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Preface

The papers compiled in this report were written as a part of the work of the RILEM
Technical Committee 133, “Fracture of Timber”. The committee was active with
meetings 1991-1995 and formed two subgroups, one on fracture property test
methods and the second on fracture mechanics based strength calculation methods for
beams with a hole, notch or crack. Most of the manuscripts of the papers compiled in
this report were written during the active period of the TC and they present some of
the work and findings of the second subgroup obtained during tests and discussions of
various calculation methods. Most of the test calculations were carried out for a
certain set of beams with a notch or a hole. The geometry of these beams is shown in
the figure in the appendix. The initial idea to present the results in a continuous report
was changed to publication of a compilation of separate papers. Active members of
the second subgroup and authors of the papers in this report are:

Simon Aicher, FMPA, University of Stuttgart, Germany

Per Johan Gustafsson, Lund University, Sweden

Peer Haller, Technical University of Dresden, Germany

Hans Petersson, Chalmers University of Technology, Sweden

Active members of TC-133 also included:

Lars Bostrom, SP, Sweden

Martin Gierl, FMPA, Germany

Luc Job, EPFL, Switzerland

David Kretshman, USDA-FS-FPL, USA

Hugh Mansfield-Williams, Buckinghamshire College, UK
Barry Matthews, Buckinghamshire College, UK

Alpo Ranta-Maunus, VTT, Finland

Gerard Valentin, LRBB, France

We take this opportunity to thank our friends and colleagues in TC-133 for all good
discussions and work on fracture mechanics of timber. This is a subject area believed
to be of clear relevance before future developments of methods for timber structure
strength design and still only in an initial phase of development and application.

Lund and Espoo, January 2002

Per Johan Gustafsson, Alpo Ranta-Maunus,
Convener of subgroup two Chairman of RILEM TC-133
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An Overview of Fracture Mechanics Concepts
by

Peer Haller and Per Johan Gustafsson
1. Introduction

The following overview of some concepts used in fracture mechanics has its emphasis
on linear elastic fracture theory. The overview is intended to give a reader who is not
very familiar with fracture mechanics some general background before studying the
various methods and applications of fracture analysis of timber dealt with in
subsequent chapters. A state-of-the-art report on the application of fracture mechanics
to timber structures was presented by RILEM TC 110 in 1991 [Valentin, Bostrom,
Gustafsson, Ranata-Maunus and Gowda, 1991].

Fracture mechanics is a branch of mechanics of materials. When a body made of a
solid material is loaded it will ultimately respond by undergoing large deformations or
fracture. Fracture is loss of contact between parts of the body. This separation results
in the creation of new surfaces. Fracture is the topic of interest in fracture mechanics,
and the concern is partly with microscopic mechanisms which govern the separation
and partly with predictions from a macroscopic point of view. Of prime concern then
is development of criteria and methods by which it is possible to predict the load-
carrying capacity of a structural member based on knowledge about properties of the
material.

The origin of fracture mechanics as a science can be ascribed to research conducted
by A. A. Griffith about 80 years ago and presented in [Griffith, 1921] and
[Griffith,1925]. The material first studied was glass, but soon applications to metals
became of prime interest due to their importance for vehicles, ships and other load-
carrying constructions. Fracture mechanics theory was extended to anisotropic,
especially orthotropic materials, in the sixties [Sih, Paris and Irvin, 1965]. Also in the
sixties, pioneering applications of linear elastic fracture mechanics, LEFM, to wood
were made, e.g. [Atack et al., 1961]. Most of the early studies of wood were realised
with small clear wood specimens, but soon similar studies were also undertaken for
structural lumber. Although wood is a strongly orthotropic material, the evaluation of
fracture mechanics test results has often been made as for an isotropic material.

The factors that govern fracture - load, material and defects - are sometimes
illustrated as in Figure 1. The defect may be a sharp crack, a man-made stress
concentrator or some natural discontinuity in the material. Consideration of the defect
and the associated singularity or discontinuity in stress, strain or displacement



distinguishes fracture mechanics from strength analysis by classical continuum
mechanics methods. By non-linear fracture mechanics methods, not only the
performance and growth of existing defects can by analysed but also their origin. In
conventional LEFM analysis it is assumed that there is a sharp crack in the structural
element.

Size and shape of
body and defect in
material or body

Material
propetrties

Loading

T conditions

Figure 1. Factors governing fracture.

2. Modes of loading of a crack

Figure 2 shows the three basic types of relative displacements in the vicinity of a
crack. Type of displacement is governed by the load acting on the structural element.
The three types of relative displacements are commonly referred to as the modes of
loading, or, if the crack is growing, as the modes of fracture or modes of cracking.
Mode 1 is the opening mode, mode II the in-plane shear mode and mode III the
perpendicular-to-plane shear mode. In general the loading is a combination of the
three basic modes, giving a so-called mixed mode loading or mixed mode fracture.
Since mixed mode I+II is the most common, mixed mode is sometimes used as a
synonym for the I+1I mixed mode.

I II i

Figure 2. The three modes of loading and fracture.



3. Crack orientations

The orthotropic nature of wood gives 6 possible orientations of plane cracks located
in the three principle planes of the material. The crack orientations are shown in
Figure 3 and denoted RL, TL, LT, RT, LR and TR. R, T and L indicate radial,
tangential and longitudinal direction of the wood, respectively. In the notation for
crack orientation the first of the two indices indicates the direction of the normal to
the crack plane, and the second indicates the straightforward direction of crack length
extension. This second direction is accordingly the direction which is perpendicular to
the first direction as well as to the front line of the crack. The crack orientations are
not symmetrical, which means that inversion of the indices leads to a different
orientation. Since there are three modes of loading for each crack orientation, 18 basic
fracture situations can be identified. The fracture resistance for these 18 situations is
in general different. As an example, due to the high tensile strength of the material in
the L direction the resistance to mode I crack growth is high for orientations LR and
LT.

Figure 3. Basic crack orientations in an orthotropic material.



4. Linear elastic fracture mechanics, LEFM

In LEFM the material is assumed to be ideal linear elastic without any limiting stress
or strain value. The material may be isotropic, orthotropic or anisotropic. Although
the strains may be arbitrarily large without failure of the material, small strain and
displacement theory is commonly adopted in stress analysis. The assumption of linear
elastic performance implies singular or infinitely large stresses and strains at the tip of
a sharp crack. Since stress and strain is singular other quantities must be used in
fracture criteria. Two such quantities generally used and discussed in the following
are energy release rate and stress intensity. To use these quantities it is required that
there be a pre-existing sharp crack in the structural element to be analysed.

No real material has ideal linear elastic properties. Nevertheless, LEFM is in many
cases very useful. The prime requirement for good applicability of LEFM is that the
size of the fracture process region at the tip of the crack is small compared to the
length of the crack and compared to the distance to boundaries and to points where
load is applied. The fracture process region is the region were the material is being
broken and performs in very heterogeneous and non-linear manner. The size of a fully
developed fracture process region is governed by the properties of the material; for
glass it is in the order of less than a mm, for wood in the order of one or a few cm and
for concrete in the order of several dm or more.

If the size requirements of LEFM are fulfilled, the performance of the material in the
fracture process region as well as its size for a given mode of loading and crack
orientation are solely governed by the properties of the material, i.e. not affected by
the geometry and size of the element. Fracture in this state is commonly referred to as
being self-similar or autonomous.

5. Energy release rate

Crack propagation analysis by considering the energy release was proposed by
Griffith and energy release rate is denoted G after him. In static or quasi-static LEFM
the energy release is the decrease of the potential energy of the mechanical system
under consideration during a virtual extension of the crack. The potential energy of
the system is the elastic strain energy in the loaded structural element plus the
potential energy of the loads acting on the element. The energy release rate is the
decrease of the potential energy per increase in crack area

G =- Il/9A (1)



and has the dimension energy/area, €.g. J/m?. G is in general a positive number since
the potential energy generally decreases during crack extension. G is often called the
crack driving force”. For an elastic material with zero strain energy at zero external
load, G is proportional to the square of the magnitude of the loads. The precise value
of G for a given load is governed by the geometry of the element, the length of the
crack, the boundary conditions and the elastic properties of the material. The
numerical value of G can be determined in various ways, e.g. by finite element
analysis or, for common cases, with the help of handbooks. In some cases analytical
methods can also be used.

By making tests where the load acting on the test specimen is increased until the crack
starts to grow, a critical value of G can be determined. This critical value is denoted
G, the critical energy release rate. Unlike G, G¢ is a material property parameter. G
is sometimes called the crack resistance. When the crack driving force equals the
crack resistance, i.e. when

G =G, )
the crack is just about to start to grow. This crack growth may be stable or unstable. If
9(G-Gc)/dA >0 3)
the growth becomes unstable, and it becomes stable if

d(G-G.)/0A < 0. (4)

In most cases the properties of the material are constant throughout the body, which
implies constant G.. If the external action is a load rather than an imposed
displacement, in most cases G increases as the length of the crack increases. This
common cases implies unstable crack growth once the crack has started to grow.

In cases of mixed mode loading, G is the total energy release rate. For isotropic and
orthotropic materials, however, it is possible to separate the energy corresponding to
the different modes, and then

G= G] + G]] + Gm. (5)

Depending on the properties of the material, the material parameter G, may, or may
not, have different valuen for the different modes of loading and may, or may not,
have different values for the different crack orientations shown in Figure 3. In the
case of mixed mode fracture, G, may be expected to be more or less different than in
single mode fracture.



- 6. Definition of stress intensity factors

The stresses in the vicinity of a crack tip approach infinity as the distance to the crack
tip is decreased towards zero. In Figure 4 this is illustrated by the distribution of the
normal stress Oy, ahead of a crack loaded in mode 1. In order to get a measure of the
magnitude of the stress components although they approach a singular value, three
stress intensity factors are defined, one for each mode of loading [Irvin, 1958]. The
stress intensity factor that shows the magnitude of mode I loading of the crack is by
definition

K, = lim (6,, 2nr)"”*) forr—0and ©=0, (6)

where the coordinates r and © are indicated in Figure 5. The corresponding stress
intensity factors for mode II and III are defined by

Ky = lim (1, 2nr)*) forr—0and © =0 (7
and
K- lim (1,, (21r)'"?) for r—0and © =0, 8)

respectively. The magnitude of the stresses in a linear elastic structural element, and
accordingly the stress intensity factors, are proportional to the loads acting on the
element. The dimension of K is (stress)(length)” 2or (force)/(length)3 2 e.g. N/m*?.
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Figure 4. Stress distribution in front of a crack according linear elastic theory.




Figure 5. Coordinates x-y-z and r-O.

7. Stress and displacement in the vicinity of a crack tip

The stress distribution in the vicinity of a sharp crack in an isotropic linear elastic
body has been derived by a power series assumption [Williams,1957]. The stress
components for each mode of loading can be expressed as the sum of an infinite
series of terms. Close to the crack tip however, i.e. for small r, the first term
dominates. The other terms can accordingly be disregarded when analysing the state
of stress in the very close vicinity of the crack tip. Along the line ©® = 0, the
magnitudes of the stress components are

[Gxx,ny,czz,rxy,sz>Tyz] = (27“)_1/2 [KI,KI,VéKI,KH,O,KIH] + ... (9)

where the three dots represent the higher order terms which are negligible for small r.
v indicates the Poissons ratio of the material and § is a number which is O in the case
of plane stress and 2 in the case of plane strain. The numerical values of the stress
intensity factors are proportional to the external load acting on the structural element
and governed by the geometry and support conditions of the structural element. For
orthotropic materials, the ratios between the elasticity parameters do in general also
affect the stress intensity factors. The factors may be calculated by various finite
element methods or, in some cases , calculated analytically or are available in
handbooks on mechanics of materials.

The stress in an arbitrary point (r,®) in the vicinity of the crack tip can be written as
(21:1*)'” 2 times a function of ©. In the case of mode I loading of a crack in an isotropic
material, the in-plane stresses in the point (r,0) are

G = 2m) "% Ky cos(©/2) { 1 +sin(©/2) sin(30/2) } + ... (10)

oy = (2mr)'"? K cos(072) { 1 -sin(©/2) sin(30/2) } + ... (11)



Ty = 2nr)"? Ky cos(©/2) sin(©/2) cos(30/2) + ... (12)

The shear stresses Ty, and T, are zero, and the normal stress G, is zero in the case of
y
plane stress and V(Oy, + Oyy) in the case of plane strain.

Similar equations for modes II and III are given in textbooks on fracture mechanics.
Also the corresponding equations for strain and displacement in the vicinity of the
crack tip can be found in most textbooks on fracture mechanics.

For an orthotropic material with a crack orientated according to the axes of the
material, the basic stresses Oyy , Ty and Ty, along the line © = 0 are as for an isotropic
material, i.e. according to equation (9). For © # 0 there is an effect of © different than
for an isotropic material but still separable from r [Leicester, 1971]. It is noteworthy
that the stresses and displacements in the vicinity of the crack tip are determined by
only three parameters, i.e. the three stress intensity factors. In the common case of
pure mode I, the value of K; is sufficient.

8. The Jintegral

The energy release rate and the stress intensity factors are two alternatives for
defining how much a crack is loaded. Another alternative is the J integral. This
integral is defined for elastic materials and the value of J equals G,

=G (13)

as indicated in [Rice, 1968]. The J integral, however, is calculated in a different
manner than G. While G is calculated by a derivation, the J integral is obtained by
integration of certain quantities along a line around the crack tip, from one crack
surface to the other, as indicated in Figure 6. The integral is

J=j(Wdy—o,.jn,aids) (14)
T . x

where W is the elastic strain energy density, n; the normal to the integration curve I, s
is the arch length of this curve and u; is the displacement vector.

The absolute value of J is not affected by the path of integration as long as the
material is elastic and the path starts and stops at opposite crack surfaces. The
stresses, strains and displacements needed for the integration can be calculated by the
finite element method. The value of J at onset of crack propagation is denoted J, the
critical value of the J integral. Just like G, J. is a material property parameter and



may in general be expected to have different values for different modes of loading
and, for an orthotropic material, different values for different orientations of the crack.

