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Abstract

Portal frame bridges are one of the most popular types of bridges in Sweden. These
bridges consists of a framework structure that mitigates the use of bearing supports
and expansion joints which in turn makes them economically viable, efficient and
robust. The structure makes use of having vertical surfaces such as abutment walls
that are in contact with soils, meaning that braking forces, thermal expansion and
adjacent loading can be transmitted through the structure into the surrounding soil.
This creates intricate soil structure interaction which require careful consideration of
how these earth pressures impact the structure.

When calculating increased earth pressure due to horizontal loading, following the
Swedish Transport Authority (STA) regulations was necessary. However, the current
process was both time-consuming and flawed, neglecting crucial soil mechanics. Com-
mercial software like Dlubal’s RFEM offered tools for soil-structure interaction analysis
which this thesis employed. Various spring model theories are modelled and compared
with STA regulations.

Eight different types of portal frame bridge designs, with five different modelling the-
ories were analysed. Parameters such as span, width, height, thickness and soil char-
acteristics were examined. Each bridge design had a variation of bridge models with
varying values of key parameter to derive a result to discern patterns, similarities, and
discrepancies across the bridge designs. All spring models were implemented in RFEM
with springs that deactivate under tension to simulate soil mechanics more accurately.
A few bridges implemented passive earth pressure springs to analyse the impact.

The results showed that all the spring models have movement in the bottom slab unlike
the assumptions the STA states. The results also showed that all the spring models
had similar contact stresses, with a maximum value at the surface of the abutment
wall which decreased with depth reaching a minimum value at the foundation slab.
Predictably, the earth pressure distribution of STA models aligned with regulatory
standards.

The spring bed models simulated more realistic behaviour of the structure and the
distribution of the earth pressure. This lead to a depth varied distribution of sectional
forces, which left room for optimizable structural design. The lack of an iterative
process decreased the computational time to process a design.

In summary, this master thesis aimed to initiate discussion concerning the necessity
of revising the STA, since the methodology to model the earth pressure lacks phys-
ical connection. The triangular stress distribution with its peak in the centre of the
abutment wall and the restricted movement of the foundation slab inadequately rep-
resented the structural behaviour. Moreover, this necessitated a force equilibrium
process through an iterative procedure, leading to a time-consuming methodology.
The regulation needs reconsideration and refinement of current practises.
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Sammanfattning

Plattramsbroar är en av de mest populära brotyperna i Sverige. Best̊aende av en
ramstruktur som minskar behovet av rullager och expansionsleder, vilket i sin tur gör
dem ekonomiskt lönsamma, strukturellt effektiva och beständiga. Strukturen utnyttjar
vertikala ytor som rambenen vilka är i kontakt med jorden. Detta innebär att broms-
krafter, termisk expansion och intilliggande belastning kan överföras genom strukturen
till den omgivande marken. Detta skapar komplex interaktion mellan jorden och bro-
struktur som kräver noggrann övervägning om hur dessa p̊averkar strukturen.

När ökat jordtryck av horisontell belastning beräknas är det Trafikverkets regelverk
som ska följas. Den nuvarande processen är tidskrävande, bristfällig samt försummar
avgörande geotekniska egenskaper. Kommersiell programvara som Dlubals RFEM er-
bjuder verktyg för analys av geokonstruktioner, som detta examensarbete använder.
Olika fjädermodeller baserade p̊a olika teorier modelleras och jämförs med Trafikver-
kets föreskrifter.

Åtta olika typer av plattramsbroar, med fem olika modelleringsteorier analyserades.
Parametrar som spännvidd, bredd, höjd, tjocklek och geotekniska egenskaper un-
dersöktes. Varje bromodell hade en uppsättning av broar med varierande värden p̊a
västenliga parameter för att urskilja mönster, likheter och skillnader mellan de olika
bromodellerna. Alla fjädermodeller implementerades i RFEM med icke-linjära fjädrar
som avaktiverades vid dragspänning för att simulera jordens geotekniska egenskaper
mer noggrant. P̊a n̊agra broar implementerades passiva jordtrycksfjädrar för att ana-
lysera effekten.

Resultaten visar att alla fjädermodeller har rörelse i bottenplattan. Det visade sig ocks̊a
att alla fjädermodeller hade liknande utformning p̊a kontakttrycket, med ett maximalt
värde vid toppen av rambenet som minskade med djupet och n̊adde ett minimum
värde vid grundplattan. Förutsägbart s̊a följde jordtrycksfördelningen i Trafikverkets
modeller med regelverkets bestämmelser.

Fjädermodellerna simulerade ett mer realistisk beteende av strukturen och jordtryckets
fördelning. Detta ledde till en mer varierad fördelning av snittkrafterna, vilket lämnar
utrymme för en mer optimerbar konstruktion. Genom att inte använda en iterativ
process minskades beräkningstiden för att bearbeta en modell.

Sammanfattningsvis ämnar detta examensarbete att initiera diskussion kring behovet
att förbättra Trafikverkets regelverk eftersom metoden för att modellera jordtrycket
saknar fysisk koppling. Den triangulära spänningsfördelningen med sin topp i mitten
av rambenet och den begränsade rörelsen i plattan representerar inte strukturens bete-
ende. Dessutom krävs en iterativ process för att ta fram kraftjämvikt, vilket leder till
en tidskrävande metodik. En modernisering av Trafikverkets regelverk och en förfining
av nuvarande praxis behövs.
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1 Introduction

1.1 Background

Integral bridges are widely used in Sweden because of their ease of construction, lack of
bearing supports and expansion joints. They are constructed to handle both vertical
and horizontal loads using a framework structure, with bridge spans ranging from 2
meters to 25 meters. Horizontal loads from braking forces, thermal expansion, and
surcharge loading are transmitted through the vertical elements to the soil, resulting
in increased earth pressure on the abutment walls [1]. This phenomenon is considered
during the design of the structure.

Since the structure with the soil is statically indeterminate the soil pressure requires
force equilibrium equations and deformations relationships, to determine the load dis-
tribution caused by the increased earth pressure - Naturally resulting in soil-structure
interaction (SSI) [1]. All traffic related infrastructure is regulated by the Swedish
Transport Authority named “Trafikverket”. According to the Swedish Transport Au-
thority TRVINFRA-00227 the increased earth pressure load on a abutment wall has
a triangle shaped distribution with the apex in the middle of the abutment walls and
zero at the base of the foundation and the surface [2]. This method of calculating
the increasing earth pressure is an iterative process which is unfavourable and time
consuming for the engineer. This may also create sectional forces in the abutment
walls that do not reflect the reality of the situation.

In engineering practise, there exist varying methods on how to model soil-structure
interaction. Some methods try to replace the subgrade soil with a structural element
such as the Winkler or Pasternak foundation model [3]. Other methods tries to model
the soil more physically “correct” using a continuum model [4].

This work will focus on comparing different methods of modelling the soil compared
to the Swedish Transport Authority method and regulation. These methods aim to
generate a more precise distribution, thereby reducing the time-consuming iterative
process associated with the current model.

1.2 Objectives

The objective of this thesis are the following:

• Compare and analyse different soil spring models with the Swedish Transport
Authority’s regulations, the differences in the sectional forces and the movement
of the abutment wall.

1



• Draw conclusions in what parameters effects the various bridge models.

• Determine a more adequate soil distribution with the use of spring models in
comparison to the Swedish Transport Authority’s regulations.

1.3 Limitations

Due to intricacy when modeling integral bridges and foundations, the following limi-
tations have been set.

• Concrete quality has been set to C40/50 throughout the thesis and assumed to
have linear elastic behaviour.

• No considerations have been taken into account that the reinforcement affects
the stiffness of the structure.

• The concrete is considered uncracked.

• Fatigue behaviour was not studied

• Groundwater effects were not considered, hence the groundwater level was deemed
to be well below the structures depth.

• The bridge dimensions where not set to represent realistic portal frame bridge
designs, instead the dimensions were chosen to amplify the parametric effects.

• Self-weights are disregarded.

• Only characteristic loading was used.

• The wing walls dimensions where set to be constant through out all bridge mod-
els.

1.4 Procedures

This thesis intends to compare the Swedish Transport Authority’s calculating regula-
tions of increased earth pressure on the abutment wall of portal frame bridges with
different spring based models. This will be achieved by conducting a parametric analy-
sis in the finite element software, on different portal frame bridge designs using various
spring foundation theories. The results of the models will be compared with each other
by the sectional forces and deformations occurring in the abutment wall.

2



2 Theory

2.1 Integral bridge

2.1.1 Definition

Integral bridges by definition are when the bridge deck is made without any joints be-
tween the structure and embankment. These bridges without expansion joints are
divided into two categories “jointless deck” and “integral”. Jointless deck means
that there is translational movement between the superstructure and the substructure
through bearings. Integral deck has no translational movement between the super-
structure and substructure creating a continuous frame [5]. This thesis will focus on
the category “integral”, no translational movement between super- and substructure,
seen in figure 2.2. Figure 2.1 shows an example of a portal frame bridge.

Figure 2.1: Portal frame bridge located in Norra Fäladen, Lund.

3



Figure 2.2: The elemental structures of a portal frame bridge.
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2.1.2 Characteristics

Integral bridges, also known as portal frame bridges are cost effective and do not
necessitate the same level of maintenance as a conventional bridge or jointless deck
due to the lack of bearing [6]. The omission of structural elements that separate
the superstructure from the substructure leads to distinct statical action compared
to traditional bridges with bearing. Integral bridges feature a deck that ends in a
diaphragm that is fixed to abutment walls that are rigidly connected to the foundation,
forming a frame [5].

Integral bridges can have various configurations of material usage, in the United States
there are composite integral bridges spanning 120 meters, in this case conventional
elastic analysis fails to explain how the bridge works [6].The standard integral bridge
called portal frame bridge which consists entirely of reinforced concrete frame will be
the focus of this master thesis.

The frame abutment walls work with the soils and thus derives resistance from them
in lateral bending, and restrains movement that is created by forces applied on the
deck. This restraining effect can be as beneficial as it is detrimental, in some cases
given in figure 2.3 where the soil is trying to restrain thermal expansion leading to
increased internal forces. The restraining capability depends on the soil characteristics
of the backfill.

Figure 2.3: Illustration of the movement into the soil occurring from thermal expansion
on the left, movement from vertical loading in the middle and horizontal
translation from braking forces.
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Figure 2.4: The difference in the modelling of a integral bridge compared to a traditional
bridge.

2.1.3 Modelling

Portal frame bridges as shown in figure 2.4 illustrates that integral bridges are statically
indeterminate where internal forces are influenced by the stiffness distribution of the
structure and support displacement.

Constructing a structural model for an integral bridge requires both the superstruc-
ture and substructure, given their substantial interaction, unlike in traditional bridges.
Likewise, the inclusion of backfill in the integral bridge design is crucial, as the dis-
placement of the structure impacts the stresses exerted on the entire bridge. Horizontal
displacement induces cyclic loading on the backfill due to vertical and horizontal traffic
loads, as well as thermal expansion shown in figure 2.3. [7]

2.2 Soil mechanics

One of the primary distinctions between soil and other construction materials lies in
its multi-phase composition, consisting of soil grains, water and voids known as pores.
These pores can be filled with water (resulting in saturated soil) or air. In certain
cases, the pores may contain both, resulting in a condition called unsaturated soil.
These small differences lead to great differ in the soil behaviour. [8]

Soils are further defined into cohesive and non-cohesive soils. Non-cohesive soils feature
direct contact between its particles leading to the forces in the soil being transmitted

6



by friction forces and normal forces. In contrast, cohesive soil is connected via water
and the forces are instead transmitted by hydrogen bonding, van der Waal forces and
electrostatic interaction. [9]

The groundwater level (GWL) is another factor that will affect the stresses in the
soil leading to smaller stress values compared to the same soil above the GWL. This
is because the soil will have the effective unit-weight, instead of only the soils unit-
weight. The ground water will reduce the unit-weight of the soil based on Archimedes
principle. [9]

Additionally, soil behaviour is further complicated by its non-fully elastic behaviour.
In fact, soil inhibits plastic deformation almost immediately when loaded, resulting in
deformations that are irreversible [8]. Both the plastic and elastic behaviour of the
soil depends on the pressure history and the existing stresses in the soil. Especially,
the maximum historical pressure, so called pre-consolidation pressure [10].

Furthermore, when studying different soil depths, there are often soil layers with dif-
ferent properties. For simplification of this thesis the soil layers have been assumed to
be one homogeneous soil mass, illustrated in the simplified model as seen in figure 2.5
[11].

Figure 2.5: Illustrations of Soil layer models with the top one beeing a simple one layer
model and the bottom one a multi layer model.
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2.2.1 Soil modelling

As mentioned, soil is a material with complex behaviour, notably the nonlinear stress
and strain behaviour, the effects of pressure history and the interplay of elastic and
plastic attributes [12].

Modelling the soil to prevent plastic deformations is important and this is done by
checking the passive and resting earth pressure. When dealing with a retaining wall
structure, in this thesis the abutment wall, different types of earth pressure occurs.
When a horizontal force is applied the retaining wall will move and deform. The soil
against the wall will have a passive earth pressure that varies with depth. If the force
is greater then the passive pressure, the soil will be subjected to plastic deformations,
passive earth pressure failure occurs. [11]. Calculating the passive earth pressure is
important in order to limit the stresses translating into the spring and is done through
the equation 2.1. The passive and resting earth pressure coefficients are denoted Kp

and Ko respectively. σv(z) is the earth pressure and ∆σH is the earth pressure when
considering passive earth pressure failure.

∆σH = σv(z) · (Kp −Ko) (2.1)

There are computer softwares that can model numerically and analyse the geotechnical
continuums of soil. These programs have the potential to create advanced soil models
that can process the extensive variety of soil behaviour. Despite that, subgrade models
are more commonly used in foundation engineering for their accuracy in terms of
computational efforts. Subgrade models are simple and flexible, only modelling certain
characteristics of the soil [3]. There exists a variety of subgrade soil models with
different ways of visualizing the model with physical elements as shown in table 2.1
[13].

Table 2.1: Different subgrade models with corresponding visualizing physical elements
adopted from [13]

.

Subgrade model Physical element used to visualize model

Winkler Hypotheses springs

Pasternak Hypotheses shear layer + springs

Filonenko-Borodisch deformed, pretensioned membrane + springs

Rhines Springs+ plate+ shear layer+ springs

Hetényi Springs+ plate+ springs

8



2.2.2 Winkler foundation

The Winkler method stands as one of the oldest and most renowned foundation models
employed in SSI (Soil-Structure Interaction) analyses. The extensive utilization in
both research and engineering foundation practices can be credited to its simplicity
and ease of mathematical implementation [3]. Originating from the late 19th century,
the Winkler Hypothesis assumes a linear relationship between the deflection, w and
the force, p acting on an elastic foundation, where kw is the Winkler constant (spring
stiffness) making it a widely adopted approach [14].

p = kw · w → kw =
p

w
(2.2)

However, one major drawback of the model is that it does not consider the importance
of shear mechanisms that occur in a soil as seen in figure 2.6, which illustrates the
Winkler soil-models deformation compared to the the real displacement. This hap-
pens due to the lack of adequate consideration of proper spring coupling and leads to
complications that must be considered when constructing a Winkler model. This has
led to the use of more advance models that replicates soil behaviour more realistically
than the Winkler model. A trademark of these models is the incorporation of spring
coupling that takes the shear mechanism into account [3].

