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Abstract

Cross laminated timber (CLT) is an engineered wood product that was first developed
in the 1990s. Since then it has grown in popularity thanks to its many advantages
such as: low environment impact, high degree of prefabrication and low weight. As
the material is relatively new the standardization process is still in the early stages.
The purpose of this thesis is to evaluate a testing method which is suggested to be
part of the standardization of CLT.

The testing method, which is described in the European standard EN 16351, is a four-
point bending test with the purpose to determine, among other properties, the rolling
shear modulus of the transverse layers in CLT. The test is performed by measuring
the so called local- and global deflections. The local deflection is measured between
the two loads and is assumed to depend only on bending and is used to estimate the
bending stiffness of the beam. The global deflection is measured for the entire span
and is therefore dependent on both bending and shear. The global deflection is used
to estimate the so called apparent bending stiffness.

By determining the local- and apparent bending stiffness the shear stiffness of the entire
cross section can be determined. When the shear stiffness of the entire cross section is
determined the shear modulus for the transverse layers (rolling shear modulus) can be
determined by applying Timoshenko beam theory and subtracting the contribution of
the shear modulus of the longitudinal layers.

For this project no laboratory testing was performed, the testing method was instead
evaluated with Finite Element-models (FE-models). When analysing with FE-models
the rolling shear modulus is known beforehand since it is used as an input parameter
to the models. The accuracy of the test method was evaluated by comparing the
calculated rolling shear modulus to the input rolling shear modulus. An accurate
result should result in the output and input being equal.

The results indicated that the method used to determine the rolling shear modulus is
largely influenced by assumptions made according to Timoshenko beam theory. One
of these assumptions include the shear correction factor, which is used to correct a
theoretical assumption that results in an overestimated shear stiffness. The shear cor-
rection factor according to beam theory results in inaccurate results, but the factor
can be altered to correlate better with the expected rolling shear modulus. One of
the problems with such a procedure is that the rolling shear modulus must be known
beforehand to do an accurate alteration. Other deviations between beam theory and
the FE-models affecting the results include: boundary conditions and shear strain dis-
tributions.

Keywords : CLT, cross laminated timber, EN 16351, four-point bending, rolling shear
modulus, FE-modelling
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Erik Serrano and Daniel Anderson from Södra. Your commitment and interest of this
project have been encouraging and helped me forward.

Many thanks to my classmates for their great friendship throughout my five years at
LTH. A special thanks to my opponent Erik Lundin, both for being a good friend and
for your input to my work. Writing our dissertations together at WSP has been a fun
and inspiring period of time.

Lastly I would like to thank my family and my girlfriend Lovisa for always being there
for me and for your support throughout my entire education.

30th May, 2022

Lund, Sweden

Calle Lind

III





Notations and Symbols

Latin letters

L Longitudinal direction.
R Radial direction.
T Tangential direction.
x Global x-direction of the CLT-beam.
y Global y-direction of the CLT-beam.
z Global z-direction of the CLT-beam.

E Young’s modulus (modulus of elasticity).
G Shear modulus.
EL Young’s modulus parallel to grain.
ER Young’s modulus perpendicular to grain in R-direction.
ET Young’s modulus perpendicular to grain in T -direction.
GLR Shear modulus parallel to grain (LR-plane).
GLT Shear modulus parallel to grain (LT -plane).
GRT Rolling shear modulus.

Inet Net moment of inertia.
Ief Effective moment of inertia.
DGA Cross section shear stiffness.
V Shear force.
M Moment.
P Load.
L Span length.
w Deformation (vertical deflection).

Wx,net Net moment of resistance.
Sx,v Net static moment for longitudinal layers.
Sx,Rv Net static moment for transverse layers.

wl Local deflection.
wg Global deflection.
(EI)local,net Local bending stiffness determined by measured deflections.
(EI)app,net Apparent bending stiffness determined by measured deflections.

K Stiffness matrix.
f Force vector.
a Result vector.
Ke Element stiffness matrix.
fe Element force vector.
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Greek letters

v Poisson’s ratio.
γi Gamma-factor.
κ Shear correction factor.
θ Rotation.
γ Shear strain.
σ Stress vector.
ε Strain vector.
C Compliance matrix.
D Constitutive matrix.

σm,x Normal stress in x-direction.
τv,xz Longitudinal shear stress.
τRv,xz Rolling shear stress.
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1 Introduction

1.1 Context

Cross Laminated Timber (CLT) (see Figure 1.1) is a relatively new engineered wood
product, that was first developed in Central Europe and was introduced to Sweden in
the late 1990s. Since then, the product has become more and more popular thanks
to its many advantages [1]. CLT offers high strength and high stiffness in compar-
ison to its low weight and allows for a high degree of prefabrication which gives a
shorter erection phase. Another general advantage that is often highlighted is the low
environmental impact compared to other materials such as concrete and steel.

Despite the increasing popularity and the many advantages of CLT the product is
still in the early stages of standardization when it comes to determining the mechan-
ical properties. The standardization of CLT started in Europe in 2008 and the first
European standard for CLT, EN 16351 was released in 2014 [2]. The standard is
however not yet accepted as basis for CE-marking, which is a European product certi-
fication that is needed for some products (including CLT) to be sold in the European
Union [3].

The current European assessment document (EAD) [4] for solid wood elements was
released in 2015. In the EAD, several methods are described for assessing performance
of CLT in relation to the characteristics of the product. The method described for
bending properties is a four-point bending test of a plate. One assumption made for
the test is to set the shear modulus of the transverse planes to 50 MPa [4]. This shear
modulus is called rolling shear and is typically many times lower than the longitudinal
shear modulus. The rolling shear modulus, like many other material properties, dis-
play uncertainties when being measured. Inaccurate assumptions of the rolling shear
stiffness could in turn lead to inaccurate testing results and performance.

Figure 1.1: Sketch of a five layered CLT element.
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The fact that the standardization of CLT is in the early stages, means many new
standards and testing methods are still under evaluation, including the four-point
bending test regarding rolling shear strength and stiffness referred to in the current
EAD [4] and further described in EN 16351 Annex C [5].

1.2 Aim and objective

The aim of this work is to perform a thorough evaluation of one of the testing methods
for shear strength and stiffness in EN 16351 − The four-point bending set up. The
evaluation will be made to investigate if this testing method is suitable for determining
the shear properties, especially the rolling shear modulus. The evaluation also includes
investigations of how different parameters affect the shear stiffness, in particular rolling
shear, and which parameters that affect the results the most. The parameters of main
interest are the input variables of the equations used to evaluate the testing method
described in EN 16351 Annex C [5]. Further investigated parameters include

• The effect of the ratio between the thickness and the width of the lamellas.

• The effect of using wood species with different properties.

• The effect of the annual growth ring pattern.

1.3 Method

The first part of the project consisted of a literature study. The study was performed
to gather information on the topic and to understand what is known of it today. The
information includes; mechanical stiffness and strength properties of different softwood
and hardwood species, the effect of rolling shear and technical documents from testing
according to EN 16351.

Calculations were performed according to beam theory and using 2D FE-models. Cal-
culations regarding shear force capacity with respect to rolling shear stress (in the
transverse layers) for a CLT element in four point bending was performed accord-
ing to Bernoulli-Euler and Timoshenko theory. A model of the test set-up for shear
strength and stiffness according to EN 16351 was made with the FE-software Abaqus,
to be compared to the calculations using beam theory. The four-point bending test
was not tested with a physical CLT element in the laboratory. The evaluation was
instead based on the calculations and the FE-models.

The model in Abaqus was also made to perform a parameter study of the CLT specimen
in the four-point bending test. A Python script was used to generate CLT models
where parameters such as lamella ratios, wood properties etc could easily be changed
(Python is the programming language that Abaqus is based on).
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2 Background

2.1 Wood as a structural material

Softwood, which is the most common timber material used in construction, is mainly
built up by tube-shaped cells called tracheids. These cells build up the tissue of the
wood called fibre or grain. The tracheids have a function to distribute water for a
living tree, the cells are therefore oriented in the longitudinal direction of the tree i.e.
from the root to the treetop [6].

The need for water and nutrition varies throughout the year. The growing process of
the tree takes place during the spring and the need for water and nutrition is therefore
high. To cope with this the tube-shaped cells that are formed during the spring have
thin cell walls that give the cell a larger tube diameter which allows for higher water
transportation. The cells that are formed during this time constitute the so called
earlywood [6].

When the growing process is finished, the need for water and nutrition transportation
decreases. The cells that are formed during the summer and fall are instead optimized
to withstand harsh weather in form of strong winds and snow loads. These cells
constitute the so called latewood and have thicker cell walls and smaller cell cavities.
The two different cell types that are formed during a year make a structural pattern
of earlywood and latewood called annual growth rings (see Figure 2.1).

Figure 2.1: Cross section of a log showing earlywood- and latewood cells and how they
build up the annual rings. The three main axes are also shown.

3



Since latewood cells have thicker cell walls and therefore higher strength compared to
earlywood cells the proportion between the two is of large influence for the mechanical
properties of wood [6]. This is further discussed in Section 2.1.3.

Hardwood (see Section 2.1.1) has a more complicated cell structure compared to soft-
wood [6]. While softwood is mainly bulit up by tracheids, hardwood consist of a more
complex set of cells. The four main cells types are fibers, vessels, tracheids and par-
enchyma cells [7]. All cells serve different purposes, but the fiber cells are of greatest
interest from a mechanical perspective since they contribute most to the mechanical
stiffness and strength of the material. The function of the vessel cells is to transport
water. The vessels can be seen as pores under a microscope [7]. The material around
the pores makes up a more dense material compared to softwood where the water
transportation is carried out by the tracheids, which do not have any pores.

Hardwood species often have higher mass density compared to softwood species and
generally have better fire resistance compared to softwood species. The usage of hard-
wood for structural timber is however not as common as softwood. Reasons for this
include hardwood being more expensive and sometimes more difficult to work with.
Other reasons are discussed in Section 2.1.1. Hardwood is more commonly seen in
high-quality furniture and flooring. Typical hardwood species are oak, birch and
beech.

2.1.1 Wood species

The most common wood species in Sweden are Norway spruce and Scots pine, with
39.7 % and 39.3 % of the total growing stock respectively [8]. These are specified
as softwood species and are also the most common species used in engineered wood
products [1]. The most common hardwood species in Sweden is Birch, which accounts
for 12.9 % of the total growing stock [8].

