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Preface 
 
These proceedings contain the papers presented at the Fourteenth Nordic 
Seminar on Computational Mechanics, held at Lund University, Lund, Sweden, 
19-20 October 2001. The Nordic Seminars on Computational Mechanics 
represent a major activity of the Nordic Association for Computational 
Mechanics (NoACM). The NoACM was founded in 1988 with the objective to 
stimulate and promote research and practice in computational mechanics, to 
foster the interchange of ideas among the various fields contributing to 
computational mechanics, and to provide forums and meetings for dissemination 
of knowledge in computational mechanics. Younger researchers, including 
doctorate students etc., are especially encouraged to take part at these 
seminars. The member countries of NoACM are the Nordic countries (Denmark, 
Finland, Iceland, Norway and Sweden) and the Baltic countries (Estonia, Latvia 
and Lithuania). NoACM is a subchapter of the International Organization for 
Computational Mechanics (IACM) and the European Community on 
Computational Methods in Applied Sciences (ECCOMAS). 
 
The responsibility for organizing this year's seminar was assigned by NoACM to 
the Division of Structural Mechanics, Lund University. This year's seminar 
contains five invited lectures and 59 contributed presentations divided into 
eleven sessions. In the present volume, all the invited lectures are placed first, 
followed by the contributed papers in the order of appearance. 
 
On behalf of the organizers, sincere appreciations are extended to all 
contributors at the seminar, not least to the invited lecturers and to the other 
speakers for their efforts in preparing talks and papers (extended abstracts).  
 
Lund, 3 October 2000 
 
The editors 
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ABSTRACT

Summary The objective of this work is to develop and implement efficient numerical procedures for gra-
dient based design optimization of strongly coupled fluid–structure interaction problems. The solution for
state is obtained using finite element residual formulations and the resulting nonlinear equations are solved
using an approximate Newton method. Design sensitivity analysis is performed by the direct differentiation
method, and the sensitivities form the basis for multidisciplinary gradient based design optimization.

Introduction

A challenging area in multidisciplinary analysis and design optimization is fluid-structure interac-
tion problems due to the many nonlinearities involved. In this work gradient based shape design
optimization of strongly coupled fluid-structure interaction problems between a viscous, incom-
pressible fluid and an elastic solid undergoing large displacement is investigated. In this context
strongly coupled means that the solid deformation is allowed to be large enough to significantly
alter the flow of the fluid. Design problems where the dependence of the flow domain on the de-
forming interface must be taken into account are encountered when considering flexible structures
under aerodynamic or hydrodynamic loads, e.g., flexible aerodynamic structures such as wind
turbine wings, hydraulic valves, parts of turbomachinery, thermal process equipment, lightweight
bridges, and elastic vessels in interaction with biofluids. The topic of analysis and design optimiza-
tion of nonlinear fluid-structure interaction is therefore essential in both aerospace engineering,
mechanical engineering, bioengineering, and civil engineering, and it has received much interest
in recent years, see, e.g., [1, 2].

Analysis and Design Sensitivity Analysis

The viscous incompressible flow can be laminar or turbulent and is described using the Reynolds-
Averaged Navier–Stokes equations (RANS) together with a turbulence model. The turbulence
models used include both the algebraic Baldwin-Lomax turbulence model, the Spalart-Allmaras
one-equation model and two-equation models such as the Wilcox 1988 and 1998k−ω turbulence
models and the shear stress transport (SST)k − ω turbulence model, see [3, 4]. The latter model
is based on a blending of thek−ω model near walls with the standardk− ε model away from the
interface. In the solid governing equations the Green–Lagrange strain tensor is used to facilitate
large displacements and the constitutive law is for an elastic material. The two domains are coupled
together by consistent interface conditions, this being continuity in tractions and velocities.

The solution for state of the 2D/3D stationary fluid-structure interaction problem is obtained us-
ing both Galerkin, Streamline-Upwind/Petrov-Galerkin and Pressure-Stabilized/Petrov-Galerkin
FEM [5, 6], and due to the large displacements allowed, the finite element mesh of the fluid do-
main has to be updated as part of the solution algorithm. The mesh is updated by solving an



auxiliary elastic problem for the fluid mesh, considering the fluid as a linear elastic solid and im-
posing the calculated solid displacements found from the coupled problem as nodal displacements.
The elements for solving the auxiliary problem are low order elements, and a direct factorization
of the stiffness matrix is used. In this way the updating of the mesh is very cheap, amounting to
one back substitution for every update.

However, if a direct elastic analogy for the fluid domain is employed, the elements close to the
interface may become distorted or even degenerated. A simple strategy that reduces this problem
is to scale the elastic properties of the associated elastic problem by a measure of the distance to
the nearest fluid-solid interface. The stiffness matrixK of the mesh updating problem is scaled as

K =
∑

nElem

1
dp

ki where

{
d = di if di ≤ dtransition

d = dtransition if di > dtransition
(1)

wheredtransition is the maximum distance from the interface for which scaling of the element
stiffnesski should be applied. The distancedtransition must be provided by the user together with
the powerp. Further details and examples can be found in [7, 8].

The resulting nonlinear equations are solved using an approximate Newton method, i.e., a stepk+
1 in the solution procedure for the stationary strongly coupled fluid-structure interaction problem
when an algebraic turbulence model is used can be described as

∂R(uk)
∂u

∆uk = Jk ∆uk =


 Jk

FF 0 Jk
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0 Jk
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Jk
IF Jk
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 = −




Rk
F

Rk
S

Rk
I


 (2)

whereuk+1 = uk + ∆uk and the total residualR has been decomposed intoRF containing fluid
conservation of momentum residual, fluid conservation of mass residual, and interface conserva-
tion of mass residual,RS containing residual of solid equilibrium equations, andRI containing
residual of continuity of interface traction equations.

If Eq. (2) is solved by a direct method,J is needed explicitly. The storage requirements for the
system JacobianJ can be quite severe because of the interface. The worst part comes from the
dependence of the fluid nodal coordinates on the interface displacements, i.e.JFI . Considering one
interface displacement degree of freedom (d.o.f.), we observe that this one d.o.f. has the potential
to move the fluid mesh everywhere. This means that the derivative of the fluid residual w.r.t. the
interface displacements will be a dense matrix. If this submatrix were to be computed it would be
dependent on the mesh updating strategy. With the approach used here every column will require
state sensitivities of the fluid nodal displacements from the mesh update described by Eq. (1), and
such storage requirements are, in general, impossible to fulfill. Furthermore, in case of turbulence
models, the exact Jacobian is hard to compute. Therefore some approximationJ̃ to the exact
JacobianJ is used

J = J̃ + Jd (3)

whereJd is the error in the approximation to the Jacobian.

If an iterative solution method is used,J is not explicitly needed, but instead it’s product with some
vector. Here we can use the well known device of recognizing the productJz as the directional
derivative of the residual, a definition of which is

Jz = lim
α=0

R(u + α z)−R(u)
α

(4)



In this way the product of the system Jacobian with a vector can be approximated by a finite
difference.

Design sensitivity analysis (DSA) is done by the direct differentiation method [9, 10]. Noting that
at a solutionR(u) = 0 the sensitivities of the state variables can be found by differentiation with
respect to a shape design variableai

dR
dai

=
∂R
∂u

du
dai

+
∂R
∂ai

= 0 i.e.,
∂R
∂u

du
dai

= −∂R
∂ai

(5)

The right hand side of Eq. (5),∂R
∂ai

, is sometimes called the pseudo load. It can easily be calcu-
lated analytically for material design variables, but for shape variables this requires some lengthy
algebra. We evaluate the pseudo load by a central finite difference approximation on a perturbed
mesh. If we had a factorization of the full system Jacobian the solution of Eq. (5) would be very
efficient, requiring only one back substitution per design variable.

Since we do not have the exact Jacobian matrix available nor do we want to compute and store it,
we have to solve Eq. (5) by an iterative method. Inserting Eq. (3) into Eq. (5), the sensitivity solve
can be written as

(J̃ + Jd)
du
dai

= −∂R
∂ai

i.e., J̃
du
dai

k+1

= −∂R
∂ai

− Jd du
dai

k

(6)

This can be rewritten to give the iterative solution method for DSA

J̃ ∆
du
dai

k

= −∂R
∂ai

− J
du
dai

k

with
du
dai

k+1

=
du
dai

k

+ ∆
du
dai

k

(7)

In this way sensitivities can be calculated quite efficiently, reusing the factored matrix from the
solution of the state variables. The iterations in Eq. (7) are performed until an acceptable small

increment∆ du
dai

k
in sensitivities is obtained, see [11, 1, 8, 12].

In case of using one- and two-equation turbulence models, a segregated analysis and design sensi-
tivity analysis scheme seems to be the most robust method and this will be presented.

Examples of Multidisciplinary Design Optimization

The implemented analysis and design sensitivity analysis facilities form the basis for gradient
based optimization of structural, fluid flow, and fluid-structure interaction design problems. The
optimization examples are solved by sequential linear programming (SLP) where the nonlinear
optimization problem is transformed into a sequence of linearized subproblems. Several examples
will illustrate the potential of the developed facilities for gradient based design optimization of
strongly nonlinear multidisciplinary optimization problems.
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ABSTRACT

Summary This document provides information on recent developments in topology optimization. Work
in this area has almost exclusively been concerned with design of solids and structures. Here extensions to
fluid mechanics, with applications in biomechanics, are given.

Optimization strategies are present everywhere in engineering and nature. When designing indus-
trial products the designer tries out a sequence of designs in an attempt to gradually improve the
product, i.e., even if not explicitly stated as such, an optimization is performed. In nature, evolution
of biological systems follows paths that we can imagine are governed by an attempt to optimize
some performance index. The mathematical paradigm that models optimization strategies in engi-
neering as well as in nature isOptimization with State Constraints (OSC).

The general form of an optimization problem with state constraints (a problem from OSC) is the
following:

min
x;u

f(x; u)

subject to

�
S(x; u) = 0

g(x; u) � 0:

Here f is the performance measure which is a function of two types of variables: the design
variablex and the state variableu. The design variable is what can change when the industrial
product or biological system is modified, and for each such design, the system will take on a certain
state determined by the state variable. For a given design the state is defined by a mathematical
system which we abstractly writeS(x; u) = 0 and call the analysis or state problem. This system
will frequently be a partial or ordinary differential equation with its origin in continuum mechanics
and is what is traditionally solved in computational engineering. The novelty of OSC is to surround
this problem with an optimization goal. Finally,g(x; u) � 0 can represent any type of explicit
constraints on the variables.

This talk will give several explicit examples of the above structure as well as discuss numerical
procedures and present solutions. The most direct example of a problem from OSC, much studied
within structural optimization, is the case of a truss structure, whereu represents a displacement
vector andx is a vector of cross-section areas of bars. The state problem,S(x; u) = 0, takes the
form

K(x)u = F; (1)



whereF is the prescribed load vector andK(x) is the stiffness matrix, which will depend linearly
on x. A frequently used performance measure isf(x; u) =

1

2
F Tu, which we interpret as the

flexibility or the negative of the stiffness of the structure. One also easily concludes that this
performance measure equals minus the equilibrium potential energy of the structure. Furthermore,
it has the property that structures optimized by its use have uniformly distributed stress, implying
that available material is used efficiently. This type of structural optimization is usually called
topology optimization since trusses can be excluded from the optimal design by lettingx � 0 and
in this way an optimal connection or topology is found.

The continuum analogy of the truss topology optimization problem is whenS(x; u) = 0 repre-
sents the equations of linear elasticity. The problem then becomes substantially more complicated.
In fact, a naive extension results in a non-well posed problem which lacks a solution. To remedy
this, different types of regularisations are possible, as extensively discussed by Borrvall [1]. Fur-
thermore, how to obtain a stable finite element discretization is not obvious and certain similarities
with mixed finite elements in, for instance, Stokes flow exist. In Figure 1 a large-scale continuum
topology optimization problem is shown.

?

?

Figure 1: A continuum topology optimization problem. The cross-shaped domain should be partly
filled by a prescribed amount of material to obtain an as stiff structure as possible.

Recently our attention was drawn to a series of papers (see, e.g. Karch et al. [2]) on modeling
of arterial vascular trees, e.g. the corona artery in humans. Here a method based on optimality
reasoning (but in our view, without formulating a clear overall goal in the sense of OSC) for con-
structing arterial trees is given. We almost immediately realized the possibility of transferring our



knowledge in truss topology optimization to this domain. Indeed, a very close analogy can be con-
structed: the stiffness objective becomes the objective of minimizing power losses for a prescribed
flow; in the state problem, equation (1),u plays the role of pressure andF represents prescribed
outflows of fluid. The stiffness matrix becomes a matrix representing fluid flow resistance, which
if Hagen-Poiseuille flow is assumed will depend on the second power of cross-sectional areas, and,
thus, not linearly as in the truss case. In Figure 2 an example of arterial tree optimization is shown.

inflow

?

Figure 2: An optimal arterial tree problem: inflow and outflow is prescribed; the tree represents
that of minimum pressure loss.

The next natural extension of this line of research is to do topology optimization in the fluid con-
tinuum case. The goal is to determine at what places of a predetermined design domain there
should be fluid or not (i.e. solid) in order to extremize a power objective and subject to a given
amount of fluid. Possible applications include design for minimum head loss in pipe bends, dif-
fusers and valves, optimal conceptual design of air flow channels in aerial vehicles, as well as
design of submerged bridge pillars for minimum environmental impact on watercourse flows. The
state equation is in computations so far taken to be Stokes system governing very viscous flow. An
example is shown in Figure 3.
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Figure 3: The system of channels giving minimum pressure loss for prescribed in- and out-flow is
found. It is concluded that the length of the domain influences the topology.
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ABSTRACT

Summary Mechanical work corresponds to an inner-product between (dual or) work conjugate quantities
such as displacements and point-forces, displacements and surface tractions, strains and stresses. This can
be utilized to recover stresses and stress resultants that obey the principle of virtual work, i.e. that are
variationally consistent. Local pointwise error estimates of the recovered quantities and related refinement
indicators are provided by solving a related (dual) adjoint problem.

1 Mathematical formulation
In many applications the primary aim of a finite element (FE) analysis is to obtain few design quan-
tities with a prescribed accuracy. In computational mechanics quantities such as stresses, surface
forces and surface force densities (surface tractions) are often important for design decisions. Thus
special attention should be paid to how the FE model is adapted for computation of such quantities,
and to which techniques that are used to extract these quantities from the primary FE results.

Herein, we present a general concept for adaptive postprocessing of FE results, developed by
Kvamsdal [1, 2] for strucutral mechanics and futher explored for the Stokes problem in [3]. The
presented concept fits into the very general postprocessing approach introduced by Babuˇska and
Miller [4]. However, the specific choice of function space made herein for the extraction functions
closely relates the postprocessing steps to the underlying FE method. This choice of extraction
function space makes the presented approach unique.

Mechanical work or energy may be viewed as the product between a ‘force’ and its dual quantity
of ‘displacement type’. The ‘force’ can be point forces,F (xa); defined for a set of points�; a
surface traction field,t(x;n�); defined on a surface�; or a stress field,��(x); defined in a body

: The dual quantities for these ‘forces’ are, respectively,v(xa); representing the displacement
of the pointsxa; a 2 �, v(x); representing the displacement of the surface�; and"(x) = IDv;

representing the strain field in the body
:

In a mathematical setting, mechanical work corresponds to an inner product between (dual or)
work conjugate quantities� 2 X and� 2 Y defined onD � IR2 :

W (�; � ;D) = (�; � )D (1)

Hence, we may interpret the mechanical work functional,W; as a bilinear operator (or bilinear
form), i.e. a mapping fromX � Y into IR. On the other hand, for a given ‘force’� we may
interpret the same functional as a linear form mapping the ‘displacement’ spaceX into IR:



In Variationally Consistent Postprocessing (VCP) we relate linear work functionals corresponding
to a given set of point forces,F ; surface tractions,t; and stresses,��; to the relevant forms involved
in the finite element problem. Let the quantity of interest be denotedR(u), whereu 2 V (
) is the
unknown analytical solution of the underlying infinite dimensional variational problem. The VCP
procedure may then be viewed upon as an extraction procedure of the following operator form:

R(u) = ah(w;u)� fhR (w) (2)

Here, V h(
) � V (
) � H1(
)); w 2 Xh(M) is an extraction function for a quantityR;
Xh(M) the broken displacement space is defined throughXh(M) = fv 2 L2(
) : vj
e 2

Xh(
e)g; where the FE-displacement spaceXh(
) is equal toV h(
 but with no boundary con-
ditions taken into account,ah(�; �) : Xh(M)�Xh(M)! IR is the mesh dependent bilinear form
(see definition in [2]) which for a givenw becomes a linear form foru, andfhR (w) is a mesh
dependent linear form, assumed independent ofu: 1 Let D � 
 be a domain equal to a patch of
elements, and assume thatw � 0 on
 nD:

Asu 2 V (
) is the unknown analytical solution we actually do the the VCP by inserting the FE
approximationuh to obtain the recovered quantityR(uh) (also denotedRvw):

R(uh) = ah(w;uh)� fhR (w) (3)

Taking the difference between the extraction formula using the exact solutionu, se Equation (2)
and the the FE approximationuh given in Equation (3) the error in the recovered quantityR(uh)

reads:
eR = R(u)�R(uh) = ah(w;u� u

h) (4)

The expression in Equation (4) may be used to estimate the error in the recoverd quantity. Note
that asw is known (i.e., given for each particular extraction functional) whereasu is unknown,
u� u

h have to be estimated.

To obtain an error norm with global support (which is needed for adaptive refinement) we intro-
duce the followingdual problem:
Given anyw 2 Xh(M) then findz 2 V (
) such that for all�z 2 V (
) we have:

a(z; �z) = ah(w; �z) (5)

The correspondingdual FE problemreads:
Given anyw 2 Xh(M) then findzh 2 V h(
) such that for all�zh 2 V h(
) we have:

a(zh; �zh) = ah(w; �zh) (6)

Using Equation (5) and (6), the (Galerkin) energy orthogonality of the bilinear forma(�; �) and the
fact thatah(�; �) � a(�; �) onV (
)� V (
) we obtain:

eR = a(z � z
h;u� u

h) (7)

wherevh 2 V h(
) is found by solving Equation (6).

1In some cases the FE boundary tractions,t
el; are present infhR (w); i.e.fhR (w) is indeed dependent onu.



2 Numerical example
Figure 1a) shows a L-shaped linear elastic domain subjected to a symmetric (Mode 1) loading.
The analytical stress distribution for this plane strain problem may be found elsewhere.

Here we aim for computing the shear stress�xy at the point with coordinates(25; 25). Origo is
assumed to be located at the lower left corner. This problem has a singular point at the interior
corner with strength� = 0:544. Therefore, the rate of convergence when using uniform mesh
refinement is not second order. However, by means of adaptive mesh refinement the pollution
error may be controlled and second order accuracy may still be achieved.

The purpose of this numerical experiments is to verify that the developed adaptive recovery tech-
nique is actually capable to control the pollution error, Thus, we restrict ourselves to compute the
element mean shear stress for the element with the point(25; 25) in its interior, since by means of
variationally consistent nodal patch recovery we may restrict the local interpolation error to be of
the desired order.

Using VCP to recover element mean stress corresponds to solving a dual problem with loads equal
to a weighted sum of the nodal forces along the boundary of the specified element. For any finite
element sizeh the dual problem will be well posed.

We have performed an adaptive analysis using the (weighted) energy norm described above with
a prescribed tolerance of� = 1:0% for the error in the element mean shear stress. The error
in the stresses��h is estimated by means of the Superconvergent Patch Recovery method, and
the calculation of refinement indicators for mesh adaption (h-refinement) follows the procedure
developed by Kvamsdal [2]. Now, the prescribed accuracy is reached after five adaptive mesh
refinements and the resulting mesh sequence is presented in Figure 1c).

From the results presented in Figure 1b) we see that ‘optimal’ order of convergence, which for
bilinear elements areO(h2), is obtained using the VCP procedure. Furthermore, the effectivity
index for the estimated error is relative close to one.

REFERENCES

[1] T. Kvamsdal. Postprocessing of finite element results based on virtual work. InProceedings of
Second ECCOMAS Conference on Numerical Methods in Engineering, pages 284–290, Paris,
France, September 9–13 1996.

[2] T. Kvamsdal. Variationally consistent postprocessing (VCP). In E. O˜nate and S. R. Idelsohn,
editors,COMPUTATIONAL MECHANICS—New Trends and Applications, pages CD–rom.
CIMNE, Barcelona, Spain, 1998.

[3] H. Melbø and T. Kvamsdal. Goal oriented error estimators for Stokes equations based on Vari-
ationally Consistent Postprocessing.Submitted to Computer Methods in Applied Mechanics
and Engineering, September 2001.
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The Lshape problem: Error in Sigma_xy
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c)

Mesh 0 :  48 elements
Error    :  20.76%

Mesh 1 :  138 elements
Error    :  15.25%

Mesh 2 :  284 elements
Error    :  11.28%

Mesh 3 :  486 elements
Error    :  8.70%

Mesh 4 :  756 elements
Error    :  6.96%

Mesh 5 :  1241 elements
Error    :  5.48%

Figure 1: The L-shape problem: a) Geometry and properties. b) Estimated and exact error in re-
covered element mean shear stress�xy for the element containing the point (25,25). c) Adapted
finite element mesh sequence.
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ABSTRACT

As moving ice fails against an offshore structure the resulting ice load is not constant. An
evident reason for ice load fluctuations is the variation of oncoming ice properties. Transient
loads are also caused by ice edge, floe or iceberg hitting the structure. Normally ice load
fluctuations are resulting from a more or less random ice failure process. However the most
severe dynamic ice load scenario can occur even though ice properties and ice velocity would
be constant. Under certain conditions the ice failure becomes coupled with the dynamic
response of the structure. Initially independent local ice failures at different locations at contact
zone are likely to synchronise. The worst conditions are a resonance with one of the lowest
natural modes. This paper gives a review of dynamic ice action scenarios, and methods to
predict dynamic ice loads by numerical simulation. Such capabilities are dearly needed in near
future while the projected offshore wind energy is being realised in Northern Europe.

1. INTRODUCTION

Adverse vibrations due to moving ice crushing against offshore structures were first reported in
Cook Inlet oil drilling structures /2,25/. In Finland first experiences with single steel pile
foundations for lighthouses in 1973 were disastrous. Severe resonant vibrations destroyed their
superstructures during the first winter /16/. At Bohai Sea Chinese oil production platforms with
jacket foundations were also damaged due to dynamic ice loads, /31,32/. Common to all these
structures was that the construction included relatively narrow and flexible components that
were directly under ice action. The opposite case was Molikpaq, an arctic caisson retained
island, that is wide and very stiff structure. This drilling platform is a double walled steel ring,
diameter 111 m, height 30 m, having the centre part filled with sand that enhances sliding
resistance and damping capability. In 1986 while a multiyear ice floe was moving and crushing
against the caisson, the whole structure vibrated continuously. Due to vibrations the pore
pressure in the soil increased and the whole structure was close to be displaced /6/.

The problem of ice-induced vibrations in slender flexible structures that have to withstand the
loads of moving ice fields has been under research over three decades but still a debate on the
origin of vibrations continues. The main question is why the ice force is fluctuating periodically
even though a constant thickness homogeneous ice field is moving at constant velocity and
crushing against a vertical structure.

A number of approaches have been presented to predict dynamic ice loads during ice crushing
/2,3,9,10,11,12,17,23,25,27,30,32/. If the loads are known then it is a straightforward process to
numerically solve the dynamic equations of motion and to predict structural response. This kind
of forced vibration analysis can readily be used to calculate transient response due to ice edge
impacts or iceberg hits. Uncertainties come from assumptions on ice crushing pressure
dependence on changing contact area and aspect ratio.



Theoretical explanations for dynamic ice structure interaction are based on forced or self-
excited vibration models. In the former, ice is having a characteristic failure frequency, or ice is
fractured into floes of certain size /25,23,11,13,28/. Hence ice force build-up and failure
frequency is directly proportional to ice velocity. The interaction ice force depends only on the
advancement of ice sheet. Ice force history is then known a priori when the ice velocity is
known. If the dynamic response of the structure is insignificant there is no dynamic interaction,
only dynamic reaction forces. A mechanical model for this kind of an interaction can be
presented by breaking brittle cantilevers, Matlock /11/. In his model a moving chain of brittle
elastic beams simulate ice contact. As a beam contacts the structure the load build-up is linear
until the beam breaks and load returns to zero until a next beam makes the contact. “Ice”
velocity controls the load build-up rate and the beam strength maximum load. The spacing of
beams and ice velocity determine the load frequency. Matlock's model presents a predetermined
forced vibration problem that well simulates the low ice velocity saw-tooth ice load history, and
even the onset of a resonance condition but not the change into random response with further
increasing ice velocity.

No physical reasoning exist to support characteristic ice failure length in crushing. Only in ice
bending failure, the characteristic length of an elastic plate on Winkler foundation determines
the size of broken floes. Indeed, at high ice velocities bending failures can excite a structure into
resonance as has been witnessed in China, /33/.

In the self-excited ice-induced vibration model /2,17,22,30,32/, the interaction ice force is
dependent on the dynamic response of the structure at the ice action point with no a priori
known ice force time history. The model observes the dependence of ice strength on varying
loading rate. Hence the feed-back - or coupling - variable is the dynamic response velocity. The
system is autonomous and the only chance for vibrations to occur is then that the system is
dynamically unstable, which yields to limit cycles in self-excited vibrations. An autonomous
vibration system is one in which dynamic response and the interaction force originates from the
system itself without need to know beforehand any loading history.

Scale model tests /18/ have indicated that the frequencies of natural modes of the structure
control ice failure frequencies at a wide velocity range. Hence a lock-in to the natural mode
frequency takes place. Thus in a multi-legged or wide structure independent ice failures at
different locations are likely to synchronise. This is due to vibration velocity of a natural mode
superimposing to the ice velocity, which promotes coherent ice failures at different locations.

A numerical model to simulate dynamic ice-structure interaction and ice-induced vibrations
should be able to predict different velocity dependent ice failure patterns, saw tooth like at low
ice velocities, frequency lock-in and synchronisation at increasing ice velocity, and random at
high ice velocity. Both Sodhi /28/ and Määttänen /21/ give a review of different ice-structure
interaction models. Thereafter further models have emerged that also observe multi-point ice
load excitation /9,10,22/. Only the last represents results on predicted frequency lock-in and ice
failure synchronisation.

This paper gives background information on such ice mechanics parameters that have
significant effect on ice-structure interaction, and describes different approaches for numerical
models. A brief description is given on ice impact loads. Vibrations that are caused by random
variations of ice thickness, strength, etc. are not treated here. The presented self-excited model
is based on ice crushing strength dependence on loading rate. The original model with single
point ice action for beam structures has been used to predict ice-induced vibrations in Finnish
steel lighthouses /20/, and later expanded for any three dimensional structure with multi-point
ice excitation /22/. The theory behind the model is briefly described. Application examples are
presented for both a multi-legged and a wide offshore structure to demonstrate the simulation
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capabilities for varying ice thickness and velocity cases. Also ice-induced vibration analysis for
offshore wind turbine foundations are discussed.

2. ICE MECHANICS BACKGROUND

Ice-structure interaction implies that both the ice and the structure are active partners. In the
case of a rigid structure, the only contribution of the structure to ice failure process is the shape
of the structure at the contact zone. Ice load fluctuations against rigid structures are caused by
the properties of ice alone. Subsequent ice edge flaking failures is one explanation, tendency to
fail into floes of certain size another, but also the dynamic response in the ice field together with
the ice strength sensitivity to strain rate can contribute to resulting interaction ice force
fluctuations. Instead of interaction a better expression in the case of a rigid structure would be
ice action against a structure.

In the case of a flexible structure, the dynamic response of the structure plays an active role with
the force originating from the ice failure process. Hence all structural properties, shape at the
contact zone, stiffness, mass and damping will have their effect on the interactive forces
between the ice and the structure. The distinction between a rigid or flexible structure is
arbitrary, however. Even a solid rock undergoes elastic deformations when loaded by ice action.
Also the ice field itself undergoes elastic deformations. From the practical point of view a
structure can be considered flexible when its displacements are significant when compared to
ice elastic deformations, e.g. of the same order as the ice grain diameter.

In dynamic ice structure interaction energy from the moving ice is being transferred and stored
as elastic energy in the structure. After ice failure and at structural spring back phase stored
energy is released. It is converted into breaking ice and into kinetic energy. Energy exchange
implies also dynamic response to occur, either in the structure, in ice, or in both. As ice strength
is strongly dependent on loading rate, dynamic response will alter the average loading rate, and
hence interaction forces. Ice failure will occur at high loading rate with low ice strength, and
load build up at low loading rate with high ice strength. This yields to the synchronisation of ice
failure and structural response. It is more pronounced with flexible structures that exhibit
significant displacements at the ice action point. Of course the stored kinetic and elastic energy
in the ice cover itself can also activate and control ice crushing.

Ice velocity is the governing parameter in the character of ice load history. Velocity effects
express themselves in stress or strain rate, which has a strong effect on the interaction ice force.
Hence it is imperative to observe the relative velocity, which is a difference of ice edge and
structure contact point velocities. At very low ice velocities, e.g. thermal expansion, ice
behaviour is ductile and ice-structure interaction resembles viscous flow. Ice load is pseudo
static. Ductile deformation may include cracking effects.

With increasing velocity cracking activity increases when interaction time becomes too short for
ice stresses to be relaxed and bounded by creep. A damaged ice zone is forming. Ice load and
stresses, as well as structural deflection build up until ice compressive strength level is reached.
Ice starts to break into floes and small fragments. In certain conditions ice is practically being
pulverised. The clearing mechanism of broken ice mass with ice floes or fragments are different
to that of pulverised ice: the former pops out "explosively" while the latter is extruding. As ice
major failure occurs the load level drops suddenly, and the deflection of the structure springs
back. Often the spring-back stroke exceeds the zero state causing a gap between the ice edge
and the structure. Thereafter the advancing ice edge makes contact to the structure and a new
load cycle starts. This produces a saw tooth like ice force or displacement history.



At higher velocities the response history will gradually change. The frequency of ice failures
increases with ice velocity until at a certain velocity range a natural mode of the structure may
start to control the ice failure frequency: a lock-in resonant state occurs. At still higher ice
velocities conditions for the resonance are lost. Ice failure turns into totally brittle and ice load
fluctuations random. Stress or strain rate is directly proportional to relative velocity between ice
and structure. It is at the transitional strain rate  range from ductile to brittle, 10-3 -  10-2 1/s,  or
stress rate around 0.2 - 0.6 MPa/s, where self-excited vibrations are most pronounced, Fig. 2.

Recent studies have found out how the actual ice failure is occurring at high loading rates.
Studies by using high speed photographic techniques and transparent structure wall /7/, or tactile
sensors /1,5/, indicate that there is only a narrow "contact line", in which high interaction
pressure is acting and crushing the ice, while the rest of the contact zone is involved only in the
clearing mechanism.

3. BASIC DYNAMIC ICE STRUCTURE INTERACTION MODEL

A schematic model of ice interaction with structures has three elements: structure, ice failure
process, and ice sheet, Fig. 1. For the structure and ice there are well known governing
differential equations, dynamic equations of equilibrium. The two interacting bodies are
connected by the centre element, the ice failure process, which includes clearing mechanisms of
broken ice mass. Also the conditions of continuity have to be taken care of in the centre
element.

STRUCTURE ICE
ICE
FAILURE

Figure 1. Elements in ice interaction with structures.

A schematic mathematical model of ice interaction with structures, Fig. 1, can be formulated
with two coupled equations of equilibrium, Eq. 1 and 2,

k δ +d δ +m δ = f(δ, δ, δ, ∆, ∆, ∆, t, V)
(1)

K ∆ + D ∆ + M ∆ = F(δ, δ, δ, ∆, ∆, ∆, t, V)
(2)



which represent the governing differential equations of the structure and ice in a discretized
form. Symbols {δ} and {∆} stand for the displacement vectors of the structure and ice, dot above

means derivation in relation to time t giving velocities and accelerations, [k], [K], [d], [D], [m],
and [M] are stiffness, damping and mass matrices respectively, V is the nominal ice velocity.
The coupling is through non-linear functions {f} and {F} that describe interaction forces from
the structure to ice failure process, and from ice failure process to the ice sheet.

Most problems could be analysed by means of computational mechanics if a mathematical
model could correctly present all elements in Fig. 1. The main difficulty is in the ice constitutive
model: elastic, viscous, and plastic behaviour including cracking should be modelled in three
dimensions. Interaction forces in Eq. 1 and 2 are not known beforehand, they depend on the
state of the system. The most common approach is to assume an interactive forcing function,
which enables to separate the two systems. Physical interpretation of Eq. 1 is then ice with no
response, and of Eq. 2, an infinitely rigid structure.

There are many simplifications in modelling ice behaviour and failure. The non-linear visco-
elasto-plastic constitutive equations of ice are linearised and/or replaced by a simple constitutive
law, which considers only one effect to be significant. This way it is possible to have a linear
elastic material model for fast loading cases, reference stress method for slow loading cases,
ideal plastic behaviour for limit load analysis, etc. Kärnä /9/ observes the ice behaviour at two
scales: near field that observes ice damage, failure and extrusion during clearing, and far field
that observe elastic only response including radiation damping.