Y4
0
N\ AR
. AN > X
7T X
r

Figure 6. Integration path for the J-integral.

9. The crack open displacement, COD

The COD is the distance between the crack faces and is yet another alternative for
quantification of the load acting on a crack. The COD is considered both in
experimental observations of cracks and in theoretical stress analysis.

In experimental studies COD is applied primarily for ductile metals; for such
materials an originally sharp crack tip becomes blunt before the crack starts to
propagate. This means that a COD develops at the tip of the crack. This crack tip
opening displacement, CTOD, may be used as the crack load parameter and for
defining a critical value for onset of fracture.

In theoretical stress analysis the COD may be used as an alternative to the mode I
stress intensity factor, K;. The COD in the case of elastic materials is proportional to
K; and, for a short distance r behind the tip of crack, the relation for an isotropic
material is

COD =K, (32t/m)"? /1 E", (15)

where E* = E at plane stress and E" = E/(1-v®) at plane strain. E and v denote
modulus of elasticity and Poissons ratio, repectively.



10. Relation between G and K,, K, and K.

From the stresses in front of a crack tip and the crack opening during growth of a
crack, both quantities given by the stress intensity factors, the corresponding energy
release rate can be calculated. For an isotropic material

G = KYE" + Ky/E" + (1+v) Ky '/E (16)

where E* is as in equation (15). The corresponding plane stress relation for a crack
with an orientation yx in an orthotropic material, i.e. according to Figure 5 with the
normal to the crack plane in the y-direction of the material and with the straight ahead
direction of the crack in the x-direction, is

G = K¥E; + Ki/Ey + Ku/Em 17
where

B = (2EE)" [(EJE)" - vy + EJQ2Gy) T, (18)
Ei = (2E5)" [(EJE))" - vy + EJ(2Gyy) 1 (19)
and

En = (4G, Gy)" . (20)

Ex, Ey, Gyy, Gy, and Gy, are the elastic normal and shear stiffnesses of the material,
and Vyy is the strain ratio -€,/e, for uniaxial stress in the x-direction.

11. Mixed mode crack growth criteria

Mixed mode is when a crack is loaded in two or three of the three modes at the same
time. Combinations of mode I and II are encountered most frequently, and the
following is focused on that I+II combination. For that combination a general crack
growth criteria is

f(K, Ky, material parameters) = 0 21)

The function f may be determined by tests or by some assumption which then has to
be verified by tests. Examples of assumptions are:

e fracture is governed by the maximum of the tangential stress Ceg for arbitrary ©
and constant r;

10



e fracture is governed by the maximum of the strain energy density for arbitrary ©
and constant r;

e fracture is governed by the maximum of the energy release rate for arbitrary
direction, O, of the crack growth;

e some more or less arbitrary empirical function with parameters that are determined
by fiting to test results.

An often used empirical function is
f = (KiKio™ + KwKic)" - 1.0, (22)

where the exponents m and n are determined by fiting to tests results. For wood it is
often assumed that m=1 and n= 2 as proposed by [Wu,1967] and [Mall et al., 1983].

12. Crack growth direction rules

For mode I loading of a crack in an isotropic material it is a general rule, with only
few exceptions, that the crack will grow in its initial direction. For a crack loaded in
other basic or mixed modes and for anisotropic materials, the direction of the crack
growth is not equally evident. Consequently, various rules have been proposed for the
prediction of crack growth direction. Many of these rules are quite analogous to the
criteria for the prediction of start of crack growth, as discussed in section 1.10 above.

Wood is a strongly orthotropic material with much higher strength and stiffness in the
L direction than in the R and T directions. It is therefore a common approximate
assumption that a crack with orientation TL, RL, LR or LT will grow in the L
direction regardless of the mode of loading. The crack growth from cracks with
orientation LR and LT is then symmetrical for modes I and III in the sense that two
opposite crack growth directions are equally probable.

A crack with orientation TR or RT and loaded in mode I or mode III may be assumed
to grow in its initial direction, or possibly in the perpendicular direction. If loaded in
mode II, the TR and RT cracks might grow in the R or T direction, or somewhere in
between.

13. Non-linear fracture mechanics, the R curve and the o-w
curve

Non-linear fracture mechanics, NLFM, deviates from the LEFM in one or both of two
respects: in the NLFM the non-linear stress-strain performance of the material outside

11



the tip of the crack may be considered, and/or the non-zero size, the limited stress
capacity and the non-linear stress-deformation performance of the material in the
fracture process region may be considered.

For a material like mild steel with a very significant plastic strain hardening capacity,
it is often important to consider non-linearity of the performance of the material
around the fracture region. The LEFM assumption of zero size of the fracture region
may, however, still be reasonable for this kind of material. For other materials, e.g.
concrete, the pre-peak stress stress-strain performance is about linear, but the size of
the fracture region is significant and of importance for the fracture performance and
global strength of the actual structural element.

The second kind of non-linear performance can be considered in fracture analysis by
various approaches. One such approach is the R curve. Another more direct method is
by characterisation of fracture properties of the material by a stress versus
deformation relation. Such a stress-deformation relation for the case of mode 1
fracture is commonly referred to as the 6-w curve of the material.

From the computational point of view the R curve concept is within the framework of
LEFM. The R curve is assumed to be characteristic for the material and shows how
the resistance to crack growth increases as the fracture zone develops. The curve may
show Kj. (or G.) versus the length of the crack growth. In the very beginning of crack
growth, the fracture zone has just started to develop, and the resistance to crack
growth is then small. As the fracture advances, the size of the fracture zone and the
value of Kj. reach constant values that correspond to the size and fracture resistance
of a fully developed fracture zone. Since the crack driving force, G, commonly
increases as the length of the crack increases, global failure of the structural member
may occur before the fracture zone is fully developed. The possibility to consider the
risk for such premature structural failure is the main advantage of the R curve concept
over the straightforward conventional LEFM. The concept is dealt with in i.a. [Eftis et
al., 1975] and [Schwalbe, 1980].

Fracture property characterisation by a 6-w curve is useful before non-linear finite
element fracture analysis. A 6-w curve shows the stress-deformation properties of the
material in the fracture process region much as a stress-strain curve shows the
properties of the material outside the fracture region. By finite element analysis where
the fracture properties of the material are given by a ©-w curve, it is possible to
calculate how the fracture region initiates, develops and moves as the external load or
imposed deflection is increased. This kind of modelling opens up new possibilities,
such as the analysis of structural elements without any initial crack and makes
predictions more modulated. Application of NLFM to wood is essentially still in the
stage of basic research, but some applications can be found in i.a. [Gustafsson,1985]
and [Bostrom,1992].

12



14.  Energy release, fracture energy, surface energy and
fracture work

The concepts critical energy release rate, G, fracture energy, Gy, surface energy, v,
and fracture work are related but different. The critical energy release rate has been
discussed already in the above, and is the value of G when a crack starts to propagate.
The fracture energy Gg is the energy required to open a unit area fracture section, i.e.
separate a piece of material into two parts. The surface energy 7y is energy per
fractured surface area, which for ideal plane fracture surfaces is twice the area of the
fracture section. By surface energy is commonly meant the energy related to the
higher density of molecules at the surface of a material rather than in the interior the
material. Minimization of the surface energy is what makes a drop of water round by
minimizing the surface area for a given volume. Fracture work is the total work done,
e.g. by a testing machine, when a specimen or structural element is broken into two
parts.

G, is commonly evaluated by LEFM from the experimentally obtained failure load of
some test specimen with an initial crack. Gy is often obtained from fracture work of a
notched three-point bend specimen or a tensile specimen with or without a notch. The
surface energy, 7, is seldom used in engineering analysis of solid materials. For most
materials 27y is much less than G. and Gr due to energy consuming processes in the
fracture process region other than net increase of fracture surface area.

Since G, is evaluated from fracture load at the assumption of zero size of the fracture
zone, low values of G, are obtained if the size of the test specimen is not big enough.
In the evaluation of Gy from fracture work it is often assumed that possible plastic
dissipation outside the fracture region is negligible. This means that too high values
may be obtained, in particular if the volume of the specimen is large. For an ideal
elastic material, G, = Gy = 2y = fracture work per area of the fracture section.

15. Numerical methods in LEFM

In most cases some numerical method is needed for the calculation of K, G or J. In
particular the finite element method is extensively used, but the boundary element
method is also used. Today many commercial finite element packages include an
option for automatic calculation of K, G or J of a crack.

Although stress and strain approach infinity at the tip of a crack, the finite elements
used in LEFM analysis may be of any ordinary type. As in conventional stress
analysis, one may generally expect improved accuracy of the numerical results if the
number of finite elements is increased or if elements with more nodes are used. A
somewhat improved accuracy can be achieved for a given number of elements if

13



special crack tip elements are used. In such elements the displacement shape function
is such that the square root singularity in stress and strain can be reproduced. The
modelling work becomes somewhat more complex if special elements are used at the
crack tip.

Disregarding the choice of elements, there are many more or less different methods
for the calculation of K, G or J by means of finite element analysis. They can be
divided into three main groups:

e Substitution methods

¢ Energy rate methods

e Line integration (J integral) methods.

In substitution methods, some quantity such as stress, strain, displacement (e.g. crack
opening displacement) or strain energy density is calculated numerically for some
point or points in the vicinity of the tip of the crack. The numerical value of that
quantity is then substituted into the corresponding analytical expression, e.g. equation
(10), for stress and strain etc in the vicinity of a crack tip. That expression can then be
solved for K. If the load is a pure mode I load, one substitution is sufficient for the
calculation of K. For cases of mixed mode, the quantity has to be calculated and
substituted for two or three points to obtain Ky and Ky, or K, Ky and Ky, respectively.
Improved accuracy can in general be achieved if mean values are calculated by
making substitution calculations for several points in the vicinity of the crack tip.
Knowing the stress intensity factors, G and J can be calculated by equations (18)-(21)
and (13).

In energy rate methods the change of some energy quantity during an increase of the
crack length is considered. In finite element analysis, increased crack length can be
achieved in different ways: by opening of the node at the tip of the crack, by changing
the geometry of the elements in the vicinity of the crack or by assigning zero stiffness
to the element ahead of the crack tip. The change of energy during the crack length
increase can be calculated in different ways:

e From the difference in work by the external load when acting on the element
before and after the crack length increase. This is equivalent to calculation of
global stiffness before and after the crack length increase.

e From the forces, e.g. the nodal forces, acting across the crack length to be opened
and the crack opening displacement after the crack length has been opened. From
these forces and displacements the so-called crack closing energy can be
calculated. This energy equals the energy release when the crack is opened.
Separation into the different crack loading modes can be made according to the
direction of the forces.

e From the change of stiffness of the elements in the vicinity of the crack tip,
provided the crack length increase is achieved by changing elements, e.g. by
changing the geometry of elements at the crack tip.

14



In contrast to the substitution methods, the energy rate methods require in general two
finite element calculations, one to determine the state before crack length increase and
one to determine the state after the increase. On the other hand, it is in most cases
found that the energy rate methods give better accuracy than the substitution methods.
The energy rate methods can give fairly accurate results even if the element mesh is
rather coarse. The energy release rate values obtained can be transformed into stress
intensity value by equations (18)-(21).

The line integration (J integral) method represents numerical integration of
components of stress and displacement according to equation (14) along a line that
encloses the crack tip. In theory the path of integration should not affect the result, but
due to the numerical approximations involved one may expect somewhat different
results for different paths. Due to different strategies for choosing the path and due to
different methods for the numerical integration, the line integration method may be
considered as a group of methods. It seems that the line integration methods are not as
frequently used as the substitution and energy rate methods.
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STRESS INTENSITY FACTOR APPROACH
by

Simon Aicher, FMPA - Otto—Graf—Institute, Stuttgart

1 Introduction
1.1  General remarks on stress intensity factors and K-concept

The stress and displacement fields in any linear elastic continuum containing a sharp
crack can be written as sums of eigenfunctions with stresses resp. displacements
varying with a polar coordinate r resp. angle ¢ with origin at the crack tip. Approach-
ing the crack tip (r — 0) the first term of the respective sums becomes dominating
within a certain area surrounding the crack tip (r £ R) termed nearfield and rather
completely (see below) describes the stress resp. displacement field. Stresses in the
nearfield are singular of type 1/ \/_r— and displacements show a non singular\/;‘
depéndency.



The stresses resp. displacements in the singularity dominated zone (r < R) are
completely described by the 1/ \/r— singularity delivering infinite stresses for r — 0
and a proportionality factor termed stress intensity factor K which determines the
magnitude of the singular stress field. The variations of stresses and displacements in
angle ¥ are prescribed by dimensionless functions @;;, g;, which in case of isotropic
materials solely depend on ¥ and in case of orthotropic materials are further related
to constitutive equations. According to the three types of loading a crack can experi-
ence (mode I = opening, mode II = in-plane shear, mode III = out-plane shear) the
respective singular stress fields, which can be linearly superpositioned, are described
by three different stress intensity factors K;, Ky, Ky; resp. functions fvj-k , gijk k=1,
I1, III).

The stress intensity factors, depending on the geometry and loading of the continu-
um including the crack, thus completely define the stresses and displacements in the
nearfield what also holds vice versa. The latter is most important for complex struc-
tures where closed form solutions for K-factors are hardly to derive but stresses and
displacements can be conveniently computed by numerical, especially finite element
methods.

Important is, that the K-dominated nearfield also contains an interior validity
boundary r = r,, close to the crack tip resp. front. Within the range r < r,, <<R the
linear elasticity based nearfield no more describes the material behaviour appropri-
ately. The reason therefore is that stresses and strains in reality can not increase to
infinity but are subject to nonlinear processes such as plastification or softening.
Further the nonlinear area r < r,, includes an interior region termed (fracture) process
zone r < r,, where the actual debonding phenomena on the micro scale occurs. In
case that the K-factor dominated nearfield r, <r <R is large compared to the
enclosed inelastic region (r,, r,, << R), it can be assumed that the nearfield indirectly
governs the material behaviour in the inelastic region and especially in the fracture
determining process zone. This actually is the hypothesis underlying the so-called
K-concept: The state of the fracture is sufficiently defined by the stress intensity
factor thus enabling a simple fracture criterion whereby fracture occurs when K
reaches a critical value termed fracture toughness K. In overlayered crack loading
modes (mixed mode condition) fracture is determined by interacting K-factors and
their critical values.