Softwood comes from coniferous trees and are green all year around, while hardwood
is from broad-leaved trees and usually lose their leaves during the winter months. To
reach a suitable size for timber production, softwood species typically take around 20-
30 years of growth. Compared to some hardwood species, which take over 100 years
to reach a suitable size, softwood species generally grow significantly faster [9]. The
growth rate however varies between species.

The fact that softwood species in general are more common and often grow faster
compared to hardwood species are two reasons why they are more commonly used as
a building material. Another reason is the development of the paper industry in the
beginning of the 19th century. Softwood species were seen to have a better morphology
for making paper and where therefore cultivated to a larger extent compared to hard-
wood species. Since the paper- and timber industry are connected to each other this
came to influence which species that were used for structural timber then and still is
today [7]. Hardwood have properties that might be more favourable in a load bearing
structure, e.g. higher density and usually higher rolling shear strength [9].

Norway spruce is the most important wood species in Europe when it comes to use for
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load-bearing timber structures today. But to only cultivate one species is not good for
biodiversity. This has become an increasing issue due to climate change and pressure
is being put on the industry to use a variety of softwood and hardwood. Hardwood
therefore has a high potential to be used more for structural timber in the future [10].

2.1.2 Strength and stiffness properties of wood

The mechanical properties of wood are determined by the cell structure described in
Section 2.1. The tube-shaped cells have a higher strength in compression and tension
parallel to grain than perpendicular to grain. Wood thus has different properties
depending on which direction it is being loaded [6]. For wood there are three main
axes described as (see Figure 2.1)

• L = The longitudinal axis which is parallel to the grain.

• T = The tangential axis which is tangential to the annual rings.

• R = The radial axis which is radial to the annual rings.

Each of the three main axes has different properties when being subjected to loads.
This is the definition of an orthotropic material. To describe the linear relation between
the stress and strain in local coordinates for an orthotropic material, the following
relations can be used

σ = Dε (2.1)

ε = D−1σ = Cσ (2.2)

where σ is the stress vector and ε is the strain vector given by

σ =
[
σLL σRR σTT τLR τLT τRT

]T
(2.3)

ε =
[
εLL εRR εTT γLR γLT γRT

]T
(2.4)

and where C = D−1 is the compliance matrix and given by
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C =



1
EL

−vRL

ER
−vTL

ET
0 0 0

−vLR

EL

1
ER

−vTR

ET
0 0 0

−vLT

EL
−vRT

ER
− 1

ET
0 0 0

0 0 0 1
GLR

0 0

0 0 0 0 1
GLT

0

0 0 0 0 0 1
GRT



(2.5)

To describe wood in the elastic range, twelve constants are necessary. These twelve
constants are implemented in the compliance matrix C, and are the modulus of elasti-
city in each main direction, EL, ER, ET , the shear modulus in each plane of the main
directions, GLR, GLT , GRT , and six Poisson’s ratios, vLR, vLT , vRT , vRL, vTL, and
vTR [6]. For linear elasticity, the Possoin’s ratios are assumed to be pair-wise equal
according to [6]

vLR
EL

=
vRL

ER

,
vLT
EL

=
vTL

ET

,
vRT

ER

=
vTR

ET

(2.6)

This reduces the number of constants to nine and also results in symmetrical C and
D matrices. For the two-dimensional case, the stresses or strains in the out-of-plane
direction are negligible small. The conditions of plane stress or plane strain can there-
fore be applied, meaning, either in-plane stresses or in-plane strains exist. The stress
and strain relation in local coordinates for plane stress reduces to

σ = Dε (2.7)

ε = D−1σ = Cσ (2.8)

σ =
[
σii σjj τij

]T
(2.9)

ε =
[
εii εjj γij

]T
(2.10)

C =


1
Ei

−vji
Ej

0

−vij
Ei

1
Ej

0

0 0 1
Gij

 (2.11)
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The indices i and j denote the local ij-coordinate system (e.g. of the lamellas that
make up a CLT-beam).

The strength and stiffness properties differ from wood species to wood species. The
wood species of interest in this thesis are Norway spruce, birch and beech. Birch and
beech are both hardwood species and not as common in timber products. Scots pine,
which is also common in timber products, is not evaluated due to its properties being
similar to those of Norway spruce. The nine property constants for the different wood
species are described in Table 2.1, data that was not found is marked as −. The
parameters displayed for Norway spruce are common values at around 12 % moisture
content [11]. Values are also displayed for strength class C24. The values displayed
are characteristic stiffness values for CLT elements with strength class C24, based on
the stiffness properties of the lamellas [1].

Table 2.1: Properties for different wood species.

.

Parameter Norway spruce C24 Birch [12] Beech

EL [MPa] 13500 − 16700 11000 15000 12306 [13]
ER [MPa] 700 − 900 370 650 2280 [14]
ET [MPa] 400 − 650 370 650 1160 [14]
GLR [MPa] 620 − 720 690 850 −
GLT [MPa] 500 − 850 690 850 −
GRT [MPa] 29.0 − 39.0 50 175 470 [14]
vLR 0.018 − 0.030 − − −
vLT 0.013 − 0.021 − − −
vRT 0.24 − 0.33 − − −
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2.1.3 Shear stiffness properties

Rolling shear is the shear stress leading to shear strain in a plane perpendicular to the
grain direction [15]. The rolling shear strength and stiffness is often significantly lower
than the shear strength parallel to grain [1]. See Figure 2.2 for the definition of the
three different shear moduli for an orthotropic material with L, R and T as the main
directions.

Figure 2.2: Illustration of shear loading in an orthotropic material with L, R and T as
the main directions.

Since CLT is built up by layers with their grain directions in two different directions
(see Section 2.2), the transverse layers will be subjected to rolling shear when they are
placed perpendicular to the main span. And since the rolling shear modulus typically
is low for timber used in CLT, this is of significant importance for both ultimate limit
state design and serviceability limit state design for CLT [10].

The properties of the effective rolling shear modulus is influenced by a number of
factors. The effective rolling shear modulus is the rolling shear modulus of a transverse
layer, when viewing a CLT-beams’ cross section. Previous research indicates that
the aspect ratio of the width and the thickness of the lamellas and the annual ring
orientation are the two of the most influential parameters [16]. The orientation of the
annual rings is dependent on the sawing pattern of the board. A board can be sawn in
multiple ways which gives different angles to the annual rings in relation to the pith,
see Figure 2.3. The reason why this parameter is of such influence is the stiffness ratio
of the radial and tangential plane [10] and in turn the stiffness ratio will affect the
rolling shear.
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Figure 2.3: Annual ring orientation depending on the sawing pattern.

2.2 Cross Laminated Timber

CLT is an engineered timber product that consists of at least three layers of timber
lamellas. The lamellas in each layer are placed side-by-side and glued together with
the adjacent layers. The boards can also be glued together by the edges. Each layer
is placed with the fiber direction of the boards perpendicular to the adjacent layer,
giving the name cross laminated.

Common number of layers are three, five and seven. For a beam or slab the uneven
number is used to keep the outermost layers parallel to the main span direction, to
utilize the material in the most favourable way [1]. This is due to the fact that the
longitudinal stiffness is the highest. Since the boards are cross laminated load carrying
in two direction is made possible, making CLT have a plate-like behaviour. The plate-
like element is favorable since it can be used as complete wall or floor element [17].
CLT can therefore be used as a compliment or replacement to concrete in some areas
of construction. This has grown significant importance in recent years since timber
products have a lower environmental impact compared to concrete [18].

When it comes to describing the loading directions of CLT, it differs from concrete
and steel. This is because the orthogonal behaviour of the timber lamellas that CLT
is made of. CLT has three global axes that are defined in [1] as (see Figure 2.4)

• the x-axis is parallel to the grain direction of the outermost layers.

• the y-axis is perpendicular to the grain direction of the outermost layers.

• the z-axis is perpendicular to the xy-plane.

Local axes for longitudinal and transverse lamellas are described with the three main
directions of timber L, R and T , see Figure 2.4.
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Figure 2.4: Main- and local axes of a CLT element.

2.3 Beam theory

For the evaluation of the testing method described in EN 16351 Annex C [5], the first
step was to determine the deflection using Timoshenko beam theory which the test is
based on. The deflection was also analysed with Bernoulli Euler theory. For Bernoulli
Euler theory the deflection is only dependent on deformation due to bending whereas
Timoshenko theory considers deformation due to both bending and shear (for the total
deflection) [19].

For Bernoulli Euler theory the different properties of the longitudinal and transverse
layers are considered with an effective moment of inertia. The effective moment of
inertia is calculated according to the Gamma-method, further described in Section
2.3.1. For Timoshenko theory only the longitudinal layers contribute to the moment
of inertia. This is described as the net moment of inertia, see Section 2.3.2.

The modulus of elasticity for the layers perpendicular to the main span direction are
assumed to be zero when applying both theories on CLT. This is due the stiffness
properties being significantly different for the three main directions. The difference in
stiffness between the longitudinal (EL) and the radial (ER) or tangential (ET ) direction
is considered large enough to assume zero stiffness in the radial and tangential direction
i.e. ER = ET = 0.

10



2.3.1 Bernoulli Euler beam theory and Gamma-method

The Bernoulli Euler theory is based on the following three primary assumptions

• cross-sections are assumed to be rigid surfaces during deformation

• plane sections remain plane and normal to the beam axis during deformation

• the rotation angles (slope of the displacement) are small

Based on these three assumptions the rotation of the cross-section θ is equal to the slope
of the beam w′, which means that the shear strains are not considered. Even though
the shear strains are zero for calculations they are not zero in reality. A simplified way
to assess the contribution from shear is to replace the net moment of inertia Inet with
the effective moment of inertia Ief calculated with the Gamma-method [1].

The Gamma-method is is derived from the Mechanically joint beam-method described
in Eurocode 5, Annex C, [1]. The method can be applied to CLT by viewing each lon-
gitudinal layer as an individual beam and introducing connection factors that account
for the shear deformations of the transverse layers [20]. The factors are called Gamma-
factors (γ ≤ 1) and reduce the second part of Steiner’s theorem for the longitudinal
layers [1], see Equations 2.12 and 2.13.

Every layer is numbered from bottom to top, see Figure 2.5 for a five layered CLT
slab.

