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Abstract

The need for accurate and computationally efficient methods for analysing the effects
of ground vibrations on a structure is increasing. This is partly due to continued urb-
anization leading to structures being placed in closer proximity to vibrational sources,
as well as increased environmental awareness leading to more lightweight structures,
such as timber structures, being built. The purpose of this study was to create accurate
and computationally efficient FE ground models for the analyses of ground vibrations
in Abaqus.

This objective was achieved by creating tailored FE ground models based on the
properties of the ground layers and the frequency interval that was to be studied.
These parameters determined the longest and shortest wavelength of the vibrations,
which in turn were used to determine the model size and element size respectively.
P-waves have the longest wavelength and were used along with the lower frequency in
a given range for determining model size, while Rayleigh wavelengths are the shortest
and were used along with the upper frequency to determine element size.

A complete program was developed using Python and consists of the creation of
axisymmetric and 3D FE models, creation of input files compatible with Abaqus,
submission of jobs for analyses in Abaqus and extraction of results. Additionally, a
user interface was created to increase user-friendliness. Parameter studies were con-
ducted with the purpose of determining the appropriate number of P-wavelengths, the
number of elements per Rayleigh wavelength, the size of the frequency increments and
the size of the frequency bands that each model was to be tailored to. The resulting
models were validated by comparing the results to a well-established semi-analytical
model used for analyses of traffic-induced vibrations. The time saved through the use
of the tailored models was determined by comparing analyses times for the tailored
models with less tailored models.

The parameter study resulted in the tailored models consisting of 1.5 P-wavelengths
used to determine model size, 5 elements per Rayleigh wavelength used to determine
element size, 1 Hz sized increments being used in the analyses and each model being
tailored to a 5 Hz frequency band. When compared to results from the semi-analytical
model, the chosen values from the parameter studies resulted in sufficiently accurate
results up to about 80 Hz, after which the results appeared to oscillate more. The
accuracy above 80 Hz was deliberately compromised in favour of reasonable analyses
times.

The 3D models were, even when tailored, too large for analyses on a regular computer
and had to be submitted to a supercomputer for analyses. This was mostly due to the
models’ extensive RAM memory usage, often requiring 256 GB RAM memory and in
some cases even 512 GB. This was an unexpected complication which resulted in the
models, neither 3D nor axisymmetric, being able to be analysed in the 1-100 Hz range
when not divided into smaller models, even on the supercomputer available for this



project. In order to determine the computational efficiency of the tailored models,
they were therefore compared to less tailored models that used the full computational
capacity available for this project.

For sequential analyses, the tailored axisymmetric models were in the 1-100 Hz interval
4.4 times faster, taking 8 minutes instead of 36.5 minutes. The tailored 3D models
were for sequential analyses in the 36-100 Hz interval 3.8 times faster, taking 2 days
and 10 hours instead of 9 days and 4 hours for its less tailored counterparts. When
applying parallel analyses, even more significant time savings were achieved. The
tailored axisymmetric models were for the 1-100 Hz interval 12.2 times faster, taking
2.5 minutes instead of 30.5 minutes, while the tailored 3D models in the 75-100 Hz
interval were 21 times faster, taking 4.5 hours instead of 4 days.
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1 Introduction

This project involves the development of a Python-based program intended to be used
for Abaqus analysis of structures subjected to traffic-induced vibrations. The reader is
presumed to have basic knowledge of the finite element (FE) method, the FE software
Abaqus and programming with Python. In this chapter, the background as to why a
program like this is beneficial will be explained, as well as the methodology used to
develop it.

1.1 Background

The demand for efficient methods to analyse the effects of traffic-induced vibrations on
buildings and structures is growing. This is partly driven by continued urbanization,
which places buildings increasingly close to roads, railways, and other sources of vi-
bration. Additionally, the construction industry’s focus on sustainability has led to an
increase in the use of environmentally friendly materials. However, lightweight struc-
tures, such as timber buildings, are often considered to be sensitive to traffic-induced
noise and vibrations.

When using FE software like Abaqus to analyse ground vibrations, large ground mod-
els are required to accurately capture how vibrations propagate through the ground.
These models are computationally expensive, often requiring days or even weeks to
process.

One approach to improving computational efficiency is parallelizing analyses, where
calculations are divided into smaller tasks that run simultaneously on multiple pro-
cessors. However, another option is to tailor the models by adjusting the spatial
discretization and the size of the ground domain in the numerical model based on the
vibration frequencies to be studied. This would allow for different model sizes, each
corresponding to a specific frequency range. At higher frequencies, shorter wavelengths
reduce the required ground size, enabling smaller models that still yield accurate res-
ults.

1.2 Aim and objectives

The aim of this dissertation is to develop a Python-based program that generates
efficient, ready-to-use ground models for analysis in Abaqus, focusing on the impact
of traffic-induced vibrations on structures. The study will explore parameter selec-
tion impacting ground- and element size to ensure both accuracy and computational
efficiency. To achieve this, the following objectives will be examined:



e How can accurate ground vibration be achieved using Python while also being
compatible with Abaqus?

e Which parameters are relevant for accurate and computational efficient ground
modelling?

e How much time can be saved in Abaqus analysis through the use of tailored
models?

1.3 Methodology

The methodology consisted of a literature study as well as numerical modelling, nu-
merical analysis and post-processing of results through the development of a program
and a user interface.

The literature study was conducted focusing on relevant topics related to wave propaga-
tion in elastic solids, numerical modelling and methods for geometry and mesh gener-
ation.

Significant emphasis was placed on numerical modelling procedures, which were con-
ducted using Python. The primary focus was on ensuring correct partitioning of the
model to accurately represent different ground layers and non-reflective boundaries.
Compatibility with the Abaqus framework for modelling was also a key considera-
tion. Python-related concepts such as object-oriented programming and inheritance
were applied. A user interface was developed using PyQt, a Python library that fa-
cilitates building user interfaces with the Qt framework, chosen for its simplicity and
user-friendliness.

To ensure the validity of the tailored models, the numerical analysis conducted in
Abaqus was compared to the results from a well-established semi-analytical approach
used for analysing traffic-induced vibrations. This allowed for an investigation into
which values for different parameters provided the most computationally efficient result
while also being sufficiently accurate.

Finally, an example of an application for the program was presented by including a
building and inclining the ground layers.

1.4 Limitations

- The work will be limited to creating ground models that are compatible with
Abaqus.

- Only linear elastic material behaviour is considered.

- Only the 1-100 Hz interval is studied.



2 (Governing theory

In this chapter, relevant theory for this project will be presented, starting with volume
waves in elastic solids followed by numerical modelling and lastly methods for geometry
and mesh generation.

2.1 Volume waves in elastic solids

Wave propagation in the ground is of interest as it affects both people and buildings.
This is true for natural causes of vibrations, such as earthquakes, as well as man made
causes, such as traffic-induced vibrations.

2.1.1 Wave types and their effect on ground modelling

There are three different types of waves that usually propagate through the ground
due to some vibrational source. These are the P-wave, the S-wave and the Rayleigh
wave, detailed descriptions of which are found in [1].

The P-wave, also known as the primary wave, gets its name from being the fastest
of the three wave types and therefore the first to arrive at an observation point.
It is a compressive wave, meaning its particle motion is parallel to the direction of
wave propagation. The S-wave, i.e. the secondary wave, is slower and arrives at the
observation point after the P-wave. The particle motion of the S-wave is perpendicular
to the direction of propagation, making it a transversal wave, see Figure 2.1.

Particle motion

Particle

motion

—»cCs

CP A

Figure 2.1: Particle motion of a plane P-wave, left, and plane S-wave, right [1].

The Rayleigh wave propagates in semi-infinite solid media, such as a ground mater-
ial, and has an amplitude that decreases with increased distance from the surface.
This wave is typically slower than the S-wave and contains both pressure and shear
components.

The wave speeds are related to the material’s Young’s modulus and Poisson’s ratio
through Lamé constants A\ and p
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From Lamé constants the P- and S- wave speeds can be determined as
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The Rayleigh wave speed is uniquely defined for any Poisson’s ratio and, for a half-
sphere consisting of one ground material, increases from cg =~ 0.862cg for v = 0 to
cp ~ 0.955¢g for v = 0.5.

When the wave speed is known, the wavelength for a wave can be determined for a
given frequency,

A= 1 (2.3)

As the P-wave is the fastest of the three waves, its wavelength at a given frequency
will be the longest of the three. In the same manner, the Rayleigh wavelength will be
the shortest of the three.

When modelling a ground domain using the FE method, it is inevitable that the
modelled geometry has boundaries, i.e. the spatial discretization must be applied to a
bounded region. Although non-reflective boundaries can be modelled approximately
using so-called infinite elements, see further Section 2.2.2, the model boundaries lead
to reflections of the waves in the model that are not present in real life. In order
to minimize these reflections, it is reasonable to assume that there should be some
minimum distance between the boundaries of the ground domain and the loading
and observation points. Furthermore, to consider the frequency dependency, such a
minimum distance may be expressed in terms of a given number of wavelengths. With
the P-wavelength being the longest, it may be appropriate that this should be the
wavelength governing the size of the ground domain.

Another important aspect of FE modelling is the size of the finite elements. Similarly
to the reasoning of the governing wavelength for the model size, one could define
the element size by considering a certain number of elements per wavelength. As
the Rayleigh wavelength is the shortest, this could be deemed most appropriate for
determining the element size.

Given Equation 2.3, it can be concluded that when studying a certain frequency range,
the lower frequency in the range will yield a longer wavelength and the upper frequency
in the range will yield a shorter wavelength. Applying this to the logic of model- and
element sizes, it follows that the model size should be dependent on the lower frequency
in a range, and the element size on the upper frequency in a range, yielding the longest
P-wavelength and shortest Rayleigh wavelength respectively.

4
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Each frequency interval that is to be studied will have a given ratio between the P-
wavelength, relating to model size, and the Rayleigh wavelength, relating to element
size, according to:

Ap _ Jupper CP (2.5)

)\R flower CR
As cp and cg depend on the properties of the ground material, they remain constant
throughout the frequency interval. The critical ratio is therefore between the upper
and lower frequency in a chosen interval. For example, the frequency interval 1-5 Hz
will give a ratio of 5 between the P-wavelength and Rayleigh wavelength, while the
frequency interval 95-100 Hz, with a frequency band of the same size as previously,
will give a ratio of 100/95 = 1.053.

The ratio will increase linearly with the chosen number of P-wavelengths and number
of elements per Rayleigh wavelength. For example, if 2 P-wavelengths is chosen for
determining the model size and 5 elements per Rayleigh wavelength is chosen for
determining element size, the ratio between model- and element size becomes

A

22 _ 1. Juwper CP (2.6)
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This suggests two things. First, for low frequencies, much smaller frequency bands
are needed to maintain approximately the same ratio between model- and element
size as for the larger frequencies. Second, the chosen number of P-wavelengths per
model and elements per Rayleigh wavelength should be chosen with care as to not
create unnecessarily large models with small elements that will be very computational
expensive.

2.1.2 Damping of waves

At far distances from the source of a traffic-induced vibration, it has been observed
that the Rayleigh wave leads to strong vibrations, whereas P- and S-waves vanish.
This may be due to two main reasons. The majority of the energy transmitted to
the ground by traffic leads to the generation of Rayleigh waves, i.e. surface waves.
The other reason lies in the way the different waves spread. P- and S-waves spread
over the volume creating spherical wavefronts, whereas the Rayleigh wave is bound
to the surface and therefore spreads only through the surface and not the volume,
see Figure 2.2. Since the P- and S-waves spread in three directions, a faster decay of
energy occurs and therefore smaller amplitudes are achieved with increased distance.
The decay of the amplitude of a wave due to spreading of the energy over a larger
area or volume is called geometrical damping, i.e. the P- and S-wave exhibit larger
geometrical damping than the Rayleigh wave at far distances.



Point source

Rayleigh wavefront
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Figure 2.2: Geometrical damping from a point source on the ground surface for (a) P-
and S-waves and (b) the Rayleigh wave [1].

Damping of waves also occurs through material damping, where mechanical energy
is transformed into thermal energy, i.e. heat. This occurs in all real materials and
is caused by mechanisms such as friction between particles or grains and leads to
exponential decay of the displacement amplitudes over distance. This type of damping
causes a shift in the wave’s phase velocity, which leads the wavenumber to become
complex. Material damping is represented by a loss factor 7.

Geometrical damping is of greater importance than material damping in the near-
field, whereas the reverse is true for the far-field. A more detailed explanation of the
damping of waves can be found in [1].

2.1.3 Describing waves using complex notation

A wave can be described using complex notation, explained in detail in [2]. All analyses
in this project are performed in the frequency domain, which naturally lends itself
to complex notation representation of wave phenomena. This approach allows for
efficient handling of both the amplitude and phase characteristics of waves, as well as
the incorporation of material damping effects through complex material properties.

This is done in the form

z =z +iy = |z|(cosp + ising) = |z|e", (2.7)

where x is the real part of z and y is the imaginary part of z.

It is often of interest to study the magnitude, which refers to the total size or strength
of the wave. The magnitude is defined by |z| and is found from

2] = Va? + 2. (2.8)



2.2 Numerical modelling

Physical problems are often complicated and difficult to analyse by experimental test-
ing. For this purpose, numerical modelling is very useful. Numerical modelling is used
to analyse complicated real life physical problems by means of mathematical models
that describe the physical conditions of the problem. The analysis can be performed
using computational simulation which simulates physical reality.

There have been several numerical modelling methods proposed for modelling ground-
structure interaction. One of these is the Thomson-Haskell model, which is a semi-
analytical method used for the analysis of layered half-spaces subjected to moving
or stationary loads, in other words a method that may be used for analysing traffic-
induced vibrations. This approach is computationally efficient as it, in contrast to the
FE method, avoids a spatial discretization in terms of physical nodes by transforming
and solving the response of the half-space in the so-called wave number domain, see
further [1]. The disadvantage of this approach, however, is that the method only
applies to horizontally layered ground, i.e. with horizontal interfaces and surfaces. It
can therefore not be used to analyse general problems, for example inclined ground
layers, an underground tunnel or the basement of a structure.