1.2 Hypothetic crack approach

Fracture mechanics and K-concept can be employed straight forward in a deter-
ministic manner to structures with distinct single or multiple macro cracks of defined



dimensions. However, in most real structures no macro singularities exist in the
perfect state, so for instance in case of beams with round holes or with rectangular
openings resp. notches which in general are performed with rounded corners. The
singularities here are confined to the imperfect state of the structures when stochasti-
cally distributed defects (flaws) on the micro level due to local stress concentration
have grown, agglomerated and eventually localized into macro cracks. In case of
wood, flaw growth resp. agglomeration and macro crack formation can be mutually
caused from stresses resulting due to gravity loads and from climate caused eigen-
stresses. The sizes and to a lesser extent the locations of the macro cracks, to be
investigated by fracture mechanics, are unknown what founds the probabilistic nature
of the problem.

A suitable way to examine and design such structures is the hypothetic crack ap-
proach where the load carrying capacity is traced depending on one or several
extending hypothetic macro cracks. Then, considerations based on plausibility and/or
probability have to be applied to crack length and load in order to find a reliable
design load. Obviously these considerations depend largely on the function of the
generalized stress intensity factor K (or strain energy release rate G) vs. crack
length. The expressions »generalized K or G values« mean that the mixed mode
quantities K,, G; (i = I, I, II) are summarized in one idealized term K, G, which is
compared to the equally idealized material resistances K, G_. Quantitatively this
summarizing is performed by means of an appropriate mixed mode interaction
criterion.

1.3 Basic types of structure responses

Structures can show completely different functions of K (or G ) and of correspond-
ing ultimate loads with increasing crack lengths (dead load conditions). Fig. 1a gives
a typical example of a simple structure with steadily increasing K -values and hence
generally steeply decreasing ultimate loads. In more complex structures K functions
are encountered which first increase with crack length and after having reached a
maximum, K remains constant or decreases (Fig. 1b). In the latter case the critical
load has a stable minimum and crack arrest can occur after initiation and unstable
propagation of a crack.

Crack arrest may also occur when the material shows a (non)linear increase in
crack resistance with crack elongation. This case shall not be considered here, as all
problems due to relative structure sizes and wood brittleness will be considered in a
conservative approximation to behave acc. to linear elastic fracture mechanics
(LEFM).
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2 Review of finite element approaches for stress intensity factor determina-
tion in mixed mode problems of discrete cracks in orthotropic materials

Several approaches can be applied in case of mixed mode loading conditions for
determination resp. separation of the interacting single mode stress intensities K; resp.
of the linear elastically equivalent strain energy release rates or J-integrals G;, J;
(i =1 II, III). At least five major methods (i)-(Vi) can be differentiated, whereby
methods (i), (ii) are based on the basic definitions of K-factors defining the power of
the stress resp. strain field in the crack tip nearfield. Methods (IIli)—(Vi) are princi-
pally energy based methods which due to assumptions of linear fracture mechanics,
can be employed equally for determination of K-values. Following, only mixed
mode I and II in 2D structures with inplane loading in the x-y plane is regarded:

(i) method based on the explicit singular displacement resp. stress field in the
crack tip vicinity. Hereby K; values are determined from FE computed dis-
placements u, v or stresses G,, Oy, T,, at the crack faces resp. at the ligament
through comparison with closed form expressions for stresses resp. displace-
ments in the nearfield [1] containing K; as sole unknown quantities.

(ii)  similar to method (i), however the analytical singuiar displacement fields are
implemented in a specific singular fracture mechanics crack tip element [2].



(Illi) method based on crack closure integral [3]. The two crack closure integrals G,
Gy (— K, Ky are derived from FE-computed nodal forces F,, F, and displace-
ments u, v at the ligament resp. at the crack faces [4], [5], [6], [7].

(IVi) a rough separation of G; (— K;) values may be performed by assuming the
G/Gy, ratio equal to the ratio of opening to shearing forces at the crack tip or
to the ratio of opening to shearing forces or stresses within a certain distance
on the crack ligament. Total strain energy release rate G = G; + Gy; hereby may
be computed from various methods, a few of them stated here.

(Vi) method based on J integral [8]. The splitting of J into components J;, J;
(= K, K}) on a symmetric integration path with coinciding start and end is
performed via use of symmetric and anti-symmetric parts of the stress resp.
displacement components along the integration path around the crack [9], [10]
(see also [11], [12]).

All approaches have advantages and disadvantages with respect to FE discretization
effort and further data processing. The finest meshing is needed in (i), the most
coarse in (Vi) where however automatic meshing is inconvenient with respect to the
symmetric integration path. Method (ii) is bound to non standard FEM software;
method (IIli) needs the least effort for post-processing. Essential is, that all approach-
es apart from (Vi) are confined to purely linear elastic material behaviour. In this
study, method (i) and hereby the more accurate displacement based approach was
chosen.

3 Details of applied method
3.1 Determination of stress intensity factors

The calculation approach (i), as said, is based on finite element computed displace-
ments O, in the immediate crack tip vicinity resp. extrapolations of these vs. the
crack tip (lim r—0 [J,(r)]). The limit values are then equated with closed form -
displacement expressions [1] including stress intensities K;, K;; as sole unknown
quantities. Once the stress intensities are determined for plane stress or plain strain
condition the elastically equivalent energy release rates G;, Gy resp. J-integrals may
be computed (or vice versa) as



G, = K{/E , G, = Kg/Ey , ~ (1a,b)

where E|}, are substitute E-moduli depending on orthotropic material constants. In
case of plane stress one obtains

EI* - ll[g |8112822] , E]; = 1/ g

12

—S—ll] , (2a, b)

/2

2+2312+566

g = (2¢)
Si 2 Su

with quantities s;; as compliances of the generalized Hooke’s law

€ = 8. O, G,j=1,2..6). 3)

In case of plane stress in the 1 = x, 2 =y plane (g, = ¢, &, = &, & = ,,) and princi-
pal orthotropic material axes coinciding with the coordinate axes, four independent
compliance values s; (i, j = 1, 2, 6) remain i. e.: sy, Sy, Sj3 = Sy, S¢e- Lhe complian-
ces are related to the engineering constants by (note that definitions of Poisson ratios
Vi Vyy differ compared to [13])

s, =1E, , s, = 1/Ey > Seg = ny > S;p = - vxy/Ey s S = - "yx/Ex- (4a-e)

In case of plain strain the compliances s; in egs. (2) have to be replaced by analogous
values b; which are related to compliances acc. to

bij = Sij a Sl'2 Sj3/s33 (11.] = 1, 2, 6) (5)

The closed form expressions for the near field displacements u, vinthe 1 =Xx,2 =y
directions of an orthotropic continuum where the principal material axes coincide
with the coordinate axes are [1]:

u = \% [K, Re(a,,) + Ky Re(@y,)] - (6a, b)
v = \% [KI Re(a,;) + K Re(azz)]




where

1
a; = [B1P,€ ~ BaP1 G (7a)
Ky~ H, . .
1
a4, = [P2¢~ PS> (7b)
Hi7 By
1
a4 = [F1961 - 121 S (70
LU o
A = : (%€ -9, (7d)
Bi7 B
¢, = \Jeos® + p,sind , c, = Jcos® + pysind , (8a, b)
2 2 :
pj = S;p by 8, > qj - = (812 Kj +522)/|~"j Gg=12). (8¢, d)

Quantities p; are the roots of the algebraic auxiliary equation
st (2512 * Se4) W sy =0 ®
which are always complex — here purely imaginary [13] — occur in conjugate pairs

and may be explicitly given as (in case of plain strain, quantities s; have to be

replaced by by)

-2 2 2-4 ’
B = ( A 866) : ‘/(2:12 - 866> "’z , (103, b)
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Bis = ~ My - (10c, d)

It is evident from definition of mode I and II when displacements u, v are regarded
at the crack faces (O = 180°) egs. (6a, b) decouple: Re (a;;) = Re (a,,) = 0. So for
¥ = 180° one receives for the total opening and sliding displacements (see Fig. 2)



Au@® = 2u@ =r K; Re(a,) 2 \_%_ ,
Av(@) i, 2v(@) = 1 K; Re(a,) 2 \_%
and then

Ki = ¢ lrlz-no A;{’(—f) ’ Kp = ¢
where

¢’ = Re (a,) 2 \Etz— ,

cﬁl = Re(alz)Z\E.

(11a)

(11b)

(12a, b)

The limit values ?EO Av/ \/r— resp. }}El) 0 Au/ ‘/1'_ are determined from finite
element computed displacements Av, Au as approximations of exact solutions Av,

Au. Figure 2 shows the FE displacement results in a generalized manner. For evalua-

tion of the limit values, the AV (r), Au(r) functions in the easiest case may be

regarded linear [14], but generally any non linear fit and limit procedure may be

used. The linear approximation simply forwards

- . Av(
Avn ar + b - lim AV®)

i r-0 Jr

Au()
VT

A apr + by - 111310

oo '

Inserting eqs. (13a, b) in eqgs. (12a, b) gives

K = ¢cbp, Ky = ¢b

1

3.2 Determination of critical load

(13a)

(13b)

(14a, b)

Having determined K;, K; for a deliberate load P resp. load arrangement
P=f (P, P, ... P,) the load multiplier for critical load, n = P_, /P, can be determined



from an appropriate mixed mode fracture criterion. Without further duscussion the
interaction criterion acc. to [15]

K 2
it B Kn = 1. (15)
ch KIIc

shall be assumed; the load multiplier then is

——— 2
-s + Js® +4r = Ka | s = a . (16a, b, ¢)
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4 Investigated structures, modelling
4.1  Structures, material properties

Table 1 summarizes the shapes and dimensions of the investigated structures (a=h),
all being one-span beams with a concentrated vertical force in mid-span. The compu-
tations comprised

- end-notched beams either with a rectangular or a tapered end-notch; structures a
resp. b

— beams with round holes of different diameters & = h/8 and & = h/3; structures d
resp. e

— beams with square holes of edge lengths h/3 either with sharp or rounded corners;
structures g resp. h

The notch height of the end-notched beams was throughout h/4 and located resp.
starting , the latter in case of the tapered notch, at a distance of h/3 from the support.
The holes were always placed at mid-depth, the distance of the hole centroid from the
support in case of the round holes measured 1,5 h and 3 h in case of the square
holes. '

All different geometries were evaluated for two significantly different sizes denoted
by 1 resp. 2; so, for instance in case of the beam with a rectangular end-notch, struc-
tures al and a2 were investigated. Size 1 represents a small size with h = 95 mm,
b = 45 mm and size 2 is a large one with h = 600 mm and b = 120 mm.

The material properties (elasticity constants, fracture toughnesses and shear
strength) of the timber beams in the 2D plane stress computations were assumed as
following (grain direction coinciding with beam axis is denoted by subscript x = 1):

E, = 12000 MPa , Ey=4OOMPa, G,, = 750 MPa ,

1]

\Y xy

v, EJE =0015, f, =9 MPa,

K, = 16,05 N/ymm? = 0,5075 MPaym ,

Ky = 70,27 N/ymm? = 2,2219 MPaym .
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The employed elasticity values conform to strength class C30 acc. to European draft
standard prEN 338.

4.2  On-set of hypothetic crack

In case of structures with one explicit geometric discontinuity (structures a, b) the
crack on-set was located at this point. In case of square holes with sharp corners .
(structures g) with four sihgularity locations and two of these located in stress fields
with tension perpendicular to the grain, the crack on-set was located at the support
oriented corner at the tension edge of the beam. In fact, the stress concentrations resp.
stress intensity factors at the diagonally opposite upper corner are somewhat higher
and the first crack in tests predominantly occurs at that corner. The differences in
stress intensity factors at both corners are revealed in [7].

In case of round holes without explicit strain singularities along the hole contour,
similarily to holes with sharp corner, there are two diagonally opposite locations with
high stresses perpendicular to the grain. The extreme values in both stress fields very
roughly occur at ¢ = 45 + 10° resp. 135 + 10, whereby the maximum as in case of
sharp corners is at the upper right position. The crack on-set at these locations and
first predominantly at upper right position is experimentally substantiated. In this
study the crack on-set in circular holes resp. in rectangular holes with rounded
corners as in case of square holes with sharp corners was modelled at 0 = n/4.

With respect to crack growth it was assumed that the crack propagates parallel to
grain direction, i. e. parallel to beam axis.

4.3 Some modeling details

Figures (4a, b) to (9a, b) show for all investigated structures a contour plot of the
complete deformed and undeformed structure and close-ups of the finite element
meshing (deformed structure) including the complete notch or hole resp. the immedi-
ate crack tip vicinity. Due to loading and geometry symmetry only half of the entire
structures were discretized. All structures were automatically meshed specifying
maximum element sizes for the remote areas and the crack tip area.

Throughout a six node triangular element was used and for the first element row
around the crack tip the element option of a distorted mid-side node in quarter
position, in order to introduce a strain singularity, was taken. Nearly all crack tip
areas were modelled with 16 elements in circumference and the edge lengths of
elements connected to the crack tip were mostly 1/8 of the crack length a. For one
structure (b2) the influence of element sizes in the crack tip area was investigated

11



Geometry struc- h b distance of | notch | distance hole square | comner
ture notch depth | of hole | diameter hole radius
(start) to centroid d edge r
support to support length
[mm] | [mm] [mm] [mm] [mm] [mm] [mm)} [mm]
h/2  3h
771 ‘ al 95 45 31,7 2338 - - - -
—
= I =
79_51:___'__,,
-LJ-h /3 a2 | 600 | 120 200 150 - - - -
h2, 3h
1 bl 95 45 3L7 23,8 - - - -
= <
< L
1 v
R/313h/4 b2 | 600 | 120 200 150 - - - -
——-
* (: d1 95 45 - - 142,5 11,9 - -
ot
“\’#o .
— | <
| A R =
h/2 1.5h [ 15h | a2 | 600 | 120 - - | o0 75 - -
o el 95 45 - - 142,5 31,7 - -
e IS
l £
h/ﬁlsh L 1.5h e2 600 120 - - 900 200 - -
L B Ed -
h/3 gl 95 45 - - 285 44.8 31,7 -
= - £[
o 2 600 120 1800 282,4 200
hi2l 3h | 3n : - | - : -
A A
h/3
—Fr hl 95 45 - - 285 44,8 31,7 4,75
[} 1
| Fre i “:]
7Y !
h/i 3h 3h L h2 600 120 - - 1800 282,4 200 30
1 L 7
Table 1 Compilation of investigated geometries resp. structures
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with respect to displacement extrapolation resp. K-evaluation. In this specific case an edge
length of the crack tip elements of a/4 gave only a 3 % difference to the results obtained with
a/8. Further, the results of the displacement extrapolations seemed to be quite insensitive
whether the first two or three nodes were used for the linear displacement extrapolations
(13a, b).