I =
n∑

i=1

bt3i
12

+ btia
2
i i = 1, 3, 5 (2.12)

Ief =
n∑

i=1

bt3i
12

+ γbtia
2
i i = 1, 3, 5 (2.13)

The Gamma-factors for a five layered element are calculated as

γ1 =

(
1 +

π2ELt1
l2ref

t2
GRT

)−1

(2.14)

γ3 = 1 (2.15)

γ5 =

(
1 +

π2ELt5
l2ref

t4
GRT

)−1

(2.16)

As can be seen in Equations 2.14 and 2.16 the Gamma-factors are dependent on the
reference length (lref ) of the beam, the thicknesses of the lamellas (ti), the stiffness
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Figure 2.5: Numbering of the layers for a five layered CLT slab.

of the longitudinal layers (EL) and the rolling shear stiffness (GRT ). The value (γ3)
for the mid layer is equal to 1 due to symmetry. For a simply supported beam, which
is the case in this report, the reference length is equal to the span length [1]. The
Gamma-factors also depend on the load, and the expressions 2.14 and 2.16 are derived
for the case of distributed load. This influence is not taken into account here.

For CLT elements with seven or nine layers a more complicated version of the Gamma-
method must be applied [1]. For this report the analysis is limited to five layer ele-
ments.

The effective moment of inertia calculated with the Gamma-method is then imple-
mented in the equations used to describe the deformations according to the Bernoulli
Euler theory. For the four-point bending set-up described in Section 2.4, the total
deformation of the beam can be described by superposition of two point loads at ar-
bitrary placement along the beam. The load case is shown in Figure 2.6. The total
deflection at the mid-span of the beam is calculated according to Equation 2.17.

w =
Pa(3L2 − 4a2)

24ELIef
(2.17)

Thus from the expressions 2.17 and 2.13, it is clear that the transverse layers are
assumed not to contribute to the stiffness.
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Figure 2.6: Load case with the arbitrary distances a and b.

2.3.2 Timoshenko theory

Timoshenko beam theory is similar to Bernoulli Euler as the assumption that plane sec-
tions remain plane during deformation applies for both theories. The main difference
between the two theories is that for Timoshenko theory shear strains are considered
[19]. Shear strains cause shear deformation, meaning that the total deformation is de-
pendent on both bending and shear. The shear strains can be derived as the difference
between the rotation and the slope of the beam (θ−w′). Since the shear stiffness per-
pendicular to grain (rolling shear stiffness) is low for timber commonly used in CLT,
the transverse layers of a CLT slab are prone to shear deformations, see Section 2.1.3.
Timoshenko theory is therefore of significant interest when analysing the deformation
of CLT.

When applying Timoshenko theory to CLT, it is typically assumed that only the lon-
gitudinal layers contribute to the moment of inertia, which is based on the assumption
of zero normal stiffness in the transverse layers. This is called the net moment of
inertia and is for a five layered element determined according to

Inet =
bt31
12

+ bt1a
2
1 +

bt33
12

+
bt35
12

+ bt5a
2
5 (2.18)

The deflection caused by bending can be determined the same way as for Bernoulli
Euler in Section 2.3.1, by replacing the effective moment of inertia (Ief ) with the net
moment of inertia (Inet). Since Timoshenko considers shear strains, the total deflection
is dependent on both bending and shear. The shear deflection caused by constant shear
force (which is the case for point loads) can be derived to

(w′ − θ)x =
V

DGA

x (2.19)
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where x is any position along the beam where the shear force V is constant. (w′ − θ)
is the shear angle which is the difference between the slope of the beam w′ and the
rotation of the beam θ. DGA is the cross section shear stiffness, given by the sum of
the layer area multiplied with the shear modulus for every layer according to

DGA = κ

n∑
i=1

AiGi (2.20)

where κ is a shear correction factor. κ is used to reduce the shear stiffness over
the entire cross section, to account for the overestimation of the stiffness due to the
assumption that plane sections remain plane. For homogeneous and rectangular cross
sections the shear correction factor is set to 5/6, for CLT-elements it can be determined
according to [1]

κ =
(
∑

(EI + EAa2))
2∑

Gibti
∫
h

S2(z)E2(z)
G(z)b(z)

dz
(2.21)

where S is the static moment, E is the modulus of elasticity, I is the moment of inertia,
A is the cross section area, Gi is the shear modulus for each layer, b is the width of
the layers, ti is the thickness for each layer and a is the distance between the center
of gravity for each layer and the center of gravity for the entire cross section.

The total deflection of the mid-span for the loading and support conditions according
to Figure 2.6 can then be derived according to

w =
Pa(3L2 − 4a2)

24ELInet
+

P

DGA

a (2.22)

2.4 Testing method

The testing method evaluated in this thesis is a four-point bending test for determining
the shear strength and stiffness properties of CLT. The load configuration and test set-
up can be found in Annex C Figure C.5 in the European standard EN-16351 [5] and
is shown in Figure 2.7. The span length is set to twelve times the height of the beam,
with the grain of the outermost layers parallel to the span. The two loads are placed
three times the height from the supports on each side [5]. The distance a in Figure
2.7 can also be change to six times the height from the supports which is described in
EN-16351 [5]. This can be done if the aim is to only determine the shear strength.
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Figure 2.7: The four-point bending test set-up.

The deflection is measured as both global (wglobal) and local deflection (wlocal) as shown
in Figure 2.7. The measurement points are placed at the mid-height of the beam.
Both the global and local deflection shall be measured continuously and evaluated
with results between 10% and 40% of the maximum load (Pmax) [21]. The maximum
load is obtained just before failure. The failure modes analysed are bending failure,
longitudinal shear failure and rolling shear failure. Since no laboratory test were
performed for this project the maximum load was instead based on beam theory and
was determined by analysing the design verification of bending and shear stresses
described in the CLT Handbook [1] as

σm,x =
My

Wx,net

≤ fm (2.23)

τv,xz =
Sx,vVxz

Ix,netb
≤ fv (2.24)

τRv,xz =
Sx,RVxz

Ix,netb
≤ fRv (2.25)

The moment and shear force diagram for the load case used in the test set up can be
derived according to Figure 2.8. The moment My and the shear force Vxz in Equations
2.23-2.25 represent the largest value of moment and shear force diagram respectively.
fm is the bending strength, fv is the longitudinal shear strength and fRv is the rolling
shear strength. Wx,net is the net moment of resistance and determined according to
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Wx,net =
2Ix,net

h
(2.26)

Sx,v and Sx,R are net static moments which are used to determine the maximum
longitudinal- and rolling shear stress respectively. The numbering of the layers are
starting from the bottom and up according to Figure 2.5. For a five layered CLT-
beam the net static moments are determined according to

Sx,v = bt5

(
t3
2
+ t4 +

t5
2

)
+ b

t3
2

t3
4

(2.27)

Sx,R = bt5

(
t3
2
+ t4 +

t5
2

)
(2.28)

Since timber is an orthotropic material the stiffness properties vary significantly between
the three main directions. The difference in stiffness between the longitudinal (EL)
and the radial (ER) or tangential (ET ) direction is considered large enough to assume
zero stiffness in the radial and tangential direction i.e. ER = ET = 0. This assumption
for CLT indicates that there can be no bending stresses in the transverse layers. The
bending stress is therefore assumed to be linearly distributed over the longitudinal
layers only, see Figure 2.9.

The shear stresses act in two different directions with respect to the material directions.
The longitudinal layers are subjected to longitudinal shear and the transverse layers
are subjected to rolling shear. The longitudinal shear strength is significantly higher
than the rolling shear strength. Due to this, rolling shear failure is the most likely
failure mode, even if the maximum shear stress is obtained at half the beam height in
the mid longitudinal layer. The shear stress distribution is illustrated in Figure 2.9.

By rewriting Equation 2.23, 2.24 and 2.25 the maximum force can be derived according
to

Pmax,m =
Wx,netfmk

a
(2.29)

Pmax,v =
fvIx,netb

Sx,v

(2.30)

Pmax,vR =
fRvIx,netb

Sx,R

(2.31)

The lowest value from Equation 2.29, 2.30 and 2.31 will be regraded as the maximum
load obtained before failure.
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Figure 2.8: Shear- and moment diagram for the four-point bending test.

Figure 2.9: Sketch of half beam showing the bending stress distribution at mid-span
(constant moment) and the shear stress distribution between support and
load (constant shear force).
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Further conditions for the test set-up described in [5] include

• Every board of the CLT element shall have the same strength class.

• The width of the tested CLT element shall be at least 600 mm.

• The tested CLT element shall consist of five layers.

• Tests shall have the outermost layers parallel to the span.

The standard also states that the ratio between the width w and the thickness t of the
lamellas shall be at least four (w/t ≥ 4). The ratio will be used as one of the variable
parameters when evaluating the test with a parametric study further described in
Section 3.3.1.

The standard also mentions the shear correction factor κ which is further discussed
in Section 2.3.2. The correction factor is determined by the dimensions and stiffness
properties of the lamellas, but can according to the preconditions described in [5] be
set to 0.25 regardless of the size of the lamellas. The effect of the magnitude of κ was
part of the evaluation as this could affect the results significantly.

The test specimens shall be made from spruce or pine, which are both softwood species.
When evaluating, the test the mean value of the shear stiffness in the longitudinal-
radial direction is assumed to be 650 MPa [5]. This assumptions is essential when
determining the shear stiffness properties, further discussed in Section 2.4.1.

2.4.1 Evaluation of test results

To evaluate the results of the four-point bending, there are a set of equations given
in EN-16351 [5] for the properties being analyzed. The evaluations are based on
the measured global and local deflections for loading between 10% and 40% of the
maximum load. The relation between the deflections and load found from tests can
be approximated as a linear relation according to Figure 2.10.
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Figure 2.10: Linear relation between deformation and load.