Structural damping is important in suppressing ice-induced vibrations. In scale model, and full
scale tests, it has been measured, that with a sufficiently high internal damping in the structure,
resonant type self-excited vibrations can be totally avoided /20/.

Time is significant in two cases: if there is a characteristic failure frequency in the ice and if
loading rate is so low that visco-plasticity becomes important. The latter can be considered
insignificant if crushing frequency is higher than about 0.5 Hz, which is the normal case. When
the ice failure occurs within a few seconds from the beginning of load build up, the ice failure is
dominantly brittle with only an insignificant time dependent creep in the ice deformation
response.

The effects of relative distance between the ice edge and the structure are also important. When
there is a gap, the ice force is zero regardless of relative velocities. During crushing, normally
more ice is crushed than the elastic rebound of the structure. During load build-up the uneven
ice edge is being smoothened and there is some elastic indentation into the ice as well. All these
displacement contributions have to be observed in the vibration model.

4. ICE IMPACT

The impact of ice against structure has different scenarios: transients during ice sheet edge
hitting, splitting of floes, pushing aside floes, growler or iceberg impacts. These load cases are
decisive in high arctic but of minor importance in the Baltic compared to resonant type crushing
loads.

If a sufficiently large ice sheet is moving and its edge hitting a structure there will be a short
duration transient after which continuous ice structure interaction will establish according to
previous models. During the transient phase initial load build-up may induce higher dynamic
response to the structure than in the continuous phase. If the laws for ice load build-up can be
assumed, the calculation of dynamic response is straightforward. Typically dynamic
amplification in the transient is less than twofold from that of the static loading. If a resonant



loading in dynamic ice structure interaction is possible, its dynamic amplification is much
higher due to inherently low damping of structures.

Splitting of a small floe during an impact occurs easily. The interaction is just to initiate
splitting. Theoretical models based on force equilibrium /13/ and on fracture mechanics /26/,
explain the low load levels needed for splitting the ice. The latter model explains also the
splitting of floes with a diameter of several kilometres.

The hit of an floe is rarely symmetric. Asymmetric contact causes the floe to rotate and then
being pushed aside the structure. Interaction forces can be calculated according to laws of
conserving energy and momentum /24/. The hit of a growler or iceberg can be treated like hit of
an floe. However more emphasise is now in the load build-up history. It is dependent on the
velocity, the size of contact area, and on aspect ratio. The velocity can be calculated from the
energy balance and the rest from the geometry of impacting bodies /24/. An important factor is
ice strength dependence on the contact area /26/.

5. SELF-EXCITED ICE-STRUCTURE INTERACTION MODEL

The first to propose self-excitation as the origin of ice-induced vibrations was Blenkarn /2/ who
defined the dynamic stability condition for a single degree of freedom system. He used the
concept of negative damping, which can be derived from the decreasing ice force versus loading
rate.

Määttänen /17/ extended Blenkarn's model for a multi degree of freedom system and solved a
stability condition for each natural mode of the structure. By using ice strength versus stress rate
dependence as a starting point, limit cycles were also solved by numerical integration. Relative
displacement effect was observed for gaps. Saw-tooth like ice force histories could be derived
directly from the physical properties of ice and the structure without any a priori assumptions on
time dependent ice forcing function. Ice force frequency lock-in with unstable natural modes is
correctly predicted. A simple equation to predict the dynamic stability of a natural mode
(sensitivity to ice-induced vibrations) and the frequency of saw tooth ice force frequency at low
velocities was derived. Theoretical predictions were in good agreement with both scale model
and full scale measurement data.

The structure is discretized by using Finite Element Method. Ice interaction is observed as a
nodal load in those nodes that are under ice action. Ice load is simply ice crushing strength times
the area that is controlled by the node in question. The crushing strength is dependent both on
contact normal velocity and contact area.

σ σc c v u
A

A
= −( )˙ 0 (3)

Ice crushing strength against a wide structure is reduced according to the area dependence as
defined by Sanderson /26/. Relative velocity at a contact node is ice velocity v minus nodal
displacement velocity du/dt. Crushing strength dependence on relative velocity is based on the
stress rate as defined by Blenkarn

˙ ˙σ σ
π

= −( )v u
d

8 0 (4)

Here σ 0 is reference strength, now 2 MPa is used, and d the diameter of the structure. Equation
4 was originally intended for narrow structures and is not directly applicable for wide structures.



However, if non-simultaneous ice failure at different zones along the width of the structure is
assumed a realistic value for d can be used. There is no definite answer for the width of an
independent zone. E.g. a value of one or two times the ice thickness can be chosen. The effect of
width d in the denominator is to scale velocity range. Thus ice velocity dependence comparisons
can be made regardless of the correct width. In the following applications the real leg diameter
is used for the multi-legged structure and d=1 m for the wide structure.

Based on the measurement data /25,2/, and combining Eq. 3, ice crushing strength vs. stress
rate, is approximated by using a fourth degree polynomial,

σ σ σ σ σc

A

A
MPa= + − + −( . . ˙ . ˙ . ˙ . ˙ )2 00 7 80 18 57 13 00 2 912 3 4 0 (5)

in which σ̇  is given in MPa/s and the reference area A0=1 m2. The polynomial part covers ice
failure mode transition from ductile to brittle. At higher strain rates ice failure is brittle and
strength is assumed to be constant, Fig. 2. At very low loading rate the ice behaves as a viscous
fluid. However, as now the load build-up time is short, in order of a second or less, the viscous
deformations in ice can be omitted. In reality there are always random variations in ice strength,
now especially at the decreasing part. Hence the whole curve should be interpreted as a
deterministic average presentation on ice crushing strength.
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Figure 2. Ice crushing strength vs. stress rate.

Implementing ice crushing strength by Equation 4 and 5 into nodal loads in the dynamic
equations of motion for the whole structure, Eq. 1 with δ replaced by u, yields

k u d u m u F v u F u[ ]{ } + [ ]{ } + [ ]{ } = { }( ){ } = { } + [ ]{ }˙ ˙̇ , ˙ ˙0 φ (6)

where [k], [d], and [m] are the stiffness, damping and mass matrices of the structure, u u{ } { }, ˙ ,
and ˙̇u{ } are the nodal displacement, velocity and acceleration vectors. {F0} is the constant part
of the load vector representing ice strength at the nominal stress rate corresponding to ice
velocity v. Matrix [φ] has nonzero terms only at its diagonal corresponding to ice action nodes
and resulting from the structural response velocity according to Equation 4 and 5. Each ice
action node has its own ice load, which is independent from others. The coupling plays role only
through the combined effect of all nodal loads to displacement and velocity response.

In initial state the structure is at rest with no vibrations. As both ˙ ˙̇u u{ } ={ } = { }0  only static
displacements are caused by the loads {F0}. In order to have vibrations the ice-structure system
has to be dynamically unstable. Mathematically the autonomous system of equations 6 has then
roots that have positive real part and make deviations from the equilibrium to grow with time.



This means that if there are any disturbances they tend to grow dynamically and develop into
vibrations or into an aperiodic divergence. Considering the shape of the controlling curve, (Fig.
2), it is evident that disturbances will not grow without bounds but the vibrations have to
develop into stable limit cycles. The reason is that energy is being pumped into the structure
only at the decreasing part of Figure 2. Then with increasing vibration amplitudes increasing
structural damping will eventually dissipate all the energy that is fed into system during each
vibration cycle.

The Eq. 6 is highly non-linear both due to the shape of ice crushing strength curve and the
possibility of contact loss between the ice edge and the structure. The response history of the
structure can be solved by numerical integration. In order to get stable limit cycles as soon as
possible, it is advantageous to use the static displacement of the average ice load as an initial
condition. Another way to reduce CPU-time is to use principal mode presentation. Usually only
a small number of the lowest modes are needed to model global structural vibration state. If ice
velocity is such that the initial state will not fall into the decreasing part of the crushing strength
curve, a sufficiently large disturbance is needed to make the structure to vibrate, allowing
conditions for limit cycles either to develop or all vibrations to decay.

Any 3–D structure can be modelled by FEM. For ice-induced vibration analysis the needed
output is natural modes and frequencies for the limit cycle program input. Number of ice action
nodes are chosen according to the geometry of interaction, and nodal ice loads can have
components to all co-ordinate directions. Each nodal load is calculated independently according
to Equation 5.

6 APPLICATION STRUCTURES

Figure 3 presents the FEM-model of a generic three-legged jacket platform that is intended to
operate in moderate first-year ice conditions. Water depth is 19 m and jacket legs go deep into
sea bottom. Soil support is simply modelled by pinning the legs at -24 m depth. The diameter of
jacket legs at waterline is 1.2 m. The structure is symmetric, each cross section forms an
equilateral triangle. At the waterline the distance of legs is 10.2 m. The deck at +13 m level is
hexagonal and has a mass of 300 Mg. The structural model includes only primary structures
with the mass of secondary structures.

The first 16 natural modes are given in Table 1. Global modes that are most important in ice-
structure interaction in global y-direction (from left to right) are presented in Figure 3. Due to
structural symmetry many frequencies are repeated. The first and second bending modes are at
1.31 and 3.24 Hz, and twist modes at 1.44 and 3.70 Hz respectively. The structure is relatively
flexible, especially in relation to ice load action at the waterline. The deck mass is a significant
factor in the dynamic response of the structure.

+13 m

+3 m

-6 m

-19 m

-24 m 1.31 Hz 1.44 Hz 3.24 Hz 3.70 Hz

Figure 3. Three legged jacket platform and natural modes.



The wide application structure is a fictive caisson retained island (CRI) intended to withstand
multi-year ice loads in 20 m water depth, Fig. 4. The retaining ring is made of steel. Wall height
is 8 m above sea level. The deck rests freely on top of the ring. The planview is octagonal with
longest sides 64 m at the waterline and total width 90 m. The base is 112 m wide and supported
on soil. For vibration analysis soil stiffness including core sand is simply observed by linear
spring elements at foundation nodes. Total horizontal spring coefficient is 29 GN/m. The total
mass of the structure including core sand and added soil and water mass is 510 Gg. The
foundation springs, ring cross section rigidity and total mass were adjusted to give natural
frequencies roughly at the same range as what has been measured on an actual caisson retained
islands /6/.

The first 16 natural frequencies are given in Table 1. The most important modes from the ice-
structure interaction point of view are plotted in Figure 4. Even though the structure as a whole
is very stiff against ice action, there are many low natural modes that contribute to deformations
at ice action points. If the deck would have been fixed on the caisson ring to carry through
loads, natural frequencies would have been higher, and many of the modes in Figure 4 totally
different.
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Figure 4. CRI natural modes.

Self-excited ice-structure interaction numerical simulation indicates that the 3-legged jacket
platform in Figure 3 is highly sensitive for ice-induced vibrations. It would have needed over-
critical structural damping to prevent ice-induced vibrations. Resonant lock-in type vibrations,
synchronised at each leg, emerge at every practical ice thickness value. Limit cycles develop
fast; at ice action point usually during the first cycle, (Fig. 5.a). On the other hand the deck mass
takes several cycles before steady limit cycles are stabilised.

At very low ice velocities corresponding the nominal stress rate in the ductile range, left from
the ice strength maximum in Figure 2, or at high velocities in the brittle range, no self-excited
vibrations develop. If ice velocity makes the nominal stress rate just right from the ice strength
maximum, the limit cycles predict saw tooth like structural response at the waterline, (Fig. 5.b).
The frequency of repeating ice failures is well below the lowest natural frequency. With
increasing velocity at certain point the first natural mode frequency starts to control the crushing
frequency regardless of ice velocity, (Fig. 5.c). The lock-in can persist until a higher mode starts
to control and makes a lock-in to another frequency, (Fig. 5.d). At velocity range in between,

Mode              CRI               3-leg
  1 1.19 1.31
  2 1.20 1.31
  3 1.31 1.44
  4 1.40 3.24
  5 1.55 3.24
  6 2.28 3.70
  7 2.30 6.76
  8 2.43 6.76
  9 2.61 8.76
 10 2.70 10.6
 11 2.74 10.6
 12 3.32 10.7
 13 3.44 11.1
 14 3.52 11.1
 15 3.53 11.4
 16 3.58 11.4

Table 1. Lowest natural
frequencies (Hz)



there exist limit cycles that combine both natural modes, (Fig. 5.e). Partly this is a result of
inertia loads from the deck mass.

Figure 5. Jacket platform waterline node displacement history vs. time from 0 -  16 s at different
ice velocity ratio r. f is limit cycle frequency and d is maximum displacement at ice action point.

a) h=1.0 m, r=0.5, f=0.78 Hz, d= 69 mm.
b) h=2.0 m, r=0.5, f=0.27 Hz, d=135 mm
c) h=1.0 m, r=1.0, f=1.32 Hz, d= 76 mm
d) h=1.0 m, r=1.7, f=3.06 Hz, d= 63 mm
e) h=1.0 m, r=1.4, f=-.-- Hz, d= 79 mm



If ice is thin, higher modes are likely to control the crushing frequency. E.g. in the case of a 0.1
– 0.2 m thick ice 11.1 Hz frequency is dominating and with 0.3 – 0.6 m thick ice 9.9 Hz
respectively. With 0.7 m thick ice it is possible to have steady limit cycles at 6.84, 3.06 or 1.31
Hz frequency depending on ice velocity or whether all the three legs are under ice action. On
contrary with thick ice, ice velocity directly controls the crushing frequency. Assuming an
unrealistic high ice thickness of 2 m, steady saw tooth like limit cycles can be predicted from
0.27 Hz to about 1 Hz with increasing ice velocity. Thereafter the first mode at 1.31 Hz causes a
lock-in to occur. Again at the brittle range no lock-in vibrations occur.

The displacement amplitudes of limit cycle vibrations were not simply related to ice velocity.
The reason was the jump from one mode to another, and intermittent combination modes, that
prevented distinct velocity dependence to show up.

Figure 6. CRI centre node displacement history vs. time from 0 -  32.5 s at different ice
thickness h. f is limit cycle frequency and d is maximum displacement at ice action point.

a) h=0.5 m, f=1.21 Hz, d=20 mm.
b) h=2.0 m, f=1.54 Hz, d=22 mm (ice action only at center 1/3-part)
c) h=1.0 m, f=1.18 Hz, d=26 mm
d) h=16. m, f=1.25 Hz, d=49 mm



It was not possible to predict the jacket structure in Figure 3 to exhibit asymmetric ice-induced
vibrations, e.g. twisting along the vertical axis. Even if the initial state of deformation was that
of a pure twist mode, and ice loads were acting only on two legs to allow 180 degree phase shift
in excitation, the limit cycle lock-in response soon developed into a symmetric one controlled
by the first mode. However, in another jacket platform with different mass and stiffness
properties, persistent steady state lock-in twist mode limit cycles could be predicted

The wide caisson retained island was stiff and not very sensitive to exhibit ice-induced
vibrations. By increasing structural damping it was possible to prevent resonant lock-in type ice-
induced vibrations totally. In most cases it took many cycles before limit cycle amplitudes
started to increase and a steady state to develop, (Fig. 6.a). Always the first mode at 1.2 Hz was
the dominant one, and ice loads were synchronized at each ice action node. It was not possible
to simulate such saw tooth like response history as was common with narrow structures. Also
response, that would be a combination of different modes, Fig. 6.b, was unlikely. Steady state
limit cycles were practically always controlled by the first natural mode frequency at 1.21 Hz
regardless of ice thickness. Only small variations at 1.18 and 1.25 Hz appeared, Fig. 6.c – d.

With increasing velocity the crushing frequency was generally constant, close to the first natural
frequency. The limit cycle displacement amplitude, on the other hand, has almost a linear
dependence on velocity, Fig. 7. The non-dimensional velocity is scaled in relation to the center
part of the decreasing range in Figure 1. Value r=0.5 corresponds to the peak value and r=1.5
the beginning of the brittle range.

Figure 7. Limit cycle amplitude vs. velocity

It was not possible to achieve steady state limit cycles at asymmetric modes with the caisson-
retained island. With symmetric modes it was easier to have lock-in vibrations if ice loads were
only at the center part of the sidewall. This is to be expected when compared to the shape of
natural modes. The nodes close to corner experience smaller displacement amplitudes and hence
their interaction velocity differs from that of center part nodes. Thus corner nodes are in a sense
out of phase of the center part and disturb the development of steady state limit cycles.

7. ICE LOADS ON WIND TURBINE FOUNDATIONS

European Commission has set a renewable energy goal to have 5 GW offshore wind energy by
2010 and 50 GW by 2020.  Present wind turbine unit size is 2 MW and in design phase there are
3 to 5 MW units. Anyway the EC goal would require thousands of offshore foundations also in
the Baltic at ice infested waters. Simultaneous wind and ice induced vibrations in tall structures
is a combination with no in-field experience this far. Thus only computational mechanics
simulations can give insight for proper design.
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After the nature of ice-induced vibrations were learnt and vibration isolation for lighthouses
were introduced, the steel foundation pile proved to be successful and replaced caisson
foundations in Finland /20/. The same solution is not feasible for wind turbine foundations.
Vibration isolation is intended to carry through high vertical and small horizontal loads between
the tower and foundation. This function is hard to be combined with high horizontal wind loads.

Without vibration isolation there are two ways to mitigate the effects of dynamic ice forces.
First the foundation can be made so stiff that foundation displacement response is insignificant.
This requirement is likely to increase foundation cost even though with a caisson foundation the
stiffness is naturally high. The second alternative is to use a conical section at the waterline that
both changes ice failure from crushing to bending and reduces ice loads. Then the displacement
response reduces as well. More important is that ice failure frequency is dependent on ice
thickness. With thick ice the frequency falls well below the lowest natural frequencies of the
complete structure. Thus the threat of resonant vibrations is avoided with thick ice. With thin ice
resonance is possible but the resulting loads are small. The structure needs to be designed to
withstand individual ice load pulses and random fluctuations.

In design the natural frequencies and modes of the complete structure has to solved first, and if
needed, structural mass and stiffness changed in such a way that resonance due to propeller
blade excitation is avoided. Load cases include transients due to ice edge hit or sudden ice load
relaxation, random ice load level variations, and continuous repeating ice load failures.
Transient or random loading response calculation is an ordinary practice if the loading function
is known. Continuously repeating ice load fluctuation is dependent on the response of the
structure itself. A self-excited vibration model has to be adopted /22/. A conservative estimate
can be calculated by assuming a saw tooth like ice force function, Fig. 8, if level ice crushing
force is used as a dynamic load, and the period T chosen to be identical to one of the lowest
natural modes.

t

F

T

Fmax

Figure 8. Assumed resonant ice force function

As an example forced dynamic response analysis results due to an assumed 1 MN saw tooth ice
loading function are presented. The application pile foundation has a diameter of 4 m in 6 m
water depth, it is driven down 16 m into bottom soil, the mass of 67 m high tower is 100 ton,
and at the top is 78 ton nacelle and rotor. The first lowest natural frequencies are 0.38 and 2.5
Hz. The transient development of vibrations after the onset of resonance loading at the first
natural frequency is given in Fig. 9 and 10. Nacelle displacement amplitude approaches 0.2 m,
which is only about 20 % of maximum wind induced deflection. Acceleration levels at the
nacelle also remain low at around 0.1 g. For a corresponding much stiffer caisson foundation
displacement and acceleration response are only about one tenth of those of the pile foundation.

The application example indicates that dynamic ice loads do not become a restrictive factor for
wind generators. With a conical section it is easy to reduce dynamic ice load fluctuations to the
order of 1 MN. With cone the repetition rate of ice failures is dependent on ice thickness. Ice
failure repeat after ice advances at least a distance of two times its thickness. In the Gulf of
Bothnia thick ice velocity never gets over 0.3 m/s. Hence e.g. a 0.8 m thick ice will never fail



against a cone at higher frequency than 0.2 Hz. This is well below the wind generator lowest
natural frequency, and hence resonant loading is possible only with thin ice and low ice forces.

Figure 9. Transient displacement (m) vs. time (s) at the nacelle in resonant loading.

Figure
10. Transient acceleration (m/s2) vs. time(s) at the nacelle in resonant loading.

CONCLUSIONS

Vibrations in offshore structures can be very severe while ice is moving driven by winds or
current. Dynamic loading cases include transient impact loads and continuos ice failure loads.
Measured dynamic load histories indicate saw tooth like functions, persistent close to harmonic



load repetition and random load variations. Most critical is the resonant type ice failure
repetition.

Dynamic equations of motion of the structure are homogenous if a constant thickness level ice
is moving and crushing against the structure. If the system of equations is dynamically unstable,
ice-induced self-excited vibrations will emerge and tend to limit cycles.

Computational mechanics can be used efficiently to integrate numerically the dynamic response
of an offshore structure to ice loads. Self-excited models predict similar response that has been
observed and measured in-field.

Offshore wind energy applications need stringent dynamic analysis design both for wind- and
ice-induced vibrations. Presented numerical analysis suggests that tall wind turbine towers can
be designed to withstand also dynamic ice loads.
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 ABSTRACT 

Summary In this abstract the development and implementation of a non-linear elastic material model for 
unbound pavement materials is described briefly. The material presented in the abstract is a part of a 
project in which a material model based on the resilient modulus technique is to be implemented into a 
FE-program with intention to investigate how it can be utilized in road design and analysis.   
 
1 Introduction  
A road is a multi-layered structure, which consists of a number of layers with materials that 
exhibits vastly different behavior when subjected to mechanical- and/or environmental loads, 
see figure 1. The top layers often consist of bitumen bound or bitumen stabilized materials. The 
bound materials can be modeled with e.g. an elastic or a visco-elastic material model described 
in [1]-[3]. Beneath the bitumen stabilized layers there are a number of layers consisting of 
unbound granular material. In several of the design codes that are used in road design today the 
standard linear-elastic (Hooke) model is used for reproducing the behavior of the unbound 
materials in the road structure. However tests performed have shown that the unbound materials 
exhibit a non-linear behavior when subjected to mechanical loads, [4]. In order to improve the 
accuracy of the design tools a number of material models, based on a non-linear elastic resilient 
modulus, have been suggested that would fit the test data and physical behavior of the unbound 
materials in a more accurate manner.  
 
 
 
 
 
 
 
           
            
               
           
 
 
 
 
 

Figure 1. A multi-layer road structure. 
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Unbound sugrade  



2 Material Modeling  
The mechanical behavior of unbound road materials, especially the base material, has been 
studied in vast number laboratory tests, see e.g. [4]. Cyclic triaxial testing apparatus are 
frequently used in order to find the physical behavior of the materials. After the initial load 
cycles a permanent strain is often detected. However the non-recoverable strain recorded is 
often referred to as strain from conditioning of the laboratory sample and are therefor often 
disregarded. They decreases with the number of load repetitions, see figure 2. After a large 
number of load cycles only or almost only non-linear elastic strains will occur. 

 
Figure 2.  Example of a stress-strain relation curve, in the vertical direction, of a cyclic triaxial test [4]. 

 
Due to the non-linearity of the stress-strain response the ordinary assumption of using a linear 
elastic constitutive relation were questioned. In 1971 Hicks and Monismith, see [4], suggested 
the K θ− model (1), in which ( )1 22 / 3θ σ σ≡ + , K and n are constants obtained from 
regression analysis from laboratory tests. The K θ−  expression (1) yields an elastic property 
called the resilient modules Mr, which is a secant elastic stress dependent stiffness module.  
 

nM Kr θ=  (1) 
 
The expression (1) has been used in a number of applications during the 1970’s. However 
expression (1) do not include any influence of shear stress. In order to take shear stresses into 
consideration a number of different material models have been suggested in the literature, see 
e.g. [2].  One of the more resent variants is the equation (2) which also is going to be an option 
in the new US 2002 Pavement Design Guide for road structures, [6].  
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Expression (2) includes the influence of bulk stresses i.e. the part under exponent k2 and the 
impact of shear stresses i.e. the part beneath the k3 exponent. Pa is the atmospheric air pressure 
and is included in the formula in order to make the equation (2) dimensionless. The bulk stress 
is described by the first invariant of the stress tensor (3). Shear stresses are included in the 
expression through the introduction of the octahedral stress, which can be expressed like in 
equation (4). k1-k7 in equation (2) are constants gained through regression analysis and material 
testing.  
 

1 2 3θ σ σ σ= + +   (3) 



The constant k7 is inserted in order to avoid numerical problems that occurs in the case that the 
octahedral shear stress equals zero, which would yield a zero stiffness for the material. 
 

( ) ( ) ( )2 2 2 2 2 21 6 6 6
3oct x y y z z x xy yz xzτ σ σ σ σ σ σ τ τ τ= − + − + − + + +  (4) 

 
The material model described in equation (2) was selected for further studies and has been 
implemented in the general purpose FE-program ABAQUS [7] as a UMAT routine. Note that in 
this first version of the material model implemented into ABAQUS tensional strains is allowed 
to occur in the unbound material.  
 
3 Numerical example 
A numerical example was created in order to test the UMAT routine and investigate the impact 
of the non-linear stiffness modulus. The test road structure consists of 3 layers, see figure 3a. On 
the top there is a bitumen bound layer which is assumed to be linear-elastic. The second layer 
from the top i.e. the unbound base course is modeled with both the non-linear resilient module 
and the linear elastic material model e.g. used in the Swedish design guide [1]. Beneath the top 
two layers described above a subgrade is situated and modeled as linear-elastic material.  The 
geometrical outline of the FE-model used in this case is based on axi-symmetry with infinite 
boundary elements in the horizontal direction. The elements used in the road structure itself are 
8 node axi-symmetric elements. A vertical load P=550 kPa with a radius of 0.15 m was applied 
at the axi-sym. center of the FE-model of the road structure. The material properties used are 
presented below in Tab.1. 
 
Calculation 1 EBit=6e9Mpa 

�Bit=0.45 
Ebase=5e4 MPa, 
�Sub=0.35 

Esub=5e7 MPa, 
�Sub=0.4 

Calculation 2 EBit=6e9Mpa 
�Bit=0.45 

k1=1252, k2=2.046 
k3=1.610, k4= 1., k5= 1., 
k6=0 and k7=1 

Esub=5e7 MPa, 
�Sub=0.4 

 
Tab. 1 Material properties assumed and used in the calculations. 
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        Figure 3a) FE-model      Figure 3b) Displacement at the road surfaces. 

 
 



The results, from these first calculations performed with resilient modules stated in (2), 
indicates that the UMAT in which the material model is implemented appears to be giving 
reasonable results based on the magnitude of the displacements in the road surface, see figure 
3b. A deviation between the linear elastic solution and the non-linear calculation is shown in 
figure 3b. The stiffer behavior can be explained with the circumstance that the magnitude of the 
resilient modulus increases rather fast when there is an increase in the stress levels and at a 
certain stress limit the resilient modulus becomes larger then the assumed elastic modulus.   
 
4 Conclusions and future research 
Including an expression for a non-linear stress dependent resilient (stiffness) modulus, equation 
(2), clearly has a significant impact on the calculated displacements in surface of the road 
structure. The non-linear resilient modules appears to make the unbound base layer stiffer in this 
case, but further studies have to be performed in order make any statements on the impact on 
road modeling in general.    
 
Further development of the formulation of the materials model implemented in the UMAT in 
ABAQUS is necessary. The first object to target, in order to improve UMAT describing the 
material model, is to formulate and implement a tension-cut-off routine. This to avoid that 
tensional strain occurs in the unbound layers. Another important issue is how insitu stresses 
should be handled. This have do be considered due to the formulation of (2) in which the initial 
stresses gives the first resilient modules, which could lead to numerical problems if the initial 
stresses are zero or close to that value.  
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ABSTRACT

Summary For the integration of inelastic constitutive models many different algorithms exist, however,
the fully implicit backward Euler method has became the most popular one. In this study explanations
why the backward Euler method seems to be the “most accurate” is sought and its limitations are discussed.

Motivation

Backward Euler scheme seems to be the most popular method for integrating inelastic constitutive
models. A quotation from the book of SIMO & HUGHES, Computational Inelasticity, Remark
3.3.2.2 on page 125 states [1]: “The overall superiority of the radial return method relative to other
return schemes is conclusively established in Krieg and Krieg [1977]; Schreyer, Kulak and Kramer
[1979] and Yoder and Whirley [1984]”. In these papers [2, 3, 4] comparisons has been performed
numerically. However, explanation for the good performance is missing.

To start with, numerical integration of a simple scalar constant coefficient evolution equation

��������	��
� ����
��������� (1)

is considered ( ����
 ). The backward Euler scheme is the simplest implicit method for integrating
such equation. However, it is asymptotically only first order accurate. On the other hand, second
order accurate midpoint rule gives oscillating results when the amplification factor is negative, i.e.
when ����� �"! � , which is also the stability limit for the explicit forward Euler method. Therefore
none of the members of the single step one parameter generalized midpoint family seems to be
ideal.

However, considering the behaviour of the integrators when large time steps are used, different
conclusions can be drawn. In fig. 1 amplification factors of backward Euler (bE), midpoint rule
(mpr)( equals to the (1,1) Padé approximation of #%$& �(')� ��� � ), continuous Petrov-Galerkin of
degree 2 (= (2,2) Padé) and discontinuous Galerkin of degree 1 (= (1,2) Padé) methods are shown.1

It is clearly seen that the backward Euler is the most accurate when large time steps are used, i.e.
it has the smallest error measured by * +-,/. ' +1032%4(5367* , where +8,9. is the amplification factor of the
numerical scheme in question.

1Here the name continuous Petrov-Galerkin (cPG) is used for a Galerkin method where the test functions are of
one degree lower than the trial functions and are continuous in time. In the constant coefficient case the midpoint rule
equals to the cPG method with piecewise linear trial functions.
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Figure 1: Amplification factors of different time integrators. Solid line represents the exact value.

However, the situation is different when the coefficient � is time dependent. It is now assumed that

�/� � � � � �����1'������ #%$ & �('	� � ��
�
In this case the dG(0) method is different from the backward Euler scheme. Analytical expressions
for the amplification factors are

+ 0 2 4(536 � #%$& � ')� � � ��� '�� � � ���9��� ' #%$& �('�� � � ��
�
"�
+���� � �� ��������� '��	��� #%$& �('�� �	� ��
 ��� �

+������ ��� � �� ��� ���"��� '�� � ��� ���9��� ' #%$& �('�� ��� � � ! ��
 �
+�� ��� ���"!$#�%�& � �� �����(')�1'������ #%$ & �('+*, � ��� �.- �	� �

where +������ ���/!$#�%�& denotes the amplification factor of the dG(0) method where the integrals are
evaluated by the midpoint quadrature.

When the diffusivity coefficient is monotonously growing, then the difference between the bE and
dG(0) methods is insignificant. However, in the opposite case, especially in the extreme cases,
the dG(0) method is considerably better than the bE integrator if the necessary integrations are
carried out accurately. This is shown in fig. 2 where the amplification factors are shown for a case� � 
0�21 �3� � 
0�24 , which means that ��'65 
0���7� � when � '6587 .

Inelastic material model

A material model developed in refs. [5, 6] will be used in the following discussion. In this model
the inelastic strain rate,

�9;:=< , is described in the uniaxial case by expression

�9 :=< ��> #%$ &@? '�ABDCFEG? ���� EIH�JLK�MONPQ?SRROT E � (2)
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Figure 2: Aplification factor in the time dependent coefficient case.�
= 33 GPa A = 12 kcal/mol� = 0.3

B
= 2 � � 
 !�� kcal/mol �KROT = 20 MPa > = � 
�� s

! *� = 3.5 � = 2��� = 30 	 m

Table 1: Material parameters of the binary near eutectic Sn40Pb solder.

where >�� � �
� and A are material parameters,
B

is the gas constant,
C

the absolute temperature,� � ��� are the current and initial grain sizes (average diameters) and R�T is the “flow stress”.

Assuming linear elasticity, the material behaviour in the uniaxial case is described by a scalar
equation

�R � ���> JLK�M$N PG? RR$T E � � �9 � (3)

where
�

is the Young’s modulus and
�> �Q> #%$& �('�A ! BDC �%� � � ! ��� H . The critical time step for the

explicit Euler scheme of the linearized form of the equation (3) is

�	� 5� � �� �> � R T��� �JLK M$N P ! * � R ! R$T ����� JLN � R ! ROT � � �� �> � R T����� � R ! R$T �;�
For the material parameters shown in Table 1, the value of � R�T ! ��� �> � ��� 2.7 s. The material data
is taken from ref. [6], which represents mechanical properties of the binary near eutectic Sn40Pb
solder. The critical times step for explicit schemes can thus vary several orders of magnitude (for
the above mentioned material ��� 5��� � 
 ! , ' � 
 , s), depending on the state, as also pointed out
in ref. [7].



