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Abstract

Glass architecture continues to evolve with increasing demands for aesthetics, func-
tionality, and durability. The use of curved glass elements is becoming increasingly
common in modern constructions. Traditionally, curved glass is made of float glass
that is heated above the glass transition temperature and formed into a curved shape.
This technique is time- and energy-intensive, and consequently, relatively expensive.
For this reason, other more efficient alternatives can be used, namely cold-bent glass.
This means that the glass elements are bent during assembly on site without any heat
treatment.

This thesis investigates the modeling and stress analysis of cold-bent glass elements,
which involves elastically deforming flat glass panels on a curved frame substructure
without heat, resulting in permanent intrinsic stresses throughout the panel’s service
life. The aim of this work is to evaluate how cold-bent glass can be modeled under
intrinsic bending stresses and in combination with external loads, such as wind, using
simplified models suitable for practical use, and to work out which parameters and
conditions are crucial.

Both monolithic and laminated glass panels were studied using analytical methods
(Euler-Bernoulli beam and Kirchhoff-Love plate theory) and validated against de-
tailed finite element numerical simulations in Abaqus. The study focuses on glass
panels with radii between 10-20 meters, and thicknesses between 6-12 millimeters,
typical of architectural applications. The results show that thinner plates and larger
bending radii significantly reduce internal stresses. Laminated glass with thicker PVB
interlayers exhibits improved flexibility and lower peak stresses due to better strain
distribution.

The study finds that simplified models can be developed to predict the stresses in
glass induced by cold bending while maintaining sufficient accuracy using analytical
methods, especially for simple monolithic glass, and although analytical methods have
tended to slightly overpredict stresses for laminated panels, they still provide a conser-
vative and useful tool for early design stages. Numerical methods remain essential for
capturing complex effects such as edge constraints, nonlinearities, and complex inter-
layer behavior. Recommendations for optimal panel thickness and interlayer configur-
ations are provided, along with suggestions for future work, including double-curved
and insulated glass units.

The principle of stress superposition is found to be approximately valid for glass, which
behaves elastically up to failure. Numerically, it has been shown that it is possible to
superpose external loads such as stresses induced by wind with cold bending stresses
by, for example, simulating a suction load in a direction opposite to the direction of
the cold bending, resembling the behavior to that of wind, and then superposing the
maximum principal stresses. The challenge was to approximate the wind loads on
a curved structure with given constraints from the model using analytical methods,



as simplifying the model by assuming it is a flat, rectangular pane and supported
on all edges, did not give the same results. In short, it is possible to superpose cold
bending stresses with external load stresses, but finding a simplified analytical method
to approximate the external load stresses remains unclear.
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Sammanfattning

Glasarkitektur utvecklas stdndigt med okande krav pa estetik, funktionalitet, och
hallbarhet. Anvéindningen av béjda glaselement blir allt vanligare i modern byggnation.
Traditionellt tillverkas krokt glas av floatglas som upphettas over glasets transitions-
temperatur och formas till 6nskad krokning. Denna teknik &r tids- och energikravande
och diarmed relativt kostsam. Av denna anledning anvinds andra mer effektiva al-
ternativ, namligen kallbojt glas. Det innebér att glaselementen bojs pa plats under
monteringen utan nagon virmebehandling.

Detta examensarbete undersoker modellering och spéanningsanalys av kallbdjda gla-
selement, dér plana glasrutor elastiskt deformeras Over en boéjd ramstruktur utan
uppvarmning, vilket leder till permanenta inre (intrinsiska) spanningar genom hela
glaspanelens livslangd. Syftet med arbetet ar att utvérdera hur kallbojt glas kan mo-
delleras under dessa bojspanningar och i kombination med yttre laster, sasom vind,
med hjilp av forenklade modeller som &r praktiskt anvindbara, samt att identifiera
vilka parametrar och villkor som &r viktiga och avgorande.

Bade monolitiska och laminerade glaspaneler studerades med analytiska metoder,
ndmnligen Euler-Bernoulli balkteori och Kirchhoff-Love plattteori, och validerades
mot detaljerade finita element numeriska simuleringar i Abaqus. Studien fokuserar
pa glaspaneler med radier mellan 10-20 meter och tjocklekar mellan 6-12 millime-
ter, typiska for arkitektoniska tillampningar. Resultaten visar att tunnare plattor och
storre béjningsradier minskar de inre spanningarna avsevéart. Laminerat glas med tjoc-
kare PVB-folier uppvisar forbattrad flexibilitet och ldgre maxspanningar tack vare en
battre férdelning av spanningarna.

Studien visar att forenklade modeller kan utvecklas for att forutséiga spénningarna i
glas som uppstar vid kallbojning med tillracklig noggrannhet, sérskilt for enkla mo-
nolitiska glas med anvéndning av analytiska metoder. Aven om de analytiska meto-
derna tenderar att Gverskatta spédnningarna i laminerade paneler nagot, ar de &dnda
anvandbara som konservativa verktyg i de tidiga skedena av konstruktionen, for att
t.ex. utfora preliminédra analys. Numeriska metoder ar dock avgorande for att fanga
komplexa effekter sasom kantforhallanden, icke-linjériteter och en mer exakt PVB
beteendet i laminerade strukturer. Rekommendationer for optimal paneltjocklek och
mellanskikt-konfigurationer ges, tillsammans med forslag pa framtida arbete, inklusive
dubbelkrokta och isolerade glaselement.

Principen om superposition av spanningar visade sig vara giltig for glas, som uppvisar
elastiskt beteende fram till brott. Numeriskt har det visats att det dr mojligt att super-
ponera yttre laster, sasom spanningar orsakade av vind, med kallb6jningsspanningar,
till exempel genom att simulera en sugkraft i motsatt riktning mot kallbojningen, vilket
efterliknar vindens paverkan, och sedan superponera de maximala huvudspéanningarna.
Utmaningen lag i att approximera vindlaster pa en krokt struktur med givna randvill-
kor i modellen med analytiska metoder, eftersom en férenkling dar strukturen antas
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vara en plan rektanguldr ruta med stod lings alla kanter inte gav samma resultat.
Med enkla ord, det &r mojligt att superponera kallbojningsspdnningar med externa
laster, men att hitta en férenklad analytisk metod for att uppskatta de yttre lasterna
kvarstar som oklart.
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Notations and Symbols

Latin letters

a
b
D
d;
Ly
Eint
Fy
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fod
fok
Gint
h
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FEETy

Length of the glass panel

Width of the glass panel

Elasticity matrix

Distance from center of each glass layer to the neutral axis
Elastic modulus of the glass

Elastic modulus of the interlayer

Design value of an action

Characteristic value of glass strength after strengthening treatment
Design value of bending strength of glass

Characteristic bending strength of pre-stressed glass

Shear modulus of the interlayer

Total thickness of the glass panel

Thickness of each glass layer in laminated glass

Thickness of the interlayer

Effective thickness for deflection calculations

Effective thickness for stress calculations

Second moment of area

Coefficient from SS-EN 16612 for rectangular panes

Edge or hole finishing factor

Edge or hole prestress factor

Interference factor

Modification factor depending on load duration

Coefficient accounting for the reduction of the process-induced prestress
Surface treatment factor

Panel length used in code examples

Bending moment

Moment in direction A

Moment in direction B
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Plies number
Distributed load
Radius of curvature

Shear force

B o< xR s

Deflection of beam or plate

x,y,z Cartesian coordinates

Greek letters

« Coefficient for moment in direction A

ar  Coefficient of linear thermal expansion

I6; Coefficient for moment in direction B
vv  Material partial factor

Yp Partial factor for prestress on the surface
€ Strain of beam or plate

Np2  Adjustment factor in EET formulas for a 2-pile laminate
K Curvature

A Aspect ratio a/b

Aa Size-effect factor area

Al Size-effect factor length (edge, hole)

Vg Poisson’s ratio for glass

Vint ~ Poisson’s ratio for interlayer

Pg Density of glass

o Normal stress

o1 Maximum principal stress

Oz  Otress in x-direction

oyy  Stress in y-direction

oehe Cold bending stress from Euler-Bernoulli
oex Cold bending stress from Kirchhoff-Love
(0 Shape factor used in laminated effective thickness

T Angular displacement in cylindrical coordinates
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Abbreviations

CPT
CSG
CSS8
EBBT
EET
ESG
FEA
FEM
IGU
NLGEOM
PVB
SG
TVG
UDL
VSG

(Classical Plate Theory

Chemically Strengthened Glass

Continuum Solid Shell

Euler Bernoulli beam theory

Enhanced Effective Thickness

Einscheibensicherheitsglas (Tempered Glass in German)
Finite Element Analysis

Finite Element Method

Insulated Glass Unit

Nonlinear Geometry

Polyvinyl Butyral

Sentry Glass

Teilvorgespanntes Glas (Heat-strengthened Glass in German)
Uniformly Distributed Load

Verbundsicherheitsglas (Laminated Safety Glass in German)
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1 Introduction

1.1 Background

Glass architecture continues to evolve with increasing demands for aesthetics, func-
tionality, and durability. The use of curved glass elements is becoming increasingly
common in modern constructions. Traditionally, curved glass is made of float glass
that is heated above the glass transition temperature and formed into a curved shape.
This technique is time- and energy-intensive and, consequently, relatively expensive,
but allows the production of both single- and double-curved glass. For this reason,
other more efficient alternatives can be used, namely cold-bent glass. This means that
the glass elements are bent during assembly on site without any heat treatment. Most
often, tempered float glass is used, which is gradually mounted on a curved frame.
Finally, the curved panel is mechanically attached to the frame, which means that the
glass is subjected to bending stresses throughout its service life. Cold-bent glass offers
a sustainable and cost-effective solution by reducing the energy consumption during
processing while maintaining the mechanical properties of the material. However, sig-
nificant challenges remain related to the modeling and analysis of cold bent glass, as
well as in combination with other loads such as wind loads and snow loads. This
thesis investigates how cold-bent glass can be designed with respect to other loads and
explores important and crucial parameters to develop simplified models to facilitate
the design process and improve safety assessments for cold-bent glass elements.

1.2 Aim and Objective

The aim is to evaluate and develop modeling strategies and simple guidelines for cold-
bent glass elements, with a particular focus on cold-bent glass, to ensure their function
and durability in building applications. The study examines cold bending radii ran-
ging from 10-20 m, and thicknesses 6-12 mm, corresponding to typical architectural
applications, with particular attention to stress concentrations caused by pure bend-
ing. The possibility of superposing intrinsic and extrinsic stresses on the cold-bent
glass using simple calculations is also investigated.

Issues and Research Questions:

e How can cold-bent glass be modeled and what parameters and conditions are
crucial?

e [s it possible to develop simplified models that maintain sufficient accuracy for
practical use?



e How should other loads be combined with the bending stresses that arise during
cold bending of glass?

1.3 Method

In order to create simplified models to estimate cold-bending induced stresses in a glass
plate, analytical approaches such as beam and plate theories will be used as a baseline
to compare with FEA numerical approaches. The analytical results help by offering a
quick, simplified, approximate check against complex numerical models, ensuring that
the calculated stresses are within expected ranges.

FEA incorporates material nonlinearities, boundary effects, and interlayer interactions
in laminated glass, which can be difficult to capture or predict analytically. By com-
paring both methods, one can assess whether FEA results deviate significantly due to
secondary effects, or if it is good enough.

Once the analytical approaches have been validated, the study will explore implement-
ing these simplified methods for combining cold bending with other loads. This will
include investigating superposition techniques for intrinsic and extrinsic stresses, along
with any necessary adjustment coefficients.

1.4 Limitations and future studies

In this study, the focus will be on both tempered monolithic and laminated safety
glass panels, which are single-curved (monoclastic). Future studies can investigate
cold bent double-curved (synclastic/anticlastic) glass panels and possibly look at the
behavior of insulated glass panels (IGUs) under cold bending.



2 Glass

Glass is a transparent solid material that plays a key role in modern architecture
by allowing natural light into buildings, offering versatile design possibilities, and
enhancing indoor environments. Glass objects have been made for both practical and
decorative uses since ancient times. Thanks to advances in manufacturing techniques
such as the float process and improvements in large-scale coating technologies, flat
glass has become a widely used construction material [1].

This so-called "float” process is where almost all flat glass products are made. The
process involves the flotation of molten glass on a bath of liquid tin to create a per-
fect flat surface on both sides. This method is today the standard method for glass
production, over 90%, and does not cause waves or distortions [2].

One of the most prevalent types of float glass is Lime Silicate Glass, which is known as
Soda-lime Glass which accounts for about 90% of manufactured glass. Soda-lime glass
is transparent glass that is most commonly used for windowpanes and glass containers
like bottles and jars or similar. It is made from silica (SiO3), sodium oxide (NayO),
and calcium oxide (CaO) [3].

Chemical Reaction for Soda-Lime Glass Formation:

Soda-lime glass is manufactured by heating a mixture of silica (SiOs), sodium car-
bonate (NapyCOj3), and calcium carbonate (CaCOj). Upon heating, the carbonates
decompose into their respective oxides, (NayO) and (CaO), releasing carbon dioxide
gas, with all the weight precentages presented in table 2.1. The resulting oxides then
react to form the amorphous glass structure. The overall chemical reaction can be
represented as:

SiOy + Nay,CO3 + CaCOs4 heat, (Soda-lime glass) + 2C0O,
During this process:
- Sodium carbonate decomposes into sodium oxide (NaO) and carbon dioxide (COs3).
- Calcium carbonate decomposes into calcium oxide (CaO) and carbon dioxide (COs).

- Silica SiOy combines with sodium oxide (NayO) and calcium oxide (CaO) to form
soda-lime glass.



Table 2.1: Chemical composition of soda lime silicate glass [4]

Chemical Name Chemical Weight
Formula Percentage
Silica Si0, 69 — 74
Lime CaO 5— 14
Soda NayO 10 - 16
With small amounts of magnesium, aluminum, iron
and other elements

2.1 Mechanical properties

Glass is a stiff, elastic, and brittle material with unique mechanical properties. A
material being elastic means that it can deform slightly and return to its original
shape when stress is removed. However, unlike ductile materials such as metals, glass
does not exhibit plasticity, which is the ability to undergo permanent deformation
after the elastic limit is exceeded. As a result, glass cannot handle large strains and
tends to fail suddenly without warning when stressed beyond its limit state, which
characterizes its brittle nature, meaning it exhibits no ductility.

In short: materials that exhibit plastic deformation before fracture are classified as
ductile, while those that fracture with little to no plastic deformation are considered
brittle. The general mechanical properties of Soda Lime Silicate Glass according to
EN 1900-1:2023, are presented in table 2.2.

Table 2.2: General Mechanical Properties of Soda Lime Silicate Glass EN 19100-1:2023

[5].
Modulus of elasticity E, =70 000 MPa
Poisson’s ratio vy = 0.23
Coefficient of linear thermal expansion ar =9-107°1/K
Glass density py = 2 500 kg/m?

Glass is much stronger in compression than in tension. This is because any small
surface imperfections or cracks can easily grow under tensile stress, leading to failure.
Since it has low resistance to fracture, a crack will spread quickly as soon as it forms,
causing the glass to break suddenly. However, certain treatments can help to signific-
antly improve its strength, such as pre-stressing the glass using heat-tempering. Table
2.3 shows the characteristic bending strength values for annealed and prestressed glass.
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Table 2.3: Characteristic Bending Strength for Different Glass Materials According to EN
19100-1:2023 [5]

Glass Values for characteristic bending strength f,
material for annealed glass and f;; for pre-stressed glass:
Annealed thermally heat chemically

toughened strengthened | strengthened
safety glass glass glass

float glass or | 45 MPa 120 MPa 70 MPa 150 MPa

drawn sheet

glass

Steel, as a material, demonstrates a typical ductile response. Initially, it behaves
elastically, which means that the stress is proportional to the strain, effectively, in a
linear matter. After reaching the yield stress f,, it enters a plastic region where it is no
longer linear and continues to deform without a significant increase in stress, eventually
reaching its ultimate strength fg, before undergoing ductile failure. The modulus of
elasticity (stiffness) for steel is approximately 210 GPa, indicating a relatively high
resistance to elastic deformation.