The relation between the load and the local deflection can be used to determine the
local bending stiffness (EI)local,net. The local deflection is measured between the loads
at the distance l1 see Figure 2.7. The moment is along l1 is constant and the shear force
is zero. The local bending stiffness (EI)local,net represents the longitudinal stiffness EL

times the net moment of inertia Inet. It can be derived from the load case of a simply
supported beam with constant moment with beam theory according to

w =
Ml21

8(EI)local,net
(2.32)

where for the test set-up in Figure 2.7

M = aP (2.33)

and the local bending stiffness can then be determined from the linear relation ∆P/∆wl

as

(EI)local,net =
al21
8

∆P

∆wl

=
al21
8

(P2 − P1)

(wl,2 − wl,1)
(2.34)

The local bending stiffness is determined by the deflection dependent on only bending
deformations. The deflection of the entire beam (wglobal) is dependent on both bending
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and shear. An apparent bending stiffness can be derived based on the global deflection.
This is derived from the deflection at mid-span (see Equation 2.22), by assuming
infinite shear stiffness DGA (equal to Bernoulli-Euler theory) according to

wg =
Pa(3L2 − 4a3)

24(EI)app,net
(2.35)

and the apparent bending stiffness can then be determined from the linear relation
∆P/∆wg as

(EI)app,net =
a(3L2 − 4a2)

24

∆P

∆wg

=
a(3L2 − 4a2)

24

(P2 − P1)

(wg,2 − wg,1)
(2.36)

The shear stiffness for the entire cross section DGA of the specimen is determined with
a relation between the local and apparent bending stiffness according to Equation
2.37. The difference between the global deflection wg, which is dependent on both
bending and shear, and the local deflection wl, which is only dependent on bending,
gives information about the shear deflections.

DGA =
24(EI)local,net(EI)app,net

(3L2 − 4a2)((EI)local,net − (EI)app,net)
(2.37)

The term DGA represent the total shear stiffness of the entire cross section and is the
sum of the shear modulus for each layer multiplied with the corresponding layer area.

The conditions previously mentioned in Section 2.4 state the assumption of 650 MPa
as the shear modulus of the longitudinal layers (longitudinal-radial shear GLR). By
using this assumption the shear modulus of the transverse layers can be determined by
comparing Equation 2.37 and the total shear stiffness as described in Equation 2.38.
This means that by assuming the longitudinal-radial shear modulus GLR the rolling
shear modulus GRT can be determined based on measurements, see Equation 2.39.

DGA = κ
n∑

i=1

AiGi = κbt (3GLR + 2GRT ) (2.38)

GRT =
1

2

(
DGA

κbt
− 3GLR

)
(2.39)

κ is a shear correction factor which is further discussed in Section 2.3.2. The shear
correction factor κ is determined by the dimensions and stiffness properties of the
lamellas, but can according to the preconditions described in [5] be set to 0.25 re-
gardless of the size of the lamellas. The effect of the magnitude of κ was part of the
evaluation as this could effect the results significantly.
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In order to determine the rolling shear stiffness GRT the testing method is restricted
by assumption in Equation 2.39. As for most material properties for timber both
longitudinal-radial and rolling shear moduli display uncertainties when being meas-
ured. The uncertainty of the input arises questions of the certainty of the output. A
thorough evaluation of the input assumptions and the sensitivity of the input para-
meters of Equation 2.39 can be seen as a cornerstone for this dissertation.

2.5 Finite element method

The finite element method (FEM) is a numerical method used to solve partial differ-
ential equations, by dividing a larger system into smaller parts called finite elements.
Each element is in turn described by a set of nodes. A node marks a single point and
the behaviour of each node is described by a set of degrees of freedom dof , which for
example describes how the node moves or rotates in each direction. The properties
of each element are described by an element stiffness matrix Ke and an element load
vector fe. The local stiffness matrix and local load vector are assembled together for
every element to describe the entire system. The displacements of each node are ob-
tained by solving the global equation Ka = f , where a describes the displacements of
every dof in each node.

When analysing a beam with the use of FEM the most simple method is to divide the
beam into line-elements (see Figure 2.11) and apply beam theory. This can be done for
both Bernoulli Euler and Timoshenko theory with the use of the finite element toolbox
Calfem, by applying nodes and line-elements to the center line of a beam. This method
gives exact solutions of the displacements for the nodes within the assumptions for the
analysed beam theory. This is further discussed in Section 3.1.1.

Approximate solutions can be analysed for two- and three dimensional bodies with FE
software programs such as Abaqus. For 2D-analysis the body analysed is divided into
elements and nodes in two directions which mark the body’s plane. This is illustrated
for a CLT-beam in Figure 2.11 where x and y are the two directions which make up
an xy-plane. The nodes are only expressed in this plane. To represent the width of a
beam an out-of-plane thickness can be added as an input. 2D-analysis is suitable when
displacements occur in the same directions as the nodes and elements are expressed in
and response is constant in the out-of-plane direction i.e. plane stress or plane strain.
This is often the case for a bending tests, since the load is applied in an in-plane
direction.

For 3D-analysis, the body analysed is divided into nodes and elements in three dir-
ections. This is illustrated for a CLT-beam in Figure 2.11 with the three directions
x, y and z. This means that the nodes are not just expressed in one plane, but are
also expressed for the width and the volume of the body. The nodes can theoretically
represent every point of the entire analysed body if the elements are infinitely small.
The elements are however finite which means that the solutions will be approximate.
The size of the elements is further discussed in Section 3.2.1.
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Figure 2.11: Line-elements (top), 2D-elements (middle) and 3D-elements (bottom).
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3 Method

3.1 Deformation calculations

The deformation obtained from the four-point bending described in Section 2.4 was
calculated both according to Bernoulli Euler theory with the use of the Gamma-
method and Timoshenko beam theory. The deformation was calculated at mid-span
of the beam, where the deformation reaches its maximum value.

In order to easily change parameters, such as lamella size and timber properties the
calculations were done with the use of Matlab. The calculations were also compared
with the Matlab toolbox Calfem [22]. Calfem is a finite element toolbox and was used
to calculate the deflections with the finite element method.

3.1.1 Calfem

Both Bernoulli Euler- and Timoshenko theory was analysed using Calfem. Due to
symmetry at the mid-span, half of the element in Section 2.4 was analyzed. The part
was divided into three elements and four nodes. The first node was located at the
support, the second node had the same location as the point load, the third node was
located at the reference point for measurement of the local deformation, and the fourth
node was located at the symmetry line, see Figure 3.1. The first, third and fourth node
were used to give exact deformation within beam theory. The second node was used
to apply the point load. Boundary conditions were applied to set limitations for the
dofs. The following assumptions were set for the boundary conditions when analysing
half of the beam

• No deformation in the y-direction at the support.

• No deformation in the x-direction at mid-span due to symmetry.

• No rotation at mid-span due to maximum deflection.
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Figure 3.1: Half of the beam divided in to elements and nodes.

The Calfem function beam2e was used to compute the stiffness matrix for all three
elements according to Bernoulli Euler theory, considering the effective bending stiffness
according to the Gamma-method. The input parameters for this function are the
element node coordinates, element properties and the distributed loads which in this
case was zero. The element properties needed for Bernoulli Euler theory are the MOE
of the longitudinal layers (EL), the cross section area (Anet) and the effective MOI
(Ief ), expressed with the vector ep

ep =
[
EL Anet Ief

]
(3.1)

A stiffness matrix was computed for all three elements and assembled with the function
assem. The point load was applied by adding it to the fifth position of the global
force vector f . The fifth position represents the vertical displacement at the second
node. The system of equations Ka = f was solved with the function solveq. The
displacements of the beam was obtained with the function beam2s with use of the
solution of Ka = f . This gives an exact solution of the displacements within Bernoulli
Euler beam theory.

A similar method was used for Timoshenko beam theory. The function beam2t was
used to compute the stiffness matrix for all three elements. The input parameters for
this function are the element node coordinates, element properties and the distributed
loads which in this case were zero. The element properties needed for Timoshenko
theory were expressed with the element properties vector as

ep =
[
EL Gmean Anet Inet κ

]
(3.2)
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To account for the different shear moduli of the longitudinal and transverse layers a
mean shear modulus for the entire cross section was determined according to

Gmean =
(GLT (t1 + t3 + t5) +GRT (t2 + t4))

h
(3.3)

A stiffness matrix was computed for all three elements and assembled with the function
assem. The load vector f was the same for both theories. The system of equations
Ka = f was solved with the function solveq. The displacements of the beam were
obtained with the function beam2ts with use of the solution of Ka = f . This gives an
exact solution of the displacements within Timoshenko beam theory. The deformation
is illustrated with an example in Figure 3.2, showing the deformation at mid-span
according to calculations according to both theories as described in Section 2.3.1 and
2.3.2. The illustration also shows the deflection for the three elements as the output
of beam2s and beam2ts.

The load was represented by a vector with the first value representing 10 % of the
maximum load and the second value representing 40 % of the maximum load. A
for − loop was created to run the analysis for both loads. The measurement points
described in Figure 2.7 were placed in node one, three, and four and represent the
reference point for global deflections, the reference point for local deflections and the
total deflections at mid-span. The deflections at the three measurements points for
10 % and 40 % of the maximum load were then used to evaluate the testing method
according to the equations described in Section 2.4.1.
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Figure 3.2: Example of deflection for a beam according to Bernoulli Euler and
Timoshenko theory for Pmax=54.45 kN. RPG, RPL and RPT are the
measurement points for the deflections.

In addition to deflections the shear strains were also evaluated with the Calfem cal-
culations. The shear strains are according to Timoshenko beam theory the difference
between the rotation θ and the slope w′

T of the beam (θ−w′
T ). According to Bernoulli

Euler beam theory the rotation θ of the beam is equal to the slope w′
BE. The shear

strains can be determined to (w′
BE −w′

T ), if the net moment of inertia (Inet) is applied
for both theories (i.e. if the Gamma-method is not applied).

The results from the Calfem calculations were used to compare with the results from
the FE-models. As the Calfem calculations are based on beam theory they will yield
exact solutions concerning the deflections and strains i.e. exact within the assumptions
of the theories that the calculations are based on. And since the equations used to
evaluate the testing method are also based on beam theory the results from Calfem
were regarded as the correct answers.

3.2 Finite element modelling

The test-set up described in Section 2.4, is supposed to be used for laboratory testing
of real CLT-elements. As this was not possible for this project the evaluation of the
testing method was instead performed on finite element models (FE-models). The
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FE-models were created to resemble real life laboratory tests as good as possible.
The FE-software used for this purpose is called Abaqus and is suitable since it allows a
high degree of altering properties. This attribute was effectively used in the parametric
study described in Section 3.3.1.

3.2.1 2D-model

The test set-up in Section 2.4 was first modelled as a two-dimensional beam, see Figure
3.3. Since the load case is symmetric in the x-direction, only half of the beam was
modelled. The first step was to model the longitudinal and transverse lamellas as two
individual parts that were assembled into a CLT element.

Figure 3.3: Sketch of the 2D-model.