To describe wave propagation in three dimensions, the FE method can be used instead.
The downside to this method being that it can become computationally expensive as
the model size increases and the global system of equations must be solved simultan-
eously.

2.2.1 The finite element method

The FE method is a numerical method of solving partial differential equations by
discretizing any given geometry into a collection of finite elements, joined by shared
nodes. The collection of nodes and finite elements make up the mesh. Each finite
element represents a discrete portion of the physical structure and the differential
equation is solved locally for each element [3]. A detailed description of the FE method
can be found in [4].

The advantages of the FE method are that it simplifies complex problems by approx-
imating solutions using lower-order derivatives, and it accommodates certain discon-
tinuities within elements, as long as global continuity or weak form conditions are
satisfied.

The finite element formulation of a problem is derived in a number of steps, starting
with the strong formulation of a problem, which consists of a differential equation
along with the corresponding boundary conditions. The problem is then transformed
into a weak form by introducing a weight function and integrating over the domain,
with the boundary conditions incorporated implicitly and explicitly.

The approximate solution within each element is constructed using shape functions,
which define how the field variables vary within an element. The shape functions are
typically polynomials of a certain degree and they interpolate the solution between
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nodes. The unknowns in the problem are discretized at the nodes and are associated
with degrees of freedom, DoF's, which represent the unknown variables, for example
displacements and rotations.

The choice of shape functions directly influences the accuracy of the solution. A
polynomial of degree 1 corresponds to linear elements, while a polynomial of degree
2 corresponds to quadratic elements, providing a more accurate approximation. The
number of nodes in an element determines the number of terms in the polynomial
approximation, which in turn influences the element’s ability to capture variations in
the solution.

As the element size decreases, the approximate solution converges toward the exact
solution. However, when designing a FEM mesh one must balance accuracy and
computational cost. This can be done by making use of symmetry in the geometry or
applying knowledge of the end results by refining the mesh where significant changes
in the field variables occur while keeping it coarser in regions with less variation.

2.2.2 Abaqus

Abaqus is a simulation program based on the FE method that offers a wide range of
capabilities with regards to geometry, materials and problem types that can be studied
for both linear and non-linear analysis. A complete Abaqus analysis consists of three
stages: preprocessing, simulation and post-processing, which are linked together by
files as shown in Figure 2.3. The preprocessing stage defines the model and numerical
problem which is then solved in the simulation stage. The results can thereafter be
evaluated in the post-processing stage [5].

Input file:
job.inp

Figure 2.3: Stages and files in Abaqus.

Output files:
job.odb, job.dat,
job.res, job.fil

Simulation
Abaqus/Standard
or Abaqus/Explicit

Preprocessing
Abaqus/CAE or
other software

Postprocessing
Abaqus/CAE or
other software

An Abaqus model is composed of several different components that together describe
the physical problem and the results to be obtained. These include a discretized geo-
metry, element section properties, material data, loads, boundary conditions, analysis
type and output requests.

Abaqus provides two different interfaces for the FE modelling. One of these is the
interactive interface, which consists of either a graphical user interface or a scripting
interface based on the programming language Python. The second one is the keyword
interface, which is a text-based interface.

The interactive interface, Abaqus/CAE, is the Complete Abaqus Environment that
allows for models to be created and meshed, as well as physical and material properties
to be assigned to the geometry together with loads and boundary conditions. When
the model has been generated and submitted, Abaqus/CAE generates an input file
with all relevant data which can be sent for analysis [6].

8



The keyword interface

The keyword interface provides the same functionality as the interactive interface,
but can be used independently of the Abaqus/CAE. This is achieved by the use of
keywords, i.e. commands defined by Abaqus using a specific syntax in a so-called input
file. An input file contains the complete description of the numerical model, where
every operation in the Abaqus/CAE is converted to a keyword [7].

The input file must follow a certain structure to be valid [8]. First comes the model
definition, where all the nodes and their respective coordinates are defined as well as
all the elements with the nodes in each element listed in an order that aligns with
the Abaqus framework for node ordering. Furthermore, all relevant element and node
sets need to be defined in order to allow for material, load and boundary condition
assignments. Materials need to be defined by specifying properties, followed by a
definition of history data, where the step is defined, boundary conditions, loads and
output requests. If multiple parts are to be used in the model, it is often useful
to create instances of the parts as to avoid conflict between node numbering in the
different parts.

An example of an input file for a simple ground model consisting of a cube with the
sides of 1 and of only one element consisting of 20 nodes is depicted in Appendix
A. Abaqus allows for a maximum of 16 values per row, which is why the remaining
nodes in the element continue on a new row. The example input file specifies a steady
state analysis with a load of 1 N placed on the model and the response of which is
measured in the whole model as well as for a specified observation point with regards
to displacements, velocity and acceleration.

The model created can be submitted for Abaqus analysis directly or be opened in
Abaqus/CAE for viewing before sending the job for analysis, see Figure 2.4.

Figure 2.4: Ground model consisting of a cube with the sides of 1. Load placed in
coordinates (0,0,1) and observation point in coordinates (1,0,1).



Elements

Abaqus has an extensive element library that can be used for different applications.
There are five aspects that characterizes an elements behaviour. These are family,
degrees of freedom, number of nodes, formulation and integration. Each element in
Abaqus has a unique name that identifies each of the five aspects of an element [9].

The element family relates to the geometry type of the element and is indicated in the
first letter or letters of the element’s name. Relevant examples of this is the continuum
elements that start with a ”C”, and infinite elements that start with " CIN”. Degrees
of freedom are, as explained in Section 2.2.1, the fundamental variables calculated
during the analysis. Number of nodes in an element is significant as that is where the
degrees of freedom are calculated in the element. At any other point in the element,
the variables are obtained by interpolation from the nodal variables. Elements that
have nodes only at their corners use linear interpolation in each direction and are
therefore called linear elements or first-order elements. Elements with mid-side nodes
use quadratic interpolation and are called quadratic elements or second-order elements.
The number of nodes in an element is indicated in the element name. An example of a
complete element name in Abaqus is C3D8, signifying a continuum, three-dimensional
8-node element.

Formulation refers to the mathematical theory used to define the element’s behaviour.
The standard stress/displacement element is based on the Lagrangian formulation
and is for this case not reflected in the element name. All elements use numerical
integration in order to allow analysis of any material behaviour. Some continuum
elements can use full or reduced integration, labelled as ”R” in the element name. For
full integration, enough calculation points are used within each element to capture the
linear material behaviour exactly. For reduced integration, fewer calculation points
are used within each element. This provides accurate enough results for the main
behaviour, but might miss some complex effects. Using the previous 8-node element
as example, the full element name with reduced integration would be C3D8R.

Solid continuum elements

Solid continuum elements are the standard volume elements of Abaqus and may be
used for linear stress analysis [10]. Relevant for this project are two types of con-
tinuum elements. The three-dimensional solid 20-node quadratic brick element with
full integration, C3D20, and the axisymmetric solid 8-node biquadratic element with
full integration, CAXS8. An axisymmetric element is a two-dimensional element that
is symmetric with respect to geometry and loading about an axis.

The node ordering in the elements is of importance as it ensures positive surfaces and
volumes, see Figure 2.5.

10
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Figure 2.5: Node ordering for two continuum elements in Abaqus. Left: C3D20. Right:
CAXS.

Infinite elements

When creating a FE model, boundaries are inevitable. This is a problem when wanting
to model a semi-infinite domain because it leads to unwanted boundary value problems
in the model. It is particularly a concern in dynamic analyses, where the boundaries
will cause a reflection of energy back into the region being modelled. In Abaqus, this
is solved with the use of infinite elements.

The infinite elements provide ”quiet” boundaries to the finite element model in dy-
namic analyses by modelling the basic solution variable, in this case the displacement,
with respect to spatial distance measured from a "pole” of the solution, so that the
displacement moves towards zero as the distance moves towards infinity [11]. This is
achieved by writing the infinite elements in Abaqus using only nodes on the interface
between the finite and infinite elements and on each edge that stretches to infinity
[12], see Figure 2.6.

Figure 2.6: Node ordering for two infinite elements in Abaqus. Left: CIN3D12R. Right:
CINAX5R.

The infinite elements are the most effective when hit by vibrations exactly perpen-
dicular to the boundary. The sweeping direction of the elements is of importance as
the elements must be stacked in the direction of the edges that stretch to infinity.
Important to note, however, is that the boundaries are quiet and not silent, meaning
they are not perfect transmitters and should therefore still be placed at a reasonable
distance from the region of main interest [11].

11



2.3 Geometry- and mesh generation

Abaqus could be used for the preprocessing stage, i.e. for the model creation, as
explained in the previous section. However, for the purpose of creating different sized
models and elements based on the waves propagating in the medium and the frequency
range that is to be studied, it would be more efficient if the proper geometry and mesh
were automatically created based on the values of the influencing parameters. Not
using Abaqus for the creation of the models would also allow for the models to work
for all Abaqus versions and would ensure that the process is not limited by available
Abaqus licenses.

As the Abaqus scripting interface is an extension of the programming language Python,
the choice of Python as the tool for creating the geometry and mesh fell naturally.

2.3.1 Python

Python is an object-oriented programming, OOP, language and makes use of core
OOP principles such as classes, objects, encapsulation, inheritance, polymorphism
and abstraction. It also makes use of concepts such as DRY, which stands for Don’t
Repeat Yourself and encourages the use of functions instead of reusing the same code.
These concepts are often useful when dealing with large programs as they provide a
more structured code.

A class is a blueprint for creating an object. It defines a set of attributes, i.e. variables,
and methods that the created object can have. An object is in turn an instance of a
class. It represents a specific implementation of the class and holds its own data. The
self parameter is used as a reference to the current instance of the class and allows
one to access the attributes and methods of the object.

Encapsulation is the bundling of data and methods within a class, with the option
of restricting access to some components to control interactions. Inheritance allows a
class, the child class, to acquire properties and methods of another class, the parent
class. This promotes code reuse and enforces the DRY principle. Polymorphism in turn
allows methods in different child classes to have the same name but behave differently
through method overriding, while abstraction ensures consistency in child classes by
enforcing the implementation of abstract methods [13].

Python has an extensive standard library of built-in functions, found in [14], while
also providing compatibility with a large amount of external libraries such as NumPy,
Matplotlib, QtPy and Gmsh.

2.3.2 Gmsh

Gmsh is a three-dimensional FE geometry- and mesh generator that can be used
through a number of different application programming interfaces, APIs, one of these
being Python [15]. The following section will provide relevant theory on the Gmsh
Python API.
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Geometry

A geometry in Gmsh is defined by points, curves, surfaces and volumes, known as
entities. Each entity is uniquely defined by a tuple containing two integers, the entity’s
dimension and its tag (dim, tag). The tag is always unique per dimension. The
dimensions are 0 for points, 1 for curves, 2 for surfaces and 3 for volumes [16]. The
first point created would therefore be uniquely identified by the tuple (0, 1).

A point is created by defining its coordinates, an optional target mesh size close to
the point and an optional point tag. If a point tag is not defined, Gmsh will appoint
an appropriate tag.

gmsh.model.geo.addPoint (x-coord, y-coor, z-coord, target mesh size, point

[ tag)

Curves, and in this case specifically straight lines, are created by specifying the two
point tags that will be the start and end points of the line along with an optional line
tag. The line tags are separate from point tags and the same numbers can therefore
be reused.

gmsh.model.geo.addLine(point tag of start point, point tag of end point,
— line tag)

For the third elementary entity, the surface, a curve loop must first be defined by an
ordered list of connected curves. The curves must be listed with correct signs that
ensure counter-clockwise orientation of the surface. The plane surface can thereafter
be defined by the use of the curve loop tag.

gmsh.model.geo.addCurveLoop([line tagl, line tag2, line tag3, line tag4],

— curve loop tag)

gmsh.model.geo.addPlaneSurface([curve loop tagl, surface tag)

Lastly, a volume can be created by, in the same manner as for surfaces, first defining
a surface loop containing a list of surfaces that enclose the volume and then creating
the volume by the use of the surface loop tag.

gmsh.model.geo.addSurfacelLoop([surfacel, surface2, surface3, surface4,

— surfaceb, surface6], surface loop tag)

gmsh.model.geo.addPlaneSurface([surface loop tag], volume tag)
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Gmsh offers different approaches to creating entities in the geometry. One of these is
manually creating every point, line, surface and volume in the geometry in a manner as
explained above. This approach offers complete control of the created entities and tags,
it is however rather time consuming. For a simple cube, this method would require
the creation of 8 points, 12 lines, 6 curve loops/surfaces, and 1 surface loop/volume.

An alternative method for the creation of geometries in Gmsh is extruding entities to
create entities of higher dimensions. A point could be extruded to a line, a line to a
surface, and a surface to a volume. This is done using the Gmsh extrude function with
arguments for the entity to be extruded, the translations in the x- y- and z- direction
for the extrusion, and the number of elements to be created in the extrude direction.

gmsh.model .geo.extrude([entity(dim, tag)], dx, dy, dz, numElements=[])

This method could be used to create a cube with the sides 1.

gmsh.initialize()

#Create a point
gmsh .model .geo.addPoint (0, 0, 0, 0, 1)

#Eztrude point to a line

line = gmsh.model.geo.extrude([(0,1)], 1, 0, 0, numElements=[1])

#Extrude line to a surface

surface = gmsh.model.geo.extrude([line[1]], O, 1, O, numElements=[1])

#Eztrude surface to a volume

volume = gmsh.model.geo.extrude([surface[1]], 0, 0, 1, numElements=[1])

gmsh .model .geo.synchronize ()

The extrude function returns a list of tuples (dim, tag) with the created entities from
the extrusion. The extrusion in the example will return:

line = [point, line]
surface = [1st line, surface, 2nd line, 3d line]
volume = [top surface, volume, lst side surface, 2nd side surface, 3d side

— surface, 4th side surface]

The extrude function creates the same geometry with less code, with the downside
of possessing less control of the geometry. However, the methodologies could also be
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combined, using the first method where more control is needed and the second method
otherwise.