The Winkler model for this project is illustrated in figure 2.6. Where the soil is
depicted as an elastic foundation and is represented by a bed of continuous linear
springs with the stiffness kw, solely acting in a single axial direction. The springs are
placed against the abutment wall, the wing walls and on the bottom of the foundation
slab. The springs are attached to two nodes. However, the bottom nodes are fixed
resulting in the deformation in those nodes being zero and are therefore not added to
the system of equation of the spring elements.

Figure 2.6: Deformation of Winkler foundation compared to realistic displacements.
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Figure 2.7: Illustration of the stress distribution with a 2:1 inclination.

Spring stiffness and the 2:1 Method

The spring stiffness is derived from equation 2.2 and can be calculated by firstly using
the 2:1 method [9] to calculate the approximate stresses in the soil, ∆σz from a load
q acting on a limited area. Then the displacement, δ can be calculated and with this
the spring stiffness can be obtained.

The 2:1 method for a 3-D model distributes the load q on a rectangular area that
increases the stress ∆σz with the correlation that if the width b and length h, which
the load acts on increases by one unit on each side the depth z increases by two units
as seen in figure 2.7 and equation 2.3. The inclination i is therefore set to 1

2
.

∆σz =
qbl

(b+ z)(l + z)
(2.3)

The displacement δ are derived from equation 2.4 where εz is the soil strain and E is
the soils Young’s modulus. The distributed load q when calculating the displacements
δ is assigned to the value of P = 1N. This is implemented because the load magnitude
does not influence the stiffness of linear springs.

δ =

∫ z

0

εzdz =

∫ z

0

∆σz

E
dz (2.4)

The spring stiffness kw is then calculated as equation 2.5 where P = 1N as mentioned
previously.

kw =
P

δ
(2.5)
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The primary limitation of the Winkler model used is as mentioned before the lack
of shear mechanism, which results in non-accurate displacements because of the com-
plete lack of shear resistance in the soil. This shear resistance, if it was implemented
correctly in the model, would distribute the load to a larger area and a more accurate
displacement would be obtained. The displacements from the model would then act
on a more extensive area and lead to subdued realistic displacement as seen in figure
2.6.

Moreover, the model assumes the soil to be entirely elastic, thereby disregarding its
plastic behavior. This implies that if the load is cyclic or entirely removed, the soil
would revert to its original shape (non-deformed). This is not true in practice where
the soil can develop irreversible deformations.

The Winkler model will be implemented in RFEM using linear springs with a cut-off
limit to prevent tension forces. Some analyzed cases will also include a limit that
restricts forces beyond the yield stress, coupled to the passive earth pressure. Some of
the advantages and disadvantages of a one parameter model in RFEM is presented in
table 2.2 [15].

2.2.3 Pasternak foundation

To address the inadequacies of the Winkler model, numerous improved methods have
been proposed. One such method, often referred to as a “two-parameter model”, The
Pasternak hypothesis is a more improved method. Based on the Winkler hypothesis,
it addresses some of the shortcomings by introducing shear interactions between the
Winkler spring elements. Essentially the Pasternak model is a refined Winkler model,
featuring an additional shear layer. This is depicted in figure 2.8 showing a Pasternak
model with the shear layer. [16]

Table 2.2: Advantages and disadvantages of a one parameter model in RFEM adopted
from [15].

.

Advantages Disadvantages

Easy input Inadequate soil modeling

Short computation time No consideration of the soil’s shear resistance

No consideration of adjacent soil area

No definition of soil layers

Few realistic results
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Figure 2.8: Illustration of the Pasternak model.

The Pasternak equation shares similarities with the Winkler equation 2.2. However,
it introduces a second parameter that includes shear interaction between the Winkler
spring elements due to the added shear layer. When modelling the shear layer, assum-
ing the material is isotropic and homogeneous, the shear modulus of the shear layer is
equal to Gx = Gy = G. The following differential equation 2.6 is then derived where
kp is the stiffness of the springs and w is the deflection w = w(x, y) and p is the
applied pressure. [17]

p = kpw −G�2 w (2.6)

The challenge when modeling with the Pasternak model lies in its improvement of
the Winkler model. When studying equation 2.6 the subsequent conclusion can easily
be drawn. If the stiffness of the shear layer is too great the displacements would be
underestimated and the foundation soil would also displace in a larger area [15]. In
this master’s thesis, the Pasternak model will be implemented by using RFEM’s own
modules.

The advantages and disadvantages using the two-parameter model in RFEM are pre-
sented in table 2.3 [15].

Table 2.3: Advantages and disadvantages of a two parameter model in RFEM adopted
from [15].

.

Advantages Disadvantages

Realistic results if used properly Definition of soil layer only
approximated

Consideration of adjacent soil areas Additional considerations and inputs
necessary

Consideration of the shear resistance in
the soil
Short computational time
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2.3 Swedish Transport Authority regulations

The Swedish Transport Authority (STA) is a Swedish government agency. The agency
is responsible for the long-term planning and construction of Sweden’s aviation, ship-
ping, railways and road traffic infrastructure. Based on societal-development perspec-
tive, STA aims to establish conditions for a socio-economically efficient, long-term
sustainable transport system that is internationally competitive. Within this, STA is
responsible for all the infrastructure regulations that one must follow. [18]

In this master thesis as mentioned before the focus will be on the regulation of bridge
type structures in accordance with TRVINFRA-00331 “Bro och broliknande konstruk-
tion, Bärighetsberäkning” [19] and TRVINFRA-00227 ”Bro och broliknande konstruk-
tion, Byggande” [2]. More specifically, these regulations manages the increased earth
pressure on constructional components horizontal movement against soil. When cal-
culating the increased earth pressure against abutment walls, the regulation in chapter
8.3.5.1 ”Ramben, pelare i jordfyllning, p̊alar m.m.”[19] is used and declares the fol-
lowing: Increased earth pressure due to the horizontal movement of the construction
against soil shall be calculated according to equation 2.7. Equation 2.7 applies to
the level z = h/2 and underneath this level the earth pressure shall be assumed to
decrease linearly to zero when z = h, as a triangular distribution, depicted in figure
2.9.The earth pressure against the abutment wall must not result in passive earth
pressure failure and is calculated in Appendix A.2.

∆p = c · γ · z · δ
h
[kN/m2] (2.7)

Where:

• c = 300, when the earth pressure is favourable.

• c = 600, when the earth pressure is unfavourable.

• γ, is the soil material unit-weight (mean) from ground level down to the depth
z.

• z, is the depth below ground surface [m].

• δ, is the horizontal displacement of the construction at the surface towards the
soil.

• h, is the abutment wall height [m].
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Figure 2.9: Illustration of triangular load distribution on an abutment wall.
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2.4 Brigade foundation method

Brigade is a finite element software that uses Abaqus solver from Simulia to ensure
accurate and reliable results and is used by civil engineers working in the field. Brigade
has a method of replacing the slab of an integral bridge as seen in figure 2.10 with
equivalent springs attached to the bottom of the abutment walls. The stiffness of the
equivalent springs are calculated by the properties of the slab and soil below to reduce
the computational demand. [20]

The rotational spring stiffness are calculated with the following:

kθt =
Ek · B2 · L

5
(2.8)

kθl =
Ek · B · L2

5
(2.9)

Where Ek is the elastic modulus of the supporting soil, B is the total width of the slab
and L is the total length of the slab. The calculation of the vertical spring stiffnesses
kz is based on the relationship between the rotational stiffness and is calculated with
the following equation:

kz = 0.5(
kθt
It

+
kθl
Il

)A (2.10)

This method does not account for horizontal stiffness in the slab and assumes that
there is always linear behaviour and complete contact. The structure will completely
rely on earth pressure to deal with horizontal movement. For the increased earth
pressure, this model can be combined with previously mentioned methods such as the
Swedish Transport Authority regulation of an opposite force reaction or applying a
spring bed in accordance with the Winkler or Pasternak hypotheses.

Figure 2.10: Slab dimensions.
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2.5 Loads

Only the characteristic braking loads are implemented in the analysis of this work.
Other load combinations such as serviceability limit state, ultimate limit state or tem-
perature dependent loads are outside the scope of this thesis and are not implemented.
Traffic loads acting on the bridge are described in EC1-2, and the bridge deck is di-
vided into notional lanes with a width of 3 meters shown in figure 2.11. A bridge
is designed by dividing the maximum number of notional lanes possible within the
width of the carriageway; however, lanes may be left out if proven to contribute to a
favourable load effect.

Figure 2.11: Notional lanes according to EC1-2.
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Table 2.4: Load magnitude and adjustment factors for each notional lane according to
EC1-2.

Location Tandem
system axle
load, Qlk[kN]

Adjustment
factor, aQi

UDL
system,
Qlk[kN/m2]

Adjustment
factor, aqi

Lane Number 1 300 0.9 9 0.8
Lane Number 2 200 0.9 2.5 1
Lane Number 3 100 0 2.5 1
Other lanes 0 - 2.5 1
Remaining area 0 - 2.5 1

Load model 1 which is used for calculating the braking force was derived using SS-EN
1991-2, 4.4.1. The horizontal braking force is denoted as Qlk and is the force from
each axle which acts on the bridge deck located on top of the abutment wall. This
force is calculated using equation 2.11 and conditions specified from equation 2.12.

Qlk = 0.6aQ1(2Q1k) + 0.1aq1q1kw1Lf (2.11)

180aQi(kN) ≤ Qlk ≤ 900 [kN] (2.12)

The characteristic loads for the tandem system and uniformly distributed load are
from SS-EN 1991-2:2003 and adjustment factors from the National Annex.

• Qlk, characteristic braking force [kN] for each axle.

• a, adjustment factor from National Annex.

• wi, notional lane width [m].

• Lf , bridge span [m].

Q1k = 0.6 · 0.9 · 2 · 300 + 0.1 · 0.8 · 9 · 3 · Lf = 324 + 2.16 · Lf [kN] (2.13)

Q2k = 0.6 · 0.9 · 2 · 200 + 0.1 · 1.0 · 2.5 · 3 · Lf = 216 + 0.75 · Lf [kN] (2.14)

Q3k = 0.60 · 2 · 100 + 0.1 · 1.0 · 2.5 · 3 · Lf = 0.75 · Lf [kN] (2.15)

QRemaining = 0 + 0.1 · 1.0 · 2.5 · 3 · Lf = 0.1 · 1 · 2.5 · 3 · Lf = 0.75 · Lf [kN] (2.16)

The braking load is a point load which increases linearly with the length of the span.
On top of the length, the load will increase with the number of notional lanes that fit
inside the carriageway.
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2.6 Finite element method

Many of the challenges encountered by engineering mechanics are modelled with intri-
cate differential equations. Frequently these problems yield into solutions that are to
complicated to address with traditional analytical methods. Consequently, a more effi-
cient method is necessary. The finite element method (FEM) is a widely used method
for these types of calculations and is one of the most powerful approaches for dealing
with complex differential equations to solve a physical problem. [21]

FEM provides a numerical strategy to approximate the solutions of these complex
general differential equations. These differential equations formulate the problem over
a defined area which can range from one to three dimensions. With the finite element
method the structure is divided into smaller segments known as finite elements, al-
lowing it to solve approximate solutions for each element. These elements are then
assembled together to construct the entire region. [21]

When modelling in a Finite element program a mesh needs to be assigned to the model.
The mesh partitions the structure into a collection of finite elements, each governed
by equilibrium conditions. The approximation between each element is done in the
nodal points of the mesh. The values at the nodal points can be approximated in
different ways, linear, quadratic, cubic and so on. All the finite element calculations
in this master thesis are done by using RFEM software. Further information on the
finite element method can be obtained from Ottosen and Petersson [21].
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2.6.1 Newton-Raphson iteration

Complexity occurs when modelling with Pasternak and Winkler models if the spring
elements act with a non-linear behaviour. Due to this the material stiffness matrix
changes with each expansion step, where the stiffness matrix describes the stiffness
properties of the material. The RFEM software deals with this problem by solving it
with Newton-Raphson iterations. The method converges quadratically, hence greater
accuracy is achieved for each iteration conducted. The calculations are stopped if
convergence cannot be achieved. The Newton-Raphson iteration method is used in
RFEM. The function is linearized at a starting point and the stiffness matrix of the
preliminary step is used in all iterations. At the point where the function equals zero
in the linearized iteration step, a tangent is placed.[15]

The following equations (2.17-2.19) are used in the step chart of the Newton-Raphson
iteration. The load is divided into load steps by adding the external load through load
increments.

t+t∆fe =
t fe +∆f (2.17)

• t, Time/load step.

• fe, External load.

• ∆f , New load increment.

The predictor step is defined by the equations below and linearizes the stiffness-matrix.

t
0K∆0ϕ =t+t∆ fe −t

0 fi (2.18)

• t+t∆fe, Increased external force by a further load step.

• K, Preliminary stiffness matrix.

• ϕ, strains

• t
0fi , internal force of the previous time step

The iteration step also called the corrector step, checks if equilibrium is fulfilled,
meaning that the sum of the loads is zero. However, this is almost impossible to
achieve computationally through the iteration process . To solve this problem RFEM
has a built-in break-off limit function. The break off limit function 2.19 interrupts the
iteration process when sufficient accuracy has been achieved.

R =
∣∣t+t∆fe −t+t∆ fi

∣∣ < ϵ (2.19)

• t, Time step

• ϵ, epsilon break-off limit

• R, Break-off limit
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• fe, External load.

• fi, Internal force.

In figure 2.12, the epsilon break-off limit, ε is set to RFEM’s default setting which
gives a precision of 0.05% [15]. Figure 2.12 shows how the Newton-Raphson method
iterates until a sufficient value is achieved. Equation 2.20 shows the function.

t+t∆R−t+t∆ F0 (2.20)

The break-off limit is not reached in the first iteration and in the second iteration (Red
line). The distance of the tangent stiffness in the third iteration (blue line) is small
enough for convergence to be achieved. During the iteration, the deformation ∆ui is
summed up.

Figure 2.12: First iteration process for Newton-Raphson [15].
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Figure 2.13: Sectional forces for surfaces [15].