Both the longitudinal part and the transverse part were given certain properties that
represent timber lamellas. A material was created that represents the specific wood
species used when performing the tests. For the longitudinal part the material was
created with an elastic behaviour and the type Lamina which uses six of the twelve
elastic constants that are described in Section 2.1.2, see Table 3.1.
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Table 3.1: Material properties for the longitudinal and transverse lamellas.

.

Longitudinal boards Transverse boards

E1=EL E1=ER

E2=ER E2=ET

v12=vLR v12=vRT

G12=GLR G12=GRT

G13=GLT G13=GLR

G23=GRT G23=GLT

The longitudinal part was assigned a material orientation to match the properties
described in Table 3.1. A local Cartesian coordinate system with the first axis rep-
resenting the longitudinal axis and the second axis representing the radial axis was
created and assigned to the part. The transverse part was created with the same ma-
terial type as the longitudinal part but with different material orientation. To analyse
an assembly with different parts in Abaqus, all parts need to have the third axis in
the same direction. To cope with this and to represent the 90° turn of the transverse
lamellas a second material was created. The properties of the second material was
chosen according to Table 3.1 material.

For the transverse part a cylindrical local Cartesian coordinate system was created
to match the properties in Table 3.1. The cylindrical coordinate system was used to
represent the annual ring orientation, with the first axis representing the radial axis
and the second axis representing the tangential axis. The origin for the cylindrical
coordinate system represents the pith of a tree and was scripted as a parameter to
allow different annual ring orientation.

The parts were assembled with three layers of longitudinal parts and two layers with
transverse parts, see Figure 3.3. The support and the load application surface were
both modelled as analytical rigid surfaces. Both parts were modelled as a 50 mm long
surface with fillet edges to avoid stress concentrations. The two parts were placed
according to the test set-up in Section 2.4. The load application surface was rotated
180 relative to the support. The reference point for both the support and the load
application surface were placed at the middle of the rigid surface, see Figure 3.3.

Interactions and contact conditions were added to the assembly. The constraints
between the longitudinal and transverse layers were modelled as ties, with the surface
of the longitudinal lamellas always being the master surface. The support and load
application surface was given the constraint Analytical Surface and an interaction
property between the two surfaces and the CLT element was added. The interaction
property was assigned the following properties normal behaviour: ”Hard”contact,
tangential behaviour: Penalty with a coefficient of friction µ = 0.25 and geometric
properties with the out-of-plane thickness equal to beam width.

To perform a FE-analysis boundary conditions need to be set. The boundary condi-
tions used for the 2D-model were set as:
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• No vertical displacements at the support (U2=0). Applied to the reference point
for the support surface.

• Symmetry along the x-axis, meaning no horizontal displacements and no rotation
along the z-axis (U1=0, UR3=0). Applied to the surfaces of the longitudinal
boards at the symmetry line on the right edge of the model.

The load was applied to the reference point of the load application surface as a con-
centrated force. The magnitude of the force was determined according to Equation
2.31.

The model was divided into elements with the Abaqus module mesh. The element-
type used for the 2D-analysis are called ”CPS8 - eight node quadratic plane stress
quadrilateral”. The appropriate element-type was assigned after performing a conver-
gence study, see Section 3.2.2. CPS8 was chosen since it converged faster compared to
other element-types. Full integration was chosen to avoid so called hour-glass-modes
which is a spurious deformation mode where the deformation of an element doesn’t
match the deformation of the entire body.

3.2.2 Convergence study

A convergence study was done to see how refined the mesh had to be for the 2D-model.
If a mesh is too coarse it might result in inaccurate results, the mesh therefore has to
be refined until inaccuracies can be neglected. A mesh is considered to be converged
when the difference in the result between two mesh refinements are considered small
enough [23]. The degree of mesh refinement can also be connected to the time needed
for Abaqus to process the analysis. The finer the mesh the longer the processing time
will be. The mesh size chosen for this project was based on both the difference in
result and the processing time. The aim was to find a mesh size with with a small
enough result difference and reasonable processing time.

The convergence study for the 2D-model was done with two different element types,
”CPS4 − four node bilinear plane stress quadrilateral” and ”CPS8 − eight node bi-
quadratic plane stress quadrilateral”. Both element types were also tested with re-
duced integration, denoted as CPS4R and CPS8R. The study was performed on a
2D-modelled CLT-beam with homogeneous layers. The lamella thickness was set as
20 mm, giving the beam height 100 mm for a five layered beam. The assigned material
properties were the same as for Norway spruce (see Table 2.1.2) and the load used was
Pmax, calculated according to Equation 2.31. The study was done by comparing the
relative deflection at mid-span in relation to the number of elements in the height
direction of the beam and the processing time. The results of the convergence study
are illustrated as graphs in Figure 3.4.
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Figure 3.4: Convergence study.

The values in Figure 3.4 are normalized to the deflection at the mid-span at 100
elements in the beams height direction for each element type. The deflections for each
element type are displayed in Table 3.2.

Table 3.2: Deflection at mid-span with 100 elements in the height direction of the beam
for each element type. The load used is Pmax = 54.45 kN.

Element type Deflection at mid-
span [mm]

CPS4 -9.36573

CPS4R -9.36813

CPS8 -9.36664

CPS8R -9.36674

The study showed that all element types studied converge almost equally fast except for
CPS4R, this element type was therefore ruled out. The choice between the three other
element types doesn’t affect the results significantly. For this project the CPS8 element
was chosen with 20 elements in the beam height direction. This mesh refinement was
assumed to be good enough as the result difference between 20, 50 and 100 elements
in the beam height direction was negligible small. The processing time would though
increase from 2.9 seconds to 11.5 and 53.3 seconds. This increase of processing time
would be inconvenient for the parametric study.
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3.3 Evaluation of FE-models

To evaluate the FE-models, comparisons where done by analysing equal beams with
Abaqus and with Calfem. The output results of interest from both methods were the
vertical deflections at the three nodes coinciding with the measurement points showed
in Figure 3.3. The deflections were measured and compared at 10% and 40 % of the
maximum load. In Calfem this was achieved by performing a for-loop with the load as
the input argument. In Abaqus each time-step was set to 0.1 and linearly increasing up
to 1. Since the load also increased linearly the time-steps of 0.1 and 0.4 were assumed
to represent 10% and 40 % of the maximum load respectively. The relations of the
global and local deflections were determined according to

wg(P ) = (wRPT (0.4P )− wRPG(0.4P ))− (wRPT (0.1P )− wRPG(0.1P )) (3.4)

wl(P ) = (wRPT (0.4P )− wRPL(0.4P ))− (wRPT (0.1P )− wRPL(0.1P )) (3.5)

where RPG, RPL and RPT are the three measurement points described in Figure
3.3. The results for each model were then used to determine the apparent bending
stiffness EIapp,net (Equation 2.36) and the local bending stiffness EIloc,net (Equation
2.34) which in turn were used to determine the shear stiffness for the entire cross
section DGA according to Equation 2.37. By comparing the shear stiffness for the
entire cross section according to the measurements and Timoshenko beam theory the
output rolling shear modulus can be determined according to

GRT,output =
1

2

(
DGA

κbt
− 3GLR

)
(3.6)

The essential evaluation of the testing methods’ capability of determining the rolling
shear stiffness of a CLT-beam is based on this Equation. The accuracy of the results
are evaluated by comparing the input rolling shear modulus GRT,input with the output
rolling shear modulus GRT,output, and where correct results should result in

GRT,input = GRT,output (3.7)

The correct results will always be obtained with calculations according to beam the-
ory. This is due to the fact that beam theory results in exact solutions (with beam
theoretical assumptions considered) and that the equations used to evaluate the test-
ing method are based on beam theory. To only evaluate the testing method with
beam theory would therefore be pointless as this would always generate the same res-
ults. The exact results from beam theory calculations where instead used to evaluate
the results from the FE-models. The FE-models were modelled to resemble real life
beams, meaning that the results from the models were assumed to better represent
results from real laboratory testings than beam theory would. By comparing the ex-
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act solutions with the FE-results, factors affecting the outcome could be analysed and
possible patterns in results could be detected.

Except from the input rolling shear modulus affecting the deflections which in turn
affects the outcome of Equation 3.6, the value chosen for the shear correction factor
κ also has significant impact on the outcome. The impact on the input arguments in
Equation 3.6 had to be further analysed. This was done by performing a parametric
study described in Section 3.3.1.

3.3.1 Parametric study

In order to evaluate the testing method described in Section 2.4 a parametric study was
performed on the 2D-models. This was done by writing a python-script that generates
multiple FE-models with different input parameters. A 2D-model was first created
in Abaqus CAE according to the same method described in Section 3.2.1. Every
sequence performed in Abaqus is recorded and written as python-code and saved in
an .rpy-file. The file can then be opened with a text editor such as Notepad++. In the
text editor a new script was created that imports data from the Abaqus model. The
wanted sequence can be copied from the .rpy-file and added to the new script, where
parameters can be added and altered. for-loops were used to create multiple models
with different properties. The script was also constructed to export the wanted results
to Excel-files. For this study the analysed results were the deflections of the nodes
coinciding with the measurement points previously mentioned.

The beam was first modeled as a homogeneous beam, see Figure 3.5. To represent this
all layers where modeled as longitudinal with the same stiffness properties. Typical
properties of Norway spruce was used as reference when performing the analysis and
values according to Table 3.3 were used.

Table 3.3: Properties of Norway spruce.

.

EL ER ET vLR GLR GLT GRT

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa]

11000 800 500 0.02 650 650 50
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Figure 3.5: Sketch of homogeneous beam with loading conditions according to laboratory
testing (top) and beam theory (bottom).

The interaction between the lamellas was modelled as ties both for the faces and the
edges of the lamellas. The purpose of this was to perform tests on a beam that is not
influenced by factors such as effective moment of inertia and varying shear correction
factors etc. Since less factors influence a homogeneous beam the model was easier to
compare to beam theory and to evaluate the equations used to determine the rolling
shear modulus. The homogeneous beam was modelled with one longitudinal layer.
This means that the longitudinal-tangential shear modulus GLT applies for the entire
cross-section. The shear correction factor κ was set as constantly 5/6, which is the
case for rectangular homogeneous beams. The output longitudinal-tangential shear
modulus was analysed by decreasing the input longitudinal-tangential from 650 MPa
to 50 MPa in steps of 50 MPa. The input and output was then compared in relation
to each other according to

GLT,output

GLT,input

(3.8)

where the ratio of 1.0 means that the longitudinal-tangential shear modulus that was
put into the FE-model is equal to the output. The output was determined according
to

GLT,output =
6DGA

5hb
(3.9)
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where DGA was evaluated using Equations 2.34 and 2.36.