In contrast, glass exhibits brittle behavior. It undergoes linear elastic deformation up
to its failure point without yielding. Omnce its strength f,; is exceeded, it suddenly
fractures without significant plastic deformation. Its modulus of elasticity is lower
than that of steel, around 70,000 MPa, making it less stiff and more prone to breaking
under stress.

This behavior can be visualized using the curves in Figure 2.1, where the glass curve
cuts off at its ultimate strength, while the steel curve continues, exhibiting plastic de-
formation. Additionally, the glass curve has a gentler slope, indicating lower stiffness,
which means that less stress is required to produce strain.

Steel Glass
Oa - Oa -
fak
Strength+
_ fo Ductile failure
Yield Stresst” . .
Brittle Failure
Strength+ f
g
2
E~210 000 N/mm E~70 000 N/mi?
4 J
e alst'lc plastic I elastic
£ %

Figure 2.1: Stress-strain curves comparison for glass and steel.



Glass bending strength design value

According to prEN 19100-1:2023 [5], Annex A, Equation (A.1), the design bending
strength is calculated as:

ks fk fbk_fk
—)\ )\ 'ke'kmo P SO k 'ke LI SO
fg,d’ A A d N + Ky P ki,

(2.1)
The term “bending strength” in EN 19100-1:2023 refers to the strength of glass com-
ponents subjected to bending moments, normal forces or combinations thereof.

The parameters A4 and )\; are set to 1, as the glass panes considered in this study do
not exceed an area of 18 m? or a side length of 6 m.

According to prEN 19100-1:2023 [5], Table A.1, the edge finishing factor k. for annealed
float glass is taken as 1, assuming polished or smoothly ground edges. Additionally,
since the glass surface will remain as produced and will not undergo sandblasting, the
surface profile factor k, is also set to 1 for float glass, in accordance with Table A.2.

This study accounts for stresses induced by cold-bending, snow, and wind. Therefore,
the lowest modification factor k,,,q from Table A.3 is applied, which is 0.29. However,
this only applies for annealed glass, whereas in all other cases, k.4 is set to 1.

The heat-treatment factor k,, which accounts for the reduction in process-induced pre-
stress is set as 1 for heat treatment with horizontal process and 0.6 for vertical process
(table A.4). According to SS-EN-16612-2019-EN [6] ”The presence of tong marks in
vertically toughened glass reduces the effectiveness of the pre-stressing locally com-
pared with horizontally toughened glass which has no tong marks”. The use of tongs
or other devices to hold the glass during the vertical toughening in the manufacturing
process, reduces its efficacy and therefore a reduction factor of 0.6 would have to be
applied. As this study considers horizontally toughened glass, k, is set to 1.

For a thermally toughened glass panel subjected to out-of-plane loading, the edge
pre-stressing factor k. ,, responsible for verifications near edges and holes and under
tension, is set to 1 (table A.5). Furthermore, the interference factor k;, which accounts
for the beneficial statistical interference between the distributions of pristine glass
strengths and pre-stress, is taken as 0.9 for thermally toughened glass and consequence
class 3 (table A.6).

The partial factors v, and yp are chosen according to table 8.1. For persistent and
transient in consequence class 3, yy=2.0 and ~,=1.3.

Finally, the characteristic bending strength f, ; for the design of annealed basic soda-
lime silicate glass is 45 N/mm?, and characteristic bending strength f; ;. for design of
prestressed basic soda-lime silicate glass is 120 N/mm?

The design bending strength becomes for thermally toughened lime silicate glasss in

CC3:

1.0-45 120 — 45

~1.0-1.0-1.0-1.0- 10-1.0. ——~°

Joa=10-1.0-1.0-10 5o T HUL0-TeEs
fy.a = 86.6 MPa



2.2 Glass Treatments and Prestress

Glass can be categorized based on its processing and treatment. Annealed glass is
the most basic form, slowly cooled to relieve internal stress but breaks into sharp
shards when shattered. Prestressed glass includes tempered, heat-strengthened, and
chemically strengthened glass. Tempered glass is rapidly cooled after heating, making
it four to five times stronger than annealed glass and breaking into small, blunt pieces
for safety. Heat-strengthened glass is cooled more slowly than tempered glass, making
it twice as strong as annealed glass but still breaks into sharp fragments.

2.2.1 Annealed glass

Annealed glass is ordinary float glass that has not been heat-strengthened or tempered.
Annealing is the process of controlled cooling to minimize or prevent residual stress in
glass. It is characterized by its flat smooth surfaces, transparency, hard wearing and
compressive strength. [7].

Annealed glass is widely used in solar panel technology, car windows, building surfaces,
and smart device screens, thanks to its anti-reflective and solar control properties [4].
However, annealed glass cannot be classified as ”safety” glass because of its failure
pattern. Annealed glass is brittle, especially due to its flaws resulting mainly by the
way it is produced, e.g. in cutting and handling, and upon failure, it breaks into big
sharp shards [7]. This kind of glass can be broken because of the large temperature
difference, impact loading or large imposed strain. Then it splits into large pieces
which are very dangerous making this type of glass prohibited in some places such as
bathroom, door, fire exit or school to avoid the risk of injury [4].

Instead of annealed glass, glass classified as ”safety” glass such as laminated or tempered
glass comes into play and is strongly recommended for such places because of their
small-piece failure pattern.

2.2.2 Heat-strengthened Glass - TVG

Heat-strengthened glass, Teilvorgespanntes in German (TVG), also known as semi-
tempered glass, is a variety that in terms of strength and treatment lies between
annealed glass and fully-tempered glass [8]. It is produced by subjecting annealed glass
to a thermal cycle consisting of heating and rapid cooling that induces compressive
stresses on the surface of the glass, making it tougher in compression [4]. In heat-
strengthened (semi-tempered) glass, the entire glass is heated uniformly and then
cooled more slowly than in fully tempered glass. This process does not create as high
an internal stress as in fully tempered glass and therefore is not as strong as fully
tempered glass but is more durable than annealed float glass.

It has some of the advantages of tempered glass, such as being stronger than ordinary
float glass, but not by much, making it still not considered a safety glass, with strength
approximately twice that of annealed glass and a similar failure pattern [8].



However, when semi-tempered glass breaks, it generally remains intact without col-
lapsing after breaking, and that is because its cracks radiate from the source of the
fracture without causing significant tangential crack propagation, making it less sus-
ceptible to spontaneous breakage and shattering into small pieces upon breakage as
with fully tempered glass, which can also have poor flatness in some cases [8].

Heat-strengthened glass can not be used as monolithic, because it is not safety glass,
therefore, it is often used in laminated glass or insulated glass units (IGU) [8].

2.2.3 Tempered Glass - ESG

Tempered glass, or fully tempered glass, Einscheibensicherheitsglas in German (ESG),
is annealed glass that has also undergone a thermal cycle of heating and cooling, more
rapidly than semi-tempering however, inducing compressive stresses on the surface of
the glass and tensile stresses internally, significantly increasing its mechanical strength
to approximately 4-5 times more than that of annealed float glass. [8].

The induced compressive stresses are caused by the glass surfaces contracting due to
rapid cooling by air jets, whereas the inner region continues to float a while longer.
When the inner region finally contracts, the surfaces subjected to compression will be
balanced by tensile stresses in the inner region [9].

Glass is mainly vulnerable to tensile stresses, making it the primary cause of failure in
most situations. However, toughened glass can withstand greater bending-induced de-
formation compared to ordinary annealed float glass. This is because the compressive
stresses on its surface enable it to endure higher levels of tensile stress during bending
(see Figure 2.15). If toughened glass does break, it fragments into many smaller, less
dangerous pieces [9].

Fully tempered glass shatters into small, blunt-edged pieces that are unlikely to cause
significant injury, making it qualify as safety glass and possible to be used as monolithic
glass or in laminated glass and insulated glass units. However, the disadvantages of
tempered glass include a tendency to spontaneously shatter. It is also worth noting
that it has reduced flatness compared to semi-tempered and annealed glass [8].

Compression
K AP ‘—
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Figure 2.2: Typical through-thickness stress distribution profile in tempered glass [10].



2.2.4 Chemically strengthened Glass - CSG

Prestressing can be induced in glass using thermal methods, as described above, but
also using chemical methods by immersing the glass in a chemical bath, changing the
chemical composition of its surface, leading to an increase in surface compression.

The process involves immersing Soda-Lime-Silicate glass in a molten bath of potassic
salt (e.g. saltpetre) at a temperature of 550°C, causing an exchange of sodium and
potassium ions leading to inducing the desired stresses [11].

This occurs because of the difference in the ionic radii between K+ ions (r = 0.144
m) and Na+ ions (r = 0.096 m), having K+ ions use approximately 30% more room
than Na+ ions, causes the glass surface to condense and therefore a compression zone
is developed, with the maximum compression zone proportional to the maximum ion
exchange rate on the glass surface. Naturally, when there is compression on the surface,
tension must occur on the inside of the glass to maintain equilibrium [11].

Induced prestress from a chemical bath is superior to thermal prestress. It significantly
increases the glass’s mechanical strength many times over by correcting the defects on
the glass surface, such as micro- or macro-cracks and notches, which could cause
breakage leading to failure.
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Figure 2.3: Residual stress distribution comparison of thermally and chemically
pre-stressed glass [12].

2.3 Composite Glass Structures

Composite glass structures are made by combining two or more layers of glass with
interlayers or spacers to enhance performance. Combining materials into these struc-



tures, such as laminated or insulated glass, offer improved safety, thermal insulation,
sound reduction, durability and other benefits compared to single-pane glass.

2.3.1 Monolithic float glass

Monolithic Glass is a single solid piece of glass, as opposed to laminated or insulated
glass, that consists of multiple layers. Monolithic glass is a single solid pane of glass
without any lamination or layering. It can be annealed or prestressed depending on the
processing. Monolithic glass is commonly used in windows, doors, and architectural
applications where a single sheet of glass is sufficient. Laminated and insulated glass
differs from monolithic glass in that they involve multiple layers for a purpose such as
added strength, safety, or insulation.

2.3.2 Laminated glass - VSG

Laminated glass (VSG), Verbund-Sicherheits-Glas in German, is a layered glass config-
uration consisting of two or more glass panes that are bonded together by thin plastic
interlayers, such as Polyvinyl Butyral (PVB), Ethylene-Vinyl Acetate (EVA), and
Ionoplast polymers (like SentryGlass Plus) and Thermoplastic Polyurethane (TPU).
Laminated glass is regarded as a safety glass, that is because laminated glass does not
shatter during failure and holds itself together, reducing risk of injury. This happens
because the pieces stick to the interlayer.

Glass

Interlayer N

Glass < |

Figure 2.4: Stress distribution of a laminated glass panel.

Laminated glass was invented in 1903 or, rather, accidentally discovered by a French
chemist, Edouard Bénédictus, inspired by a laboratory accident, where a glass flask
had become coated with plastic cellulose nitrate, and when it fell, it shattered, but
did not break into pieces [13]. This accident is what inspired today’s laminated safety
glass. Today, it can be made from regular annealed (float) glass and semi- or fully
tempered glass for increased safety.
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Figure 2.5: Stress profile for (a) layered configuration, (b) Laminated configuration, (c)
Monolithic configuration.

Interlayer

There are many types of interlayer, with the most common one being the PVB in-
terlayer. The plastic interlayers exhibit time- and temperature-dependent viscoelastic
properties. The stiffness highly depends on the load duration and the temperature. It
behaves non-linearly, however, it can be modeled as a linear elastic material, which will
be further investigated on later in section 6.1. The modulus of elasticity for interlayers
can vary a lot depending on temperature, duration of load, and type of interlayers.
The general mechanical properties of the PVB-interlayer are shown in Table 2.4.

Table 2.4: General Mechanical Properties of PVB-interlayer [14]

Modulus of elasticity E;: = 0.1-100 MPa

Poisson’s ratio Vine = 0.45-0.50

The interlayers have the same transparency as glass and come in many sizes and colors,
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which is how laminated glass is made in different colors. PVB interlayers, for example,
come in sizes starting from 0.38 mm as a simple layer, and increasing in multiples of
0.38 mm, such as 0.76 mm, 1.14 mm, 1.52 mm, 1.90 mm, 2.28 mm, etc. [15]. For
example, two layers (0.76 mm), four layers (1.52 mm), or for special applications, six
layers (2.28 mm) can be combined.

2.3.3 Insulated glass unit - IGU

Insulated glass units (IGUs) have multiple panes separated by a gas-filled space for
thermal insulation. Coated glass includes low-emissivity (Low-E) glass, which im-
proves energy efficiency, and reflective glass, which reduces glare and heat gain.

Glass Pane Thermal spacer

\ Interlayer

a. Monolithic b. Laminated c. Insulated
Glass Glass Laminated Glass

Figure 2.6: Cross-section comparison of (a) Monolithic Glass, (b) Laminated Glass with
interlayer, and (c) Insulated Laminated Glass with thermal spacer [16].

2.4 Geometry of Curved Glass

2.4.1 Single Curved Glass (Uniaxial)

Single-curve or Monoclastic surfaces are defined by a single curve that causes a struc-
ture to bend in one direction, along one axis. This type of curvature forms a cylindrical
surface, whereas curvatures in other directions remain unchanged. The term ”mono”
in Latin means one or single, referring to the single curvature, and ”clastic” refers to
its shape change.
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Monoclastic @g

Monoclastic (or uniclastic) surfaces are
single curved surfaces, characterised by
only bending in one direction at a time.

Figure 2.7: Single Curved (Uniaxial) Glass Panel [17].

Single curve Monoclastic glass is popular and widely used, particularly in exterior win-
dows and curtain walls, store and mall fronts, custom residential glazing and interior
partitions, merchandise display cases, cylindrical elevator enclosures, skylights, even
insulated, bullet resistant and security glazing can be curved [18].

This bending method is relatively easier and simpler to perform when it comes to
calculations, time consumption and costs, when compared to more complex geometries.
It can be achieved with either hot bending or cold bending, which will be expanded
on later in the next subchapter.

However, there are some limitations. A curved glass panel typically exhibits greater
stiffness along the direction of the curvature due to geometric stiffening, causing the
structure to have weaker performance perpendicular to the curve [19]. It lacks geo-
metric flexibility to match surfaces that have a curvature in two directions [20].

2.4.2 Double Curved Glass (Biaxial)

Double-curved, or biaxial, glass bending involves shaping the glass along two axes,
creating curvature in two directions. This type of bending encompasses both synclastic
and anticlastic forms, which differ in the relationship between their curvatures.

Derived from Greek, ”syn” means ”same” and ”anti” means ”opposite”. A synclastic
surface curves in the same direction along two principal axes, making the curvature is
positive in both directions (positive Gaussian curvature). In contrast, an anticlastic
surface curves in opposite directions, one axis curves upward, and the other curves
downward (negative Gaussian curvature).

13



Synclastic @ Anticlastic %

Synclastic curvature, that is, principal Anticlastic surfaces are those in which
curvatures of the same sign; i.e the the centres of curvature are located on
centres or curvature are on the same opposing sides of the surface

side of the surface

Figure 2.8: Double Curved (Biaxial) Glass Panel [17].

The Gaussian curvature K, defined as the product of the two principal curvatures x,
and ko (i.e., K = K; - Kg), can be either positive or negative. When the Gaussian
curvature is negative, the surface is referred to as anticlastic, which forms hyperbolic
paraboloids (saddle shapes). In contrast, if the curvature is positive, the surface is

known as synclastic, typically represented by circular paraboloid shapes (dome shapes)
[21].

2 =% 492 z=1?
elliptic paraboloid parabolic cylinder hyperbolic paraboloid

Figure 2.9: Schematics of different paraboloids [22].