Concluding remarks

For standard elasto-plastic models the backward Euler method seems to be the best integration
scheme. However, when the material parameters are time dependent, e.g. due to temperature
changes etc., or there are non-diffusive components in the material model, e.g. damage, other
integration schemes will be more appropriate, for time independent case see ref. [8]. For time
dependent models the discontinuous Galerkin could be a competitive alternative to the backward
Euler scheme.
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ABSTRACT

Summary A fitting procedure for a viscoelastic-elastoplastic material model capable of representing
amplitude and frequency dependent properties of filled elastomers is presented. This model can be
implemented into three dimensions using allready available constutive models in standard non-linear
FE-software. In the one-dimensional case the model can be represented using a simple mechanical analogy.
A model like this contains a lot of material parameters that have to be fitted to experimental data.

1 Introduction

Filled rubber is a two-phase material consisting of long polymer chains in a structure of microscopi-
cal carbon-black particles. Reorganization of the rubber network during dynamic loading gives rise
to a viscous damping. When subjected to a dynamic load, breaking and reforming of the carbon-
black structure results in a frictional damping. Experimental results show that the viscoelastic be-
haviour is independent of the elastoplastic behaviour [7].
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Figure 1: Left: The generalized one-dimensional material model. Right: Typical hysteretic loop for
a filled rubber.

This observation of independence between the viscoelastic and elastoplastic behaviour has lead to a
constitutive model, suitable for finite element analysis. The one-dimensional representation of this
model is shown in figure 1a. In simple shear the elastic properties of rubber is rather linear. This
makes it possible represent the material model as a one-dimensional model, where the elastoplastic
elements are coupled in parallel with the viscoelastic elements and all springs are linear. The reason
for having more than one viscoelastic or elastoplastic element is to get a better fit to a wider range
of experimental data.



In [1] it is shown how this model can be generalized into three dimensions by an overlay principle,
where one viscoelastic and one elastoplastic FE-mesh are merged. The advantage of this approach
is that it does not require any implementation of new constitutive laws, since it only uses already
implemented finite elements models. Another advantage of this approach is the ability to use the
parameters already obtained for the one-dimensional model in figure 1a. Hence, it is sufficient to
fit the one-dimensional model to the experimental data.

2 Material testing

A test batch of 13 different elastomers has been evaluated, using a simple shear test. Experiments
were carried out at the Marcus Wallenberg Laboratory in Stockholm [5].

The test specimens have been subjected to a sinusoidal load, for a wide range of different frequen-
cies and amplitudes, with shear strain amplitudes up to 12% and frequencies up to 180 Hz. To pre-
vent hysteretic heat build-up from ruining the result, the measurement was performed during a very
brief time period, but still long enough to obtain a stationary reading and to avoid Mullin’s effect.

The dynamic behaviour of a rubber component is mainly attributed to the dynamic stiffness and the
hysteretic damping. I.e. the aim of the fitting procedure is a material model with the same damping
and stiffness properties as the tested rubber material. For this purpose the dynamic shear modulus
Gdyn and the hysteretic damping d, have been derived from the experimental data according to

Gdyn =
�0

�0
; d =

Uc

��0�0
(1)

with variables Uc; �0 and �0 defined in figure 1b. The hysteretic work per unit volume Uc is ob-
tained through numeric integration of the experimentally recorded time history data.

3 Fitting procedure

Although the one-dimensional material model is rather simple in its appearance, the number of
material parameters to be determined, makes the fitting procedure difficult. The dynamic behaviour
of rubber components is mainly attributed the dynamic stiffness and the damping properties. Thus
the aim is to obtain a material model which exhibits the same stiffness and damping as the rubber
material, for a given range of frequencies and strain amplitudes.

3.1 An optimization approach

The fitting procedure can be viewed as an minimization of the relative error of the material model
compared to the experimental data. For this purpose an error function is proposed.

err =

mX
i=1

�
di � dexper; i

dexper; i

�
2

+ k

mX
i=1

�
Gi �Gexper; i

Gexper; i

�
2

(2)

By choosing the scale factor k, it is possible to decide whether to emphasize a correct modeling of
the dynamic modulus or a correct modeling of the damping. The damping di and shear modulus Gi



are calculated from the material model at the specified frequencies and amplitudes. Thus the error
function is a function of the material parameters (see fig. 1a).

3.2 Implementation

Evaluation of damping and dynamic stiffness can be done in two different ways. The most correct
way is to simulate the material model using a time-stepping algorithm. This is, however, a time-
consuming procedure, especially if the optimization algorithm is such that the error function needs
to be evaluated repeatedly. For an increasing number of experimental data and material parameters
this approach will be very slow. A more efficient approach is to use an analytical approximation.
However, the poor accuracy of this approach yields a model with poor fit to experimental data.
The solution to this problem is to use the analytical approach for repeated evaluations and to use
the time stepping algorithm to calibrate the analytical expression with certain intervals. Based on
this basic idea a fitting procedure has been developed.

Since the material model may contain a large number of parameters it is sometimes difficult to find
a true global optimum. To stabilize the optimization algorithm it is important to use a structured
approach. At first the elastic and the elastoplastic elements are fitted to only the lowest frequency
for which the influence of the viscoelastic elements may be neglected. The second step is to keep
the elastoplastic parameters constant and to fit the elastic and viscoelastic parameters to all exper-
imental data. At this stage the model is rather close to its best fit. This viscoelastic fitting process
could be accelerated using a complex calculation approach as done by (Tervonen 1995).

The final step is then to fit all material parameters to all experimental data, resulting in a minor
adjustment of the material model.

4 Results

In this section the material model is fitted to experimental data from a hydrogeneted nitrile rubber
(HNBR). The dynamic modulus and damping of HNBR is equaly dependent on both frequency and
amplitude.
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Figure 2: Left: Dynamic shear modulus of HNBR. Right: Damping properties of HNBR. Solid line:
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As seen in figure 2 the assumption of independence between amplitude and frequency behaviour
is not entirely true. Thus, it is impossible to get a perfect fit to the dynamic shear modulus. In order
to get a good fit to dynamic modulus a large k according to equation 2 was used. This results in a
more moderate fit to the damping behaviour.

5 Conclusion

The material model has two basic limitations. Firstly, it assumes independence between frequency
and amplitude. Secondary, it does not include any damage effects.

As earlier discussed, the assumption of independence between rate and amplitude behaviour is not
entirely true. However, the error introduced in the model seems to be relatively small.

The second limitation means that the main use of the model is restricted to modeling conditioned
rubber or rubber with neglectable damage properties. Out of the 13 tested rubber materials, only
two filled natural rubber materials exhibited damage behaviour.

It can be concluded that the viscoelastic-elastoplastic material model is a good model for condi-
tioned rubber or rubber with little or no damage effects.

REFERENCES

[1] P-E. Austrell, A.K. Olsson. A Method to Analyze the Non-Linear Dynamic Behaviour of
Carbon-Black-Filled Rubber Components Using Standard FE-codes. Second European Con-
ference on Constitutive Models for Rubber, Germany, (2001).

[2] P-E. Austrell. Modeling of Elasticity and Damping for Filled Elastomers. Lund University,
Division of Structural Mechanics, Report TVSM-1009, Sweden, (1997).

[3] A.R. Johnson, T. Chen. Modeling Step-Strain Relaxation and Cyclic Deformation of Elas-
tomers. NASA Langley Research Center Hampton, USA, (2000).

[4] M. Kaliske, H. Rothert. Int. J. Solids Structures , Vol. 35, No. 17, pp. 2057-2071, (1998).

[5] L. Kari, K. Lindgren. Personal communications conserning tests. MWL, KTH, Sweden,
(2001).

[6] M. Tervonen. From Measured Complex Modulus to Creep Compliance-Theory and Matlab
Implementation. Matlab Conference, University of Oulu, Finland, (1995).

[7] G.E. Warnaka. Effects of Dynamic Strain Amplitude on the Dynamic Mechanical Properties
of Polymers. ASME Rubber and Plastics Div., Paper 62-WA-323, New York, (1962).



Damage induced Anisotropi in a Hyperelasto-Viscoplastic model with
Mixed Hardening

Edin Omerspahic
Department of Structural Mechanics

Chalmers University of Technology, Göteborg, Sweden
e−mail: edin@sm.chalmers.se

Volvo Cars Corporation
Safety Centre, Crash Simulations, Göteborg, Sweden

e−mail: eomerspa@volvocars.com

ABSTRACT

Summary  Hyperelasto-Viscoplastic Damage theoretical model with mixed hardening is developed for
finite deformations. Damage (D) is given as an anisotropic damage by means of a fourth order
transformation tensor (M(D)). The effective stress concept and the energy equivalence hypothesis provide
the evolution of the mechanical properties of the continuum through the elastic stiffness degradation
(C=MTC0 M). The constitutive and evolution equations are derived from the Helmholtz free energy and
the potential of dissipation, respectively.

Crash simulations by means of explicit FE codes are frequently used today in the automotive
industry in order to guarantee crash safety of the cars. High strength steel and aluminium are
materials, which become more and more used in the car structures. Materials like these are less
ductile than the materials normally used today, and it is likely that rupture and separation in the
material will occur in crash situations. Considering the materials in the automobile body as the
virgin ones, the significance of continuum damage mechanics in order to discover initial flows
of future cracks is very important.

The development of anisotropic damage can occur even if the virgin material is assumed to be
isotropic. This is accomplished with the fourth order damage transformation tensor, M(D),
where D is the second order damage tensor. In principal coordinates it is given by

[ ]332211 ddddiag=D (1)

Chow and Wang [2] introduced the fourth order rank symmetric damage transformation tensor.

[ ]221133113322332211 111111111 ddddddddddiag −−−−−−−−−=M (2)

In index notation, this equation can be seen as

( ) ( )
11
22

ijkl ik ik jl jlM d dδ δ= − − (3)

In order to facilitate easier derivation of constitutive and evolution equations, an approximation
to this equation is introduced.



( )1
2ijklM δ δ δ δ δ δ≈ ik jl il jk ik jl jl ik+ -d -d (4)

The formulation of the damage transformation tensor presumes the acquaintance of the concept
of the effective stress (Chaboche [1]), which states that the real stresses in damaged material are
influenced by the damage, i.e.

1−=s M s (5)
The energy equivalence hypothesis (postulate by Cordebois and Sidoroff [3]), which states that
the elastic energy for a damaged material is the same as the one in a fictitious undamaged
material in which the stress is replaced by the effective stress ( ( )( ) ( )0CsDCs , ,ww ee = ), leads to
an expression for the damaged stiffness tensor.

( ) ( ) ( )DMCDMDC 0
T= (6)

Making use of the index notation, performing multiplication and taking into consideration only
first order damage dependence give us the “dynamic” expression for the stiffness tensor. The
stiffness degradation is obvious during the damage propagation.

( ) ( ) ( )1
2ijkl ik jl il jk ij kl ik jl jl ik il jk jk il ij kl kl ijC d d d d d dµ δ δ δ δ λδ δ µ δ δ δ δ λ δ δ= + + − + + + − +  (7)

A physically transparent formulation of the finite viscoplasticity with mixed hardening can be
defined on the stress free intermediate configuration, by means of the well-known multiplicative
split of the deformation gradient, vpeFFF = . The strain tensor on the intermediate configuration
( E ) is given by a push-forward of the Lagrangian strain tensor. This tensor can be additively
decomposed into an elastic and a viscoplastic strain tensor ( vpe EEE += ). The dual stress
tensor corresponding to E is the second Piola-Kirrchhoff tensor defined on the intermediate
configuration ( 2S ), obtained by a push-forward of the same tensor given on the reference
configuration.

The Helmholtz free energy is an energy potential function from which we derive the constitutive
equations. For a hyperelasto-viscoplastic process with mixed hardening and damage it is a
function of four variables: the elastic strain tensor, the damage tensor, the accumulated plastic
strain scalar (κ ) and the back strain tensor (z ). This energy function can be decomposed into
three energy potentials: the elastic strain energy and the free energies due to isotropic and
kinematic hardening, respectively.

( ) ( ) ( ) ( ), , , ,
p p

e e iso kin
ewψ κ ψ κ ψ= + +E D z E D z (8)

The constitutive equations give the conjugated variables to them on which the energy potential
depends: the second Piola-Kirrchhoff stress tensor, the damage energy release rate tensor (Y ),
the isotropic strain hardening scalar stress (R) and the back stress tensor (X ).

( ) e
e
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E
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∂
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= (9)

( ) eeew E
D
DCE

D
Y

∂
∂=

∂
∂=

2
1 (10)



( )1
iso
pR R e κψ

κ
−

∞

∂
= = −

∂
d (11)

kin
p k
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∂
X z

z
(12)

where ∞R , δ and k are material parameters.

The evolution equations are derived from the potential of dissipation. The assumption is that the
dissipated energy in plastic flow and damage process is uncoupled. In accordance with that, the
dissipation potential consists of a plastic dissipation potential and a damage dissipation
potential. Associated laws are suggested, i.e. both the plastic yield function (the von Mises yield
criterion) and the damage yield function are taken for the plastic and damage dissipation
potential, respectively.

( )( ) y
DDDD

p sRf −−−−= XPXP
2
3 (13)

0
2
1

0 2
1 YYYf T

ekvd −



=−= YJY (14)

where superscript D stands for deviatoric part of the tensors,P  is the Mandel stress tensor, ys is
the yield stress (material parameter), 0Y  is an energy release rate threshold (which must be
overcome in order to accomplish the damage propagation), ekvY  is the equivalent damage energy
release rate and J is a suitable damage characteristic tensor. Hayakawa and alt. [4] define it as
the fourth order tensor function, which describes the damage induced change of the damage
surface. By noting that the damage dissipation potential is a symmetric function of each
component of damage conjugated forces they defined it as

( )1
2ijkl ik jl il jkJ δ δ δ δ= + (15)

Finally the evolution equations can be obtained. One should notice that the evolution equation
for the back stress tensor is not derived from the dissipation potential, because the case of
Armstrong-Fredrick kinematic hardening includes non-associated evolution law.

1 3
2

D Dmpvp
p p D D

p

f
fλ

η

∆ ∂ −
= =

∂ −
P X

E
P P X

& (16)

1 mp
p p

p

f
f

R
κ λ

η

∂
= − =

∂
&& (17)

1
2

pd
d d

d ekv

f f
Y

λ
η

∂
= − =

∂
JYD

Y
&& (18)

vpc bs
∆∇

= −X E X& (19)



ηp, ηd, m, p, c and b are material parameters, 
1
22

3
vp vps

∆ ∆ 
=  

 
E E& is the accumulated strain while

vpTvp LXXLXX −−=
∇ & and vp vp vp vp vp vp

∆

= + +TE E L E E L& are contravariant and covariant Oldroyd
rates of the stress and strain tensor, respectively.

The numerical model of the presented theoretical model is under construction.
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ABSTRACT 

Summary In designing of structural composite materials, numerical modelling is used 
as an approach to determine mechanical properties. Here structural wooden board was 
modelled as a multilayer system consisting of thin layers. To determine elastic and 
viscoelastic characteristics of the layer a method for estimation and analysis of the 
stressed state during deformation of structural element consisting of flat orthotropic 
viscoelastic platelet (fibre) and binder is developed. 
 
Products of widespread and growing popularity are structural wooden boards and oriented 
strand boards (OSB). These are engineered products made by processing trees into strands or 
wafers, which are bonded together under heat and pressure with waterproof resin. To determine 
elastic and viscoelastic characteristics of structural element a method for determination and 
analysis of the stress state during deformation in calculation element with flat orthotropic fibres 
taking into account rheological characteristics of the fibre and binder (matrix), the content of 
components and the degree of anisotropy of fibres is developed. 

The primary calculation element consists of an orthotropic fibre (reinforcement) with 
rectangular cross-section Af , the dimensions of which are bf × hf , the thickness of binder is hm. 
Here and bellow, the index f refers to the fibre and index m to matrix. In the case of spraying the 
binder does not completely fill the space between the reinforcing elements. The complexity of 
the problem is magnified by the necessity of predicting the workability of the material with the 
time factor being taken into account [1]. 

In order to determine the strain characteristics of a structural element, i.e., the compliance tensor 
Sijkl and its variations with the passage of time t at a given load, certain assumptions must be 
made. The calculation element is a macroscopically homogeneous orthotropic body, and there is 
a good coalescence at the sites of the fibre and sprayed binder. Additional stresses in the lateral 
directions x2 and x3, if stresses along the fibre (direction x1) are applied, are small. During 
loading of the element in a lateral direction, the strains are proportional to the volume of the 
corresponding component of the material: 

)3,2,()()1()()( =εµ−+εµ=ε jittt ijmfijffij , (1) 

where µf is volume fraction of reinforcement. 
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As the physical dependences for matrix and fibre we use the dependence of the linear heredity 
theory of creep (the Bolzmann-Volterra theory), which, using the integral operators, are written 
in the form 

;~)()( klmijklmklmijklmijm KtSt σ+σ=ε  (2) 

)3,2,1,,,(~)()( =σ+σ=ε lkjiKtSt klfijklfklfijklfijf . (3) 

In the dependencies (2) and (3), the value of Sijkl is determined by using technical constants of 
the densified wooden flakes and binder. The influence of the particle length lf and discrete 
bonding is taken into account in finding the calculated value of the longitudinal modulus and the 
corresponding coefficients of the lateral strain νf i1 (i= 2, 3). Here the reduction factor ψ is used, 
which is obtained from the dependence 
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The factor ψ takes into account variable length of fibres lf , statistical distribution of fibres with 
respect to length Z(lf) and incomplete bonding between fibres. The fibre stresses 1

~
fσ  arise in the 

case of alternating regions with and without an ideal bond, 1fσ  – in the case of an ideal bond. 

The value of coefficient D is found according to [2]. The effective values of modules in 
transversal directions Ef 2 and Ef 3 as well as Poisson’s ratio νf 32 was determined according to the 
assumption of uniformity of the field of stresses and taking into account the binder volume. 

The compliance tensor components Siijj(t) and stresses in material constituents are determined by 
solving a system of three linear equations, which in matrix form is written as  

)()( tt BAX = . (5) 

The unknown vector components are the compliances and stresses, i.e., 

[ ] )3,2,1,()(),(),()( T
1111 =σσ= jitttSt fmiijjX . (6) 

The index “T” denotes transposition. 

For the compliance S1111(t) the matrix of the system A and vector B(t) are determined on the 
basis of physical equations and equilibrium equation during the action of σ11 = 1. They have the 
following form 
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During determination of the compliance S1122(t) we shall consider the deformation of a structural 
element by the action of stresses σ22 = 1. In this case, the matrices A and B(t) are determined by 
using physical equations for the main strains, main lateral strains, and the additional lateral 
strains of the binder and fibre, the equations for the simultaneity of strains for complete lateral 
strains, and equation for equilibrium for additional stresses. The form of matrix A coincides 
with (7), while vector B(t) is written as 
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In the case of the action of stresses σ22 = 1, the component S2222(t) is also found. The matrices A 
and B(t) are formed using the dependence (1) for the main strains of the components of the 
material, the physical equations for the main strains, the complete main strains and lateral 
strains of the composite, and also the equation for simultaneity of strains in the lateral direction. 
The vector of the free terms has the form 
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but the system matrix can be given as 
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The remaining compliances of this group are determined in a similar way, and because of their 
size are not given here. 

The compliance in shear is estimated from the dependence of the change in the longitudinal 
force F(x1) in the fibre of finite length during shear loading. By numerical differentiation of 
function F(x1), the dependence of the change in the shear stresses for discrete bonding τm(x1) 
and the length-averaged value of these stresses is found. In the case of short fibers and 
incomplete bonding the reduction factor χ for shear compliance is determined by the 
dependence 
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Here the value <τm>∗  expresses the conditional level of the mean shear stress, if the fibre length 
is large and the bonding is ideal. During the action of shearing stresses σij = 1 (i ≠ j; i, j = 1,2,3), 
the components of the compliance tensor can be written as 

χµ−+µ= )()1()()( tStStS ijijmfijijffijij . (13) 

The averaging of the strain characteristics according to Foigt and Reuss [3, 4] in effect makes it 
possible to determine the lower and upper bonds of elastic and viscoelastic characteristics of 
composite material with anisotropic reinforcement. 

REFERENCES 

[1] A.M. Skudra, F.J. Bulavs und K.A. Rocens. Kriechen und Zeitstandverhalten verstarkter 
Plasten. VEB Dt. Verlag, Leipzig, (1975). 

[2] J.A. Brauns and K.A. Rocens. Applied Model of a Composite with Incomplete Bonding and 
Finite Length of the Reinforcing Elements. Mechanics of Composite Materials, No 5, 868-
875, (1991). 

[3] R. M. Christensen. Introduction to the Mechanics of Composites. John Wiley & Sons, New 
York, (1979). 

[4] A. Z. Lagzdins, V. P. Tamuzs, G. A. Teters and A. F. Kregers. Method of Orientational 
Averaging in the Mechanics of Materials. Longman Group VK, London, (1992). 



Micro mechanics modelling of fibre composite materials
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ABSTRACT

Summary The mechanical performance of a wood fibre composite material is simulated using finite
element analysis and a 3D micro-mechanics model. The fibre network geometry is created by an own
developed preprocessor taking in account how the shape of a fibre is affected by the shape and location of
the neighbouring fibres.

Predicting the mechanical properties of composite materials is a problem that has been subject to a
great interest the past fifty years and it has renderd in number of analytical models [1]. With the de-
velopment of the finite element analysis it has been made possible to perform more accurate anal-
ysis and to simulate more complex materials like wood fibre composites containing orthotropic
cellulose fibres. Many finite element models for composite stiffness are using finite element anal-
ysis on a representative volume, most often containing a single fibre covered by a matrix material
phase [2, 3]. These models are well motivated when dealing with short fibre composites with a low
fibre volume fraction. For other fibre composites there is a significant influence on the shape of a
fibre from the shape and location of the neighbouring fibres. The possibility of making large nu-
merical models of composite materials is increasing with the performance of computers, making
it possible to create advanced morphology-based fibre network composite models containing sev-
eral fibres. Still, so far only simple, regular fibre geometries have previously been analysed using
3 dimensional FE analysis [4]. The present study relates to composite materials with random fibre
networks with geometrical fibre-to-fibre interactions [5].

The present model uses an advanced fibre network preprocessor in order to simulate composites
with long orthotropic fibres such as high pressure laminates, HPL, which are made up of layers
of impregnated paper. The purpose of the model is to estimate all stiffness and hygroexpansion
components of the composite material. The model is a 3D model and uses a square unit cell with
a number of fibres modelled as orthotropic solid elements in a surrounding of an isotropic matrix
material. The response of the unit cell is simulated while exposed to an increase in moisture content
and to loading in the x-, y- and z-directions respectively. The hygroexpansion analysis is in direct
analogy with thermal analysis and can as well be used for that purpose. The model parameters are
the constituents mechanical properties and fibre geometry including fibre dimensions, fibre orienta-
tion distribution, volume fractions and how the fibres form when being placed on top of each other
and then pressed together. The geometry of the fibre network is created in a preprocessor where the
user can decide the location of every single fibre. This enables a good representation of the micro
geometry of a fibre composite material.

Some assumptions are needed to simplify the problem. The composite is built up of discrete fibre-
matrix plates, storeys, with equal height which means that all fibres are of equal thickness. There



is full adhesion between the fibres and the matrix material, and matrix material occupies all fibre-
free space, i.e. there are no voids. The fibres are considered as long, i.e. no fibre ends in the middle
of the unit cell, and the cross section has a rectangular shape since the HPL material is made of
collapsed craft paper fibres. Constitutive relations for the fibres and matrix material are orthotropy
and isotropy respectively and they are linear elastic with no time or rate effects.

The fibre network geometry preprocessor is written in Matlab-code. It generates Patran pcl-code for
creation of fibre and matrix geometry in Patran. Placing of the fibres are made by mouse-clicking
in a diagram. The first fibre will then cross the square in the lowest composite storey, the next fi-
bre will in general cross the first fibre, climbing over it to the second storey according to a smooth
third-degree polynomial spline. When a new fibre is added the preprocessor calculates all areas and
points where it intersects with the previously placed fibres, giving the information of its form in the
z-direction.

Figure 1: Five fibres in a network

As more fibres are added the geometry will typically be as shown in Figure 1. Figure 2 shows the
corresponding shape of the matrix material, which together with the fibre geometry will form the
unit cell.

The indata to the preprocessor is fibre dimensions, orientation, slope distance and number of fibres.
This will control the maximum fibre density, i.e. the degree of fibre packing. Maximal hard pack-
ing of fibres is achieved by using large fibres with short slope distance and, most important, smartly
placed. Each fibre added to the model makes it harder to pack to a high density. With five fibres a
fibre volume ratio of 40 per cent is possible.



Figure 2: Corresponding matrix material geometry

The finite element mesh is generated by Patran, a finite element preprocessing software. The mesh
is first generated to make surface elements which are extruded to the next storey to make them solid
elements. The most difficult part is making the elements between two storeys compatible. This is
achieved by dividing the matrix material areas into smaller sections. A more convenient way of
creating the finite element model from the geometrical data would be by using a solid modeller in-
stead of Patran.

The models results shows good agreement with experimental results from measurements of stiff-
ness and hygroexpansion properties of HPL. Some comparisons are also made with a recent devel-
oped analytical model [6].

The fibre network preprocessor can be used in order to simulate larger composite network models
with complicated geometries. The model can also be used to simulate fibre materials without any
matrix material, like paper. Further development will enable use of nonlinear constitutive models
like viscoplasticity and mechanosorption.
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ABSTRACT 

Summary: The goal of the present work is to introduce a buckling performance criterion into the design 
of optimal topologies for periodic structures – assumed to be of infinite extent and linearly elastic. This is 
based on a linearized elastic buckling formulation for perfectly periodic microstructured materials. Some 
finite element results illustrate the idea and the influence on optimal microstrucures. 
 
Introduction 
Spatially periodic microstructures can be obtained by a periodic repetition of a base cell (also 
termed unit cell). The “averaged”, homogenized or effective elastic properties can be found by 
the mathematical theory of homogenization (see, e.g., [1]). These elastic properties can be 
optimized by varying the size, the shape or the topology of the base cell using the techniques of 
structural topology optimization. Such an “inverse homogenization” can be found for example 
in [2-4]. A typical feature of a broad range of the optimal periodic microstructures obtained is 
that they are extreme in the sense of linear elasticity but will fail by local buckling at a 
microscale level. It is also characteristic for the “inverse homogenization” problem that it is 
possible to find several distinct periodic materials that represent equally optimal elastic 
properties. Thus, the material design process should allow for an improvement of the buckling 
performance of the base cell while maintaining the optimal elastic properties of the 
homogenized material. 
The wavelengths of the buckling modes of structures built from materials with periodic 
microstructure can have several different length scales depending on the geometry, dimensions 
and loading of the medium. In the present paper we employ a simplified analysis problem 
covering only the case of highly localized modes. The linearized elastic buckling model is based 
on an Euler (eigenvalue) type of elastic buckling where the displacements prior to the first 
critical load at both macro- and microscale are assumed to be small and in the linear elastic 
range. This simple model captures the essence of the local instability phenomenon and results in 
a tractable topology optimization problem. The asymptotic model is based on the limit of 
infinitely small scale, i.e. the cell characteristic size is assumed to be much smaller than the 
characteristic size of the structure. Finally, it is assumed that the modes are Y-periodic, i.e. with 
the same periodicity as that of the base cell. This is related to our main concern of selecting an 
elastic buckling measure that characterizes if a cell is more or less prone to highly localized 
buckling modes. This buckling measure is subsequently used to introduce a local buckling load 
control as a constraint in the topology optimization of the base cell of periodic materials. 
 
Linearized Stability Problem 
In general terms, homogenization theory applied to linear problems establishes macroscopic 



 
 

 
 

properties without any quantifiable size scale parameter. Here we briefly state a stability 
condition that is a local condition for an infinite medium that has stress-stiffening as the only 
non-linear effect. The problem of finding the first local (microscale) and Y-periodic eigenmode 
at the length scale of the base cell reduces to: 
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where   PY  is a local scalar critical load factor (stability parameter),   u10 y1 6  is the 

correspondent local Y-periodic eigenmode, and u x00 1 6  and   χ km  (prebuckling displacements 

and corresponding local cell displacements) are the solutions of the standard linear 
homogenization problem. These fields describe the level and distribution of stress stiffening in 
the cell. 
In the computations we use finite elements to solve this eigenvalue problem that takes the form: 

(KY – PY
r KGY)φr=0, 

where KY and KGY are the stiffness and geometric stiffness matrices, respectively, for the Y-
periodic base cell and where Y-periodic eigenmodes are denoted φr. 
 
Topology Design of Materials with a Local Stability Constraint 
The topology design problem is stated as the search for an optimal distribution of a limited 
amount of material in the base cell domain, which maximizes a given linear combination of the 
homogenized elastic properties. To assure a reasonable local buckling performance, we 
introduce a lower bound on the local critical load value and assume that all buckling load factors 
are positive. Thus, the design problem is stated as: 

  min  
µ

µ µ− + −�β αijkm ijkm
H

Y
E dYy y1 6 1 6( )1  

 subject  to P dY VY

Y

: , ,min min max  P   ≥ = < ≤ ≤ =� µ y1 6 0 0 1µ µ µ  

where the constant tensor β  defines the weighting of the material properties to be optimized 

and Pmin  is a lower bound on the local critical load value. The design variables are the local 
material densities represented by the vector µ  in the base cell and the total amount of material 

is V0 . The term α µ µ( )1−� dY
Y

 represents a penalization of intermediate densities imposed to 

obtain material distributions that are nearly black and white designs, i.e., designs with no 
intermediate density at the microlevel. Finally, the local material properties Eijkm µ, y1 6  in the 

base cell are expressed as E Eijkm

p

ijkm
oµ µ, y y1 6 1 6=  (with p>1). 

 
Computational Model and Examples 
For the optimization result presented here we use the sequentially convex approximation 
method MMA (Method of Moving Asymptotes [5]). This has proven itself as an extremely 
efficient and reliable mathematical programming method for topology optimization in general. 

For the buckling analysis of the base cell, the appearance of low-density regions may result in 
non-physical localized modes in the low-density regions, which are an artifact of the inclusion 
of these low-density regions that represent void in the analysis. In order to deal with this, a 
stress filtering is required to identify the physically relevant modes. This can be accomplished 
by reducing the stress level to an insignificant stress value in low density areas (see figure 1). 



 
 

 
 

Finally, in order to control the geometric complexity in the optimized base cell, a mesh 
independent filter (cf. e.g. [2]) has been applied for some examples. 
In figure 2 we show a comparison of the local buckling performance of different distributions of 
the same amount of material in the same base cell size. Of special interest are the cases 2 and 3 
that include “chains of one-point connections”. 
The remaining examples consider the maximization of the homogenized in-plane bulk modulus 
kH of a composite material. For the first results no mesh independent filter was used as it allows 
to clearly illustrate how the constraint on the minimum buckling performance results in a 
penalization of ‘chains of one point connections’ as well as checkerboard patterns. This should 
be expected on the basis of figure 2. 
We note that here, and in the results below, the buckling constraint is not necessarily active at 
the computed (locally) optimal design. This is the case for small values of Pmin, while higher 
values of Pmin does imply that the buckling constraint is active. Even when not active at the 
optimum, the constraint does influence the result; it is active at the initial steps of the iterative 
optimization procedure and thus “steers” the computational procedure to a local optimum with 
buckling performance better than specified. 
The geometric complexity or the mesh-dependency of the resulting designs can be controlled 
through the use of a mesh independent algorithm (filter), as mentioned above. Using this 
algorithm, small scale variations in the cell can be removed and figure 4-b) to 4-e) show 
examples of base cells obtained with this strategy. 
 
Conclusions 
In this work we have used an eigenvalue buckling criteria at the microscale level to characterize 
if a certain base cell of a periodic medium is more or less prone to highly localized buckling 
modes. When applied as a minimal local buckling performance requirement in design of 
microstructures, it improves the original model for optimizing linear elastic material properties 
because the stress stiffening effect penalizes the presence of slender members, checkerboard 
pattern regions and ‘chains of one-point connections’.  
Important issues remain to be analyzed. For future work, one can consider other macroscopic 
loading cases and a different parameterization of design in terms of structural elements, e.g. 
frame element models. Moreover, one should investigate the effect of evaluating the local 
critical load PY using more cells of the periodic medium. The use of Bloch waves and the 
analysis of solids of finite extent [6] are also of interest. However, these approaches do require a 
much more complex modelling and their use in an optimization context will be a challenge. 
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a)       b)       
Figure 1. Instability modes for a macroscopic strain −1 0 0: ? : (a) without and (b) with stress filtering. 
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Figure 2: Comparison of different cells (Y-periodic mode, E is the Young modulus of the base material) 
for a macroscopic strain field given by −1 0 0: ? . 
 

     
a) PY/E=0.063 
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c) PY/E=0.128 

 k H =0.143 

d) PY/E=0.149 

 k H =0.128 

e) PY/E=0.199 

 k H =0.136 

Figure 3 - a) Initial design, b) solution obtained without local buckling constraint, and solutions obtained 
with buckling constraint of: c) Pmin=0.10, d) Pmin=0.15 and e) Pmin=0.20. 
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b) PY/E=0.176 
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c) PY/E=0.192 
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e) PY/E=0.223 

 k H =0.153 

Figure 4 - Solutions obtained with both mesh independent algorithm and buckling constraint for: a) 
Pmin=0.00, b) Pmin=0.10, c) Pmin=0.15, d) Pmin=0.20 and e) Pmin=0.225. 
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ABSTRACT

Summary This paper is a merging of two categories of established methods, one for the analysis of
stability and collapse of geometrically non-linear shells and one for the reliability analysis of structures
using FORM. The formulation and implementation of a finite element procedure is described as well as
the finite difference method in order to find the gradients of the limit state function. Numerical examples
are performed on an in-plane loaded corrugated board panel involving uncertainties in geometrical
imperfection, material properties and load.