Multiple factors influence the results of the determined output shear modulus in Equa-
tion 3.9. One factor that was noticed to deviate from the theoretical value was the
local bending stiffness (EI)local,net which is determined according to

(EI)local,net =
al21
8

(P2 − P1)

(wl,2 − wl,1)
(3.10)

and represents the theoretical bending stiffness which is determined according to

ELInet (3.11)

The length l1 is the distance (between the point loads) over which the local deflections
are measured and in a zone where the deformations are assumed to only be dependent
on bending. When performing the analysis, the deviation between the measured (from
the FE-models) and theoretical bending stiffness indicated that this wasn’t the case
and that shear deformations occurred between the loads as well. According to beam
theory this shouldn’t be the case as the shear force between the loads is zero. A
possible improvement of the testing method could be to decrease the length l1 towards
the middle of the beam were the shear deformation should be less influential. To
evaluate this, the length l1 was decreased by steps of 25 mm on each side. The ratio
between the measured bending stiffness in Equation 3.10 and the theoretical one in
Equation 3.11 was then compared.

Since the equations that are used to determine the rolling shear modulus is based
on Timoshenko beam theory, the beam was also modelled to resemble the theoretical
load case, see Figure 3.5. The purpose of this was to evaluate the effects of differences
between the testing set-up and the theoretical analysis. For the support the beam was
modelled with a plane cross section rotating around a point at half the beam height.
This was achieved by using the constraint coupling and setting the node at mid height
as reference. Instead of applying a point load on the top surface of the beam, the
load was applied to resemble the shear stress distribution. This was done by adding
the load as a surface shear traction on the cross section at the same position in the
x-direction where the point load was applied. A so called analytical field was used
to distribute the shear stress to be equal to the theoretical stress distribution. The
theoretical shear stress at the mid-height of the homogeneous beam was determined
according to

τmid−height =
SxV

Inetb
=

3Pmax

2bh
for 0 < x < a (3.12)

where V is the shear force of the beam which is equal to the point load Pmax between
the support and load and zero between the two point loads. The corresponding shear
stress distribution for the homogeneous beam can be derived to
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τ(y) =
−4τmid−height

h2

(
y2 − hy

)
, 0 < y < h (3.13)

where y represents the placement along the beam height h. The shear strain distribu-
tion over the height of the beam was determined according Equation 3.14. There is
a contradiction in Timoshenko beam theory regarding Equations 3.13 and 3.14. For
the derivation of the theory, the shear strains are assumed to be constant over the
height of the beam. This, however, contradicts the equilibrium of the horizontal forces
affecting the beam. In order to obtain equilibrium the shear stresses must vary over
the height of the beam. This, in turn, affects the distribution of the shear strains. In
this project the shear strains were analysed as varying over the height.

γ(y) =
τ(y)

G
, 0 < y < h (3.14)

where G is the shear modulus for the corresponding layers of the beam. As the shear
force is zero between the two point loads, also the shear stresses and the shear strains
are zero according to beam theory.
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Figure 3.6: Sketch of CLT-beams with homogeneous layers and boundary conditions
representing a laboratory test set-up (top) and Timoshenko theory (middle).
Sketch of CLT-beam with transverse lamellas (bottom).

As a first step from the homogeneous beam towards a CLT-beam the transverse layers
where implemented, but still seen as homogeneous within each layer i.e. the width of
the lamella was equal to the beam length, see Figure 3.6. The transverse layers were
assigned the material orientation described in Section 3.2.1. The CLT-beams were
analysed in a similar fashion to the homogeneous beams with boundary conditions
both representing a laboratory test set-up and Timoshenko beam theory, see Figure
3.6. The shear stress distribution over the height of a beam with the properties in
Table 3.3, Pmax=54.45 kN and h=100 mm can be derived to
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τ(y) = −6.75 · 10−4
(
y2 − hy

)
, 0 < y <

h

5
&

4h

5
< y < h (3.15)

τ(y) = −4.91·10−5
(
y2 − hy + 1600

)
+1.08,

h

5
< y <

2h

5
&

3h

5
< y <

4h

5
(3.16)

τ(y) = −6.75 · 10−2
(
y2 − hy + 2400

)
+ 1.12,

2h

5
< y <

3h

5
(3.17)

The shear strain distribution over the beam height was determined in the same fashion
as for the homogeneous beams by dividing the shear stress τ(x) with the correspond-
ing shear modulus G for each layer. For the CLT beams this means GLT for the
longitudinal layers and GRT for the transverse layers.

The first parameter studied for the CLT-beams was the input rolling shear modulus
which was first set as equal to the longitudinal-radial and the longitudinal-tangential
shear modulus (GRT = GLR = GLT ) representing a constant shear stiffness over the
entire cross section. Models with decreasing rolling shear modulus were created in a
for-loop until the actual rolling shear modulus was reached. For Norway spruce the
first model had a rolling shear modulus of 650 MPa, which then decreased by steps
of 50 MPa for each new model until 50 MPa was reached. The output rolling shear
modulus, was compared to the input rolling shear GRT,input (see Equation 3.8). The
output rolling shear modulus was determined according to

GRT,output =
1

2

(
DGA

κtb
− 3GLT

)
(3.18)

As described in the preconditions for this testing method the shear correction factor κ
in Equation 3.18 can be altered and may be set as 0.25 for a beam with the rolling shear
modulus GRT=50 MPa. The theoretical value of κ for the beam with homogeneous
layers and with the same rolling shear modulus was determined to 0.193 according
to Equation 2.21. To analyse which impact the choice of the shear correction factor
has on the output rolling shear modulus, Equation 3.18 was evaluated with different
correction factors for the modelled beams.

To further evaluate the accuracy of the assumption that κ=0.25 for a beam with 50
MPa as the rolling shear modulus, the input rolling shear modulus was set to vary
between 55 an 45 MPa. A deviation of ± 5 MPa was assumed to be relatively small
and possible for a real beam.

The continuation from adding the transverse layers was to add varying width of the
lamellas as displayed in Figure 3.6. No ties were modelled between adjacent lamellas.
This was assumed to represent non edge glued lamellas. This was only analysed for
the beams with boundary conditions representing a laboratory test set-up (BC type
A). The ratio between the thickness and the width of the lamellas was expressed as
the width w divided by the thickness t, see Figure 3.7. The width of the lamellas was

37



obtained by dividing the length of the model with the wanted number of transverse
lamellas in order to only get complete lamellas. The width was limited to a minimum
of four times the thickness i.e. w/t ≥ 4, according to the conditions described in
Section 2.4. The transverse layers were divided into eight, five and four lamellas which
generated the following w/t-ratios for the analysed beam: 4.0625, 6.5 and 8.125.

The annual growth ring pattern was added to the models by assigning a cylindrical
local coordinate system to the transverse lamellas. The center of the coordinate system
represent the pith of a tree cross section. The location of the pith decides the pattern
of the annual rings. A long distance between the lamellas and the pith gives more
horizontal pattern of the annual rings whereas a short distance gives a more curved
pattern. This is illustrated in Figure 3.7 where the bottom edge of the lamella is set
as reference and the distance between the bottom edge and the pith is called c.

Figure 3.7: Sketch of transverse lamella showing the annual growth ring pattern and the
distance c from the pith.

38



4 Results

When the 2D-model representing a laboratory test set-up of a CLT-beam (see Figure
3.6) was analysed, the results showed large deviations from what was expected. The
output rolling shear modulus was for some values around seven times larger than
the rolling shear modulus that was put into the FE-model. Before the parametric
study where annual ring orientation and lamella thickness/width-ratio were evaluated,
the factors leading to the inaccurate results had to be further investigated. To cope
with this the model was instead simplified in several steps to resemble a theoretical
Timoshenko beam. The purpose of this was to evaluate which factors and parameters
that lead to the inaccuracy of the results.

The models were evaluated both with homogeneous layers and as CLT-beams with
both longitudinal and transverse lamellas. Both beam types were modelled with
boundary conditions representing a laboratory test set-up and Timoshenko beam the-
ory as described in Chapter 3. Throughout this chapter the boundary conditions rep-
resenting the laboratory test set-up are called BC type A for both the homogeneous-
and CLT-beams. The boundary conditions representing Timoshenko beam theory are
called BC type B and BC type C for the homogeneous- and CLT-beams respectively,
see Figure 4.1 and 4.8. For BC type B and BC type C the loads were applied according
to the theoretical shear stress distribution as described in Section 3.3.1. Figures 4.1
and 4.8 also displays the placement of the cross sections (cross section 1 and cross
section 2) where the shear strains were evaluated.
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4.1 Evaluation of test

4.1.1 Homogeneous beams

Figure 4.1: Sketch of homogeneous beams with laboratory and theoretical boundary
conditions, BC type A and BC type B. Also showing the location of the cross
sections 1 and 2.

.

Boundary conditions

When evaluating a homogeneous beam with varying longitudinal-tangential shear
modulus, the results were analysed as the output/input-ratio in relation to the in-
put longitudinal-tangential shear modulus. The results are displayed in Figure 4.2.
As can be seen in the graph the output shear modulus is about 1.1 times larger than
the shear modulus that was put into the models. This deviation was assumed to be
the results of differences between the laboratory testing set-up compared to load case
which the theory is based on. One major difference is the support and load applica-
tion surface. To evaluate this the beam was modelled to resemble a Timoshenko beam,
with theoretical boundary conditions. The difference in the output/input-ratio of the
longitudinal-tangential shear modulus between the models that represent a laboratory
test set-up and the models that represent Timoshenko beams is shown in Figure 4.2.
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Figure 4.2: The difference of the output/input-ratio for beams with BC type A and BC
type B in relation to the input. The beams were modelled as homogeneous
with κ=5/6.

The results show that the effect of the difference between the boundary conditions is
larger for beams with higher longitudinal-tangential shear modulus and then decrease
as the shear modulus decrease. The results also show that the output is still not equal
to the input, which indicates that there are other factors affecting the results. These
other factors seem to affect the beam with lower shear modulus more than the beam
with higher shear modulus, at least for BC type B.