5 Results

The major computational results, i. e. stress intensities K;, K;; and absolute resp. normalized
shear force capacities V,, V, are compiled in tables 2 to 7. Normalized shear force capacity
V=V./V,is defined as the ratio of absolute shear force capacity V; divided by respective
"formal" shear force capacity V, = b - h (2/3) f,, thus illustrating the impact of the hole or
notch (f, = 9 MPa). For comparison with other computational approaches the results accord-
ing to initial crack and mean stress method (paper 5) are given, too. Figs. 10 to 15 give
graphical illustrations of obtained K;, K; functions resp. of related normalized shear force
capacities vs. hypothetic crack lengths.

5.1 Geometries with round and square holes

For all investigated structures with round holes and square holes with rounded corners stress
intensity K; increases with crack length a up to a maximum and then decreases with further
crack elongation. The maximum is reached at rather small crack lengths of about 5 mm in
case of small structures (size 1) and is located at about 20 mm in case of large structures
(size 2). In case of the square hole with sharp corners, K, is a decreasing function of crack
length throughout, what is also true for K;; of all structures discussed in this chapter.

The load capacities obtained from interaction criterion (15) represent coarsly the inverse of
the sketched different K;, K;; courses — where K;; contribution is strongly relativated by the
assumed fourfold higher magnitude of fracture toughness in mode II and the quadratic
consideration of the ratio K,/K;.. In general, except structures gl, g2, the load bearing
capacities first drop with increasing crack length; after having reached a minimum the load
bearing capacities remain rather constant or even show a slight increase in some cases.
Structures gl, g2 with stress singularities show a continuous capacity increase vs. crack length
up to very large crack lengths of about 60 resp. 250 mm in case of small and large beams.
This behaviour actually reveals that the singularity situation in the area of the sharp edged
corner is smoothed with the developing crack.

13



V7
<IN/

K/
wnemﬁgi
v’ V),vw“ N

KF" N PRARK
AEES B
w4 i

crack length= 20 mm, H=85 crack length 20 mm, H=600

Figs. 4a, b  Rectangularly end-notched beam; contour plot of undeformed and deformed structure and finite
element meshing of crack tip resp. notch
a) small beam (structure al) with relatively large crack
b) large beam (structure a2) with relatively small crack
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a) small beam (structure bl) with relatively large crack
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a) small beam (structure el) with relatively medium sized crack
b) large beam (structure e€2) with relatively small crack
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The crack lengths associated with the minimum capacities min V; differ with respect to
structural sizes and slightly with respect to relative hole geometry. In a rough approximation,
in case of the small structures with round holes resp. rounded corners (d1, €1, hl) minimum
load capacity V; resp. V, is related to a crack length a of 5-10 mm and in case of the
geometrically similar large structures (d2, €2, h2) min V; is bound to crack lengths in the
range of 20-25 mm. In case of structures gl, g2 (square holes with sharp corners) irrespec-
tive of size, minimum load capacity is related to vanishing crack length.

For the large structures the dependency of V; vs. a was investigated up to crack lengths of
1-1,5 times of the size of the hole itself i. e. a = 130-200 mm (structure g2: a = 500 mm).
In case of the small structures the investigated crack lengths were in the range of about
2-5 times of the hole sizes of 32 resp. 12 mm. The increase of load capacity from min V;
onward roughly holds true for crack lengths which are smaller or of comparable size of the
hole. In case, the crack exceeds the hole dimension (diameter) of very small holes
J =~ 10 mm (structure d1) the load capacity drops rapidly; in this case the crack itself
represents the major defect.

Apart from the unrealistically small hole (d1) a hypothetic crack length of about 25 mm
delivers a conservative estimation of the load bearing capacity within the range of investi-
gated structures with holes. A comparison of the load capacities of the beams with square
holes, made of either sharp or rounded corners, reveals as might be supposed, that rounded
corners result in higher load capacities only for very tiny cracks of a few millimeters. From
crack lengths of about 5 (small structures g1, hl) resp. 25 mm (large structures g2, h2)
onward, no more noticeable difference between rectangular holes with sharp or rounded
corners exists, at least in case of investigated corner curvatures.

With respect to different relative sizes of holes, apparently relatively smaller ones result in
higher load capacities. The influence of relative hole sizes on load capacity seems to be in the
same order of magnitude for small and large sizes. So, quite similar for beams with small
(d1, el) resp. large (d2, e2) sizes a hole diameter of h/8 is associated to roughly 60 % higher
load capacity compared to holes with a diameter of h/3.

With respect to observed influence of absolute dimensions, no difference exists between
beams with holes and subsequently discussed beams with end-notches. Comparing load
capacities of geometrically similar beams — structures a; to h; (i = 1, 2) — throughout capacity
ratios of

V,IV, = (b,/b,) \/hy/h, (17)

i. e. the general size effect law of linear elastic fracture mechanics (proportionality of load
capacity to square root of characteristic dimension (here: h)) emanate as clearly as anticipated.
Observe that similar geometry also includes relative crack length to some extent. In absolute
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numbers in case of the investigated structures shear force capacities of both sizes 1, 2 — after
normalization to equal width — differ by a ratio of about /600/95 = 2,51 whereas in case
of validity of strength of materials approach the load capacity ratio would be 600/95 = 6,32.

5.2  Geometries with rectangular and tapered end-notches

In case of the rectangularly end-notched beams (structures al, a2) K, is roughly constant vs.
crack length (a minor increase is encountered for the small structure al from crack length
a = 20 mm onwards). Stress intensity Ky, alike as for all structures with holes, shows a steady
increase with augmenting crack lengths. According to interaction criterion (15) ultimate load
for both sizes remains roughly constant with increasing crack length in case of structure al
a slightly decreasing ultimate load is obtained for crack length a > 20 mm. Any deliberately
chosen hypothetic crack length in the range of about 10 mm (small size 1) resp. 25-50 mm
(large size 2) as in case of the beams with holes — delivers an unconservative estimation of
the load bearing capacity as the crack propagates dynamically at given dead load condition.
The comparison of the load capacities of the large and small endnotched structures al, a2
reveals a strong size effect, slightly less than the rigorous h LEFM effect ((V,,b,/(V,,b2))= 3,2;

h/h =25).

The tapered end-notched beams b1, b2 show similarly for the small and large size closely
matching increases of stress intensities K; and K;; along the whole investigated crack length
range. Accordingly ultimate loads decrease degressively until the structures — due to crack
lengths equaling taper lengths of 3/4 h — approach the response character of rectangular end-
notched beams with a notch length of about 1.1 h (notch depth: h/4).

6 Comparison of results with other fracture mechanics approaches
6.1 Comparison to mean stress resp. initial crack method

The results obtained by mean stress resp. initial crack methods (paper 5) take into account the
mixed mode situation. The load bearing capacities are given for one distinct, method depen-
dent hypothetic crack length, which in case of initial crack method varies from 9,1
to 12,9 mm, i. e. can be roughly taken as 10 mm. For mean stress method crack lengths vary
from 18 to 22 mm, i. €. an average value of 20 mm can be assumed. Initial crack method
throughout with one exception (structure d1), forwards lower to equal shear force capacities
than mean stress approach. When comparing the K-concept based load capacities to results
obtained by initial crack method consequently roughly equal crack lengths of about 10 mm
have to be regarded. Tables 2 to 7 reveal a very good agreement in case of geometries a, b
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Geometry Hypothetic Stress intensities Shear force Normalized Absolute and normalized
resp. struc- | crack length capacity shear force shear force capacity
ture acc. to capacity D computed by other fracture
Table 1 mechanics approaches
»init. crack« »mean stress«
a K Ky \'A V; \A v, A v,
mm N/ ;/m? N/ \/m? kN - kN - kN -
i 4,15 4,16 829 0,32 - - - -
2 4,14 4,39 8,26 0,32 - - - -
5 4,08 4,87 8,26 0,32 - - - -
7 4,05 513 8,27 0,32 - - - -
9.5 -— - - - 8,6 0,34 - -
B
10 4,03 5,49 8,24 0,32 - - - -
15 4,03 597 8,11 0,32 - - - -
19 - - - - - - 10,3 0,40
20 4,08 6,36 7,94 0,31 - - - -
50 4,83 8,31 6.58 0,26 - - - 5
5 1,64 - 1,63 56,04 0,13 - - - -
9.4 - - - - 56,5 0,13 - -
10 1,65 1,72 55,30 0,13 - - - -
15 1,65 1,78 55,04 0,13 - - - -
a, 19 - - - - - - 55,2 0,13
20 1,65 1,84 55,11 0,13 - - - -
50 1,58 2,07 56,16 0,13 - - - -
75 1,58 2,24 55,54 0,13 - - - -
100 1,59 2,38 54,84 0,13 - - - -
Table 2: Computational results for stress intensities and absolute resp. normalized shear force capaci-

ties depending on hypothetic crack length of rectangular end-notched beam with two differ-
ent small resp. large sizes (structures a,, a, in table 1). For comparison results acc. to initial
crack and mean stress approach (paper 5) are enclosed.

D Normalized shear force capacity V_ is shear force capacity V, divided by formal shear
force capacity b - h (2/3) f, of gross cross section
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Geometry Hypothetic Stress intensities Shear force Normalized Absolute and normalized
resp. struc- | crack length capacity shear force shear force capacity
ture acc. to capacity D computed by other fracture
Table 1 mechanics approaches
»init. crack« »mean stress«
a Ky Ky Vi v; Ve v; Vi \
mm N/ymm?® | N/ymm? kN - KN - kN -
0,5 1,46 2,39 22,00 0,86 - - - -
1 1,74 2,78 18,53 0,72 - - - -
2 2,07 3,24 15,64 0,61 - - - -
5 2,66 3,99 12,28 048 - - - -
7 2,93 431 11,20 0,44 - - - _
b, 9.5 - - - - 10,6 041 - -
10 3,20 4,63 10,28 0,40 - - - -
15 3,66 5,19 9,00 0,35 - - - -
20 3,95 5,59 8,35 0,33 - - - -
21 - - - - - - 13,9 0,54
50 4,94 7,83 6,54 0,25 - - - -
2 0,53 0,87 161,39 0,32 - - - -
5 0,65 1,06 131,93 0,31 - - - -
9,7 - - - - 114,3 0,26 - -
10 0,78 1,23 110,79 0,26 - - - -
15 0,86 1,34 100,48 0,23 - - - -
b, 20 0,96 1,47 90,72 021 - - - -
21 - - - - - - 140,2 0,32
50 1,19 1,74 73,51 0,17 - - - -
75 1,34 1,93 65,32 0,15 - - - -
100 1,46 2,08 60,08 0,14 - - - -
Table 3: Computational results for stress intensities and absolute resp. normalized shear force capaci-

ties depending on hypothetic crack length of tapered end-notched beams with two different
small resp. large sizes (structures b,, b, in table 1). For comparison results acc. to initial
crack and mean stress approach (paper 5) are enclosed.

D see Table 2
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Geometry Hypothetic Stress intensities Shear force Normalized Absolute and normalized
resp. struc- | crack length capacity shear force shear force capacity
ture acc. to capacity P computed by other fracture
Table 1 mechanics approaches
»init. crack« »mean stress«
a K, Ky \A v, \A v, \A A
mm N/ymm® | N/y/mm? kN - KN - kN -
05 1,19 0,72 29,86 1,16 - - - -
1 1,51 0,97 23,40 0,91 - - - -
2 1,94 1,43 18,08 0,71 - - - -
5 1,82 2,15 18,59 0,72 - - - -
7 ‘1,54 2,60 20,68 0,81 - - - -
10 0,95 3,26 26,64 1,04 - - - -
d 12 0,92 3,69 25,40 0,99 - - - _
12,9 - - - - 27,70 | 1,08 - -
15 1,07 4,70 20,83 0,81 - - - -
20 1,31 525 17,89 0,70 - - - -
22 - - - - - - 22,60 0,88
50 1,28 9,22 12,69 0,50 - - - -
2 0,43 0,25 219,89 0,51 - - - -
5 0,62 0,39 152,21 . 035 . - - - -
9,2 - - - - 135,6 0,31 - -
10 0,74 0,52 126,88 0,29 - - - -
15 0,78 0,62 119,72 0,28 - - - -
d, 19 - - - - - - 152,3 0,35
25 0,76 0,78 119,99 0,28 - - - -
50 0,59 1,14 139,52 0,32 - - - -
75 0,40 1,52 160,70 0,37 - - - -
100 033 1,86 155,78 0,36 - - - -
130 0,24 2,23 150,07 0,35 - - - -
Table 4: Computational results for stress intensities and absolute resp. normalized shear force capaci-

ties depending on hypothetic crack length for beams of two different small resp. large sizes
(structures d,, d, in table 1) with small round holes (diameter h/8). For comparison results
acc. to initial crack and mean stress approach (paper 5) are enclosed.