2.6.2 Sectional forces

In the process of designing a structure, the derived section forces are of great impor-
tance and they are visualized in figure 2.13

There is a fundamental difference between the internal forces acting on a surface and
those acting on a member. While a member’s moment rotates along its relevant axis,
a surface moment operates in the direction of the relevant local surface axis. For
instance, the moment my rotates about the surface x-axis, and similarly, the moment
mx rotates around the y-axis, as depicted in the figure above. Internal forces and
moments for a downward z-axis as illustrated in figure 2.13 are determined using the
following formulas, which are applied within RFEM. [15]

mx =

∫ d
2

− d
2

σxzdz (2.21)

my =

∫ d
2

− d
2

σyzdz (2.22)

mxy =

∫ d
2

− d
2

τxyzdz (2.23)

Vxz =

∫ d
2

− d
2

τxzdz (2.24)

Vyz =

∫ d
2

− d
2

τyzdz (2.25)
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In this thesis the torsional moment Mxy = Myx will not be regarded as much as the
main axis moments Mx and My, since the forces along the main axis of the abutment
surface will be the focus of evaluation.

2.6.3 Contact stress

For foundation design, the contact stresses on the foundations are of utmost impor-
tance for an engineer. To compare the earth pressure from the different models the
contact stresses from the abutment wall surfaces are vital. This is done in RFEM
where the contact stress σz, is defined in equation 2.26. [15]

σz =
Fz

A
(2.26)

Fz is the contact force in local z-axis in the finite element node.

A is the finite element nodes application area.

For some models the maximum contact stresses are limited according to equation 2.27.

σz ≤ ∆σH (2.27)

Deriving the maximum contact stresses ∆σH , for the models that implement passive
earth pressure springs is mentioned previously in chapter 2.2.1.
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Figure 2.14: Illustration of the post-deformation axis not being perpendicular to the
undeformed state.

2.6.4 Mesh

The model will consist of planar shell elements based on Reissner-Mindlin plate theory
[15]. The theory is applied in cases involving thick plates, incorporating shear defor-
mation and inertia, and it does not necessitate the post-deformation axial axes to be
perpendicular to the undeformed cross-section as shown in figure 2.14 [22].

Each element consists of four nodes with six degrees of freedom that facilitates dis-
placement and rotation of x,y and z-direction as seen in figure 2.15.

These four node linear elements opposed to eight node quadratic elements reduce
computational efforts while providing accurate results and allow wall elements to be
directly coupled to beam elements. However it is not recommended to implement
point-by-point torsional stresses into the rotational degree of freedom since this spe-
cific degree of freedom is very responsive in shell elements [15]. In classical plate
theory (Euler-Bernoulli) the strains γxz and γyz are zero, however as stated before the
Reissner-Mindlin theory allows shear deformation meaning γxz = γyz �= 0.

Figure 2.15: Element consisting of four nodes and a total of 24 degrees of freedom [15].
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3 Method

3.1 Definition of models

3.1.1 Geometry

Various geometries were analyzed in the modelling, but some constraints have been
set to the geometry to allow ease of comparison. All models consisted of a foundation
connected to a framework of a bridge deck and abutment walls. Some examples of
studied models are shown below in figure 3.1, ranging from large spans to smaller
width and varying foundation design.

The various parameters that were studied was the height of the bridge, span length,
width, abutment wall thickness and foundation size. The parameters affect the bridge
in various ways described in the theory behind soil mechanics (chapter 2.2) and loads
applied on a portal frame bridge. The width, height and foundation size of the bridge
affects the spring stiffness according to the 2-1 method of stress distribution in the soil.
The span length affects the load magnitude in accordance to the Eurocode derived in
chapter 2.5 Loads.

The wingwalls were included in the models but were not of varying design. They are of
a square design, set to protrude three meters at a 45-degree angle from the abutment
walls in every model and equal in height to the abutment walls. The foundation,
bridge deck and abutment walls were set to equal width in every design. When the
models were created in RFEM the structure was created as one part meaning that the
concrete surfaces are tied together creating moment stiff corners between the various
structural parts, since uncracked concrete was assumed.

Figure 3.1: Illustrations of various designs.
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Figure 3.2: The soil condition around the bridge.

3.1.2 Foundation design

A foundation analysis was conducted which analysed the impact various soils had on
the bridge designs by changing the elastic modulus of the soil E1 and E2 as seen in
figure 3.2, these designs are presented in chapter 3.3.2. Once the analysis of various
soils was completed, a standard was chosen to be used throughout the parametric
study. Below the foundation slab there were two meters of densely compacted gravel
with a high elastic modulus of E2=100 MPa. The soil by the abutment walls was
compacted backfill with an elastic modulus of E1=50 MPa derived from Appendix
A.1, Table A.1. These values impacted the stiffness of the springs that were applied to
the surfaces for the Winkler and Pasternak model. However, since the elasticity was
constant only the dimensions of the surfaces in contact with the soil will change the
applied spring stiffness.

3.1.3 Model verification

In this chapter the models in RFEM were verified to ensure reasonable structural
behavior.

The self-weights of the concrete structure are implemented using RFEM modules,
choosing European standard with a concrete quality of C40/50. The Models were
verified by checking the maximum deflection of the mid span for all the base models
for Bridge 1-1 due to the structures self-weight with comparison to hand calculations
of two different elementary cases. The span in the middle should act between two
cases, a simply supported beam and a beam that is fixed in both ends. With more
similarities to a beam with fixed ends, see Appendix A.5.1.

The moment distribution of the bridge deck was checked to see if the moment distri-
bution is similar to the elementary cases shown in A.5.1. The result from Appendix
A.5.1 yielded to the conclusion that the model tested had reasonable structural be-
haviour. It is from here on out assumed that all the models tested in RFEM will have
reasonable structural behaviour, due to the geometrical similarities.
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Figure 3.3: An example of how the STA method is applied.

3.1.4 Swedish Transport Authority model

When modelling in accordance to STA, the foundation slabs were set to have zero
displacements in all axial directions. The braking loads were implemented according to
chapter 2.5. The earth pressure when implemented, was placed as a surface distributed
triangular load on the abutment wall, acting in horizontal direction. The wing walls
were not included and were not subjected to any earth pressure in the STA model,
however still contributed to the overall stiffness of the structure. The RFEM model is
depicted in figure 3.3.

The triangular earth pressure was calculated as mentioned in chapter 2.3. This was
an iterative process, where firstly the model was loaded with no earth pressure and
braking loads. The deflection at the top of the abutment wall was then extracted and
implemented in STA’s equation 3.1 to calculate the favourable earth pressure. The
calculated earth pressure was then applied in the model to receive a new deflection at
the top of the abutment wall. Once again, the new deflection received was implemented
in equation 3.1 and a new earth pressure was calculated and implemented in the model
again. This process was repeated until equilibrium of the relative error was achieved
in ui, as depicted in figure 3.4. See calculations in Appendix A.6.

Relative error (ui) =
ui − ui+1

ui

(3.1)
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Figure 3.4: Shows an example diagram for the number of iterations it can take for a
model to reach full load equilibrium.
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Figure 3.5: Illustration of the modified 2-1 method for abutment wall.

3.1.5 Winkler model in RFEM

The Winkler method was utilized, incorporating non-linear spring elements to model
the soil structure. These spring elements were positioned perpendicular to the bridge
model surface, acting as axial supports. In determining the stiffness of these springs
kw, a uniform vertical load of magnitude 1 was assumed on the slab, as described in
chapter 2.2.2. The process was repeated for the vertical spring bed on the abutment
walls and wingwalls, with modifications to accommodate the soil’s limited ability to
distribute loads beyond the carriageway surface was employed, based on equation 2.5
in chapter 2.2.2. In this modified method, the depth z is plotted on the horizontal
axis, and the increased stress ∆σz correlates with a 2-1 ratio with the depth and area
on one side, without stress distribution on the other side seen in figure 3.5. Further
calculations are provided in the Appendix A.4.

The entire vertical structure, including the wing walls, contributes to the earth pressure
due to springs being applied to the surface. Additionally, braking loads were applied
as described in Chapter 2.5 on the bridge deck surface and seen in figure 3.6 below.

The model was restricted in vertical and horizontal y-axis movement from the bound-
ary condition set to the abutment wall line in the slab, seen in figure 3.6. Furthermore,
there are springs placed on the entire surface of the slab and since the vertical bound-
ary condition is only set on a line it allowed for rotation in the slab, hence the need
for non-linear springs to simulate a slab placed on soil.

Additionally, springs were added to the line of the slab (green line in figure 3.6) that
would simulate the thickness of the slab going into the soil as well as the friction on
the bottom of the slab.
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Figure 3.6: Example of how the Winkler model is applied on the designs.

3.1.6 Pasternak model in RFEM

The springs, boundary conditions and loads in the Pasternak model were implemented
the same way as for the Winkler model as detailed in chapter 3.1.5 with non-linear
surface spring supports, in accordance with Dlubal. The spring stiffnesses kp in the
Pasternak model were set equal to the stiffness kw from the Winkler model. Addi-
tionally, the shear stiffness of the springs in the Pasternak models were equated to the
spring stiffness kp. The braking loads for the models were implemented as described
in chapter 3.1.5. [15]
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3.1.7 Brigade method

For the Brigade model, the slab was removed from the model and replaced with equiv-
alent springs seen in figure 3.7 which allowed movement in vertical direction unlike
the other models. Movement was restricted in y-direction as this movement was of no
interest comparably with the other models. The increased earth pressure is modelled
using both Winkler and Pasternak spring beds for comparable results to the previously
mentioned models.

Steps for deriving the stiffness of the springs that replace the slab was presented in
chapter 2.4 and calculated in Appendix A.7.

Figure 3.7: Example of how the Brigade model is applied on the designs.

31



Figure 3.8: STA model with restricted movement on the side not experiencing any earth
pressure and only restricted vertically on the side where the earth pressure is
active.

3.1.8 Translational analysis of STA model

For the Translational analysis of the STA model the foundation slab on the side of the
bridge not experiencing increased earth pressure is restricted in all directions while
the other side of the bridge facing the soil is only restricted vertically, as can be seen
below in figure 3.8.

Since the setup above still allowed for one side to hinder translation of the foundation
slab through the stiffness of the structure, an additional design was implemented, with
an arbitrary stiff rotational spring joint located at the base of the restricted founda-
tion slab illustrated by the red marker in figure 3.9. The additional design acted as an
intermediate between the standard design and only relying on increased earth pres-
sure according to the Swedish Transport Authority regulations to stop translational
horizontal movement of the abutment wall.

Figure 3.9: STA model with an additionally added arbitrary stiff rotational spring joint
(red line ).
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3.2 Finite element model

In this chapter, the finite element modelling configurations utilized in RFEM are
described. The analysis conducted was geometrically linear, indicating a first-order
analysis where equilibrium was assessed based on the undeformed structural system.
Direct equation system was employed to eliminate the need for iterations; however, the
presence of nonlinearities required iterative processes. To ensure clarity, the nonlin-
ear equation system was solved directly through iterative calculations where Newton
Raphson was employed, as detailed in Chapter 2.6.1. As discussed in Chapter 2.6.4,
the Reissner-Mindlin plate theory was adopted for the shell elements used in all models.

3.2.1 Mesh and mesh convergence

To ensure accuracy, stability and efficiency of the computed models, a thorough mesh
convergence analysis is imperative. Having accuracy and stability in a model denotes
that the model converges to the same result as a very fine mesh with many nodal ele-
ments. The challenge with increased nodal elements is the decrease of model efficiency.
The objective with mesh convergence is to obtain a mesh that is fine enough to ensure
stability and accuracy of the model whilst ensuring manageable computational efforts.

Figure 3.10: Meshed RFEM model with the shell elements rendered onto the surfaces of
the structure.
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The mesh convergence analysis was done by testing the model with different mesh
sizes and plotting the relative error of the deflection, u and the moment, mx, my

against the different mesh sizes. The deflection and moments are taken from the same
point as shown in figure 3.12. The relative error is calculated using equation 3.2 for
deflection and equation (3.3-3.4) for moments, where the maximum deflection, umax

and the maximum moment, is obtained from the finest mesh conducted.

Relative error u =
umax − u

umax

(3.2)

Relative error mx =
mx,max −mx

mx,max

(3.3)

Relative error my =
my,max −my

my,max

(3.4)

The mesh convergence was performed on the smallest design (see appendix 4.1), with
fixed supports at the bottom slab and a braking load applied in accordance with
chapter 2.5 loads. For simplicity and ease of comparing results, the mesh size will be
set to 0.1 meters throughout the parametric study. Which was equivalent to 13300
number of elements for the smallest design and corresponded to a relative error of
roughly 0.5% for the analysed parameters.

Figure 3.11: Resulting mesh convergence analysis for moments mx,my and horizontal
deflection u.
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Figure 3.12: Red dot indicated node where values where taken during the mesh
convergence study.
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Figure 3.13: Shows the failure simulation model.

3.2.2 Passive earth pressure

Since the passive earth pressure is not to be exceeded it was derived using reason-
able values between the mean value and the highest value presented in table A.2 in
Appendix A.2. This passive earth pressure is kept constant, using a soil unit weight
of 20 kN/m3, a passive earth pressure coefficient of 5.0 and a resting earth pressure
coefficient of 0.3. Calculations are presented in Appendix A.2.

This was only applied to a few Bridge designs through non linear springs that deacti-
vate once the contact stresses exceed the passive earth pressure presented in appendix
A.3. The setup is presented in figure 3.13 which illustrates the various surface elements
with a height of 0.1 meters down to a depth of 1 meter as seen in figure 3.13. Each
surface has springs with an individual yield stress linked to the passive earth pressure.

3.3 Parametric study

As mentioned in chapter 3.1.1, the parameters were studied by changing the size of
one parameter whilst keeping the others constant, this is shown in chapter 3.3.2. The
results were taken from the result-section function in RFEM as depicted in figure
3.14. For the result-sections Horizontal top and Horizontal bottom the deflection uz

according to the axis seen in figure 3.15.
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Figure 3.14: The result sections placed on the abutment wall.

For the result section line Vertical mid also called result-section 2, sectional forces my,
and vy were extracted, as well as the contact forces along the height of the abutment
wall according to the local axis seen in figure 3.15. From the result section line Hor-
izontal mid, also called result-section 1 sectional forces mx, vx and vy were derived
from the local axis.

Figure 3.15: Depiction of the local axis for the abutment wall surface. Red colour
represents the x-axis, green colour represents the y-axis and blue colour
represents the z-axis.
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In total eight different bridge types were analysed with three designs for each type
of bridge. One should note that some of the different bridge types does not reflect
realistic dimensions for a real-life bridge. Certain dimensions might be too large or
too small to realistically be constructed as a portal-frame bridge. However, this was
done to obtain a broader understanding of how a parameter influenced the section
forces and displacements of the different bridge types. For all the models studied, the
coordinate system seen in figure 3.15 was used.

Worth noting is that the moments mx, my were oriented according to figure 2.13 in
chapter 2.6.2 since the model consisted of surfaces.