Double curved glass pane can be achieved with hot bending. Double curved glass is
mostly desired in glazing, which refers to glass panels used in buildings, particularly
in windows, facades or architectural structures [23]. Double curved cold bent glass
can be achieved by single curving the glass along the axis that goes from corner to
corner, effectively by fixing one corner and bending from the other corner. However,
this is still classified as a single curve bend, despite the glass being double curved.
Double curved glass achieved by bending it along two separate axes is impossible to
accomplish with cold bending.
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In contrast to single-curve glass, double-curve glass has a better ability to distribute
loads more evenly. Since a structure exhibits greater stiffness along the direction of a
curvature, it would cause the structure to have a higher stiffness along both bending
directions.

2.4.3 Free-form Glass

Free-forming of glass refers to the free curving and formation of glass into complex
shapes instead of being limited to a single or double curve. The process involves hot
bending, which will be touched on later in 2.5.1, where the glass sheets get heated
to around 600°C until they became pliable. The glass gets then slumped into molds,
shaping them to the desired geometry. After forming, the glass can be laminated,
sometimes with colored interlayers to achieve both aesthetic and performance qualities.
These techniques allow for greater design freedom, enabling the production of intricate
and customized glass components.

Emporia, a landmark shopping center in Malmo’s Hyllie district in Sweden, exemplifies
the application of glass free-forming in contemporary architecture. Each of the 804
glass panes was uniquely shaped and custom-made, laminated with colored interlayers
to achieve the desired hues and transparency. The supporting steel structures were
assembled with tolerances within one millimeter to ensure a seamless integration of
the glass panels.

Figure 2.10: The glass facade of Emporia shopping mall in Malmo, Sweden, exemplifies
free-form glass architecture [24].
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The free-form glass structure at Xujiahui Commercial Center in Shanghai is another
example, featuring fluid curves that defy traditional architectural limits. Its dynamic
design highlights the versatility of glass free-forming in modern construction.

Figure 2.11: Free-Form Glass Structure at Xujiahui Commercial Center in Shanghai,
China [25].

2.5 Production of Curved Glass

2.5.1 Hot-bending

Hot bent glass is a popular method of curving glass that involves curving glass using
heat, and is essential in our modern architectural design. It gives manufacturers more
flexibility to create a wider range of shapes, allowing for non-cylindrical designs and
tighter radius. It also enables free-forming without the downside of causing internal
stresses that could weaken the glass [26]. The pane retains the precise shape of the
mould and yields no inherent stress distribution [23].

Hot bending involves heating the glass (around 600-700 °C) until it becomes viscous,
then shaping it using a mold or specialized bending equipment. Once formed, the glass
can either be allowed to gradually cool, allowing the shape to set without enhancing
its strength (gravity hot-bending) [27], or rapidly cooled down/quenched (heat-treated
hot-bending)
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Gravity Hot-Bending

Bending can be based solely on gravity, meaning its own self-weight (see Figure 2.12),
or can also be assisted in which a mechanical bending press forces the glass into a
target shape. The shape is then slowly cooled to avoid any residual tension build-up
in the glass [26].

Hot bending allows producers to obtain a wider range of glass shapes, for example, a
tighter radius and non-cylindrical shapes. However, this process does not add mech-
anical strength to the glass nor the ability to tolerate temperature variations [26].

(1)

Cr

(3) (4)

L -

Figure 2.12: Stages of gravity-based hot bending of glass (1) Flat glass placed on mould,
(2) Heated to 600°C, (3) Glass deforms into mould under gravity, (4)
Curved glass cools gradually [28].

Heat-treated or Tempered Hot-Bending

Normally, annealed or heat-strengthened glass is desired. For this reason, we can
conduct so-called heat-treated/tempered hot-bending glass. It involves a controlled
cooling process that is carried out with a high temperature gradient (also known as
rapid cooling) [21], which is similar to the process used for normal tempering or heat-
strengthening of flat glass. The key difference in the tempering furnace is that there
is a flexible area (a mold) that allows the glass to be shaped while it is being heated,
before it is tempered by being quenched (rapidly cooled with high-pressure air) and
set into its final form [28] (see Figure 2.13.

Meaning, the glass is bent during heat treatment in a furnace, and then later rapidly
cooled down, which either fully tempers or heat-strengthens the glass at the same time.
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Nowadays, the hot bending and rapid cooling process to create tempered hot-bent glass
is carried out in the same furnace [21].

Figure 2.13: Multiple stages of the glass hot bending process, including heating, shaping,
and quenching. Source: Glaston (www.glaston.net) [26].

It is far quicker than the gravity bending process, but it raises the challenge of potential
optical distortions, typically created during the heating or rapid quenching/cooling
stages. In addition, only concave and cylindrical shapes can be produced when certain
coatings are used [28].

There are a few other drawbacks. Hot-bent glass is typically more expensive due to
its demanding production process. Heating the glass past its transition temperature
requires substantial energy as well as resources, since each unique shape for a sub-
part requires a custom mold [23]. Tt also has reduced safety due to the larger and
sharper shards it creates when broken. These issues may make it worthwhile to explore
alternative options [29].

2.5.2 Cold-lamination

In contrast to hot bending, cold bending offers engineers two different approaches.
Namely, cold lamination and plain elastic cold bending. Cold lamination is a process
that involves gradually bending a flat glass panel into a curved shape while laminat-
ing them with a polymer interlayer under heat and pressure, which helps distribute
stress and stabilize the curved shape. In prEN19100-2:2023, the lamination bending is
described as a process in which glass is curved by cold bending and then laminated to
retain the shape [30]. The glass will then retain its curved shape permanently without
requiring external force. The key difference is that the glass itself is not thermally
softened where it reaches a viscous state to be reshaped, as in hot bending. Instead, it
is mechanically forced into shape and held there while the lamination process secures
it in place [23]. The glass is cold bent and laminated in the same process, instead of
cold bending an already laminated glass panel.

The process begins with stacking of polymer layers in between flat glass panes and then
cold bent into shape using a bending device of some sort. While held in this curved
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form, they are placed under autoclave conditions, where heat and pressure facilitate
bonding between the glass and the polymer. After the polymer hardens, the glass
retains its curved geometry, although a minor spring-back effect may occur overtime
due to the elasticity of the polymer [23]. The process ends with a curved laminated
safety glass as the final product.

As with hot-bent glass, cold-laminated curved glass must be transported in its final
bent form, considering that it is prefabricated, resulting in higher transportation costs
compared to standard flat glass. To avoid these costs, elastic cold bending can offer
a more cost-effective option as well as an energy-effective option where no heating is
required.

2.5.3 Cold-bending

In the context of cold bending, glass does not initially stand out as a suitable option.
The general consensus is that glass is a weak and brittle material without any strength
capabilities, giving the impression that it is not something that can be bent without
instantly breaking. The claim that glass is a brittle material is correct; however, the
perception of glass being weak is generally a misunderstanding. Glass is stronger than
what is perceived as shown in figure 2.1, when compared to steel.

Over the last few decades, there has been an increasing amount of research and projects
surrounding glass with many codes and standards emerging, establishing methods for
determining the tensile bending strength of glass as shown in section 2.1, as well as
FEM software, making investigating the boundaries of the material more accessible.
[31].

The cold bending of glass is a process of elastically bending glass components at am-
bient temperatures to permanently achieve a desired shape. It is a relatively recent
technique for creating curved glass plates [32, 30]. Cold bending is achieved by mech-
anically bending a glass panel and fixing it onto a curved frame substructure without
heating or laminating. Whilst cold lamination holds the reaction forces through a
lamination process, this approach maintains the glass in a constant state of elastic
deformation, by being obliged to a supporting structure using clamps or strips to hold
down the edges or corners in place as shown in figure 2.14, which induces continuous
internal stresses.

Ll

(a) Flat glass (b) Cold Bending (c) Fixing

Figure 2.14: The process of cold bending glass [32].
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A substructure is a structure that permanently supports the glass component, such
as clamps, point fixing, line bearing, and the curved frame used for cold bending,
ensuring the desired shape of the glass through mechanical constraints (point and /
or linear support), which needs to handle the restraint forces induced by cold bending
(30].

Cold lamination results in a more stable and low-stress final product, whereas elastic
cold bending is more economical and energy efficient where transportation costs can be
avoided by making it on site and with a small amount of equipment (see figure 2.14).
It is also flexible since it can be used on flat glass(either monolithic or laminated safety
glass) or an insulating glass unit, in contrast to cold lamination, which as the name
suggests, is only applicable on laminated glass. The interlayer in laminated glass also
helps absorb some of the stress, making the bending process more manageable [23].
Cold bending makes the glass more susceptible to extrinsic stresses. Extrinsic stresses
are stresses within the glass that result from external loads and deflections other than
cold bending, while intrinsic stresses result from cold bending [30].

Because cold bent glass experiences permanent intrinsic stresses, the use of tempered
glass is therefore better suited than annealed or regular float glass because its resid-
ual compressive stresses counteract the internal tensile stresses introduced during cold
bending, as shown in figure 2.15, increasing its safety and performance. In general,
both cold bending and cold lamination use tempered and heat-strengthened glasses,
which have undergone a heat treatment process that creates surface compression and
internal tension. This makes them harder to bend compared to annealed glass or float
glass; however, they still provide increased strength and safety benefits and are there-
fore still used in cold bending. During cold bending, the glass can be carefully curved
within the elastic limit to prevent breakage, despite the surface compression making it
more difficult to bend. When carefully controlled, it provides a more straightforward
and efficient method for producing curved glass shapes while avoiding some of the
challenges associated with traditional methods [23].

z z
Compression Compression
Tension + _

Tension
b -+ c

Figure 2.15: (a) Residual tempering stresses, (b) Cold bending stress, (¢) Sum of (a) and
(b) [21].

Compression

Tension

Not only is cold bending energy and cost efficient, it also does not affect the optical
quality of the glass from its flat state because, unlike hot-bent glass, where local
warping can occur and viscous flow is not required [32, 23].

Cold-bent glass is limited by geometric conditions, its bending strength, and the partial
shear transfer or shear coupling effect of the interlayers in the case of laminated glass
(see section 2.3.2). See Figures 2.16 and 2.17 for examples of real-life applications of
glass cold bending.
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Figure 2.16: IAC Headquarters in New York [33].

Figure 2.17: Strasborg Ville station in France [34].
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3 Numerical approach

3.1 The Finite Element Method

In engineering mechanics, most physical phenomena are described using differential
equations. However, these problem are often too complex to be solved using traditional
analytical approaches. The finite element method (FEM) offers a numerical approach
for obtaining approximate solutions to such equations.

These differential equations apply to a specific region, which may be one-, two-, or
three-dimensional. A fundamental aspect of FEM is that instead of trying to approx-
imate the solution across the entire region at once, the region is divided into smaller,
manageable sections called finite elements. The solution is then approximated within
each of these smaller elements. For example even if a variable changes in a complex,
non-linear way throughout the region, it may be reasonably approximated as changing
linearly within each individual element. The group of all these elements forms what
is known as the finite element mesh (see Figure 3.10) [35].

Once the type of approximation to be used in each element is chosen, the behavior
of each element can be determined. This is feasible because of the simplicity of the
assumed behavior within each element. After analyzing the elements individually,
they are assembled using specific rules to represent the entire region. This process
ultimately yields an approximate solution for the overall behavior of the system [35].

3.2 Abaqus

Abaqus is a Finite Element Analysis (FEA) software that is designed to assist engineers
in simulating complex real-world problems for various industries, such as construction,
and relies on it for advanced engineering models and simulations [36].

Abaqus provides a wide range of element and material models, enabling the simulation
of nearly any geometry, regardless of complexity. It allows stress and deformation
analysis for both isotropic and anisotropic materials under varying temperatures and
strain rates. The software’s material library includes:

Metals and reinforced concrete

Rubber and polymers (e.g., Polyvinyl butyral, PVB),

Geotechnical materials like soil and rock

e Ceramics and crushable or resilient foam
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Beyond the materials mentioned above, Abaqus also handles glass structures effect-
ively, including laminated glass panels with their complex interlayer behavior. The
software offers stress analysis which reliably models stress distributions and concen-
trations, making it well suited for analyzing how stresses develop in both monolithic
and laminated glass components. Its capabilities will therefore prove useful for ex-
amining the mechanical behavior of cold-bent glass during deformation, as well as
identifying critical stress zones.

Abaqus offers two main solvers for different types of simulations, Abaqus/Standard, for
linear and nonlinear finite element analysis and Abaqus/Explicit for highly Nonlinear
Transient Events [36].

Abaqus/Standard is a general-purpose implicit solver that uses matrix inversion and
iterative methods, making it ideal for static or slow dynamic problems like structural
bending, thermal stress analysis, and quasi-static nonlinear analyses. It is suitable
for stress analysis of bent glass panels, laminated glass interlayer behavior, and long-
duration creep studies.

In contrast, Abaqus/Explicit employs explicit time-step integration to handle high-
speed dynamic events like impacts, blasts, or severe discontinuities (e.g., fracture).
It would be suitable for simulating glass fracture from impacts or safety assessments
of shattered laminated glass, for example. While Standard prioritizes accuracy for
smooth, slow phenomena, Explicit specializes in transient, highly nonlinear events

[36).

3.2.1 Model

The research focuses on performing stress analysis on a static model of cold bent
glass panels. Therefore, Abaqus/Standard is the most suited solver where no dynamic
events are involved.

b=15m

NONNN N NNANANN

a=30m

Figure 3.1: Schematic and boundary conditions of the model
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Model Description

A cold bent glass unit usually consists of a glass panel, and a frame of some sort,
usually a metal like aluminum or steel. For this study, a simple model of a glass
panel measuring 3.0 m x 1.5 m (Figure 3.1) is used with varying thicknesses, where
the panel is fixed on one of the short edges and cold bent uniaxially (single curve),
from the other free short edge, resembling a cantilever beam, on top of a fixed, thin,
and curved frame-like substructure with the cross-sectional area 2 mm x 2 mm, which
stretches along the two long edges of the panel. The goal is to force the glass panel
into the shape of the frame to match its curvature with a fixed radius as shown in
Figure 3.2. Since deformations of the frame were not of interest during the analysis,
it was modeled as a rigid body.

Glass
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Figure 3.2: 3D Monoclastic Cold Bending Model
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Loads and Boundary conditions

In order to simulate uniaxial cold bending, a displacement on one of the edges needs
to be defined. However, the displacement should not be purely vertical (in the z-
direction). The edge should follow a cylindrical path, as demonstrated in Section 4.4,
by curving on top of a curved frame substructure.

To make this work properly in Abaqus, a cylindrical coordinate system was utilized,
consisting of the parameters: angular displacement 7, radius R, and height Z, in
contrast to classical Cartesian coordinates (z,y,z) (see Figure 3.3).

Figure 3.3: A Cylindrical coordinate system.

The displacements U1, U2, and U3 would then represent R, 7, and Z. The displacement
boundary condition is applied to the angular displacement 7, which corresponds to the
displacement U2 in Abaqus (see Figure 3.4).

Name:
Type:
Step

Region:

csvs: (Glabal) [y L

Distribution: | Uniform

Oue
U2
[Juz:
Cur1
O urx
[ uRs

Amplitude: | (Ramp)

Note: The displacement value will be
maintained in subsequent steps.

Coldbending
Displacement/Rotation
Coldbending (Static, General)
Set-4 [

-0.2235

oK Cancel

/

Figure 3.4: Displacement boundary condition applied in the U2 direction, corresponding

to 7.

This will allow the displacement defined on the edge to stay perpendicular to the edge’s

26



surface and follow along the cylindrical curve during the entire process. If you displace
the edge purely straight down (Z-direction only) without accounting for the curved
path that the glass will naturally follow, you artificially force in-plane stretching,
which can create unrealistically high stresses. The cylindrical coordinates approach
will ensure more accurate and realistic bending of the glass plate and will simulate the

correct stresses. The angular displacements used for each radius are shown in Table
3.1.