Another relevant Gmsh feature is physical groups, which allows for groups of entities
to be defined. This is particularly useful when wanting to define certain parts of the
geometry with regards to, for example, material or element type. Physical groups are,
in the same manner as entities, defined by a tuple containing the physical group’s
dimension and tag.

gmsh.model .addPhysicalGroup(dim, [entity tags], physical group tag, name="")

The entities for the model can be extracted as a list of tuples using gmsh.model.
getEntities(), after which the physical group of an entity can then be checked using
gmsh.model.getPhysicalGroupsForEntity(entity dim, entity tag).

Elements and mesh

By default, meshes produced by Gmsh are unstructured and the elements generated
are linear triangles for surfaces and linear tetrahedra for volumes. In order to guarantee
conformity in the mesh, the mesh generation is performed in a bottom-up flow, where
curves are discretized first and the mesh of the curves is then used to mesh the surface,
which in turn is used to mesh the volumes.

A structured mesh can be achieved using the extrusion function previously mentioned,
and/or by using transfinite commands while creating the entities.

gmsh.model.geo.mesh.setTransfiniteCurve(line tag, nbr of points on the line)
gmsh.model.geo.mesh.setTransfiniteSurface(surface tag)

gmsh.model.geo.mesh.setTransfiniteVolume(volume tag, [corner point tags])

In order to obtain quadrangles instead of triangles, the recombination command can be
used. The element order could then be set to give incomplete second order quadrangle
elements, i.e. a 20-node brick or 8-node quadrangle [16], see Figure 2.7.

#recombine all triangles into quads

gmsh.option.setNumber ('Mesh.RecombineAll', 1)

#set second order elements

gmsh.option.setNumber ('Mesh.ElementOrder', 2)

#set incomplete second order elements

gmsh.option.setNumber ('Mesh.SecondOrderIncomplete', 1)
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Figure 2.7: Node ordering for two second order quadrangle elements in Gmsh

Once the mesh is generated, mesh data related to the nodes and elements can be
extracted either for all entities, or for a specific entity by using the entity’s dimension
and tag as arguments to the functions.

nodeTags, nodeCoords, nodeParam = gmsh.model.mesh.getNodes(dim, tag)

elemTypes, elemTags, elemNodeTags = gmsh.model.mesh.getElements(dim, tag)
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3 Program structure

The program for the analysis of ground vibrations in Abaqus was developed using
Python.

The program starts with class BaseModel, which serves as a blueprint for two models,
the axisymmetric and the three-dimensional (3D) model. This class defines com-
mon parameters and includes methods to calculate model- and element sizes based
on wavelengths. Two specialized model classes inherit from this base class, class
Axisymmetric and class Model3D. Each specialized class implements the specific geo-
metry creation and mesh generation for its model type. Once the model is created,
class MeshData extracts all relevant information from the mesh. class Visualization
allows for visual inspection of the created models.

class InputFile uses the model- and mesh data to generate Abaqus input files. For
more complicated analyses across frequency ranges, class TailoredInputFiles creates
multiple input files by dividing the frequency range into bands and updating the model
for each band.

class RunAbaqus handles job submission to Abaqus, either in series or parallel, and
monitors job status. After Abaqus completes the analyses, an external script extracts
data from the output database files using class 0DBData. Finally, class Results
processes this data and plots the results. Figure 3.1 depicts the work flow and class
relationships.

The program can be managed from a user interface, created to improve user-friendliness.

MeshData()
__init__(model)
extract_mesh_data() RunAbaqus()
find_closest_node_on_surface() —init__(inpfiles)
; ; run_job()
Axisymmetric(BaseModel) l view_job()
__init__()
Basglv_lodel() geometry() -
__init__() InputFile()
geometry() | ,| —init__(model, meshData) ODBData()
calculate_wavelengths() generate_inputfile() __init__(odbfiles)
calculate_model_ write_inputfile() extract_data_from_all_odbs()
and_element_sizes() ModeI3Di$1Ii3tas?;'Iodel) buffer_data() extract_data_from_odb()
pp—— format_str() save_data_to_file()
geometry() title()
i l i Results()
Visualization() TailoredInputFiles() __init__(csv/txtfiles)
__init__(model) — __init__(model) load_semi_analytic_data()
visualize_mesh() generate_tailored_inputfiles() plot_data()

Figure 3.1: Work flow diagram and class relationships.
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3.1 Creating the models

The creation of the models starts with the parent class BaseModel. The constructor of
this class defines all of the relevant common parameters for the models, divided into
parameters defined by the user and parameters that are calculated by the class.

The user-defined parameters encompass properties of three ground layers. These prop-
erties include depth, inclination, density, Young’s modulus, Poisson’s ratio, and loss
factor. They also include frequency-related specifications such as the upper and lower
bounds of the frequency interval, size of frequency increments and size of frequency
bands. The size of the ground domain is determined by parameters defining the number
of P-wavelengths in each direction, the distance between the loading and observation
point, and the length and width of an optional building. Element size is determined
by the number of elements per Rayleigh wavelength. Finally, the size of the load is
defined.

The stored values that are calculated by the class include the size of the model in
all directions, the height difference in each layer’s surface due to an inclination, the
element size and the depth of the infinite elements.

class BaseModel():
def __init__(self):

self.dim = None

self .nbr_of_nodes_per_element = None

""'User defined parameters'''
self.depth = [4, 5, 5]
self.inclination = [0, 0, 0, O]
self.rho = [2000, 2000, 2000]
self .E [160e6, 800e6, 800e6]
self.v [0.33, 0.33, 0.33]
self.eta = [0.06, 0.06, 0.06]

50
55

self.lower_freq

self .upper_freq
self.freq_increment = 0.5
self.freq_band = 5

self .nbr_of_wavelengths_in_model = 1
self .nbr_of_elements_per_wavelength = 5
self.dist_load_op = 10
self.building_length = O
self.building_width = 0

self.force = None
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"""Calculated values'''
self.x = None

self.x_each_dir = None

self.y = None

self.z = []
self.element_size = None
self.tot_depth = None

self.inf = None

The BaseModel class contains three methods, one for calculating wavelengths, one for
calculating model- and element sizes and one initializing the creation of the geometry.

def calculate_wavelengths() uses the material properties defined in the constructor
to calculate and store the relevant wavelengths for each of the three layers in lists. The
procedure starts with calculating the wave speeds in each of the three layers. For the
P-wave and S-wave this is done using Equations 2.1 and 2.2. The wave speed for the
Rayleigh wave is approximated using the design case of Poisson’s ratio being v = 0,
which translates into cg &~ 0.862cg. The P-wavelengths and Rayleigh wavelengths for
each layer are calculated using Equation 2.3 and are then stored in their respective
list. Finally, the function returns the maximum P-wavelength and minimum Rayleigh
wavelength that occurs in any of the three layers.

def calculate_model_and_element_sizes() invokes the previous function and uses its
return values to calculate the model- and element sizes.

The calculations of the model size differs depending on the model type. For the
axisymmetric model, the x-axis has its origin at the loading point, and the size of the
model in the x-direction is calculated as the sum of the distance between the loading
and observation point and the maximum P-wavelength multiplied by the user-specified
number of wavelengths, see Figure 3.2.

if self.dim ==

self.x = max_p * self.nbr_of_wavelengths_in_model + self.dist_load_op

Load point Observation point
® ® X

0

self.dist_load_op self.nbr_of_wavelengths_in_model x max_p

Figure 3.2: The x-axis of the axisymmetric model.

In order to provide the possibility of including a building to the 3D model, the x-axis is
constructed a bit differently. The origin starts in the observation point. In the positive
x-direction, the model extends to the sum of half of an optional building’s length and
the maximum P-wavelength multiplied by the user-specified number of wavelengths.
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In the negative x-direction, the model extends to the sum of the distance between
loading and observation point and the maximum P-wavelength multiplied by the user-
specified number of wavelengths, thus ensuring the same distance from the boundaries
to the loading point and the outer edge of a possible building respectively, see Figure
3.3. The 3D model is single-symmetric about the x-z plane and the size of the model
in the y-direction is therefore only calculated in one direction as the sum of half
the building’s width and the maximum P-wavelength multiplied by the user-specified
number of wavelengths.

if self.dim ==
self.x_each_dir = max_p * self.nbr_of_wavelengths_in_model
self.x = 2 * self.x_each_dir + self.dist_load_op +
<~ (self.building_length/2)

self.y = max_p * self.nbr_of_wavelengths_in_model + self.building width

self.build_width

Load point Observation point
. ° ¢ ° X
0
self.nbr_of_wl_in_model self.dist_load_op self.build_length  self.nbr_of_wl_in_model
X max_p +2 X max_p

Figure 3.3: The x-axis of the 3D model.

The rest of the calculations are the same for both model types. The depth of the
third layer is adjusted to align the total depth with the calculated value for the model
size in each direction. The element size is decided as the length of the minimum
Rayleigh wavelength divided by the user-specified number of elements per wavelength.
The height difference on a layer’s surface due to an inclination is calculated as the
x-distance multiplied by the tangent of the angle. The depth of the infinite elements
is set as a tenth of the total depth of the model.

self.tot_depth = self.nbr_of_wavelengths_in_model*max_p
#Adjusting the depth of layer 3
self .depth[2] = max(0.1, self.tot_depth-(self.depth[0]+self.depth[1]))
#Depth of infinite elements
self.inf = self.tot_depth / 10
#Mesh size dependent on Rayleigh wavelength
self.element_size = min_r / self.nbr_of_elements_per_wavelength
#Height difference in layer boundary due to inclination
for inc in self.inclination:
inc_in_rad = math.radians(inc)

self.z.append(self.x * math.tan(inc_in_rad))
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Finally, def geometry() invokes the function calculate_model_and_element_sizes(),
sets up the initialization of Gmsh and arranges so that the mesh created by child
classes will contain incomplete second order elements, i.e. an 8-node quadrangle for
the axisymmetric model or a 20-node brick for the 3D model, according to Section
2.3.2.

3.1.1 Axisymmetric model

The Axisymmetric class inherits from the BaseModel class and reuses the attributes
defined in this parent class by calling its constructor through super().__init__Q),
which is known as constructor chaining. The class overrides some of the attributes
in order to make them model specific, such as the dimension, number of nodes per
element and the force.

def __init__(self):
super() .__init__Q)
self.dim = 2
self .nbr_of_nodes_per_element = 8

self.force = 1

The class also extends the parent class’s implementation of the geometry() method
by calling super() .geometry() before adding its own functionality. In order to pos-
sess more control over the created geometry, and thereby simplifying the possibility
of inclined ground layers or more complicated geometries, the manual approach as
described in Section 2.3.2 is applied to the parts of the model that will contain finite
elements.

First, points are defined by coordinates. For points along the right boundary of the
model, where the x-coordinate is equal to the model width, see Figure 3.4, the y-
coordinates are determined by the inclination of each layer. A positive inclination
value results in an elevated y-coordinate, while a negative inclination produces a lower
y-coordinate, relative to a horizontal orientation. This relationship is quantified by the
tangent of the inclination angle multiplied by the x-distance, as previously calculated in
the BaseModel class. The points along the left boundary, at x = 0, maintain consistent
depths corresponding to the cumulative thickness of the overlying layers.

Between the points, horizontal and vertical lines are defined and set as transfinite in
order to create a structured mesh. For the horizontal lines, i.e. the lines running in the
x-direction, the number of points are set to x/element_size rounded upwards to an
integer. For the vertical lines, the number of points are calculated using the maximum
depth of each layer, taking a possible inclination into consideration, divided by the
element size and rounded upwards to an integer.

#Vertical lines
gmsh.model.geo.mesh.setTransfiniteCurve(line,

— math.ceil(max_depth_in_layer/element_size + 1))
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The curve loops are defined in a counter-clockwise manner and plane surfaces are
thereafter created and set as transfinite.

As less control is needed for the infinite domains, these parts of the model are created
using the extrude method. The lines that make up the boundaries that should be
modelled as infinite are simply used as a base in the extrude function with the number
of elements in the extrude direction set to 1, see Figure 3.4. The direction of the extru-
sion for the infinite domain is important, as this will affect which side of the elements
that go towards infinity, as explained in Section 2.2.2. Extruding perpendicular to the
side that should go towards infinity, as done in the procedure described above, will
ensure the right direction.

For future analytical purposes, a categorical distinction is established between geo-
metric entities, in this case surfaces, containing finite elements versus those containing
infinite elements. The surfaces are also divided according to their respective ground
layer. To enable this classification system, data structures are initialized prior to geo-
metry creation, a list for finite surfaces, another for infinite surfaces and a nested
list comprising of three distinct lists corresponding to each ground layer. During the
geometric construction process, each surface entity is then systematically categorized
and stored in both the appropriate element type collection and its corresponding layer
within the nested list. These categorized surfaces are then used to create six physical
groups of entities: ’Finite ground’, ’Infinite ground’, 'Layer 1’, ’Layer 2’, 'Layer 3’
and 'Ground surface’, referring to the upper most line in the model constituting the
ground surface.

Finally, the mesh is created using the Gmsh generate function with the model di-
mension as an argument, gmsh.model .mesh.generate(2). The model can be visualized
using the Visualization class, which takes an instance of the model as an input para-
meter, creates the geometry for the instance and uses a Gmsh command to visualize
the model, Figure 3.4.

Y
Z X

Figure 3.4: The axisymmetric model, symmetric about the y-axis and consisting of three
ground layers with infinite elements to the right and bottom.
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3.1.2 3D model

The creation of the 3D model follows the same procedure as described for the axisym-
metric model, albeit with further complexion. Starting with the constructor, the same
method of constructor chaining with the parent class BaseModel applies. However, to
achieve a load equivalent to the axisymmetric model, the size of the load is halved due
to the 3D model being single-symmetric and the load being placed in the symmetry
plane.

def __init__(self):
super () .__init__Q
self.dim = 3
self .nbr_of_nodes_per_element = 20
self.force = 0.5

The number of points, lines and surfaces are significantly increased for this model and
are dealt with by an increased use of for-loops. As in the case of the axisymmetric
model, the z-coordinates of the furthest right points in the finite domain are depend-
ent on the inclination. The transfinite lines in the y-direction, see Figure 3.5 are,
equivalently to the x-direction, set to the rounded up integer of y/element_size.

gmsh.model.geo.mesh.setTransfiniteCurve(line, math.ceil(y/element_size + 1))

Furthermore, volumes are created for each layer by the use of surface loops and setting
transfinite volumes using the corner points for the respective layer.