D see Table 2
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Geometry Hypothetic Stress intensities Shear force | Normalized Absolute and normalized
resp. struc- | crack length capacity shear force shear force capacity
ture acc. to capacity b computed by other fracture
Table 1 mechanics approaches
»init. crack« »mean Stress«
: RN DR R B A B A R I 7
mm N/ymm?® | N/ymm3 kN - KN - KN -
1 2,01 119 17,62 0,69 - - - -
2 2,63 1,66 13,46 0,52 - - -~ -
5 3,08 2,57 11,32 ' 0,44 - - - -
7 345 3,17 10,05 0,39 - - - -
9.2 - - - - 8,20 0,32 - -
10 342 3,57 10,02 0,39 - - - -
o 12 - 305 392 10,95 0,43 - - - -
15 3,16 4,43 10,46 0,41 - - - -
19 - - - - - - 1030 | 040
20 282 441 11,49 0,45 - - - -
50 1,51 9,78 11,61 045 - - - -~
2 0,47 0,27 200,03 0,46 - - - -
5 0,74 - 0,42 128,08 0,30 - - - -
7 0,84 0,51 112,17 0,26 - - - -
9,2 ) - - - - 75,60 0,18 - -
10 0,96 0,60 97,88 0,23 - - - -
12 1,06 0,67 89,01 021 - - - -
15 1,10 0,72 85,54 0,20 - - - -
e, 19 - - - - - - 90,30 021
20 1,21 0,83 77,59 0,18 - - - -
35 1,35 1,07 69,31 0,16 - - - -
50 135 125 68,25 0,16 - - - -
75 1,31 1,54 69,08 0,16 - - - -
100 1,22 1,80 71,76 0,17 - - - -
130 1,11 2,15 74,46 0,17
200 0,82 2,81 . 82,38 0,19 - - Co- -
Table 5: Computational results for stress intensities and absolute resp. normalized shear force capaci-

ties depending on hypothetic crack length for large round hole with two different small resp.
large sizes (structures e, €, in table 1). For comparison results acc. to initial crack and
mean stress approach (paper 5) are enclosed.

D see Table 2
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Geometry Hypothetic Stress intensities Shear force Normalized Absolute and normalized
resp. struc- | crack length capacity shear force shear force capacity
ture acc. to capacity 1 computed by other fracture
Table 1 mechanics approaches
»init. crack« »mean stress«
a Ky Ky Vi Vi Ve Vi Vi A
mm N/ymm? | N/y/mm3? kN - kN - kN -
| . 4,89 5,39 6,96 0,27 - - - -
2 4,72 5,67 7,15 0,28 - - - -
5 446 6,45 737 0,29 - - - -
7 434 6,70 748 0,29 - - - -
9,1 - - - - 6,0 0,23 - -
10 4,19 7,11 7,61 0,30 - - - -
& 15 381 7,65 8,05 031 - - - -
18 - - - - - - 12 0,28
20 3,56 8,30 8,25 0,32 - - - -
30 3,04 944 8,68 034 - - - -
50 2,10 11,62 9,24 0,36 - - - -
60 1,75 11,27 10,04 0,39 - - - -
5 1,91 2,12 47,65 0,11 - - - -
9,1 - - - - 45,5 0,11 - -
10 1,87 2,23 47,20 0,11 - - - -
18 - - - - - - 483 0,11
20 1,83 2,41 48,65 0,11 - - .- -
50 1,68 2,67 51,18 0,12 - - - -
g 75 1,58 2,87 53,03 0,12 - - - -
100 1,47 3,03 55,11 0,13 - - - -
150 1,33 344 56,85 0,13 - - - -
200 1,14 3,72 60,50 0,14 - - - -
300 0,88 4,52 61,65 0,14 - - - -
400 0,66 522 61,40 0,14 - - - -
500 0,51 584 59,63 0,14 - - - -
Table 6: Computational results for stress intensities and absolute resp. normalized shear force capaci-

ties depending on hypothetic crack length for large square hole with sharp corners (edge
length h/3 = 31,7 mm) in beam with two different small resp. large sizes (structures g,, g,
in table 1). For comparison results acc. to initial crack and mean stress approach (Paper 5)
are enclosed.

D gee Table 2
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Geometry Hypothetic Stress intensities Shear force Normalized Absolute and normalized
resp. struc- | crack length capacity shear force shear force capacity
ture acc. to capacity computed by other fracture
Table 1 mechanics approaches
»init. crack« »mean stress«
a K Ky \Z V; Vi v, \2 v;
mm N/ymm® | N/y/mm? kN - KN - KN _
1 3,20 2,26 11,02 0,43 - - - -
2 3,89 3,14 8,98 0,35 - - - -
5 4,15 4,66 8,19 0,32 - - - -
7 4,05 526 8,24 032 - - - -
9,1 - - - - 6,2 0,24 - -
hy
10 . 395 5,99 8,25 0,32 - - - -
15 3,63 6,79 8,59 0,33 - - - -
18 - - - - - - 7.6 0,31
20 3,32 753 8,92 0,35 - - - -
50 191 11,09 9,85 0,38 - - - -
5 1,15 0,79 82,10 0,19 - - - -
9.1 - - - - 52,6 0,12 - -
10 1,45 1,12 64,40 0,15 - - - -
18 - - - - - - 61,8 0,14
20 1,59 1,55 57,70 0,13 - - - -~
h, -
30 1,63 1,82 55,53 0,13 - - - -
50 1,65 2,26 53,50 0,12 - - - -
75 1,57 2,57 54,62 0,13 - - - -
100 1,45 _ 2,84 56,61 0,13 - - - -
200 1,10 3,69 61,88 0,14 - - - -
Table 7: Computational results for stress intensities and absolute resp. normalized shear force capaci-

ties depending on hypothetic crack length for large square hole with rounded corners (edge
length h/3 = 31,7 mm) in beam with two different small resp. large sizes (structures hy, h,

in table 1). For comparison results acc. to initial crack and mean stress approach (paper 5)

are enclosed.

Y see Table 2
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and d, whereby values acc. to K-concept are throughout slightly (2 to 7 %) lower.
Results of mean stress method in case of structures al and bl are far on the unsafe
side. ,

The comparison of results for structures e, g, h, i. e. structures with relatively large
holes (J = h/3), reveals in all cases (apart from structure g2 where identic results are
obtained) load capacities which are between 25 to 33 % higher for K-concept
approach compared to initial crack method when equal crack lengths of about 10 mm
are assumed. When, however in case of the larger size 2 — being of building practice
relevancy — the comparison to initial crack method (there: a = const = 10 mm) is
based on a crack length of 20 mm, again a very good agreement of both approaches
within a few percent deviation is obtained. |

With respect to the tapered end-notched beams (structures bl, b2), despite the
good agreement of results between K-concept and initial crack method at "initial"
crack length of about 10 mm it should be beared in mind, that increased crack
lengths (a > 10 mm) - unlike all other investigated structures — result in further
significantly decreasing load capacities. The latter example reveals that a design
based on a single crack length (a = 10 to 20 mm) is insufficient with certain struc-
tures.

6.2 Comparison to beam compliance method

Comparison between results of K-concept and beam compliance method due to the
nature of the latter method based on engineering beam theory in case of investigated
geometries is only possible for the rectangularly end-notched beam, i. e. struc-
tures al, a2. Beam compliance solutions for tapered end-notched beams (struc-
tures bl, b2) include a semi-empiric factor. The analytical solution for shear force
capacity of an end-notched beam given by Gustafsson (paper 2) in case of
E/G,, = 16 is

1/3,1 /G, E
V, - byha 31 Bre By (18)
Joe @-a) + 0,79 B y/1/a -a?

thus delivering for the small and large rectangularly end-notched structures (G,, =
0,3 N/mm, o = 0,75, B = 0,33):

1]

V., =959 kN -~ V,=959/2565=0,37, (structure al)

V, = 64,26 kN - -\Tf = 64,26 [ 432,00 = 0,15 . (structure a2)
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Taking into account that the compliance based method only considers the mode I
action the given results show a very good agreement with the displacement based
K-concept results derived here.

As outlined K-concept delivers for both structures al, a2 rather constant load
capacities V, of 0,34 resp. 0,13 for all investigated crack lengths (restricted to the
range of the notch length (h/3)). Important is that K-concept capacities remain
constant for crack length a approaching zero. Actually the limit value lima — 0 is.
regarded in the compliance method. The capacities according to the latter method are
for both structures roughly 15 % higher compared to K-concept.

In order to apply the principle of eq. (18) for rectangularily end-notched beams
also to tapered end-notched beams the equation was extended by an empiricly deter-
mined multiplier [16]

k =1+11-i%//h (19)

where i is the inverse slope of the taper. Equations (19) and (18) deliver for k;
multipliers resp. for load capacities V., V_ in case of the investigated tapered end-
notched beams (i = 3):

k =158 - V,=1521 kN - V. =059 , (structure b1)
k =1233 - V,=7923kN - V,=0,8 . (structure bl)

Compared to K-concept results the compliance based capacities for both structures
are far too high when crack lengths a — 0 are considered. When the comparison of
both methods is based on hypothetic crack lengths of a = 10—20 mm the agreement
of both approaches is reasonable in case of the large structure b2 whereas in case of
the small structure bl the capacity overestimation by semi-empiric compliance
method is still 50 to 80 %.

7 Design proposal for beams with holes

It seems appropriate to choose the interaction criterion (15) as a basis of the follow-
ing simple and transparent design proposal

K Kpa ¥ Ko - Kok -
1d H,d) <1, ch’d = M , KIIc, 4= M ,(20a—c)
ch,d I<IIc,d YM YM
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where K ;, Ky,  are the characteristic values of fracture toughnesses of respective
strength classes. The stress intensities K| 4, Kj; 4 at design load should be provided
by means of solely geometry and load case dependant values, normalized with
respect to dimensions and load, i. e. k 4 = K, 4 b y/h/F.

With respect to the material side, derivation of characteristic K-values as one part
of the work could probably be resolved quite reasonable with existing material data;
a proposal is given in [7]. However, very little knowledge is available at the moment
to settle appropriate k., values accounting for duration of load and climate. A mere
adoption of the modification factors given in EC5 seems too rough due to the
different physical nature of fracture toughnesses compared to elastic strength values.

With respect to coherent design it is suggested to alter the formal appearance of
the EC 5 design formula for end-notched beams, as todays appearance may lead the
engineer to a wrong idea of the true fracture mechanics failure nature of the
problem. Recognizing that /G, E, in eq. (18) has the dimension of a fracture
toughness value, a definitely more transparent form of the design formula would be

3V

T,=———— <kK
2bha

var k=[3sVA Va (- +08B1/a-o? . (21ab)
The value s = s, - s, in eq. (21b) represents a proportionality factor to be fixed,
where component s, accounts for the ratio K,/ m and s, is an empiric
correction factor for adjusting the formula to test results (in EC 5: s, = 1,5). Note,
that solely substitutions were introduced in the basic eq. (18); but now it is immedi-
ately obvious to the design engineer that he deals with a brittle fracture problem, the
material resistance is transparent and the formula would be in line with afore pro-
posed design equations for holes.
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ENERGY RELEASE RATE ANALYSIS
by
Hans Petersson, LTH, Lund

Abstract

First some basic theory is presented which is then applied on beams with cracks propa-
gating in the longitudinal direction. Some formulae for determining the crack load are
given both for finite element analysis and for hand calculations. A procedure for the
numerical analysis is outlined. Results from a number of analysed beams with notches
and holes are shown and remarks are given on the results from a design point of view.

1 Introduction

Different models may be used in design for fracture analysis of wooden structures. One
of the most promising models is based on an energy approach and will be treated and
applied in the following subsections. It is often called the energy release rate approach,
the compliance method or the virtual crack extension method.

In this study only linear elastic approximations are used for the material behaviour
and dynamic and nonlinear geometrical effects are not considered.

The wooden beam structures with notches and holes analysed are summarised in
Figure 1 and more accurately described in Appendix 1. Results from the analysis are
given after the theoretical treatment of the energy approach for crack analysis.
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Figure 1 Studied types of beam structures



2 Basic theory

Study a body of linear elastic material loaded in such a way that the strains can
be considered as small (except for the cracking process zone). We may write the
equilibrium equations as

80,-]-

oa; =0 | M

in the volume V', where 0;; = 0;; denotes a stress component, b; a body force component
and z; refers to a Cartesian coordinate system. Conventional summation rule is applied.
On the boundary surface S the tractions are defined by ’

Di = n;oij (2)

where n; is a direction cosine for the outward normal to the surface S. The stresses
are related to the strains e,

oij = Dijrien (3)

where D is a symmetric tensor. Due to small deformations the strains are

1 8u,~ au]'
) (6:1,'J- + 3:1:,-) )

where u; denotes a displacement component. Due to the tensor symmetry we may
write

8u,~ 8uk
aTjD‘L]kl% (5)

€i;0:5 =

Figure 2 Studied body with a crack. Total boundary surface S = S, + S..



For a body with a crack, see Figure 2, a week formulation of the equilibrium equa-
tions may be established, starting from Eq. (1). Weighting functions v; ( = 1,2,3)
are introduced [1]

80,] B -
[olsar s [ o

By integration by parts and utilizing Eq. (2) we get

g”‘ oidV = / vib; dV + / vipi dS (7)
or
6v,- 8uk N ) ‘
/ 5o Di gV = J oibi dV + S/ vipi dS 8)

Let us now assume a disturbance between two studied states, (I)and (@) For state
(@ we choose the weighting functions as

v =0 =u? (9)
and for state (2
v; = 02 = u® (10)
This yields that

P

ouQ ou@
/%, S Diju FdV = / 'D,Jk, e TV 11)

and according to Eq. (7) and Eq. (8) that

@0 CD O @
u@b® dv + [ u@p® dS = b2 dV + [ u®p@ dS (12)
[ s [ifias = [P ay s [
Alternatively,
/ (u2® — uP)aV + [(u2p® — uB)dS =0 (13)
S

We may now study a case where b; and p; are constant between states (D) and 2
except for p; over the cracking area S.. By use of the notation

bu; = u,@—u,@ (14)
§b; = b2 —p® (15)
épi = p2—pQ | (16)



equation (13) can then be rewritten as
[bbui av + [ pisui ds = / (wibp; — bu;p;)dS (17)
14 S. 5.