Thin structures such as laminated shells has been extensively investigated by the use of the finite
element method during the last decades. Numerous work is presented, where the aim is to formu-
late a shell element which can be used for response analysis of general shell structures. Since the
degenerated shell element was presented [1], this type of formulation has formed a basis for the
development of procedures for as well small as finite shell deformations. Its popularity is due to
the straightforward representation of geometry and kinematics, nevertheless including the effect
of transverse shear deformations. However, the simple assumption of kinematics leads to deteror-
iating performance when the thickness decreases, which is known as shear locking. To overcome
this shortcoming work has been done in order to reduce the locking effect, e.g. reduced integration
techniques, [2, 3], and formulations based on assumed strain, [4, 5].

In many applications it is from a lifetime and economic perspective important that a structure un-
der consideration possesses a suitable degree of safety, i.e. the structure should withstand loads
under normal conditions, but nevertheless, it must not be exceedable dimensioned in order keep
house with resources. One example, which is the focus of this work, is corrugated board packages
as, for example, used for the distribution of consumer goods. Corrugated board is a material which
to a large extent incorporates uncertainties, manifested as well in material properties, geometrical
properties and load conditions under handling. In a reliability analysis, the variables affecting the
performance of the structure, called basic variables, are depicted probabilistic measures, i.e. mean
and variance. The outcome of the analysis is the share of structures that will fail encountering cer-
tain load conditions. The purpose of this paper is to merge two categories of established methods,
one for the analysis of stability and collapse of geometrically non-linear shells and one for the
reliability analysis of structures using FORM.

The different techniques excisting for reliability analysis can be categorized as either exact or
approximate, where in the latter case, some error is inferred from a simplified representation of
variation of stochastic variables. Among the exact methods are multifold integration and Monte
Carlo simulation techniques. Examples of approximate techniques are methods involving response
surface fitting and FORM/SORM (First/Second Order Reliability Methods. The exact methods
are numerically intensive and in the analysis of structures, e.g. by the finite element method, the
computational cost may be prohibitively large. This is certainly expressed for problems which are
numerically intensive in the deterministic case, for example as in non-linear finite element analysis.



In this work, FORM is used together with a geometrically non-linear finite element procedure for
the collapse analysis of in-plane loaded shells.

In using FORM, a limit state function is expressed in terms of the structural resistance and the load.
This limit state function represents an-dimensional surface in the basic variable space. The limit
surface can then be mapped into the standard uncorrelated normal space of the basic variables,
as proposed in [6]. The idea in FORM is to approximate the limit state surface by a tangent
hyper-plane at the design point, which is the point at the limit surface closest to the origin. At
this point the frequency function of the standard normal variables is most dense, i.e. it provides
the largest contribution to the probability content. The design point can be found by an iterative
minimization procedure, e.g. as described in [7], and the distance from the origin to the design
point is referred to as the reliability index, which provides a first order measure of the probability
of failure. Typically, the convergence of the iterative procedure is very fast, even though the basic
problem involve strong non-linear properties. In the figure below an example of the convergence of
the limit state function is shown, whereg is the difference between the failure stress and evaluated
stress. The failure probability level for the postbuckling problem is in this case4 � 10

�4. The
application of reliability methods to the finite element method is currently subject for intensive
research activities and examples of work done in this area [8, 9, 10, 11, 12].

The iterative procedure for finding the design point involves finding the gradient of the limit state
function. The gradient can be found either analytically, as was done in [10] for the case of truss
elements and four node plane elements, or numerically. The advantage of an analytically derived
gradient is of course the computational fastness, nevertheless, at the expense of the generality in the
code. Herein, a finite difference technique is used in order to find the gradient. A Newton Raphson
procedure is used for calculation of the response at the current values of the stochastic variables.
This point is subsequently used as a start point for the new values of variables and equilibrium
iterations are anew performed. It can be noted that all the variables in the non-linear finite element
equation are functions of the stochastic variables. For example, the strain-displacement matrix
varies as a function of the geometrical imperfections.

The structure analyzed in this work is an in-plane loaded corrugated board panel. The analysis
is part of a larger project devoted to reliability design of corrugated board packages. Failure is
assumed to take place in either of the facings due to material failure or local buckling and the
failure criterion presented in [13] is used for the analysis. The stability behaviour of the panel is
analyzed by several numerical examples. The variable uncertainties studied are for example the
magnitude of the geometrical imperfection of the panel, material properties such as strength and
stiffness, and load magnitude.
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Figure 1: Convergence of the limit state function.
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ABSTRACT 

Summary The paper is devoted to the computational studies on the sensitivity coefficients of the 
homogenized elasticity tensor of the fiber-reinforced periodic composites. The general methodology is 
based on the Central Difference Method (CDM) implemented in the Finite Element Method (FEM) 
homogenization-oriented MCCEFF computer system. The sensitivity functional is proposed as the elastic 
strain energy stored in the homogenized system to approximate the sensitivity of the entire composite 
structure in various elasticity problems.  
 
As it is known, the sensitivity analysis in engineering systems is employed to verify how input 
design parameters of a specific engineering problem influence the analyzed state functions. The 
sensitivity coefficients (or gradients) [1,2], being the purpose of such an analysis, are computed 
using partial derivatives of the considered state function with respect to the particular input 
parameter. The main goal is in our case to carry out the general computational sensitivity 
studies of the homogenized elasticity tensor for the fiber-reinforced composites with linear 
elastic and transversely isotropic constituents. The composite is first homogenized - the 
effective material tensor components are computed using the FEM-based additional computer 
program. Then, material parameters of the composite most decisive for its effective material 
properties are determined numerically using special algorithm based on the Finite Difference 
approach. The sensitivity analysis introduces a new aspect of the homogenization technique – it 
can be verified if the homogenized and original structures have the same or even analogous (in 
terms of their signs) sensitivity gradients. Therefore, if for instance the sensitivity analysis show 
that most of the sensitivity coefficients with respect to composite material parameters are 
negative, then the homogenization theory should be essentially corrected.  

The effective (homogenized) tensor )eff(
ijklC  is determined from the following equation:  

( )( ) Ωε
Ω

+Ω
Ω
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)eff(
ijpq χ , 

 
(1) 

where χ(11), χ(12) and χ(22)  denote some specific homogenization displacement fields. Next, the 
sensitivity gradients of effective elasticity tensor components with respect to the design 
parameters vector represented by h are computed as  

( )












Ωε
Ω∂

∂
+













Ω
Ω∂

∂
= ∫∫

ΩΩ

dC1dC1
d

dC )pq(
klijklijpq

)eff(
ijpq χ

hhh
, 

 
(2) 



The most interesting problem however is not to determine the sensitivity coefficients of 
the effective tensor with respect to particular composite parameters but to approximate the 
sensitivity of the entire structure to these parameters. So that, let us define the sensitivity 
functional as the strain energy of the homogenized composite under combination of the uniform 
constant strains in x and y directions as well as under the transverse strain εxy. It can be shown 
that therefore, the partial derivatives of G with respect to the design parameter ‘h’ can be 
calculated as  
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Using this formula the most decisive design parameter for the homogenized composite for the 
uniform plane strain can be determined from the computed effective elasticity tensor gradients. 
This definition is tested for the fiber-reinforced composite with the fiber having round cross-
section, while the entire cell is rectangular (reinforcement ratio is equal to 50%, e1=84.0 GPa, 
e2=4.0 GPa, ν1=0.34 and ν2=0.22). All computational tests are done by the use of the specially 
tailored computer program MCCEFF, designed and implemented for deterministic and 
stochastic homogenization-based computational studies.  
 
Tab. no 1. Averaged sensitivity gradients  

 
h h

C )eff(
1111

∂
∂

 
h

C )eff(
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∂
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h

C )eff(
1212

∂
∂

 
h.G  

e1 0.141 0.072 0.958 2.129 
ν1 0.056 0.180 -0.173 -0.090 
e2 0.867 0.926 0.044 1.881 
ν2 1.205 2.814 -0.011 3.987 

 
Finally, the approximation of the gradients by some specific numbers is done by the arithmetic 
average of the values corresponding to 1% and 10% increments of the design parameters in 
Finite Difference computations. These values are used to approximate the value of h.G  what 
follows the unstable behavior of these gradients [1,2]. Using such an approximation, the 
Poisson’s ratio of a matrix and next Young’s modulus of the fiber are detected as the most 
decisive design material parameters of this composite in the view of its homogenized elastic 
parameters.  
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ABSTRACT

Summary: In this report we present a mathematical model of the diode-pumped solid- state laser cooling
system for minimization of the thermal gradients in the laser material. Particular attention was drawn to
the compensation of the thermal expansion and the thermal stretches.

Due to the specific nature of some laser materials, e.g. ytterbium doped YAG crystal high
intensity pump beams are required to achieve sufficient inversion in the laser material. However
part of the pump power is transformed into heat in a small volume of the active media. Thermal
effects caused by the heat are limiting the efficiency of the laser. Recently, optimal design of a
diode-pumped laser was theoretically and experimentally investigated [1-5], where the pump
and laser mode sizes relation and the deformation of laser was considered. Particular attention
was drawn to the design of the laser cavity and pressure compensation of the thermal expansion.

In this report we present a mathematical model of the diode-pumped solid-state laser cooling
system for minimization of the thermal gradients in the laser material. The schematic view of
the laser is presented in Figure 1.

In this work, we analyze the model in which the additional cooling is taken into account
(thermal effects in the laser may cause the laser deformation or even laser decomposition).
Namely if the thermal stretches 3,2,1  ,)( 00 =∆>−=∆ ittCll iiili , then we can observe the

laser deformation (this is a limiting factor for the efficiency of the laser). On the other hand, if
the thermal stretches 3,2,1  ,1 =∆>∆ il ili , it may cause the laser decomposition. Here iC  are

the thermal expansion coefficients, t temperature in the crystal, 0t  initial temperature, il

measures of the crystal, i0∆  and i1∆  are limit values of stretches. The minimization problem of



stretches in a diode-pumped solid-state laser is transformed to the minimization problem of the
cooling in laser crystal.
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Figure 1. Schematic view of the end pumped laser with cooling system

The mathematical model of the temperature regime in the crystal is based on heating equation
with mixed boundary conditions. The model can be written as differential equation
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where u  is temperature, t  is time, ),,( zyxf  is the light source, 21,DD  and 3D  are the

diffusion coefficients, Q  is the specific heat and ρ  is the crystal density.
Below, we describe initial and boundary conditions.

Initial condition ( )0=t :
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Here a  is crystal width, b crystal height and c crystal length.

The first two boundary conditions mean full isolation and the third means cooling. The
temperature in the crystal increases when the laser beam shoots to the crystal. Because of the
increasing temperature, the crystal can be deformed or simply decomposed. In order to avoid
this we have to place over and under the crystal refrigeration plates. The function ( )yx,ϕ
describes refrigeration process in the laser crystal. Since the biggest temperature is in the middle

of the crystal, i.e., 
2

a
x = , so the functions ( )yx,ϕ  will also attain its minimum value there.

The function ( )yx,ϕ  has to minimize temperature gradients.

For simplicity we investigate the optimization problem in two dimensions. When the crystal is
lightened by the lighting source, it is important that the temperature gradients
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would not be too big.

For us, the most important temperature gradient is 
[ ] x

u
a ∂

∂
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max . So the minimization problem was

to find
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u
x ∂

∂
 max min

a0,ϕ
.

Some problems arise when we solve analytically the differential equation with such boundary
conditions. Therefore, we solved our mathematical model numerically. The finite – difference
technique [6] was used for the discretization of the model. This technique allows us to solve
effectively the differential equation with mixed boundary conditions.

The numerical analysis was made with the following values: crystal width mma  3= , crystal

height mmb  5.0= , specific heat )/( 5.0 gKJQ = , crystal density 3/ 00717.0 mmg=ρ ,

initial temperature Ku  200 = , thermal conductivity coefficients

)/( 003.0321 mmKWkkk === , power WP  4.2= , quantum defect % 7=K ,

mm 8.0=α , mm 1.0=β , mm 7.1=γ .

The minimization process was performed as follows: the function ( )xϕ , which means cooling,
was chosen for the temperature gradient in the x  direction, to satisfy the inequality
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≤
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. First of all the function ( )xϕ  was chosen to be a constant:

( ) Kux 200 ==ϕ . That means that the top and the bottom of the crystal are evenly cooled

(from the physical point of view, it is the simplest system of cooling). Our calculations show



that the maximum temperature gradient in the crystal was 
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constant value ( ) Kx 20=ϕ  was replaced by the parabola
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The minimal temperature gradient was obtained for Ku  271 =  and the parabola was
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28 2 +−= xxu . Then we used this parabola in the minimization process by changing

parabola values in some net points. The gradients were calculated for 
2

b
y =   in the places,

where they were big, we corrected the values of the function ( )xϕ . This process allowed us to

reduce the previous value of mmK / 90.8  to a lower level
of mmK / 08.2  (see Fig. 2).
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Figure 2. The temperature distributions in the crystal
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ABSTRACT 

Conical shells of piece wise constant thickness are considered. The shells are simply supported at the 
outer edge and subjected to the uniform lateral pressure loading. Optimal designs are established 
assuming that the material of shells obeys von Mises yield condition.  
 
1. Introduction 
Limit analysis of rigid-plastic conical shells was studied by Hodge [2] in the case of the Tresca's 
yield condition. Much less light has been shed on the load carrying capacity of shells made of 
von Mises material. Bryant, Lee and Mura [1] suggested a variational method for lower bound 
analysis of plastic conical shells. In the earlier works by the authors [3, 4] optimal designs have 
been established for conical shells in the case of a Tresca material. In the present sudy the 
optimization technique used in [5] for optimization of plastic spherical shells is accomodated for 
conical shells subjected to the lateral pressure. 
 
2. Formulation of the problem and basic equations 
Consider a conical shell (Fig.1) subjected to the uniformly distributed lateral pressure. Assume 
that the thickness is piece wise constant, e.g.  

jhh =  

for  .,...,0);,( 1 njaar jj =∈ +
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Fig. 1 Conical shell subjected the uniformly distributed lateral pressure 
 



We are looking for the design of the shell corresponding to the maximum load carrying capacity 
for given weight of the structure. Thus the material volume 
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is assumed to be given. 
Due to symmetry the stress state of the shell is defined by membrane forces and 
moments . Equilibrium equations of a shell element may be presented as  
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The corresponding strain rate components are 
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In (2) U and W stand for displacement rates in the normal and circumferential directions, 
respectively, whereas being the yield stress of the material. 
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In the case of a distributed loading it is reasonable to introduce the following nondimensional 
quantites: 
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In (4)  and  stand for the limit moment and limit load for the reference shell of constant 
thickness . Thus 
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where the primes denote differentiation with respect to ρ . Making use of (4) the strain rate 
components may be presented as  
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Boundary conditions for stress components are following 
( ) ( ) ( ) .0,0,0 00101 === ααα smn (8) 

 
 

3. Stepped shell of von Mises material 
The problem posed above consists in the maximization of the limit load so that the conditions 
(2) – (8) are satisfied. 
The problem is treated as a variational problem and the solution can be obtained as the solution 
of the boundary value problem with equations  
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The set is integrated by the use of the method adjoint operators.  
In Fig. 2 the curves labeled with 1, 2 and 3 correspond to 3.0,9.0 == kk and 

respectively.  1.0=k
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Fig. 2. Load carrying capacity vs. internal radius for von Mises yield condition. 
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ABSTRACT

Summary The aim of this work is to determine if space mapping technique using surrogate models
together with response surfaces can be used for structural optimization of crashworthiness problems.
Further, the efficiency of optimization using space mapping will be compared to traditional structural
optimization using the Response Surface Methodology.

Structural optimization often uses gradients for the objective and constraints in order to find the
optimum solution. For nonlinear transient problems traditional structural optimization methods,
e.g. Svanberg [1], do not work due to noise in the response.

To be able to determine the optimum the Response Surface Methodology (RSM) is often used.
Surfaces based on polynomial expressions are created for the objective and constraint functions.
These surfaces smoothen out the noisy response and the gradients can easily be calculated from
the surface approximation. For further reading about RSM, see Myers and Montgomery [2].

If the number of design variables is not too large, RSM only needs a few number of evaluations
to calculate the surface approximation. Still the simulation time for each design can be rather
long. There is therefor a need for methods where simplified models can be used for the functional
evaluation instead of using the full simulation models. The simplified models can be developed
using less number of elements, other solvers, simple approximations with analytic solutions etc.

One method which makes this possible is called space mapping where a surrogate model is used
together with the full model. The surrogate model (coarse model) determines in what direction the
optimization will continue and the full model (fine model) will determine the design point for the
next iteration. The use of the coarse model makes it possible to reduce the total simulation time
and the fine model is used to get an accurate solution.

The first space mapping paper was written by Bandler et al. [3] where the basic theory was stated.
In Bandler et al. [4] the problem was formulated for using Broydens method for non-linear equa-
tions and Bakr et al. [5] introduced a trust-region methodology. A mathematical viewpoint of space
mapping can be found in Madsen and Sondergaard [6] .

The space mapping method has until now mainly been used in electromagnetics and circuit op-
timization applications, see e.g. Bandler et al. [3] and Bakr et al. [7]. Leary et al. [8] used it in
structural optimization on a simple cantilever beam.

The aim of this work is to study if the space mapping technique can be used on nonlinear transient
dynamic problems, e.g. crashworthiness problems.



Table 1: Results from optimization of the beam for RSM and space mapping optimization.�1 �

250, �2 � 0:55, cost in minutes (SM space mapping).

x� f� �� iter fine coar cost
RSM-L 21.83;25.0 0.8510 250.4;0.482 4 20 0 40
SM 21.63;25.0 0.8435 250.9;0.487 5 5 45 10

Optimization methods

The response surface methodology is a method for constructing global approximations of the
objective and constraint functions based on functional evaluations at various points in the design
space. The strength of the method is in applications where gradient based methods fails, i.e. when
design sensitivities are difficult or impossible to evaluate. The selection of approximation functions
to represent the actual behavior is essential. These functions can be polynomials of any order or
be the sum of different basis functions, e.g. sine and cosine functions. To determine the unknown
coefficients a least square approach is used. This approximation is applicable for all types of
objectives and constraints in the optimization problem.

The idea of space mapping is to use two models for optimization. One coarse model, the surrogate
model, that is fast to solve but not accurate enough, and one fine model that takes long time to solve
but is more accurate. With these two models the optimization algorithm using space mapping takes
advantage of the coarse model short solution time and the accuracy of the fine model. Therefore
the vast amount of function evaluations are performed on the coarse model and corrections are
made with the fine model. The theory for space mapping can be found in Leary et al. [8].

Examples and results

Three examples are used to study the algorithm where all examples are constrained structural
optimization problems with one or two design variables. The problems are: one optimization of a
beam and two crashworthiness problems. The crashworthiness problems are one square tube and
one symmetric model of a vehicle front from Saab Automobile AB which both impacting onto a
stone wall. All models are Finite Elements (FE) models.

One coarse model is developed for each system, used as surrogate model in the optimization using
space mapping. For the beam problem the analytic solution to the problem is used as a coarse
model and the fine model is solved with the nonlinear FE program LS-DYNA Hallquist [9] with
a nonlinear material model. For the square tube both the fine and coarse models are solved in
LS-DYNA, but the mass of the coarse model is increased in order to lower the total CPU-time.
Finally, in the coarse model of the vehicle model only the most important parts are included in the
model. The two vehicle FE models are shown in Figure 1.

The optimum solution and the total CPU time used for the optimization using space mapping and
RSM with linear (RMS-L) and quadratic (RMS-Q) surface approximations are given below for all
examples. The vehicle model is only optimized using space mapping due to the excessive solution
time.



Table 2: Results of square tube for RSM and space mapping optimization.�1 � 110, cost in hours
(SM space mapping).

x� f� �� iter fine coar cost
RSM-Q 1.347;55 0.7771 110.0 3 28 0 32.6
RSM-L 1.349;55 0.7781 109.7 3 16 0 18.7
SM 1.395;55 0.775 110.4 4 4 36 8.87

Table 3: Design variable, objective and constraint history for the vehicle reanalysis using space
mapping,42000 � �1.

iter 0 1 2 3 4 5
xk 1.650 1.568 1.490 1.475 1.436 1.450
fk —- 2.995 2.846 2.819 2.742 2.751
�k —- 44508 43425 43578 42318 42702

Conclusions

The algorithm converged to the optimum solution for all problems. The total CPU time for conver-
gence was reduced with up to 53% using space mapping compared to RSM. The conclusions are
that optimization using space mapping can be used for optimization of crashworthiness problems
with a significant reduction in CPU time. The drawback of the algorithm using space mapping is
that it seems to be more unstable compared to RSM, e.g. if a bad starting point is chosen space
mapping might not converge due to a too large derivation between the models. The starting point
must be ’intelligently’ chosen based on knowledge of how the space mapping technique works
and how the model behaves for parameter changes.

This work is founded by Saab Automobile AB, Volvo Car Corporation, the research programmes:

Figure 1: The fine and coarse model for the vehicle reanalysis



ENDREA and PROPER through the Swedish Foundation for Strategic Research. Saab Automobile
AB has provided geometry and material data for the vehicle model application. We acknowledge
Nielen Stander at LSTC for allowing us to use the optimization package LS-OPT.
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ABSTRACT  
 
Summary: The present paper is devoted to the orthogonal polynomials and their application to numerical local 
approximation and higher order differentiation algorithms used to the data, which can be either equally or 
randomly sampled. The Gram polynomials norms spectra will be compared to the respective spectra associated 
with the Chebyshev polynomials in view to the Runge phenomenon. The applications of such algorithms in 
flight dynamics and biomechanics will be shown in the separate paper.   
 

INTRODUCTION   
 
 The numerical methods of local approximation and higher order differentiation, which are based on 
the use of orthogonal Gram polynomials [1,2,6,10-14], still attest their performances facing to other 
methods, polynomial [3,4,7,8,16,19,21] or other, e.g. spline method [5,15,17]. Nevertheless, they are 
limited to the case of strictly equidistant samples and then it is necessary to generalize the set of 
orthogonal polynomials to the fall of randomly but orderly distributed nodes in the standard interval. 
Contrary to the Gram polynomials, which once developed for the desired odd number of local nodes 
are valid for all positions of the local grid on the global set of nodes, the generalized orthogonal 
polynomials must be designed on each local set of nodes. Such procedure was adapted for the wavelet 
networks (called wavenets) [20] by Espiau et al. [18].  
The author has developed the generalized orthogonal polynomial method and designed the associated 
software as the programs THOR and TOR (1999) computing the derivatives up to the 2nd, and the 
program TORFL (2000) which can compute all allowed arbitrary order derivatives.   
 

GENERALIZED LOCAL ORTHOGONAL POLYNOMIALS 
 
Let consider the GN randomly distributed nodes being a dense set in the closed interval  

 such that:  
 

  and the N (odd) nodes local subset of the global nodes dense in the standard interval: 

such that N≤GN and: 

Then it can exist M=GN-N+1 possible local subsets of nodes denoted by the index ls satisfying the 
inequalities 0≤ls ≤M-1.  
The generalized orthogonal polynomials set with the discrete type of orthogonality is defined as 
follows:   
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  where their scalar products and norms in the Hilbert space l2[-1,1] are commonly defined below:    

  where δk,l denotes the Kronecker symbol.  
 To develop the sets of generalized orthogonal polynomials for each ls, we use the recurrent formula:  

  where:  

 and the symbol Ar,r denotes the leading coefficient of the polynomial φr of r-th order.  
The length of each subinterval of the interval [a,b] is determined (for given ls) as below:  

  then the scaling of the given subinterval is defined by the following formula:  

 which will be further useful.  
Let now consider the function f(z) for a≤z≤b and sampled in the knots (nodes) defined earlier. Then 
the approximating polynomial y(z) can be defined for each subinterval ls comprising a respective set 
of local nodes as follows:  

   where r≤N-1 and: 

The sets: 

  are the spectra of norms defined for all local subintervals (containing N knots) of the global interval, 
and when the knots are equidistant then for the all subintervals then one spectrum of norms exists. The 
Chebyshev polynomials [1,2,6] have the interesting properties concerning their spectra of norms L2 
and l2 respetively:  

 
 In the case of discrete type norm the nodes are zeros of the TN(x) which are a dense set in the [-1,1] 
standard interval, also:  
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The central point of the each local set has the label ls+0.5(N-1) and generally does not lie at the 
midpoint of the respective subinterval i.e zls+0.5(N-1) ≠0.5(zls+zls+N-1), this means that referring to the 
standard interval x0.5(N-1)≠0. One can prove that at the midpoint of the local set of knots the derivatives 
of the function f(z) are the most precise and least sensitive to data disturbances, when the grid is 
equidistant such proof is mathematically easy to do [12-14].  
The differentiating polynomials for all subintervals assume the following form:  
where the inequality n≤r denotes the capacity of the differentiation order, and the polynomial order r 

can not exceed r≤2(N-1)0.5 when the nodes are equally distributed, i.e. for Gram polynomials.   
 

RESULTS  
 
Due to the large amount of data files we can not include all them in the paper even as plots. However, 
some examples will be given.  
The list of files concerning the norms spectra is following: GRAMNO5, GRAMNO7, GRAMNO9, 
GRAMNO11, GRAMNO13, GRAMNO15, GRAMNO17, GRAMNO19, GRAMNO21, 
GRAMNO23, GRAMNO25, GRAMNO27, GRAMNO29, GRAMNO31, GRAMNO33, 
GRAMNO35, GRAMNO37, GRAMNO39, GRAMNO41, GRAMNO43, GRAMNO45, 
GRAMNO47, GRAMNO49, GRAMNO51, GRAMNO53, GRAMNO55. Here, the numbers are the 
amounts of nodes N of the local grids.  
The list of files concerning the norms spectra of the modified Chebyshev polynomials is following: 
TJEBNO5, TJEBNO7, TJEBNO9, TJEBNO11, TJEBNO13, TJEBNO15, TJEBNO17, TJEBNO19, 
TJEBNO21, TJEBNO23, TJEBNO25, TJEBNO27, TJEBNO29, TJEBNO31, TJEBNO33, 
TJEBNO35, TJEBNO37, TJEBNO39, TJEBNO41, TJEBNO43, TJEBNO45, TJEBNO47, 
TJEBNO49, TJEBNO51, TJEBNO53, TJEBNO55.  
The modified set of Chebyshev polynomials is: T0(x), 2T1(x), 2T2(x), ..., 2TN-1(x), and they have the 
identical leading coefficients as the orthogonal Gram polynomials described above.  
The example of comparison of the norm spectra either for Gram and Chebyshev polynomials 
(modified) for N=11 is shown in the Tab.1.  
 

J ║pj║2  ║mTj║2  
0 11 11 
1 17.6 22 
2 21.9648 22 
3 25.3034496 22 
4 26.99034624 22 
5 26.17245695999999 22 
6 22.40215896436364 22 
7 16.21227011821029 22 
8 9.277233159408746 22 
9 3.722382097397441 22 
10 .783659388925784 22 

  Tab.1. Spectra of norms for Gram polynomials (file GRAMNO11) and modified Chebyshev  
  polynomials (file TJEBNO11) where: m=1 for j=0, m=2 for j≠0. The Runge phenomenon  
  limit is 2(N-1)0.5=6.324555320336759.   
 

CONCLUSIONS 
 
1. The numerical development of the orthogonal polynomials set must be done using the double 

precision numbers regardless the data numbers type.  
2. Such procedure is valid for N≤39 if the interpolation is required and N≤55 is nowadays the 

absolute limit.  

( ) ∑∑ ∑
== =−+

φ=φ







−

=−φ=
r

0j

)n(
ls,jls,j

n
ls

r

0j

r

0j

)n(
ls,jls,j

n

ls1Nls
ls

)n(
ls,jls,j

)n(
ls )x(aSK)x(a

zz
2)zz(a)z(y



3. The use of randomly distributed nodes makes more realistic the computations of data derivatives 
when the sampling sway occurs.  

4. The limit r≤2(N-1)0.5 can not be overtaken for practical computations 
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ABSTRACT

Summary   The semi-analytical finite elements (SAFE) for approximation of three-dimensional state
variables into cross-sectional direction of thin-walled beams are proposed. The method is able to describe
distortion of cross-section by additional DOF. Attention is focussed on simulation of buckling. The
versatility of the SAFE approach is demonstrated by the solution of practical examples for U-section
beam.

1. Introduction

The engineering theory of thin-walled beams describes bending, non-uniform torsion and out-
of-plane warping, but restricts in-plane distortion of the cross-section. It is based on an
analytical approximation of displacements and stresses within cross-section. As an alternative to
the existing classical models the semi-analytical finite element approximation [1] of cross-
sectional distribution of state variables is further developed in this report. The proposed
approach, extended here to distortion, considers a thin-walled section as an assemblage of finite
elements, where linear warping is described by membrane deformations of individual elements,
while linear distortion of cross-section by bending of elements.

2. Conception of Semi-Analytical Finite Elements

Generally, three-dimensional distribution of the displacement field of the beam u(x, y, z) is
reduced to one-dimensional one by an approximation in the form of

 ( ) ( )[ ] ( )xzyzyx Ufu    ,      , , =  , (1)

where [ f(y, z) ] is the cross-sectional approximation matrix and U(x) is the vector of generalised
displacements. The stresses may be approximated independently in the same manner.

Let us consider the beam as a thin-walled cylinder. The contour of the cylinder build up of
straight segments and shaping cross-section is considered as domain of one-dimensional finite
elements. These elements are termed here as semi-analytical finite elements. The flat segment of
cross-section, which is defined by single SAFE, is termed here as subelement. Actually, the
construction of global displacement approximation (1) for the entire cross-section focuses on
local approximation within a single semi-analytical element se along perimetric co-ordinate p:

 ( ) ( )[ ] ( )xppx sesese Ufu        , =  . (2)



The second task − derivation of conventional finite elements − follows a standard well-defined
path. Longitudinal distribution of generalised displacements U se(x) within subelement se may
be expressed in a standard manner, while three-dimensional approximation of displacement is

 ( ) ( ) ( ) sesesese xzyzyx UNfu 









=      ,     ,, . (3)

Here, U se is the vector of nodal displacements, [ N se(x) ] is the longitudinal displacement
approximation matrix.

Now, the global approximations (1) is element-wise approximations, which may be constructed
by assembling local approximations (2-3). Indeed, once semi-analytical elements se and
corresponding shape [ f se(p) ] and [ N se(x) ] functions are determined, they will be used to
establish alternative energy expressions or governing equations of the beam in terms of new
generalised variables.

3. Finite Element Discretisation

As stated above thin-walled subelement couples membrane behaviour and distortion. The
membrane behaviour is described by simplified two-dimensional membrane element (Fig. 1).
Here, the displacement field contains two components u(x, p) = { ux(x, p), up(x, p) }T. Finally,
after semi-analytical discretisation, displacements are defined by three independent nodal
variables ( ) =xseU {U se

xk (x), U se
xl (x), U se

p (x)}T. The longitudinal components U se
xk (x) and

U se
xl (x) attached to lines l and k are usually approximated by the simplest Lagrangian

polynomials. For the transversal component U se
p (x) the higher-order interpolation polynomials

providing a link between longitudinal and transverse variables are required.
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 Fig. 1. Membrane subelement with shear

Distortion as local out-of-plane bending is illustrated in Fig. 2. The cubic distribution of
transverse displacement un(x, p) along co-ordinate p is assumed for the distortion model. The
vector of generalised distortion displacements ( ) =xse

dU {U se
nk (x), ϕ se

xk (x), U se
nl (x), ϕ se

xl (x)}T in

approximation contains two translations U se
nk (x) and U se

nl (x) and two rotations ϕ se
xk (x) and

ϕ se
xl (x), while approximation matrix [ ( )pse

nf ] contains Hermitian polynomials. The same

polynomials are used for construction of [ N se(x) ].

The membrane and distortion DOF of subelement are stuck together by selection of complex
thin-walled elements. The example of U-section beam element composed of three subelements
is presented in Fig. 3.
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4. Distortion in Buckling Problem

 Buckling and especially local buckling is chosen here to illustrate distortion phenomenon of a
thin-walled beam. A critical condition, at which buckling of a structure impends, is obtained
considering the second variation of the total potential energy of a continuum, expressed in terms
the internal strain energy Eint stored in the volume V of a continuum and the external work Wext
done. This condition provides buckling problem as a linear eigenvalue problem. By separating
membrane and distortion behaviour the strain energy may be expressed in terms of linear and
non-linear membrane energies Elin m and Enon m as well as distortion energy Elin d, where subscript
m indicates membrane and d indicates distortion variables.