Table 3.1: The angular displacement 7 for a certain radius R

Radius R [m] | Angular displacement 7 [radians]

10 0.443
15 0.298
20 0.224

Figure 3.5 showcases the glass panel’s initial state, the curved frame, and the angular
displacement.

Glass panel

Frame

Figure 3.5: 2D showcase of the curvature 7.
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While the cold bending displacement is on one of the short edges, the other short edge
is tied to the frame substructure, which is fixed in place (U1, U2, U3, UR1, UR2, UR3
= 0), making the tied short edge clamped, as shown in Figure 3.6.

3 Edit Boundary Condition

Name:  Fixed frame

Type  Displacement/Rotation

Stepr Coldbending (Stati, General)

Region: Set-3

C5VS: (Globaly

orssbuton
Ul
w2
Uz
URT
URz:
UR3:

o
Amplitude: | (Ramp) M R

Note: The displacement value will be
maintained in subsequent steps.

(a) Frame substructure boundary conditions

%% Edit Constraint

Name: Tie constraint.

Type  Tie

§ Moster surface: m_Set-1 [3

fl Slavesurface: s Set-1 [y M

Discretizetion method: | Analysis defoutt |

[] Exclude shell element thickness
Position Tolerance
(®) Use computed default

Note: Nodes on the slave surface that are
considered to be outside the position
telerance will NOT be tied.

Adjust slave surface initial position
Tie rotational DOFs if applicable
Constraint Ratio

Use analysis default

(b) Tie constraint between edge and frame.

Figure 3.6: Material properties of each part of the models.
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Parts and Element Type

The glass and PVB were modeled as solid parts. Because glass and PVB have large
differences in Young’s moduli, bending in laminated glass creates sharp changes in
stress in some regions, meaning highly discontinuous. The shell elements fail to capture
these discontinuities in the stress distribution [9]. For the cold bending analysis of thin
glass plates, the Continuum Solid Shell (CSS8) element type was chosen, which are
first-order, 8-node elements. CSS8 elements are ideal for thin materials, including
composites, such as laminated glass, when a full 3D stress-strain response is needed.
They are more effective than standard 3D elements in bending situations with high
aspect ratios [37]. Using continuum solid-shell elements to model shell-like solids also
provides greater accuracy than conventional shell elements, which are limited to 2D
plane stress behavior as described in “Shell elements: overview,” Section 23.6.1 and
21.4.2 of the ABAQUS Analysis User’s Manual [38, 39].

These elements use only displacement degrees of freedom and are fully compatible
with regular solid elements, which were used in this thesis for better accuracy. They
are good for modeling layered composite structures (laminated glass), by considering
different material properties in each layer. They maintain full 3D constitutive laws,
meaning that stress is correctly predicted across the thickness. Unlike full 3D solid
models, which require many elements in the thickness direction, solid-shell elements
only need one element per material layer but use multiple integration points inside
each layer to capture variations in stress. This allows an advantage in computational
efficiency, since one element per layer is needed, and still gives accurate predictions
of stress distribution in glass bending, while being simpler to implement than full 3D
models.

1} Element Type b4
Element Library Family
(® Standard () Explicit Cohesive Pore Pressure ~

C

Georetric Order
@® Linear Coupled Temperature-Displacement v

Hex  Wedge Tet

Element Controls

Element deletion: (@) Use default () Yes () No
Max Degradation: (®) Use default () Specify

(558 An 8-node linear brick, incompatible modes, with assumed strain.

Note: To select an element shape for meshing,
select "Mesh-> Controls” from the main menu bar.

oK Defaults Cancel

Figure 3.7: Continuum Solid Shell (CSS8) Element Type in Abaqus.
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Material

All the materials are modeled as linear elastic, including the viscoelastic PVB Inter-
layer, as explained in section 6.1. The curved frame substructure is modeled as a steel
material, with the material properties shown in Figure 3.2. It would also have been
sufficient to model it as a rigid body and exclude it from the analysis as it is not
covered in this study.

Table 3.2: Material Properties of Glass, PVB Interlayer, and Steel Frame

Material Young’s Modulus (Pa) | Poisson’s Ratio

Glass 7.00 x 101° 0.23

PVB Interlayer 2.98 x 10° 0.49

Steel Frame 2.10 x 10M 0.30
NLGEOM

According to prEN 19100-2:2023 D.4.1 General design principles, while analytical mod-
els can be used for simple and small deformation shapes, geometrically non-linear finite
element (FE) models, should be used for more complex shapes and higher magnitudes
of deformation [30]. In this study, NLGEOM = ON is used in Abaqus regardless of
the magnitude of the deformation to ensure greater accuracy.

Increments

A Static, and general analysis step was used with an initial increment size of 0.001, a
minimum of 1E-05, and a maximum of 0.01 to ensure gradual and accurate analysis.
Up to 1000 increments were allowed, which is more than sufficient.

Type: Static, General

Other
Type: (@ Autormatic () Fixed
Maximum number of increments: | 1000

Initial Minimum  Maximum

Increment size; |[0.001 1E-03 0.01

Figure 3.8: Incrementation settings.
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Mesh

A convergence analysis was conducted on a 1.5 x 3.0 m monolithic glass panel with a
thickness of 6 mm curved with a radius of 15 m.

The mesh sizes used for the analysis are: 0.05, 0.075, 0.125, 0.15, and 0.25 m, with
a reference line along the center of the plate to investigate the suitable mesh size.
It is favorable to identify an appropriate mesh size beyond which further refinement
does not significantly improve the accuracy of the results; this is called convergence
analysis. This keeps the analysis both reliable and computationally efficient, avoiding
unnecessary increases in computational time without meaningful gains in accuracy.

[x1.E6]

Stress

Mesh size: 0.05 m - Element count: 1800
Mesh size: 0.075 m - Element count: 800
Mesh size: 0.125 m - Element count: 288
Mesh size: 0.15 m - Element count: 200
Mesh size: 0.25 m - Element count: 72

1.5 2.0 2.5 3
True distance along path

ot

0. L
0.0 0.5 1

Figure 3.9: Convergence analysis for various mesh sizes and element count.

It was concluded that beyond the 0.075 m mesh size, there was no further improvement
in accuracy, or in other words, convergence occurs. This is visualized in Figure 3.9,
which showcases stress on the y-axis and distance along the center line path on the
x-axis for various mesh sizes and their respective element count.

(a) Mesh of the entire model. (b) Mesh of the glass plate model.

Figure 3.10: Showcase of model finite element mesh.
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3.3 Principal Stresses in Cold Bending

When investigating the strength of the glass, it is important to observe the highest
stresses, which would be the maximum principal stresses. The maximum principal
stresses are the largest normal stresses acting on a material at a specific point, oc-
curring along particular directions where shear stress is zero. They represent the
maximum tensile or compressive stress the material experiences, and in this case the
tensile stresses. The way it is obtained is by rotating the coordinate system so that
only normal stresses remain, and all the shear stresses are zero. In this specific orienta-
tion, the stress vector aligns with the surface’s normal vector, meaning that they point
in the same direction. This direction is referred to as the principal stress direction,
and the corresponding magnitude of the stress vector is also known as the principal
stress value [40].

There are three principal stress values, as shown in Figure 3.11b, the first, second,
and third principal stress, o, 0o, and o3. These values are often called the Maximum,
Intermediate, and Minimum Principal Stress, respectively [40].

The maximum principal stresses can be analytically calculated by first determining
the angle of rotation ¢, in radians, between the global and principal axes:

1
3

239N T, + 2715 -

@ = —cos !(

Where 11, 12, and I3 are stress invariants, which are determined by the following
equations [40]:

L =04 +o0y+0.. (3.2)
Iy = 0400y + 0yy0us + 000y — 02, — 02, — 0> (3.3)
2 — UgzUyy yyY zz zzYxx Ty Yz zZT :
2 2 2 2
I3 = 0400yy0. — 0420y, + 022000 — 05y — 0, — 03,y (3.4)

Finally, the first principal stress, that is, the maximum principal stress, is determined
by the following:

o) = % + ;(\/112 — 31)cos(p) (3.5)

The glass panel in this study was single curved in the x-direction. This means that the
largest tensile stresses induced by cold bending should occur in the x-direction too.
This is realized by observing the results shown in Table 8.1.

In Abaqus, S11 represents the normal stress in the x-direction, denoted as o,,, and
"Max. Principal” corresponds to the maximum principal stress, denoted as o;.
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The maximum principal stress will be very close to 0., (or Si;) provided that:
- The stress in the other directions (o, 0.,) are much smaller.

- Shear stresses (7yy, T4z, Ty-) are negligible or zero.

Oyy L)

1«

>
; Ty Txy

T
2z

N

7y
T /
03

o

I

(a) Normal and shear stresses in 3D space (b) The three principal stresses o1, 09, 03

Figure 3.11: Illustration of normal, shear and principal stresses.

If the stress state is predominantly uniaxial tension in the x-direction, then we can
conclude that the maximum principal stress and Si; (or 0., ) are nearly the same with
slight deviation and, therefore, is a reasonable approximation:

01 = Ogg = Sll = Och,e/k

However, since there is a slight deviation between the two, in this study, the component
S11 (or o,,) will be the one compared to the analytical methods and to evaluate
their precision. The maximum principal stress will still be used to investigate load
combinations later on in chapter 7, and the approximation established in this section
will be utilized.
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4 Analytical approach

4.1 Assumptions

The Euler-Bernoulli beam theory and Kirchhoff-Love plate theory, are based on sev-
eral simplifying assumptions to model the behavior of beams under bending loads [41,
42].

- Thin plates and no thickness changes: the in-plane plate dimensions are large com-
pared to the thickness. The plate is also inextensible in the transverse direction, which
means that, its thickness remains constant during deformation.

- Cross-section is infinitely rigid in its own plane: Loads that act transversely to the
longitudinal axis and pass through the shear center eliminating any torsion or twist.
This means that the cross-section does not deform significantly in its own plane under
the applied loads, assuming it to be infinitely stiff and not undergo any warping or
twisting.

- Cross-section remains plane and perpendicular to the longitudinal deformed beam /

plate axis during bending.

- The material of the glass plate is linear elastic, homogeneous, and isotropic and has
a constant Young’s modulus in all directions in both compression and tension: This
assumption means that the material behaves according to Hooke’s law, meaning that
stress is proportional to strain, and that the material’s properties are uniform in all
directions. It also assumes that the material is not subject to residual stresses or im-
perfections.

- Self-weight of the plate has been ignored and should be taken into account in prac-
tice.

- The neutral plane is subjected to zero axial stress and does not undergo any change
in length.

- The response to strain is one-dimensional stress in the direction of bending.

- Deflections are assumed to be relatively small compared to the overall length of the
beam.

- Membrane stresses and strains are neglected.

- Transverse shear is neglected: The theory assumes that shear stresses acting perpen-
dicular to the plate’s surface have negligible effects.
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4.2 FEuler-Bernoulli Beam Theory

Euler-Bernoulli beam theory (EBBT) is one of the most basic and elementary theories
that describes the relationship between the beam’s deflection and the applied load. It
covers cases corresponding to small deflections or slopes of a beam that is subjected
to lateral loads and provides a simplification of the linear theory of elasticity since it
ignores the effects of shear deformation, rotatory inertia, and deformations in other
directions other than the bending direction along the beam’s length. The fundamental
assumptions of the Euler-Bernoulli beam equation are as follows [35]:

e The beam section is infinitely rigid in its own plane. There is no deformation in
the plane of the cross-section.

e The cross-section of the beam remains plane to the deformed axis of the beam

e The cross-section remains normal to the deformed axis of the beam

The Linear elasticity theory describes how solid materials deform under applied forces,
assuming a linear relationship between stress and strain. It is based on Hooke’s law,
which states that stress is proportional to strain within the elastic limit of the material.
This means that when a force is applied, the deformation is reversible, and the material
returns to its original shape once the load is removed. The theory is valid for small
deformations, where geometric changes are negligible, and for homogeneous, isotropic
materials, where properties are uniform in all directions. Linear elasticity forms the
basis for Euler-Bernoulli beam theory and, mathematically, it is expressed as [35]:

o= Fe (4.1)

A small infinitely small segment of a beam is considered with:

e Vertical shear force V
e Bending moment M

e Distributed load ¢
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g dx

V+dV

1>

M+dM

y > G

< 4—

dx

A
v

Figure 4.1: Infinitely small part of beam [35]

Vertical equilibrium in the undeformed state obtained from figure 4.1:

qde =V +(V+dV)=0

dv

%——q

Moment equilibrium about the left end:
dx
M+q?dm+(V+dV)dx—(M+dM) =0
Since gdx and dV are infinitesimal, they go to zero:

dM
P

Combining vertical and moment equilibrium:

d>M
dz?

+q¢=0
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Since the cross-section is undeformed, v = 0, we get linear elasticity:

a
=

'
A
2|

Figure 4.2: Deformation of Bernoulli beam [35]

Kinematic relations using deformation of a Bernoulli beam as shown in figure 4.2

Uy = u’ — zd—w
; dx
u, =0 (assumption, v’ = u’(x) and w = w(x), only depends on z)
Strain relation:
. du,  du® d*w
xr — = 5 T A5 5
dx dx dx?

Eyy = €2z = Yoy = Vyz = Yoz = 0

Assuming Hooke’s law, isotropic material, and note that the only nonzero strain is
€02, We get the following:

Oua 1—v v v Epu
E
Oyy | = v 1—v 1% 0
1+ )1 - 20)
O-ZZ

Ogx = Egrx



Substituting the strain expression:

du® d*w
—p (2
Oz ( dr  ~da? >

Bending moment equation:

M—/amsz
A

Substituting o,,:

du® d?*w
M= | Ez|——2—=]dA
/A Z(dx de2>d

Choosing the vertical position of the x-axis so that:

/Esz:O
A

d2
M=-22[ E22dA
d.’,UQ A
If E is constant:
d*w
M=—-——FI
dx?
Using the moment-equilibrium equation:
el +q=0
dez 17

d? d*w
——~ (EIZ==) ¢ =
dx? ( dx2) 1

4.3 Kirchhoff-Love Plate Theory

(4.4)

Kirchhoff Love plate theory, also known as the classical plate theory (CPT), is a
method used to analyze the behavior of thin plates under various loads. It simplifies
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the three-dimensional plate analysis into two-dimensional, making it easier to solve.
It relies on several key assumptions to simplify the analysis of thin plates. Essentially,
it treats the plate as a two-dimensional surface element with a midplane and focuses
on the bending behavior of the plate [43].

The fundamental assumptions of the Kirchhoff-Love plate equation are as follows [35,

42]:

e No thickness changes

e No transverse shear

Linear in-plane stress distribution

Parabolic transverse shear stress distribution

Straight lines perpendicular to the mid-surface before deformation remain straight
and normal after deformation

We begin with the general stress-strain relationship for an isotropic and homogeneous
plate [35]:

0:D€—D€0

where g( represents initial strains (e.g., thermal strains). In this case, we assume no
initial strains ¢y = 0 and thus, the equation simplifies to:

0=De=2Dk = zD%w

For an isotropic material, the stress-strain relationship in matrix form is:

Oxx 1 v 0 Exx
)
Oyy | = 1 5 v 1 0 Eyy
Ty 00 5(1—v)| |eay
Where:
62
922
v 92
k= Vw 57
62
28$_3y
And:
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zk =zVw | &£

™
Il

82
2 0xdy

We get that for small deformations, the strain-displacement relations are given by:

0*w 0*w 0*w

€3z = 2 Egy = 2 Ezy = 2
o or2’ % oy’ Oxdy

Substituting these into the stress equation:

2
Oa 1 v 0 27%’
zE . 0 0w
Oyy | = v
yy 1 — 12 Oy?
1 9w
Ozy 0 0 5(1 — l/) M
To determine the maximum stress, we evaluate it at z = % After performing the
necessary matrix operations, we arrive at:
d 0
Ouz 92 T Vo2
Eh ) >
Oy | = G+ 58
vy 2(1 _ 1/2) oz Oy
9w
Oy <1 - V) Oxdy

where h is the thickness of the plate.

