','vM', 'lambda', 'eig')

44



Appendix C: Survey

Survey of tools for visualization

45



Survey

Development of functions for visualization in CALFEM for Python

Andreas Amand

vovlbaam@student.lu.se

Note: If you only use/plan to use CALFEM for Matlab, please fill out the form with regards to the Matlab
version. The developed tools will hopefully be able to import results from Matlab.

Note: Some functionality is already implemented. However, the survey is also of use do determine where
focus on improving functions should be put. Documentation can be found here.

Note: If filled in digitally, it works best in Adobe Acrobat Reader. Printing, filling out & scanning is fine.

1. I work at the division of:

2. Are you involved in a course that uses CALFEM for teaching? Yes No

3. If no above: would you consider using CALFEM for teaching Yes No

if tools for visualization were improved/added?

4. If you use/were to use CALFEM, which dimensions of elements 1D 2D 3D

would be of use for visualizing?

5. 1D element types that would be Spring Bar Flow Other

of use for visualizing

6. Types of visualization of use for Underformed shape/mesh Derformed shape/mesh

1D elements Displacements Scalar values Section forces
Stresses (011 etc.) Other

7. 2D element types that would be Bar Flow Beam Solid Plate

of use for visualizing Other

8. Types of visualization of use for Underformed shape/mesh Derformed shape/mesh

2D elements Displacements Scalar values Section forces
Principal stresses Contour plots Isolines
von Mises stresses Stresses (011 etc.) Other

9. 3D element types that would be Bar Flow Beam Solid Other

of use for visualizing

10. Types of visualization of use for =~ Underformed shape/mesh Derformed shape/mesh

3D elements Displacements Scalar values Section forces
Principal stresses Contour plots Isolines
von Mises stresses Stresses (017 ete.) Other

11. Would animations of deformations or similar be useful? Yes No

Feel free to leave any other comments or suggestions on the next page —



Comments/suggestions:



	Cover
	Title Page
	Abstract
	Sammanfattning
	Acknowledgements
	Notations and Symbols
	Table of Contents
	Introduction
	Background
	Aim & Objective
	Limitations
	Method
	Disposition

	Existing visualization tools
	Visualization in CALFEM for Python
	Missing functionality in CALFEM for Python
	Import & export
	Survey of visualisation needs

	Considerations for Python libraries
	Python-libraries for visualization
	The Visualisation Toolkit - VTK
	Mayavi
	PyVista & Vedo
	Polyscope

	Useful libraries for CALFEM for Python

	Development using VTK & Vedo
	VTK
	Vedo & VTK

	Implementation
	Geometry & Mesh
	Springs, bars & beams
	Flow, solid & plates
	Deformed mesh

	Color mapping for element & nodal values
	Vectors & Principal stresses
	Beam diagrams
	Animations
	User interface & interaction
	Forces & Boundary conditions
	Utilities
	Keyboard shortcuts

	Rendering
	Instantiation of Vedo classes

	Error handling
	General issues during development

	Usage examples
	Simple spring model in 3D
	3D truss model using symmetry
	3D heat flow model
	3D solid model using import & export
	Plate model in 3D

	Discussion
	Concluding remarks
	Studies
	Visualization

	Future Work
	Bibliography
	Vedo visualization in CALFEM
	Installation & requirements
	Basic visualization
	Animations
	Import & export
	Import from Matlab
	Export to VTK

	Examples
	Example 1: Spring
	Example 2: Truss
	Example 3: Flow
	Example 4: Solid
	Example 5: Plate

	Interaction
	Function reference
	Main functions
	Import/Export
	Miscellaneous functions
	Utilities


	MATLAB code
	Survey of tools for visualization
	Blank Page
	Blank Page
	Blank Page
	Blank Page