 Linear membrane energy Elin m produces membrane stiffness matrix [ Klin m ] the general
expression for which is obtained using mixed approach [1]. The distortion part of strain energy
Elin d may be presented in terms of curvatures κx(x, p) and κp(x, p) and bending moments
Mx(x, p) and Mp(x, p) using simplified model of bending plate. It produces distortion stiffness
matrix [ Klin d ].

 The non-linear strain energy Enon m expressed in terms of non-linear strain εnon x(x, p) produces
geometric stiffness matrix. Generally, the non-linear strain associated with transverse
displacements Um produces membrane geometric stiffness matrix [ Kg mm ] while strain



associated with distortion displacement Ud produces distortion geometric stiffness matrix
[ Kg md ]. Finally, the buckling problem now may be presented as eigenvalue problem
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Usually, by solution of buckling problem of beams or plates, matrix [ Kg mm ] is neglected but in
thin-walled beams its role is significant.

5. Numerical Example and Conclusions

Various different examples of U-section beams under longitudinal loading have been tested to
verify the proposed SAFE distortion approach. The example of compression loads F1 > F2 is
presented for illustration (Fig. 4).

a) b) c) d)

128 DOF
(SAFE)

264 DOF
(SAFE)

32532 DOF
(Shell)

L

1F

F

F
F

1

2 2

Fig. 4. Beam and local buckling mode obtained by different discretisation of DOF occurs

As expected by variation of relative wall thickness, the change of buckling modes occurs. In the
range of thin section local instability occur (Fig. 4b-c). The results show a rather good
agreement between semi-analytical and ‘exact’ shell approaches (Fig. 4d). In the range of
moderate thickness global buckling is observed. This may be explained as predominating of
shear effects, which is insufficiently incorporate into our model.

The SAFE has some advantages in comparison to the classical thin-walled beam theory: a) the
proposed on-dimensional semi-analytical model of thin-walled beam is much more simple
comparing it with expensive shell finite element model; b) higher-order deformations as well as
buckling modes may be described by introducing additional DOF; c) new types of local loads
and supports my be introduced;
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ABSTRACT

Summary This paper deals with a finite element formulation of a 4-node element for geometrically
non-linear (GNL) analysis of layered shell structures. The element employs the MITC approach proposed
by Dvorkin & Bathe [1] in order to eliminate the problem of shear locking. It uses full numerical integration
both in-plane and through the thickness. The formulation passes all patch tests and shows good results in
all tested configurations.

Introduction
The quest for robust finite elements for shell analysis has since the introduction of shell elements
been a major goal. The goal seems to be almost reached with the introduction of the Assumed
Natural Strain methods, which include the MITC (Mixed Interpolation of Tensorial Components)
approach applied in the present work. A natural next step is to generalize these robust elements
to allow the analysis of structures ranging from conventional metal structures, over composite
laminates to sandwich structures. Furthermore, the use of these enhanced elements in other fields
such as design optimization seems an obvious development. Such work has already begun and
the present work is to a great extend related to the work of e.g. [2, 3, 4] but further introduces
robust shell finite elements into the field of topology optimization. These robust shell element are
essential for future design and optimization of advanced structures such as wind-mill wings.

Element formulation
Considering some of the typical applications of laminated shells, such as ship hulls, wind-mill
wings, aeroplanes and other large structures it seems reasonable to limit the element modelling
capabilities to gross response of structures. Consequently, an equivalent single layer model for
describing the laminate behavior seems adequate. Furthermore, considering the material properties
and layer stacking of such large structures, it is noted that these often change rapidly over the
structural surface. Consequently, the mesh of finite elements in such a model must be relatively
fine to model the changing material properties, and in such situations the benefit of a coarse mesh
of higher order elements is lost. Thus, it seems a sound startegy to choose a linear element which
is also less expensive in computational cost. However, the purely displacement-based 4-node shell
element suffers heavily from shear locking and consequently, the MITC method is incorporated in
the formulation thus eliminating these problems.

The current element formulation is based on the degenerated solid approach and the kinematic
assumptions enforced classifies the formulation as a Mindlin-type element with the following
kinematic interpolation:

ui =

4X
a=1

Nau
a
i +

4X
a=1

t

2
haNa(��a 0V

a
2i + �a 0V

a
1i) (1)



in which a is thea’th node,ui are the displacements,Na is the interpolation,t is the thickness
coordinate andha is the element thickness at nodea. The first term of (1) represents the in-plane
contribution and the second term the out-of-plane contribution. The latter is described by the dis-
placement of the reference surface normal0V

a
3i but this can be expressed through the rotation about

the two in-planenode directors0V a
1i and0V

a
2i which are defined as shown in Fig. 1.
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Figure 1: The 4-node shell element (a) and definition of unit node director0V
a
3

in nodea (b). The
rotations� and� about0V a

2i and0V a
1i respectively express the displacement of the surface normal.

From the kinematic interpolation the element strain-displacement matrix,B, may be formulated
directly, but to eliminate shear locking (emanating from spurious transverse shear energies) rows
5 and 6 are corrected according to the MITC method. The MITC method is founded in the obser-
vation that the transverse shearing strains are computed correctly at the mid-sides of the 4-node
element. The idea is to correct the B-matrix so that transverse shearing strains are computed in
these four mid-side pointsA�D (calledtying points) in stead of in the Gauss-points. These cor-
rect values are then interpolated across the element through a new set of interpolation functions:

~�ASij =

4X
k=1

N
ij
k (r; s)~�DI

ij (rp; sp; t) (2)

whereN ij
k are the new interpolation functions inr ands corresponding to theij’th strain and

thek’th tying point. From the expression in (2) the assumed strains (AS) are expressed from the
directly interpolated (DI) strains at the mid-side points. The new interpolations must naturally
fulfill the relation:

N
ij
k j

l
� N

ij
k (rl; sl) = Ækl (3)

so that thek’th interpolation function assumes the value1 in thek’th tying point and the value0 in
all other tying points. The new interpolations are of the same order as the standard isoparametric
interpolation functions used in the element. This leads to a corrected strain-displacement matrix
and in turn to an element stiffness matrix,K, by expressing the constitutive matrix,C, with the
following coefficients in the material coordinate system:

C11 =
E1

1� �12�21
C22 =

E2

1� �12�21
C12 =

�21E1

1� �12�21

C44 = G12 C55 = G23 C66 = G13

(4)

Note that the constitutive matrix resulting from the coefficients in (4) will have zero-values in the
third row and column. This is done to enforce the Mindlin-assumption of negligible transverse
effects. As shear correction factor we use5=6 for all but sandwich structures.



The global system of equations is then assembled using the equilibrium of work, expressed for
any element of volumeV and areaA:Z
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wherer denotes a load vector and the superscriptsb, c and s denote body-, concentrated and
surface loads respectively. The stress is expressed as the Second Piola-Kirchhoff stress tensor to
ensure work conjugacy with the Green-Lagrange strain tensor for finite strain. The global gov-
erning equations are obtained as the sum of (5) over all elements in the discretized domain. The
element integration is carried out by a full numerical Gauss integration. The in-plane integration
is carried out as usual but the thickness-direction integration is carried out as piecewise integra-
tion over all layers in the element. Consequently, the thickness-direction coordinate,t, is corrected
using the transformation in (6) so thattl 2 [�1; 1] in each layer:

t = �1 +
1

h

 
2

lX
i=1

hi � hl(1� tl)

!
(6)

wherehl is the thickness of thel’th layer and the sum of the first term of the parenthesis constitutes
the total thickness of the preceding layers. Inserting the modified coordinate in the Gauss integra-
tion represents an integration by substitution and consequently, the derivative of the coordinate
transformation in (6) must be found and multiplied to the integrand.

Numerical examples
The element passes all patch tests performed in constant curvature, shear, twist and membrane
as also noted by [1]. As benchmark examples we use the laminated cylindrical shell shown in
Fig. 2. The geometry appears in various articles but the current example was adopted from [5]
who developed an enhanced full layerwise 3-node triangular element for geometrically non-linear
analysis.

L

P x
z

y

2ϕ

R

Figure 2: Cylindrical laminated shell used as numerical example.

The cylindrical shell is hinged at the straight sides and free at the two curved ends. The entire
geometry is modelled with side lengthL = 508 mm, radius of curvatureR = 2540 mm and
angle2' = 0:2 rad. The lay-up is a +45/-45 (measured from the globalx-axis) laminate of equal
thickness layers and a total thickness ofh = 12:4 mm. The material properties are stated in the
material coordinate system (1-axis aligned with the globalx-axis) as:E1 = 3:2993 � 106 MPa,
E2 = E3 = 1:0998 � 106 MPa,G12 = G13 = 6:5985 � 105 MPa,G23 = 4:4128 � 105 MPa and
� = 0:25. The results from the current element formulation are presented in Fig. 3 and compared
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Figure 3: Results of linear and non-linear analysis of the cylindrical laminated shell in Fig. 2.

to the results obtained with a 8�8 mesh of triangular elements by [5].
As can be seen the results correlate very well although the current formulation exhibits slightly
stiffer behavior. The current formulation also performs very well in linear analysis and numerous
other non-linear examples.

Topology optimization of laminated shell structures has recently been implemented using the
present element formulation and preliminary results show good correlation with those obtained
by e.g. [6]. The development of optimization capabilities will continue in the near future, both for
topology and shape design optimization.
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ABSTRACT

Summary  Improvements in laser scanning and visualisation techniques makes 3-dimesional digital
models of typical civil engineering structures attractive for FEM-meshing. A FEM-mesh based on the
scanned geometry of an existing structure is beneficial because it represents true, in situ shapes and
measures. Two demonstration studies are being performed in order to evaluate the efficiency of such
procedures. While scanned models are easily achieved, the conversion to mesh-generators needs
considerable data-reduction.

INTRODUCTION

Laser scanning has become a versatile technique for a number of applications. In the construction world,
lasers has been used for surveying purposes for a many years. Scanning of structures, however, has just
recently been introduced to the civil engineering community, and the perspectives are most promising.
Laser scanning provides a new mean for making digital models of existing structures. Digital models can
henceforth be converted to true geometrical models applicable for FEM-meshing. In the CMC-project1,
two demonstration cases, based on the Cyrax2 system, are being performed in order to study the
feasibility of such a procedure for numerical modelling [1]. One of the studies concerns a complex part of
the Nidaros Cathedral. In the second demonstration study, the regular shape of a hydroelectric arch dam is
being modelled.

THE CYRAX SYSTEM

Cyrax is a portable, 3D laser scanning system for capturing, visualisation and modelling of complex
structures and sites. The scanner unit operates in a 40° vertical by 40° horizontal sector in space, for each
scan. When the scanning starts, a laser beam is sent out, pointing towards the left, uppermost corner of the
chosen spacious segment. The distance from the scanner to the target is measured by the laser-lights “time
of flight”. Next, the same action is repeated, however the direction of the emitted laser beam is rotated
downwards by a set angle. This procedure continuous until the left, lowermost corner of the chosen
segment is reached, and a complete column of points have been measured. Subsequently, a new column
of points, with a set horizontal angle to the right, is measured. The scan is completed when the lowermost,
right angle of the chosen segment is reached. The result is a regular cloud of points on the surface of the
scanned object, with known relative co-ordinates.

The scanner also records the intensity of the reflected pulse, from all the measured points. This enables
the associated software [2] to visualise the object through various graphical techniques. By combining
separate scans, complete 3-dimensional models of structures, including exterior as well as interior
surfaces are readily available. The software supports the .dxf file format, which implies that the models

                                                          
1 CMC- Computational Mechanics in Civil Eng (www.sintef.no/units/civil/projects/cmc/index.htm)
2 www.cyrax.com



can be imported to popular CAD-programs like AutoCad and Microstation. From there, the necessary
geometric entities can be transferred to mesh-generators like Femgen, which is being used in the current
study. This way, a geometric model with true, in-situ measures, for FEM-purposes should easily be
achieved.

MODELLING THE NIDAROS CATHEDRAL

Nidaros Cathedral dates back to the Middle Ages or last period of the Viking era, 1070 AD. The church is
the largest and most impressive cathedral in the Nordic countries. Since 1869, the cathedral has been
subjected to extensive rebuilding and renovation by NDR, the Nidaros Cathedral Restoration Works.

Currently, NDR are working out a detailed restoration plan, where one of the issues concerns the
loadcarrying capacity of specific parts of the cathedral. An area of special interest is the King’s entrance,
which is located at the south wall, as illustrated in Figure 1.

Figure 1 3-dimensional model of the King’s entrance

The purpose of the study is to determine the tilting of the tower and assess the belonging stress
distribution by the following approach:

• Modelling the geometry of the tower as a separate unit by means of scanning and perform a stability
analysis.

• Carry out a global analysis. This can be achieved by scanning and a pragmatic modelling of the
connections between tower, church walls, column and inner ceiling vaults.



THE MYKSTUFOSS HYDROELECTRIC ARCH DAM

In Norway, more than 99% of the electricity is being produced by hydropower. This is achieved by a
large number of water reservoirs with a vast number of dam structures. Due to the severe implications of
failure, the design basis are strict, and the owners are obliged to monitor the structural conditions
continuously. Reassessment of the load-carrying capacity and safety conditions of hydroelectric dam
structures is frequently necessary. The purpose of the study is to demonstrate the capabilities of scanning
with respect to efficient modelling for structural analysis.

Figure 2 Picture and digital model of the arch dam



CONCLUSIONS

Both structures, the King’s entrance and the Mykstufoss dam, were scanned during a three-days working
period. The number of separate scans, 8 and 10, for the cathedral and the dam, respectively, were
combined partly at the spot, and complete models where available the day after.

The models are currently being used as basis for FEM-modelling and structural analysis. This is a straight
forward process, however data reduction is necessary, and this is an issue which needs to be addressed.

Scanning as basis for numerical modelling of existing structures will be a common approach, be it for
reassessment purposes, for determination of load-carrying capacity of structures subjected to accidental
events, or for structural documentation in general.
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ABSTRACT

Summary In this talk we comment on the popularQ2 − P1 Stokes element. In particular, we recall that
on meshes of general quadrilaterals two different definitions of the scheme are possible: aglobal pressure
approach or alocal one. The inf-sup condition for the former method is known to hold; we have proved
that the same is true also for the latter one. However, the global approach is to be preferred because of a
lack in the approximation properties for the local one. Numerical experiments confirms the theory.

We consider the standard mixed formulation for the Stokes problem

find (u, p) ∈ V ×Q such that{
a(u, v) + b(v, p) = F (v) ∀v ∈ V
b(u, q) = 0 ∀q ∈ Q,

whereΩ is a polygon,V = H1
0 (Ω)2, Q = div V , the bilinear forma(·, ·) : V × V → R is a

weak form for the vector Laplace operator andb(·, ·) : V × Q → R is the Stokes bilinear form
b(u, p) = −

∫
Ω p div udx.

Given a sequence of quadrilateral meshes{Th} of Ω, we consider, as usual, the bilinear map
FK from the reference squarêK which defines a generic quadrilateralK ∈ Th. The widely used
Q2−P1 finite element method for approximating the Stokes problem consists in choosingVh ⊂ V
andQh ⊂ Q as follows. Starting from the space of bilinear vectorfields onK̂ denoted byV̂ , we
can defineV (K) as the compositions of functions in̂V with F−1

K . Then the definition ofVh is the
following

Vh = {v ∈ V : v|K ∈ V (K), ∀K ∈ Th}.

The pressure spacesQh can be defined in two different ways. Since no continuity is required, there
is no need for composing reference functions with the inverse ofFK ; this observation gives rise to
the so calledglobalapproach: functions inQ(g)

h are “true” piecewise linears, namely

Q
(g)
h = {q ∈ Q : q|K is affine, ∀K ∈ Th}.

The local approach consists in definingQh in a similar way as it has been done forVh. Let Q̂ be
the space of affine functions on̂K and denote byQ(K) the space of compositions of functions in

Q̂ with F−1
K . ThenQ(l)

h is given by

Q
(l)
h = {q ∈ Q : q|K ∈ Q(K), ∀K ∈ Th}.



We make clear thatQ(g)
h = Q

(l)
h wheneverFK is affine for anyK ∈ Th (i.e., when the elements of

Th are parallelograms); however, ifK is a general quadrilateral (for whichFK is not affine) then
Q(K) contains functions which are not affine, sinceF−1

K is not a polynomial.

TheQ2 − P1 Stokes approximation then reads

find (uh, ph) ∈ Vh ×Qh such that{
a(uh, v) + b(v, ph) = F (v) ∀v ∈ Vh
b(uh, q) = 0 ∀q ∈ Qh,

(1)

with eitherQh = Q
(g)
h orQh = Q

(l)
h .

Both approaches have been widely used in the engineering literature. The global approach has
been analyzed in [3, 4].

In [1] it has been shown that particular care has to be taken into account when dealing with quadri-
lateral elements. It follows that the spacesQ

(g)
h andQ(l)

h achive different approximation properties,
namely

inf
qh∈Q

(g)
h

||q − qh||L2 = O(h2) inf
qh∈Q

(l)
h

||q − qh||L2 = O(h) (2)

for a smooth functionq (the lack of approximation properties for the spaceQ
(l)
h cannot be avoided,

even forq polynomial).

WhenQh = Q
(g)
h it is known that problem (1) is stable. In [2] it has been proved that this is the

case also whenQh = Q
(l)
h . Hence the standard quasi-optimal error estimate for mixed methods

holds true

||u− uh||V + ||p− ph||Q ≤ C inf
v∈Vh, q∈Qh

(
||u− v||V + ||p− q||Q

)
. (3)

Combining (3) with (2), together with standard approximation properties for the spaceVh (for the
spaceVh optimal second order approximation holds true) we get, for a smooth solution(u, p),

||u− uh||V + ||p− ph||Q = O(h2) for the global approach,
||u− uh||V + ||p− ph||Q = O(h) for the local approach.

Numerical results confirm the suboptimal rate of convergence for the local approach. Even though
the suboptimality arises from the bad choice of the pressure space, the loss of one order of con-
vergence involves also the computed velocities. This result is in good agreement with the general
phylosophy of mixed methods.
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ABSTRACT

Summary This presentation concerns the problem of simulating airbag inflation. Traditionally this has
been done using uniform pressure models, where the whole airbag is considered to be one single control
volume. This is not sufficient for Out of Position problems, where the pressure distribution both in space
and in time is needed. Here some results for airbag inflation problems using fully coupled fluid-structure
analysis will be presented.

The issue of passive safety in cars has become more and more important for the car manufacturers.
Today there are not only one or two airbags in a car, certain models have ten times more then that.
With the increasing usage of airbags, the number of accidents where the airbag causes the main
injury also increases. Especially in one type of situation this is apparent; the “Out Of Position”
(OOP) crash. Several types of OOP crashes can be categorized, but they all have one thing in
common, which is that the occupant is situated very close to the airbag as it inflates, possibly
giving rise to severe injuries.

Computer simulations based mainly on the Finite Element (FE) method has for a long period
of time been used for parametric studies of airbag inflation problems. Most of these simulations
are based on uniform pressure models which originates from the work of Wang and Nefske [1].
Although these models work well for situations where the airbag is fully inflated before it is hit by
an occupant, they cannot predict injury criteria in OOP crashes, as the pressure is not constant in
space in this situation.

In this study an airbag inflation problem is solved by the use of coupled fluid-structure analysis,
where the fluid is modeled using a Multi-Material Arbitrary Lagrangian Eulerian (MMALE) de-
scription. The Euler equations

@�

@t
+r � (�v) = 0 (1)

@�v

@t
+r � (�v 
 v) = r � � + �g (2)

@�e

@t
+r � (�ev) = � :D + �g � v (3)

are solved using an operator split technique in the commercial FE-code LS-DYNA, see Hallquist
[2], and the fluid and the structure are connected together with a penalty based coupling algorithm
based on the work of Olovsson [3]. The structure is modeled using membrane shell elements with
orthotropic properties. A figure of an airbag inflation simulations is provided in Fig. 1.

Experiments have been carried out in cooperation with Autoliv Research where an airbag is in-
flated using pressurized gas from a tank. In the tank, pressure and temperature are measured as
functions of time. Also the pressure just inside the airbag is measured. From this data the inflow



boundary conditions of the airbag can be calculated assuming isentropic flow from the gas tank to
the interconnecting hose and Fanno frictional flow inside the hose, techniques which are described
in Anderson [4].

The results show good comparison between the head accelerations in the test and the simulations,
see Fig. 2, results which cannot be produced using uniform pressure models.

Figure 1: Iso surface for fluid volume fractions
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Figure 2: Head acceleration comparison
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ABSTRACT

Summary A model of the moisture movement in porous solid under isothermal conditions
taking into consideration coating of the surface of a specimen is presented in a 2-D-in-space
formulation. The conditions of usage of the 2-D model in contrast to the corresponding 1-D one
for accurate predicting of the drying process are investigated. A measure of reliability of the 1-D
model is introduced.

1. Introduction

In the literature on moisture movement in porous solids, one-dimensional-in-space (1-D)

models have been usually used. The 1-D-in-space model of moisture movement describes

the process accurately only for extremely long and wide specimens. It is reasonable to

assume 2-D moisture transfer according to the domain geometry is typical for sawn timber.

However, 1-D analysis can be successfully used to predict the process for a relatively short

and narrow specimen if four of six surfaces are heavily coated. The advantage of 1-D model

is an eÆciency of the problem solution [1]. Because of this it is important to estimate a

level (degree) of surface coating, making 1-D model as admissible to predict the process

accurately. A measure of reliability of 1-D model was introduced.

Moisture movement models have been used to solve the inverse coeÆcient problem when

the di�usion and surface emission coeÆcients need to be recovered by certain known

information on the solutions of the problem. The inverse solutions are known to be sensitive

to changes in input data resulting from measurement and modelling errors. Nevertheless,

the determination of the di�usion as well as surface emission coeÆcients for various species

of wood is the problem of today [2, 3]. Since the multidimensional inverse methods are

especially complex, it is important to determine properties of a specimen to be used in

physical and numerical experiments, allowing us to apply 1-D in the analysis.

2. Moisture movement problem

In a two-dimensional-in-space formulation, the moisture movement, under isothermal con-

ditions, in a symmetric piece of a porous medium (sawn board) of thickness 2a and width



2b can be expressed through the following di�usion equation:
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�
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�
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@u
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�
;

x 2 (0; a); y 2 (0; b); t 2 (0; T ];

(1)

here u = u(x; y; t) is concentration of moisture, t is time, x; y are space coordinates mea-

sured from the surface of the specimen to the center, and D1(u), D2(u) are the moisture

concentration-dependent di�usion coeÆcients in the space directions x; y, respectively.

The initial condition (t = 0) is

u(x; y; 0) = u0; x 2 [0; a]; y 2 [0; b]: (2)

Let us assume, that edges of the sawn board may be coated, e.g. painted. The boundary

conditions that describe symmetry and surface evaporation (t > 0) are

@u

@x

���
x=a

=
@u

@y

���
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= 0; (3)

�D1(u)
@u

@x
= Sue � u; x = 0;

�D2(u)
@u

@y
= (1� �)(Sue � u); y = 0;

(4)

where S is the surface emission coeÆcient, ue is the equilibrium moisture content (EMC)

with the ambient air climate, and � is the dimensionless degree of coating of edges (0 �

� � 1). Let us notice, if an edge of a board is extremely coated, then corresponding surface

coating degree is 1, and it equals to 0 if the surface is not coated at all.

The moisture transfer model (1)-(4) was used to simulate the drying of specimens from

northern red oak (Quercus rubra). It was assumed that the di�usion coeÆcient is constant

above �ber saturation point (fsp, 0.3 for red oak) and it is equal to the coeÆcient at

the fsp value. Though the radial and tangential di�usion coeÆcient may be di�erent, the

transverse (in the x and y directions) di�usion below fsp for red oak was represented as

D1(u) = D2(u) = D(u) = Ae
B=T+Cu

; (5)

where T is the temperature, A, B and C are experimentally determined coeÆcients [3].

Analytical solutions of problems, described by partial di�erential equations of di�usion

type, do not usually exist in cases of variable di�usion coeÆcients and complex bound-

ary conditions. Therefore, the model (1)-(4) was solved numerically. The �nite-di�erence

technique has been used for the discretization of the model. We introduced a non-uniform

discrete grid to increase the eÆciency of calculations. Since moisture evaporates from the

surface of a piece of wet wood, a bilinear step of the grid was used in the space directions

x and y from the surface to the center, while a constant step was used in t direction.



3. Reliability of 1-D-in-space moisture transfer model

The average moisture content is usually measured at various times to predict the dynamics

of sorption as well as desorption in a real experiment. The calculated average moisture

content u(t) values at any time t can be determined by numerical integration of the �nite

di�erence solutions. The relative amount of the remaining moisture content E(t) in wood

during drying at time t is usually called as the fraction of total moisture content [2]:

E(t) = (u(t)� ue)=(u0 � ue): (6)

Let k be a dimensionless ratio of the width to the thickness of a specimen, k = b=a, and

t0:5(�; k) be a function of � and k as the time when the drying process reaches medium,

called halfdrying time, i.e., E(t0:5(�; k)) = 0:5 [2]. Let t�
0:5 be a limitting value of halfdrying

time, extremely increasing the width of the specimen.

A model of drying in a 1-D-in-space formulation can be successfully used to predict drying

time for an extremely wide plate as well as for a board with heavily coated edges. In

the case of use of 1-D model, the calculated halfdrying time equals to t�
0:5. Because of

this the use of 1-D model can be called as admissible for a board if the halfdrying time,

calculated by using corresponding 2-D model, equals approximately also to t�
0:5. Let us

de�ne a function p of � and k as follows:

p(�; k) = (t�0:5 � t0:5(�; k))=t
�

0:5; t
�

0:5 = lim
k!1

t0:5(�; k); (7)

where t0:5(�; k) is the halfdrying time of the specimen calculated by using 2-D model,

assuming the specimen as an extremely long sawn board. Since t�
0:5 can be also calculated

by using an appropriate 1-D model, p(�; k) can be called as a relative error of the use of

1-D model for a specimen having the width k times greater than the thickness at degree

� of edges coating. p(�; k) may also be called as a level of 1-D model reliability to predict

a drying process of a sawn board. Let us notice that 0 � p(�; k) � 1.

We have investigated the relative error p(�; k). The transverse section of a specimen was

modelled as a rectangle having various width keeping the thickness equal to 2a = 29mm.

The model (1)-(4) was solved numerically for various values of the ratio k(1 � k � 100)

and coating degree �(0 � � � 1). In each board geometry and edges coating degree case,

the drying until the halfdrying time was simulated at di�erent drying conditions [3].

It was found, that the relative thickness of the lumber appears to be important for the

drying dynamics for di�erent values of the degree � of coating of edges. This importance

decreases with increase of �. In the case of uncoated edges (� = 0), the halfdrying time

notable increases with increase of the ratio k up to k � 10 (see also [4]). Very similar

situation appears in the case where � = 0:5. The increase of the halfdrying time versus k

is rather slight only for values of � greater than 0:9. The function p(�; k) is a monotonous

decreasing function of k (k � 1) as well as of � (0 � � � 1).

Using a computer simulator based on 2-D model and the de�nition of the relative error of

the usage of 1-D model, it is possible to adjust value of k as well as � ensuring the error

not greater than the required one in case of use of the 1-D model. Let us de�ne an inverse



function k�(p) to the function p(�; k) as the minimal value of the ratio k for which p(�; k)

does not exceed p at given �, i.e.

k�(p) = min fk : p(�; k) � pg: (8)

In other words, if k is the ratio of the width to the thickness of a specimen, k � k�(p), and

� is the degree of edges coating of the specimen then the relative error of the halfdrying

time, calculated by using 1-D model, does not exceed p due to the use of the 1-D model.

We have calculated k�(p) for several values of � and p. It was noticed that the accurate

result of the halfdrying time can be achieved by using 1-D model if a specimen is relatively

wide, irrespective of the level of edges coating. However, the accurate result can be achieved

also by increasing the degree of the edges coating. For example, if 1-D model is used for

a specimen having k � 4 and � � 0:95, then the relative error p of the result will not

exceed 0:05 because of use of 1-D model, i.e. relative di�erence between halfdrying time

calculated by using 2-D model and another one calculated by using appropriate 1-D model

does not exceed 0:05. The values of k�(p) depend on the drying conditions slightly.

4. Conclusions

The 2-D-in-space moisture transfer model (1)-(4) can be successfully used to investigate

the inuence of the surface coating degree as well as geometrical shape of the specimen of

northern red oak on the drying dynamics under isothermal conditions.

The proposed error estimation procedure can be used to adjust the width of the specimen

(long sawn board) as well as degree of edges coating to ensure required relative error

resulting from the reducing the model from 2-D to 1-D-in-space.

The 2-D model guarantees better prediction than the corresponding 1-D one of the drying

process of a sawn board if the ratio of the width to the thickness of the specimen is rather

small (< 10) or the degree of coating of edges is not very high (< 0:95 � 0:99).

REFERENCES

[1] S. Svensson and A.Martensson. Stress-strain Relationship of Drying Wood - Part

2: Veri�cation of a One-dimensional Model and Development of a Two-dimensional

Model. Holzforschung, 51(6), 565{570, (1997).

[2] O. S�oderstr�om and M.-G. Salin. On Determination of Surface Emission Factors in

Wood Drying. Holzforschung, 47, 391{397, (1993).

[3] W.T. Simpson and J.Y. Liu. An Optimization Technique to Determine Red Oak

Surface and Internal Moisture Transfer CoeÆcients During Drying. Wood Fiber Sci.,

29(4), 312{318, (1997).

[4] R. Baronas, F. Ivanauskas and M. Sapagovas. The Inuence of Wood Specimen Geom-

etry on Moisture Movement During Drying. Wood Fiber Sci., 33(2), 166{172, (2001).



On Computation of Unsteady Motion of Two-Fluid Interfaces in
Porous Media Flow

N. H. Sharif* and N.-E. Wiberg *
*Department of Structural Mechanics

Chalmers University of Technology, Gothenburg, Sweden
e−mail: nahidh@sm.chalmers.se

key words: Free Surfaces, Navier-Stokes equations, The Finite Element Method, The Interface Capturing
Technique, The Level Set Method, The characteristic-based split methods, The Transient Analysis, The
stabilization Technique

ABSTRACT

Summary: We present a numerical model for motion of unsteady two-fluid interfaces in porous media
flow. The model is based on the tracking of the interface on a fixed mesh domain. The zero level set of a
pseudo-concentration function, which defines the interface between the two fluids, is advected by a time
dependent advection equation. The time dependent Navier-Stokes equation and the advection equation are
spatially discretized by the finite element method with local mesh refinements in the vicinity of the
viscous incompressible interface. The characteristic-based split (CBS) algorithm is used for the velocity-
pressure segregation of the equations. The explicit forward Eulerian scheme for the time integration is
used for the transient analysis. The non-linear flow equation of the Forchheimer form is adopted in the
Navier-Stokes equation for the simulation of the flow in porous media. The finite element discretization is
stabilized by the SUPG and PSPG formulations that added to the standard Galerkin formulation. The
stabilization formulations provide stability and permit the usage of the same linear interpolation function
overall the unknowns. Numerical examples of unsteady non-linear flow of two-fluid interfaces in an earth
dam are investigated.

1. Introduction:
Recently the level set method has recognized as a versatile method in solving problems of
multiphase flow that encountered in many engineering and medical applications [1,2,3,4,11,12].
The authors in a series of publication has presented an Interface Capturing Technique (ICT) for
solving problems that involves propagation of fluid-gas or fluid-fluid interfaces in porous media
flow [5,6,7,8]. In these articles the interfaces are simulated using the advection equation that
derived from the level set method. The level set method represent an initial value problem (IVP)
of the Hamiltonian-Jacobi PDE type [13], which can be solved using any hyperbolic numerical
scheme. Steady flow analyses are presented in recent publications with different artificial time
integration methods for the initial value problems. Accordingly the formulations can be used for
real time applications. In this paper we intend to couple the time integration technique for the
IVP with the characteristic-based split method [9,14,15] in order to solve a transient flow in
porous media that associated with propagation of two-fluid interfaces. The formulation is
performed on a fixed mesh domain where the Eulerian perceptive consist the main framework.



2. Governing equations
The governing equations are the time-dependent Navier-Stokes equations of incompressible
flows in porous media, which briefly reviewed here. The space and time domain are denoted by
Ω and (0,T) respectively, and Γ denotes the boundary of Ω . The velocity, u(x,t) and the pressure
p(x,t) are governed by the momentum and mass balance equations:

( ) 0           o n  .    t ( 0 , T )

0                                                            o n  .    t ( 0 , T )
e

 
n t
ρ ρ∂ + + − − ∇ ⋅ = ∀ ∈

∂

∇ ⋅ = ∀ ∈

mu A B u u

u

f σ Ω

Ω

(1)

The body force due to gravity is denoted by f. and the porosity of the porous medium is denoted
by ne. Whereas ikµ=A and ˆ ic kρ=B  are the Forchheimer parameters, while the power
m has the limitation of 1.0 < m < 2.0. The symbols k i, ,ĉ  represent the intrinsic permeability of
porous medium and the constant of the inertial effect, respectively. The divergent of the stress is
obtained with the linear constitutive equation relating the stress σ to velocity and pressure
fields. In the linear constitutive equation for a Newton fluid, the deviatoric stress is assumed to
be proportional to fluid rate of strain tensor, which is defined as

  ))(()( Tuuu ∇+∇=
2
1
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Hence, the stress tensor for a fluid with dynamic viscosity µ is defined as follows:

)(2              ,p uTTI εσ  µ=+−= (3)

To model fluid-gas interfaces, we consider two immiscible fluids, l and g, with densities ρ l and
ρg, viscosities µl and µg. An interface function φ  serves as a marker identifying the fluid-gas
domain by the following simple definition {1 for fluid and 0 for gas}φ = . The interface between
the two fluids is approximated to be at φ = 0.5, and accordingly the phase dependent variables
defined as
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The evolution of the interface function is governed by the regularized time dependent advection
equation
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A set of boundary condition and a divergent free initial condition for the velocity field and an
initial profile of the interface function is provided to the solution of above equations.