The infinite domains are extruded from four different directions of the model, in order
to ensure the correct sweep direction. This calls for the need to keep track of all side
surfaces created in the model, which is done by storing the surfaces when creating
them in a nested list consisting of three lists, one for each layer. The values in the
list are then used for extruding the infinite domains with 1 element in the extrude
direction.

#[[layer1(right, back, left)], [layer2], [layer3]]

infinite_base_surfaces = [[]1, [1, [1]

x_extr [inf, O, -inf]

y_extr = [0, inf, O]

for layer in range(3):
for side in range(3): #right, back, left
extr_vol = gmsh.model.geo.extrude([(2,
< infinite_base_surfaces[layer] [side])], x_extr[sidel],

— y_extr[side], 0, numElements=[1], recombine=True)
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In the same manner as explained for the axisymmetric model, the volumes for the finite
domain, infinite domain and each ground layer are stored. Additionally, the surfaces
coinciding with the symmetry plane, i.e. the x-z plane, are also stored. Physical
groups are created for the finite domain, the infinite domain, layers 1-3, the ground
surface, and the symmetry plane respectively. Lastly, the mesh is generated using
gmsh.model .mesh.generate(3), see Figure 3.5.

X

D b g

Figure 3.5: The 3D model, single-symmetric about the x-z plane with infinite elements
applied in all other directions.

3.2 Extracting mesh data

The MeshData class takes an instance of either the axisymmetric or the 3D model as
an input parameter. Its constructor contains attributes for all the data that needs to
be extracted from the mesh of the model for the input file to be valid, see Section 2.2.2
and Appendix A.

For both model types, these attributes include all the nodes in the model with their
respective coordinates, the finite elements with their respective node tags ordered
according to the Abaqus framework, the infinite elements with correct node ordering,
the elements in layers 1-3 respectively, the nodes that make up the ground surface of
the model and their respective coordinates, the node tag used as the loading point and
the node tag used as the observation point. Additional attributes are needed for the
3D model, one listing all the node tags on the surface, i.e. only the tags and not the
coordinates, and one listing all the node tags on the symmetry plane.

The attributes that are to be assigned as either NumPy arrays or a single value are
given the initial value None while the rest of the attributes are created as empty lists.
The attributes are updated after mesh data has been extracted through the extract_
mesh_data() function.
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class MeshData():

def

__init__(self, model: object):
self .model = model

self.model.geometry()

"""Attributes relevant for both models'''
self.all_nodes = None

self.fin_elements = None
self.inf_elements = None

self.el_layerl = []

self.el_layer2 = []

(]

self.surface_nodes = None

self.el_layer3

self.loading_point = None

self.observation_point = None
""'3D model specific attributes''’
self.surface_node_tags = []

self.sym_plane = []

self.extract_mesh_data()

The extract_mesh_data() method extracts data from the mesh using the functions ex-
plained in Section 2.3.2. The attributes self.all_nodes, self.fin_elements, self.
inf_elements and self.surface_nodes are created as NumPy arrays, due to the data
for these needing to be arranged in specific rows and columns, which can be achieved
using the NumPy functions reshape(), hstack() and vstack(). The other attributes
containing multiple data do not demand a specific order and are for simplicity created

as lists.

Categorized data is achieved by looping through every entity in the model, i.e. every
point, line, surface and volume, and identifying which physical groups it belongs to,
followed by extracting the elements and nodes in the entity and storing them in the
appropriate data structures.

entities = gmsh.model.getEntities()

for entity in entities:

dim, entity_tag = entity

physical_group_tags = gmsh.model.getPhysicalGroupsForEntity(dim,

—

_, elemTags, elemNodeTags

node_tags, node_coords, _

—

entity_tag)

includeBoundary=True)

= gmsh.model .mesh.getNodes(dim, entity_tag,

gmsh.model .mesh.getElements(dim, entity_tag)
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For the 3D model, the node tags in the finite and infinite element arrays need to be
reordered as there is a discrepancy between node ordering in Gmsh and Abaqus, see
Figure 3.6. The excessive nodes in the infinite elements must also be deleted. The node
ordering for the 8-node quadrangle is the same for both software tools and therefore
do not need to be rearranged.

if self.model.dim ==

self.fin_elements[:, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
- 12, 14, 10, 17, 19, 20, 18, 11, 13, 15, 16]]
self.inf_elements[:, [0, 1, 2, 3, 4, 9, 12, 14, 10,
-~ b, 6, 7,8, 17, 19, 20, 18, 11, 13, 15, 16]]

self.inf_elements = np.delete(self.inf_elements, slice(13,21), axis=1)

self.fin_elements

self.inf_elements

The first column in the arrays, [0], contains the element tags. The node tags start
from the second column, [1], and correlate with the node tags in Figure 3.6.

8 20 7 8 15 7

18 16

17 19 13 14

16 15 20 19
11 13 17, 18

10 12 12 {0
1 9 2 1 9 2

Figure 3.6: Comparison of node ordering in Gmsh, left element, and Abaqus, two right
elements.

The nodes used as the loading and observation points, respectively, are determined
by the use of the find_closest_node_on_surface(x_value) method, which takes a x-
coordinate as an argument and returns the node on the x-axis that is located closest
to this value.

The node used as loading point for the axisymmetric model is set as the node closest
to the point (0,0). A point was defined with these coordinates in the creation of the
axisymmetric model, the loading point in this model will therefore always have these
exact coordinates. The node used as the observation point will however be approximate
to the user-specified x-coordinate, with the find_closest_node_on_surface() function
finding the node on the x-axis closest to the x-value that corresponds to a given distance
between the loading and observation point defined by the user.

In the 3D model, the observation point is chosen as the node on the x-axis closest to
the coordinates (0,0,0). This is to ensure that a building can be added to the model
correctly. The loading point is set as the node on the x-axis closest to the x-coordinate
relating to a given distance between the loading and observation point.

The user-specified distance between loading and observation point will therefore be
approximate for both model types. However, the exact distance typically only deviates
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from the user-specified distance by a few centimetres and is apparent from the created
input file, see Section 3.3.1.

3.3 The input file

3.3.1 Writing the input file

The InputFile class takes a model instance and a MeshData instance as input para-
meters and uses these as attributes, as well as a Boolean attribute for including a
building.

class InputFile():
def __init__(self, model: object, meshData: object):
self .model = model
self .mesh = meshData

self.incl_building = False

The class contains methods to format data, write an input file and generate an input
file with an optional file name.

def write_inputfile() starts off by opening a file and starting writing to it with the
use of help functions, attributes from the model instance and the data structures from
the MeshData instance. In the beginning of the input file, useful information about the
model and the mesh is written out, see example below.

** Number of nodes: 1011356

** Number of elements: 243354

** Number of wave lengths in each direction: 2.0

*% Number of elements per wavelength: 4

x* Model size: x = 71.59 m, y = 30.79 m, depth = [4.00, 5.00, 21.79] m
x* Inclination: [0.0, 0.0, 0.0, O] degrees

** Mesh size: 0.68 m

xkx E = [1.60e+08, 8.00e+08, 8.00e+08] Pa

*xx Density = [2000.0, 2000.0, 2000.0] kg/m3

** Poissons = [0.33, 0.33, 0.33]

*x* Structural damping = [0.06, 0.06, 0.06]

** Frequency step: 0.5 Hz

** Horizontal distance between load and observation point: 10.13 m
** Height difference between load and observation point: 0.00 m

** Force: 0.5 N

The file is then written following the structure in Section 2.2.2 and Appendix A.
Abaqus limits the number of numerical values on each line to a maximum of 16, for
rows of data containing more values than this the data is formatted in the buffer_data
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function. Data relating to element definition need to end the first line of data with a
comma and then continue the data on the line underneath, letting Abaqus know that
the element definition is not finished. See the example below of an element definition,
where 7239”7 is the element tag and the following 20 values are the node tags.

*Element, type=C3D20, elset=Set-fin_el
239, 815, 45, 1, 122, 3207, 1795, 381, 1942, 890, 60, 128, 891, 3283, 1810, 1958,
3284, 3282, 1811, 382, 1956

The data structures that only serve as element- or nodal sets and do not define a part
of the mesh is listed in rows of 16 values with no comma after the end value, see the
example below.

*Elset, elset=Set-layerl
239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254
255, 266, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270

As the name indicates, the buffer_data() function is also used to efficiently write data
to the file by the use of a buffer, i.e. a temporary storage, of 1000 in order to minimize
the number of write operations to file. Initially, the data was organized into tables
using the library Tabulate. However, this proved to be significantly less efficient and
was discarded considering its more of a custom rather than a requirement in Abaqus
to list values in right aligned columns. All text in the file was also initially built as a
single string in the program’s memory before writing it over to the file. As one input
file can contain million of text lines, this was discarded in favour of writing each line
directly to file. With these changes the generation of an input file was up to 80 times
more efficient, taking 10 seconds instead of 13 minutes.

The InputFile class offers the option of writing an input file with a building included.
This is determined by the Boolean attribute self.incl_building, which if set to True
will write additional lines to the input file making it compatible with the input file
of a building. The additional lines added are ones for creating parts for the building,
including the input file of the building using the Abaqus *include keyword, adding
a surface set for the nodes on the surface of the ground model, a surface set for
the nodes in the building footings and a tie constraint between these two using the
building footing set as a slave surface and the ground surface set as the master surface.
Additional material definitions are also added and applied to the building parts and
symmetry boundary conditions are set for the building. Lastly, the observation point
is changed to a point defined in the building’s input file.

For this option to be viable, the building must have the same coordinate system as
the ground model, be single-symmetric about the x-z plane and have its observation
point in the x- and y- coordinates 0. Its input file must contain only instances and
sets appointed to the instances. Furthermore, the building’s input file must be placed
in the same folder as the input file for the created ground model when running the
analysis in Abaqus.
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3.3.2 Generating input files

The TailoredInputFiles class is responsible for the creation of multiple input files in
a frequency range, adjusting the model- and element sizes for each created input file.
The class takes a model instance as an input parameter and uses it as an attribute
along with two Boolean variables.

class TailoredInputFiles():
def __init__(self, model):
self .model = model
self.scale_layer2 = True

self.incl_building = False

The class contains only one method, def generate_tailored_inputfiles(folder_
path), which takes a directory path as an input parameter and uses it as a location for
where to save the generated files. The method creates a number of frequency bands in
the given frequency interval and loops through each band. For each frequency band, a
new model instance is created that recalculates the model- and element sizes using the
methods in the BaseModel class. The new model instance is used as an input parameter
for a new MeshData instance, which in turn is used together with the model instance
to create a new InputFile instance. An input file is written and generated using the
methods in the InputFile class and the loop restarts using the next frequency band.

The Boolean attribute self.scale_layer2 determines how the depth should be dealt
with when the model size decreases for frequency bands located in higher frequency
intervals. For each decrease in size, the depth of the third layer will be resized, but
when the model size has decreased to the point of the depths of the first and second
layers exceeding the total depth correlating to the chosen number of wavelengths,
self.scale_layer2 determines whether the second layer should be resized as well. If
set to True, the depth of the second layer is decreased in order for the total depth to
be accurate, if set to False the second layer will not be resized and the total depth
will be larger than the chosen number of wavelengths. The minimum possible depth
for the second and third layer respectively when resized is 0.1 m.

if self.scale_layer2 == True:
if current_model.depth[0] > current_model.tot_depth:
#if layer 1 1s deeper than total depth should be
0.1

current_model.depth[1]

else:

current_model .depth[1] = max((current_model.tot_depth -
< current_model.depth[0]), 0.1)
current_model.depth[2] = max((current_model.tot_depth -

< current_model.depth[0] - current_model.depth[1]), 0.1)

elif self.scale_layer2 == False:
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current_model.depth[1] self .model.depth[1]

0.1

current_model.depth[2]

self.incl_building determines which Boolean value the attribute with the same name
in the InputFile instance should be set to when creating the input file, determining
if a building is to be included or not.

3.3.3 Submitting input files for analysis

The input files are submitted for analysis through the RunAbaqus class, which takes
a list of either one or multiple input files as an input parameter and uses these as
attributes. The constructor also contains lists for the names and paths of the input
files as well as a variable for the elapsed time for an analysis and variables handling
parallel jobs.

class RunAbaqus():
def __init__(self, files):
self.files_basename = [os.path.basename(file) for file in files]
self.files_directory = [os.path.dirname(file) for file in files]
self.total_elapsed_time = None
self.run_parallel = False

self .max_parallel_jobs = 4

def run_job() provides the functionality of submitting jobs to Abaqus. If self.run_
parallel is set to False, the jobs will be submitted to Abaqus sequentially using the
module subprocess, which starts and handles external processes, and the command
subprocess.run(). Each job is run using 4 CPUs and is submitted using its input file
name without the .inp suffix in the specified directory.

for i, job_name in enumerate(self.files_basename):

directory = self.files_directory[i] or '.'

job_name_base = job_name.replace(".inp", "") if

< job_name.endswith(".inp") else job_name

subprocess. run(
f'abaqus job={job_name_base} cpus=4 interactive', shell=True,

— cwd=directory)

If self.run_parallel is set to True, the jobs will run in parallel, however only four at a
time as to not overload the computer. In this case, the command subprocess.Popen()
is used instead, offering more control and allowing parallel processes. Each job is run
using only one CPU.
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subprocess.Popen(f 'abaqus job={job_name_base}', shell=True, cwd=directory)

At regular intervals, the processes are checked to see if they have been completed by
controlling if a sta-file has been created and if so, reading it to control whether the
text "COMPLETED?” is present in the file, marking it as completed and submitting
a new job in its place.

For both sequential and parallel processes, the time it takes for all jobs to be completed
is measured and stored in self.total_elapsed_time.

def view_job() allows for the finished job to be viewed in Abaqus/CAE using the
created odb-file for the job.

os.system(f 'abaqus viewer database={job_name}"')

3.4 Post-processing of results

When a simulation is run in Abaqus, the results are stored in a output database file,
i.e the odb-file, see Figure 2.3. The odb-file can be used to post-process the results in
Abaqus/CAE using the view_job() function in the RunAbaqus class. Alternatively, the
results can be processed by extracting the data from the odb-files and plotting them
using Python.