The crack region is assumed to be so thin that the tractions p; approximately are
equal on two adjacent points on the surface S, (symbolically S. = 2A4.). This makes it
meaningful to introduce the relative displacements w; (crack opening and slips) with
respect to the surface A, instead of the displacements u; on S.. By this Eq. (17) can
be written as

/ biu; AV + / pibu; dS = / (wibp; — 6wip;)dA (18)
Vv Se ) AC

Let us then study a case where the influence of a disturbance to the system can
be expressed by a single crack coordinate a and where dA = b. - da with constant
width b.. Let us further assume that the crack propagation occurs in a self-similar way
corresponding to

dw,-

- 1
dw; T ba (19)
op. = Pig, (20)
da
By these assumptions we may write Eq. (18) as
du,- du,- _ dpi dw,'
V/b,-EdV +S/p, —dS = bca/(w, 2 ) da (21)

In order to simplify we assume that the relations between p; and w; (: = 1,2,3) are
unique (for the current ratios between p;, p, and p3 or wq, w, and ws), see Figure 3.
This means that we can write p; = p;(w;) or w; = w;(p;). This yields

dp;  duw i r
/(w,-g% - dalp,')da = /w,-dp; - /p,-dw,- = ZGC (22)
ac 0 wio
p

Figure 3 Relation between cohesive stress p; and relative displacement w;
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where

3 pio wio
Ge=) Gui= /widpi = /Pidwi (23)
=1 0 0 ]
Substitution of Eq. (22) into (21) results into
du,- du,- ) i
V/ bav + S/ P tdS = 2.0 (24)

In case of concentrated forces { P} only we may introduce for the cracking load level
{PY =[P4 Py ... P.) (25)
with the associated displacements {u.},

()T = [ua Uea - Uen] | (26)

Eq. (24) can then be rewritten on the form

(P)T {%} = 2b,G. (27)

This basic matrix equation, Eq. (27), can conveniently also be used in finite element
analysis.

3 Applied theory

Loads {P}

Displacements {u}

Figure 4 Two-dimensional body with a crack



Study the two-dimensional structure in Figure 4 with a set of constant reference loads
{P}. Assume that the material is linear elastic and denote the associated displacements
with {u}, where

Pl (751
P2 U2

rr= {fub=1| . (28)
P, R

Denote the crack length with a and the fracture energy per unit length with b.G. where
G. is a material parameter. Then assume that the loads are increased proportionally,
i.e. the actual loads are a{P} where « is gradually increased up to the value «.,
corresponding to stable or unstable crack growth. As the structure is linear elastic the
corresponding displacements are a{u}.

Let us now assume that the reference load {P} and the load multiplication factor
« are kept constant with respect to a variation of the crack length a. This gives us for
the critical value of a = a, that

{F} = oadfP} (29)

{uc} = acfu} (30)

According to Eq. (27), we can then write

aZ{P}T{g—Z} =2 b.G. (31)

2b.G. '
ac: _— 32
\l Py {s} - )

This expression is straightforward to apply in finite element analysis.
In order to obtain a pure force formulation the flexibility relation is introduced,

{u} = [f{P} (33)

where the flexibility matrix [f]is square and symmetric. Observing that the external
loading is not assumed to be changed during the crack propagation, we get

ENCI

o = J 2b.G- (35)

or

and

{P}T [8£] (P}
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Figure 5 Cantilever beam with a crack

From a hand calculation point of view it is of special interest to study cases the
matrix [f] is diagonal and where each component of [f] can be expressed simply as a
function of the crack length a.

If [f] is diagonal with the diagonal elements, f;, fs...f, we get

2b G.
% (P

A, =

(36)

Let us next study some simple beam structures with an opening crack, say a simply
supported beam or the cantilever beam as shown in Figure 5.

It is assumed that we have some reference loading and a load multiplication factor
« that is common to all loads. The sectional forces will be functions of the current
crack length a and the notations used are shown in Figure 6.

In order to simplify the following derivations it is assumed that the cross sections
remain undeformed. Including energy contributions according to beam theory only, we
may approximately write

2b.G.

a, = .
ﬁV2 M? N?
JGA1+GA2 +E11+E12;—_+EA,+EA2 EA
This expression is astomshmg exact, except for a cross-coupling effect between shear
forces and relative rotations over the crack region. Eq. (37) may be generalized taken

(37)

Ly
My 1
N ‘“"éf M
1 hy
N < Vv
2

Figure 6 Sectional forces close to the crack tip for a = 1 (h; and h, denote distan-
ces between gravity axes).
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Figure 7 Rotations of cracked beam. Regions AB and CD are loaded and beam
theory gives a good approximation. Crack tip region BC has no external
loads

into account additional deformations of the beam in the region close to the crack tip.
For wood especially the deformation related to the elasticity modulus perpendicular to
the grain might be of importance to consider.

For a case where beam theory gives a good approximation outside the crack region,
see Figure 7, it can be shown that the additional influence of the shear forces (not
considered in Eq. (37)) results into

2b.G
G= .z 2 a2 M2 N2 | N2 (38)

In the extra energy terms ViAry + VoAr, in Eq. (10), the relative rotation contri-
butions Ar; can be defined as

Ar; = (18 — T)ezact — (Ti — T )beam theory for:=1,2 (39)

where for beam theory shear deformations will not give any contribution to the rota-
tions in Eq. (39).
This gives us

2
2 ;1 V;("'i - r)beam theory — %,'1'(1111,‘/12 - 2j‘ll‘/l) (40)
+52(LaVE — 2M3V3) — 2(LeV2 + 2MV)
while the exact relative rotations might be found by a finite element analysis.
To give an idea of the influence of the relative rotations on Eq. (38) the symmetric

case in Figure 8 is studied for V; = —V, and M; = — M, in a pure opening crack mode.
Using assumptions for beams on elastic foundations we may get

2 2
AT‘] = —Af'g = T(‘/l + 2,6M1) (41)



(o .

Figure 8 Symmetric case of crack propagation

where the equivalent spring stiffness k corresponding to beam part Q) is set to

Eb
= 42
0.5k (42)
and
E,
— 4
B = h1 /6 z (43)

In Egs. (42) and (43) E; denotes the elasticity modulus in the transverse direction
and FE refers as previously to the longitudinal direction. Substitution of Eqs. (42) and
(43) into Eq. (41) yields

1 6

with A; = bhy, and further according to Eq. (38)

2b.G.
2V;2 4 2M} N 4/6
GA, ' EI, VE,EA

(45)

Qe =

(V2 + 26V1 M)

We may observe that if the transverse modulus E, is sufficiently large then Eq.
(45) will give the same results as Eq. (37).

4 Numerical analysis

For the numerical analysis based on the finite element method, mainly Eq. (32) will
be applied. The current load factor a. at cracking is thus calculated from

2b.G,
%= J{P}T{ oy - o)



where {P} are the given reference loads. The crack length a is gradually increased
and for each value @ = a; the corresponding displacements {u}; are calculated (for
t=0,1,2,...). We introduce the notation

Aa; = aiy1 — a; (47)

and obtain by a simple approximation

2b.Aa;G. i i
i foram———a+1+a

VP {udin — {ul) 2

In the finite element analysis presented in the following low order elements were used
in order to determine {u;}. Only two-dimensional computations have been performed
and where possible rectangular four-node elements were used. Plane stress state was
assumed. V

One difficulty in the analysis is that G, is depending on the mode of cracking. An
idea of which value to choose for G, is to estimate some average value of the ratio
G, /7 between the normal and shear stresses (with respect to the crack plane in the
cracking process zone), see Figure 9. In a finite element analysis an evaluation of the
nodal forces from the individual elements close to the crack tip can give a reason-
able estimate of the mixed mode state. An illustration is given by Figure 10, where the
summations for elements (2),(7) and®) and elements @), @ and @) gives identical results

Aei

(48)
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Figure 9 Fracture criterion for mixed mode
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Figure 10 Nodal element forces close to cracking process zone.

(a) assembly of elements
(b) individual elements

{b)

except for the sign. By this approach we may write

O’_LNXS: Fus
_— ~

- ¥y, (19)

after a summation over for example elements @), @ and @).
In order to find a reasonable relation between G, and &, /7 we may start from a
case illustrated in Figure 11, where we approximate

N — 50
e (50)

S| QI

and where the stress intensity factors K; and Kj; can be related to elasticity and
fracture parameters [2]. We have

Figure 11 Crack propagation in grain direction

11



K; =+/EGr (51)
Kir =/ EuGn (52)

and, referring to Figure 11,

E, [E, |E.
/A N 2R 53
En VE. \E (53)

where E, and Ej are the elasticity modulis perpendicular to and parallel with the
grain direction. The fracture energy G, in mixed mode

G.=Gr+ Gy (54)
is assumed to be related to the fracture energy in pure mode I (G.;) and pure mode II
“(Gerr) by

Kr  (Km)?

=1 55

K. (Krr.)? (55)
or alternatively according to Egs. (51) and (52)

VGr + Gur _ 1 (56)

VGre  Grre .
After some manipulations of Egs. (50) to (56) we get

1 b? 4a ’

Ge=— |14+ 5-(1- 1+—5;)} (57)

where
2

o = 2 - (58)

® o= 6;1 (59)
and

2 1 |

K* = (60)
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t

Figure 12 Examples of analysed beam geometries
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5 Results

The material data used in the analysis are given in Appendix 1 except for the relation
between G. = G.(G./|7|). A conservative assumption is to set G. = Gj., which is a
reasonable approximation as long as mode II not is too dominating. Results will be
given for this approximation as well as for the mixed mode influence according to Eq.
(60).

Three different geometries are analysed first, see Figure 12 and Appendix 1. The
results from these finite element calculations are based on meshes with about 50 to 100
elements in the longitudinal direction and about 20 elements in the depth direction.
The hand calculations are based on Eq. (37).

Some of the results obtained are given in Table 1. As expected Eq. (37) based on
~ beam theory yields too high values for case a due to the assumption of £; = co while

the approximation is reasonably good for the case f.

The problem of choosing a proper initial crack length when determining the load-
bearing capacity is illustrated in Figure 13. It is shown how the load V; varies as a
function of the crack length. For case a the values for V; in Table 1 are based on a
linear extrapolation to @ = 0 while the minimum value of V; is chosen for case g, cor-
responding to a ~ 0.08h. It is obvious that the choice of a proper initial crack length

- needs a sound engineering judgement in practical design.

E [V ],
Geometry (mm) | (kN) (kN)
FEM | Eq. (37)

95 8.3 13.0

a) I i
\ 600 56.2 87.0

95 4.3 4.9

o | a
T
b 600 | 28.6 | 32.9
i 95 6.8 -
0 " |
vy 600 | 45.8 .

Table 1. Some obtained results for G, = Gy,
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Load Vi (MN)
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Figure 13 Load versus crack length for G, = G|, . Coarse mesh with 20 elements
in the depth direction.
(a) Casea

(b) Caseg
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In order to get better understanding of the relation between loadbearing capacity
and initial crack length all examples in Appendix 1 have been calculated using a fine
finite element subdivision. In beam parts with the finest mesh the number of elements
are 95 in the depth direction. Calculations have been performed for different values of
the fracture energy. G. is set to Gic, Gesmm, Ger12mm ..., r€SPectively, where for example
G o6mm means that the ratio /7 in Eq. (49) is based on a summation over a length of
6 mm.

Results are presented in Figures 14 to 19. In each figure the finite element mesh
used is shown at the top. Then the relation between the crack load V; at support and
the initial crack length are given for the beam depth A = 0.095m and & = 0.6m.

The much higher values of V; obtained for very small initial crack lengths is here
of minor interest to study as also longer initial crack lengths must be considered in
practice. Further, the assumptions applied in linear elastic fracture mechanics will
probably lead to very crude approximations in the studied examples when the initial
crack lengths are very small.

The influence of mixed mode seems to be modest in almost all of the cases studied,
at least for reasonable design values of the initial crack length (say between 6mm and
50mm for the examples).
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Deformed finite element mesh
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Notched beam with h=95 mm
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Notched beam with h=600 mm

Figure 14 Relation between crack load and initial crack length for case a.
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Deformed finite element mesh
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Figure 15 Relation between crack load and initial crack length for case b.
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Deformed finite element mesh
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Beam with circular hole, h=95 mm, @=h/8
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Beam with circular hole, h=600 mm, J=h/8

Figure 16 Relation between crack load and initial crack length for case d.
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Figure 17 Relation between crack load and initial crack length for case e.
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Deformed finite element mesh
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Notched beam with h=600 mm

Figure 18 Relation between crack load and initial crack length for case f.
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Deformed finite element mesh
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19 Relation between crack load and initial crack length for case g.
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6 Concluding remarks

It is obvious that the choice of a proper initial crack length at a notch or a hole is of
importance in practical design. Such cracks must be considered unless some kind of
reinforcement is provided. It seems reasonable to choose the design value for the initial
crack length from the calculated relation between the crack load and the crack length,
see Figures 14 to 19. B

In Table 2 an attempt is made to estimate a reasonable value of the initial crack
length a, to be used for determining the support load V; in the studied examples. It is
interesting to observe that the differences of V; based on G, = Gy, and G. = Ga2mm
are small, which clearly indicate that G is the prime fracture material parameter to
be used in design.

From a computation point of view it is of interest to compare the results in Table 1
for a relative coarse mesh with those in Table 2 for a fine mesh. The results are obviously
in good agreement. Thus, by use of an energy release rate approach reasonable good
results will normally be obtained even with a relatively coarse mesh in the finite element
analysis.

h ao Vi Vs G/7]
Geometry (mm) | (mm) | (kN) (kN)
FEM | G. = G1. | Ge = Gazmm

8.7 | 1.9

y 95 6 7.9
a) I }
600 10 53.9 57.2 1.4
i
N

95 6 1.1 13.4 2.9
b

600 | 30 79.5 89.6 2.1
i 95 4 15.3 17.8 25

d) o) :
| ' ! 600 | 20 102.5 106.3 1.0
] 95 6 8.4 8.9 1.2

e) @) E
! ' 600 | 40 56.2 57.6 0.8
0 . 05 6 4.3 53 35

! —
' | 600 | 10 928.6 32.9 2.4
o | _— 95 6 6.7 6.8 0.6
1 600 | 40 45.1 45.3 0.3

Table 2. Estimated values for design of initial crack length and crack load based
on Figures 14 to 19
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Energy Approach Used in a Draft Eurocode
by

Per Johan Gustafsson
1. Introduction

The equation for calculating the load carrying capacity of a beam with a rectangular or
tapered end-notch, see Figure 1 a) and b), included in the current draft version of
Eurocode 5 emanates from fracture mechanics analysis. The actual code equation has
been modified a number of times in draft-codes that has been published in the last few
years. Here, the basic strength equation and its derivation and limitations will be
discussed. Also some feasible modifications and extensions shall be mentioned. The
actual strength equation shows that rational fracture mechanics can make possible
simple engineering derivations of simple and useful equations for load carrying
capacity.