3.3.1 Load entities

The bridge was analysed for characteristic load combination and only considered hor-
izontal loads from braking and applied according to chapter 2.5. The values for the
loads were determined in Appendix A.3.

3.3.2 Bridge Design

For the various bridge designs the following parameters presented in figure 3.16 below
are varied, the thickness t of the abutment wall was also varied in one of the bridge
designs. For Bridge design 1-3, 4-3 and 7-1 presented in tables below the soil failure
criteria were analysed.

Figure 3.16, depicts the variable parameters and table 3.1-3.8 presents the different
parameters used for the different models.

Figure 3.16: Location of the parameters varied.
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Table 3.1: Bridge 1 parameters, blue column indicates variable of interest.

Bridge 1
Type Span [m] Width [m] Height [m] W1 [m] W2 [m]

Bridge 1-1 5 5 4 1 1
Bridge 1-3 5 9 4 1 1
Bridge 1-5 5 14 4 1 1

Table 3.2: Bridge 2 parameters, blue coloumn indicates variable of interest.

Bridge 2
Type Span [m] Width [m] Height W1 [m] W2 [m]

Bridge 2-1 5 7 6 1 2
Bridge 2-3 15 7 6 1 2
Bridge 2-5 25 7 6 1 2

Table 3.3: Bridge 2.2 parameters, blue coloumn indicates variable of interest.

Bridge 2.2
Type Span [m] Width [m] Height W1 [m] W2 [m]

Bridge 2-2-1 5 7 4 1 2
Bridge 2-2-3 15 7 4 1 2
Bridge 2-2-5 25 7 4 1 2

Table 3.4: Bridge 3 parameters, blue coloumn indicates variable of interest.

Bridge 3
Type Span [m] Width [m] Height W1 [m] W2 [m]

Bridge 3-1 8 7 5 1 1
Bridge 3-3 8 7 5 1 2.5
Bridge 3-5 8 7 5 0 4
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Table 3.5: Bridge 4 parameters, blue coloumn indicates variable of interest.

Bridge 4
Type Span [m] Width [m] Height [m] W1 [m] W2 [m]

Bridge 4-1 5 7 4 1 1
Bridge 4-3 5 7 6 1 1
Bridge 4-5 5 7 8 1 1

Table 3.6: Bridge 5 parameters, blue coloumn indicates variable of interest.

Bridge 5
Type Span[m] Width [m] Height W1 [m] W2 [m] Abutment, t [m]

Bridge 5-1 5 5 4 1 1 0.5
Bridge 5-3 5 5 4 1 1 0.65
Bridge 5-5 5 5 4 1 1 0.8

Table 3.7: Bridge 6 parameters, blue coloumn indicates variable of interest.

Bridge 6
Type Span [m] Width [m] Height [m] W1 W2 [m] E2 [MPa]

Bridge 6-1 5 5 4 1 1 50
Bridge 6-3 5 5 4 1 1 100
Bridge 6-5 5 5 4 1 1 150

Table 3.8: Bridge 7 parameters, blue coloumn indicates variable of interest.

Bridge 7
Type Span [m] Width [m] Height [m] W1 W2 [m] E1 [MPa]

Bridge 7-1 5 5 4 1 1 20
Bridge 7-3 5 5 4 1 1 50
Bridge 7-5 5 5 4 1 1 80
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4 Results

After concluding the parametric study of the bridges, the results were plotted, and the
comparative analysis of the intricate interplay between the manipulated parameters
and their resultant effects on deformation and sectional forces was carried out. By
varying key geometric variables, and the loading conditions according to the Eurocode,
the following results aimed to discern patterns, similarities, and discrepancies across
the bridge designs. The iteration process for the STA models and the results from the
deformations of the STA translational models are also presented in this chapter.

Ultimately, this chapter contributes to the broader understanding of bridge engineer-
ing principles and provides valuable insights for the discussion. Key plots from the
deformation in the slab and contact stresses between the soil and abutment wall have
been presented in this result section, however all plots of section forces from the bridge
designs are shown in Appendix 2.6.2.

The initial results presented in chapter 4.1 to chapter 4.8, are for Bridge 1 through 7
and do not account for soil plasticity, while chapter 4.9 will introduce the results from
bridge design 1-3, 4-3 and 7-1 with springs incorporated to account for soil plasticity.

4.1 Bridge design 1, varying width

For Bridge design 1 the width of the bridge varied while the other geometric variables
where kept constant. This was a deliberate choice since altering the width does not
affect the magnitude of the braking loads. Instead, this only accommodates more no-
tional lanes according to the Eurocode. However, adding more lanes does not linearly
increase the magnitude of the overall load due to the adjustment factor reducing the
loads of the additional lane. Increase of width will also allow for more soil structure
interaction between the abutment wall and soil.

In appendix A.9.1, The sectional forces and the top deformation can be found for
Bridge design 1. The horizontal deformations in the slab are presented in figures 4.1-
4.3. The results of Bridge 1 indicate that varying the width of the abutment wall does
not affect the overall maximum deformations in the horizontal axis. It does change
the appearance of the plot with a peak deformation that strays from the centre of
the structure towards the edge as the width increases. The deformation between the
models varies, the brigade methods converge with each other while overall the methods
have similar magnitude of distribution between them.
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Figure 4.1: Deformations in the bottom slab for Bridge 1-1, 5 meters width.

Figure 4.2: Deformations in the bottom slab for Bridge 1-3, 9 meters width.

Figure 4.3: Deformations in the bottom slab for Bridge 1-5, 14 meters width.
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The contact stresses on the abutment wall due to the earth pressure are presented in
figures 4.4-4.6. All the spring bed modules give approximately the same distribution
curve with a maximum value by the surface but behave like converging pairs. The
Winkler and Pasternak model have a greater slope in all different cases than the
Brigade models. The STA model has maximum contact stress in the middle of the
abutment wall and much lower magnitude overall compared to the rest.

Figure 4.4: Contact stress on the abutment wall, Bridge 1-1, 4 meters height.

Figure 4.5: Contact stress on the abutment wall, Bridge 1-3, 4 meters height.

Figure 4.6: Contact stress on the abutment wall, Bridge 1-5, 4 meters height.
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4.1.1 Sectional forces and deformations for Bridge 1, varying
width

When studying the deformation at the top of the abutment wall, as seen in Appendix
??, all the models show negative deformations. The STA models give the lowest de-
formation values, while the Brigade models give the highest. As the width increases,
the deformations become less consistent and exhibit more variation due to the imple-
mentation of additional notional lanes resulting from the increased width.

The sectional forces for Bridge 1 are presented in Appendix A.9.1. Horizontal result
section in the middle, show that the symmetry of the moment Mx around the y-axis
creates large negative moment in the edges of the structure. The Brigade methods,
unlike the regular Winkler and Pasternak methods, have positive moments in the
centre of the structure when the width of the structure is large. Worth noting is that
STA method has positive moments in the mid-horizontal result section throughout the
design.

The shape of the deformation curves at the top (Appendix figures A.33-A.35) and
bottom of the abutment wall for Bridges 1-3 and 1-5 does not resemble those of other
bridge designs. This difference is due to the applied braking load (see Chapter 2.5,
Loads) on the bridge deck, where more notional lanes are added as the width increases.
According to SS-EN 1991-2, 4.4.1, the braking load is not equivalent for all lanes,
resulting in slightly higher deformation for all models where notional lane 1 is located,
with decreasing deformations for lanes 2 and 3. In some parts of the bridge deck in
bridge model 1-5, there are no notional lanes (see Appendix A.8.1 Bridge 1), leading
to the observed deviation in deformation for Bridges 1-3 and 1-5.

Result-section 2 presented in Appendix A.9.1 indicate that the largest moments My

around the x-axis diminishes with an increase in width. All the methods have the
designing moments in the same location, largest negative moment at the surface and
largest positive moment by the foundation slab. As the width increases the moment
converges to zero for Pasternak and Winkler method. For the brigade methods they
induce smaller negative moments compared to the other bed module methods, however
the positive moments by the foundation slab are larger.

For the shear forces shown in appendix A.9.1 the magnitude of the shear force exhibited
in the STI method is constant from the surface to the base of the structure. Spring
methods show similar traits to each other, having maximum shear force by the surface
that converge to zero at the base of the slab as the width of the abutment wall increases.
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4.2 Bridge design 2, varying span

For Bridge Design 2, the focus turned towards varying the span while keeping the other
geometric parameters constant. This adjustment isolated the influence of span length
on deformations and sectional forces on the abutment wall. Longer spans increase the
load linearly due to the braking loads being a function of the span. Keeping the width
and height of the abutment wall constant allows for the soil structure interaction to
be examined with varying load magnitudes.

In appendix A.9.2, The sectional forces and the deformation at the surface of the
abutment wall can be found for Bridge design 2.

The deformations from the bridge design are presented below which indicate that
inwards horizontal movement occurs and the magnitude of this phenomena increases
with the span, The distribution of the deformation is similar between the methods.
Slight flattening occurs of the deformation curve when the span increases, which could
be indicative of the load moving further away and facilitating stress distribution in
the bridge deck prior to the load transfer to the abutment wall.

Figure 4.7: Deformations in the bottom slab for Bridge 2-1, span of 5 meters.

Figure 4.8: Deformations in the bottom slab for Bridge 2-3, span of 15 meters.
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Figure 4.9: Deformations in the bottom slab for Bridge 2-5, span of 25 meters.

The contact stress for all spring models behave similarly with a maximum value at
the surface and a minimum value at the base of the structure. With an increase in
span the brigade methods converge with the regular Winkler and Pasternak methods.
The STA model indicates little change of contact stress between the various designs,
showing completely different behavior compared to the spring methods, until a depth
of 3 meters has been reached.

Figure 4.10: Contact stress on the abutment wall, Bridge 2-1, span of 5 meters.
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Figure 4.11: Contact stress on the abutment wall, Bridge 2-3, span of 15 meters.

Figure 4.12: Contact stress on the abutment wall, Bridge 2-5, span of 25 meters.

4.2.1 Sectional forces and deformations for Bridge 2, varying
span

The sectional forces for Bridge 2, are presented in Appendix A.9.2.

When studying the deformations at the surface of the abutment wall for all the Bridge
2 models seen in A.9.2. The result from Bridge 2 showed that the STA model was
particularly sensitive to increased span length for the deformations at the top of the
abutment wall, meaning larger deformations compared to the spring models. This is
due to the nature of the STA model having no contact stresses at the surface. The
other models show approximately the same deformation despite the increase of span
length.

The Moment in horizontal section 1 in Appendix A.9.2 show that all the models
have a similar shape of the moment distribution, but the STA model always gives a
positive moment around y-axis. The other models show similar shape of the moments
compared to the STA model but shifted in the negative direction. Creating negative
rotation at the edge of the abutment wall and positive in the center of the wall. The
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increased span length increases the maximum positive moment for all models but have
an immense impact on the STA model which shows a much larger positive moment
compared to the rest.

The shear forces for horizontal section 1 are presented in A.9.2. The shear force in
x-directions resulted in Winkler and Pasternak correlating with the STA models while
the brigade methods show much larger sectional shear forces. However, as the span
length increases the STA model gradually aligns with the shape of the brigade model.
For the shear force in y-direction, the models have similar distribution except for STA
which gives larger shear force distribution compared to the rest.

Moment My around the x-axis in vertical section 2 in A.9.2, shows that the STA
model does not follow the same distribution as the rest of the models. The STA model
gives an almost linear distribution with higher maximum values compared to the other
models. Moreover, the brigade models have similar distribution with each other, same
goes for the Winkler and Pasternak models. All the spring models have approximately
the same negative moment but the Brigade models give a higher positive moment at
the bottom of the abutment wall compared to the Pasternak and Winkler models.

The shear force Vy in vertical section 2 are presented A.9.2. The spring models have
similar distribution with largest shear forces at the top of the abutment wall, and
slopes down to approximate zero at the bottom. The brigade models give slightly
higher values than the Winkler and Pasternak model at the bottom. The STA models
distribution stands out as an outlier, having almost constant force throughout the
height of the wall, with a small drop at the end. Compared to the spring models, STA
gives much higher shear force values compared to the spring models, except for the
initial meter down from the surface.
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4.3 Bridge design 2-2, varying span

Bridge 2.2 is a subcategory of Bridge 2, with similar focus towards varying the span,
however the height of the abutment wall is reduced for more in depth analysis of the
behaviour of the bridge.

The deformation from Bridge 2.2 are presented below which indicate that inwards hor-
izontal movement occurs in the Winkler and Pasternak model as the span increases
from the first design that shows outwards horizontal movement for all methods. The
phenomena increases with the span, showing a shift towards positive inwards move-
ment as the span increases. This is due to the bridge deck becoming slimmer with
increased span, allowing rotation to occur due to the earth pressure. This indicates
that not only does the stiffness of the abutment wall affect the deformations, but also
the stiffness of the bridge deck. In practical scenarios, cracking at the joint between
the abutment wall and the bridge deck can occur, which would compromise the rota-
tional stiffness of the joint – leading to different movement. The distribution of the
deformation is similar between the methods. In appendix A.9.3, The sectional forces
and the top deformation can be found for Bridge design 2-2.

When the direction of the deformation flips from negative to positive the Winkler
method is affected the most which can be seen in figure 4.13 where it has lower defor-
mation than Pasternak, compared to figure 4.14 where the Winkler model has larger
positive deformation compared to Pasternak. figure 4.15 of Bridge design 2-2-5 shows
an amplified version of Bridge design 2-2-3 due to the increase in span.

Figure 4.13: Deformations in the bottom slab for Bridge 2-2-1, span of 5 meters.
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Figure 4.14: Deformations in the bottom slab for Bridge 2-2-3, span of 15 meters.

Figure 4.15: Deformations in the bottom slab for Bridge 2-2-5, span of 25 meters.

The contact stress presented in figure 4.16-4.18 for Bridge 2-2 shows that the STA
follows a triangular shape with an small increase in its peak middle value when the
span length increases. The Winkler and Pasternak models have a similar distribution
with large initial contact stresses at the surface of the structure that linearly decrease
and converges with zero at the base of the foundation slab. For the Brigade models
exhibit the largest contact stresses, they behave similarly to the Winkler and Pasternak
models with linear drop-off with an increase in depth. However, the Brigade models
give higher contact stress at the bottom of the abutment wall compared to the other
models.
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Figure 4.16: Contact stress on the abutment wall, Bridge 2-2-1, height of 4 meters and
span of 5 meters.

Figure 4.17: Contact stress on the abutment wall, Bridge 2-2-3, height of 4 meters and
span of 15 meters.

Figure 4.18: Contact stress on the abutment wall, Bridge 2-2-5, height of 4 meters and
span of 25 meters.
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4.3.1 Sectional forces and deformations for Bridge 2-2, with
varying span

The sectional forces for Bridge 2-2, are presented in Appendix A.9.3.