3.4.1 Extracting results from odb-files

The extraction of data from odb-files is performed in a separate Python script. This is
due to the Abaqus Python library not being compatible with a lot of the libraries and
syntax used in the program, for example the QtPy library used for creating the user
interface, see Section 3.5, and f-strings used continuously throughout the main script.
The separate script contains the class 0DBData() which takes a list of odb-files as an
input parameter and creates an array of frequency data and a dictionary containing
different types of result data.

class 0ODBData():
def __init__(self, odb_files):
self.odb_files = odb_files
self.freq_array = None
self.data_dict = {}

The extract_data_from_odb() function opens an odb-file and extracts the steps and
regions from which output was requested. The steps and regions in the odb-files are
contained in dictionaries. As the input file contains a single step, Step-1, the dictionary
for the steps in the odb-file contains only one key. This key is extracted and saved

31



in a parameter, which in turn is used to extract the key for the region where history
output was requested, i.e. the observation point.

odb = openOdb(path=odb_path, readOnly=True)

step_name = odb.steps.keys() [0] #only 1 step
step = odb.steps[step_name]

region_key = step.historyRegions.keys() [0] #only 1 region

region = step.historyRegions[region_key]

The output in the region, i.e in the node, is then looped through and the real and ima-
ginary data for displacements, velocities and accelerations is extracted and converted
to magnitudes using Equation 2.8.

The magnitudes and corresponding frequencies are stored as values in self.data_dict
while the variable names, for example A1, are stored as keys.

The possibility of extracting data from multiple odb-files is given by the extract_
data_from_all_odbs() function, which loops over a list of odb-files and invokes the
extract_data_from_odb() function for each file, adding data to the self.data_dict
dictionary.

The save_data_to_file() function takes a file name as an input parameter and writes
the self.data_dict dictionary to a csv-file with a given file name.

3.4.2 Formatting and plotting the results

Going back to the main script, the results are formatted and plotted in the Results
class, which takes a list of csv- or txt-files as an input parameter.

class Results():

def __init__(self, files):
self.files = files
self.semi_analytical = False
self.incl_building = False
self.freq_lower = None
self.freq_upper = None
self.data_list = []

The class contains three methods, one for loading and formatting the data from the
chosen files, one for loading and formatting data from the semi-analytical Thompson-
Haskell model, see Section 2.2, and one for plotting the desired data.

The data from the csv-files are formatted in load_data_fem_models(). When data
from multiple odb-files are written to a csv-file, the file will contain double sets of data
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for the frequencies located at the bounds between two neighbouring frequency bands.
For example, a csv-file created from two odb-files containing the frequency intervals
50-55 Hz and 55-60 Hz respectively, will have a double set of data for the frequency
55 Hz when written over to the csv-file. This is dealt with in the function by using
the mean value of the data with double sets. The upper and lower frequencies in the
data from the file are stored as attributes and the data is stored in self.data_list.

If the attribute self.semi_analytical is set to True, the load_semi_analytic_data()
function loads the data from the semi-analytical model, either with a building included
or without, as determined by the attribute self.incl_building, and filters which
frequencies to be used based on the frequency interval used in the FE model. The
semi-analytical data can thereby be used for comparison and validation of the created
models.

The chosen data is plotted in plot_data() using the Matplotlib library. In the 3D
model, the data for the y-direction, i.e. the horizontal direction perpendicular to
the symmetry plane, is not plotted due to the observation point being placed in the
symmetry plane and all results in this direction therefore being zero.

3.5 User Interface

A user interface for the program was created in a separate script, mainprogram.py,
using the QtPy library and the design tool QtDesigner. This was done in order to
improve user-friendliness and communication between the program and the user. A
user manual for the interface can be found in Appendix B.

QtDesigner was used to design the complete layout of the interface, see Figure 3.7. The
created ui-file containing the layout was imported to the script along with the script
for the ground model. This allowed for the created user interface to be connected to
the functionality of the ground model program.

The script contains two classes, class MainWindow and class WorkerThread. The func-
tionality in the user interface is predominantly established in the MainWindow class,
which manages all clicks and events from the user interface and sets up the majority
of the connections between the QtDesigner file and the ground model program. The
WorkerThread class is only used to execute time consuming operations using threads,
i.e. parallel execution of a given code, in order to avoid the program being locked
during these executions.

A lot of the choices that were made during the structuring of the program were done
with the user interface in mind. For example, the depths of the layers were not
managed thoroughly in the BaseModel class in favour of handling the total depth
interactively in the user interface. This was achieved by having the third layer, i.e. the
half-space, automatically update whenever a parameter affecting model dimensions is
modified, as well as the interface generating a warning notification when the combined
depth of the two overlaying layers exceeds the calculated optimal total depth.
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| MainWindow - O X
© 3D model () Axisymmetric model
[ nclude building
Top layer Middle layer Half-space
Depth [m] 4 5 14.1
Inclination [degrees] 0 0 0
Density [kg/m3] 2000 2000 2000
Young's modulus [Pa] 1.6e+08 8e+08 8e+08
Poisson's ratio [-] 0.33 0.33 0.33
Loss factor [-] 0.06 0.06 0.06
Frequency interval [Hz] Lower limit: 50 Upper limit: 55 Freq band: 5
Model info
Frequency increments [Hz] 1
View mesh
Nbr of P-wavelengths in each direction 1.5 Force [N]: 0.5 Create input file
Nbr of elements per Rayleigh wavelength 5 Create tailored input files
Run job/jobs in Abaqus
Distance between load and observation point [m] 10 job/ q
Building length [m] 0 View job in Abaqus
Building width [m] 0 Plot results

Depth should be a total of 23.10 m
Element size is 0.54 m

Figure 3.7: The user interface.

Additionally, the geometry of a model object was not created in the model’s constructor
directly by invoking its geometry() function, as this would cause the geometry of the
model to be constructed directly upon starting the user interface and therefore causing
the program to be slower. It would also cause problems with updating the model when
a parameter was changed.

Furthermore, significant effort was put in to using the commands gmsh.initialize()
and gmsh.finalize() appropriately, as using the latter inappropriately would termin-
ate Gmsh and prevent further use of the program and using the former one inappropri-
ately would cause an error if used before a previous Gmsh session has been finalized.
The solution to this being that at the start of each new geometry creation, the pro-
gram will finalize a current Gmsh session if there is one active, and then initialize a
new session.

def geometry(self):
try:
gmsh.finalize()
except:
pass

gmsh.initialize()
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However, this is a possibly flawed solution, as Gmsh will not be finalized for the last
geometry created by the user and may lead to memory leaks.

There were also issues with using these commands in the WorkerThread class, as Gmsh
is not designed for multi-threaded initialization. This resulted in the operations using
Gmsh not being able to be executed from WorkerThread, most importantly the creation
of input files, and the program therefore freezing when executing these operations.

As mentioned in Section 3.4.1, the use of the Abaqus Python library was made more
difficult by the implementation of the user interface due to this library not supporting
the QtPy library. This disrupted the initial plan of having the user being able to dir-
ectly choose the odb-files to be plotted through the user interface. There are probably
ways of solving this issue, but due to limited time these efforts were discarded.

Also due to limited time, the user interface lacks error handling leading the program
to crash if invalid data types are entered as values, such as letters instead of numbers,
or if unreasonable values are entered which produces either faulty or excessively large
models. The user is therefore advised to enter only valid numerical values within
reasonable ranges.
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4 Results

Results are presented for both the axisymmetric model and the 3D model. All ana-
lyses were performed in the frequency domain. Although each analysis encompasses
displacement, velocity, and acceleration, only acceleration data are presented. This
choice is based on the main purpose of the study being parameter investigations and
comparison with a semi-analytical model. Since displacement, velocity, and accelera-
tion are mathematically related through time differentiation, presenting one variable
was deemed sufficient for the comparative purposes of this study. The results for
the axisymmetric model are presented for the horizontal and vertical directions, cor-
responding to the x-direction and the y-direction respectively, see Figure 4.1. The
results for the 3D model are presented for horizontal and vertical directions also, cor-
responding to the x-direction and the z-direction respectively. The accelerations in
the y-direction are not presented in the 3D model due to the observation point being
located in the symmetry plane and the results in the y-direction therefore being zero,
see Figure 4.2.

All analyses were conducted using the ground properties in Table 4.1. As the properties
of the middle layer and the half-space were the same, they were essentially one and the
same layer. Therefore the choice to resize the middle layer, if needed when model size
decreases, was used. The size of the load was 1 N for the axisymmetric model and 0.5
N for the 3D model. The approximate distance between the load and the observation
point was 10 m. For all analyses except for one including a building in Section 4.3, all
layers had 0° inclination.

The results are compared to the semi-analytical Thomson-Haskell model to prove their
validity.

Table 4.1: Properties of three ground layers.

Property  Top layer Middle layer Half-space

Depth (m) 4 - -
p (kg/m®) 2000 2000 2000
E (MPa) 160 800 800
v 0.33 0.33 0.33
n 0.06 0.06 0.06

Figures 4.1 and 4.2 showcase examples of the two model types in Abaqus prior and
after a steady state dynamics analysis. The most important take away from these
being that the boundaries are largely non-reflective.
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Figure 4.1: The axisymmetric model in Abaqus prior to and after analysis. The right
model is swept 180° around the y-axis.

Figure 4.2: The 3D model in Abaqus prior to and after analysis.

There are significantly fewer nodes in the axisymmetric model compared to a 3D
model with the same parameters. This resulted in the axisymmetric models being
able to submit for analyses in Abaqus from a regular computer, while the 3D models
required the use of a supercomputer. The computations of the 3D model were therefore
enabled by resources provided by LUNARC, The Centre for Scientific and Technical
Computing at Lund University.

The main issue when running the 3D model was its extensive use of RAM memory.
Even on LUNARC, the 3D model with certain parameters was unable to run on
regular nodes containing 256 GB RAM memory, as this resulted in out-of-memory
errors. It was also difficult to gain more memory by running the model across multiple
nodes, as the infinite elements prevented shared memory execution of the element
calculations thus disabling parallel element operations. The solution to this was using
nodes containing 512 GB RAM memory, these were however limited in number. The
axisymmetric model was therefore studied first, often in the full 1-100 Hz interval,
before determining a suitable smaller frequency range for the study of the 3D model.
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4.1 Parameter studies

Parameter studies were conducted in order to investigate how different parameters
affect the results and what values the parameters should have in order to produce suf-
ficiently accurate results at a reasonable computational cost. The parameters that were
studied included the number of P-wavelengths, the number of elements per Rayleigh
wavelength, the size of the frequency increments and the size of the frequency bands.

4.1.1 Number of P-wavelengths

The number of P-wavelengths that is used affects the size of the model in accord-
ance with Section 3.1. A study was done to determine the minimum number of P-
wavelengths that provide sufficiently accurate results. The analysis was conducted
using 5 elements per Rayleigh wavelength and 0.5 Hz frequency increments.

For the axisymmetric model, the 1-100 Hz interval was studied using 5 Hz sized fre-
quency bands for 0.5, 1, 1.4, 1.5 and 2 P-wavelengths, see Figure 4.3.

The results from the study indicate that there is larger variations for the higher fre-
quencies. The interval 60-75 Hz was therefore chosen to examine the parameter more
closely, see Figure 4.4.
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Figure 4.3: Accelerations in the axisymmetric model for different number of
P-wavelengths in the 1-100 Hz interval.
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Figure 4.4: Accelerations in the axisymmetric model for different number of
P-wavelengths in the 60-75 Hz interval.

The study was conducted for the 3D model using 1, 1.4, 1.5 and 2 number of P-
wavelengths, see Figure 4.5. The models based on the three first number of P-
wavelengths were able to run on the 256 GB nodes. However, the models using 2
number of P-wavelengths became very large. Even with the use of frequency bands
the size of 2.5 Hz instead of 5 Hz, the models consisted of approximately 1.7 million
nodes. Therefore, in addition to using 2.5 Hz frequency bands, the models had to be
run on nodes containing 512 GB RAM memory, see Table 4.2.
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Figure 4.5: Accelerations in the 3D model for different number of P-wavelengths in the
60-75 Hz interval.
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Table 4.2: Analyses times for models with different number of P-wavelengths in the 60-75
Hz interval.

Axisymmetric model

Nbr of P-wavelengths 0.5 1 14 1.5 2

Nbr of el per Rayl. wavelength 5 5 5 5 )

Frequency increments (Hz) 0.5 0.5 0.5 0.5 0.5

Frequency bands (Hz) 5 5 5 5 5

Nbr of inp files 3 3 3 3 3

Avg. nbr of nodes in inp files 2081 4958 8104 9019 14253

Time generating inp files (s) 0 0 1 1 1

Tot. sequential run time (min:s) 01:10 01:10 01:16 01:16 01:22

Parallel run time (s) 20 20 30 30 30

CPUs sequential /parallel 4/1 4/1 4/1 4/1 4/1
3D model

Nbr of P-wavelengths 1 14 1.5 2

Nbr of el per Rayl. wavelength 5 5 5 5

Frequency increments (Hz) 0.5 0.5 0.5 0.5

Frequency bands (Hz) 5 5 5 2.5

Nbr of inp files 3 3 3 6

Avg. nbr of nodes in inp files 302851 720933 858299 1867909

Time generating inp files (s) 11 23 28 59

Avg. run time per inp file (h:min:s) 00:52:22 05:16:27 09:16:54 13:00:43

Total run time (d-h:min:s) 02:37:06 15:49:20 1-03:50:41  3-06:04:16

CPUs 16 16 16 24

Utilized memory (GB) 75 of 249 238 of 249 238 of 249 497 of 497

The results in Figures 4.4 and 4.5 seem to indicate that both model types converge for
1.5 number of P-wavelengths. This value is therefore used for all following analyses.
The results for the 3D model, Figure 4.5, are a bit curious however, as using 2 P-
wavelengths seems to provide less accurate results compared to 1.5 P-wavelengths.
The reason for this is not determined directly but may be due to smaller frequency
bands being used, see Section 4.1.4.