Expression for o,

_ Eh 0*w N l/(‘?Qw
Oaa 2(1 — v2) \ Oz2 y?
Expression for o,,:
_ Eh I/82w N 0*w
Tw = 2(1—v2) \ 922  0y?

This will be useful later on to derive the cold-bending stress equation.
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4.4 Curvature

Curvature measures how much a curve or surface bends. It indicates the deviation
from flatness, which means the deviation from a straight line (beam) for a 2D curve or
a flat plane (plate) for a 3D surface. A straight line has zero curvature, while a tight
bend has a high curvature.

In the context of beam and plate bending, the deflection w(x) represents vertical
displacement at any point z. Its first derivative, Z—;’, gives the slope at any point x,
indicating how steep the curve is, which is the ratio of vertical change to horizontal
change. The second derivative, %ﬁ, represents the rate of change in slope, showing
concavity. Curvature, denoted as k(z), measures how sharply the curve bends and is
according to Ottosen and Petersson (1992), Introduction Finite Element Method [35],
given by:

o W@ I
W) = (14 (w'(x))2)32 [1 N (Z_wﬂ 3/2 (4:5)

which depends on both the slope and its rate of change. To obtain the curvature
equation for a cold-bent glass, we first have to understand how these concepts tie
together in the geometry of a circle and start with the circle’s equation. A circle with
a radius R centered at (0,0) has the following equation:

2* +y® = R? (4.6)

where R is the radius. Since y describes the vertical position or coordinates of a point
on a circle, and in the case of a beam bending into a circular arc, this vertical position
is equivalent to the deflection, it follows that y and w represent the same quantity in
this context and therefore can be written as:

2?2+ w? = R%

Solving for w(x) in the upper half of the circle, we get the following deflection equation:

w=VR?— 22

If we want to bend a glass panel into a circular shape, we need to position it so that its
initial flat state aligns with the top of the desired arc. To achieve this, we imagine the
glass panel starting as a horizontal line at y = R in a circle, where one edge is fixed,
and the other edge is free to move downward. The bending process forces the panel
from the free edge to follow a circular (cylindrical) arc, which means that it deforms
to match part of a larger circle.
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The free edge follows the circular arc of the circle centered at (0, R) and stops when
the glass panel rests on the arc of the circle centered at (0,0) (see Figure 4.3).

X+ (y—R)zz R?
=>y=R -,IRZ- X

=\

_________________ >
X

_____;,“

Glass Panel

————p—p— ———

Figure 4.3: Demonstration of the circle equation.

The key to describing this mathematically is placing the center of this circle at (0, R),
ensuring that the curved shape naturally forms below this point. The equation of a
circle with radius R centered on (0, R) is the following:

2+ (y— R)? = R?
Solving for y gives

y=R—VR?— 1?

which represents the new bent shape of the glass. Since we are interested in the
deflection from the original flat position at y = R, we define the deflection function as

w(x) =R —VR?*— 22
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This function describes deflection, how much the glass moves downward at any point
along its length due to bending, following a smooth and continuous curve determined
by the circular arc.

To find the slope, we take the first derivative (d—z), we get it by first differentiating
both sides using the chain rule,

dw

1
I §(R2 —a?) TV (<2a),

which simplifies to the slope equation:

dw T
- 4.
dx VR? — 2 ( 7)

Now we differentiate again to find the slope’s rate of change by obtaining the second
derivative of the deflection w(x)

Pw d(
dz?  dx R2 — 2
Using the quotient rule, where f(z) = —z and g(z) = vV R? — 22, we get

Po () V=T (ca) gt

dz? (R? — 2?)

Simplifying the numerator:

CC2
Pw VIRt o

dx? (R? — x?)

Factor out \/ﬁ in the numerator:

d*w -1 x?
- A2
dz?  (R? — 2?) ( R = R? — x2>

Rewriting the term in parentheses as a single fraction:

R2 — 22 4 x? :(RQ_QUZ)WLxQ
RZ _ .2 RZ _ 12

Insert that term back in:
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d2w: -1 ( RQ—x2+x—>:< —1 ‘<R2_q;2)+x2
v R2

R2 — 2 — :c2) R2 — 2

d*w —1 (R? — 2?) + 22 —1 R? —R?
dr2 (R% — 2?) R2 — 2 (R? — 2?) R2 — 2 (R2—$2)'/R2—£E2

which simplifies to the change of slope equation:

d*w R?
dr? (R? — 22)3/2 (4.8)

Now finally, the curvature equation k as previously mentioned is given by (3.1):

2w
K = 2
- | o 2 3/2
L ()]
: : d>w dw .
Substituting %z and % we get:
R2
o — (RZ—x2)372
2 3/2
(1 + RQx—:ﬂ)

Rewriting the denominator inside the exponent:

x? R? — 22 x? R?
L+ = 2 = + =
R?2 —x R2— 22 R2—-22 R?2 -2

Thus, the denominator simplifies to:

R2 3/2 B R3
R2 — 12 o (R2 _ a:2)3/2

Now we compute k:

RQ (R2 _ 1'2)3/2 R2
K = . = —

(R? — 22)3/2 R3 R3

which simplifies to the curvature equation:
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K=— (4.9)

The curvature of a circle is simply k = %, which is constant since a perfect circle bends

uniformly.

As the slope dw/dx is assumed to be small (Bernoulli-Euler), meaning that when we
have (dw/dx)? ~ 0, we obtain that the curvature is approximately equal to the second
derivative of the deflection with respect to position (which will be useful later):

d2
d—%) d2w

T ~

-]

1 d*w
=~ — 4.10
"TRT @2 (4.10)
A different approach that leads to the same conclusion can be set up by first estab-
lishing the relation between curvature and beam deflection, we start with:
g1

dr ~ ds = Rdf —_— = —
T sR—)de

We also know that for small displacements (Bernoulli-Euler) 6 ~ tan(6), meaning:

d
0 ~ tan(f) ~ d_w
T

This gives us the slope rate of change:

d%u_d@_l

da?  dr R

99 and then we can conclude that for small displacements /slopes,

Here & is also defined as o

we get the curvature:

1 df d*w
R d = de =" (4.1)

4.5 Stresses due to Cold-bending

Assumptions and geometry: - The glass plate is bent in a cylindrical shape with a
radius of curvature R. - The plate has thickness ¢ and the bending is assumed to be
elastic. - Plane stress conditions apply (as the plate is thin).
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4.5.1 Euler-Bernoulli Beam Approach

The Euler-Bernoulli beam theory can provide a simplified, analytical approach to
estimating stress in cold bent glass, making it useful for comparison with numerical
FEA analysis.

If the panel primarily undergoes bending in one direction (e.g., in the case of a long,
narrow panel), the behavior can be approximated using beam theory. In cold bending,
the primary deformation mode is often a simple curvature induced in one direction,
monoclastic bending, meaning that stress distribution follows beam bending, specific-
ally Euler’s beam, principles somewhat well.

The Euler-Bernoulli beam theory assumes that cross-sections remain plane and normal
to the neutral axis, which is valid if the panel is relatively slender (large aspect ratio)
and if out-of-plane shear deformations are negligible.

Using Euler’s theory as a baseline helps validate FEA results by offering a quick,
simplified, approximate check against complex numerical models, ensuring that the
calculated stresses are within the expected ranges.

If numerical simulations (e.g., finite element analysis) confirm that the principal stresses
in the panel align with those predicted by beam theory, the assumption is validated
for practical purposes.

Using the curvature definition, we have the following:

82w_ 1

ox2 R
Inserting it into the bending moment equation for an Euler beam, we obtain:

0*w 1
M=F][—=FI— 4.12
0x? R ( )

When a beam is bending (Euler-Bernoulli Beam Theory), normal stress is given by:

_ My
T

g

(4.13)

If we insert (4.12) into (4.13) we obtain the following:

_pr-Y
4 R

This can be simplified and using y = h/2 it becomes the approximated cold-bending
stress equation.

We could also obtain it using this approach:

d>w  Eh
Opy = EExm = EZE = ﬁ
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Final Expressions For Euler-Bernoulli Cold-Bending Stress Equation

Eh

- — (4.14)

Och

This equation is derived from classical bending theory and assumes linear elastic be-
havior, small deformations, and uniform curvature, which aligns well with the initial
deformation state of cold-bent glass.

4.5.2 Kirchhoff-Love Plate Approach

Kirchhoff’s plate theory offers an analytical approach to estimate stress in cold bent
glass while considering thin plate assumptions. Unlike Euler-Bernoulli beam theory,
which strictly applies to bending in one direction, Kirchhoft’s formulation is typically
used for 2D plate bending. However, when the panel is predominantly bending in one
direction, such as in the case of a thin plate with support along two long edges, the
equations of plate theory can be simplified to match the behavior of a beam-like plate
model.

Under this assumption, the secondary curvature in the y-direction is negligible, redu-
cing the general equations of the plate to a form that resembles classical beam bending,
but still retains key considerations of plate mechanics, such as Poisson effect of the
material. This leads to a stress formulation that includes the (1 —1?) correction factor:

This approach should provide a more refined estimation than beam theory alone, as
it acknowledges that the panel behaves as a thin plate rather than a pure beam.
Kirchhoft’s formulation, even in its simplified form, helps validate the FEA results
by ensuring that the distribution of the bending stresses remains within the expected
analytical limits, particularly for slender panels with minimal curvature in the y-
direction.

If numerical simulations confirm that the stress distribution aligns with these plate
bending principles, it supports the assumption that monoclastic bending dominates,
validating the use of a simplified plate model over a full 2D bending analysis.

Using the definition of curvature and since the panel bends only in the x-direction —
we assume that curvature exists only in x, we have:

0*w 1 0*w B

912 ROy

In monoclastic bending, the panel remains flat in the y-direction — No bending
curvature in y.

Finding o,,:

Eh 0w N *w
Ogy = v
2(1 —v2) \ 022 0y?
Substituting ‘?;)715’ = % and (392712” =0:
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Finding o,,:

_ Eh V82w N 0*w
Tvy = 2(1—v?) \' 022 0y?

Substituting the same curvature assumptions:

_E—h l+0
w50 -12) \"R

Fhv

7w T 9R(1 — 1?)

Final Expressions For Kirchhoff-Love Cold Bending Stress Equation

B Ehv
7w T 9R(1 - 1?)

Note: o, is reduced due to the Poisson ratio effect but is still present.

(4.15)

(4.16)
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5 Cold Bending of Monolithic Glass

Monolithic glass thicknesses commonly used for cold bending include 6-19 mm. Thicker
glass allows for larger bending radii and better structural performance, but requires
more force to bend.

5.1 Influence of plate dimensions

It was concluded from chapter 4, that theoretically with simplified assumptions, the
length and width of the glass panel has no effect on the cold bending stresses. How-
ever, this has limitations, which will be investigated in this section. In order for the
assumptions to be valid, certain conditions have to be met within the model.

The test was carried out on a 10 mm monolithic glass panel, cold bent with a radius
of 20 m in Abaqus with the model shown in 3.2. It was conducted on 3 panels, with
the dimensions shown in figure 5.1.

Glass plate

Figure 5.1: Cold-bent glass models with three different dimensions.

The panel is kept in shape along the two longitudinal edges. In the middle of the
plate, in between these two edges, the panel is unconstrained. The results show a very
minor difference in the pure bending stresses that occur in the middle of the plate
due to cold bending. However, there appear to be some edge effects that play into
hand with a magnitude depending on the width of the plate. The wider the plate, the
higher these edge effects are, which are shown by the difference between the stresses
induced in the middle of the plate and near the edges where the glass gets in contact
with the frame. This is visualized in figure 5.2.
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Figure 5.2: Plots illustrating the differences in cold-bending stresses between the plate’s
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The stress plots along the length of the plates in Figure 5.3b show consistency in the
stresses that occur in the center line of the plate where the effects of pure bending
apply. In contrast, the stress plots along the length of the plate at the edges show some
variation with increasing width followed by increasing stresses, as shown in Figure 5.3a.
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Figure 5.3: Plots illustrating the differences in cold-bending stresses between the models
in the center and on the edges.

This agrees well with the pure bending beam and plate theories, where when pure
bending is assumed, the width/length ratio of the plate will be irrelevant as the edge

effects are neglected in this study.

The exact boundary between acceptable and unacceptable width/length ratios when
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taking into account edge effects is difficult to determine. An acceptable and practical
guideline can be a width/length ratio of 1/2 such as shown in the 1.5 x 3 model and
as was chosen in chapter 3.2.1 and showcased in figure 3.1.

The higher stresses are near the long edges of the glass panel where the frame sub-
structure is located, which is caused by the effects of the edges and the constraints.
This happens because the panel is not super narrow, thus edge constraints will matter
more. If the short edge is fully clamped and the curvature is enforced via side rails,
stress concentrations near corners will be bound to occur as shown in figure 5.4b.
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Figure 5.4: Plots illustrating the differences in cold-bending stresses between the models
in the center and on the edges.

5.2 Cold-Bending Stresses
Euler-Bernoulli beam cold bending stress approximation:

Eh

che — 5.1
Kirchhoff-Love plate cold bending stress approximation:
Eh
p = ————— 5.2
Tk T 9R(1 — 12) (5:2)

In Abaqus, S11 represents the normal stress in the x-direction, denoted as o,,, and
"Max. Principal” corresponds to the maximum principal stress, denoted as o7;.
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Table 5.1: Values used for analytical approach

Parameters Value
Elasticity modulus E =70 GPa
Poisson’s ratio v =20.23

Radius R=10,12m

Thickness

h =6, 8, 10, 12 mm

The tables 5.2, 5.3, and 5.4, present the results of the cold bending stress of both
numerical and analytical methods for various radii and configurations of monolithic
glass shown in table 5.1. Additionally, tables 5.5 and 5.6, present the deviation between
the analytical and numerical stresses.

Table 5.2: Comparison of Numerical and Analytical approach to calculate cold bending
stresses for radius 10 m.

Method Cold Bending Stresses o, for various Glass
Thicknesses h [MPa] and Radius of 10 m:
6 mm 8 mm 10 mm 12 mm
o1 23.60 31.45 38.92 45.98
O 22.89 30.63 37.98 44.90
Ocb 22.17 29.56 36.95 44.35
Ocb.e 21.0 28.0 35.0 42.0
2 0.6 0.8 1.0 1.2

Table 5.3: Comparison of Numerical and Analytical approach to calculate cold bending
stresses for radius 15 m.

Method Cold Bending Stresses o, for various Glass
Thicknesses h [MPa] and Radius of 15 m:
6 mm 8 mm 10 mm 12 mm
o1 15.69 20.49 24.94 29.16
fopem 15.51 20.26 24.67 28.85
Ocb 14.78 19.71 24.64 29.56
Och,e 14.0 18.7 23.3 28.0
L 0.4 0.533 0.667 0.8
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Table 5.4: Comparison of Numerical and Analytical approach to calculate cold bending
stresses for radius 20 m.

Method Cold Bending Stresses o, for various Glass
Thicknesses h [MPa] and Radius of 20 m:
6 mm 8 mm 10 mm 12 mm
o1 11.49 14.80 17.90 20.92
lo o 11.42 14.70 17.80 20.81
Ocb 11.09 14.78 18.48 22.17
Och,e 10.5 14.0 17.50 21.0
L 0.3 0.4 0.5 0.6

Table 5.5: Differences between the normal stresses in the x-direction and the stresses
calculated using Euler Bernoulli’s theory

Radius Ogzz — Oche

6 mm 8 mm 10 mm 12 mm
10 m 1.89 (8.3%) 2.63 (8.6%) 2.98 (7.8%) 2.90 (6.4%)
15 m 1.51 (9.7%) 1.56 (7.7%) 1.37 (5.5%) 0.85 (2.9%)
20 m 0.92 (8.0%) 0.70 (4.7%) 0.30 (1.7%) -0.19 (-0.9%)

Table 5.6: Differences between the normal stresses in the x-direction and the stresses
calculated using Kirchhoft’s Love theory.