The deformation in the top of the abutment wall increases when the span length
increases, with the STA model showing the lowest deformation. The Winkler models
deformation increases the most giving it the highest deformation of them all when
the span has the largest length. The rest of the models have approximately the same
distribution throughout Bridge 2-2.

When studying the moment, Mx distribution of the horizontal section 1 around the
y-axis, all the models have similar distribution shape (arch shape) except for the STA.
The STA model only gives positive oriented moments whilst the other models give
negative oriented moments at the edges but positive moments in the middle. The
Winkler model has negative Mx moments throughout the design, Pasternak is similar
but has slight shifted arch shape causing positive moments in bridge design 2.2.5 for
the center of the wall.

The shear forces for horizontal section 1, are presented in Appendix A.9.3. The shear
forces in x-direction for Bridge 2-2-1 resulted in Winkler and Pasternak showing mir-
rored forces compared to Brigade and STA model. However, with an increase of the
span the models converge and show the same force direction but with varying mag-
nitude. Brigade showing consistently larger forces throughout the design. For shear
forces in the y-direction the methods have converging pairs. The STA model shows
largest forces with a steep slope in the edges of the abutment wall towards the wing-
walls, Winkler and Pasternak share the behaviour but with a lower amplitude.

The moments, My around the x-axis for the vertical section 2 showed that the Brigade
models and Winkler/Pasternak models behave as converging pairs initially. However,
when the span length increases all the spring models converge to the same distribution.
The STA models remain linear throughout the design.

The shear force Vy in vertical section 2 shows that the spring models have similar
distribution (negative linear slope) which correlate when the span length increases.
The Brigade models showed the largest positive and negative shear forces throughout
the design. The STA model stands out as almost a constant shear force distribution
and gives overall much higher shear force values after one meter down from the top of
the abutment wall. All the models have very small changes to the shear force values
when the span length increases.
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4.4 Bridge design 3, varying the foundation slab

design

For Bridge Design 3 the foundation slabs were the primary focus, and which was
deliberately varied in size to compare two distinct bridge configurations conventional
portal frame bridge to a design with a closed cross section. This approach aimed to
demonstrate the influence the slab had on the sectional forces in the abutment wall.
Since a large slab would be stiffer in regard to translational deformations. Inherently
isolating the influence of structural stiffness of the foundation to the sectional forces.

In appendix A.9.4, The sectional forces and the top deformation can be found for
Bridge design 3.

The deformation for Bridge 3 is presented below in figures 4.19-4.21. The main focus
is between Bridge design 3-1 and 3-5. Bridge 3-5 has a fully closed cross section as
seen in Appendix A.29. The results from Bridge 3-5 indicates that rigid body motion
occurs since the rotation that appears to happen in the Winkler method for Bridge
3-1 and 3-3 that causes horizontal inwards motion does not appear in a closed cross
section. There is minimal change to the Brigade methods.

Figure 4.19: Deformations in the bottom slab for Bridge 3-1, W1 and W2 is 1 meters.
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Figure 4.20: Deformations in the bottom slab for Bridge 3-3, W1 is 1 meter and W2 is
2.5 meters.

Figure 4.21: Deformations in the bottom slab for Bridge 3-5, this design is the closed
cross section.
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When the Bridge varies from an open to a closed cross-section as in Bridge 3, the struc-
tural movement acts more as a rigid body motion. This can be seen for the Winkler
and Pasternak models at the deformation in the bottom pushing the entire structure
against the backfill soil (Bridge 3-5). When modelling with the Brigade models this
phenomenon does not occur as the slab was replaced with rotational stiffness springs.
As the same for the STA model because it does not allow for movement in the bottom
of the slab

For Bridge 3, the contact stresses in figure 4.22-4.24 from the different models have
similar distributions, except for the STA model. However, when the slab resembles
more a closed cross section the spring models begin to diverge from each other. Forming
converging pairs, the brigade models come together, as do the standard Winkler and
Pasternak models. Whilst the STA model maintains identical distribution for all
graphs.

Figure 4.22: Contact stress on the abutment wall Bridge 3-1, W1 and W2 is 1 meters.
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Figure 4.23: Contact stress on the abutment wall Bridge 3-3, W1 is 1 meter and W2 is
2.5 meters.

Figure 4.24: Contact stress on the abutment wall, Bridge 3-5, this design is the closed
cross section.

4.4.1 Sectional forces and deformations for Bridge 3, varying
the foundation slab design

The deformation at the top of the abutment wall in A.9.4, shows that all the models
have approximately the same deformation, however when the slab becomes a closed
cross section the Winkler and the Pasternak models show less deformation compared
to the STA and Brigade models.

The moment distribution forMx A.9.4 for horizontal section 1, show that all the spring
models have similar distributions. The spring models converge when the cross section
is closed. The STA model differs from the other models in a way that it only has
positive moments. Whilst the spring models have both positive moment in the middle
of the abutment wall and negative at the edges. When the cross section is closed the
maximum positive moment of the STA model has approximately the same value as
the maximum positive moment for the Winkler and Pasternak model.
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The shear force Vx A.9.4 for horizontal result section in the middle, resulted in all
the models having similar distributions. But the Brigade models always give a higher
maximum shear force at the edges of the abutment wall compared to the other mod-
els. However, in the middle of the abutment wall all the models give roughly the
same results. For the shear force Vy A.9.4 in horizontal middle result section, all the
models have similar load distribution, but the STA model consistently gives the high-
est positive shear force in the middle of the abutment wall whilst the negative shear
force at the edges are comparable to the Winkler and Pasternak models. The Brigade
models have larger positive shear force compared to Winkler and Pasternak, however
the Brigade models have almost only positive shear force throughout the distribution.
When the cross section is closed the Pasternak and Winkler models maximum positive
shear force Vy converge to the Brigade models.

Moment My in result-section 2 A.9.4, show that all the spring models have the same
curved distribution whilst the STA model has a more linear distribution. When the
cross section is closed the spring models converge to each other. The STA models
positive and negative moments are always greater than the spring models, not aligning
well when the cross-section is closed.

The shear force Vy in the result-section 2 A.9.4, shows all the spring models have a
similar distribution slope, however the Brigade models have a steeper slope when the
cross section becomes closed compared to Winkler and Pasternak. The STA models
show constant shear force regardless of depth giving much larger shear forces after 1
meter depth compared to other models. However, the maximum shear force is obtained
from the Brigade models close to the surface (less than 1 meter depth).
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4.5 Bridge design 4, varying height

In Bridge Design 4, the height of the structure was the variable and other parameters
were constant, this configuration allowed for more translation of contact forces due
to the increase in surface area of the abutment wall, moreover it also influences the
stiffness of the overall structure allowing for larger deformations. This step aimed to
isolate the heights impact on the structures behaviour.

In appendix A.9.5, The sectional forces and the top deformation can be found for
Bridge design 4.

The results for deformations in the bottom slab for bridge 4 indicates that the height
of the structure impacts the direction of the movement, which can be seen in figure
4.25-4.27. The Winkler method has the smaller deformation compared to Pasternak
on movement outwards, however when the height increases and the direction of the
movement changes the Winkler method is larger than Pasternak. The brigade models
deformation increase in the positive direction at the top and bottom of the abutment
wall when the height increases.

Figure 4.25: Deformations in the bottom slab for Bridge 4-1, with a height of 4 meters.

Figure 4.26: Deformations in the bottom slab for Bridge 4-3, with a height of 6 meters.
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Figure 4.27: Deformations in the bottom slab for Bridge 4-5, with a height of 8 meters.

The contact stress shown for Bridge 4, presented in figure 4.28-4.30 show poor cor-
relation between the spring methods and the STA model. The Spring models have
maximum contact force at the surface which steadily decrease with depth, while the
STA models have maximum contact force in the middle of the height of the abutment
wall. When the height increases the spring models converge with each other, and a
phenomena occurs near the slab where the contact force is zero for the spring models
before reaching the bottom of the slab.

Figure 4.28: Contact stress on the abutment wall, Bridge 4-1, with a height of 4 meters.
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Figure 4.29: Contact stress on the abutment wall, Bridge 4-3, with a height of 6 meters.

Figure 4.30: Contact stress on the abutment wall, Bridge 4-5, with a height of 8 meters.
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4.5.1 Sectional forces and deformations for Bridge 4, varying
height

The sectional forces for Bridge 4 are presented in appendix A.9.5. Horizontal result
section in the middle show that the moment Mx is affected by the height of the
abutment wall. STA shows positive maximum moments in the center of the abutment
wall throughout the design. While the other methods converge on each other showing
very similar results with maximum negative moments in the edges of the structure.

Shear forces Vx, Vy for the mid-horizontal result section indicate that the results from
the all the methods converge with increased height. The outlier being the STA method
for shear forces acting in the y-direction showing very large forces while other methods
are showing negligible forces.

the vertical result section show similar results to the horizontal result-section where
all the spring models converge with each other, and STA is an outlier showing much
larger forces. For instance, the moment My acting around the x-axis show that the
STA method is linear from the surface down to the slab and is not affected much by
the increase in height, while the spring methods converge with each other, and the
designing moment converges to zero by the slab as the height increases.

The shear force Vy in the vertical result section has similar traits to the moments.
Forces converge to zero in the slab as the height increases in all spring methods, while
STA deviates showing lower initial forces by the surface of the abutment wall but
consistently higher forces throughout the depth of the structure.
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4.6 Bridge design 5, varying the abutment wall

thickness

Bridge Design 5 analysed the influence of stiffness to the sectional forces by only
varying the thickness of the abutment wall while keeping all geometries constant, this
aimed to isolate the impact of the abutment walls stiffness.

In appendix A.9.6, The sectional forces and the top deformation can be found for
Bridge design 5.

The deformations for Bridge 5 presented below indicate that the Winkler, Pasternak
and STA models all have similar deformations, around zero. The variation of thick-
ness give approximately the same results for all three models, only showing a small
negative deformation increase for the Pasternak models. However, both Brigade mod-
els give explicitly negative deformations. Which increases with the abutment wall
thickness. The wall thickness indicate rigid body motion behaviour appears when the
abutment wall gets thicker, all methods exhibit outwards transnational deformations
in the stiffest design.

Figure 4.31: Deformations in the bottom slab for Bridge 5-1, with an abutment wall
thickness of 0.5 meters.

Figure 4.32: Deformations in the bottom slab for Bridge 5-3, with an abutment wall
thickness of 0.65 meters.
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Figure 4.33: Deformations in the bottom slab for Bridge 5-5, with an abutment wall
thickness of 0.8 meters.

Figure 4.34-4.36 illustrate the distribution of contact stress along the abutment wall.
All models exhibit roughly similar stress distribution patterns, except for the STA
model. As the thickness of the abutment wall increases, the spring models begin to
diverge from each other, forming converging pairs: the brigade models come together,
as do the standard Winkler and Pasternak models. However, the distribution in the
STA model remains almost unchanged, regardless of the wall thickness.

Figure 4.34: Contact stress on the abutment wall, Bridge 5-1 , with an abutment wall
thickness of 0.5 meters.
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Figure 4.35: Contact stress on the abutment wall, Bridge 5-3, with an abutment wall
thickness of 0.65 meters.

Figure 4.36: Contact stress on the abutment wall, Bridge 5-5, with an abutment wall
thickness of 0.8 meters.
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4.6.1 Sectional forces and deformations for Bridge 5, varying
the abutment wall thickness

The deformation in the top of the abutment wall, showed that with an increased thick-
ness of the abutment wall decreased the deformation for all the models. With the STA
models having the smallest deformation while the Brigade models have the highest de-
formation. The increased thickness of the abutment wall enhances its rigidity, thereby
minimising the contrast in deformation between its upper and lower sections. This
occurs because the bridge undergoes a greater degree of translational deformation, as
opposed to slimmer designs where deformation primarily affects the upper part.

Horizontal result section located in the middle A.9.6 show similar distribution of the
moment Mx around the y-axis between the designs. STA being an outlier with positive
moment while all the other spring methods show negative moments throughout the
design. The shear forces Vx in the horizontal result section indicate that the Winkler
and Pasternak method have initially negligible forces which increase in the edges of
the abutment wall when the thickness increases. Brigade and STA methods share
similar traits in shear forces for Vx, however they do not correlate for shear forces in
the y-direction as the thickness increases the divergence of the methods.

Results from the vertical result section indicate that the largest negative moment My

around the x-axis increase at the surface level for Pasternak and Winkler as the thick-
ness increases while the other methods remain constant throughout the design. But
the largest positive moment at the base increases for the brigade and STA methods.
Winkler and Pasternak exhibit linear behavior with maximum values at the surface of
the abutment wall that decreases with depth.

The shear forces Vy for the vertical result section indicate that the spring methods
have larger initial forces but subsequently lowers with the depth, but STA being an
outlier and showing consistent elevated forces in all depths of the abutment wall.
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4.7 Bridge design 6, varying the soil stiffness against

the foundation slab

Bridge 6 was a parameter study of the elastic modulus of the soil beneath the founda-
tion slab to see the impact it would have on the results, while all other parameters were
kept constant. The results yielded that the stiffness of the soil below the foundation
slab have little to no impact on the results throughout the bridge design. Hence the
maximum contact stress and maximum deformations in the foundation slab for Bridge
6 was plotted instead of individual presentations of the bridges seen in figure 4.37 and
figure 4.38.

Changing the elastic modulus of the foundation resulted in little change to the de-
formations and sectional forces in the abutment wall. This is a result of the way
the study has been conducted. The foundation soil characteristics do not impact the
study since vertical movement is either restricted completely as for the STA, Winkler
and Pasternak model, or reduced with stiff springs according to the brigade models.
Vertical forces are not included into the models, meaning that the only forces affecting
the foundation is a result of the structure rotating into the soil through the foundation
slab.

Figure 4.37: Maximum deformation in the bottom slab with varying elastic modulus for
Bridge 6.

Figure 4.38: Maximum contact stress on the abutment wall with varying elastic modulus
for Bridge 6.
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4.8 Bridge design 7, varying the soil stiffness against

the abutment wall

The elastic modulus for the backfill soil of the abutment wall was varied to see its
impact on the different bridge designs. This is motivated by its great influence of the
spring stiffness for the springs against the abutment wall and wing walls.

In appendix A.9.7, The sectional forces and the top deformation can be found for
Bridge design 7.

As seen in. figures 4.39-4.41, increasing the elastic modulus for the abutment wall
backfill has no effect on the STA models. However, for all the spring models it decreases
the deformation on the top of the abutment wall when the stiffness increases.

Figure 4.39: Deformations in the bottom slab for Bridge 7-1, Elastic modulus of 20 MPa
against the abutment wall.

Figure 4.40: Deformations in the bottom slab for Bridge 7-3, Elastic modulus of 50 MPa
against the abutment wall.
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Figure 4.41: Deformations in the bottom slab for Bridge 7-5, Elastic modulus of 80 MPa
against the abutment wall.