4.1.2 Number of elements per Rayleigh wavelength

Another important factor for accuracy and computational efficiency is element size. In
this section, different number of elements per Rayleigh wavelength will be investigated.

The frequency interval 60-75 Hz was used for the analyses of both models. The axisym-
metric model was studied first, using 3, 4, 5, 6 and 10 number of elements per Rayleigh
wavelength, see Figure 4.6. The 3D model was thereafter investigated with 3, 4, 5 and
6 elements per Rayleigh wavelength, see Figure 4.7. The 3D model was not analysed
with 10 elements per Rayleigh wavelength as this produced models with approximately
6.400.000 number of nodes, which is too large to be analysed, even using the LUNARC
nodes containing 512 GB RAM memory.
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Figure 4.6: Accelerations in the axisymmetric model for different number of elements per
Rayleigh wavelength in the 60-75 Hz interval.
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Figure 4.7: Accelerations in the 3D model for different number of elements per Rayleigh
wavelength in the 60-75 Hz interval.

Figure 4.6 suggests that the use of 6 elements per Rayleigh wavelengths is sufficient
for convergence. However, using 6 elements per Rayleigh wavelength in the 3D model
generates models with approximately 1.460.000 nodes, while 5 elements per Rayleigh
wavelength generates models with approximately 860.000 nodes, see Table 4.3. The
decision was therefore made to use 5 elements per Rayleigh wavelength in the following
analyses, as Figures 4.6 and 4.7 both show that this provides fairly accurate results
while being significantly more computationally efficient, having a total run time of 28
hours using nodes with 256 GB RAM memory instead of 51 hours using nodes with
512 GB RAM memory, which are limited in number. Additionally, the 3D model with
6 elements was run using 24 CPUs instead of 16, requiring more Abaqus licenses and
still taking almost twice as long compared to the 3D model with 5 elements.
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Table 4.3: Analyses times for models with different number of elements per Rayleigh
wavelength in the 60-75 Hz interval.

Axisymmetric model

Nbr of el per Rayl. wavelength 3 4 ) 6 10

Nbr of P-wavelengths 1.5 1.5 1.5 1.5 1.5

Frequency increments (Hz) 0.5 0.5 0.5 0.5 0.5

Frequency bands (Hz) 5 5 5 5 5

Nbr of inp files 3 3 3 3 3

Avg. nbr of nodes in inp files 3521 6079 9102 12958 34042

Time generating inp files (s) 0 0 1 1 1

Tot. sequential run time (min:s) 01:10 01:10 01:16 01:22 01:46

Parallel run time (s) 25 30 30 30 50

CPUs sequential /parallel 4/1 4/1 4/1 4/1 4/1
3D model

Nbr of el per Rayl. wavelength 3 4 5 6

Nbr of P-wavelengths 1.5 1.5 1.5 1.5

Frequency increments (Hz) 0.5 0.5 0.5 0.5

Frequency bands (Hz) 5 5 5 5

Nbr of inp files 3 3 3 3

Avg. nbr of nodes in inp files 210567 465267 858299 1460021

Time generating inp files (s) 8 16 28 46

Avg. run time per inp file (h:min:s) 00:27:29 02:05:29 09:16:54 16:55:31

Total run time (d-h:min:s) 1:22:26 6:16:28 1-03:50:41  2-02:46:34

CPUs 16 16 16 24

Utilized memory (GB) 48 of 249 140 of 249 238 of 249 497 of 497

4.1.3 Frequency increments

The effects of different sized frequency increments was studied, again with the purpose
of determining how computationally efficient the models can be without disrupting the
results significantly. First, the axisymmetric model was studied for 0.25, 0.5 and 1 Hz
increments in the full 1-100 Hz range, see Figure 4.8. Then the axisymmetric and 3D
model were analysed respectively in the 60-75 Hz range, see Figures 4.9 and 4.10.

All analyses were performed using 1.5 P-wavelengths determining model size, 5 ele-
ments per Rayleigh wavelength determining element size and frequency bands the size
of 5 Hz. As the model- and element sizes are independent of the size of the frequency
increments, the number of nodes and the time it took to generate the input files was
not examined, see Table 4.4.
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Figure 4.8: Accelerations in the axisymmetric model for different sized frequency
increments in the 1-100 Hz interval.
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Figure 4.9: Accelerations in the axisymmetric model for different sized frequency
increments in the 60-75 Hz interval.
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Figure 4.10: Accelerations in the 3D model for different sized frequency increments in the
60-75 Hz interval.
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Table 4.4: Analyses times for models with different sized frequency increments.

Axisymmetric model

Frequency increment (Hz) 0.25 0.50 1.00
Nbr of inp files 3 3 3
Tot. sequential run time (min:s) 01:22 01:16 01:10
Parallel run time (s) 35 30 25
CPUs sequential /parallel 4/1 4/1 4/1

3D model
Frequency increment (Hz) 0.25 0.50 1.00
Nbr of inp files 3 3 3
Avg. run time per inp file (h:min:s) 17:26:40 09:06:20 04:19:06
Total run time (d-h:min:s) 2-04:19:59 1-03:19:00 12:57:18
CPUs 16 16 16
Memory utilized (GB) 239 of 249 239 of 249 239 of 249

The results from both model types show that the size of the frequency increments
ranging between 0.25-1 Hz only affects the results minimally, and for the cases that
it does affect the results it seems to be where there is an overlap in input files, most
apparent in the left plot in Figure 4.9 at 65 and 70 Hz. Even for the frequencies in
the lower ranges, the results do not seem to differ much, as indicated by Figure 4.8.

For the 3D model, the Abaqus analysis time is halved when 1 Hz increments are used
in favour of 0.5 increments, leading to the decision to use 1 Hz increments in the
following analyses. However, it should be noted that a finer frequency incrementation
can be needed if evaluating the response in a building positioned on top of the ground.

4.1.4 Frequency bands

As discussed in Section 2.1.1, the size of the frequency band as well as where in the
frequency range the band is located will affect the relationship between model- and
element size. A smaller frequency band will generate models with a coarser mesh,
while a larger band will generate a finer mesh. The same is true for the location of the
band, where bands located in the lower frequencies will yield a very fine mesh while
the same sized bands in the upper frequencies will yield a coarser mesh.

The relationship between model- and element size will determine the number of nodes
in a model, see Figure 4.11. This in turn affects the results, providing more accurate
results when using a finer mesh while also being more computationally expensive.
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Figure 4.11: Ratio between model- and element size and number of generated nodes in
the 3D model for a 1 Hz frequency band in the 1-100 Hz interval.

The size of the frequency bands will also affect the number of interpolations that are
done with the data, as explained in Section 3.4.2. Some of the previous results seem
to indicate that this has the effect of making the diagram jerk where an interpolation
was made. This was briefly mentioned in the previous section and when discussing
Figure 4.5. In this section, the effect of different sized frequency bands will be studied
further.

The idea was at first to use a logarithmic scale when dividing the interval 1-100 Hz into
frequency bands, starting with the smallest band at 1 Hz and increasing the band size
logarithmically. Using 15 logarithmically placed points with an approximate growth
factor of 1.39 gives frequency bands with node counts as shown in Table 4.5. This
gives a good division of nodes among the frequency bands. However, it is not very
computationally efficient. All the frequency bands require LUNARC nodes with 512
GB RAM memory to analyse, and as there is not a large number of these the queuing
time for each job to start is extensive.

Furthermore, as frequency increments of 1 Hz were used in all frequency bands except
for the bands smaller than 1 Hz, in which case 2 steps were used instead, the large
frequency bands had a significantly longer running time due to there being more
steps in the analysis. Logarithmic scaled frequency increments were not implemented
due to Section 4.1.3 indicating that 1 Hz increments were sufficient, even for the
smaller frequencies. The band 73-100 Hz would therefore take approximately 4 days
to analyse while the 1-1.39 band would take approximately 5 hours using 16 and 20
CPUs respectively, see Table 4.8.

Table 4.5: Logarithmic sized frequency bands and the number of nodes generated for the
3D model.

Frequency band Number of nodes Frequency band Number of nodes

1-1.39 1424875 10.03-13.94 1463441
1.39-1.93 1424875 13.94-19.37 1476092
1.93-2.68 1412837 19.37-26.93 1514045
2.69-3.73 1412837 26.93-37.43 1579363
3.73-5.19 1425488 37.43-52.02 1615253
5.19-7.21 1425488 52.02-72.31 1703810
7.21-10.03 1438139 72.31-100 1817669
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Instead of using a logarithmic scale, the division of frequency bands was done manu-
ally by balancing the node count with an estimated guess at analysis time based on
the number of steps in the analysis, attempting to produce approximately the same
analyses times for all frequency bands. Another aspect that was taken into considera-
tion was having the majority of the bands being able to analyse on the 256 GB nodes.
This produced more input files that had to be submitted for analyses but on the other
hand allowed for the possibility of parallel running while also providing significantly
faster analyses.

A study was conducted to determine what sized frequency bands would be appropriate
for both accuracy and efficiency. For this purpose, the axisymmetric model with
differently sized frequency bands was studied in the full 1-100 Hz interval, see Figure
4.12, and both model types were then analysed in the 60-100 Hz range, see Figures
4.13 and 4.14 as well as Table 4.6.
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Figure 4.12: Accelerations in the axisymmetric model for different sized frequency bands
in the 1-100 Hz interval.
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Figure 4.13: Accelerations in the axisymmetric model for different sized frequency bands
in the 60-100 Hz interval.
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Table 4.6: Analyses times for different sized frequency bands in the 60-100 Hz interval.

Axisymmetric model

Frequency band size (Hz) 4 5 7 10 40
Nbr of inp files 10 8 6 4 1
Avg. nbr of nodes in inp files 9228 9443 9797 10520 20229
Time generating inp files (s) 2 2 1 1 0
Avg. run time per inp file (min:s) 00:23 00:23 00:26 00:25 00:50
Tot. sequential run time (min:s)  03:53 03:06 02:33 01:42 00:50
Parallel run time (min:s) 01:20 00:55 01:00 00:30 -
CPUs sequential /parallel 4/1 4/1 4/1 4/1 4/-

3D model
Frequency band size (Hz) 4 5 7 27
Nbr of inp files 10 8 6 1
Avg. nbr of nodes in inp files 843083 871893 936559 1741368
Time generating inp files (min:s) 01:32 01:14 00:59 00:19
Avg. run time per inp file (d-h:min:s) 03:28:07 04:21:45 06:56:49 3-12:48:36
Tot. sequential run time (d-h:min:s) 15:23:03 1-10:53:59  1-23:05:34  3-12:48:36
CPUs 16 16 16 16
Memory utilized (GB) 239 of 249 239 of 249 239 of 249 497 of 497

(OoM)

It is difficult to draw any definite conclusions from the results. For example, the 5 Hz
band seems to converge for the axisymmetric model in the vertical direction, Figure
4.13, while the 10 Hz band deviates in the 90-95 Hz interval. However, in the horizontal
direction, the 5 Hz band deviates at 80 Hz while the 7 Hz band converges. In the 90-95
Hz interval, the 7 Hz band converges towards the 40 Hz band while the 10 Hz band

does not.

The same discrepancies can be observed for the 3D model, Figure 4.14. In the hori-
zontal direction, the 5 Hz band seems to be converging while in the vertical direction
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it seems to be deviating even more than the 4 Hz band in the 85-95 Hz interval. The
only feasible conclusion being that for higher frequencies, from 80 Hz and upwards,
the results become more uncertain, for both model types.

For one of the 3D models in the 7 Hz band, specifically the 65-72 Hz interval, an
out-of-memory error was received from Abaqus at the 70 Hz step after running for 5.5
hours, see Table 4.6. This makes the 7 Hz band unreliable to analyse on the 256 GB
nodes. This, together with the fact that the results in Figures 4.13 and 4.14 were a
bit ambiguous for all bands but seem to generate sufficiently accurate results for the
5 Hz bands, at least up to 80 Hz, lead to the conclusion that the 5 Hz band was the
most practical choice and is therefore used in the following analyses.

4.2 Model validation and efficiency

Based on the results from the parameter studies, the values 1.5 P-wavelength, 5 ele-
ments per Rayleigh wavelength, 1 Hz increments and 5 Hz bands were used to analyse
the 1-100 Hz interval for both the axisymmetric model and the 3D model. These
were then compared to the semi-analytical model with the purpose of validating the
accuracy of the created models in the 1-100 Hz interval, Figures 4.15 and 4.16.

The computational time required to analyse the 1-100 Hz range is documented in
Table 4.7 for the axisymmetric model and Table 4.8 for the 3D model. The full 1-100
Hz range produces 45 million nodes for the axisymmetric model, while the number
of nodes for the 3D model in the full 1-100 Hz range is unknown, as the program
crashes when trying to produce the mesh. Suffice to say the node count is significantly
higher than 45 million for the 3D model in the full 1-100 Hz range. The conclusion
was therefore drawn that without some division of the models, the full 1-100 Hz range
cannot be analysed using the instruments available for this project.

Due to this fact, the axisymmetric model was divided into 1-10 Hz and 10-100 Hz
bands, which were used to compare computational time with the axisymmetric model
divided into 5 Hz bands. The 3D model had to be divided further, and was done so
using the bands 36-52 Hz, 52-73 Hz and 73-100 Hz. These were then compared to the
3D model using 5 Hz bands. Beneath 40 Hz, smaller frequency bands were used to
avoid out-of-memory Abaqus errors as well as the results from Section 4.1.4 indicating
that it is mainly for the higher frequencies that band size affects the results.
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Figure 4.15: Comparison of accelerations in tailored axisymmetric models using 5 Hz
bands and less tailored models.
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Figure 4.16: Comparison of accelerations in tailored 3D models using 5 Hz bands above
frequencies of 40 Hz and less tailored models.

Table 4.7: Analyses times for different sized axisymmetric models.