Radius Ozz — Ocbk

6 mm 8 mm 10 mm 12 mm
10 m 0.72 (3.1%) 1.07 (3.4%) 1.03 (2.7%) 0.55 (1.2%)
15 m 0.73 (4.7%) 0.55 (2.7%) 0.03 (0.1%) -0.71 (-2.4%)
20 m 0.33 (2.9%) -0.08 (-0.5%) | -0.68 (-3.8%) | -1.36 (-6.5%)
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6 Cold Bending of Laminated Glass

0 o

9 § e =TT 1
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ply
3 interlayer

Figure 6.1: Two Ply Laminated Glass Panel

6.1 Mechanical Properties of the Interlayer (PVB)

According to prEN 16613:2019 [14], the commonly used interlayers, such as PVBs,
are generally isotropic materials. The interlayer shear or Young’s modulus can be
converted into each other using the formula:

Eint

Gt = ———
"1 4 vi)

(6.1)

Where G;,; and E;,; are the shear and Young’s modulus, and v;,; is the Poisson’s
number of the interlayer and can be approximated to 0.49 and therefore:

Eint = QGznt(l + Vint) ~ 3Gznt (62)

The PVB interlayer is a highly viscoelastic material. Viscoelasticity is normally ac-
counted for by implementing the so-called Prony series. A Prony series, also known
as a Prony decomposition or a relaxation modulus series, is a way to account for the
time-dependent behavior of a viscoelastic material. It is a mathematical model, de-
rived from the generalized Maxwell model, that describes the viscoelastic behavior
of a material, such as the ability to deform under stress and recover over time using
a series of exponential terms, effectively simplifying or breaking down the complex
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viscoelastic behavior into more manageable components. It is a series consisting of a
sum of exponential terms, each with its own time constant and weight [44, 45, 46].

The time dependent variables G(t) and E(t) are calculated from [47]:

t

E(t) = By(1 — k(1 — %) (6.4)

where Gy and Ej are the instantaneous shear and elastic moduli [47].

For simplification purposes, in this study, the glass is modeled as a linear elastic
material. This is possible because the viscoelastic interlayer, while inherently time-
dependent, can also be approximated as a linear elastic material by choosing a signi-
ficantly reduced modulus of elasticity to reflect its long-term behavior under constant
loading and temperature. It is a commonly accepted simplification to assume that the
polymer is linear elastic, with proper secant elastic moduli that account for environ-
mental temperature and load duration [48].

This simplification is based on the fact that, over time, viscoelastic materials exhibit
creep, gradually deforming under constant stress, making it possible for the interlayer
to be treated as if it has already undergone this long-term deformation, effectively
representing a ’fully creeped’ state by choosing a reduced modulus of elasticity that
the material would have reached after relaxation. This approach allows for long-term
flexibility of the interlayer to be captured using a static analysis. It provides a prac-
tical and computationally efficient means of simulating its behavior under permanent
loading conditions such as cold bending.

For the shear modulus, G, is used, which is the relaxed shear modulus with the infinity
sign referring to permanent loading, to represent the shear modulus of the interlayer
Gy after long-term loading. It effectively represents the equilibrium modulus in which
the material settles after all time-dependent effects (such as creep or stress relaxation)
have occurred.

For cold bent or permanently loaded laminated glass, the interlayer material (such
as PVB) undergoes creep, slowly deforming under sustained stress. Over time, the
shear stiffness of the interlayer reduces, and the material approaches a stable, relaxed
state, which is represented by G,. This long-term behavior is key when modeling the
performance of laminated glass under permanent loading conditions.

To clarify the terminology:

G  the initial shear modulus (short-term or instantaneous response).
G(t) the time-dependent shear modulus (viscoelastic behavior).

Go  the long-term or relaxed shear modulus (constant load).

Gint  the effective shear modulus used in Eurocode for laminated glass.

There are various commercial polymeric films, such as polyvinyl butyral (PVB), ethyl-
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ene vinyl acetate (EVA), and sentry glass (SG) [48]. Depending on the type of polymer,
the temperature T and the duration of the load tg, the secant shear modulus of the
interlayer can vary from 0.01 MPa (PVB at T = +60°C under permanent load) up to
300 MPa (SG at T =0 °C and ¢, = 1 s) [48].

For PVB, a temperature of 20°C and a permanent load, numerous studies support the
use of shear modulus values as low as 0.05—0.2 MPa, to capture long-term effects such
as creep [49, 50, 51, 52, 53]. Based on these references and the general consensus in
the literature, a value of G, = 0.1 MPa for the long-term shear modulus of PVB and a
temperature of 20°C, can be considered a safe and conservative estimate for cold-bent
laminated glass panels. This approximation provides a realistic lower-bound stiffness,
ensuring that viscoelastic effects are adequately represented in structural analyses.

Looking at figure 2.5, specifically the monolithic configuration (c¢), we observe that
laminated glass is considered monolithic glass with a thickness equal to the sum of the
thicknesses of the glass plies; glass plies are considered as absolutely bonded together
and the shear modulus tends to infinity Gy, 00 = 00. This happens when you assume
full shear transfer or full coupling. In our case, with the permanent load duration from
cold bending, we are looking at the layered configuration (a), where the shear modulus
Glint.o ~ 0, which means little or no shear transfer (no coupling effect). We do this
to predict the long-term creep behavior of the interlayer. When looking at layered or
laminated configurations, we cannot use the actual thickness of the interlayer as for a
monolithic configuration. An effective thickness calculation is required; see the next
Section 6.2.

The Young’s modulus used in the numerical study was obtained from the following:
Gint,oo - 01

Eint = 2Giu(1 4 viy) = 2 0.1(1 + 0.49) = 0.298 ~ 0.3 MPa

6.2 Effective Thickness of Laminated Glass

Determination of the effective thickness according the enhanced effective
thickness approach (EET) according to prEN 19100-2:2023

The effective thickness for a laminated glass panel deflection calculation is calculated
using Formula (A.1):

1

hef,w = 3 (65)

U] + };773
P12 (hed?) T X

Where h.y,, is the effective thickness of a laminated glass to calculate out-of-plane
bending deflection.

The effective thickness of the ply ‘i’ of the laminated glass for stress calculation should
be calculated from Formula (A.2):
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1
hef,o,i = 2 |d;]

iy k12300 (hied?)

: (6.6)
+

ef,w

Where he,; is the effective thickness of a laminated glass for calculating out-of-plane
bending stress of ply i.

For a laminated glass pane made of 2 plies, the coupling parameter 7, is calculated
using Formula (A.3):

1

np’2 - 1 + Rint B . Daps . hi-ho . \Ij
Gint-(1-v2)  Dga (hi+h2)

p

The boundary coefficient for a plate fixed at one end and bent from the free end:

a=3m
b=15m
A=2=2-20

Table 6.1: ¥; [10° mm~2] coefficients for different loading and boundary conditions from
prEN 19100-2:2023 table A.1 [30].

=a/b

b [mm]

1500 5.03983 | 4.74433

1.667 2.50

Interpolation:

2 —1.667
2.5 —1.667
U, =4.9217 - 10° mm 2 = 4.9217m 2

v, = 5.03983 + ( ) - (4.74433 — 5.03983)

Flexural stiffness at the layered limit according to Formula (A.4):
a < D _ z 1 %
b Z 2(1 — 12)

Flexural stiffness at the monolithic limit according to Formula (A.5):

E- Z?:l(hi ’ dz2)

Dray = Das
full bs T )
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Table 6.2: Equivalent Thickness for various Laminated Glass Thicknesses for interlayer
thickness 0.76 mm

Glass Thickness [mm] Equj‘};ilfe’:j [rfnhrinc]kness
34 0.76 + 3 527
4407644 6.6
5+0.76 + 5 510
6 +0.76 + 6 0.52

Table 6.3: Equivalent Thickness for various Laminated Glass Thicknesses for interlayer
thickness 1.52 mm

Laminated Glass Equivalent Thickness
Thickness [mm] hefoi [mm]
3+1.52+3 5.18
4+1.52+14 6.51
5+1.52+5 7.86
6+ 1.52+6 9.23

A thicker, more flexible interlayer results in laminated glass that bends more easily,
as the layers can move independently.

6.3 Cold-Bending Stresses

To investigate the behavior of laminated glass panels that are subjected to cold bend-
ing, the same model and conditions used for monolithic glass will be adopted to ensure
a consistent method. Using the same modeling approach is important to separate the
effects of lamination from those of other factors. This ensures that any differences in
structural behavior are due to the material setup itself, not because of changes in how
the simulation was done.

Euler-Bernoulli beam cold bending stress approximation:

Eh
Oche = ﬁ (67)
Kirchhoff-Love plate cold bending stress approximation:
Eh
ok = ————— 6.8
Tk TR — 12) (68)



6.3.1 Interlayer thickness 0.76 mm

The tables 6.4, 6.5, and 6.6, present the results of the cold bending stress of both
numerical and analytical methods for various radii and configurations of laminated
glass with a PVB thickness of 0.76 mm. Additionally, tables 6.7 and 6.8, present the
deviation between the analytical and numerical stresses.

Table 6.4: Comparison of Numerical and Analytical approach to calculate cold bending
stresses for for laminated glass with a radius 10 m and interlayer thickness 0.76.

Method Cold Bending Stresses o, [MPa] for various
Glass Thicknesses [mm] and Radius of 10 m:
3+0.76+3 4+0.76+4 5+0.76+5 6+0.76+6
hepy=5.27 | heyy=6.68 hes=8.10 hesy=9.51

o1 19.55 24.40 28.99 33.31

fo 19.05 23.71 28.21 32.43

Och ke 19.48 24.69 29.93 35.18

Oche 18.45 23.38 28.35 33.32

% 0.527 0.668 0.810 0.952

Table 6.5: Comparison of Numerical and Analytical approach to calculate cold bending
stresses for laminated glass with a radius 15 m and interlayer thickness 0.76.

Method Cold Bending Stresses o, [MPa] for various
Glass Thicknesses h [mm] and Radius of 15 m:
340.76+3 440.76+4 5+0.76+5 6+0.76+6
hepy=5.27 | heyy=6.68 hes=8.10 hepy=9.51

o1 13.27 16.44 19.24 21.95

Oz 13.10 16.23 19.09 21.69

Och ki 12.98 16.46 19.96 23.45

Tebe 12.30 15.59 18.90 9921

L 0.351 0.445 0.54 0.634
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Table 6.6: Comparison of Numerical and Analytical approach to calculate cold bending
stresses for laminated glass with a radius 20 m and interlayer thickness 0.76.

Method Cold Bending Stresses o, [MPa] for various
Glass Thicknesses h [mm] and Radius of 20 m:
340.76+3 44-0.76+4 5+40.76+45 6+40.76+6
hepy=5.27 | heyy=6.68 he=8.10 hepy=9.51

o1 9.94 12.15 14.08 15.89

O 9.87 12.07 14.02 15.79

Och 9.74 12.34 14.97 17.57

Ochoe 9.22 11.69 14.18 16.64

L 0.351 0.445 0.54 0.634

Table 6.7: Differences between the normal stresses in the x-direction and the stresses
calculated using Euler Bernoulli’s theory

Radius Oza — Ochye
340.76+3 44-0.76+4 540.76+5 6+0.76+6
hepr=5.27 her=6.68 hepr=8.10 herr=9.52
10 0.6 (3.1%) 0.33 (1.3%) -0.14 (-0.4%) | -0.89 (-2.7%)
15 0.8 (6.1%) 0.64 (3.9%) 0.19 (0.9%) -0.52 (-2.3%)
20 0.65 (6.6%) 0.38 (4.1%) -0.16 (-1.1%) | -0.85 (-5.4%)

Table 6.8: Differences between the normal stresses in the x-direction and the stresses
calculated using Kirchhoft’s Love theory.

Radius Ozz — Ochk
340.76+3 44-0.76+4 540.76+5 6+40.76+6
hepr=5.27 her=6.68 herr=8.10 hepr=9.52
10 -0.43 (-2.2%) | -0.98 (-4.1%) | -1.72 (-6.1%) | -2.75 (-8.5%)
15 0.12 (0.9%) -0.23(-1.4%) | -0.87(-4.6%) | -1.76 (-8.1%)
20 0.13 (1.3%) -0.27 (-2.2%) | -0.95 (-6.8%) | -2.0 (-12.8%)

The results confirm that the analytical results are reliable with a slight overprediction
in approximating the numerical results. The overprediction is probably attributed to
the complex nonlinear behavior of the PVB interlayer. More on that in the discussion
in chapter 8.

65



Radius 10 - PVB 0.76 mm

40
35
_ 30
e 25
=
=20
wv
g 15
“ 10
5
0
0 2 4 6 8 10
Effective thickness [mm]
Euler Bernoulli Kirchhoff Love Abaqus S11
(a) Radius = 10 m
Radius 15 - PVB 0.76 mm
25
20
g
E, 15
a
o 10
&
5
0
0 2 4 6 8 10
Effective thickness [mm]
Euler Bernoulli Kirchhoff Love Abaqus S11
(b) Radius = 15 m
Radius 20 - PVB 0.76 mm
20
_ 15
©
[a W
2
2 10
g
g 5
0
0 2 4 6 8 10
Effective thickness [mm]
Euler Bernoulli ~ ==—Kirchhoff Love Abaqus S11

(c) Radius = 20 m

Figure 6.2: Plots illustrating the differences in cold-bending stresses between numerical
and analytical approach for laminated glass with a PVB thickness 0.76 mm.
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6.3.2 Interlayer thickness 1.52 mm

The tables 6.9, 6.10, and 6.11, present the results of the cold bending stress of both
numerical and analytical methods for various radii and configurations of laminated
glass with a PVB thickness of 1.52 mm. Additionally, tables 6.12 and 6.13, present
the deviation between the analytical and numerical stresses.

The results ends up confirming the same conclusion as the configuration of 0.76 mm
PVB interlayer, that the analytical results are reliable with a slight overprediction in
approximating the numerical results. However, with a 1.52 mm PVB interlayer, the
overprediction has shown to be slightly bigger. This is attributed to the fact that
PVB interlayers are soft which means, when they are thicker, they soften up the whole
laminated glass structure, reducing the cold bending stresses by redistributing them
more effectively. This behavior is complex and nonlinear, which makes it hard to
capture using linear models. The thicker the PVB interlayer is, the more nonlinear
the behavior is.

Table 6.9: Comparison of Numerical and Analytical approach to calculate cold bending
stresses for laminated glass with a radius 10 m and interlayer thickness 1.52.

Method Cold Bending Stresses o, [MPa] for various
Glass Thicknesses h [mm] and Radius of 10 m:
34+1.52+43 441.52+4 5+1.524+5 6+41.5246
hepp=5.18 | hepy=6.51 hepr=7.86 | hepy=9.23

o1 17.95 22.26 26.36 30.36

fo 17.61 21.56 25.59 29.49

Och 19.14 24.06 29.05 34.11

Oche 18.13 22.79 27.51 32.31

% 0.518 0.651 0.786 0.923

Table 6.10: Comparison of Numerical and Analytical approach to calculate cold bending
stresses for laminated glass with a radius 15 m and interlayer thickness 1.52.

Method Cold Bending Stresses o, [MPa] for various
Glass Thicknesses h [mm] and Radius of 15 m:
3+1.52+3 4+1.52+4 o+1.52+5 6-+1.52+46
hep=5.18 hep;=6.51 he =786 hep=9.23
o1 12.27 14.98 17.55 19.97
e 12.12 14.79 17.34 19.74
Tebk 12.76 16.04 19.36 99,74
epe 12.09 15.19 18.34 21.54
2 0.345 0.434 0.524 0.615
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Table 6.11: Comparison of Numerical and Analytical approach to calculate cold bending
stresses for laminated glass with a radius 20 m and interlayer thickness 1.52.