[ .

Figure 1. Beams with various types of notches.



2. Derivation of basic equation

The derivation is within the framework of conventional linear elastic fracture
mechanics and carried out by calculating the total energy release rate during crack
extension. This rate is obtained from beam compliance calculated essentially by
conventional engineering beam theory. A beam shaped and loaded according to
Figure 1¢) is studied. The total energy release rate during crack extension is

_-U _avs/2) _V? aC
bda  bo(fh) 2bhop

(D

where U=-V &2 is the potential energy, a=fh the crack length, b the beam width and
C=&V the compliance. The fracture criterion used is

G =G, )
where the critical value of the total energy release rate, G, in general depends on the
mixed mode ratio. For mixed mode ratios it may be regarded as a fair approximation

and for 7o>2 as a simplifying estimation on the safe side to take Gc as the fracture
energy value of pure mode 1, i.e.

G.=G, 3)

Equations (1)-(3) give the magnitude of V, Vy, corresponding to fracture:

2

v, = bhG,, @)
oC/dp

Now the compliance C=&V needs to be calculated. Inspired by the accuary in

compliance obtained for isotropic beams and striving for simplicity, &V is written the
form

C = A(B+ ph)* + constant 5)

where the constant is constant with respect to variation of the normalized crack
length, S, and where A and B are coefficients. The value of the constant is of no
matter since it disappears at the derivation with respect to 5. Equation (5) is of the
same form as the compliance of a cantilever beam for which C =L*/(3EI) or a three
point bending beam for which C =L3/( 48EI). In equation (5) the third degree term with
respect to beam length corresponds to bending moment and curvature of the beam,
and the first degree term corresponds to shear force and shear deformation of the
beam. The coefficients A and B are determined by calculating third and first degree



terms corresponding to the beam curvature and the shear deformation by conventional
beam theory. This gives

_41/a’ -1
A= Eb ©
E _
B= \/ . W 2 D 7)
10G,, (110 -1)

where E, is the modulus of elasticity in the grain direction and G,, the modulus of
shear rigidity. With C from equation (5), equation (4) gives a simple explicit formula
for V.

v, JG,.1h )

bah  J0.6(a—a))/G, +BJ6(t/a-a)IE,

Further details about the derivation of this equation are given in the paper “A study of
strength notched beams” by P.J. Gustafsson, published as paper CIB-W18A/21-10-1
in the proceedings of Meeting 21 of CIB-W18A, Vancouver Island, Canada, 1983.

3. Applicability and numerical results

Equation (8) was derived for the geometry shown in Figure 1c). However, according
to beam theory the unloaded part of the beam below the crack is not active. Therefore
the equation is valid also for the beam shown in Figure 1a) and also for the kinds of
notches shown in Figure 1d), provided that the signs of the bending moment and
shear force are such that the direction of the crack propagation becomes as indicated
in the figure.

The equation is not strictly valid for a notch as shown in Figure 1b). For this geometry
there is no square root singularity of the stress at the notch. Conventional linear elastic
fracture mechanics is accordingly not applicable and the energy release rate during the
first small crack propagation is found to be zero, both according to beam theory and
plane stress theory. Looking at the beams in the Appendix, the present strength
equation is according to theory not applicable to beams b)-e) and h). For beam g) a
non-zero energy release rate will be obtained if using beam theory analysis. The
equation for the compliance of a beam with a hole will, however, be different from
the equation obtained for a beam with a notch.

A general limitation for the present theory as well as for linear elastic fracture
mechanics in general is that the size of the fracture process region must be small



Geometry h b N ———&———

(mm) | G VEG_/£? | (kN) |boh(23)f,
.| 95 0.95 9.6 0.50

a) b f - S
R | 600 6.00 64.3 0.20
| oS 0.95 4.1 0.183

f) | T S e B
f 600 6.00 27.5 0.073

Table 1. Beam strength predictions according to equation (8). Material parameters and
beam geometries are given in Appendix. Beam width b=120mm.

compared to the size of the structural member. In the present case this general
requirement can be quantified by demanding that the ratio between length

Glc\,Exny / f? and the length Sh must be sufficiently small. If the ratio is too large,

then equation (8) will overestimate the strength of the beam.

The material parameter values needed for applied calculations are E,, Gy, and Gy.
With numerical values of these parameters according to Appendix, the load carrying
predictions of equation (8) for the beams defined in Appendix becomes as indicated
in Table 1. The value of the normalized beam strength is valid for any beam size as
long as the brittleness ratio given in the table, the stiffness and strength ratios of the
material and the shape of the beam are kept constant.

4. Modifications and extensions

Various modifications and extensions have been proposed in order to improve the
accuracy or widen the applicability of equation (8). To improve the accuracy in the
analysis of small beams for which the length of the fracture zone is not small
compared to the length fh, it can in the calculations be assumed that the tip of the
crack, i.e. a centre of the fracture zone, is located a small distance ahead of the of the
notch. This virtual displacement of the tip of the crack may be taken as a fraction, v,

of the intrinsic material length G,m/ EG, / £ . Values of 7y in the order of 0.1 or 0.2

has been discussed, for common properties of softwood corresponding to a virtual
increase of Bh by about 10 or 20 mm.



An extended and modified version of equation (8) is included in the current draft of
Eurocode 5 (August, 1992). Based partly on theoretical estimations and partly on
experimental results, the influence of taper of the notch, Figure 1b), is considered by
including the slope ratio i in the calculation. Furthermore, by assuming for the

qualities of wood used in design that that E, is proportional to Gy, and that \/E G,

is proportional to the shear strength of the wood, f, , the material parameters in
equation (8) can all be replaced by f,. Finally, by reasons of safety and by means of
comparison to test results , the predicted values of Vrhave been decreased, altogether
giving the current draft code equation as:

T, <k, f,, 9)
where for solid timber

(5/R)1+1.1" /)
Noa-o® +08B1/a-o?

and where 7, is the formal design shear stress in the net cross section of the beam and
where f, 4 is the design shear strength material parameter. k, may for gluelam be taken
30 per cent higher than as given by equation (10).

k, = (10)

5. Concluding remarks

Beam theory compliance analysis is fairly simple and leads to explicit equations for
beam strength. Relating in particular to equation (8), a number of comparisons to test
results have indicated that fracture mechanics almost surprisingly well can predict the
effect of changes in beam geometry, i.e. the shape parameters ¢ and f and the size
parameter h., The predicted absolute values of beam strength are in general fairly
good or good, much dependent on how the material parameters of the wood are
tested. The beam strength seems in general to be somewhat overestimated by the
theory.

A drawback of the beam theory compliance analysis is the limited applicability. The
method has basically the same limitations as other linear elastic fracture mechanics
methods: the geometry must by principle produce a square root singularity in stress
and size of fracture zone must be small compared with the length of the crack or
notch. Another drawback is the lack of information about the fracture mode, i.e. the
normal stress to shear stress ratio in the fracture region. Using the pure mode I value
of the fracture energy of the wood throughout, safe side approximations of the beam
strength are obtained. Using this material property value in the case of pure mode II

fracture, an approximation on the safe side by a factor of +/3.5 = 1.87 is obtained for
a material with properties according to Appendix.



In conclusion, the method of calculation discussed in this section may be well suited
for the development of special purpose strength equations. If in design it by safety
reasons or any other reason is assumed that timber always have cracks, the beam
theory compliance method would have the potential to become a tool of more general
applicability.
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Mean Stress Approach and Initial Crack Approach
by

Per Johan Gustafsson
1. Introduction

A severe limitation of conventional stress criteria is that such criteria can not be used
in the case of a stress singularity. On the other hand, a severe limitation of the
classical linear elastic fracture mechanics is that it can be used only in the case of a
square root singularity. In this section two linear elastic failure criterion methods of
more general applicability shall be discussed. The two methods here called the mean
stress approach and the initial crack approach, are partly analogous but still different.

The idea of the mean stress approach is to adopt in the actual stress criterion the mean
stress acting across an area or within a volume instead of the stress in a point. The
size of the area is governed by the properties of the material.

The idea of the initial crack approach is to assume the existence of a sharp crack of a
certain length in the highly stresses region. Some linear elastic fracture mechanics
criterion is then applied. The length of the assumed crack is governed by the
properties of the material.

For both approaches are several alternative variants imaginable, both with respect to
basic formulation and with respect to method of calculation. Here, only one variant of
each approach shall be studied. Plane stress is assumed throughout the present study.
Fracture is in the present applications assumed to develop along grain and as a result
of tension perpendicular to grain and/or shear along grain. The stress analysis is
throughout carried out at the assumption of a linear elastic orthotropic performance of
the material.

A basic stress criterion and a basic linear elastic fracture mechanics crack propagation
criterion have to be chosen, both for the mean stress approach and for the initial crack
approach. Here the same basic criteria are used for both approaches: a stress criterion
of Norris and a crack propagation criterion of Wu:

o ’ T ’
T+ E] =10 1
(7)) "
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where o and f; are the perpendicular to grain tensile stress and strength, respectively,
and 7 and f, the longitudinal shear stress and strength, respectively. K; and Kj; are the
mode I and II stress intensities, and K;c and K¢ the corresponding critical stress
intensities.

2. Mean stress approach
2.1 Theory

In the fracture criterion of equation (1) are the stresses o and 7 replaced by mean
stresses O and 7T, giving

E 2 f 2
- — | =10 3
(ﬁ] (f) *

This criterion is shown in Figure 2. & and 7 are the mean stresses acting across a

possible fracture area b times x,, where b is the width of the plane stress body and x, a
certain length along grain. In a more general case is X, a length along a possible crack
path. The length is chosen in such a way that equation (3) will give the same strength
prediction for a deep sharp crack in a large body as predicted by linear elastic fracture
mechanics, equation (2).

By the definition of stress intensity, the stresses o-and 7a distance x in front of a
sharp are

o= K, +
N @
T= Ky +...

where the first term in each series is dominating for small x. Assuming that x, is small
compared with other dimensions of the large body with a deep crack under
consideration, the stresses in region 0 < x < x, can be accurately calculated by use of

only the first term in the series of equation (4). Thus the mean stresses in the high
stress region 0 < x < x, can be calculated, giving



o =
7DC0
’ (5)
- _ |2Ki
7DC0

Substituting theses mean stresses into the mean stress fracture criterion of equation
(3), the length x, can be calculated, giving

1,MPa

8_

4 G,MPa
Figure 1. Mean stress fracture criterion.
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where K; is the magnitude of K; at the instant of fracture at the actual mixed loading
ratio. This magnitude of K; is found by equation (2),

2 4 2
K] —_ KIIC 5 +\/ KélC - + KI;C (7)
2K, k7 V4KZk' Kk

where k is the mixed mode ratio,
k=K,/K, =7T/G (8)

Going from stress intensity analysis to energy release rate analysis by means of
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Figure 2. Mean stress length, X, versus mixed mode ratio, k=7 /0 .

K, = E,G, (9)])
K, = EIIGII
where
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with E,, E,, Gy, and V,, indicating modulus of elasticity in grain direction,
perpendicular to grain, shear stiffness and Poisson’s ratio, respectively, it is possible
to obtain an expression for the length xp in terms of energy parameters. By use of
equations (7), (9) and (10), equation (6) gives

9 2
E. 2
-xo :_%ElelC EX GIIC 14 1+4k2 Y GIC __1 1+ k . (12)
T fr Ey GIC 4k Ex GIIC (fv /ft)

b After Paris, P.C. and Sih, G.C., 1965: Stress Analysis of Cracks, in ASTM Special
Technical Publication STP 381, pp 30-80.




For the set of material parameters indicated in Table 1 in Appendix, xo versus the
mixed mode ratio k is shown in Figure 2. Equation (12) shows that xy can normalized
with respect the length E/Go/f?. For the material parameter values given in the
appendix, this length is 28.6 mm.

For the special case of pure mode L, i.e. for k=0, equation (12) gives

_2EG,

Xo = P fr 2 ( 1 3)
and pure mode II, i.e. for k—oo, equation (12) gives
2
2y =2 EnGne (14)
7 f,

2.2 General characteristics

The mean stress approach can for a brittle body with a sharp crack be expected to give
the same fracture load prediction as linear elastic fracture mechanics, equation (2). In
the opposite case of a body in homogenous stress, the same fracture load prediction as
predicted by a conventional stress criterion, equation (1), can be expected.

In the intermediate cases, going from a case with an extremely high stress gradient in
the high stress region to a case with zero stress gradient, one may expect material
parameters representing fracture energy and stiffness as well as the size of the body to
become of gradually decreasing importance while instead the importance of material
strength parameters f; and f, increases. As a mean stress always is less than the
maximum stress, it is almost obvious that a conventional stress criterion always will
give a fracture load prediction less or equal to the prediction given by the mean stress
criterion. Use of a conventional stress criterion corresponds to zero fracture toughness
of the material.

2.3 Method used in numerical calculations

Applied calculations were carried out by means of the FEM. The beams, see Figure 1
in Appendix, were modelled by linear elastic orthotropic plane stress elements with 4
nodes, quadratic shape and ordinary polynominal displacement shape functions. The
element mesh was completed with a few constant strain triangular elements when
needed due to beam geometry. The size of the elements in the region of interest was
h/96 times h/96 for beams g) and h), and h/48 times h/48 for all other beams, where h
is the depth of the beam.