3. Explicit Time Integration and CBS method
An explicit time integrator based on the forward Euler scheme is used to solve the time
dependent problem. This scheme has potential ability to reduce the time of the computation and
especially for large-scale problems and for higher dimension. For the purpose of describing the
explicit time integration scheme and the operator splitting of the CBS method the obtained
discretized and stabilized system of equation can be written as

( ) ( ) ( ) ( )

( ) ( ) ( )

T
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+ + + + + + = +

=

+ + + + =

&

&

d ? ?

e
d d
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C U 0

M M F K U F K U F K F F

(6)

Where U, P and Φ  are the vectors of unknowns of the (nodal values) velocities, pressures and
the advection functions respectively. The construction of the matrices M, K, C, A, B, MT, Mδ,
KT, Kδ, Cγ  and the vectors F, Fγ   are reviewed briefly in [5,6,7,8]. The forward Euler method of
time integration, applied to equation (6) gives

1
+1 ( ) [ ( ) ( ) ( ) ]n n n n n ndt −= + + + − − − +U U M M F F A U B U U C C Pδ γ γ

 (7)

In order to use equation (7) to advance the velocity, the pressure at time tn  has to be computed;
this is done by the CBS method, by combining the momentum equation with the time
differentiated version of compressibility constraint in (6), ( T =&C U 0  since T =C U 0 for all time)
to generate the consistent discretized Poisson equation for the pressure, evaluated at time tn,

1 1( ) [ ( ) ( ) ]T T
L n L n n n
− −= + − − −C M C P C M F F A U B U U DUγ

(8)

With Un that satisfies T =C U 0  The sequence of steps of advancing the velocity and pressure
from tn to tn+1 is thus

1[ ( ) ( ) ]n L n n n
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The presence of the 1
L
−M in above equation required the use of a lumped mass matrix.

4. Conclusion
The computation of the problem is very intensive, hence an efficient implementation is required
in order to produce the desired accuracy and to minimize the computation effort. An object
oriented programming using the C++ package of PETSC [10] is under processing. Furthermore
we intend to improve the technique by combining the formulation with FE-adaptivity in the



vicinity of the interface. The formulation is more flexible in handling fixed mesh domain in
order to track two-fluid interfaces.
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Summary the paper presents a framework for performing interactive Finite Element Analysis (FEA) in
Virtual reality (VR). The Java3d API has been chosen as the software tool to develop our system and perform
interactive FEA in VR. A 3D world for interactive FEM by Java 3D API is set up where the 3D models for
analysis are loaded from other CAD packages, such as 3DS and DXF.

1. INTRODUCTION

In recent years, there has been much excitement about Virtual Reality (VR). From its
beginning in the field of scientific simulation, VR has gradually grown into a new phase and
become a distinct field in the world of computing. The utility of VR have already been researched
and used in car design, robot, medicine, chemistry, biology and education, as well as in building
design and construction.

The Finite Element Method (FEM) and Finite Element Analysis (FEA) were created in the
late 1940’s as a structural analysis tool that was to assist aerospace engineers design better aircraft
structures [1]. Since then, aided by the rapid growth of computer power, the method has
continually developed until it has become a sophisticated generic tool for accomplishing a wide
array of engineering tasks. It has been used in civil, mechanical, geotechnique,, and environment
engineering, as well as in many other areas. The software techniques for FEA are already very
developed and mature.

The traditional way to express a design before the construction is finished is to use 2D or
3D drawings, which are drawn on 2D paper; Current Computer Aided Design (CAD) software, like
AutoCAD or SolidWorks, can do semi-real-time visualisation and rendering of the 3D data on the
computer display system. It is usually very difficult to imagine a complex building before it is
constructed. VR systems present a new method to show the ideas in a realistic 3D world. In this
world, the architects and final users can discuss how the building will look before it is constructed
and reach agreement on design decisions in a more intuitive and efficient way. Engineers can see
abstract data, such as deformation, stress or strain, which needed to be visualised in a “concrete and
real” way. Constructors can choose a better way to finish construction of the building.

To perform interactive FEA in VR leads to a comprehensive understand of the analysis and
the design in a 3D world. The basic ideas have already been around for some time. Interactive FEA
in VR, as one useful application of VR is taking off and being actively developed [2].

By using virtual pointers (like 3D mouse) and sharing virtual workspaces, remote
collaboration and accurate information sharing can be achieved. Apart from using VR in interactive
FEA in the building and construction industry, it can also be used in the education of engineering
students, to give students an intuitive understanding of the FEA technique.

2. FRAMEWORK OF INTERACTIVE FEM AND AIM OF THE RESEARCH

Most FEA package, such as ABAQUS and ANSYS, support importing geometry from
other CAD packages, and have an interactive pre/post processor, which include modelling,
managing, monitoring analysis jobs, and result animations. The aim of the research is to set up an
interactive FEA system in VR. It will integrate CAD, FEA and VR to perform real time interactive
FEA. The system consists of five components:



• Approximation module: Software to provide fast feedback and results to the user
even at the expense of accuracy.

• FEA module: FEA code to perform analysis.
• VR module: Software to interact with the VR world.
• Visualisation module: Software to visualise the numerical results from the FEA

module.
• Database module: Software to handle the input output and storage of results.

The “Glue” code is needed to make all the modules work together. The Layout of an interactive
FEA framework is as Figure 1.

The commercial FEA package available will be explored for FEA module, and FEA in
Java has been studied. This research will be concentrated on VR and Visualization modules.

The main aims of the research are:
• Set up a 3D world for interactive FEA in VR.
• Interactively modify input within VR.
• Interactively view of the results in VR.
• Implement FEA in view of the specific requirements of conducting FEA in  VR

(primary latency reduction)
Within this project, the main task will be setting up a 3D world and modifying the input to

show some interesting results in VR.

Figure 1 Interactive FEA Framework

3. SET UP AN INTERACTIVE FEA 3D WORLD USING THE JAVA 3D API

3.1. Why Java and Java 3D API is chosen as the developing tool?
A language called “Oak” was created at Sun Microsystems, Inc. in 1991, but was renamed

“Java” in 1995. It is created with the initial motivation for the need of a platform-independent
language. It can be used to create two types of programs: applications and applets. It has many
properties, such as: simple, portable, secure, robust, multithreaded, distributed, high performance,
Object-oriented. As an object oriented programming language, Java also has the three principles of
OOP: Encapsulation, Inheritance, and Polymorphism.

The Java 3D API is an interface for writing programs to display and interact with 3D
graphics. 3D geometric objects are created and manipulated reside in a virtual universe, which is
then rendered. The Java 3D renderer is capable of rendering in parallel. The instances of Java 3D
objects are put into a scene graph data structure. The scene graph is an arrangement of 3D objects
in a tree structure that completely specifies the contents of the virtual universe, and how it should



be rendered. The virtual universe is referenced to Locale objects, and Locale objects serves as the
root of multiple subgraphs of the scene graph. A BranchGroup (BG) object is the root of a
subgraph, which has two categories: the view branch graph and the content branch graph. A
content branch graph is assembled from objects to define the geometry, behaviours, sound, lights,
location, appearance, etc. A view branch graph specifies viewing parameter. A TransformGroup
(TG) is often used in the creation of scene graphics, which hold geometry and its transformation
[3]. Figure 2 shows a simple scene graph.

Figure 2 A Simple Scene Graph

The objects in the Java 3D can be created either by code to specify the geometry or by
loader classes, which are provided by Java 3D utility package. Loaders can create Java 3D visual
objects from files created with 3D modelling software. Loaders today exist for VRML files,
AutoCAD DXF files, 3D studio 3DS files, Solid Works SLD, Visual Toolkit VTK, and a variety of
other 3D file formats.

To implement interaction, Behaviour objects can be defined in a Java 3D scene graph. It is
used to change the scene graph or objects in scene graph, in respond to stimulus. Changes include
adding objects, detaching objects, change attributes of the objects, or a combination of these
behaviours.

3.2. Framework of the interactive FEA in Java 3D world
To implement interactive FEA in VR, The Java 3D API is used to set up a 3D world for the

VR module. The scene graph is produced as figure 3.
BranchGroup BG1, BG2, BG3 are the main components for the 3D world. BG2 is mainly

used for setting up the static scene by reading the model from 3DS files or from direct coding of
geometry, and is usually used to set up the environment. BG1 is mainly used for dynamic reading
in the model from the code of the geometry, which can be changed during the interactive
procedure.

BG3 is used for setting up the view platform in the VR world. The interactive behaviour is
mainly performed in BG1. BGN can be added if more components are needed in the scene graph.

4. CONCLUSIONS AND FUTURE WORK

Using VR in FEA gives a more comprehensive and intuitive way to understand the work.
The overview of the available VR system and graphic APIs, and the study of the related work show
the feasibility of using VR in FEA.



A framework of performing interactive FEA has been set up. A 3D world for interactive
FEM by Java 3D API has been set up where the 3D models for analysis are loaded from other CAD
packages, such as 3DStudio.

The basic 3D world for interactive FEA has been set up; next we will further develop the
interface, which include modelling the environment and the user, modelling interface for
interactive FEM and FEA, connecting with the FEA software to implement interactive finite
element analysis in VR.

Figure 3 Interactive FEA in Java 3D World
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ABSTRACT

Summary A sample structural mechanics code is encapsulated using CORBA components implemented
in C++. The different components of the code can be transparently placed, either locally or remotely
without changing the client application.

1 Introduction

A complex hardware product often consists of many exchangeable components. As long as a
component fits into the product, the internal implementation can differ. Software components are
analogous to hardware components. Components in programs can be exchanged without the need
for recompilation, as long as the component interface is unchanged. The use of components in
software development has increased during the last few years. The reason for this is the need
to reduce the size of the client programs. When the first client/server systems appeared, the client
software were often large programs. Most of the processing was done in the client program and the
database server was used as data storage. The problem with these systems was the cost of installing
and maintaining the client software. New systems developed today often use a thin client with
little or no data processing capabilities. Instead of calling the database servers directly, they use
a set of components placed on central servers for data processing. These components then access
the database servers. The advantage of this approach is that the components can be placed on
powerful systems, reducing the amount of processing needed at the client. This approach has been
successfully applied to database applications. It is of interest to apply this technique to analysis
software as well. Using the technique of distributed computing, clients can use components as if
they were located on the same machine, making it possible to create integrated programs with
transparent access to computational resources, such as available workstations on the network or
resources at High Performance Computing (HPC) centres. This would make high performance
computing more available to a wider user group.

2 Client/server architecture

Three-tier and n-tier applications emerged from the need to shield the client program from changes
at the server side by placing a layer between the client and the server. A detailed history of the
client/server architecture is described by Schussel [3]. For a more detailed description, see Orfali
and Harkey [2]. The logical three-tier or n-tier model divides an application into three or more log-
ical components. Each component is responsible for a well-defined task. In a database application



there would be a presentation layer for displaying data and modifying data, a logic and rules layer
and a database layer responsible for storing the data.

The components of the logical model can be grouped together in different configurations to form
a physical model. One of the most interesting combination of the logical model is when the three
logical services are placed as separate applications on different computers, forming a physical
three-tier application. This implementation enables developers to have a greater flexibility in the
choice between different hardware and software configurations.

3 CORBA

CORBA is the Object Management Group’s [1] specification for interoperability and interaction
between objects and applications. Objects and applications can be placed on any platform and
accessed from any platform. CORBA is a specification, and therefore platform-independent. To
use the CORBA specification there has to be an ORB (Object Request Broker) for the specified
platform. There are ORB:s for almost all existing platforms today.

CORBA is a client/server architecture. Client make request on objects, located locally or remotely.
The requests are dispatched by the client ORB to the server ORB. The server ORB then directs
the request the object implementations.

To invoke an operation on an object, the client must know the interface it supports. The interface
is composed of methods the objects support. The interfaces are described using the interface def-
inition language (IDL). The purpose of the interface definition language is to define the object
interfaces in a way that is independent of any programming language.

4 Finite element CORBA implementation

To illustrate the method for distribution of resources, a three-dimensional beam analysis program
was chosen as a sample implementation. The application was divided into three logical compo-
nents, see Figure 1. By dividing the application into components, the application becomes easier to
maintain during and after development. The middlelayer was implemented as one server compo-

Application user
interface Beam server Beam solver

Name server

Client Middle-layer Server

Figure 1: Application components

nent using the ORBacus [6] ORB. ORBacus is a commercial ORB, which is available with source
code for non-commercial use. It is also portable across a wide range of platforms including Win-
dows and many Unix dialects. The implementation layer is written in C++ using the newmat09
library [7].



The interfaces used in the beam server should be general enough to handle any static finite element
model. By using a general interface it can be reused at later date without needing any changes to
its definition.

5 Configuration of a CORBA finite element system

One of the biggest benefits of CORBA is location transparency. Information about server location
is often not included in the client application. This makes it easy to configure a client server setup.
A client only needs an object reference to connect to an object. Object references are unique
identifiers, which also include information about the location of objects. To connect to objects
the client needs a way of retrieving an object reference. This is done using a special name server
introduced in CORBA 2.3. The name server stores object references in a human readable form.
The client queries the server by name to receive the object reference.

The easiest configuration of the finite element system is to install the client application together
with the beam server and the finite element solver on a single computer, see Figure 2. This config-
uration is typically used to do calculations that fit into the memory of the local machine.

Application user
interface Beam server Beam solver

Name server

Client Middlelayer Server

Local computer

Figure 2: Local configuration

In the first distributed configuration, the middlelayer and implementation are moved to a separate
computer. This configuration requires the server to be able to run a CORBA ORB. If the server
running the finite element solver does not support running an ORB, the middlelayer can be placed
on a separate computer. Figures 3 and 4 show two of the possible configurations. Many more
configurations are possible.

Application user
interface

Local computer Remote computer

Beam server Beam solver

Name server

Client Middlelayer Server

Figure 3: Remote configuration 1



Application user
interface

Local computer Remote computer 1 Remote computer 2

Beam server Beam solver

Name server

Client Middlelayer Server

Figure 4: Remote configuration 2

6 Conclusion

Using a three-tier implementation with interfaces and components, creates a very flexible finite el-
ement application. The three-tier implementation protects the client applications from changes in
configuration and solver design. Components are easily configurable and maintainable, reducing
the need for further development. By using interfaces when communicating with components, the
need to recompile client software when a new functionality is introduced in the solver components
is reduced. Interfaces can also be published enabling other software to use the finite element ap-
plication in an effective way. The CORBA specifications also enable new ways of using software.
Client software can easily distribute calculations over available workstations. High Performance
Computing (HPC) centres would be able to host a set of applications as CORBA objects. From a
web site, users can register themselves as users and download client applications that connect to
the objects. This would make high performance computing more available to a wider user group.
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ABSTRACT

Summary A gradient-based adaptive procedure is proposed in this paper. The relative error in strain
energy from two adjacent adaptation stages is used as a stop-criterion. The refinement criterion is based on
the gradient of strain energy density. The strategy was implemented in the Element-Free Galerkin method.
Numerical investigation was conducted to study the performance of the proposed procedure.

General idea In numerical methods such as finite element methods, meshless methods and so
on, mesh refinement based on an adaptivity mechanism is becoming a standard procedure, in order
to achieve a prescribed accuracy with a minimal number of nodes or to capture a local structural
behavior. Most conventional adaptive methods [1, 2] were developed aiming at the finite element
methods and it is for this reason, some of them have limitations or are inconvenient in application
to meshless methods.

In this paper, a gradient-based adaptive procedure is suggested and implemented in the Element-
Free Galerkin method. The two main ingredients in an adaptive procedure are: when to stop and
how to refine. For a given structure under a set of given loads with a given load path, at an equi-
librium point the total strain energy stored in the structure is definite. As a basic requirement on
an adaptive procedure, approximate strain energy must converge to its real value. Therefore the
relative variation in strain energy can be used as a stop-criterion. The other ingredient is how to
refine meshes. The aim of refinement is to give a better approximation to unkown fields such as
displacements, strains, stresses and so on, and thus give a better approximation to strain energy.
Based on this reasoning, the gradient of strain energy density can be used as a guide to refine
meshes.

Stop-criterion The principle of minimum potential energy is used here as a starting point.
The total potential energy in a load-bearing structure can be written as

� = �s +�e =
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where� and" are stress and strain vectors.u is the displacement vector.p andq are respectively
body force and surface traction.
 is the domain occupied by the structure andS the surface where
traction is exerted.�s and�e represent strain energy and external potential energy. For a given
structure under a set of given loads with a given load path, at an equilibrium point the total strain
energy stored in the structure is definite, although it is unknown in most cases, except an analytical
solution to the problem is available.



In pursuing a better approximate solution, an adaptive procedure produces a series of approxi-
mate strain energy,~�s

i
(i=1, 2, � � � ), corresponding to a series of meshesMi (i = 1; 2; � � �). As a

basic requirement on an adaptive procedure, the above series~�s

i
must converge to�s. That is, for

a givenÆ (Æ > 0), 9 an integerK (K > 0), so that8 k > K,

j~�s

k
��sj � Æ j�sj; j~�s

k+1
��sj � Æ j�sj

This leads to the following equivalent relation

j~�k+1 � ~�kj � � j~�k+1j (0 < � � Æ) (2)

Equation (2) provides a criterion to stop an adaptation loop, which is similar to a conventional
global error estimator defined by the energy-norm of errors from strains or stresses [2], except that
the more exact solution is from a subsequent (better) mesh rather than from the same mesh by a
recovery or a projection procedure.

Refinement-criterion The general idea for mesh-refienment in a gradient-based method can
be briefly stated as:A larger gradient needs a richer mesh and vice versa. A coarse mesh
may not be able to produce accurate solutions to displacements or stresses, but might give ade-
quate information about how these fields vary in the problem domain. As regard to variation from
which field should be considered, there are quite several choices, displacement, strain or stress
and so on. But strain energy density is a reasonable choice for the following reasons: strain energy
density is scalar and independent of coordinate system; information about other fields such as dis-
placement, strain, stress, load distribution and so on are comprehensively embodied in the strain
energy density.

To measure the the richness of mesh with respect to the variation of strain energy density, mesh in-
tensityrd is introduced and defined as the ratio of the variation (gradient) of strain energy density
to mesh density.

rd =
GSED

DM
(3)

whereGSED is the gradient of strain energy density.DM is mesh density defined as the number
of nodes in a unit area or volume. The maximum and minimum ofrd are, respectively, denoted as
Rmax andRmin. The criterion for mesh-refinement is set up as

Rmin � Rc � Rmax

(
rd > Rc re�ne

rd < Rc coarsen

(4)

Numerical results The above adaptive procedure was implemented in the Element-Free Galerkin
method [3, 4] and is obviously applicable to finite element methods in principle. Numerical inves-
tigation was conducted to study the performance of the proposed procedure. Results from one
example, among many others, are presented here. The cantilever beam shown in Fig. 1 was simu-
lated as a plane strain problem. The beam has a lengthL = 10 and a width2b = 2. The material
of the beam is elastic, with Young’s modulusE = 1000 and Poisson’s ratio� = 0:3. The beam is
constrained at its left end and loaded at right end by a distributed shear force with a resultantQ.
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Figure 1: A cantilever beam simulated as a plane stress model
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Figure 2: Convergence in displacement at pointA and in total strain energy

To avoid singularity distributed loads are also applied at left end. The convergences in transverse
displacement at pointA, cf Fig. 1, and in strain energy are shown in Fig. 2, and compared with
analytical solutions. Fig. 3 displays mesh configurations from different stages.

Conclusions A gradient-based adaptive procedure is proposed in this paper. The relative er-
ror in total strain energy from two adjacent adaptation stages is used as a stop-criterion. Mesh
refinement is guided by the gradient of strain energy density. The procedure was implemented
in the Element-Free Galerkin method. Numerical investigations show that the approximate strain
energy,~�s

i
, steadily converges to its ’real’ value,�s, with the increase of node number, or more

exactly with the decrease of maximal mesh intensity; Approximate fields such as displacements
and stresses converge to their corresponding ’real’ fields with the decrease of error in total strain
energy. The gradient of strain energy density is very effective as a guide for mesh refinement; For
problems free of singularity the accuracy of approximate fields can always be improved by reduc-
ing the maximal mesh intensity; For problems with singularity, convergence in strain energy can
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Figure 3: Node configurations from different adaptation stages

be guaranteed by suitably controlling the minimal nodal distance.
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ABSTRACT

Summary The boundary knot method (BKM) [1] is a meshless boundary-type radial basis function
(RBF) collocation scheme, where thenonsingular general solution is used instead of fundamental solution
to evaluate the homogeneous solution, while the dual reciprocity method (DRM) is employed to
approximation of particular solution. Despite the fact that there are not nonsingular RBF general solutions
available for Laplace and biharmonic problems, this study shows that the method can be successfully
applied to these problems. The high-order general and fundamental solutions of Burger and Winkler
equations are also first presented here.

Introduction : As a boundary-type RBF scheme, the method of fundamental solution (MFS),
also known as regular boundary elements, attains refresh attentions in recent years [2]. Because
of the use of singular fundamental solution, the MFS requires a controversial fictitious boundary
outside physical domain, which effectively blocks its practical use for complex geometry
problems. Chen and Tanaka [1] recently developed a boundary knot method (BKM), where the
perplexing artificial boundary is eliminated via the nonsingular general solution. Just like the
MFS and dual reciprocity BEM (DR-BEM) [3], the BKM also applies the DRM to approximate
the particular solution. The method is symmetric, spectral convergence, integration-free,
meshfree and easy to learn and implement, and successfully applied to Helmholtz, convection-
diffusion, and Winkler plate problems. Unfortunately, the nonsingular RBF general solutions of
Laplace and biharmonic operators are a constant rather than the RBF. Based on some physical
investigations, this paper presented a few simple strategies to apply the BKM to these problems
without losing its merits.

BKM for Laplacian : For a complete description of the BKM see ref. 2. Here we begin with a
Laplace problem

( )xfu =∇ 2 , Ω∈x , (1)

( ) ( )xRxu = , uSx ⊂ ,
( ) ( )xN
n

xu =
∂

∂
, TSx ⊂ , (2a,b)

wherex means multi-dimensional independent variable, andn is the unit outward normal. The
governing equation (1) can be restated as

( ) uxfuu δδ +=+∇ 22 or ( ) uxfuu δδ −=−∇ 22 , (3a,b)

whereδ is an artificial parameter. Eqs. (3a,b) are respectively Helmholtz and diffusion-reaction
equations. Their zero and high order general solutions [3] are

( ) ( ) ( )rJrQru mn
mn

mm γγ +−
++−= 12

12# , and ( ) ( ) ( )rIrQru mn
mn

mm ττ +−
++−= 12

12# , n≥2, (4)

where n is the dimension of the problem;Qm=Qm-1/(2*m*γ2), Q0=1; m denotes the order of
general solution;J andI represent the Bessel and modified Bessel function of the first kind. The
solution of the problem can be split as the homogeneous and particular solutions

ph uuu += , (5)

The latter satisfies the governing equation but not boundary conditions. To evaluate the
particular solution, the inhomogeneous term is approximated by

( ) ( )j

LN

j
j rxf ϕβÿ
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≅
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, (6)



where jβ are the unknown coefficients.N andL are respectively the numbers of knots on the

domain and boundary. The use of interior points is usually necessary to guarantee the accuracy
and convergence of the BKM solution. jj xxr −= represents the Euclidean distance norm, and

ϕ is the radial basis function.
By forcing approximation representation (5) to exactly satisfy governing equations at all

nodes, we can uniquely determine
( ){ }ixfA 1−= ϕβ , (7)

whereAϕ is nonsingular RBF interpolation matrix. Then we have
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jjp xxu
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φβ , (8)

where the RBFφ is related to the RBFϕ through governing equations. In this study, we chose
the first and second order general solutions as the RBFsφ andϕ.

On the other hand, the homogeneous solutionuh has to satisfy both governing equation and
boundary conditions. By means of nonsingular general solution, the unsymmetric and
symmetric BKM expressions are given respectively by
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wherek is the index of source points on boundary,αk are the desired coefficients;n is the unit
outward normal as in boundary condition (2b), andLd andLN are respectively the numbers of
knots on the Dirichlet and Neumann boundary surfaces. The minus sign associated with the
second term is due to the fact that the Neumann condition of the first order derivative is not self-
adjoint. Hereafter we only consider the symmetric BKM for the brevity. In terms of
representation (9b), the collocation analogue equations (3a) (or (3b)) and (2a,b) are written as
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Note thati, s and j are reciprocal indices of Dirichlet (Su ) and Neumann boundary (SΓ ) nodes.l
indicates response knots inside domainΩ. Then we can employ the obtained expansion
coefficientsα and inner knot solutionsul to calculate the BKM solution at any other knots.

If the inhomogeneous solutionup is simply ignored (i.e., letu=uh) whenδ is reasonably small,
the above procedure for particular solution is omitted. We only need to solve analog equations
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This strategy is called simplified BKM hereafter which can be understood that the use of
nonsingular general solutions of Helmholtz-like operators with small characteristic parameter
approximates the constant general solution of the Laplace and harmonic operators. I found that
the simplified BKM is not stable for irregular geometry since the poor accuracy appears at very
few nodes. However, it is noted that the strategy can produce very accurate solutions for regular
geometry. For instance, theL2 relative error norm at 495 nodes of an ellipse for the following
2D Laplace problem (15) by the simplified BKM using 9 nodes is 5.3e-3.



Numerical results and discussions: Figs. 1 and 2 show the tested 2D and 3D irregular
geometries, where the 3D ellipsoid cavity locates at the center of the cube with the characteristic
lengths 3/8, 1/8 and 1/8. Except Neumann boundary conditions onx=0 surface of 3D case, the
otherwise boundary are all Dirichlet type. The tested 2D and 3D examples have accurate
solutions

101033 ++−= xxyyxu , 10102 333 +++−= xxyzzxyyzxu . (15a,b)
The BKM L2 norms of relative errors are displayed in Table 1. Note that the BKM only uses 9

boundary knots (δ=0.1) for 2D case and 66 ones (δ=0.2) for 3D case. The correspondingL2

norms of relative errors are calculated at 492 sample nodes for 2D and 1000 sample nodes for
3D. The absolute error is taken as the relative error if the absolute value of the solution is less
than 0.001. One can find that the present BKM methodology is very simple, accurate and
efficient compared with other methods, especially for complicated geometry domain.

Although we do not use inner knots in the present test, a few inner nodes are usually
necessary in practical use to significantly improve the solution accuracy and stability (i.e.,
insensitive to artificial parameterδ).

Fig. 1. A 2D irregular geometry Fig. 2. A cube with an ellipsoid cavity

Table 1.L2 norm of relative errors for 2D and 3D Laplace problems with the general solution of
Helmholtz (H) and modified Helmholtz (MH) operators.

BKM (H) BKM (MH) BKM (H) BKM (MH)
1.1e-3 (2D) 1.5e-3 (2D) 5.2e-3 (3D) 1.3e-3 (3D)

Biharmonic problems and high order general solutions of Berger and Winkler equations:
We can use the general solutions of vibration plate, Winkler plate and Burger equation of finite
deflection of plate to approximate the constant general solution of the biharmonic operator. We
list these general solutions in Table 2, where ber and bei respectively represent the Kelvin and
modified Kelvin functions of the first kind. Among them, it is believed that those of Winkler
plate and Burger plate are first presented here.

Table 2.M-order general solutions of vibration plate, Winkler equation and Burger equation,
wheren=2,3 denotes dimensionality.

Operators General solutions (m=0,1,2…)
Vibration plate { } uuuL 24 λ−∇= ( ) ( ) ( ) ( )( )rIBrJArru mnmmnm
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Am to Fm are constant coefficients which will analyzed in a subsequent paper. It is worth
pointing out that the formulas given in Table 2 for the zero order general solution of Winkler
operator is effective for up to five dimensions. The same relations hold with ber, bei replaced by
the Kelvin functions of the second kind ker, kei, respectively, for fundamental solutions. The
higher order fundamental solution of Burger equation is alternations of the first and second
terms of corresponding general solution by the higher order fundamental solutions of Laplace
and Helmholtz operators.

The fundamental solutions of Winkler plate and Burger plate are given respectively by [5,6].
For vibration plate, the small vibration frequency means the approximation to linear steady
deflection described by a biharmonic equation. For a Winkler plate on an elastic foundation, the
small elastic foundation coefficient indicates that the general solution is close to that of a plate
no resting on an elastic foundation. Ref. 5 has actually applied a BEM strategy based on the
fundamental solution of the Winkler plate to analyze the biharmonic system equation, where the
inhomogeneous (particular) solution is simply omitted, similar to idea in the aforementioned
simplified BKM. The solution accuracy is quite high for a regular rectangular plate.

The Burger plate equation is a simplified model of von Karman equations for nonlinear
deflection of plate under large loading, which assumes the plate has not in-plane movement at
the boundary. By taking small Burger parameter, the nonsingular general solution of Burger
plate approaches that of the biharmonic equation for the linear thin plate.

Now it is obvious that the present approximate strategy is explicitly grounded on the physical
connections between different partial differential equations. The numerical validations of the
biharmonic equations will be presented in a subsequent paper.

Remarks: It should be pointed out that we could greatly simplify the above-given standard form
of general solutions involving some special functions. Thus, the computing effort for them is
trivial. For Helmholtz-like problems, the BKM outperforms the DR-BEM and MFS
significantly in terms of accuracy, symmetricity, efficiency, stability, and mathematical
simplicity. The present study shows that the method is also very efficient for Laplace and
biharmonic problems by a fairly good approximation via general solutions of Helmholtz-like
operators with small system parameter to that of the corresponding non-Helmholtz-like
operators. A mathematical analysis of this scheme will be given later. The major drawbacks of
the BKM are severe ill-condition and costly full matrix for large system problems, which is a
subject presently under investigation.
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Department of Mechanics of Materials

Technical University of Łód´z, Łódź, Poland
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ABSTRACT

Summary A technique of stress recovery for a finite element solution is investigated. A smoothed, stati-
cally admissible stress field is computed by solving the local problem of minimization of complementary
energy on patches of elements. The energy error of the approximate solution is estimated by the use of the
recovered stress field. The method is illustrated by the example of the Poisson equation; numerical results
are related to the problem of torsion of a prismatic bar.

The superconvergent patch recovery (SPR) method is a very popular technique of finding a stress
field which is smoother and more accurate than the stress field related directly to the displacement
field obtained by the finite element analysis. In SPR method, the improved stress field is usually
considered in the form of polynomial (the degree of which is higher than the polynomial repre-
senting stresses in the original FE solution) which fits stress values at superconvergent points of
elements belonging to a patch surrounding a node of the element mesh. Coefficients of the poly-
nomial are found by the use of the least square method [1]. SPR approach can be enriched by a
requirement that the recovered stress field should satisfy the equilibrium equations in an approxi-
mate (e.g. [2]) or exact (e.g. [3]) way. There are other recovery approaches where the equilibrium
equations are satisfied on the element patch by recovered stresses. The equilibrium equations can
be satisfied exactly by constructing the self-equilibrated element boundary tractions equivalent
to those obtained from the kinematically admissible finite element solution and then finding the
statically admissible stress field, related to the tractions, inside the element domain [4]. The equi-
librium equations can also be satisfied in the weak sense like in the displacement-based finite
element analysis—this procedure is known as the recovery by equilibration of patches (REP) [5].

In all the approaches mentioned above, the stress field obtained by the finite element analysis is
used as input data in the recovery procedure. In contrast to these methods, the technique described
in the present paper does not utilize stresses as input data but displacements which are of higher
accuracy than stresses. The recovered stress field is found by minimizing the functional of com-
plementary energy on the set of statically admissible stress fields where the displacements on the
patch boundary are taken from the kinematically admissible finite element solution.