Method Cold Bending Stresses o, [MPa] for various
Glass Thicknesses h [mm] and Radius of 20 m:
3+1.52+43 4+1.52+4 5+1.52+5 6-+1.5246
hep=5.18 hep;=6.51 he =786 hes=9.23

o1 9.20 11.08 12.81 14.48

Oz 9.13 11.01 12.75 14.39

Ocb ki 9.57 12.03 14.52 17.05

Oche 9.07 11.39 13.76 16.15

% 0.518 0.651 0.786 0.923

Table 6.12: Differences between the normal stresses in the x-direction and the stresses

calculated using Euler Bernoulli’s theory

Radius Ogza — Oche
3+1.524+3 4+1.52+4 54+1.52+5 6+1.52+6
hefr=5.18 hefr=6.51 hepr=7.86 hepr=9.23
10 -0.52 (-3.0%) | -1.23 (-5.7%) | -1.92 (-7.5%) | -2.82 (-9.6%)
15 0.03 (0.2%) -0.4 (-2.2%) -1.0 (-5.8%) -1.8 (-9.1%)
20 0.06 (0.6%) -0.38 (-3.5%) | -1.01 (-7.9%) | -1.76
(-12.2%)

Table 6.13: Differences between the normal stresses in the x-direction and the stresses

calculated using Kirchhoff’s Love theory.

Radius Ozz — Och,k
3+1.5243 441.524+4 5+1.5245 6+1.5246
hepr=5.18 | hepy=6.51 | hepy=7.86 | hepr=9.23
10 1.53 (-8.7%) | -2.5 (-11.6%) | -3.46 462
(-13.5%) (-15.7%)
15 L0.64 (-5.3%) | -1.25 (-8.5%) | -2.02 -3.0 (-15.2%)
(-11.6%)
20 0.44 (-4.8%) | -1.02 (-9.3%) | -1.77 12,66
(-13.9%) (-18.5%)
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Figure 6.3: Plots illustrating the differences in cold-bending stresses between numerical
and analytical approach for laminated glass with a PVB thickness 1.52 mm.
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7 Load combinations

Cold bent glass components are subject to a range of effects induced by both external
loads, such as wind, snow, and temperature changes, and internal loads induced by
the cold bending process itself. Understanding the load combinations for internal
and external loads in cold-bent glass structures is crucial to ensuring their structural
integrity and performance. The effects of external loads and wether they are possible
to superpose with cold bending effects are studied in this chapter.

External loads, such as wind loads, will not induce stresses primarily in one direction,
as cold bending would do. The external load stresses will be distributed differently and
therefore we would need to look at the maximum principal stresses o;. The maximum
tensile bending stresses in the z-direction o,, cannot be superposed with maximum
principal stresses because they are not the same. Unless they give approximately the
same values, and that would be the case if the stress state is predominantly uniaxial
tension in the x-direction, then we can conclude that the maximum principal stress and
0. are nearly the same. An approximate expression for the principal stress induced
by cold bending can then be estimated using tensile stresses in the bending direction
0.z, With little deviation, and can be estimated from classical bending theories that
are given by the derived Euler and Kirchhoff formulas. Since tensile bending stresses
are typically dominant in cold bent configurations, they align with the direction of
the maximum principal stress. Therefore, these derived expressions provide a conser-
vative and practical estimate of the maximum principal tensile stress in the absence
of additional loads or complex boundary conditions. However, this works better the
lower the cold bending stresses are, e.g. bigger radii (smaller deflection). Therefore,
in order to approximate the maximum principal stress with good accuracy using the
derived formulas, a small deflection is favored.

The radius was chosen large enough to leave room for superimposed stress from both
internal and external stresses. The thicker a glass panel is, the higher the cold bending
stresses become, on the contrary, the thinner it is, the less durable it is against external
loads.

Because cold bending takes place first and then loads are applied later, and because
glass stays mostly elastic (linear material behavior) up to failure, the principle of
superposition should be approximately valid.

The investigation is carried out with an assumed external load F; = 1000 Pa to sim-
ulate possible wind loads.

Firstly, whether superposing cold bending and external loads is possible was tested on
a 10 mm glass panel, cold bent with a radius of 20 m. The curvature 7 for a radius of
20 has a value of 0.2335 radians, as shown in figure 7.1b.
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% Edit Boundary Condition x

Name: Coldbending

Type:  Displacement/Rotation

Step: Externalloads (Static, General)
Region: Set-4

C5YS: (Global)

Method: |Specify Constraints |

Ow [
Oue [Tt

[JUR3:

* Meodified in this step

radians

Note: The displacement value will be
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Cone

<
(b) Cold Bending Displacement

Figure 7.1: Loads and displacement of the model.

The cold bending stresses alone gave about 17.90 MPa principal stresses in the middle
of the plate where pure bending stresses are shown, see figure 7.2.
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Figure 7.2: Maximum principal stresses caused by Cold Bending a 10 mm glass plate
with a radius of 20 m

Afterwards, a similar model was created of an already curved glass geometry that
would resemble the cold bent glass panel but without the stresses it induces, and
was used to measure external load effects. A 1000 Pa wind load was added on top
of the geometry as a "pressure” load in Abaqus and aimed upward to simulate the
wind-suction effect as shown in Figure 7.1a.

To simulate that the glass will be glued to the frame after cold bending, the long edges
were modeled to be restricted from vertical displacement by adjusting the interaction
property between the glass and the frame in Abaqus to be set as ”Normal behavior”
and then disallow separation after contact, that is, after the cold bending process is
done (see Figure 7.3).

% Edit Contact Property X

Name: IntProp-1
Contact Property Options

Tangential Behavior

Normal Behavior

Mechanical Thermal  Electrical

Mormal Behavior

Pressure-Overclosure: |"Hard" Contact E”

Constraint enforcement method: |Defau\t E"

[] Allow separation after contact

Figure 7.3: Interaction Property Settings.

The simulation gave a maximum principal stress of 3.64 MPa in the middle of the
plate, as shown in figure 7.4.
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Figure 7.4: Maximum principal stress in the middle of the curved plate caused by

external loads alone

To test whether superposing is possible, a combined model was created. The wind
load was added on top of the plate in the cold bent glass model in Figure 7.2, the long
edges were modeled to not separate after contact by changing the interaction property
in Abaqus to "normal behavior” and unchecking the box that allows separation after
contact. This will cause the plate to remain intact with the frame after initiating
contact after cold bending the glass. Then a wind load of 1000 Pa was added and the
combined maximum principal stresses measured up to 21.71 MPa, as seen in figure
7.5. If we try to combine the separate loads analytically, 3.64 + 17.90, we get 21.54,

which is very close to 21.71 MPa.
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Figure 7.5: The combined loads analysis of cold bending and wind load.
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The cold bending stress can be calculated using analytical methods, Euler-Bernoulli
and Kirchhoff-Love, gave 17.50 and 18.48 MPa, which are very close approximations.
To calculate the external loads with hand calculations, it is reasonable to try and
simplify the model by trying to calculate it on a flat (non- initially curved panel) to
see if we can simplify it by assuming it is a rectangular pane supported on all edges,
for simplification purposes, and add the wind load on top and see if it gives the same
3.64 MPa stress.

To calculate the maximum tensile bending stress for large deflections of rectangular
panes supported on all edges, which is the maximum principal stress, the formula (B.1)
from SS-EN 16612:2019 [6] will be used:

Omazx = kl Z_de
Where h = heg,, for laminated glass.

The coefficient k; is obtained from Table B.1 by first calculating p* and A = a/b

P = (52) 5ot

& S !

Fglass (4-(106—3)2 70e9
A=a/b=15/3=0.5
At A = 0.5, the table values are 0.595 for p* = 1 and 0.580 for p* = 2.

We now interpolate for p* = 1.81 using the correct values.

k1= 0.595 + (&=1) - (0.580 — 0.595) = 0.58285

2-1

Which gives the maximum tensile stress:

Oaw = 0.58285 - % 1000 = 13.1MPa

10e—3

To verify this analytical value, it was investigated in Abaqus by modeling the flat
rectangular pane supported on all edges. Which gave a maximum principal value of
11.39 MPa as shown in 7.6.
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Figure 7.6: Numerical stress analysis of a rectangular panes supported on all edges.

The variation could likely be due to the formula being made for large deflections. A
different method was tested and table 7.7 was used:

Bending Moments

My o e = azwab
Mgie o oo = fBpwab
$ My Mgz = a,wab
b/a a, ap Bo
1.0 0.0273 0.0334 -0.0893
1.1 0.0313 0.0313 -0.0867
1.2 0.0348 0.0292 -0.0820
1.3 0.0378 0.0269 -0.0760
1.4 0.0401 0.0248 -0.0688

15 0.0420 0.0228 -0.0620
1.6 0.0433 0.0208 -0.0553

1.7 0.0441 0.0190 -0.0489
1.8 0.0444 0.0172 -0.0432
Ma. 1.9 0.0445 0.0157 -0.0332

2.0 0.0443 0.0142 -0.0338

Figure 7.7: Moment calculation for a simply supported plate on three Edges and one
fixed with UDL [54]

For b/a = 3/1.5 = 2.0, the following coefficients are obtained:

Qg ay ﬁb

0.0443 | 0.0142 | -0.0338
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To obtain the maximum principal stress, the most critical moment should be calcu-
lated. Therefore, the biggest coefficient will be used to calculate M4

My = auqab = 0.0443 - 1000 - 1.5 - 3.0 = 199.35 Nm

Finally, the stress is calculated using:

0.01
My 199.35~T

o = T — 0.013

obtained from Allgaqus on the flat rectangular glass model.

= 11.961 MPa, which aligns well with the 11.39 MPa result

However, it does not appear to match with the curved surfaces as the maximum
principal stress is around 3.64 MPa in the middle of the plate and higher in other areas
with values ranging from 5-10 MPa, as shown in Figure 7.4 & 7.8. Then compared
with the rectangular flat model in figure 7.6.
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Figure 7.8: Maximum principal stress in other areas of the curved plate caused by
external loads alone

This means that it is probably not possible to assume that the already curved geometry
to behave the same as a flat rectangular simply supported plate for simplification
purposes when compared to Figure 7.6.
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8 Discussion

8.1 Monolithic Glass

8.1.1 Analysis of Monolithic glass cold bending behavior

Numerical cold bending stresses

Looking at the stress results in tables 5.2 & 5.3 & 5.4, it is apparent that thinner plates
and lower curvatures are favorable for cold bending of glass panels, as illustrated in
figure 8.1. The bending strength of tempered glass is around 86.6 MPa as calculated
in section 2.1.

[x1.E6]
as,

0 ~ ~

Stress

— 5,511
— §,811

s, s11
— g, st

Avg: 75%): R=10 h=6mm
Avg: 75%): R=10 h=8mm
Avg: 75%): R=10 h=10mm
Avg: 75%): R=10 h=12mm

o . 1
0.0 05 0 5 20 25 3.
True distance along path

(a) Stress distribution along center line for different thicknesses h of monolithic glass (6 mm to 12
mm) showing increased stress with greater thickness.

[x1.E6]

s Yy —— 5,511 (Avg: 75%): R=10 h=6mm
g S,S11 (Avg: 75%): R=15 h=6mm
S, 511 (Avg: 75%): R=20 h=6mm

o,
0.0 [ o 5 20 25
True distance along path

(b) Stress distribution along center line for different radii R of monolithic glass (10 m to 20 m)
showing increased stress with smaller radii (i.e., bigger curvature).

Figure 8.1: Stress distribution plots comparing varying glass thickness and curvature in
monolithic glass.

For the glass to be able to withstand cold bending with potential external loads on top,
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it is favorable for the cold bending stresses to be as low as possible. Load combinations
are discussed in chapter 7.

Numerical vs Analytical cold bending stresses

Overall, the analytical methods have shown to be very promising in predicting these
cold bending stresses of the glass panel. This is realized by observing the plots in
figure 5.5.

Table 5.5 presents the differences between the normal stresses in the x-direction o,
obtained from Abaqus simulations and the theoretical stresses calculated using Euler-
Bernoulli beam theory oc..

The results show that the deviation decreases with increasing radius, indicating im-
proved agreement with Euler-Bernoulli theory for larger curvature radii and a more
linear behavior. This is consistent with the underlying assumptions of the theory,
which is derived under the condition of small curvature (R = 20 m).

At a radius of 20 m and thicknesses above 10 mm, the differences start becoming
negative, suggesting a slight overestimation by the theoretical model; this will apply
to the other radii if we had kept increasing their thicknesses, the matching point
or the turning point where it goes from underestimation to overestimation differs
depending on which radius and seems to occur at lower thicknesses for the higher
radii. That is because at higher radii, or in other words, smaller curvature, stress is
distributed better, making it more likely for analytical methods to overestimate the
actual stresses. These findings highlight the limitations of Euler-Bernoulli theory in
accurately capturing stress distributions, and they underscore the necessity of using
higher-order theories or finite element methods in such cases.

While the theoretical stress calculated from Euler-Bernoulli theory scales linearly with
thickness and radius (h/R ratio), the Abaqus simulations incorporate geometric nonlin-
earities, including shear deformation and out-of-plane effects, which are not accounted
for in the classical beam theory. These additional factors contribute to the observed
discrepancies, especially at lower radii, where the limitations of the Euler-Bernoulli
assumptions become more pronounced.

Table 5.6 highlights how Kirchhoff Love’s plate theory does better at approximating
the cold bending normal stresses in general but also particularly for larger curvatures
meaning a large deflection with a smaller radius than Euler Bernoulli’s beam theory,
which is expected given that the plate theory correction factor 1 — 12 is taken into
account; it accounts for Poisson’s ratio influence in plates. It is also realized here that
the discrepancies decrease with increasing radii, effectively a smaller curvature.

8.1.2 Analytical limitations (h/R)

In the analytical approach, using the derived formulas, the stress is completely de-
pendent on the h/R ratio.
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__Eh B Eh
Oche = ﬁ’ Ochk = m
For example, a 8 mm & R = 10 m, gives the same bending stresses as a 12 mm & R
= 15 mm, as shown in figure 8.2a, where for both cases, h/R = 0.8. However, in real
scenarios, where non-linearity and other effects play a role, the stresses obtained from
the numerical analysis in Abaqus, for both of these, are close but not exactly identical.

The same can be found when observing a 6 mm, R = 10 m, which gives the same
results as 12 mm, R = 20 m in the analytical approach, a h/R ratio of 0.6, but it
differs numerically, as demonstrated in figure 8.2b.

The numerical data show lower stresses for a larger radius despite having a constant
h/R ratio. This concludes that having a larger radius in cold bending is more favorable
than decreasing the thickness of the plate, to obtain lower cold bending stresses.
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Figure 8.2: Plots illustrating stress differences between two models with the same h/R
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8.1.3 Maximum Principal Stress

Looking at table 8.1, it can be observed that the difference between normal stresses
in the x-direction and maximum principal stresses decreases with decreasing thickness
or increasing radius, resulting in a more uniform and uniaxial stress state. Thinner
plates are more flexible and thus can be bent with less resistance. This reduces overall
cold-bending stresses, which in itself indirectly reduces the development of significant
stresses in other directions than the primary direction. Similarly, a larger bending
radius corresponds to a gentler curvature, resulting in lower bending stresses in all
directions. The smaller the curvature, the closer the stress state is to pure in-plane
tension in one direction, where shear and transverse stresses are negligible.

The difference in stress between maximum principal stress and tensile stresses in the
bending direction gets smaller with thinner thicknesses, and dramatically decreases
with a larger radius. A larger radius has a larger impact than a thinner plate. This is
utilized in chapter 7.