The contact stresses for Bride design 7 are presented in figure 4.42-4.44, the increase in
stiffness only effects the spring models. Leading to the contact stress on the abutment
wall getting larger when the stiffness increases and the result shows that the Winkler
and Pasternak models are more sensitive to this parameter change than the Brigade
models.

Figure 4.42: Contact stress on the abutment wall, Bridge 7-1, Elastic modulus of 20 MPa
against the abutment wall.

Figure 4.43: Contact stress on the abutment wall, Bridge 7-3, Elastic modulus of 50 MPa
against the abutment wall.
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Figure 4.44: Contact stress on the abutment wall, Bridge 7-5, Elastic modulus of 80 MPa
against the abutment wall.

Changing the elastic modulus of the soils for the abutment wall proved the results to
be sensitive to the change in the soils. As mentioned previously in chapter 4.7, this is
a result of the way the study has been conducted. The abutment wall soil holds great
importance and impact the sectional forces and deformations through the structure
which can be seen in the deformations from figure 4.39-4.41 and the sectional forces
presented in Appendix A.9.7.

Decreasing the elastic modulus for the abutment wall increases the sectional forces,
and shear forces which normally reduce drastically for spring models with depth are
kept high in correlation with the STA model. The increase in sectional forces indicate
the structure takes up more of the braking forces as expected.

4.8.1 Sectional forces and deformations for Bridge 7

The sectional forces of the STA model showed no effect when the stiffness was in-
creased.

For the deformation on the bottom of the abutment wall, an increase in soil stiffness
for the abutment wall, yielded to a decrease of the deformation for all the spring
models. The Brigade models showed to have higher deformation than the Winkler
and Pasternak models, throughout the stiffness variation.

The moment Mx for section 1 showed that an increase in soil stiffness , decreased the
maximum moment where the shear spring models have the highest maximum negative
moment compared to the non-shear spring models.

The shear forces for section 1, Vx and Vy, showed to have no correlation for the different
bridge models, however when the stiffness increased the maximum shear force Vy for
all the spring models decreased. For Vx the shear force in the middle of the abutment
wall showed to correlate more for the spring models with increased soil stiffness in the
abutment wall backfill.

The moment My for section 2, showed that a lower elasticity model for the backfill
made the spring model correlate more to the STAmodel, especially the Brigade models.
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However, when the elasticity model increased the Spring models planed of more leading
to the STA model showing the highest positive moment,My. But the Winkler and
Pasternak models always showed the highest negative moment value.

For section 2, the shear force Vy showed that the shear force increased when the stiffness
increased whit all the spring models having similar shear force distribution when the
elasticity modulus of the backfill is high, the Winkler and Pasternak models started
to correlate more with the Brigade models. The STA model deviate strongly from the
spring models.

70



4.9 Simulations of bridges with failure criteria

Since previous simulations do not account for plasticity in the soil, this chapter will
present results from the analysis of non linear springs that yield once the passive earth
pressure is exceeded. The analysis was conducted on three different Bridge designs,
Bridge 1-3, Bridge 4-3 and Bridge 7-1.

The bottom deformation is presented in figures 4.45-4.47. The deformation in the
bottom of the slab for all failure criteria Bridge designs showed no changes from
the initial springbed bridge design which did not account for the failure criteria, see
previous results for Bridge 1-3, varying the width (figure 4.2), Bridge 4-3, varying the
height (figure 4.26), and Bridge 7-1, varying the the elastic modulus of the soil against
the abutment wall (figure 4.39).

Figure 4.45: Deformations in the bottom slab for Failure simulations, Bridge 1-3.

Figure 4.46: Deformations in the bottom slab for Failure simulations, Bridge 4-3.
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Figure 4.47: Deformations in the bottom slab for Failure simulations, Bridge 7-1.

The contact stress on the abutment wall is presented in figures 4.48-4.50. The Failure
criteria models seems to only differ from the corresponding Bridge models, the first
0.5 meters of depth. Afterwards, the contact stresses from the Failure models return
to the same values as there corresponding Bridge models. This rapid convergence to
the corresponding models bridge 1-3 (figure 4.5), bridge 4-3 (figure 4.29), and bridge
7-1 (figure 4.42) is due to the passive earth pressure increasing quickly with depth.

Figure 4.48: Contact stress on the abutment wall, Failure simulations, Bridge 1-3, from
the width analysis.

Figure 4.49: Contact stress on the abutment wall, Failure simulations, Bridge 4-3, from
the height analysis.
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Figure 4.50: Contact stress on the abutment wall, Failure simulations, Bridge 7-1, from
the analysis varying the elastic modulus of the soil against the abutment wall

4.9.1 Sectional forces and deformations for failure criteria
models

Deformation in the top increases when failure criteria is considered as seen in Appendix
A.9.8 figure A.159 - A.161. This is due to the limitation of forces transferred to the
soil. seen in the previous corresponding models where the peak of the contact stress
is at the surface of the abutment wall. The increase is however, not substantial.

When comparing the sectional forces between initial corresponding models (see ap-
pendix A.9.1, A.9.5 and A.9.7) and the failure criteria models (A.9.8), the sectional
forces and deformations are nearly identical. Largest difference are the initial moments
and shear forces at the surface the abutment wall experiencing slightly elevated values
that do not instantly reduce with depth.
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4.10 Translational analysis of the STA model

A Translational movement analysis of the foundation slab was deemed necessary since
the STA method indicates negligible deformations in the top of the abutment wall
during analysis of bridges experiencing rigid body motion, suggesting that the support
conditions of the STA model skew results.

The results indicate that the STA model’s performance is greatly influenced by the
stiffness of the translational restriction. In this context, the modified version of the
model exhibits larger deformations than any method using springs, and the version
incorporating a spring-stiffened hinge significantly amplifies these deformations, effec-
tively doubling even the modified version.

Figure 4.51: Deformations on the bottom of the slab, STA translational analysis.

Figure 4.52: Deformations on the top of the abutment wall, STA translational analysis.
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4.11 Force equilibrium process for the STA method

Iterations done for Bridge 4 presented in figure 4.53 to figure 4.55 in accordance to
STA regulations. To see other bridge design iterations see Appendix A.6. The results
show that an average of 4 iterations of the simulations was required to reach a relative
error of 0.00%, with Bridge 4 being an outlier that had a subsequent increase of one
for each increase in bridge height for the designs. Indicating that lower stiffness of
the abutment wall leads to more iterations required to reach equilibrium of the STA
process.

Figure 4.53: Iteration processes for Bridge 4-1.

Figure 4.54: Iteration processes for Bridge 4-3.

Figure 4.55: Iteration processes for Bridge 4-5.
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5 Discussion

In this chapter the results from the parametric study will be discussed and evaluated,
aiming to interpret the outcome of the research.

Nonlinear springs that cut-off forces in tension were used to reflect and capture the
behaviour of the soil mechanics and resulted in greater computational times, since
it requires iterations. Even including non-linear springs the time it took to run the
simulation and get results cannot be compared to the time it takes to use the method
brought forth by the Swedish Transport Authority. The force equilibrium that is
calculated through manual iterations of simulations in the STA model is far slower

By including the plasticity of the soil the contact stresses at the surface of the abut-
ment wall affects and significantly limits the translation of forces into the soil at the
surface. However, the passive earth pressure increases rapidly, meaning it is confined
to the surface. Beyond a depth of approximately 0.5 meters, the forces are no longer
constrained by the soil’s failure criterion. As seen in the results from the three mod-
els analysed in the failure criteria simulations, the sectional forces and deformations
remain similar. This indicates that including the passive earth pressure springs does
not significantly increase the accuracy of the model. Moreover, implementing springs
that take the failure criterion into account is time consuming in RFEM. .

Modelling foundations with the Winkler method, often overshoots the deformations
since the load is only distributed through the stiffness of the structure which in turn
affects the accuracy of the model. However, the structure of a portal frame creates
a complex interplay between the methods of modelling which affect the outcome of
the deformations. Hence, it is often seen in the results shown in Appendix A.9 that
the deformations at the surface of the abutment wall reflect the expected behaviour
between the Winkler and Pasternak method, while the deformation in the bottom of
the slab indicates that the opposite is true if the foundation slab exhibits movement
in the same direction as the bridge deck. This is due to the propagation of loads in
the soil. Winkler gives large initial deformations at the surface which quickly decrease
with depth, while Pasternak has lower initial deformations at the surface due to the
loads being distributed more because of the shear capabilities of the spring bed. This
results in smaller deformations at the surface but larger deformations in the foundation
slab.

When the size of the abutment wall increases, the spring stiffness decreased in accor-
dance to the stress distribution theory applied to the spring models.The same happens
for the spring stiffness applied on the slab when the slab area increases as seen in ap-
pendix A.4 table A.5.1. This has been deemed to be somewhat reasonable. If the
spring stiffness did not decrease, the soil could have been too stiff leading to under-
estimations of the soil deformation in the RFEM models. It is challenging to see if
these stiffnesses are reasonable enough for real life soil behaviour without conducting
any soil deformation tests out in the field and adjust the data to the current models.
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However, as mentioned it is deemed that the spring stiffness behaviour is reasonable
to not exaggerate or undermine the soil deformations. According to the formulas used
for deriving the spring stiffness the elastic modulus of the soil changes the stiffness of
the springs linearly, meaning an increase of elasticity from 25 MPa to 50 MPa doubles
the spring stiffness.

The Pasternak models have shear mechanisms which allows the soil to translate forces
more accurately compared to the Winkler models. Worth noting is that full effect
of the shear translation is not able to take place for the Pasternak model since the
force is applied by the surface, not allowing for forces to translate over the top of the
abutment wall. This means that the Pasternak model is not as effective in distributing
the forces in this specific case compared to a traditional foundation model where the
slab is surrounded by soil. The result of this means that the sectional forces at the
surface from the Pasternak model will resemble the Winkler method and may be the
cause of the steep increase in contact stresses which has been deemed a software error.
The error exhibited by Pasternak methods across all shear coupled models, despite
variations in different variables is reasoned to be a modelling issue when using RFEM.
Because the contact stress curves for the shear models follow similar distributions as
the other spring models, it is deemed to be a singular error.

Deciding on a 2:1 stress distribution to determine spring stiffness lacks a direct physical
connection. It might be beneficial to conduct a study comparing different inclinations
to the chosen approach with a proven model to ascertain the optimal distribution.

In bridge designs with low abutment wall stiffness, the horizontal movement in the
foundation slab opposes the loading direction, meaning that it moves in the opposite
direction of the bridge deck. For example, in bridge design 4 the deformation in the top
of the abutment wall is constant throughout the design, however the deformation in the
foundation slab changes drastically. This is due to the behaviour of the soil structure
interaction, where the abutment wall lacks sufficient stiffness to remain in contact with
the soil as a rigid body throughout the depth of the structure and rotates inwards
causing movement away from the soil. Furthermore, the application of nonlinear
springs, which possess no stiffness in the positive direction, results in significant inward
deformations at the foundation slab.

The behaviour of bridges with heights exceeding four meters exhibited distinct defor-
mation patterns, notably in the direction of horizontal deformation in the foundation
slab. The analysis of Bridge 2-2, with an abutment wall height below four meters
and Bridge 2, with a height above 4 meters, allowed for comparisons to determine
the effect of span length variation on observed behaviours in low stiffness abutment
walls. Increasing the span length for bridges above four meters led to an increase in
inward movement, aligning with expectations. Interestingly however, increasing the
span length resulted in a reversal of deformation direction, mimicking the behaviour
of taller bridges. The expectation was that increasing the span length for bridges be-
low 4 meters would cause Translation to be the dominant deformation. However, the
phenomenon is attributed to the slimming of bridge deck when the span is increased,
reducing stiffness of the structure, and allowing for rotational movement of the bridge
deck to be transferred to the abutment wall through the moment stiff joint into the
foundation slab. These inwards movements of the slab can also be seen in bridge de-
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signs where the height increases, since the slender abutment wall facilitates the same
rotational movement as a long bridge deck does.

During the study of soil characteristics, the STA model results do not change at all due
to the fact it does not include the elastic modulus for the backfill soil as seen in chapter
2.3, only the unit weight of the soil. This is a simplified approach which impacts the
results and could potentially lead to an unconservative design if soft backfill material
is present.

When modelling with the Brigade methods it differs from the rest of the methods,
in the use of deriving the deformations in the foundation slab. The stiffness in the
plane of the slab is not mentioned and it seems as this is disregarded in the theory
behind the method, as seen in chapter 2.4. This lack of rotational stiffness leads to
rotation which would be greatly reduced with stiffness in the y-direction seen in figure
3.15. The result of this can be seen in all bridge designs, where the deformation in the
bottom slab is depicted as a convex shape for the Brigade method. Adding stiffness in
the y-direction would flatten this curve and it would resemble other spring methods
which include the slab due to the inherent stiffness it brings.

During simulations in which the abutment wall stiffness is considered low, the STA
results show substantial deformations at the top of the abutment compared to those in
spring bed models. Conversely, STA simulations with stiff abutment walls, which ex-
periences a higher degree of rigid body motion, exhibit smaller deformations at the top
of the abutment wall relative to the spring models. This occurs because the STA model
fails to accurately represent the bridge when it undergoes translational movements of
the structure. Since the movement of the foundation slab is completely restricted,
the model underestimates the deformations during translational events. This limita-
tion is evident in the results from the translational analysis, which indicate that the
model highly depends on the stiffness of the translational restrictions. The lack of
representation of translation stems from the assumption that there is no movement in
the bottom slab - an assumption that is difficult to justify in practical situations. As
demonstrated in other models, the foundation slab does move due to braking loads.

As mentioned, only the characteristics braking loads were applied on the bridge decks
for all the models, because only the behaviour of the sectional forces, deformations
and contact stresses were of relevance. Applying safety factors would not affect these
behaviours only scaling the magnitude of them. Therefore, when analysing the para-
metric study, the behaviour of the curves in the diagrams are of utmost importance.

When comparing the contact stresses of the abutment wall and how earth pressure
is calculated in different models, the STA models stand out. The calculated earth
pressure in the Spring models provides a distribution that aligns reasonably well with
soil mechanics theory and the load placement. By allowing movement of the bottom
slab, a more realistic behaviour of the bridge is obtained compared to an actual portal
frame bridge structure.

In contrast, the STA models exhibit a triangular distribution with maximum contact
stress at the middle of the abutment wall and zero stress at the top of the wall and
bottom of the wall, without any reduction in contact stresses due to soil depth. To
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argue that the STA model is more conservative would not be entirely accurate when
studying the different sectional forces in Appendix A.9. While the STA model does
not always yield the highest values, it often simplifies the distribution, resulting in the
linear distributions for the entire section, making it a conservative design approach.
However, a major downside to this approach is the potential hindrance of structural
optimization when attempting to conserve material to reduce the environmental foot-
print and material costs of a structure.