5 Hz band

Freq. band (Hz) Nbr of nodes Run time (min:s) CPUs
1.0-5 115440 00:25 4
5.0-10 20002 00:27 4
10.0-15 11960 00:23 4
15-20 9946 00:23 4
20-25 9090 00:24 4
25-30 8914 00:23 4
30-35 8386 00:24 4
35-40 8529 00:23 4
40-45 8490 00:23 4
45-50 8445 00:24 4
50-55 8582 00:24 4
55-60 9050 00:23 4
60-65 8796 00:23 4
65-70 9064 00:23 4
70-75 9198 00:23 4
75-80 9332 00:23 4
80-85 9600 00:23 4
85-90 9734 00:23 4
90-95 9778 00:23 4
95-100 10040 00:23 4

Tot. sequential run time: 08:16

Parallel run time: 02:31 1

Larger sized bands

Freq. band (Hz) Nbr of nodes Run time (min:s) CPUs
1-10 457855 05:44 4
10-100 492925 30:40 4

Tot. sequential run time: 36:24

Parallel run time: 30:40 4
Computational time difference for sequential run (min:s): 28:08
Computational time difference for parallel run (min:s): 28:09
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Table 4.8: Analyses times for different sized 3D models.

5 Hz band
Freq. band (Hz)  Nbr of nodes Run time CPUs Memory (GB)
(h:min:s)
1-1.5 1765805 05:27:34 20 512
1.5-2 1255248 02:34:30 20 512
2.0-3.0 1765805 05:44:50 20 512
3.0-4.0 1267015 02:37:49 20 512
4.0-6.0 1780559 08:56:20 20 512
6.0-8.0 1302155 04:11:41 20 512
8.0-11 1400353 06:42:23 20 512
11.0-14 1131533 04:03:17 20 512
14.0-16 862730 02:23:07 16 256
16.0-18 835525 02:15:12 16 256
18.0-20 782983 01:51:23 16 256
20-23 889505 03:34:00 16 256
23-26 852215 03:03:53 16 256
26-29 825601 02:56:53 16 256
29-32 807538 02:57:20 16 256
32-36 869317 04:00:00 16 256
36-40 840278 03:48:11 16 256
40-45 894970 05:05:54 16 256
45-50 864833 04:23:43 16 256
50-55 873018 04:31:44 16 256
55-60 900482 05:02:55 16 256
60-65 850472 04:17:37 16 256
65-70 858299 04:18:32 16 256
70-75 866126 04:17:31 16 256
75-80 881780 04:28:35 16 256
80-85 889607 04:27:11 16 256
85-90 876902 04:19:17 16 256
90-95 872242 04:13:51 16 256
95-100 879719 04:31:25 16 256
36-100 Hz total run time: 2-9:46:26

Larger sized bands

Freq. band (Hz)  Nbr of nodes Run time CPUs Memory (GB)
(d-h:min:s)
36-52 1786507 2-08:25:56 16 512
52-73 1778075 3-02:07:59 16 512
73-100 1741368 3-23:29:12 16 512
36-100 Hz total run time: 9-3:42:19
Computational time difference for sequential run (d-h:min:s): 6-18:5:53

The results in Tables 4.7 and 4.8 show that the computational time difference is sig-
nificant. The axisymmetric model is analysed 4.4 times faster, taking approximately
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8.5 minutes instead of 36.5 minutes, when using sequential analyses and 12.2 times
faster, taking approximately 2.5 minutes instead of 30.5 minutes, when implementing
parallel analyses. The 3D model is analysed 3.8 times faster in the 36-100 Hz interval
when comparing sequential analyses times, taking approximately 2 days and 10 hours
instead of 9 days and 4 hours. When applying parallel analyses, the 75-100 Hz range
could be analysed in approximately 4.5 hours instead of almost 4 days.

4.3 Added building and inclined ground layer

To showcase an application of the program, a building was included to the 3D ground
model, Figure 4.17. The model was analysed with no inclination in either layer, and
then with an inclination of 2 degrees in the middle layer, see Figure 4.18.

Figure 4.17: The 3D ground model with a building included and an inclined middle layer.
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Figure 4.18: Accelerations in the middle of the building’s first floor slab.

Figure 4.18 indicates that the inclined middle layer causes there to be higher reflections
in the observation point due to the boundary to the second layer being closer.
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5 Discussion

The aim of the dissertation was to develop a Python program that generates efficient
ground models for Abaqus analysis of ground vibrations. To achieve this goal, three
main aspects were addressed.

First, the models were created within the framework established by Abaqus, ensur-
ing compliance with requirements for node ordering, sweep direction, and input file
formatting. Second, appropriate model- and element dimensions that would achieve
both sufficient accuracy and computational efficiency were established through sys-
tematic parameter studies, where parameters affecting model- and element size were
analysed and optimal values were decided. Finally, model validation and efficiency
assessment were conducted. The models were validated by comparing results against
an established semi-analytical model for traffic-induced vibrations. Computational ef-
ficiency was evaluated by comparing analysis times between the tailored models and
partially tailored reference models, as fully untailored models would have been too
computationally demanding to analyse.

The following sections discuss each of these aspects in detail, analysing the findings
and their implications for ground modelling in traffic-induced vibration analyses.

5.1 Program development

While the main functionality of the program was the creation of the models and mak-
ing them compatible with Abaqus, additional features were developed to streamline
the analysis process. The program includes functionality for submitting jobs directly
to Abaqus, with the possibility to submit multiple analyses simultaneously if desired.
Post-processing was also integrated into the program to enable faster and easier plot-
ting of results. To make the program more user-friendly, a graphical user interface was
created to manage all operations.

The biggest challenges were faced during different stages of development, but par-
ticularly when achieving Abaqus integration. The input file structure was especially
challenging, as one keyword placed in the wrong line or data not being structured cor-
rectly would cause the analysis to fail in Abaqus. Further complexity was added when
the option to include a building in the 3D model was implemented, which required
the use of instances to avoid conflicts in node numbering. This approach demanded
a different structure for keyword placements, with some element sets needing to be
defined outside of the instance definitions and some inside, depending on their usage.

Getting the mesh right for structured quadrilateral elements was also challenging until
the right tools in Gmsh were found, specifically the Transfinite functions. For a line,
this function takes the number of nodes to be placed on the line as an argument, see
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Section 2.3.2. Therefore, the element size cannot be determined exactly by the number
of elements per Rayleigh wavelength. If the line divided by the calculated element size
is not an integer, which it most probably will not be, the number of nodes is rounded
upwards, making the mesh slightly finer than calculated. This is not a problem per
se as a finer mesh is generally better for accuracy, but it is worth mentioning that
the number of elements per Rayleigh wavelength determined in the parameter study
should be considered more as a guideline than an absolute specification.

Furthermore, loading and observation points were approximated by finding the node
closest to the wanted x-coordinate instead of creating exact geometric points. This
was done as it was deemed unnecessarily complicated to create precise points during
the geometry stage, both regarding the manual geometry operations, see Section 2.3.2,
and because it would complicate the extrusion process for infinite domains. The ap-
proximation method was considered acceptable since the deviation is usually only a
few centimetres and was not expected to affect the results significantly.

Additional challenges were mainly related to the user interface implementation, as
discussed in Section 3.5. These issues primarily involved restructuring function calls
within the program to ensure proper operation through the interface. For instance,
the program had to be modified to avoid creating models automatically when starting,
as well as to recalculate model and element dimensions when parameters are changed.
A particularly frustrating limitation was the inability to implement direct selection of
odb-files for result plotting through the user interface, which was caused by conflicts
with the Abaqus Python library.

5.2 Model tailoring through parameter studies

The parameters that were studied included the number of P-wavelengths used to define
model size, the number of elements per Rayleigh wavelength used to determine element
size, the size of the frequency increments which affects analysis time but not model
dimensions, and finally the size of the frequency bands.

The axisymmetric model proved useful as a guide for expected results while providing
fast analyses, which helped identify areas to focus on for the 3D analyses that were
significantly more computationally expensive. It is worth noting that the axisymmetric
model represents a half-sphere when swept around the y-axis, see Figure 4.1, while the
3D model contain edges where there are no infinite elements, see Figure 4.2, which
may lead to some reflections from these areas.

The number of P-wavelengths used for defining model dimensions that provided ac-
curate results while also being a feasible option computationally wise was found to be
1.5, as this value converged when compared to 2 P-wavelengths in the axisymmetric
model, Figure 4.4, and also followed the semi-analytical data well for the 3D model,
Figure 4.5. Using a larger value proved difficult for the 3D model as it created signi-
ficantly larger models that required a decrease in frequency band size to 2.5 Hz, which
may have caused the curve to be less smooth.
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For the number of elements per Rayleigh wavelength, 5 was considered to provide
acceptable results, even though proper convergence was not achieved. 6 elements
appeared to converge better when compared to 10 elements in the axisymmetric model,
Figure 4.6, but the computational cost of using 6 elements in the 3D model was too
high, taking more than twice the analysis time and requiring 512 GB of memory to
run. The 3D results, Figure 4.7, indicate that using 5 elements is not too significant a
reduction, with the curve deviating only slightly from the 6-element case.

The frequency increment study yielded quite straightforward results, demonstrating
that 1 Hz increments produced nearly identical outcomes to 0.25 Hz or 0.5 Hz incre-
ments for both models, Figures 4.9 and 4.10. This consistency was observed across
the full 1-100 Hz frequency range for the axisymmetric model. Due to computational
constraints, the complete frequency range was not examined for the 3D model. How-
ever, given the nearly identical behaviour observed between both models within the
60-75 Hz range, it was assumed that the 3D model response would remain consistent
with the axisymmetric model across the remaining frequency interval. While this as-
sumption appears reasonable, it should be acknowledged as a limitation of the study.
The implementation of 1 Hz increments resulted in a computational time reduction of
over 50% for the 3D model compared to 0.5 Hz increments, making this the preferred
choice from an efficiency perspective.

The study of frequency band size was more extensive, as it affected results in two
ways: through interpolation of overlapping data when combining multiple input files,
and due to changing relationships between model- and element dimensions. Another
key consideration was dividing the frequency bands into sizes that could be analysed
using 256 GB of RAM while balancing node count with the number of analysis steps,
attempting to achieve approximately equal computational times across the 1-100 Hz
interval.

It was quite difficult to draw definitive conclusions from the results, as convergence for
a certain frequency band size appeared to be achieved in one direction while deviating
in another. For example, the 5 Hz band in the 3D results, Figure 4.14, or cases where
larger bands provided less accurate results than smaller ones, such as the 10 Hz band
compared to the 7 Hz band in the axisymmetric results, Figure 4.13. The only clear
conclusion was that frequency band size affects results most significantly at higher
frequencies, indicating that larger model dimensions are needed for these frequencies.
The most optimal convergence would naturally be achieved using the 27 Hz band
provided in the 3D model, but this would defeat the purpose of tailored models since
this represents the largest model that can be analysed using 512 GB of memory. The
7 Hz band would be the next logical choice, but since this caused memory errors when
running on 256 GB, it was rejected in favour of the 5 Hz band. This provided accurate
results up to approximately 80 Hz, after which the results deviate somewhat.

5.3 Validation and efficiency assessment

After the parameter study, the models were validated across the 1-100 Hz range using
1.5 P-wavelengths, 5 elements per Rayleigh wavelength, 1 Hz increments, and 5 Hz
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frequency bands by comparing them to the semi-analytical data.

Both model types seem to be deviating somewhat from the semi-analytical data at
50 Hz and upwards. The reason for this was not able to be established, but may be
due to the FE models solving the system of equations in a different manner than the
semi-analytical model. Further investigations would have to be conducted to establish
the exact reason.

However, the results from the axisymmetric model, Figure 4.15, show that the tailored
models follow the shape of the curve for the semi-analytical data accurately even when
exhibiting higher accelerations for frequencies above 50 Hz. This may be due to the
axisymmetric model acting as a perfect half-sphere, as discussed in Section 4, leading
the vibrations to hit the boundary of the infinite elements in an exact perpendicular
angle and therefore causing minor boundary reflections.

A comparison between the tailored models and the partially tailored ones, which con-
sisted of two models in the bands 1-10 Hz and 10-100 Hz respectively, show that the
tailored models are significantly faster, taking 2.5 minutes when run in parallel and
approximately 8 minutes when run sequentially, compared to 30.5 min for parallel
analyses and 36.5 minutes for sequential analyses of the two less tailored models.

The 3D results, Figure 4.16, provided a slightly less accurate shape of the curve when
compared to the semi-analytical model for higher frequencies. This was expected
for several reasons, one being that the number of elements per Rayleigh wavelength
and the size of the frequency bands had to be chosen in a manner that would allow
for faster analyses, and the other reason being that the 3D model had edges were
vibrations would not hit the boundaries to the infinite elements in a perpendicular
angle, causing there to be more reflections at these boundaries. Nevertheless, the
results are considered reasonably accurate when compared to the semi-analytical data.

The computational time difference is significant for the 3D model, with the ability to
run the 36-100 Hz interval in 2 days and 10 hours when run sequentially, compared to
9 days and 4 hours for the less tailored models. When models are run in parallel, the
computational time difference becomes even more significant, analysing the 75-100 Hz
range in 4.5 hours instead of 4 days.
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6 Conclusions

Based on the aims and discussion of the dissertation, a number of conclusions can be
drawn. These are listed in bullet points below.