Table 8.1: Differences between the normal stresses in the x-direction and the maximum
principal stresses.

Radius 01— Oga

6 mm 8 mm 10 mm 12 mm
10 0.71 (3.0%) 0.82 (2.6%) 0.94 (2.4%) 1.08 (2.3%)
15 0.08 (0.5%) 0.23 (1.1%) 0.27 (1.1%) 0.31 (1.1%)
20 0.07 (0.6%) 0.10 (0.7%) 0.10 (0.6%) 0.11 (0.5%)

8.2 Laminated Glass

8.2.1 Analysis of Laminated glass cold bending behavior

The investigation of cold bending stresses was carried on laminated glass with various
glass thicknesses and two main interlayer thicknesses, namely, 0.76 mm and 1.52 mm,
which are popular interlayer thicknesses and corresponds to two and four layers of
PVB with a thickness of 0.38 mm.

Numerical cold bending stresses

It is apparent, as for monolithic glass, that thinner plates and lower curvatures (higher
bending radii) are favorable for cold bending of laminated glass panels. Laminated
glass with a PVB thickness of 1.52 mm exhibited lower stresses than that of which had
a PVB thickness of 0.76 mm, as shown in figure 8.3a. The thicker interlayer increases
overall flexibility, making the laminated glass panel softer and easier to bend. This
added compliance allows the glass layers to deform more uniformly and absorb strain
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more effectively, reducing peak stress concentrations in the glass and distributing the
stresses more effectively during bending.
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(a) Stress distribution comparison along the center line for laminated glass with 0.76 mm vs. 1.52
mm PVB interlayer thickness.
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glass ply thickness.
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Figure 8.3: Stress distribution plots comparing varying glass, interlayer thickness and
curvature.
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This concludes that cold bending stresses decreases with:

- Thinner glass plates h; (e.g. 6+1.5246 mm — 5+1.524+5 mm)

- Smaller curvatures £ (e.g. R =10 m — R = 20 m)

- Thicker PVB interlayer hj,; (e.g. 4+0.764+4 mm — 4+1.52+4 mm), which effectively
is the same as a thinner laminate effective thickness (e.g. h.fr=6.68 mm — h.=6.51
mm). That is because it was established in Section 6.2, from tables 6.2 & 6.3, that
for the same glass ply thickness h; but a thicker interlayer, the effective thickness
hes decreases, making the laminate softer and therefore corresponds to a thinner
monolithic glass plate.

Numerical vs Analytical cold bending stresses

The data, as in an earlier chapter, compare normal stresses in the x-direction o,, from

Abaqus (S11) with analytical predictions from the Euler-Bernoulli oy, = % and
Kirchhoft-Love o = —Lh__ theories, which is shown in tables 6.4 & 6.5 & 6.6 for

2R(1—0?)
interlayer thickness of 0.76 mm and tables 6.9 & 6.10 & 6.11 for interlayer thickness

of 1.52 mm.

Both theories do a good job at predicting the cold bending stresses when compared
to the numerical results from Abaqus, as observed from tables 6.7, 6.8 for 0.76 mm
interlayer & 6.12, 6.13 for 1.52 mm interlayer, with errors increasing as the effective
thickness h.f¢ increases and radius decreases (i.e., higher curvature). The deviations
are plotted in figures 6.2 and 6.3.

This indicates that classical analytical models are valid only for thin, low-curvature
plates, while finite element methods like Abaqus are necessary for more accurate stress
prediction in complex geometries. However, both theories tend to overpredict the cold
bending stresses, up to the 18% discrepancy. This is because even though an effective
thickness is calculated for the laminates, the analytical methods like Euler-Bernoulli
and Kirchhoff-Love, still assume perfect bonding and linear elastic behavior across
the full thickness. These models cannot fully capture the viscoelastic and compliant
nature of the PVB interlayer. The effective thickness has helped get an approximate
prediction, but it is still an approximation that tends to behave more like a stiffer
monolithic section than the actual softer laminated system. As a result, the models
will overpredict the stresses because they do not account for the partial shear transfer
or time-dependent behavior of the interlayer, but also do not account for geometrical
nonlinearities.

The overprediction of the cold bending stresses given by the analytical approach could
be an advantage in terms of safely designing glass structures. That is because it intro-
duces a conservative safety margin. Since glass is brittle and prone to sudden failure,
overestimating stresses ensures that the structure is not underdesigned. This makes
simplified methods safer for preliminary design, as they reduce the risk of unexpected
failure by encouraging more robust solutions.
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8.2.2 Maximum Principal Stress

In the previous chapter it was concluded that if the stress state is a predominantly
uniaxial tension in the x-direction, then we can conclude that the maximum principal
stress and Sy; (or o,;) are nearly the same. This would still apply for laminated
glass panels as it is independent on what kind of glass it is and more on what type of
bending is taking place, which in this case is uniaxial bending in the x-direction.

Observing tables 8.2 & 8.3, we notice the same behavior from monolithic glass as for
laminated glass, where the difference between normal stresses in the x-direction and
maximum principal stresses decreases with decreasing thickness or increasing radius,
resulting in a more uniform and uniaxial stress state.

Thinner plates are more flexible and thus can be bent with less resistance. This reduces
overall cold-bending stresses, which in itself indirectly reduces the development of
significant stresses in other directions than the primary direction. Similarly, a larger
bending radius corresponds to a gentler curvature, resulting in lower bending stresses
in all directions. The smaller the curvature, the closer the stress state is to pure
in-plane tension in one direction, where shear and transverse stresses are negligible.

The difference in stress between maximum principal stress and the normal tensile
stresses in the bending direction decreases with thinner plates, and dramatically de-
creases with a larger radius. Larger radii tend to have a stronger impact.

Table 8.2: Differences between the normal stresses in the x-direction and the maximum
principal stresses for laminated glass with the interlayer thickness 0.76 mm.

Radius 01— Ozg
340.764+3 44-0.76+4 540.76+5 6+40.76+6
hepr=5.27 her=6.68 herr=8.10 hepr=9.52
10 0.5 (2.6%) 0.69 (2.8%) 0.78 (2.7%) 0.88 (2.6%)
15 0.17 (1.3%) 0.21 (1.3%) 0.15 (0.7%) 0.26 (1.2%)
20 0.07 (0.7%) 0.08 (0.7%) 0.06 (0.4%) 0.1 (0.6%)

Table 8.3: Differences between the normal stresses in the x-direction and the maximum
principal stresses for laminated glass with the interlayer thickness 1.52 mm.

Radius 01— Ozg
3+1.524-3 4+1.52+4 5+1.5245 6+1.524-6
hefr=5.18 hefr=6.51 hepr=7.86 hepr=9.23
10 0.34 (1.9%) 0.7 (0.3%) 0.77 (0.3%) 0.87 (2.9%)
15 0.15 (1.2%) 0.19 (1.2%) 0.21 (1.2%) 0.23 (1.2%)
20 0.07 (0.8%) 0.07 (0.6%) 0.06 (0.5%) 0.09 (0.6%)
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8.3 Load Combinations

It was also found that using the S11 stress component (i.e., 0,,) as an approximation
for the maximum principal stress remains valid in most cases, particularly when bend-
ing is uniaxial. Across the simulations, the difference between o,, and o; remained
below 3%, suggesting that simplified evaluations using o, can be considered safe and
efficient in practice, especially for preliminary assessments, without requiring complete
3D stress evaluations and complex calculations.

The analysis of load combinations in cold bent glass has shown the feasibility of su-
perposing intrinsic and extrinsic stresses induced by cold bending and external loads
such as wind loads. The results of numerical simulation showed that these stresses can
be reliably added together with great accuracy, supported by almost an exact match
between the results of the combined model and the sum of individual cases. For ex-
ample, in the case of a 6 mm monolithic glass panel with a cold bending radius of 20
m, the maximum principal stress due to cold bending alone was 17.90 MPa, while wind
loading alone induced a maximum principal stress of 3.64 MPa. When both loads were
applied simultaneously, the resulting principal stress was 21.71 MPa, demonstrating a
close match with the sum of the individual cases (17.90 + 3.64 = 21.54 MPa), with
only a deviation of 0.17 MPa, a difference less than 1%. This validates the assumption,
that because of the elastic behavior of the glass, the principle of superposition holds
reasonably well for typical and simple loading scenarios.

However, attempts to apply simplified analytical models, such as those assuming flat,
four-edge simply supported panels, proved to be not quite accurate in predicting the
behavior of curved geometries under external loads.

Although cold bending stresses could be approximated using the Euler-Bernoulli or
Kirchhoff-Love theories, external loads applied to an already curved geometry do not
behave the same as in flat panels. Analytical estimates based on flat, simply supported
on four edges configurations did not produce the same stress distribution or magnitude
as in the numerically curved structures on top of a frame models, indicating that the
curvature, as well as the boundary conditions, significantly affect structural response
under external loading. When the wind load was analytically estimated on a flat,
simply supported glass pane on four edges using EN 16612, the stress was 13.1 MPa,
while the numerical result from a finite element model of the same flat configuration
was 11.39 MPa, still far above the 3.64 MPa observed in the curved configuration. This
increase in stress when using flat-panel approximations highlights the critical role of
initial curvature, as well as boundary conditions, which redistributes load and reduces
local stresses differently.

In summary, the study confirms that while stress superposition is valid and practical
in numerical analysis, reliance on analytical expressions derived for flat plates can pose
a challenge under combined loading scenarios. Numerical simulations remain essential
for accurate prediction when geometric nonlinearity, material properties, and complex
boundary conditions are present.
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9 (Conclusion

9.1 The goal of the study

Looking back at the issues and research questions of this study:

e How can cold-bent glass be modeled?
e What parameters and conditions are crucial?

e [s it possible to develop simplified models that maintain sufficient accuracy for
practical use?

e How should other loads be combined with the bending stresses that arise during
cold bending of glass?

1. Glass is a linear elastic material and can be modeled as such. While the PVB inter-
layer in laminated glass is inherently a time- and temperature-dependent viscoelastic
material, it was proven to be possible to model it as linear elastic by assigning it a very
low shear and elasticity modulus that would account for its long-term relaxation and
creep for simplification purposes of avoiding complex viscoelastic evaluations. Cold
bent glass can be modeled by creating a flat rectangular glass plate in Abaqus, then
adding a cylindrical displacement on one of the edges, bending it down on top of a
curved substructure with a fixed radius that would act as a shaping frame made out
of steel or aluminum. The other edge would be tied to the frame with a tie-constraint,
which is fixed, and a surface-to-surface contact property applied to the surfaces.

2. Through numerical and analytical methods, cold bent glass has been shown to
exhibit lower stresses with thinner glass plates and larger radii. In laminated glass, it
has also been shown that PVB played a role in distributing these stresses because of
the interlayer’s softening abilities; it creates a softer glass configuration, making thicker
interlayers more favorable to reducing cold bending stresses. The boundary conditions
had a notable impact on the stress concentrations, particularly near the edges that
interacted with the supporting frame, leading to the detection of elevated stress levels
which are unfavorable and should be taken into account. In short, the most important
parameters and the most crucial are the thickness of the glass panel h or h.ss for
laminated glass, the curvature determined by the radius of the frame substructure
R, the thickness of the interlayer in laminated glass h;,;, as well as the constraints.
To cold bend glass, you simply fix it on one edge and deform it cylindrically on the
other edge, on top of a frame substructure with a fixed radius, on which the glass
will rest on top of. The influence of the cold bending curvature on the cold bending
stress is the largest, followed by the thickness of the glass panes, and the influence
of the interlayer thickness is small. Less predictable are the results of the variation
of width, but the edge effects increase with increasing width. In laminated glass, the
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overprediction could be beneficial because it introduces a conservative safety margin by
ensuring that the structure is not underdesigned. This makes simplified methods safer
for preliminary design, as they reduce the risk of unexpected failure by encouraging
more robust solutions.

3. This study has concluded that it is possible to develop simplified models to predict
the stresses in glass induced by cold bending while maintaining sufficient precision
for practical use. Two models were evaluated. Namely, the Euler-Bernoulli method
and the Kirchhoff-Love method. These methods are based on classical beam and
plate theories that were found to be suitable for approximating cold bending stresses
in thin glass plates. The models have proven to be effective and reliable methods
compared to numerical methods, with slight deviations highlighting the limitations of
these methods. The analytical approach is limited to predicting linear elastic pure
bending behavior in thin plates with small deformations. It cannot account for edge
effects, large deformations and curvatures, thick plates, geometrical nonlinearities, and
heterogeneity and anisotropy. The Kirchhoff-Love plate theory has shown to be slightly
more accurate in predicting cold bending stresses, but overall it was not too big of
an improvement. In laminated glass, the methods have been shown to consistently
overpredict the cold bending stresses, not by a large margin, but considerable enough
to mention. This is speculated to be because of the complex behavior of the PVB
interlayer, which is hard to fully capture despite having attempted to account for it
by implementing an effective thickness method.

4. Numerically, it has been shown that it is possible to superpose external loads such
as stresses induced by wind with cold bending stresses by, for example, simulating a
suction load in a direction opposite to the direction of the cold bending, resembling
the behavior to that of wind. When simulating cold bending alone, the wind loads
alone, then superposing these stresses, they have matched up to great accuracy with
the combined model simulation. The challenge was to approximate the wind loads on
a curved structure with given constraints from the model, as simplifying the model
by assuming it is a flat, rectangular pane and supported on all edges did not give the
same results. In short, it is possible to superpose cold bending stresses with external
load stresses, but finding a simplified method to approximate the external load stresses
remains unclear.
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9.2 Additional notes

1. The cold bending stress of both monolithic glass and PVB laminated tempered
glass panes has given maximum stresses near edges due to edge effects, which should
be accounted for using numerical methods.

2. The thickness of the PVB interlayer has shown little impact on the cold bending
stresses. Although it may be beneficial to bearing capacity, its effect can be ignored
in cold bending.

3. When the glass thickness is large, the curvature is large and the interlayer thickness
is small, meaning the cold bending stresses are large, the bearing capacity of the glass
panes would then be controlled by the cold bending stresses and not external loads.
External loads such as wind are more crucial when the glass panel is thin, which would
impact the bearing capacity of the glass. The glass should not be too thin or thick,
and a smaller curvature is always favorable.

4. When laminated glass is used, the effects on the mechanical and visual properties
of the interlayer due to cold bending should be investigated.

5. The use of continuum solid-shell elements to model shell-like solids instead of
conventional shell elements should be investigated.
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Appendix A

Enhanced effective thickness (EET)

MATLab code for calculating effective thickness of laminated glass:

G_int = 0.1e6;

Psi = 4.9217;
L = 3;

hl = be-3;

h2 = 5e-3;

h_int = 1.52e-3;

di = (h1/2)+(h_int/2);

d2 = (h2/2)+(h_int/2);

v_glass = 0.23;

E_glass 70e9;

D_abs = E_glass*(h1~3+h27°3)/(12*(1-v_glass~2));

D_full = D_abs+E_glass*(h1*d1"2+h2%d2°2)/(1-v_glass~2);
Eta_p2 =1/(1+((h_int*E_glass)/
(G_int*(1-v_glass”2)))*(D_abs/D_full) *((h1*h2)/(h1+h2))*Psi);

%Effective Thickness for deflection calculation:
h_ef_w = (1/((Eta_p2/
(h173+h273+12% (h1*d1~2+h2*d272)))+((1-Eta_p2)/(h173+h27°3))) "~ (1/3));

#Effective Thickness for stress analysis:
h_ef_sig = (1/(((2xEta_p2*dl)/
((h173+h273)+12% (h1*d1"2+h2%d2°2)))+(hl/h_ef _w"3))) " (1/2)

Radius=15;
Euler_metod = (E_glass*h_ef_sig)/(2*Radius)
Kirchoff_metod =(E_glass*h_ef_sig)/(2*Radius*(1-v_glass~2))
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