Let us consider two-dimensional physical problems described by Poisson’s equation,��u;�� = f ,
� = 1; 2, where stresses (fluxes) satisfy the equilibrium (balance) equation of the form:q�;� = f

with q� = ��u;�. Let
p denote the region occupied by an element patch where the stresses are
to be recovered. For any patch
p the following local minimization problem is solved: To find
q
s
p 2 Y such thatqsp minimizes the functional of complementary energy
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on the following set of statically admissible stress (flux) fields:
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�
q� 2 L
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p): q�;� 2 L
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p); q�;� = f on
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whereuh denotes the approximation of the displacement (potential) field andn� is the unit vector
outwardly normal to the patch boundary. The statically admissible fields of stresses are constructed
by the use of the Prandtl stress function, :

q1 =  ;2 + �q1; q2 = � ;1 + �q2 (1)

where�q� is a particular solution of equationq�;� = f . In the case of triangular or quadrilateral
elements with linear or bilinear interpolation functions, respectively, function is approximated
by the following polynomial:

 =
�
x y x2 x y y2

�
2
64
a1
...
a5

3
75 : (2)

The above representation of function means that both the components of vectorq are linear
functions of coordinatesx = x1 andy = x2 while the finite element approximations gives these
components as piecewise constant functions. After substituting equations (1) and (2) to the expres-
sion for functional� and calculating its first variation, we obtain the linear system of algebraic
equations with the symmetric matrix. After calculation of the vector of coefficientsa1; a2; : : : ; a5,
the components of stressesqsp� at the “central” node of the patch can be calculated and used as the
nodal values so that the final recovered field of stresses,q

�, can be written in the form

q�1(x; y) = Nqx; q�2(x; y) = Nqy

whereN are the same interpolation functions as used in the approximation of the displacement
field,qx andqy denote vectors of nodal values of recovered stress components.

When the improved field of stresses is known, the error of the approximate solution can be esti-
mated. The estimated error measured by means of energy norm can be expressed as follows:

k�ek =

0
@
Z




��1(q� � qh)
T(q� � qh) dx

1
A

1

2

:

As an example, the problem of torsion of the prismatic bar with triangular cross-section having
equal sides is considered. All the above derivations are valid if we putq1 = �31, q2 = �32,� = 2G

whereG denotes the shear modulus, anduh, which appears in expression for complementary
energy, is the warp of the cross-section of the bar. Calculation have been made assuming that
G = 1, the length of the cross-section edge is equal to 1, and the torsion angle for the unit length
of the bar is equal to 1. Four uniform meshes generated automatically with element diameters
h = 0:25, 0:1, 0:04 and0:016 are utilized in the computations.

The relative error of the approximate solution,k�ek=kqk, has been estimated and compared with
its exact value (the exact solution is known for the considered problem) for all the element meshes
used in the calculations. The comparison is shown in Fig. 1. In the same figure, the diagram for
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Figure 1: Energy error and effectivity index

the effectivity index,� � k�ek=kek, which measures the accuracy of the error estimator, is also
shown. In the last definition,kek denotes the exact value of the error. The recovered stress field
obtained in the case of rather coarse mesh forh = 0:1 is shown in Fig. 2 and compared with the
exact solution.

As can be seen from the presented results, the recovery procedure described in the paper gives the
smoothed stress field very close to the exact one and is characterized by the effectivity index for the
error estimator which slightly differs from unity (0.920 .. 0.996 depending on mesh parameterh).
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ABSTRACT

Summary  A computer code for geometrically nonlinear analysis of thin structures using a p-hierarchical
solid element approach has been developed using the MATLAB software. The p-hierarchical element
formulation using integrals of Legendre polynomials as basis functions together with a Gauss-Lobatto
quadrature has been implemented efficiently by aid of the MATLAB built in features for polynomials and
multidimensional arrays. Numerical results for slender beams and thin shells will be presented

1.1 Introduction

A family of p-hierarchical solid elements has been implemented for geometrically nonlinear
analysis. By use of integrals of Legendre polynomials as element basis functions [1] the
conditioning properties of the element tangent stiffness matrix allows for analysis of thin shells.
The key feature of the method is that only translational variables are employed on element and
global structural level and that the finite deformations are expressed in terms of the
displacement gradients on continuum level in a total Lagrange formulation [2]. The so called
core equations where the displacement gradients act as 'material point' degrees of freedom are
exact including geometrical nonlinearities. With this formulation a tangent stiffness matrix is
deduced already at the core level. The core equations are independent of the element geometry
and the choice of element basis functions. The core equations are transformed into finite
element equations by use of a transformation matrix and by integration over the element volume
in the reference configuration. In this transformation phase the displacement field
approximation and the mapping of the element geometry enters. The transformation matrix
consists of derivatives of the element basis functions. It follows that the transformation matrix
for each integration point in the element is computed only once. Only a few elements are
employed in the interior of the region. At the boundaries an exponential h-refinement is used.

1.2 p-hierarchical elements

In the present work the use of a p-hierarchical Legendre type solid element for thin shells is
investigated. In the through thickness a low order polynomial approximation of the
displacement field is tested. The solid element displacement field u = [u,v,w]T is approximated
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j:th hierarchical degree of freedom. Note that the hierarchical base functions all have zero
values at the basic nodes and that the hierarchical degrees of freedom do not associate to
physical nodal points, but should simply be interpreted as unknown amplitudes of the
hierarchical functions.
In the p-hierarchical formulation for the 3D solid element the basis functions can be
distinguished into 27 groups. The first 8 includes the 8 standard tri-linear basis functions for the
8 vertices. The following 12 groups contain edge functions for the 12 edges, the next 6 groups
base functions for the 6 faces and, finally, there is one group containing the internal volume
basis functions. The number of base functions in the last 19 groups depends on the choice of
polynomial degrees and hierarchical space. For the coded 3D solid element the polynomial
degree is fixed to q=2 in the through thickness direction while it is varied from p=2 to p=9 in
the other directions. This means that the implemented elements are restricted to model thin
structures where a linear strain can be assumed through the thickness.

1.2.1 p-hierarchical shape functions for hexahedral elements

We define the cube {-1 ≤ ξ, η, ς ≤ 1}, Figure 1, as being the standard element domain Ωst.

Figure 1.   Standard hexahedral element Ωst

The shape functions Nm are obtained as products of φ-functions, Figure 2, as
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The first two φ-functions are the simple linear functions.
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Here Pi-1 are the Legendre polynomials which can be generated from Rodrigues' formula:
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It follows that the φ-functions (except the linear ones) vanish at the boundaries ξ ± 1 and that
the derivatives of the φ-functions are orthogonal on the interval [-1,1].

Figure 2.  φ-functions on the interval -1 ≤ ξ ≤ 1.

The base functions and their derivatives are deduced numerically using the MATLAB features
for polynomials.

1.3 Numerical integration and continuation method

A Gauss-Lobatto quadrature procedure is adopted for the numerical integration [1] and a
dominant displacement component driven continuation method is used for tracing the nonlinear
structural response [3]. Secondary branches on the equilibrium path can be triggered by
introducing imperfections in the structural geometry or in the load.

1.4 Numerical examples

A geometrically nonlinear analysis of a transversally loaded cantilever beam modelled with p-
hierarchical Legendre type solid elements shows excellent agreement with an analytical non-
linear beam solution. The developed code has been verified to work well for thin shells and
beams in linear analysis. Numerical tests on the so called Scordelis and Lo cylindrical shell roof
show that the present formulation gives accurate results in good agreement with analytical deep
shell theory as well as with numerical results reported by other authors, see fig. and table below.



L = 6.0 m

T =0.03 m

R = 3.0m

θ  = 40°

Scordelis and Lo cylindrical shell roof loaded by a uniformly
distributed vertical load fZ = 0.625×104 Pa.

Graded 3-element mesh of one quarter of the shell.

Reference values for the vertical displacements wB =  -0.0361m,  wC = 0.00541m   from [4]
Polynomial
degree p

NDOF Displacement
wB

Displacement
wC

Potential
energy π

Conditioning
number of K

1-element with q = 2 and p = 5, 7, 9
5 138 -0.035286 0.004714 -138.894 8.696367×107

7 249 -0.036136 0.005429 -144.468 9.817559×107

9 396 -0.036149 0.005438 -144.548 1.037179×108

3 -element graded mesh with q = 2 and p = 5, 7, 9
5 414 -0.036049 0.005163 -142.311 1.100866×108

7 747 -0.036135 0.005437 -144.504 1.213742×108

9 1188 -0.036149 0.005440 -144.550 1.254000×108
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ABSTRACT

Summary This paper presents an application of Computational Mechanics and Artificial Neural Networks
(ANN) [1] for non-destructive damage detection in rods. The identification method has been based on the
analysis of propagation of wave in solids [2]. Special attention has been paid to preprocessing of time
signals.

1 Introduction

Non-destructive methods of detection of change of material properties and damage in structural
elements present an important and valuable tool. These methods allow estimating the state of a
structure as well as predicting a period of safety usage. An ultrasonic method is one of the most
often used non-destructive methods [3]. For structures such as rods, plates, shells another widely
used method is the one based on structural waves propagation. In this method unlike in the classical
method of ultrasonic testing, the wavelengths are large compared to the characteristic dimension
of the structure and a wave pulse propagates along the whole structure. Moreover, the excitation
of structural waves is at one point while the measurements of structural waves velocity are in a
few other points instead of surface scanning used in ultrasonic testing. It simplifies the structural
waves tests in rods, beams, plates and some other structures (Figure 1a).
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Figure 1: Structural waves propagation test

2 Neural networks in problems of damage detection

The Backpropagation ANNs with the Rprop learning algorithm have been applied. Neural
networks with one or two hidden layers have been tested. The input vectors consisted of



preprocessed time signal. The outputs provided provided all parameters describing damage. Some
of these parameters were identified by the network with satisfactory precision while other with a
significant error.

Based on the previous research done by the authors [4, 5] cascade neural networks have been built
to improve the generalisation of networks. The first network has been fed with input vector as
for simple net. The first network’s output is the most precisely determined parameter. The second
network has got an input vector with additional value of parameter predicted by first net. The
output of this network is the next desirable parameter. The cascade networks with two or three
stages have been used (Figure 2).
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Figure 2: The three stage cascade network

3 Preprocessing of signals

One of the used methods of preprocessing input data was a compression of time signal [4, 5].
The compression has been performed by dedicated neural network called replicator shown in
(Figure 3). Networks of architecture n-h-n have been learned to replicate at the output the time
signal data points given at the input - the input variables have been mapped into the same
output variables. The compression networks of 200-8-200 and 200-12-200 architectures have
been created. After training the outputs from hidden neurons (see Figure 3) have been used as
preprocessed data for damage identification net.
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Figure 3: The use of replicator in damage identification problem

4 Damage detection in rod elements

4.1 Identification of stiffness changes

Numerical model of a rod with a constant cross-section has been considered. An elastic-plastic
with isotropic hardening material model has been used [6]. Concentrated force with triangle
characteristic and duration of 200�s have been applied to the free end of the rod (Figure 1b).



A failure, i.e. stiffness change of selected fragment of rod has been simulated by the change of
Young’s modulus (�E) for one or several consecutive finite elements (b). The location (l) of
defect also has been changed. For these parameters dynamic responses of the numerical model
have been calculated, and the velocities of wave propagation have been recorded in selected nodes.
Differences between time signal of rod with defect (local change of stiffness) and model time
signal (homogeneous rod) have been determined and described through two quantities: the shift
of amplitude of a maximum of signal and the shift of time of appearance of a maximum for given
signal. Such described vector was an input vector for neural network. At this stage separate neural
networks have been built for different widths of simulated defect so an output vector consists of:
Young’s modulus value and location of element with changed Young’s modulus. It was noticed
that along with increase of defect width a network generalisation improved [4].

4.2 Identification of cross-section changes

The next analysed task was a rod with defect simulated as a notch. Removing of certain finite
elements has simulated the failure of cross-section. Various width (b), various height (h) and
various location (l) of notch have been considered (Figure 1c).

Table 1: Comparison of errors of cross-section parameters identification
St. par. Height of defect Location of defect Width of defect

Learn Test Learn Test Learn Test
Standard net

R2 0.996 0.994 0.994 0.994 0.99 0.988
Æ 0.0149 0.0177 0.0193 0.0192 0.0215 0.0232

Cascade net
R2 1.000 0.999 0.999 0.997 0.994 0.986
Æ 0.0043 0.0071 0.0094 0.0121 0.0165 0.0253

The input vector has been described with values of first three peaks of time signal [4] and by use
of replicator. Both simple and cascade nets have been used at this stage. Better results have been
obtained from neural networks with two hidden layers. The width of defect has no influence on
the quality of results. Damage identification is significantly better in case of the use of cascade
networks. In Table 1 the results of neural simulation are put together.

4.3 Identification of yielding zone

A group of finite elements with elasto-plastic material occurred inside the rod. The plastic-bilinear
material model has been used. The Young’s modulus and strain hardening modulus were constant.
A failure has been simulated by the change of initial yield stress (�0). Width (b) and location
(l) of defect have been changed (Figure 1d). A concentrated force with sine characteristic and
duration of 400�s have been applied to the free end of the rod. The measured points have been
located after the zone of yielding. For the identification networks the input vectors consisted of
compressed time signals. A compression networks with 8 neurons in a hidden layer has been used.



The output vectors consisted of three parameters of failure (�0, b, l). When simple nets have been
used, the yield strength parameter and the location of yield zone have been identified correctly. The
width of defect has been identified significantly worse. The use of cascade networks improved the
identification of width of defect (see Table 2).

Table 2: Learning errors of yielding zone parameters identification
St. par. �0 Location Width

Standard net
R2 0.922 0.995 0.769
Æ 0.0222 0.0117 0.097

Cascade net
R2 1.000 1.000 0.886
Æ 0.0039 0.0012 0.0679

5 Final remarks

On the basis of achieved results the following conclusions can be expressed: ANNs make it
possible to use structural wave propagation analysis for detection and assessment of damage in
structural elements, the ANNs developed in this paper has proved to be an effective tool to obtain
parameters of failures of considered numerical models of rods, application of cascade networks can
improve accuracy of neural approximation in both analysed cases, the presented methods of time
signals preprocessing proved to be very useful in preparing of input vectors for neural networks.
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ABSTRACT

Summary Seven form-finding methods for tensegrity structures are reviewed and classified as kinematical
or statical. Kinematical methods are best suited to obtaining only configuration details of structures that
are already essentially known. The force density method, one of the statical methods, is best suited when
searching for new configurations, but offers no control over the element lengths.

Introduction

A tensegrity structure is any structure realised from cables and struts to which a state of prestress
is imposed that imparts tension to all cables. In addition, the state of prestress stabilises the struc-
ture, i.e., provides first-order stiffness to all infinitesimal mechanisms. A key step in the design
of tensegrity structures is the determination of their geometrical configuration, known asform-
finding. Form-finding methods for tensegrity structures have been investigated by many authors,
e.g., [1], but the various methods have not been previously classified or linked. Further information
and more references can be found in [2].

Kinematical Methods

The characteristic of these methods is that the lengths of the cables are kept constant while the
lengths of the struts are increased until amaximumis reached. Alternatively, the strut lengths are
kept constant while the cable lengths are decreased until they reach aminimum.

� Analytical Solutions
Analytical solutions can be obtained only for very simple structures, e.g., tensegrity prisms
where the equilibrium configuration is determined by the relative rotation between the upper
and lower regular polygon.

� Non-Linear Programming
The form-finding of any tensegrity structure is turned into a constrained minimisation prob-
lem. Starting from a system for which the element connectivity and nodal coordinates are
known, one or more struts are elongated, maintaining fixed length ratios, until a configura-
tion is reached in which their length is maximised [3].



� Dynamic Relaxation
A static problem is turned into a fictitious dynamic problem. Convergence is controlled by
an appropriate choice of damping coefficients or, alternatively, by a technique called kinetic
damping. The motion of the structure is initiated by an increase of the length of the struts,
while the cable lengths are held constant [4].

Statical Methods

These methods are characterised by a relationship between equilibrium configurations of a struc-
ture with given topology and the forces in its members.

� Analytical Solutions
A general solution of the relative rotation between the upper and lower polygon of tenseg-
rity prisms was derived in [5]. Nishimura [6] used the force method and group representa-
tion theory to find analytical solutions to a number of spherical tensegrities and multi-stage
tensegrity towers.

� Force Density Method
The linear force density method, successfully used for form-finding of cable nets and mem-
brane structures, was extended to tensegrity structures by Vassart [7]. To find a stable volume
in three-dimensional space the force density matrixD of a structure, with given topology,
must have a nullityN = 4. Finding a set of member force densities which fulfil this condi-
tion is preferably done by symbolic software.

� Energy Method
A mathematical energy potential for a tensegrity structure is set up, using force density and
element length instead of elastic stiffness and element elongation [8]. This potential has
a local minimum for a structure ind-dimensional space if a square matrix
 is positive
definite with a nullity ofd + 1. It was observed in [2] thatD = 
. Using this method
and group representation theory, Connelly and Back [9] compiled a complete catalogue of
tensegrities with certain prescribed types of stability and symmetry.

� Reduced Coordinates
A set of equilibrium equations relating the forces in the cables, but without showing explic-
itly the forces in the struts, can be obtained from virtual work. Sultan [10] used this method,
which involves extensive symbolic computations, to find equilibrium configurations of a
class of tensegrity towers.

Example: Truncated Tetrahedron

A simple, but important, form-finding example is that of the tensegrity version of a regular trun-
cated tetrahedron, Figure 1. This structure was first constructed by della Sala in 1952 [11], and
later studied by Calladine [12] when he formulated the extended Maxwell’s rule. By measuring a
physical model Calladine found that the ratio between the strut and cable lengths was 2.25. Pelle-
grino [3] used the kinematical method of non-linear programming to find the length ratio 2.2507,



and the force densities in the struts, truncating triangle cables, and cables connecting the triangles
to beqs = �0:6672, qt = 1, andql = 1:3795, respectively. Using the force density method,
assuming two types of cables and one type of struts, the condition forN = 4 is
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For a prescribed value ofql=qt, the valueqs=qt is the solution to (1) which gives a positive semi-
definite matrix
. Insertingql=qt = 1:3792, qs=qt = �0:6672 is reobtained. The second step is to
choose appropriate values of the four free coordinates; both regular and irregular final geometries
can be found. Solving the analytic condition for the existence of a non-trivial prestress of the
truncated tetrahedron by Nishimura [6] subject to the auxiliary condition of equal cable lengths
gives the length ratio 2.2563. The corresponding force density relations areql=qt = 1:3794 and
qs=qt = �0:6671. The exact geometrical strut length of the regular truncated tetrahedron is

p
5 �

2:2361. Hence, the geometry of the tensegrity version is different from that of the polyhedron,
which clearly is seen in Figure 1.

(a) Aerial view (b) Top view

Figure 1: Comparison of the regular truncated tetrahedron (dashed lines) and the tensegrity version. Note
the distortion of the hexagonal faces.

Conclusions

Seven form-finding methods for tensegrity structures have been reviewed and classified into two
categories. The first category contains kinematical methods, which determine the configuration of
either maximal length of the struts or minimal length of the cables. The second category contains
statical methods, which search for equilibrium configurations for which a state of self-stress can
exist in the structure. The force density, which is found to be equivalent to energy method, is well
suited to problems where the element lengths are not specified initially. New configurations are
easy to find using the force density method, but it does not permit control of element lengths.



References

[1] R. Motro, S. Belkacem, and N. Vassart. Form finding numerical methods for tensegrity
systems. In J. F. Abel, J. W. Leonard, and C. U. Penalba, editors,Spatial, Lattice and tension
structures, Proceedings of the IASS-ASCE International Symposium 1994, pages 704–713,
Atlanta, U.S.A., 1994. ASCE.

[2] A. G. Tibert and S. Pellegrino. Review of form-finding methods for tensegrity structures,
1991. Submitted toInternational Journal of Space Structures.

[3] S. Pellegrino.Mechanics of kinematically indeterminate structures. PhD thesis, University
of Cambridge, Cambridge, United Kingdom, 1986.

[4] S. Belkacem.Recherche de forme par relaxation dynamique des structures reticulees spa-
tiales autoconstraints. PhD thesis, L’Universite Paul Sabatier de Toulouse, Toulouse, France,
1987.

[5] R. Connelly and M. Terrell. Globally rigid symmetric tensegrities.Structural Topology,
21:59–78, 1995.

[6] Y. Nishimura. Static and dynamic analyses of tensegrity structures. PhD thesis, University
of California at San Diego, La Jolla, U.S.A., 2000.

[7] N. Vassart. Recherche de forme et stabilité des systèmes ŕeticuĺes spatiaux autocontraints:
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ABSTRACT

Summary Paper consists of bonded cellulose fibres in a network structure, oriented preferentially in a
plane. A 2D network mechanics model and FEM is used for computational analysis of the shrinkage and
elastic performance of paper.

Paper is a fibre network material consisting of bonded cellulose fibres. Cellulose fibres are moisture
active, i.e. dimensions and mechanical properties are affected by the moisture content in the fibres.
One characteristic feature of cellulose fibres is that they shrink more transversally than in the axial
direction. This means that at a fibre crossing, the transverse shrinkage of one fibre tends to shorten
the other fibre in its axial direction. Fibre phenomena like this transform to the sheet level in a non-
trivial way. This work aims at understanding the relationship between micro-level parameters like
fibre, bond and network geometry properties and global sheet properties. Focus is on shrinkage and
elastic properties. To improve the understanding of the micro-macro interaction, two-dimensional
network modelling and FEM is used.

A model network is composed of bonded fibres arranged in a random structure according to an
arbitrary orientation distribution, see Figure 1. The fibres are modelled as linear elastic beam ele-
ments with arbitrary distribution in length, cross-section and stiffness. At the bond areas the fibres
are assumed to act perfectly together, that is, there is no compliance in the bond layer. Due to this
assumption the effect of the shrinkage of a crossing fibre can be taken into account by applying
equivalent shrinkage forces at the opposite boundaries of the bond. The geometry of the network
structure is periodic. This means that cyclic boundary and loading conditions can be used, making
it possible to obtain relevant results even for small network cells. This is desirable due to the numer-
ically heavy computations involved in the analysis. The modelling is described in detail in [1, 2].
The computer analysis consists of generation of the structure, calculation of equivalent shrinkage
forces and analysis of elastic mechanical performance by FEM. By means of two further simula-
tions the state of stress at restrained shrinkage and free shrinkage are determined. Output from the
analysis is thus isotropic/orthotropic elastic parameters, free shrinkage and fibre segment stresses
at free and restrained shrinkage respectively.

Unless the fibre shrinkage is the same in the transversal and axial directions sheet shrinkage will
depend on the fibre orientation distribution. This phenomenon has been studied through networks
where all fibres are oriented in two perpendicular directions. Figure 2 shows results from these sim-
ulations. Networks of density 40 mm/mm2 were analysed and a unit fibre shrinkage of 1% transver-
sal and no axial shrinkage was assumed. The variable on the x-axis is the part of the fibres that is
oriented in the x direction. On the y-axis is the sheet shrinkage in the y direction. Simulated sheet
shrinkage increases with the part of the fibres oriented in the perpendicular direction since the only
mechanism in this case is transversal shrinkage shortening fibres. The simulation results, however,
fall off from the dashed line which shows a simple analytic approximation neglecting double bond-
ing and bending effects.



Figure 1: Example of model fibre network.
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Figure 2: Sheet shrinkage plotted against fibre orientation ratio.
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ABSTRACT 

Summary The Iosipescu method is a method used for testing of unidirectional composite material in 
shear. In our case tests using a modified Iosipescu shear-compression fixture were performed on wood. 
To test the reliability of the modified device a Finite Elements Analysis of the test, first in shear, was 
carried out and the results compared with the ones from experiments done on a particle board. The 
comparison will in the future be continued to incorporate the combined case of shear and compression. 
 
1 Introduction 
In mechanical pulping, wood fibers are repeatedly sheared and compressed at high temperatures in order 
to make them suitable for use as a papermaking pulp. The idea of this project is to study a combination of 
shear and compression of wood in order to determine under what conditions improvement of fiber 
collapse could be gained. 
 

 
Figure 1.  New test setting for the Iosipescu shear test device 
 
In order to be confident on the results obtained with this new device, Fig 1,  and to better understand the 
results a Finite Element model of the sample testing has been made and will be developed along with the 
tests. Shear test have been performed on particle board and the results have been compared with the 
solutions of the FE models 
 



2 Finite element analysis 
To investigate if proper deformation fields were reached by wood in the modified combined shear-
compression Iosipescu device a Finite Element analysis has been performed. The software ABAQUS 5.8 
was used. Three different 2D models [3,4,5], proposed in the literature to represent the Iosipescu device, 
with different load and boundary conditions, were analysed in order to choose the one that best 
represented the mechanical behaviour of the sample. For all models homogeneous and orthotropic 
materials were analyzed. 
 

 

 
Figure 2.  Models for the Finite Elements Analysis of the Iosipescu test (force couple, left; symmetric loadings block, 
right; asymmetric loading blocks, bottom) 
 
3 Material and methods 
The first step of the FE model has been to modelize a wood sample subjected to simple shear. The 
material model considered was wood viewed as an orthotropic material. The material constants were 
extrapolated from experimental data assigned as “orthotropic particle board” and are reported in Tab. 1.  
From experimental data GRT has been determined while all the other caracteristic constant were, for the 
moment, estimated from this value in relation to typical characteristic of wood. The particle board was 
used in order to have a model of an orthotropic wood material without the annual ring structure of wood 
but with comparable material properties. 
 
Table1. Characteristic constant chosen for the FE analysis. Young and shear moduli are given in units of 
MPa 

 ER ET EL GRT GRL GLT νRT νRL νLT
FE model 
(orthotropic 
particles board ) 

11250 562,5 900 80 803 755 0,43 0,36 0,52 

 
Different load and constrain conditions were analyzed and compared for the three different models. To 
check the results of these models, shear tests on an “orthotropic particle board” wood material was 
performed. Four samples were tested twice in shear to a load of 30 N both in “RL” and “RT” direction, 
the denomination was used to characterized the different cutting orientation of the sample from the 
particle board.  The displacements where registered by Electronic Speckle Photography (ESP).  By 
spraying black paint in a fine pattern on the wood previously painted in white the local displacements 
were possible to measure. 
 
 



4 Results and discussion 
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Figure 3.  Strain field of the “particle board”, samples tested at 30 N 
 
In the following figures shear values from the experiments and from the analysis are shown, Fig. 3 and 
Fig. 4 respectively. For all the cases the shear values obtained at a load of 30 N are shown. The shear 
values are calculated in the section between the notches. 
 

  
 
Figure 4.  Calculated strain field from Finite Elements Analysis of the “particle board” samples at a 
displacement of 0.04 mm. (RT orientation, left and RL orientation, right) 
 
As seen from the calculation of Fig. 4 the shape of the curves as well as the difference in shear between 
the RT and RL orientation are in agreement with the experimental results of Fig. 3. However the FE 
calculation are not in good agreement with the experimental data. This can bee due to the fact that the 
characteristic constants of the material are extrapolated from the shear modulus obtained from the test. 
Thus more experimental characteristic of the particle board are needed.  
 
The model that represents the behaviour of the sample during the shear test in the best way was the one 
with asymmetric loadings blocks, see Fig. 2; in this model in fact the shear filed has the same shape that 
is founded in literature [5].  For particle board the results of the shear at a load of 30 N are shown in Fig. 
6. 
 



 
Figure 6.  Shear field for the model with asymmetric loading blocks at 30 N 
 
5 Conclusions 
A Finite Element model with asymmetric loading blocks showed a solution closest to what is expected in 
on Iosipescu shear test, both in the shape of the strain field and in its absolute values. This model is 
chosen as a base model and will be further developed in a 3D model with introduction of a material model 
for the wood microstructure.   
The mechanical behavior of wood is not jet fully understood and to make a proper model of its behavior, 
precise data for the FE analysis on simple deformation modes of wood will be needed. 
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ABSTRACT 

Summary The work presented concerns the modelling of adhesive joints in timber engineering 
applications. Numerical studies on the strength of various types of joints were performed. To obtain input 
data for the theoretical models used, experimental studies on the fracture behaviour of wood adhesive 
bonds where performed. The results show that wood adhesive bonds can be considered as being quasi-
brittle, showing softening behaviour. Furthermore, strength, stiffness, fracture energy and shape of the 
softening curve are all important parameters for the strength of wood adhesive bonds. 
 
Wood-adhesive joints play an important role in modern timber engineering. In order to add 
value to the raw material, several highly engineered wood-based products have been developed. 
Often these involve the use of adhesive joints. Typical examples of such reconstituted materials 
are glued laminated timber (glulam) and laminated veneer lumber (LVL), Figure 1. In each of 
these, adhesive joints are used both for lengthwise splicing and for interlaminar bonding. 
Another example of an adhesive joint application in timber engineering is that of glued-in rods 
which allow stiff and strong beam-to-column connections or column foundations to be obtained.  

 

 
Figure 1:  Phenol-resorcinol adhesives (left) are often used in the production of glulam 

(right). 
 
In order to fully understand and model the behaviour of such structural elements as glulam 
beams, one must also understand the behaviour of their adhesive bond lines. Although adhesive 
bond lines often represent only a very small part of a structural component, they are often 
crucial parts for the strength and the reliability of the structural component. A typical adhesive 
bond line in timber engineering has a thickness in the range of 0.1–1 mm This is several orders 
of magnitude smaller than the scale of the structural components, one of approximately 0.1–
10 m. 



The work presented is an overview of a recently completed research project on wood adhesive 
joints [1] and concerns experimental and numerical studies of mechanical behaviour on both the 
above-mentioned scales. Also, methods for bridging the gap between the two scales, making it 
possible to incorporate knowledge of the mechanical behaviour of a thin bond line into analysis 
on the structural-component-size scale are discussed. Applications such as finger-joints, glued-
laminated timber and glued-in rods are considered, Figure 2. The experimental studies include 
the testing of the fracture characteristics of wood-adhesive bonds, including both wood-to-wood 
bonds and glued-in rods of either steel or glass fibre reinforced polyester. The numerical studies 
relate to the strength of finger-joints, laminated beams and glued-in rods for timber structures.  

 
Figure 2: A finite element model of a glued-in rod. 
 
The complete stress-displacement response of small specimens, particularly their fracture 
softening behaviour beyond peak stress, was recorded experimentally. Such responses were 
subsequently used as input to constitutive models based on nonlinear fracture mechanics and 
damage mechanics. The numerical analyses performed with these models show that the load-
bearing capacity of wood-adhesive joints is highly influenced, not only by the local strength of 
the bond, but also by the material stifnesses involved, the geometrical shape of the adherends, 
by the fracture energy of the bond line and by the shape of the nonlinear stress-displacement 
relation. 
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ABSTRACT

Summary Axially loaded glued-in rods are used in timber structural design for joining or reinforcing
heavy glue-laminated timber structural members. A European research program, 1998-2001, on the pull-
out strength of glued-in rods included work on development of a calculation method before proposal of a
design equation for the short term strength at constant climatic conditions. This work comprised various
stress and strength analyses by the FEM and by hand calculation methods, experimental testing of
fracture mechanics properties and testing of a large number of full-scale glued-in rod joints.

1. Introduction

Axially loaded glued-in rods are used in timber structural design for joining or reinforcing
heavy glue-laminated timber structural members [1,2]. The rods are commonly made of
threaded high strength steel bars, but also glass fibre bars were included in the testing program.
Typical rod diameters are in the range of 8-30 mm and the glued-in length is commonly in the
range of 10-30 times the rod diameter. The rod may be orientated along the grain of the wood,
perpendicular to the grain or at some inclination, as indicated in Figure 1 showing the types of
full-scale specimens and loading conditions included in the testing program.

Figure 1. Glued-in rod test specimens.

2. Present study

3-D FE stress and fracture analysis were carried out for several joint geometries, loading
conditions and glue-line material properties [4]. In these analyses the bond-line was modelled
by a non-linear mixed mode fracture model, taking into account the localized gradual damage in



Figure 2. FE-model of a glued-in rod joint.

the bond layer, characterized by normal and shear stress vs normal and shear slip across the
bond layer. The stress vs slip properties were quantified by four parameters: the local strength
and fracture energy of the bond in pure shear and pure tension. The wood was modelled as a
linear elastic orthotropic material. Figure 2 shows a FE-mesh used in the analysis.

The general goals before proposal of a strength design equation for the basic pullout strength
were to find some method that has the qualities of being:

1. Simple, yet general.
2. Based on mechanics and with parameters with a physical meaning.
3. Reasonably accurate and in general give predictions on the safe side.

Striving towards these goals use of a combination of the 1D shear lag theory of Volkersen and
quasi-nonlinear fracture mechanics [5] was investigated. In this theory the rod and the timber
are assumed to act as overlapping bars connected by a shear layer, representing the adhesive
bond line. The material properties of the two adherends are given by their axial stiffness in the
direction of the rod:Ew and Er representing the wood and the rod, respectively. The material
properties of the bond layer are defined by its local shear strength,τf, and its shear fracture
energy,Gf. A special case of this shear lag theory coincide with linear elastic fracture mechanics
analysis and an other, opposite special case coincide with that of a ductile bond performance
and uniform stress along the bond line.

Other less simple methods of analytical strength analysis were also studied, e.g. an extension of
the above bar-shear lag theory by consideration to the shear strain in the wood, leading to a
Timoshenko beam shear lag fracture model and a fourth order ordinary differential equation for
the shear stress along the bond line.