The lack of consideration to ground water has a huge impact on all the spring models
when calculating the stress distribution with the 2-1 method. It also affects the STA
models where the unit weight of the soil will change. It will for all methods lead to
a reduced earth pressure if the groundwater level is present at a depth between the
surface and z max. This is due to the buoyant force from the ground water. If the
ground water level is present on a depth that will affect the stress distribution, this
should be considered and calculated for when deriving the stress distribution in the
soil, to get the right settlements for the spring stiffness equations.

By using RFEM it has been easy to implement the various methods since the user
manual explains how to implement spring stiffnesses and Pasternak shear coefficients
and the user interface facilitates the use of springs on surfaces in a simple yet efficient
way. However, the exact way the calculations of the Pasternak hypothesis are not
presented in the manual and it might be optimal to study this further since the shear
coupling stiffness impacts the results. RFEM easily allowed for the geometry of the
bridge to be parameterized in the software which eased the analysis of the various
bridges.
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6 Conclusion

A conclusion that can be drawn from this thesis is that the reasoning behind the
Swedish Transport Authority method consists of simplifications when modelling the
physical behaviour of the bridge models. Specifically, the Swedish Transport Authority
assumes that the foundation slab experiences no movement, coupled with determining
the maximum earth pressure at the centre of the abutment wall through an iterative
force equilibrium process.

The spring models provide a more adequate earth pressure distribution which reflects
the physical behaviour of the structure, including movement at the bottom slab. This
is reflected in the sectional forces, with a reduction in moment and shear forces along
the depth of the structure. The STA models has very little decline in forces along the
depth compared to the spring models which indicates the Swedish Transport Author-
ity underestimates the soil structure interaction. The incorporation of shear springs
appears to only impact the deformations, but not having any significant effect on
the sectional forces. A more adequate earth pressure distribution as indicated by the
spring models, taking the soil plasticity into account, would be the following: steep
incline from 0 to maximum contact forces roughly 0.5 meters below the surface, then
gradually decreasing contact forces with depth until it reaches a minimum value by
the foundation slab (see figure 6.1).

No correlation was discovered between the variation of parameters and the sectional
forces. However, some noticeable trends in the behaviour of the bridge were observed
when varying the parameters. The performance of the spring bridge models was pri-
marily influenced by the folowing key parameters, the stiffness of the abutment wall,
the contact area between the soil backfill and the abutment wall. Additionally, the
stiffness of the backfill soil itself was also a critical factor in determining the overall
behaviour of the sectional forces.

All the models have different stages that may be somewhat time consuming, regarding
the computational time effort. The spring models need a calculation to derive the
correct stiffnesses. The STA model is time consuming due to its nature of being an
iterative process. Not accounting for the soil’s failure criteria does not significantly
reduce accuracy of corresponding models and could be used as a method to reduce the
computational efforts of the spring models.

Overall this master thesis aimed to initiate further discussions regarding the need for
updating the Swedish Transport Authority’s regulations concerning increased earth
pressure. The findings reveal discrepancies in the model’s representation and ability to
accurately illustrate the magnitude of earth pressure compared to alternative methods,
highlighting the necessity for reconsideration and refinement of current practices.
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Below are some key points from the parametric study.

• The stiffness of the abutment wall and bridge deck, both affects the structural
behaviour in regard to deformations, contact stresses and sectional forces.

• A closed cross-section of the bridge resulted in a rigid body motion of the struc-
ture.

• The elastic modulus variation had no significant impact on the soil under the
foundation, but varying it in the soil against the abutment wall, the stiffness in
all spring models were affected.

• Considering passive earth pressure failure, the deformations and sectional forces
were similar to the simplified models.

Figure 6.1: Schematic of the earth pressure distribution derived from spring models.
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7 Further studies

During the progression of this work, several important questions have emerged in the
subject area that could be interesting for further studies.

• Compare the results from the thesis with a soil continuum model.

• The impact of soil layers with different unit weights and elastic modulus.

• Compare the already existing spring models with soil testing to replicate realistic
soil conditions.

• Run the same tests but implement vertical forces such as self-weight and other
vertical loads that are present on a bridge deck and together with this add the
effect of thermal loading.

• Add different models of the wing walls to study its impact.

• The Stress distribution method could be further optimised by changing the in-
clination i =1/2, with real life soil testing.
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Appendix A

Appendix

A.1 STA material backfill values

Table A.1: characteristic values of elasticity modulus for backfill materials [23].

Material/Jordart Elasticitetsmodul [MPa]
Löst Lagrad Fast Lagrad

Färstärkningslagermaterial - 50
Makadamballast - 50
Underballast - 50
Krossad sprängsten - 50
Sorterad sprängsten - 50
Sprängsten - 50
Grovkornig mineraljord 10 30
Grus 10 40
Grusig morän 10 40
Sand 5 20
Sandig morän 5 20
Silt 2 10
Siltig morän 2 10
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A.2 Weight and earth pressure coefficients

Table A.2: Weight and earth pressure coefficients [19].

The calculations was performed using the following equation:

∆σH = σv(z) · (Kp −Ko) (A.1)

The coefficients used where approximated from table A.3. A soil unit weight of 20
kN/m3, Passive earth pressure coefficient Kp=5.0 and a resting earth pressure Ko=0.3.
The passive earth pressure was only calculated to a depth of 1 meter.

Table A.3: The value of the passive earth pressure for the centre of each element (element
size 0.1 meters).

Depth [m] Pressure [kN/m3]
0.05 ≈ 0
0.15 14.1
0.25 23.5
0.35 32.9
0.45 42.3
0.55 51.7
0.65 61.1
0.75 70.5
0.85 79.9
0.95 89.3
1.05 98.7
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A.3 Braking loads

The formula presented in chapter 2.5:

Qlk = 0.6aQ1(2Q1k) + 0.1aq1q1kw1Lf (A.2)

180aQi(kN) ≤ Qlk ≤ 900 [kN] (A.3)

Is used for each notional lane and creates the following equations for lane one to lane
three. Past lane three the coefficients are 0 hence why the maximum notional lane
loads is set to three lanes:

Q1k = 0.6 · 0.9 · 2 · 300 + 0.1 · 0.8 · 9 · 3 · Lf = 324 + 2.16 · Lf [kN] (A.4)

Q2k = 0.6 · 0.9 · 2 · 200 + 0.1 · 1.0 · 2.5 · 3 · Lf = 216 + 0.75 · Lf [kN] (A.5)

Q3k = 0.60 · 2 · 100 + 0.1 · 1.0 · 2.5 · 3 · Lf = 0.75 · Lf [kN] (A.6)

Worth noting is that this is the load per axle, however in this thesis the loads are set
as point loads in 4 nodes meaning that the applied load will be the following (equation
A.7):

Pi,k =
Qlk

2
(A.7)

The applied point loads are presented in the table below and only the point loads for
each notional lanes that fits the width of the structure is derived.
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Table A.4: The applied braking point loads for each bridge model.
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A.4 Derivation of main springs

The equation which derives uniformly spring stiffness based on stress distribution in
the soil for the slab (equation A.8):

∆σz =
q · b · l

(b+ 2 · iz)(l + 2 · iz)
(A.8)

Assumes linear 1:2 distribution according to figure A.1 below. The equation for the

Figure A.1: Illustration of the 2-1 method used in equation A.8.

abutment wall needs a modified version of equation A.8 to restrict stress distribution
beyond the surface of the soil as seen in figure A.2 below.

Figure A.2: stress propagation through the soil, accounting for the surface.
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Which creates the following equation (equation A.9):

∆σz =
q · b · l

(b+ 2 · iz)(l + iz)
(A.9)

The settlements, δ in the soil was then calculated with the following formula (equation
A.10):

δ =

∫ z

0

εzdz =

∫ z

0

∆σz

E
dz (A.10)

The Young´s Modulus used in the thesis was set to a constant for the slab and abut-
ment wall E1 =50MPa, E2 =100MPa. And a soil depth of z =2m for both instances
as seen in figure 3.2. The spring stiffness kw was then calculated as equation A.11
where P =1N.

kw =
P

δ
(A.11)

When deriving the main springs for the abutment wall the wing walls are considered,
which adds a constant length onto the walls of 4.24 meters due to their 45-degree
angle regardless of bridge design. The process was repeated for each design. The
spring stiffness for each bridge model is presented in table A.5.
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Table A.5: The spring stiffness used for the Winkler and Pasternak models.
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A.5 Model verification

A.5.1 Verification of maximum deflection of the bridge deck

The following calculations were conducted for Bridge 1-1 to compare the maximum
deflection of the bridge deck with the RFEM models in figures A.5 - A.9.

Table A.6: Bridge model 1-1 properties.

Variable Value

Bridge deck thickness, t 0.75 [m]

Bridge deck width, b 5 [m]

Span length of bridge deck, L 5 [m]

Youngs modules for concrete quality C40/C50, Ec 35 [GPa]

Density of concrete quality C40/50, ρc 2500 [kg/m3]

The self-weight of the bridge deck and the moment of inertia, Iy was calculated in ac-
cordance with equation A.12 and A.13. The self-weight was calculated as a uniformed
distributed load, qc.

qc = ρc · t · g · b = 2500 · 0.75 · 10 · 5 = 62.5 [kN/m] (A.12)

Iy =
b · t3

12
=

5 · 0.753

12
= 0.1758 [m4] (A.13)

The two different elementary cases was calculated below in equation A.14 and A.15.

Case I, deflection uI of a simply supported beam [24].

Figure A.3: Simply supported beam.

uI =
5 · qc · L4

384EIy
= 0.083 [mm] (A.14)

Case II, deflection uII of a fixed beam [24].

uII =
qc · L4

384EIy
= 0.017 [mm] (A.15)
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Figure A.4: Fixed beam.

Table A.7: Deformations of bridge deck for Bridge 1-1 from equation A.14,A.15 and
figures A.5 - A.9.

Case I,
uI [mm]

Case II,
uII[mm]

STA ,
[mm]

Winkler
[mm]

Pasternak
[mm]

Brigade
Winkler
[mm]

Brigade
Paster-
nak
[mm]

0.083 0.017 0.083 0.067 0.068 0.074 0.074

As seen in table A.7, the Bridge decks has similar but not the same maximum defor-
mation for Case II compared to the RFEM models. This is a direct cause due to the
deformation of the abutment walls which in theory means that the end supports of
the bridge deck are not fully fixed with no vertical movement as the elementary cases
are. The springs on the foundation plate allows slip for all the spring models, allowing
the structure to move inwards. This results in the bridge deck being pushed upwards,
reducing the deformation of the Bridge deck. This slip inwards can be seen in figure
A.10 depicting this for the Winkler model in comparison to the STA model, which
does not slip inwards A.11.

It is therefore assumed that the deflection from the RFEM models is reasonable, hence
they lie between elementary Case I and Case II.
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Figure A.5: Deflection of Bridge model 1-1 (STA) [mm], with self weight.

Figure A.6: Deflection of Bridge model 1-1 (Winkler) [mm], with self weight.
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Figure A.7: Deflection of Bridge model 1-1 (Pasternak) [mm], with self weight.

Figure A.8: Deflection of Bridge model 1-1 (Brigade Winkler) [mm], with self weight.
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Figure A.9: Deflection of Bridge model 1-1 (Brigade Pasternak) [mm], with self weight.

Figure A.10: Deflection direction of Bridge model 1-1 (Winkler) [mm], with self weight.
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Figure A.11: Deflection direction of Bridge model 1-1 (STA) [mm], with self weight.
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A.5.2 Verification of moment distribution curve of the bridge
deck

The moment distribution curve as seen in figures A.12-A.16 was compared with the
moment distribution from the elementary cases, Case I (simply supported) and Case
II (fixed beam) [24]. It showed that the moments from the RFEM models had similar
distribution curves as for Case II. Indicating that the bridge deck acts more as a fixed
beam than a simply supported one.

Figure A.12: Moment distribution of Bridge model 1-1 (STA) [kNm/m], due to self
weight on the bridge deck.
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Figure A.13: Moment distribution of Bridge model 1-1 (Winkler) [kNm/m], due to self
weight on the bridge deck.

Figure A.14: Moment distribution of Bridge model 1-1 (Pasternak) [kNm/m], due to self
weight on the bridge deck.
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Figure A.15: Moment distribution of Bridge model 1-1 (Brigade Winkler) [kNm/m], due
to self weight on the bridge deck.

Figure A.16: Moment distribution of Bridge model 1-1 (Brigade Pasternak) [kNm/m],
due to self weight on the bridge deck.
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A.6 Earth pressure from the STA model

The results from the iterative process explained in chapter 3.1.4 are presented in table
A.11 for each bridge design.

Table A.8: Increased earth pressure from the STA model derived from the horizontal
deformation in the bridge deck for Bridge 1 and Bridge 2

Table A.9: Increased earth pressure from the STA model derived from the horizontal
deformation in the bridge deck for Bridge 2-2 and Bridge 3
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Table A.10: Increased earth pressure from the STA model derived from the horizontal
deformation in the bridge deck for Bridge 4 and Bridge 5

Table A.11: Increased earth pressure from the STA model derived from the horizontal
deformation in the bridge deck for Bridge 6 and Bridge 7
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A.7 Derivation of Brigade springs

Derivation of the rotational springs kθt and kθlis done with the following equation:

kθt =
Ek · B2 · L

5
[kNm/rad] (A.16)

kθl =
Ek · B · L2

5
[kNm/rad] (A.17)

The springs are equivalent to the rotational axis of the slab shown in figure A.17 below.

Figure A.17: rotational axis for the springs.

Young’s modulus of Ek =100MPa was used in each bridge design. Deriving the vertical
line spring kz is done by the use of parameters derived in equation A.16 and equation
A.17 and presented in the formula below.

kz = 0.5(
kθt
It

+
kθl
Il

) [kNm/rad] (A.18)

The moment of inertia and the footprint of the slab is added to the equation and the
stiffness for each bridge is presented in table A.12.
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Table A.12: Brigade spring stiffness.
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A.8 Bridge designs

In this chapter the various Bridge design models are presented. Not that the dimen-
sions can also been seen in tables 3.1 -3.8.

A.8.1 Bridge 1

Figure A.18: Bridge design for Bridge 1-1.

Figure A.19: Bridge design for Bridge 1-3.

Figure A.20: Bridge design for Bridge 1-5.
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A.8.2 Bridge 2

Figure A.21: Bridge design for Bridge 2-1.

Figure A.22: Bridge design for Bridge 2-3.

Figure A.23: Bridge design for Bridge 2-5.
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A.8.3 Bridge 2-2

Figure A.24: Bridge design for Bridge 2-2-1.

Figure A.25: Bridge design for Bridge 2-2-3.

Figure A.26: Bridge design for Bridge 2-2-5.
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A.8.4 Bridge 3

Figure A.27: Bridge design for Bridge 3-1.

Figure A.28: Bridge design for Bridge 3-3.