Accurate ground modelling using Python while maintaining Abaqus com-
patibility:

e A comprehensive Python program was successfully developed that generates
Abaqus-compatible ground models for traffic-induced vibration analysis

e Key compatibility challenges were overcome, including proper node ordering,
sweep direction requirements, and input file formatting according to Abaqus
framework

e Implementation of instances for building inclusion required restructuring of
keyword placements but was successfully achieved

e Approximation methods for loading- and observation points by finding nearest
nodes proved acceptable with negligible deviations

Parameters relevant for accurate and computationally efficient ground mod-
elling:

e 1.5 P-wavelengths was identified as the optimal model size, providing sufficient
convergence while maintaining computational feasibility

e 5 clements per Rayleigh wavelength was determined to be acceptable, balancing
accuracy with computational cost as 6 elements per Rayleigh wavelength required
512 GB memory and doubled analysis time

e 1 Hz frequency increments produced nearly identical results to smaller increments
while reducing computational time by over 50%

e 5 Hz frequency bands provided the best compromise between accuracy and
memory constraints, with adequate results up to approximately 80 Hz

Time savings through tailored models:

e Tailored axisymmetric models achieved significant time reductions: 8 minutes vs
36.5 minutes for sequential analyses and 2.5 minutes vs 30.5 minutes for parallel
analyses in the 1-100 Hz interval

e 3D model efficiency gains were substantial: 2 days 10 hours vs 9 days 4 hours for
sequential analysis in the 36-100 Hz interval and 4.5 hours vs 4 days for analyses
in the 75-100 Hz interval
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7 Further studies

This project could be further improved in several aspects. These include aspects
related to the user interface, further implementations of the ground models as well
as further development of the program’s functionality. Examples of possible further
studies are listed in bullet points below.

e Error handling in the user interface as well as improving layout and functionality,
for example by including the option of uploading or downloading parameters
from/to file

e Extracting data from odb-files directly from the user interface

e Providing the option of adding a tunnel or an underground basement in the
ground model

e Making the program compatible with LUNARC by adding functionality such as
writing Bash scripts with user-specified memory and CPU usage

e Submitting jobs to the SLURM queue directly through the user interface, either
sequentially or in parallel, with jobs being submitted automatically when previ-
ous ones are finished after a control has been made of available Abaqus licenses

e Automatizing the size of the frequency bands based on the frequency interval
studied

e Investigating the cause for the deviation between the FE models and the semi-
analytical model for frequencies above 50 Hz

e Examining the impact of the depth of the infinite elements

e Including compatibility with other FE softwares, for example Ansys, COMSOL,
Altair, etc.
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Appendix A

Input file example

The following is the complete input file used for creating the cube in Figure 2.4.

*Heading

Ground model

*%k

*Preprint, echo=NO, model=NO, history=NO, contact=NO
*k

*x PARTS

*%k

*Part, name=Ground

*End Part

*k

** ASSEMBLY

*k

*Assembly, name=GroundAssembly
*k

*Instance, name=Ground-1, part=Ground

*%
K
** Model definition
B T
*k
**x NODES
*%k
*Node

1, 0.0, 0.0, 0.0

2, 1.0, 0.0, 0.0

3, 1.0, 1.0, 0.0

4, 0.0, 1.0, 0.0

5, 0.0, 0.0, 1.0

6, 1.0, 0.0, 1.0

7, 1.0, 1.0, 1.0

8, 0.0, 1.0, 1.0

9, 0.5, 0.0, 0.0

10, 1.0, 0.5, 0.0

11, 0.5, 1.0, 0.0

12, 0.0, 0.5, 0.0

13, 0.5, 0.0, 1.0

14, 1.0, 0.5, 1.0

15, 0.5, 1.0, 1.0

16, 0.0, 0.5, 1.0
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17, 0.0, 0.0, 0.5
18, 1.0, 0.0, 0.5
19, 1.0, 1.0, 0.5
20, 0.0, 1.0, 0.5

k%

** ELEMENTS

k%

*Element, type=C3D20, elset=Set-layerl

1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20

%k %k

*% ELEMENT SECTION PROPERTIES

%k k

*So0lid Section, elset=Set-layerl, material=Ground-1

b

*k
*End Instance

*k

*Nset, nset=LoadingPoint, instance=Ground-1

5

*Nset, nset=0bservationPoint, instance=Ground-1
6

*k

*End Assembly

*k

*x MATERIALS

*k

*Material, name=Ground-1

*Damping, structural=0.06

*Density

2000.0

*Elastic

160000000.0, 0.33

*k

*ok
**x STEP: Step-1

*ok

*Step, name=Step-1, nlgeom=NO, perturbation

*Steady State Dynamics, direct, frequency scale=LINEAR, friction damping=NO
50.0, 51.0, 2, 1

*ok

** LOADS

** Name: PointLoad Type: Concentrated force

*Cload, real

LoadingPoint, 3, -1

*ok

*% QUTPUT REQUESTS

*ok
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*0Qutput, field

*Node Output

A, U,V

*k

** HISTORY OUTPUT: H-Output-1

*ok

*0utput, history

*Node Output, nset=0bservationPoint
U1, U2, U3, Vi, V2, V3, A1, A2, A3
*End Step

*k
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Appendix B

User manual

The following files are needed and should be placed in the same folder for the program
to work:

e mainprogram.py

e groundmodel.py

e odbprogram.py

e mainwindow.ui

e building-only-instances.inp

e 1-100Hz-step0.5Hz.txt

e 1-100Hz-step0.5Hz-building.txt

The user interface is started by running mainprogram.py. The interface provides two
ground model choices, a 3D model or an axisymmetric model. For the 3D model, the
user is given the choice of including a building. The default setting when starting the
interface is the 3D ground model without a building included, see Figure B.1.

The user can then specify the material properties, depth and inclination of three
layers as well as the lower and upper boundaries of the frequency interval, the size
of the frequency increments and the size of any frequency bands. Furthermore, the
user chooses the number of P-wavelengths that should be used for determining model
size and the number of elements per Rayleigh wavelength that should be used for
determining element size. Finally, the distance between the load and observation
point should be specified as well as the size of the load. If a building is included, the
length and width of the building should also be specified.

Note that the user interface lacks error handling and can not handle invalid data types
as entered values, nor does it handle unreasonable values of the correct data type. If
either is used, it will lead the program to crash.

The depth can only be adjusted by the user for the top and middle layer, the half-space
will adjust its depth based on what the total depth should be for the chosen values,
which is communicated to the user in the text box along with the current element
size based on the chosen values. If the sum of the depths for the top and middle
layers exceeds what the total depth should be, the user is warned and the half-space
is adjusted to a minimal depth of 0.1 m, see Figure B.2.
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B | MainWindow - [m] x

© 3D model () Axisymmetric model
] melude building

Top layer Middle layer Half-space
Depth [m] 4 5 14.1
Inclination [degrees] 0 1] 1]
Density [kg/m3] 2000 2000 2000
Young's modulus [Pa] 1.6e+08 8e+08 8e+08
Poisson's ratio [-] 0.33 0.33 0.33
Loss factor [-] 0.06 0.06 0.06
Frequency interval [Hz] Lower limit: 50 Upper limit: 55 Freq band: 5
I - Model info
Frequency increments [Hz] 1
View mesh
Nbr of P-wavelengths in each direction 1.5 Force [M]: 0.5 Create input file
Nbr of elements per Rayleigh wavelength 5 Create tailored input files
Run job/jobs in Abaqus
Distance between load and observation point [m] 10 Job/] q
Building length [m] 0 View job in Abaqus
Building width [m] ] Plot results

Depth should be a total of 23.10 m
Element size is 0.54 m

Figure B.1: The default settings of the user interface.

B MainW = [m] X
© 3D model () Axisymmetric model
[T include building
Top layer Middle layer Half-space
Inclination [degrees] ] 1] 1]
Density [kg/m3] 2000 2000 2000
Young's modulus [Pa] 1.6e+08 8e+08 8e+08
Poisson's ratio [-] 0.33 0.33 0.33
Loss factor [-] 0.06 0.06 0.06
Frequency interval [Hz] Lower limit: 50 Upper limit: 55 Freq band: 5
I - Model info
Frequency increments [Hz] 1
View mesh
Nbr of P-wavelengths in each direction 1.5 Force [N]: 0.5 Create input file
Nbr of elements per Rayleigh wavelength 5 Create tailored input files
Run job/jobs in Abaqus
Distance between load and observation point [m] 10 Job/] q
Building length [m] 0 View job in Abaqus
Building width [m] 0 Plot results

Depth should be a total of 23.10 m
Element size is 0.54 m
| Warning: Total depth exceeds the chosen number of wavelengths. |

Figure B.2: The depth of the two top layers exceed the total depth.
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The user can choose to show model information, Figure B.3, and to view the created
geometry and mesh in Gmsh, Figure B.4.
B | MainWindow - O X

© 3D model
[ nclude building

Axisymmetric model

Top layer Middle layer Half-space
Depth [m] 4 5 14.1
Inclination [degrees] 0 0 0
Density [kg/m3] 2000 2000 2000
Young's modulus [Pa] 1.6e+08 8e+08 8e+08
Poisson's ratio [-] 0.33 0.33 0.33
Loss factor [-] 0.06 0.06 0.06
Frequency interval [Hz] Lower limit: 50 Upper limit: 55 Freq band: 5

Bt s [ ]
Frequency increments [Hz] 1

>

Nbr of P-wavelengths in each direction 1.5 Force [N]: 0.5 Create input file
Nbr of elements per Rayleigh wavelength 5 Create tailored input files
Distance between load and observation point [m] 10 Run job/jobs in Abaqus
Building length [m] 0 View job in Abaqus
Building width [m] 2) 0 Plot results

Number of nodes: 873018

Number of elements: 209600

Model size: x = 56.19 m, y = 23.10 m, depth = [4.00, 5.00, 14.10] m
Element size: 0.54 m

Horizontal distance between load and observation point: 10.00 m
Height difference between load and observation point: 0.00 m

Figure B.3: Model information for the 3D model with the chosen parameters.

&k Gmsh

File Tools Window Help

= Modules
Geometry
Mesh
Solver

£+

OXYZQ 118 Gmsh 4.13.1

Figure B.4: Visualisation of the 3D model with the chosen parameters.
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For a given frequency interval, for example 50-65 Hz, the user is given the choice of
creating one input file for the full interval or multiple input files consisting of user-
defined sized frequency bands, for example 5 Hz bands. The user is alerted as to the
operation time for creating the input file/files. See Figure B.5.

B | MainWindow = (m] X

© 3D model () Axisymmetric model
[ mnclude building

Top layer Middle layer Half-space
Depth [m] 4 5 14.1
Inclination [degrees] 0 0 0
Density [kg/m3] 2000 2000 2000
Young's modulus [Pa] 1.6e+08 8e+08 8e+08
Poisson's ratio [-] 0.33 0.33 0.33
Loss factor [-] 0.06 0.06 0.06
2)

Frequency interval [Hz] Lower limit: Upper limit: Freq band:-

Model info
Frequency increments [Hz] 1

View mesh
Nbr of P-wavelengths in each direction 1.5 Force [N]: 0.5 1) | Create input file |
Nbr of elements per Rayleigh wavelength 5

2] | Create tailored input ﬁIesI

Run job/jobs in Ab
Distance between load and observation point [m] 10 un job/jobs in Abaqus
Building length [m] i] View job in Abaqus
Building width [m] 0 Plot results

Generating input files... Please wait

Tailored input files created.
Depth should be a total of 23.10 m ;“— —# or took 5 min 14 =.

Element size is 0.46 m

Figure B.5: Generating the input files.

If ”Create tailored input files” is chosen, the user gets asked if the depth of the middle
layer should decrease if the sum of the depths of the top and middle layer exceed what
the total depth should be, Figure B.6. If the user chooses ”"No”, only the half-space
will decrease in depth until it reaches the minimum required depth of 0.1 m, after
which the total depth is not decreased further.

B | Warning! Depth will decrease with increased frequency ranges d

The depth of the half-sphere will be decreased with increased frequency ranges, do
you want to decrease the depth of layer 2 if needed to maintain the depth of chosen
number of wavelengths?

Figure B.6: Warning of decreasing depth.

The input file/files can then be sent for analyses in Abaqus through ”Run job/jobs
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in Abaqus”. When clicking this button, the user gets to choose one or multiple input
files to submit. If more than one input file is chosen, the user gets asked if the jobs
should run sequentially or in parallel, Figure B.7. The interface will, through the text
box, let the user know when the analyses is completed and the total elapsed time for
the analyses. The interface can be used even when analyses are running.

@ Run multiple jobs X
Do you want to run the jobs sequentially or in parallel?

Sequentially  In parallel Cancel

Figure B.7: Sending the jobs for analyses in Abaqus.

If ”View job in Abaqus” is clicked, the user gets to choose an odb-file which launches
Abaqus and allows the user to analyse the results in Abaqus/CAE, Figure B.8.

& Abaqus/Viewer 2023 [Viewport: 1] — [m] e

= Fle Viewport Yiew Resut Plot Animate Rgport Qptions Tools Plugins Help A7 - & x

T & & e leimay s s Vg @ W LS EYTLEE B TS visuslizstion defoutts V] (5 -
NG DR et

aap o K] B B
otz i1 2 3 4 4

Results Meodule: |: Visualization 1~ Medel: |: Z:/soil program/results/1 nbr of wavelengths/3D/3D_60.0-65.0Hzcdb ~| M4 41 I» MM | B E‘J E}J
Session Datgv o JREE] Eﬁﬁ
g Output Databases (1) =
0 spectrums (7) kel
B XYPlots
@ X¥Data
&, Paths

d Display Groups (1)
Ed Free Body Cuts
ﬁ Streams
E Movies
B images

ndard 2023 Fri Apr 25 21:1 }. Europe Daylight Time 2025

B’S smauLiR

b
B

Figure B.8: Viewing the results in Abaqus/CAE.

The results can also be analysed without the Abaqus/CAE. This is done in two steps,
first using odbprogram.py which extracts displacements, velocities and accelerations
from odb-files and saves them into a csv- or text-file, Figure B.9, and then by clicking
"Plot results” in the user interface which gives the user the option of choosing a csv-
or text-file and plotting the data from the files. The user also gets to chose if results
from semi-analytical data should be plotted for comparison, Figure B.10.
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main():

odb files

fa o

odb_analyzer = ODBData(odb_files)
odb_analyzer.extract_data from all odbs()

output_file = "3D 1.5p-wl 5el.csv’
odb_analyzer.save data to file(output file)

if name_ == " main_":
main()

Figure B.9: Creating a csv-file of the extracted data from odb-files.

B Semi-Analytical Comparison >

Do you want to compare with semi-analytical data with parameters:
Force: TN

Depth top layer: 4 m

E-modulus: [160eb, 800eb, 200eb]

Density: [2000, 2000, 2000]

Poissons: [0.33, 0.33, 0.33]

Structural damping: [0.06, 0.06, 0.06]7

Yes

Figure B.10: Option of comparing the results from the FE models with the
semi-analytical model.
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