The mean stress can be estimated in different ways by means the results of the finite
element analysis, giving the stresses in certain points and the element forces. In the

5



present study, the inter element nodal forces along possible fracture surfaces were
utilized, Figure 3. From the nodal forces perpendicular to grain, Pj,, the mean normal
stress, O , along the length x; is calculated from

G bx, = ZP + Py, [(xo —(n=1/2)Ax) / Ax] (15)

and the mean shear stress 7 was calculated from P;, in the same manner.

By principle, the length x has to be determined from Figure 2 by iteration. First some
initial guess of k must be made, giving a first estimation of xy. For this xpis & and 7
and a new value of k= 7 /0 calculated, giving a new value of x,. In practice this
iteration seems to converge rapidly and often the very first crude estimation of k can
be sufficiently accurate.

P

Ry | |

|
P | B, [ T |

C— = o= — S
X |
II

1

B ) G |
T Al !

= (n-12) Ax !

* o

Xg L

1

Figure 3. Nodal forces acting across a section C-C. Ax = length of an element.
2.4 Numerical results

The results of the present test calculations are shown in Table 1. It was possible to
apply the mean stress method of calculations to all beams under consideration and the
fracture load predictions are all of a reasonable magnitude. The predicted effects of
changes of geometry seem reasonable. Thus for instance, the effect of the alteration
from beam g) to beam h) is predicted to be more beneficial for the large beams than
for the small beams. For all beams is an increase in beam size predicted to yield a
decrease in the normalized load carrying capacity, V/(bhf,).

It is believed that the strength of small beams in general is somewhat overestimated

by the present method. The length xy, which in the theory is independent of the size

and shape of the beam, can from the physical point of view be regarded as a length

measure that is proportional to the size of the fracture process region at the instant of

beam failure. This length is indeed beam size independent for sufficiently large

beams, but for smaller beams the fracture process region will occupy a significant part
6



of the beam and then the size of the fracture region at failure will be affected by the
size of the beam.

The present failure load results obtained for large beams are probably somewhat low
due to the use of coarse finite element meshes. Ax indicating the side length of an
element, ratio xy/Ax is for the large beams with 4=600mm only 1.6 for beams a)-f)
and 3.2 for beams g)-h). As a crude estimation, sufficient accuracy may in general be
obtained with x¢/Ax>4, i.e. for

Ax < 0.25x, | (16)

With the present set material data, this means that the length of an element should not
be greater than about Smm in the close vicinity of the fracture region.

The normalized predictions of load carrying capacity, Vy#(bhf;), are valid not only for
the present absolute values of beam size and material parameters, but also for all
values such that ratios h/ E1G1df,2 ), Ex:Ey:Gxy, fi/fts Gic/Giic and Vyy are Kept constant.

3. Initial crack approach
3.1 Theory

An assumed crack is introduced in the high stress region. The length of this crack is
denoted ay if located at an edge of a plate. If the crack is in the interior of a plate and
accordingly having two tips, the length of the crack is made equal to 2ay. Having
introduced this new crack or this addition to the length of an existing crack, the
failure load of the structure is calculated according to some conventional linear elastic
fracture mechanics crack growth criterion such as equation (2) or a corresponding
energy release criterion.

An expression for the length ay is derived in such a way that for infinite plate in a
homogenous state of stress, Figure 4a), the initial crack approach gives exactly the
same strength prediction as the actual choice of a conventional stress criterion, €.g.
equation (1), would give. The stress intensities at the tips of the crack in Figure 4b)
are

Ky =oym, (17)
K, ZT\/E



Figure 4. a) Infinite plate in a homogeneous state of stress.
b) Infinite plate with a crack and loaded remotely.

This equation is analogous to Equation (5) in the derivation of the length xj in the
mean stress criterion. Substituting in Equation (5) 2/nt with 7 and the mean stresses
o and T with the remote stresses o and 7, the derivation of ay becomes similar to the
derivation of xy. This gives

ay=x,12 (18)

where xp is given by Equation (12). Numerical values of ay versus k are shown in
Figure 5 for the set of material data indicated in Table 1 in Appendix.

In applied calculations by the FEM it is often more convenient to calculate the total
energy release rate G than the stress intensities K; and Ky. G together with the mixed
mode ratio k gives the same information as K; and Kj;. The value of G at the instant of
fracture, i.e. the critical total energy release rate at the mixed mode condition under
consideration, is

2
K? K? 1 kP K2 K? K? 1 kP
G=G'+G"=?'+E—"=Kf(f+?>=[“zz<"i2+ we e | %7 E,)
1 1l 1 Vi Ic Ic I I/

where the last part of the equation is according to Equation (7). K;c and Kjc can be
replaced by /E,G,. and 4/E,G,. , respectively. Numerical values of G at the instant

of fracture versus k are shown in Figure 6 for the set of material data indicated in
Table 1 in Appendix.
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Figure 5. Crack length ay versus mixed mode ratio 7/0 .
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Figure 6. Critical value of the total energy release rate versus mixed mode ratio 7/0 .

3.2 Method used in numerical calculations

The FE-models described in section 2.3 were used also in the calculations by the
initial crack method. The total energy release rate G was calculated from the change
of compliance during crack extension simulated by opening of nodes along the crack
path. The mixed mode ratio k was calculated as the ratio between the inter-element

nodal forces Py and P, in the node at the tip of the crack.

9
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Figure 7. a) A crack in an elastic medium before and after crack extension.
b) FE-representation of the crack by 4-node elements with length Ax .

When a beam is loaded by a single load P the energy release rate during crack
extension is

—9U _d(P§/2) P’ oC
da boda 2b da

G= (20)

where U is the potential energy, a the crack length C=&P the compliance. Equations
(19) and (20) give the critical magnitude of the load P, P:

[ [ K
" NoC/da E, E,

1)

where K, the magnitude of the mode I stress intensity at failure, is given by Equation

).

Numerically, dC/daat crack length a=nAxis obtained from the FE-analysis as
illustrated in Figure 7. Axis the side length of the finite elements along the crack and
n=3 for the case illustrated in Figure 7. The crack length is denoted a and the distance
from the root of the crack to the first node is denoted x. Modelling the vicinity of a
crack tip by 4 node elements, by experience a reasonable assumption for good
modelling of stiffness and displacements is

x=a+Ax/2 22)

It is moreover reasonable to calculate dC/dafor crack length a=nAx from the
difference between C at a =(n—1/2)Ax and ata a=(n+1/2)Ax, giving

10



-C +C
aa_gi _ x=nAx x=(n+1)Ax (23)

Ax

a=nAx

Having calculated dC/da for certain values of a, dC/da at a=ay was estimated by
linear interpolation or extrapolation.

3.3 Numerical results

The results are shown in Table 2. They are from a general point of view much the
same as those of the mean stress method: it was possible to obtain failure load
predictions for all beam geometries, the predicted influences of alterations of beam
shape and size seem reasonable and none of the predicted failure loads are in some
obvious way of a wrong magnitude.

The initial crack method can in general be expected to underestimate load carrying
capacity, in particular for small beams. Beam d) is an example of an exception to this
general rule. For this beam, just as for all the beams studied, the length of the initial
crack is made equal to ay, not 2ay, since the crack starts from an edge, not from the
interior of the beam. For beam d), the crack starts at a small hole, ap being of the
same order of magnitude as the diameter of the hole, it is not self-evident that the
crack should be regarded as an edge-crack and thus assigned the length ay, and not as
interior crack and thus assigned the length 2ay.

For beams such as a), b), ¢) and ) where the crack starts from an edge, a slight
underestimation can be expected even for large beams since the present derivation of
assumed crack lengths was carried out for an inner crack. If the derivation had been
carried out for an edge crack, its length had been somewhat less, 0.8ay instead of ap,
giving a somewhat higher predicted load carrying capacity.

The finite element meshes used in the calculations were probably on the coarse side
for the large beams. With ~=600mm the element length Ax is 12.5mm for beams a)-f)
and 6.25mm for beams g)-h). The length ay is with the present material data in the
order of 10mm, Table 2. Although ap=x¢/2 it is not believed that the initial crack
method in general requires a finer mesh than the mean stress method. Using the
present method of the numerical calculations one may suggest

Ax <0.5a, (24)

as an estimation of required element mesh fineness in the vicinity of the crack. If
using ordinary elements with compatible shape functions a coarse mesh is known to
produce an underestimation of the potential energy, i.e. a value of the compliance C
on the low side. If C is underestimated, in general also 0C/da will be
underestimated, giving an overestimation of the load carrying capacity as a result of
using a coarse element mesh.

11



4. Comparison and concluding remarks

In Table 3 the results of the present test calculations are compared. Also the strength
predictions obtained by a beam compliance theory energy release based analysis are
shown where possible. That theory is in greater detail discussed in another paper in
this report. The calculated values of V;are in Table 3 normalised with respect to the
formal shear force capacity of a beam without any notch or hole, bh(2/3)f,. The
normalised value greater than 1.00 found by the initial crack method for the small
beam with a small hole is probably a result of regarding the fracture as starting from
an edge rather than from the interior of the beam, corresponding to a crack length of
ap rather than 2ay. The mixed mode ratios, k, are shown in Tables 1 and 2. In the
beam theory compliance method it is tacitly assumed that k=0.

Disregarding effects of numerical approximations and leaving out the discussion of
edge cracks versus interior cracks, some general features of the two methods can be
identified: in the case of a deep sharp in a brittle material both methods are expected
to give the same failure load prediction, coinciding with LEFM. In the case of a large
specimen without any stress singularity made of a brittle material, both methods are
expected to give the same result as a conventional stress criterion. Going from the
first extreme of a square root singularity to zero stress gradient, one may expect a
gradual shift in character from of the strength predictions from the one theory to the
other.

An advantage of the methods is that they seem to have a general applicability. The
initial crack method produces in general strength predictions that are on the safe side
as compared to the predictions of the mean stress method. The mean stress method is
from a computational point of view commonly the more convenient method: only a
single linear elastic stress is required; no incremental crack propagation analysis
neither possible testing of alternative crack locations are required.

It can be concluded that the two methods discussed seem to have several attractive
features and should deserve further attention. At the present stage of development and
knowledge it is not possible state whether or not both methods, one or none are
suitable for use in future codes of strength design practise.
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Geometry h k= X \£ Ve
(mm) | =T/6 | (mm) (kN) bh f
, 95 2.3 19 10.3 0.81
a) | bt~
BB | 600 | 1.7 19 552 | 026
b) . 95 3.5 21 13.9 1.08
A IS R R R NE——
0 | —~—— | 600 ]| 37 21 1402 | 0.65
; 95 4.9 22 226 1.76
d) o l ——t g ———
f ' 1600 | 13 19 1523 | 071
; 95 1.3 19 10.3 0.80
¢) o bt
f {600 | 13 19 90.3 0.42
) 95 5.0 22 6.8 0.53
D | Y P T
I 600 | 2.7 20 30.5 0.14
| 95 0.7 18 7.2 0.56
g | I et et Bty bty ity
! 600 | 0.7 18 483 0.23
) 95 0.8 18 7.6 0.60
hy [ o) e —— ]
! 600 | 1.0 18 61.8 0.29

Table 1. Mixed mode ratio, mean stress length and beam strength predictions

obtained by mean stress criterion calculations. Material data and details about

beam geometries are given in Appendix.
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Geometry h k= 3 Vi Ve
(mm) | = t/0 | (mm) (kN) bh f,
) 95 1.9 9.5 8.6 0.67
a) =T ———
f 1| 600 | 1.6 9.4 565 | 026
b) . 95 20 9.5 10.6 0.83
o 4]
0 | ~— | 600 | 25 9.7 1143 | 053
; 95 8.3 12.9 27.7 2.16
d) o It ——— S S R ——
1 11600 | 12 9.2 1356 | 0.63
; 95 0.8 9.2 8.2 0.64
e) O g —— — ]
' '] 600 | 1.1 9.2 75.6 0.35
, 95 3.4 10.3 5.1 0.40
f) | I it sttty ——— T
1 600 | 2.8 9.9 34.0 0.16
, 95 0.4 9.1 6.0 0.47
8 | I ettt ahtts Bty Eatbntnly Eeiie
f 600 | 06 9.1 45.5 0.21
. 95 0.5 9.1 6.2 0.48
h) | o701 ——f——— e ——————— —— —
J - | 600 [ 05 9.1 52.6 0.24

Table 2. Mixed mode ratio, initial crack length and beam strength predictions
obtained by initial crack criterion calculations. Material data and details
about beam geometries are given in Appendix.
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V,/(bh (2/3) £)
Geometry WEG,/f? "Mean | "Init. | "Beam
¢ stress" | crack" | compl."
. 3.32 0.40 0.34 0.37
a) E _______________________
Tt 1 20.97 013 | 013 | 015
b) . 332 0.54 0.42 -
A I R SRR RE——
) | ~— 20.97 033 | 027 -
; 3.32 0.88 1.08 -
d) o Do ————— gt —
1 ' 20.97 0.36 0.32 -
; 3.32 0.40 0.32 -
€) O I B
' ‘ 20.97 0.21 0.18 -
_ 3.32 0.27 0.20 0.16
f) | I B e B b bkl Mol
! 20.97 0.071 | 0.079 | 0.064
. 3.32 0.28 0.24 -
8 | o i ——————t——— e ———t——
f 20.97 0.12 0.11 -
| 3.32 0.30 0.24 -
h) I Oo—rz0 E ________ I AR N p—
! ' 20.97 0.15 0.12 -

Table 3. Brittleness number and normalised beam strength according to three methods
of calculation. Material data and details about beam geometries are given in
Appendix.
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thZ 3h h/2 3h
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| h I
? | Thi I T Fhie
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, ¢ ¢
||hB hB’TWBNLI
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! hi2 |
®=h/8 | ¢=h/3 |
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h) h=600, b=120, =30

Figure 1. Geometry of beams used in beam strength test calculations.
Beam width is indicated by b.



Table 1. Material property parameters for wood and gluelam assumed
in beam strength test calculations.

Strength

fv :3](;,J_ v
Jy =301 f,.. =3.0MPa

Stiffness

Fracture energy

G, =3.5G, G, =300 J/m’

Corresponding plane stress critical stress intensity

K, =437839K,. K, =0.507476 MPam”




	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