Shear strain distributions

One of these factors was assumed to be the effect of shear strain distribution. To
evaluate this the shear strain at the center line along the beams x-direction (see Figure
4.1) was extracted from the FE-models. This was done for both the model with
boundary conditions representing the laboratory test set-up (BC type A) and the
model with theoretical boundary conditions (BC type B). The extracted shear strains
were then compared with the theoretical shear strains. The evaluation was done for
the beams with the smallest and largest deviation between the output and the input,
i.e. the beams with 650 MPa and 50 MPa as the input shear stiffness respectively.
The results are showed in Figure 4.3 and 4.4.
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Figure 4.3: The difference between the shear strain along the center line of the beam
according to theory and the FE-models with different boundary conditions.
Results from beam with 650 MPa as the shear stiffness.
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Figure 4.4: The difference between the shear strain along the center line of the beam
according to theory and the FE-models with different boundary conditions.
Results from beam with 50 MPa as the shear stiffness.
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The shear strains from the FE-model in Figure 4.4 were obtained from the center line
of the beam. To complete the understanding of the shear strain distribution over the
height of the beam, the shear strains from two vertical cross sections were extracted
from the FE-models. The first cross section is between the support and the load and
the second one is between the load and the middle of the beam, see Figure 4.1. For
the evaluated beams this represent x=150 mm and x=450 mm. The two cross sections
are displayed in Figure 4.5 for a beam with 650 MPa as the input for the longitudinal-
tangential shear modulus. The corresponding results for a beam with 50 MPa as the
input for the longitudinal-tangential shear modulus are displayed in Figure 4.6.
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Figure 4.5: Shear strain distribution over the beam height at cross section 1 and 2 (see
Figure 4.1). Beam with input longitudinal-tangential shear modulus
GLT = 650 MPa. Note the difference in scale between the two graphs.
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Figure 4.6: Shear strain distribution over the beam height at cross section 1 and 2 (see
Figure 4.1). Beam with input longitudinal-tangential shear modulus
GLT = 50 MPa. Note the difference in scale between the two graphs.

The results from the analysis of the shear strains along the center line of the beams
in Figure 4.3 and 4.4 indicate that the values from the FE-models vary compared to
the shear strains according to Timoshenko beam theory. This was further proven by
the analysis of the shear strain distributions over the height of the beams in Figure
4.5 and 4.6. Even thought the results for the beam with the higher shear modulus
(GLT=650 MPa) correlate better with beam theory, both beams tend to deviate from
theory between the load and the middle of the beam (between x=300 mm and x=600
mm in Figure 4.3 and 4.4).

This result was particularly interesting as the shear force between the two loads is
zero. According to beam theory no shear force in turn leads to no shear stresses,
no shear strains and no shear deflections. This was interesting to evaluate since the
local deflections, which in turn are used to determined the local bending stiffness,
are measured at this part of the beam at the reference point RPG. The equation
used to determine the local bending stiffness is based on the assumption that the
measured deflections only depend on bending deformations. As the results from the
FE-models indicate that the local deflections are dependent on both bending and
shear deformations, the measured local bending stiffness (EI)local,net deviates from the
theoretical bending stiffness ELInet. This might be one of the reasons to the deviating
results between the input and output of the shear modulus.
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Improvement of testing method

These results lead to the investigation if the results would be improved if the reference
length for the local bending stiffness l1 was decreased to be less affected by shear strains
and in turn shear deflections. As can be seen in Figure 4.3 and 4.4 the shear strains
approaches the theoretical values closer to the middle of the beam. The influence of
decreasing the length l1 on the ratio of the measured and theoretical bending stiffness
is displayed for a beam with 50 MPa and 650 MPa as the input shear modulus and
BC type A in Figure 4.7.
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Figure 4.7: The ratio of the local bending stiffness determined with deflections from the
FE-models (with BC type A) and the theoretical bending stiffness in relation
to the reference length l1.

The results indicate that the measured local bending stiffness would be closer to the
theoretical value if the length l1 was decreased. For a beam with the longitudinal-
tangential shear modulus of 650 MPa the results show that the local bending stiffness
(EI)local,net converged towards the theoretical value when the length l1 was decreased
for a 1300 mm long beam. For beams with the same length but with lower longitudinal-
tangential shear modulus (50 MPa), the determined local bending stiffness also came
closer to the theoretical one as l1 was decreased. The ratio between the two did however
not converge towards one even if l1 was decreased by 350 mm.

Before the alteration of l1 the output/input-ratio of the longitudinal-tangential shear
modulus was around 1.1 for the beam with 650 MPa as the input shear modulus.
When decreasing l1 to 300 mm the ratio of the output/input shear modulus decreased
according to
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GLT,output

GLT,input

=
690

650
= 1.06 (4.1)

4.1.2 CLT-beams

Figure 4.8: Sketch of CLT-beams with laboratory and theoretical boundary conditions,
BC type A and BC type C. BC type A was evaluated with both homogeneous
layers and with varying w/t-ratio. The sketch also shows the location of cross
section 1 and 2.

.

Boundary conditions and shear correction factor

When the beam had been analysed as homogeneous, the transverse layers where im-
plemented (see Figure 3.6). The results of the evaluation when comparing the out-
put/input ratio of the rolling shear modulus in relation to the input for CLT-beams
with homogeneous layers are displayed in Figure 4.9.
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Figure 4.9: The output/input-ratio of the rolling shear modulus in relation to the input
for beam with different shear correction factors and boundary conditions (BC
type A and BC type C).

The blue lines in Figure 4.9 represent the output/input-ratio for the beams with bound-
ary conditions representing a laboratory test set-up (BC type A), and the orange lines
represent the beams analysed with theoretical boundary conditions (BC type C). The
beams were first evaluated with the shear correction factor κ according to beam theory
(see Equation 2.21). Both the blue and orange line (with dots) show large deviations
for low rolling shear modulus GRT , for an input value of 50 MPa the output value
is around seven and nine times larger respectively for the two beam set-ups. These
deviations were of significant interest as these are rolling shear properties often found
in timber used for CLT. As the input was increased the output/input-ratio converged
towards 1.2 for beams with BC type A and towards 1.0 for beams with BC type C.
These results further prove the effect of the difference between the boundary conditions
previously mentioned.

As mentioned in the preconditions, the shear correction factor could be set to 0.25,
instead of the theoretical correction factor. This was tested and is represented by the
blue and orange lines with squares in Figure 4.9. As can be seen in Figure 4.9 κ = 0.25
fits quite well for the beam with BC type A and the input rolling shear modulus of
50 MPa. If this isn’t the case the accuracy of the outcome deviates beyond reasonable
limits. This result indicates that if the rolling shear modulus is 50 MPa and the shear
correction factor is set to 0.25 the testing method provides quite accurate results for
this particular beam. The output/input-ratio was approximately 1.08 meaning that
the result is 8 % larger than the actual rolling shear modulus, used as input in the
FE-model.
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Sensitivity of the testing method

The accuracy of the shear correction assumption was further evaluated for the model
where the assumption seemed to fit best, i.e the model with BC type A and the input
rolling shear modulus of 50 MPa. The accuracy and the sensitivity of the assumption
was analysed by investigating the effect of a small deviation in the input rolling shear
modulus. This was done by assuming that the rolling shear modulus of the test
specimen was known to be 50 MPa with a deviation of 5 MPa. The shear correction
factor was set to constantly 0.25. The results of a small deviation of the rolling shear
modulus in relation to the output/input-ratio is shown in Figure 4.10.
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Figure 4.10: The output/input-ratio of the rolling shear modulus in relation to the input.

The results in Figure 4.10 show that if the input rolling shear modulus was set to 50
MPa the output would be approximately 54 MPa. This gives a output/input-ratio
which is close to 1.0, meaning that the output is close to the input. If the input rolling
shear modulus instead was set to 55 MPa the resulting output weas ca 125 MPa. This
result indicated that the testing method is very sensitive as an increase of the input
by 8 % resulted in an increase of the output larger than 100 %. It also indicated that
the accuracy of the assumption of the shear correction factor κ = 0.25 for beams with
GRT = 50 MPa might just be a coincidence.

Shear strain distributions

In addition to the evaluation of the factors affecting the equation used to determine the
rolling shear modulus, the shear strains were also investigated for the CLT-beams. The
evaluation was performed in a similar fashion as for the homogeneous beams, with the
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corresponding cross sections and equal sets of boundary conditions. The shear strain
distribution for CLT-beams with homogeneous layers with the input rolling shear
modulus of 650 MPa and 50 MPa, at cross section 1 and 2 are displayed in Figure 4.11
and 4.12.
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Figure 4.11: Shear strain distribution over the beam height at cross section 1 and 2 (see
Figure 4.1). Beam with input rolling shear modulus GRT = 650 MPa. Note
the difference in scale between the two graphs.
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Figure 4.12: Shear strain distribution over the beam height at cross section 1 and 2 (see
Figure 4.1). Beam with input rolling shear modulus GRT = 50 MPa. Note
the difference in scale between the two graphs.

The results show that just as for the homogeneous beam models, the shear strain
distributions correlate better with Timoshenko beam theory at cross section 1 (between
the support and load) compared to cross section 2 (between the load and the middle
of the beam). The results also show that the shear strains for a beam with higher
rolling shear modulus (GRT = 650 MPa) correlate better with theory compared to a
beam with lower rolling shear modulus (GRT = 50 MPa). Especially interesting is the
correlation at cross section 2, for the beam with higher rolling shear modulus and BC
type C. The extracted shear strains from the FE-model where nearly zero over the
beam height i.e. close to what Timoshenko theory assumes. This was not the case for
any other beams analysed and explains why the output/input-ratio for this beam was
closest to one (see Figure 4.9).

Annual growth ring pattern

The parametric study was finished with an evaluation of the effect of the annual
growth ring pattern and the lamella width/thickness-ratio. Even though the results
of the test method is largely influenced by beam theory assumption, these parameters
are of interest as they affect the bending of beam. Previous research suggests that the
output rolling shear modulus from a similar FE-model can be 1.4 to 2.8 times higher
than the input for various annual ring configurations [16].
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The effect of the annual growth ring pattern was analysed by altering the curvature of
the rings. The curvature is dependent on where the lamella is sawn on a tree log. The
further away from the pith, the flatter the curvature of the annual growth rings are
(see Figure 3.7). The effect of how the distance to the pith c affected the output/input-
ratio is shown in Figure 4.13. The models tested had an input rolling shear modulus
of 50 MPa, BC type A and a lamella width/thickness ratio of 6.5 with glued edges
(see bottom sketch in Figure 4.8).
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Figure 4.13: The output/input-ratio of the rolling shear modulus in relation to the
distance to the pith c. BC type A and w/t-ratio=6.5.