Figure A.29: Bridge design for Bridge 3-5.
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A.8.5 Bridge 4

Figure A.30: Bridge design for Bridge 4-1.

Figure A.31: Bridge design for Bridge 4-3.

Figure A.32: Bridge design for Bridge 4-5.
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A.8.6 Bridge 5, 6 and 7

The Bridge design for all these models are of the same geometry as for Bridge 1-1
(figure A.18). For Bridge 5, the thickness of the abutment wall varies, please see table
3.6. While the soil properties varies for Bridge 6 and Bridge 7, please see table 3.7
and table 3.8.
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A.9 Sectional forces and deformations

A.9.1 Bridge 1

Horizontal deformation on the top of the abutment wall

Figure A.33: Top horizontal deformation on the abutment wall for Bridge 1-1.

Figure A.34: Top horizontal deformation on the abutment wall for Bridge 1-3.

Figure A.35: Top horizontal deformation on the abutment wall for Bridge 1-5.
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Moments in horizontal result section 1

Figure A.36: Moment Mx, in horizontal result section 1, Bridge 1-1.

Figure A.37: Moment Mx, in horizontal result section 1, Bridge 1-3.

Figure A.38: Moment Mx, in horizontal result section 1, Bridge 1-5.
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Shear forces in horizontal result section 1

Figure A.39: Shear force Vx, in horizontal result section 1, Bridge 1-1.

Figure A.40: Shear force Vx, in horizontal result section 1, Bridge 1-3.

Figure A.41: Shear force Vx, in horizontal result section 1, Bridge 1-5.

115



Figure A.42: Shear force Vy, in horizontal result section 1, Bridge 1-1.

Figure A.43: Shear force Vy, in horizontal result section 1, Bridge 1-3.

Figure A.44: Shear force Vy, in horizontal result section 1, Bridge 1-5.

116



Moments in horizontal result section 2

Figure A.45: Moment My, in horizontal result section 2, Bridge 1-1.

Figure A.46: Moment My, in horizontal result section 2, Bridge 1-3.

Figure A.47: Moment My, in horizontal result section 2, Bridge 1-5.
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Shear forces in horizontal result section 2

Figure A.48: Shear force Vy, in horizontal result section 2, Bridge 1-1.

Figure A.49: Shear force Vy, in horizontal result section 2, Bridge 1-3.

Figure A.50: Shear force Vy, in horizontal result section 2, Bridge 1-5.
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A.9.2 Bridge 2

Horizontal deformation on the top of the abutment wall

Figure A.51: Top horizontal deformation on the abutment wall for Bridge 2-1.

Figure A.52: Top horizontal deformation on the abutment wall for Bridge 2-3

Figure A.53: Top horizontal deformation on the abutment wall for Bridge 2-5

119



Moments in horizontal result section 1

Figure A.54: Moment Mx, in horizontal result section 1, Bridge 2-1.

Figure A.55: Moment Mx, in horizontal result section 1, Bridge 2-3.

Figure A.56: Moment Mx, in horizontal result section 1, Bridge 2-5.
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Shear forces in horizontal result section 1

Figure A.57: Shear force Vx, in horizontal result section 1, Bridge 2-1.

Figure A.58: Shear force Vx, in horizontal result section 1, Bridge 2-3.

Figure A.59: Shear force Vx, in horizontal result section 1, Bridge 2-5.

121



Figure A.60: Shear force Vy, in horizontal result section 1, Bridge 2-1.

Figure A.61: Shear force Vy, in horizontal result section 1, Bridge 2-3.

Figure A.62: Shear force Vy, in horizontal result section 1, Bridge 2-5.
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Moments in horizontal result section 2

Figure A.63: Moment My, in horizontal result section 2, Bridge 2-1.

Figure A.64: Moment My, in horizontal result section 2, Bridge 2-3.

Figure A.65: Moment My, in horizontal result section 2, Bridge 2-5.
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Shear forces in horizontal result section 2

Figure A.66: Shear force Vy, in horizontal result section 2, Bridge 2-1.

Figure A.67: Shear force Vy, in horizontal result section 2, Bridge 2-3.

Figure A.68: Shear force Vy, in horizontal result section 2, Bridge 2-5.
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A.9.3 Bridge 2.2

Horizontal deformation on the top of the abutment wall

Figure A.69: Top horizontal deformation on the abutment wall for Bridge 2-2-1.

Figure A.70: Top horizontal deformation on the abutment wall for Bridge 2-2-3.

Figure A.71: Top horizontal deformation on the abutment wall for Bridge 2-2-5.
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Moments in horizontal result section 1

Figure A.72: Moment Mx, in horizontal result section 1, Bridge 2-2-1.

Figure A.73: Moment Mx, in horizontal result section 1, Bridge 2-2-3.

Figure A.74: Moment Mx, in horizontal result section 1, Bridge 2-2-5.
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Shear forces in horizontal result section 1

Figure A.75: Shear force Vx, in horizontal result section 1, Bridge 2-2-1.

Figure A.76: Shear force Vx, in horizontal result section 1, Bridge 2-2-3.

Figure A.77: Shear force Vx, in horizontal result section 1, Bridge 2-2-5.
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Figure A.78: Shear force Vy, in horizontal result section 1, Bridge 2-2-1.

Figure A.79: Shear force Vy, in horizontal result section 1, Bridge 2-2-3.

Figure A.80: Shear force Vy, in horizontal result section 1, Bridge 2-2-5.
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Moments in horizontal result section 2

Figure A.81: Moment My, in horizontal result section 2, Bridge 2-2-1.

Figure A.82: Moment My, in horizontal result section 2, Bridge 2-2-3.

Figure A.83: Moment My, in horizontal result section 2, Bridge 2-2-5.
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Shear forces in horizontal result section 2

Figure A.84: Shear force Vy, in horizontal result section 2, Bridge 2-2-1.

Figure A.85: Shear force Vy, in horizontal result section 2, Bridge 2-2-3.

Figure A.86: Shear force Vy, in horizontal result section 2, Bridge 2-2-5.
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A.9.4 Bridge 3

Horizontal deformation on the top of the abutment wall

Figure A.87: Top horizontal deformation on the abutment wall for Bridge 3-1.

Figure A.88: Top horizontal deformation on the abutment wall for Bridge 3-3.

Figure A.89: Top horizontal deformation on the abutment wall for Bridge 3-5.
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Moments in horizontal result section 1

Figure A.90: Moment Mx, in horizontal result section 1, Bridge 3-1.

Figure A.91: Moment Mx, in horizontal result section 1, Bridge 3-3.

Figure A.92: Moment Mx, in horizontal result section 1, Bridge 3-5.
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Shear forces in horizontal result section 1

Figure A.93: Shear force Vx, in horizontal result section 1, Bridge 3-1.

Figure A.94: Shear force Vx, in horizontal result section 1, Bridge 3-3.

Figure A.95: Shear force Vx, in horizontal result section 1, Bridge 3-5.
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Figure A.96: Shear force Vy, in horizontal result section 1, Bridge 3-1.

Figure A.97: Shear force Vy, in horizontal result section 1, Bridge 3-3.

Figure A.98: Shear force Vy, in horizontal result section 1, Bridge 3-5.
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Moments in horizontal result section 2

Figure A.99: Moment My, in horizontal result section 2, Bridge 3-1.

Figure A.100: Moment My, in horizontal result section 2, Bridge 3-3.

Figure A.101: Moment My, in horizontal result section 2, Bridge 3-5.
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Shear forces in horizontal result section 2

Figure A.102: Shear force Vy, in horizontal result section 2, Bridge 3-1.

Figure A.103: Shear force Vy, in horizontal result section 2, Bridge 3-3.

Figure A.104: Shear force Vy, in horizontal result section 2, Bridge 3-5.
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A.9.5 Bridge 4

Horizontal deformation on the top of the abutment wall

Figure A.105: Top horizontal deformation on the abutment wall for Bridge 4-1.

Figure A.106: Top horizontal deformation on the abutment wall for Bridge 4-3.

Figure A.107: Top horizontal deformation on the abutment wall for Bridge 4-5.
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Moments in horizontal result section 1

Figure A.108: Moment Mx, in horizontal result section 1, Bridge 4-1.

Figure A.109: Moment Mx, in horizontal result section 1, Bridge 4-3.

Figure A.110: Moment Mx, in horizontal result section 1, Bridge 4-5.
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Shear forces in horizontal result section 1

Figure A.111: Shear force Vx, in horizontal result section 1, Bridge 4-1.

Figure A.112: Shear force Vx, in horizontal result section 1, Bridge 4-3.

Figure A.113: Shear force Vx, in horizontal result section 1, Bridge 4-5.
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Figure A.114: Shear force Vy, in horizontal result section 1, Bridge 4-1.

Figure A.115: Shear force Vy, in horizontal result section 1, Bridge 4-3.

Figure A.116: Shear force Vy, in horizontal result section 1, Bridge 4-5.
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Moments in horizontal result section 2

Figure A.117: Moment My, in horizontal result section 2, Bridge 4-1.

Figure A.118: Moment My, in horizontal result section 2, Bridge 4-3.

Figure A.119: Moment My, in horizontal result section 2, Bridge 4-5.
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Shear forces in horizontal result section 2

Figure A.120: Shear force Vy, in horizontal result section 2, Bridge 4-1.

Figure A.121: Shear force Vy, in horizontal result section 2, Bridge 4-3.

Figure A.122: Shear force Vy, in horizontal result section 2, Bridge 4-5.
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A.9.6 Bridge 5

Horizontal deformation on the top of the abutment wall

Figure A.123: Top horizontal deformation on the abutment wall for Bridge 5-1.

Figure A.124: Top horizontal deformation on the abutment wall for Bridge 5-3.

Figure A.125: Top horizontal deformation on the abutment wall for Bridge 5-5.
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Moments in horizontal result section 1

Figure A.126: Moment Mx, in horizontal result section 1, Bridge 5-1.

Figure A.127: Moment Mx, in horizontal result section 1, Bridge 5-3.

Figure A.128: Moment Mx, in horizontal result section 1, Bridge 5-5.
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Shear forces in horizontal result section 1

Figure A.129: Shear force Vx, in horizontal result section 1, Bridge 5-1.

Figure A.130: Shear force Vx, in horizontal result section 1, Bridge 5-3.

Figure A.131: Shear force Vx, in horizontal result section 1, Bridge 5-5.
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Figure A.132: Shear force Vy, in horizontal result section 1, Bridge 5-1.

Figure A.133: Shear force Vy, in horizontal result section 1, Bridge 5-3.

Figure A.134: Shear force Vy, in horizontal result section 1, Bridge 5-5.
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Moments in horizontal result section 2

Figure A.135: Moment My, in horizontal result section 2, Bridge 5-1.

Figure A.136: Moment My, in horizontal result section 2, Bridge 5-3.

Figure A.137: Moment My, in horizontal result section 2, Bridge 5-5.
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Shear forces in horizontal result section 2

Figure A.138: Shear force Vy, in horizontal result section 2, Bridge 5-1.

Figure A.139: Shear force Vy, in horizontal result section 2, Bridge 5-3.

Figure A.140: Shear force Vy, in horizontal result section 2, Bridge 5-5.
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A.9.7 Bridge 7

Horizontal deformation on the top of the abutment wall

Figure A.141: Top horizontal deformation on the abutment wall for Bridge 7-1.

Figure A.142: Top horizontal deformation on the abutment wall for Bridge 7-3.

Figure A.143: Top horizontal deformation on the abutment wall for Bridge 7-5.
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Moments in horizontal result section 1

Figure A.144: Moment Mx, in horizontal result section 1, Bridge 7-1.

Figure A.145: Moment Mx, in horizontal result section 1, Bridge 7-3.

Figure A.146: Moment Mx, in horizontal result section 1, Bridge 7-5.
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Shear forces in horizontal result section 1

Figure A.147: Shear force Vx, in horizontal result section 1, Bridge 7-1.

Figure A.148: Shear force Vx, in horizontal result section 1, Bridge 7-3.

Figure A.149: Shear force Vx, in horizontal result section 1, Bridge 7-5.
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Figure A.150: Shear force Vy, in horizontal result section 1, Bridge 7-1.

Figure A.151: Shear force Vy, in horizontal result section 1, Bridge 7-3.

Figure A.152: Shear force Vy, in horizontal result section 1, Bridge 5-5.
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Moments in horizontal result section 2

Figure A.153: Moment My, in horizontal result section 2, Bridge 7-1.

Figure A.154: Moment My, in horizontal result section 2, Bridge 7-3.

Figure A.155: Moment My, in horizontal result section 2, Bridge 7-5.
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Shear forces in horizontal result section 2

Figure A.156: Shear force Vy, in horizontal result section 2, Bridge 7-1.

Figure A.157: Shear force Vy, in horizontal result section 2, Bridge 7-3.

Figure A.158: Shear force Vy, in horizontal result section 2, Bridge 7-5.
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A.9.8 Failure simulations

Horizontal deformation on the top of the abutment wall

Figure A.159: Top horizontal deformation on the abutment wall for Failure simulations,
Bridge 1-3.

Figure A.160: Top horizontal deformation on the abutment wall for Failure simulations,
Bridge 4-3.

Figure A.161: Top horizontal deformation on the abutment wall for Failure simulations,
Bridge 7-1.
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Moments in horizontal result section 1

Figure A.162: Moment Mx, in horizontal result section 1, Failure simulations, Bridge
1-3.

Figure A.163: Moment Mx, in horizontal result section 1, Failure simulations, Bridge
4-3.

Figure A.164: Moment Mx, in horizontal result section 1, Failure simulations, Bridge
7-1.
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Shear forces in horizontal result section 1

Figure A.165: Shear force Vx, in horizontal result section 1, Failure simulations, Bridge
1-3.

Figure A.166: Shear force Vx, in horizontal result section 1, Failure simulations, Bridge
4-3.

Figure A.167: Shear force Vx, in horizontal result section 1, Failure simulations, Bridge
7-1.
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Figure A.168: Shear force Vy, in horizontal result section 1, Failure simulations, Bridge
1-3.

Figure A.169: Shear force Vy, in horizontal result section 1, Failure simulations, Bridge
4-3.

Figure A.170: Shear force Vy, in horizontal result section 1, Failure simulations, Bridge
7-1.
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Moments in horizontal result section 2

Figure A.171: Moment My, in horizontal result section 2, Failure simulations, Bridge
1-3.

Figure A.172: Moment My, in horizontal result section 2, Failure simulations, Bridge
4-3.

Figure A.173: Moment My, in horizontal result section 2, Failure simulations, Bridge
7-1.
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Shear forces in horizontal result section 2

Figure A.174: Shear force Vy, in horizontal result section 2, Failure simulations, Bridge
1-3.

Figure A.175: Shear force Vy, in horizontal result section 2, Failure simulations, Bridge
4-3.

Figure A.176: Shear force Vy, in horizontal result section 2, Failure simulations, Bridge
7-1.
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