As can be seen in Figure 4.13, the annual growth ring pattern has a large influence
on the output/input-ratio of the rolling shear modulus. The results show that when
the distance to the pith c is shortened the output rolling shear modulus is signific-
antly higher than the input. The increased curvature of the annual growth rings was
beforehand expected to increase the shear stiffness of CLT, just as the results show.
The magnitude of the effect is thought greater than expected. As the accuracy of
the output/input-ratio tends to deviate even when the annual growth rings were not
implemented, it might be difficult to draw any conclusion from these results.

When the distance from the pith then increases, meaning less curved annual growth
rings, the output/input-ratio converges towards one for analysis with the alternative
shear correction factor (κ = 0.25) and around seven for analysis with the shear correc-
tion factor according to theory (κ = 0.193). These results correlate with the results
shown in Figure 4.9 (see the blue line with squares (κ = 0.25) and the blue line with
dots (κ=0.193) at input value GRT = 50 MPa).
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Lamella width/thickness ratio

Finally the effect of the relation between the width and thickness of the transverse
lamellas on the output/input-ratio of the rolling shear modulus was evaluated. The
evaluated models had an input rolling shear modulus of 50 MPa, BC type A and non
glued edges (see bottom sketch in Figure 4.8). As mentioned previously the actual
magnitude of this effect might be difficult to determine as the testing method tends to
be largely affected by other factors concerning beam theory assumptions. The results
shown in Figure 4.14, indicate that the width/thickness-ratio affects the rolling shear
modulus as expected. The larger the width of the transverse lamellas the higher the
rolling shear modulus.
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52



5 Discussion and Conclusions

5.1 Concluding remarks

The aim and objective of this dissertation was to thoroughly evaluate the four-point
bending test which is described in the Europe Standard EN 16351. The aim was
also to do a parametric study where parameters such as lamella thickness/width-ratio
and annual growth ring orientation would be evaluated. As the project proceeded,
new factors and parameters that affected the results significantly were discovered.
These new factors concerned the differences between laboratory tests (represented by
FE-models) and beam theory assumptions and had to be evaluated before specific
parameters concerning CLT could be evaluated.

The FE-model was first modelled to resemble a laboratory test set-up as much as
possible and was modelled as a CLT-beam (see Figure 3.6). When determining the
output rolling shear stiffness based on measurements from this model, the output
deviated significantly from the input. This lead to a step-wise simplification of the
model to eventually represent a theoretical Timoshenko beam. The first step was
to remove the transverse layers and evaluate a homogeneous beam with all layers
in the longitudinal direction (see Figure 3.5). The purpose of this was to reduce
the theoretical assumptions affecting the equation for the output shear modulus. In
particular the shear correction factor which is constant for homogeneous rectangular
beams. The results between the input and output from this evaluation still deviated,
which lead to the conclusion that further factors affected the results.

Remarks on boundary conditions

A part of the simplification was to remove the modelled support and load application
surface and replace them with theoretical boundary conditions. The purpose of this
was to evaluate the effect of the difference between the theoretical and laboratory
boundary conditions. The results for the homogeneous beams (see Figure 4.2) showed
that the difference between the output- and input shear stiffness was reduced a bit
for the beams evaluated with higher input longitudinal-tangential shear modulus. The
beams with low shear stiffness were less affected by the boundary conditions. This lead
to the conclusion that the boundary conditions do affect the results, but the beams
with low shear stiffness are predominantly affected by other factors. The same results
were obtained for the CLT-beams (see Figure 4.9).

When executing this test in a laboratory the beam will likely be placed on two supports
with a certain width and the two loads will be applied by some sort of steel beam which
also has a certain width. These widths might lead to different boundary conditions
then what theory assumes. The loads may act as distributed over the widths of the
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steel beams rather than point loads. This is not accounted for in beam theory. In
theory the support is placed at the mid height of the beam in a single point and the
load is applied in a single point also at the center line of the beam. These differences
might explain the deviating results between beam theory and the FE-models.

Remarks on shear strain distributions

Even when the boundary conditions for the FE-models were altered to resemble
Timoshenko beam theory, the output- and input shear modulus deviated (see Fig-
ure 4.2 and 4.9). To evaluate this deviation further the shear strain distributions of
the beams with the highest and lowest shear stiffness were evaluated. The measured
shear strains turned out to deviate from the theoretical ones. This was also the case
between the load and the middle of the beam were the shear strains according to
beam theory are zero. As the shear strains at this part of the beam deviated from
zero, it affected the measurement of the local deflections. The local deflections, used
to determine the local bending stiffness, was therefore not only dependent on bending
deformations as the method assumes (see Section 2.4.1). The inaccuracy of the local
bending stiffness in turn lead to inaccurate output of the shear modulus.

Remarks on shear correction factor

When evaluating the FE-models representing CLT-beams the output rolling shear
modulus deviated significant from the input values (see Figure 4.9). The deviation for
the input value of 50 MPa, which is the typical rolling shear modulus for C24, turned
out to deviate the most. The output was around seven times larger than the input
with BC type A. This result was obtained with the shear correction factor according
to beam theory. The preconditions according to EN 16351 though state that the
correction factor may be set to κ = 0.25. With this alteration the output/input-ratio
of the rolling shear modulus was improved significantly for this beam.

The improvement was however only detected for the case when the input was 50
MPa. A small deviation from 50 MPa showed a large deviation of the output. The
conclusions drawn from this is that the choice of the shear correction factor affects
the results significantly and in order to do a suitable choice the input rolling shear
modulus must be known beforehand.

The results also showed how a small change of the input results in a relatively large
change of the output (see Figure 4.10). Consider the test to be executed in a labor-
atory with a real CLT-beam and the rolling shear modulus is assumed to be 50 MPa.
The shear correction factor is then set to 0.25 as described in the preconditions ac-
cording to EN 16351. If the actual value of the rolling shear modulus is 55 MPa,
which is a reasonable deviation, the outcome of the test would be more than twice as
large deviation then what can be expected. This indicates that the testing method is
sensitive to small deviations which would be hard to avoid in practice.
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Remarks on the sensitivity of the testing method

One of the reasons why the testing method is sensitive to small errors is to be found
in the equation used to determine the shear modulus of the entire cross section (see
Equation 2.37). In the denominator of that equation the difference between the local-
and the apparent bending stiffness is used as a factor. A local bending stiffness de-
viating just one percent results in a far grater deviation of the shear stiffness and, in
turn, results in an inaccurate value of the rolling shear modulus.

Remarks on annual growth ring orientation

The evaluation of the annual growth ring orientation was performed on beams with
the input rolling shear modulus of 50 MPa with both the theoretical and altered shear
correction factor. The results showed that the annual growth ring pattern had a large
impact of the output/input-ratio of the rolling shear modulus. The more curvature
the annual rings had the more the ratio was affected. This outcome was also expected
based on previous research. Conclusions can be drawn that the annual ring pattern
affects the shear stiffness of CLT, the magnitude of that effect is ,however, difficult to
determine due to the uncertain accuracy of the testing method.

Remarks on lamella width/thickness-ratio

The evaluation of the width/thickness-ratio of the transverse lamellas was performed
on beams with the input rolling shear modulus of 50 MPa with both the theoretical and
altered shear correction factor. The same conclusions as for the evaluation of the an-
nual growth ring pattern was drawn from this evaluation. The lamella width/thickness-
ratio ultimately affects the bending of the beam and in turn affects the measurements,
but no conclusion of the magnitude of this effect can be drawn.

Final remarks

A source of error in this project might be the fact that the testing method was evaluated
with FE-models and not real CLT-beams as the preconditions stated. The FE-models
were modelled to resemble real life beam as much as possible, but will of course deviate
from reality. In this project this was although rather an advantage than a disadvantage.
For instance a real CLT-beam will have far more initial deformations, irregularities
and other unexpected factors that influence the results. And consider the fact that
the testing method is rather sensitive, achieving accurate results with a real beam
would be even harder than for a FE-model. An other advantage with the modeling is
that the actual rolling shear modulus is known beforehand since it is used an and input
parameter. For a real beam this wouldn’t be the case which for example complicates
the choice of the previously mentioned shear correction factor.

To summarize, the results of this project indicate that the testing method needs to be
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further evaluated to be a reliable source to determine the rolling shear modulus of CLT.
The method will be difficult to use in practice since it requires such precise measuring
due the sensibility. And even if the measuring is done correctly the outcome might
not be the expected one. The outcome is heavily influenced by both beam theory
assumptions and outer assumptions like the input rolling- and longitudinal-tangential
shear modulus. Some of the assumptions made require a valid guess of what the
outcome will be. If the wrong assumptions are made the outcome will be more or less
irrelevant to use since it deviates far from the real outcome.

5.2 Further analysis

When evaluating the testing method in this project the outcome deviated far from
what was expected beforehand. The results indicate that this was due to the differences
between assumption within Timoshenko beam theory and the deformation patterns
found from the FE-models. A further analysis of the testing method could be to
investigate potential improvements of the method.

When evaluating the shear strains along the length of the beams (see Figure 4.3 and
4.4), the results showed that the shear strains deviated more close to the load compared
to the middle of the beam. The effect of moving the reference point for the local
deflections RPL closer to the middle was therefore evaluated. The results showed that
the measured local bending stiffness came closer to the theoretical bending stiffness as
RPL was moved closer to the middle. This suggests that the testing method might be
improved by reducing the reference length for the local deflection l1. Further changes
of this type can be evaluated. For instance how the test set-up should look like and
where the deflections should be measured to decrease the influence of theoretical and
practical differences even more.

The assumptions within the beam theories considered in this work could also be further
evaluated. A thorough evaluation of the shear correction factor κ would be interesting.
Both a more detailed evaluation of how the factor is determined and how this could
be used to better understand and improve the testing method. Based on the results
from this project, such an evaluation would be essential to validate this test method
as reliable.

Further analysis could also be to evaluate the testing method with real CLT beams.
This is essentially what the testing method is developed for. This project was based on
FE-models that gives approximate solutions which might deviate from reality. These
possible deviations between real CLT-beams and FE-models can be further evalu-
ated, both to improve the FE-models and to gain further understanding of the testing
method. The effect of other parameters such as imperfection could also be evaluated
for real beams.

56



Bibliography

[1] Swedish Wood. The CLT Handbook. Skogsindustrierna Svenskt Trä, 2019. isbn:
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