Experimental tests of basic properties and fracture performance of the bond were carried for
three adhesives: an epoxy, a polyurethan and a recorcinol/phenol [3]. In these tests specimens
with short glued-in lengths, only 8 mm, were used in order to enable achieve uniform shear
stress and recording of the entire stress vs slip curve, including the descending part with
gradually decreasing stress as the deformation was increased. In Figure 3 is shown stress versus
shear slip for the three adhesives using a rod made of steel glued-in parallel with the grain of the
wood. The elastic pre-peak stress deformation was for all adhesives tested very small as
compared with the post-peak deformation. The post-peak performance, in particular the slope of
the first descending part of the curve, has a major influence of the ductility of the bond and is
commonly of major importance for the load bearing capacity of a glued-in rod.



Figure 3. Local shear stress versus local shear slip.

The testing of full-scale glued-in rod specimens was carried out in cooperation with FMPA,
Stuttgart, and SP, Borås. The testing program comprised more than 75 test series and 700
individual tests. In Figure 4 is the average strength values from test series relating to epoxy
shown as the nominal bond shear stress at failure, Pf /(πdl), versus a dimensionless number
denotedϖ. This number is defined by the length and diameter of the rod, the bond properties in
terms of its local shear strength and fracture energy, and the elastic stiffness the wood and the
rod. The curve indicated in the diagram represents a proposed design equation:

ϖ
ϖ

πτ
)tanh(=

dl

P

f

f

whereτf is the local bond shear strength andPf the glued-in rod pull-out strength. In Table 1 is
shown bond properties obtained by fitting experimental pull-out strength to the shear lag theory
strength predictions.
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Figure 4. Pull-out strength test results and curve representing a strength equation.



Table 1. Local shear strength and fracture energy of rod to wood bond lines.

Adhesive τf

N/mm2
Gf

Nmm/mm2

PRF 8.9 4.15
Epoxy 10.5 1.89
PUR 9.7 1.77
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6XPPDU\��  With focus on numerical simulations, this paper describes the hydration process of concrete
and the subsequent response on the structure. There is a risk of cracking at early age due to the restrained
volume changes. The hydration process, which results in a heat- and stress development in a structure, is
simulated by means of the finite element method. An example is provided in this paper to exemplify the
problem and the solution procedure.

During the hardening process of concrete energy is released as heat. The tensile strength of
concrete is low. Due to temperature differences the concrete will tend to expand or contract and
there is a risk of cracking of the concrete due to restrained volume changes from the temperature
and shrinkage. When casting takes place upon an existing concrete structure, the relative
stiffness will have an influence on whether or not cracks are formed. A typical problem is the
casting of a wall on an existing slab, as illustrated in Figure 1. Keeping control of the cracking
in early age concrete is important with respect to durability and therefore also on the lifetime of
a concrete structure. Traditionally, prediction of early-age cracking has been based on
temperature criteria. However, this is not sufficient because crucial factors like thermal dilation,
shrinkage, mechanical properties and restraint conditions are not considered. For a reliable crack
prediction at early ages a stress-strain criteria must be applied.

Figure 1 - Typical problem with cracking of concrete due to the hardening process.

On basis of the heat of hydration in the hardening concrete and the thermal boundary condition,
the temperature distribution as a function of time can be calculated in a finite element analysis.
To obtain reliable results, a simulation of hardening concrete structures has to take into account
temperature development due to hydration, development of mechanical properties, creep and

Newly casted concrete

Stiff concrete base

Cracks



shrinkage, and restraint conditions of the particular structure. This calls for well-documented
material models. Within the Brite-Euram project IPACS [1] and the Norwegian NOR-IPACS
[2] project a comprehensive laboratory test programme has been performed to identify
parameters for models used in such calculations. Both thermal and mechanical properties have
been investigated. Bosnjak [3] has implemented the material models in the finite element code
Diana [4].

Concrete is a mixture of cement, water, aggregate (fine and coarse) and admixtures. The main
compounds in cement are calcium silicates. In presence of water, a chemical reaction takes
place between the cement and the water (hydration process), which in time produce a firm and
hard concrete. The most important factors for temperature development in a newly cast structure
are the cement content, thermal properties of concrete, geometry and size of structure, boundary
conditions and initial conditions. Mechanical properties important in the analysis of hardening
concrete are the strength, Young’s modulus of elasticity and creep. In young concrete the
development of these properties as function of time and temperature history is of great concern.

The influence of the mechanical responses on the temperature development in hardening
concrete is negligible, and the thermal and mechanical problem may therefore be separated. The
thermal problem is solved first, and results are used as input for the subsequent stress
calculation. This is a so-called staggered analysis. The finite element method is adopted to solve
the governing set of differential equations for the thermal and mechanical response of early age
concrete. Since the thermal and mechanical problem is decoupled, the finite element
discretisation may be done separately. However, to be efficient the same element mesh is
normally used in both analyses. To avoid spatial oscillation of stresses, elements in the stress
analysis then must have an order higher interpolation polynomial than element in the
temperature analysis.

To determine the risk for cracking in concrete during the hardening process is a relevant
problem for different types of structures. Typical structures are foundations, culverts in
embankments or subsea tunnels. A numerical investigation of temperature and stress
distribution in a culvert is presented in this paper. The structure is modelled and analysed by the
general finite element program Diana [4].

Figure 2 shows the cross section and the finite element model under consideration. Due to
symmetry only one half of the wall is modelled. The same element model is used both in the
temperature and stress analysis. Solid elements describing linear variation of temperature and
quadratic variation of stresses are used in this case. The exchange of temperature with
surroundings is modelled by the conduction coefficient of boundary elements. Quadrilateral
elements were used at the faces of three-dimensional model.

Different ways of modelling the structure and the restraint conditions is possible. In a culvert it
would normally be sufficient with a two-dimensional temperature distribution. However, the
stress distribution is three-dimensional. Therefore both the thermal and stress analyses must be
performed with 3D models. The most important stress component is in the longitudinal
direction of the culvert. Instead of a full 3D model, the analyses presented in this section
employs a simplified model which is a “slice” of the wall with unit thickness. The analysis of
the culvert in this work assumes free rotation of the cross section of the wall.



Figure 2 – Cross section geometry and finite element mesh of the culvert.

Typical material properties for concrete are employed in the analysis. The air temperature is
constant 17°C. The hardened and young concrete has initial temperatures of 17°C and 20°C
respectively. The formwork on the wall and the underside of the slab is removed after 36 hours.
The culvert is analysed for a time period of 10 days.

Figure 3 illustrates results from the thermal analysis. The temperature development in two
points, point A and B in Figure 2, in the middle of the cross-sections is given. The variation in
development is due to the difference in thickness of the cross-section. As expected there is no
significant heat exchange with the foundation slab.

Figure 3 – Temperature development and distribution in the cross-section after 3 days.

The main objective for performing numerical analysis of young concrete is to estimate the risk
for cracking due to volume changes in the hydration process. For the culvert in this example,
stresses in the longitudinal direction can form vertical cracks. Figure 4 presents the longitudinal
stress in the wall. During the expansion phase, when the concrete is heated, compressive
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stresses are introduced in the young concrete. In the contraction phase, rather large tensile
stresses develop in the cross-section. A maximum stress of 6.7 MPa is reached after 7 days.
Typical tensile strength of concrete is in the range 2-5 MPa. Hence, vertical cracks will most
likely occur in this culvert. As expected the largest tensile stresses are in the wall above the
foundation. Since the foundation with hardened concrete is much stiffer than the wall with
young concrete, the effect of restraining is higher in this area. In the figure it can be seen that in
the area above the foundation, the complete thickness of the wall have high tensile stresses.
Consequently cracks can form through the cross-section, which results in increased durability.

Figure 4 – Development and distribution of out-of-plane stress after 9 days in the wall.

This paper deals with numerical simulation of the heat and stress development in concrete
during the chemical hydration process in concrete. The crucial factors in the prediction are
thermal dilation, shrinkage, mechanical properties and restraint conditions. A culvert is analysed
to exemplify the assumptions, difficulties and possibilities of employing a numerical analysis to
estimate the risk of cracking at early age of a concrete structure. However, it must be
emphasised that a difficult task and a major challenge in such analyses are to identify all the
necessary material properties.
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ABSTRACT

Summary A finite element model for simulation of the dynamic response of horizontal axis wind turbines
has been developed. The aerodynamic model, used to transform the wind flow field to loads on the blades,
is a Blade-Element/Momentum model. The model is rather general, and different configurations and wind
conditions could easily be simulated. The model is primarily intended for use as a research tool when
influences of specific dynamic effects are investigated.

Background
For a successful large-scale application of wind energy, the price of wind turbine energy must
decrease in order to be competitive to the present alternatives. The behaviour of a wind turbine
is made up of a complex interaction of components and sub-systems. The main elements are the
rotor, tower, hub, nacelle, foundation, power train and control system, see figure 1. Understanding
the interactive behaviour between the components provides the key to reliable design calculations,
optimised machine configurations and lower costs for wind generated electricity. Consequently,
there is a trend towards lighter and more flexible wind turbines, which makes design and dimen-
sioning even more important [1].

Figure 1: Wind turbine layout.

The goal of this ongoing project is to produce a model with such accuracy and flexibility that
different kind of dynamic phenomena can be investigated. The majority of the present aeroelastic
models are based on a modal formulation and a time domain solution. The modal formulation
models are computationally time efficient because of the effective way of reducing degrees of
freedom, DOFs. However, these modal models are primarily suited for design purposes and will,



because of the reduced DOFs, not be suitable for research areas where phenomena such as in-
stabilities may be investigated. This project has chosen the finite element method as a means to
accurately predict the wind turbine loading and response.

The calculation model is based on three computer programs:

� SOSIS-W for generation of the turbulent wind field [2].

� AERFORCE package for the calculation of aerodynamic loads [3].

� SOLVIA commercial finite element program for modelling of the structural dynamics [4].

Wind Field
It is very important for the wind industry to be able to describe the wind field properly. Turbine
designers need the information to optimize the design of their turbines and turbine investors need
the information to estimate their income from electricity generation.

SOSIS-W is an artificial wind data generator developed by Teknikgruppen AB [2]. The program
is specially developed for providing time domain series with turbulent wind. SOSIS-W simulates
three dimensional wind vectors, corresponding to gridpoints in a plane uniform cartesian grid,
where the grid plane is perpendicular to the mean wind direction.

SOSIS-W creates three output files, one for each velocity component. The output data is arranged
in rows and columns, where each row represents a time series and each element in a time series
represents the velocity at a specific coordinate. Figure 2 shows an example of a grid net of size 4
x 4 and a rotor with its blades divided into 4 elements. However, in real simulations the resolution
must be increased. Depending on the angle, phi, the time and the distance from the hub to the
center of each blade element, the velocity will change in both space and time.

Figure 2: Example of a grid net of size 4 x 4 and a rotor with its blades divided into 4 elements.

Aerodynamics
Various methods may be used to calculate the aerodynamic forces acting on the blades of a wind
turbine. The most advanced are numerical methods solving the Navier Stokes equations for the
global as well as the flow near the blades. The two major approaches, for fast time simulations, to
calculate the forces are the Actuator Disc Model and the Blade-Element Model.



The aerodynamic model used in this project is the Blade-Element/Momentum method which has
been found very effective in comparative studies for wind turbine simulations. In spite of a number
of limitations it is still the best tool available for getting good first order predictions of thrust,
torque and efficiency for turbine blades under a large range of operating conditions.

The AERFORCE [3] package requires the input of airfoil aerodynamic data via tables as function
of the angle of attack, the turbine blade and rotor geometry and wind and blade velocities. Cal-
culation results are very dependent on the airfoil data, which is derived from experimental wind
tunnel studies.

Extensions has been made to the BEM-method, in the AERFORCE package, to incorporate:

� Dynamic inflow: Unsteady modelling of the inflow for cases with unsteady blade loading or
unsteady wind.

� Extensions to BEM-theory for inclined flow to the rotor disc (yaw model).

� Unsteady blade aerodynamics: The inclusion of 2D attached flow unsteady aerodynamics
and a semi-empirical model for 2D dynamic stall.

Figure 3: The aerodynamic forces acting on the rotor.

Structural Dynamics
As mentioned in the background to this paper a wind turbine is made up of a number of intercon-
nected mechanical elements. The aerodynamics forces acting on the rotor will not only contribute



to the production of electrical power, they will also results in dynamic loads. To simulate the entire
system, all motions must be taken into account.

The wind turbine is modelled using SOLVIA [4], which is a commercial finite element program for
linear and nonlinear analysis of displacements, stresses and temperatures under static or dynamic
conditions. The wind turbine is divided into three main parts, the tower, the nacelle and the rotor.
The parts are then coupled at nodes where important bearing and rotationally DOFs are restrained.
Figure 3 shows an example of the SOLVIA modelled rotor with the aerodynamic forces acting on
each blade.

Conclusions
The combination of the three separate programs has produced a simulation package for wind
turbine applications. Preliminary results indicate that the package is sufficiently accurate for the
investigation of different kind of dynamic phenomena.
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ABSTRACT

Summary  The steady state thermo-hydraulic flow in a pipe is investigated by the finite element method,
where the main attention is focused on analysis of heat losses in a multilayered structure of a pipeline. A
complex thermal finite element has been developed for this purpose and combined with thermo-hydraulic
pipe element of the ANSYS code. The results for heat losses are presented and compared to analytical
solution. Accuracy of the finite element model is also investigated.

Introduction
Evaluation of heat losses presents an important part of thermo-hydraulic flow analysis in
engineering applications such as district heating and cooling systems. The solution of this
problem contains difficulties due to the multilayered, even multisolid, structure of the pipeline
and due to different heat transfer modes having state-dependent characteristics. Some of these
factors are neglected in engineering practise for simplicity reasons.
In analysis of heat losses in pipelines, numerical methods are frequently adopted to solve the
fluid flow and heat transfer problems in pipelines separately [1-5]. A finite element formulation
for temperature-independent fluid flow in piping systems is proposed in [1], while heat flow
analysis in a pipe as an axisymmetric insulated cylinder is illustrated in [2]. Moreover formulae
for the heat loss from a pipe with insulation and a ground surface thermal resistance are
proposed in [3]. Detailed evaluation of heat losses by the finite element method with attention
on heat flux distribution into the soil has been solved in [4] and transient analysis of a piping
system is presented in [5]. The emphasis of this report was to develop a general finite element
approach in modelling of thermo-hydraulic flow for analysis of heat losses in a multilayered
structure of a pipeline.

Finite element approach to coupled thermo-hydraulic flow in pipe
Generally the fluid flow in a pipe and heat transfer involving conduction, convection and
radiation is a simultaneous phenomenon. The finite element approach to this coupled steady-
state non-linear problem may be written in the following form:

(1)

Here, [P] and [T] present nodal pressure and temperature vectors which have to be obtained by
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Fig. 1. Common insulated pipe

solution of the problem (1). [W] and [Q] describe given nodal fluid and heat flow vectors
reflecting given boundary conditions, while [Khyd] and [Kther] present hydraulic and thermal
matrices reflecting physical properties of fluid and insulation.
The fluid physical properties, which are involved in both heat transfer and fluid flow analysis,
depend on temperature and this aspect is important in design calculations.
In other words, fluid flow and heat transfer analyses are coupled due to variation of the above
properties, where the coupling is built into the governing equations implicitly. The solution of
model (1) requires an iterative sequential procedure.
The hydraulic matrix mainly depends on the fluid including fluid-pipe interaction properties.
The physical nature of the thermal matrix is much more complicated. For an individual element
e it reflects heat transfer through a multilayered, or even multisolid, structure of the pipe and
environment and has the form of:
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Here, subscript m denotes all layers of insulation and environment structure producing thermal
resistances. On the other hand, individual layers may contain different transfer modes. Each
layer may produce a thermal matrix:
[Km]=[K1(h)+K2+K3+K4] (3)
Here the [K1] matrix describes convection to the layer adjacent to a surface through the
convection coefficient h, [K2] reflects mass transport, while [K3] and [K4] describe conduction
occurring in the flow longitudinal direction and normal to the flow direction, respectively.
For the fluid layer, the  thermal matrix has the form: [Km]=[K1(h)+K2+K3]. For describing
conduction in the insulation, the following matrix is used: [Km]=[K4]. For designing the
combined effects of thermal radiation and natural convection from insulation surface, the
thermal matrix has form of: [Km]=[K1(h)].
Evaluation of heat losses provides the same sequence as thermal matrices. For the individual
element e:
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Implementation of the above scheme requires development of a complex thermal element. The
model (1)-(3) can be applied to the solution with different level of coupling the thermal
characteristics.

Solution of heat losses in multilayered structure of the heating pipe
The most common pipes in use for district heating is
insulated pipes with carrier of steel, insulation of poly-
urethane and a casing of high density polyethylene.
(Fig.1) In this case, the heat transfer from fluid to
environment is a three-step process: from a warmer fluid
to a wall, through the multilayered wall, then to a colder
surrounding air.
The main problem occurring in a thermo-hydraulic finite
element analysis of the pipe is that the existing finite
element codes usually contain thermo-hydraulic pipe
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element paying no attention to the structure of the pipe. In the framework of this paper the
complex thermal element designing myltilayered structure of insulation has been proposed. It is
compatible with the fluid element of the ANSYS code [6].
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In the present study the analysis of heat losses is based on the
following assumptions:
1. The heat transfer process from fluid to surrounding is only

solved in the radial direction, therefore it presents a one-
dimensional (axi-symmetric) problem.

2. The pipe is assumed to be placed in an underground culvert
and the temperature of surrounding air in the culvert is
assumed to be known.

The developed complex thermal element contains temperature-
dependent thermal properties, while evaluation of heat losses is
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Fig.3 Complex thermal finite
element

developed as separate postprocessor. A general scheme of the
fluid element connecting pipe nodes I-J with the thermal
element is presented in Fig. 2. Thermal elements K-I and L-J
describe structure of insulation and environment as shown, in
Fig.3. Here, heat transfer from fluid to wall describes fluid
element, including flow - dependent convection coefficient. A
set of conduction elements is needed to present the transfer of
heat in the pipe, insulation and casing material, since properties
of each material are different.

Heat transfer from the wall is represented by a convection element, which involves combined
effects of natural convection and thermal radiation (Fig 3.)

Numerical example
A numerical example is applied to present the idea discussed in the previous section. Numerical
examples are carried out for different diameters of the pipe (D20, D40, D80, D160 mm) and for
a pipe length of 1 m. The temperature of the water is assumed to be 80oC, temperature of the
surrounding air is 30oC. The properties of water are considered as follows: heat conductivity
0.684 [W/mK], specific heat 4313[J/(kgK)], density 993-937.2 kg/m3, viscosity 6.2-2.19×10-4

[kg/ms]. The heat conductivity of steel pipe is 76 [W/mK], while heat conductivity of insulation
and casing is 0.032 and 0.43 [W/mK], respectively.

Fig. 4 shows the comparison of the
losses between the finite element
results and results by an analytical
method for uncoupled problems.
The influence of coupling by
assuming a temperature dependent
variation of density and viscosity is
also investigated. The proposed
problem is also tested by the
analysis of a fragment of a heating
network.



Accuracy of Finite Element Model
The accuracy of the finite element model for the estimation of the heat losses is examined for a
few test examples by using different level of discretisation. The first test example defines the
influence of discretisation of conduction element. The relative accuracy of heat flow decreases
when the insulation thickness decreases, but remains independent on thermal conductivity of the
insulation material. The second test defines the influence of discretisation of fluid element.
Recommendations for longitudinal subdivision of the pipe section into fluid element are
proposed as well.

Results and discussion
The finite element approach for thermo-hydraulic problem of a pipeline, mainly with a
multilayered structure, with emphasis on analysis of heat losses has been developed. Theoretical
investigation and numerical examples prove suitability of the above approach in engineering
and advantages in comparison to the engineering method:
1. Multilayered structures of the pipe and surroundings are considered in the analysis of the

heat losses.
2. Heat transfer modes at different level of coupling with the fluid flow by describing

temperature dependent fluid characteristics can be investigated.
3. The finite element model with different accuracy may be used to estimate heat losses.

However, the numerical examples are limited because real heating pipes are placed in
underground culverts.
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ABSTRACT 

Introduction 
Wood is a complex and moisture-sensitive material. This often causes problems in industry. In the sawmill 
industry, for example, moisture-related warping of sawn timber during drying is a serious problem. 
Accordingly, in analysing distortion of timber boards or of wood products such as doors, window frames, 
and the like it is of substantial interest to have through knowledge of the distribution of the moisture 
content (MC) and of its variation over time. Simulations here need to take account of the fibre orientation, 
the orthotropy of the wood and variations in the material parameters as a function of moisture and 
temperature. This suggests use of full 3D non-linear diffusion model for analysing the moisture flow below 
the saturation point. Figure 1 shows the material directions l, r, t in wood. Most of simulation tools 
currently available are based on calculations of average MC or of one-dimensional moisture flow [1]. The 
influence of temperature, although it can be important, is not studied here. 
 

Figure 1.   The local and the global coordinate systems. 
 

Theory 
The non-linear diffusion equation for the moisture content w can be written as [2] 
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where the source term Q, or the general moisture rate per unit volume and second, is added to the equation. 
∇∇∇∇w is the moisture gradient vector and Dw the diffusivity matrix. For anisotropic material the matrix Dw 
generally has nine independent coefficients. In this study, the wood involved is assumed to be an 
orthotropic material and the Dw matrix to be given by 
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where the subscripts l, r and t stand for the longitudinal, radial and tangential directions, respectively. 
The constitutive equation for moisture flow below the fibre saturation point is 
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where q is the moisture flux vector. The amount of moisture passing through a unit surface area per unit of 
time is denoted as qn = qTn, where n is the outward normal to the surface, see [3] for details. The 
transformation between the orthotropic directions and the global coordinate system is given by 
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where l, r, t and i, j, k are the unit vectors along the axes of the local and the global coordinate systems, 
respectively. The transformation matrix A consists of nine direction cosines that take into account the effect 
of annual rings, spiral grain and the conicity of the log [4]. When the flow and the moisture gradient vectors 
are transformed to the local coordinate system, the following relationship is obtained: 
 

qAq T=          (1.5) 
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Combining Eqs. (1.3)–(1.6) yields to the relationship between the global and the local diffusivity matrix. 
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The moisture content can be approximated by w(x,y,z,t)=N(x,y,z)⋅a(t) where a is a vector containing all the 
moisture values at the nodal points and a& is the time derivative of the vector a. Multiplying Eq. (1.1) by a 
weight-function vector chosen according to the Galerkin method, and then integrating and applying the 
Green-Gauss theorem yields 
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The matrix N contains the global shape functions for the moisture content, and B is given by B = ∇∇∇∇N.        
V and S refer to the volume and the boundary surface, respectively, of the body in question. Equation (1.8) 
can in brief form be written as 
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If convection at the boundary is considered in Eq. (1.8), K and f need to be modified. The flux there can be 
expressed by the convection boundary condition qn = α(w- ∞w ), where α is a convection coefficient 
dependent on a variety of conditions. The terms to be added due to the convection condition are 
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c dSw Nf , see [3]. Thus, Eq. (1.8) can be modified to 
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The method chosen to solve the equation system (1.9) or (1.10) is a standard finite difference scheme. The 
time domain is divided up by different time points t1, t2, t3, …,tn, on the time axis. Various types of finite 
difference schemes with differing characteristics can be obtained, considering either Eq. (1.8) or Eq. (1.10) 
at time t = tn + β∆tn and choosing the parameter β so that 1 ≥ β ≥ 0. The moisture at time step n+1 is 
denoted as an+1 and, if the moisture at step n denoted an is known, can be found according to [5] or [6] as 
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In the examples given below β = 0.5 is selected which means that the scheme is unconditionally stable. 
 

Implementation 
Thus far, only 2D cases have been considered. Implementation is performed analogous with CALFEM, in a 
Matlab environment, using bilinear elements. 
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The annual rings of the sawn timber boards studied are represented as ellipses, see Fig.3. The shape of the 
ellipses can be described by γ, the ratio of ar and br. 

 

 

Figure 3.   Material direction model in 2D, pith location and the lengths ar and br defining one annual ring. 
 

Verification example 
Verification can be achieved by comparing a case of transient moisture flow with a known analytical 
solution. The case studied is a rectangle with a constant initial MC of 1 and a boundary MC of 0. The 
solution to this problem can be found by use of eigenfunctions. A check of the analytical solution by use of 
Parseval’s identity was performed, see [7] for details. The material was assumed to be isotropic with a 
diffusivity of 7.78·10-7, and the dimensions of the rectangle were taken to be 0.1x0.05. A MC-profile at      
y = 0.025, t = 150 (∆t = 0.5) shows convergence with the FE solution, see Fig.4. 

 Figure 4.   Analytical and FE solution of a transient moisture flow problem, (a)   140 elements 
     (b)   480 elements. 

 

Comparison for a 2D example of solutions using linear versus nonlinear diffusion coefficients.  
The case studied was a 100x50 mm2 board with the diffusion coefficients [1] shown in Fig.5. The boundary 
condition was set to an MC of 8% and the initial condition to an MC of 27%. 

Figure 5.   Influence of moisture content on the diffusion coefficients. 
 

For the MC range for which no measured data were available, a least square extrapolation fit was 
performed. The influence of pith location was also studied, the MC of two different boards dried in the 
same manner and equal in their material parameters but with differing pith locations being compared. 
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Figure 6.   Moisture content of boards subjected to a sudden drop in boundary MC and dried for 39 hours 
   (a)   Linear coefficients and pith in the middle of the cross-section 

(b) Linear coefficients and pith at the centre of the lowest edge 
(c) Nonlinear coefficients and pith in the middle of the cross-section 
(d) Nonlinear coefficients and pith at the centre of the lowest edge. 

 

In the simulations presented, circular annual rings were assumed (γ =1). The results shown in Fig.6(a)-(d) 
indicate pith position to be of importance for the MC profile and nonlinearity to affect the MC profile 
considerably. Table 1 summarises the results of the simulations performed. 
When the MC of a node close to the boundary is plotted versus time for the four cases just considered, the 
node could be seen to dry faster at the beginning in cases (c) and (d) but to dry faster in cases (a) and (b) as 
time progresses. This result is expected on the basis of the variation in diffusivity parameters that is shown 
in Fig.5. If γ = 0.5, that is if the annual ring representation is elliptical and if all the other prerequisites are 
the same as in Fig.6(c), the average MC at time 39 hours increases, see Tab.1. 
 

Table 1.   Average MC for two pith locations as solved using a linear and a nonlinear technique and an 
example of elliptical annual rings as solved by a linear technique (the boundary nodes not being 
considered in the average).  
Case Fig.6(a) Fig.6(b) Fig.6(c) Fig.6(d) Fig.6(a) but γ = 0.5 
Average MC [%] 12.8 13.2 15.2 15.2 13.8 
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ABSTRACT

Summary The simultaneous transfer of heat and mass in capillary-porous materials can be described
by three coupled differential equations with saturation, gas pressure, and temperature as variables. In this
abstract it is demonstrated how, under certain circumstances, it is crucial to include these couplings for a
satisfactory description of the overall behaviour of the system.

An accurate description of simultaneous heat and mass transfer in porous media is essential to
a wide class of problems. These include industrial processes such as the drying of building ma-
terials, food stuffs, and other agricultural products. Other examples include concrete hardening,
multiphase flow in soils, and pressure increases in concrete subjected to extreme conditions such
as fire. Whereas heat and mass transfer as independent uncoupled phenomena can be described
relatively easily, the complexity of the models grows significantly when the full coupling between
moisture content, gas pressure, and temperature is taken into consideration.
In this work we use the model put forward by Whitaker [1]. Here a representative average vol-
ume of the porous medium in question is considered, see Figure 1. Starting from the microscopic
balance equations these are then averaged over the representative volume. This yields a set of
macroscopic conservation equations for the total water content (liquid and vapour), dry air, and
enthalpy. These can be written as

Total water:
@

@t
("w�w + "g�v) +r � (�wvw + �vvv) = 0 (1)

Enthalpy:

�Cp

@T

@t
+ (�wcpwvw + �gcpgvg) � rT =

r � (Keff � rT )��hvap

�
@

@t
("w�w) +r � (�wvw)

�
(2)

Dry air:
@

@t
("g�a) +r � (�ava) = 0 (3)

Here, subscripts� =w, g, v, a refer to liquid water, gas, vapour, and dry air respectively.�� are the
intrinsic phase average densities,v� the velocities, and"� are the volume fractions with"w+"g =
' where' is the porosity. As for the enthalpy conservation equation� is the average density,Cp

the average specific heat,cp� the specific heat of the different species,T the temperature,Keff the
effective conductivity, and�hvap the heat of evaporation. The liquid water and gas velocities are
determined by Darcy’s law

vw = �

KKrw

�w
(rp�rpc) ; vg = �

KKrg

�g
rp (4)



Figure 1: Averaging volume.

where the effective permeability matricesKKr� are the product of the intrinsic permeabilityK,
which depends only on the structure of the porous medium, and the relative permeabilitiesKr�

which depend on the saturation. BothK andKr� are diagonal matrices. The viscosities are given
by ��. The motion of the liquid water is due to gradients in the total liquid pressure, i.e. gradients
in the difference between total gas pressurep and capillary pressurepc, whereas gradients in total
gas pressure alone results in motion of the gas species. Furthermore, following Fick’s law for a
binary mixture of gases (air and vapour) the relative average velocities of the these species are
related to the average total gas species velocity as

�vvv = �vvg � �gDeffr

�
�v

�g

�
; �ava = �avg � �gDeffr

�
�a

�g

�
(5)

The system is closed by the thermodynamic relations

pa =
�aRT

Ma

; pv =
�vRT

Mw

; p = pa + pv (6)

and the equations of state

pc = pc(s; T ); pv = pv(s; T ) (7)

wheres = "w=' is the saturation. The capillary pressure-saturation curves are usually determined
experimentally, but a good first guess can also be made on the basis of the structure of the porous
medium. An example of this is wood which has a rather regular cell structure and where there is a
good correlation between analytically and experimentally determined capillary pressure-saturation
relations.

The three coupled conservation equations can be discretized in space by finite elements such that
the following system of ordinary differential equations is obtained
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Here the subscriptsl, e, anda refer to the physical quantities of liquid, enthalpy, and air respec-
tively. As state variables we have used saturation, temperature, and total gas pressure, and theC

andK matrices depend nonlinearly upon these state variables. For the time discretization Lee’s
three-level time stepping scheme is applied

xn+1 = �

�
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��1 �
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(9)



(a) (b)

Figure 2: Drying configurations (a) and (b).

Next, an example concerning the drying of a 20 cm one-dimensional slab of softwood is given.
Wood is a highly hygroscopic material and as such a complete analysis also needs to account for
the transfer of bound water in the cell wall. In this case, however, we consider only the transfer of
free water above the fiber saturation point. Two different configurations as shown in Figure 2 are
considered. In (a) a temperature of60ÆC is maintained at the left end whereas the temperature at
the right end is15ÆC, and in (b) these boundary conditions are then reversed. The initial saturation
is s = 0:44 corresponding to a moisture content of MC= 90%. For the material values used in the
simulations we refer to[2]. To illustrate the effect of the temperature gradients both a fully coupled
and an uncoupled computation is performed for each configuration. In the uncoupled computation
the transfer equations are still nonlinear ins, T , andp, but the changes in the individual physical
quantities occur only as a result of gradients in these quantities. This means that e.g. flow of
gas due to temperature gradients does not occur which under certain circumstances is a seriously
flawed assumption.
The results of the computations for the two configurations are shown in Figure 3 (a) and (b).
Several observations can be made. Whereas the uncoupled simulation for configuration (a) shows
a more rapid drying than is the case with the use of the coupled transfer equations, the opposite
is the case for configuration (b). Also, for the uncoupled simulation configuration (a) seems to
be the most favourable, whereas the opposite is clearly the case for the coupled simulation. The
explanation for these differences lies primarily in the equation of motion for the dry air species.
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Figure 3: Results of drying simulation for configurations (a) and (b).
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Figure 4: Drying configurations (a) and (b).

Rewriting (5) in terms of pressures, we have

�ava =
pM

RT
vg �

MaMw

MRT
Deff

�
pv

p
rp�rpv

�

' �

�
pM

RT

KKrg

�g
+

MaMw

MRT

pv

p
Deff

�
rp+

MaMw

MTR

�
@pv

@T

�
DeffrT (10)

Here we have used the fact that@pv=@s ' 0. Equation (10) expresses the fact that flow of air is
owed to both pressure and temperature gradients, and in such a way the transfer will occur towards
decreasing pressures and increasing temperatures. For configuration (a) the temperature gradients
will cause a transport of air out of the slab and the resulting under-pressure shown in Figure 4 (a)
is obviously quite unfavourable. For configuration (b) the situation is the opposite. Here an over-
pressure develops at the right end, see Figure 4 (b), which has a positive effect both regarding
the transport of water and gas. As for the uncoupled problems, the flow of gas is independent of
the temperature distribution and the large under-pressure in case (a) never occurs. Similarly, the
pressures in case (b) are also moderate. The result is two quite similar drying histories with case
(a) being slightly more rapid since heat is here supplied at the left end of the slab where the bulk
of the evaporation takes place.

The conclusions are as follows. In drying processes with considerable temperature variations
the coupling between gas pressure and temperature can influence the results significantly, and
as shown through an example it is not possible to make any general statements of whether this
influence will increase or reduce the computed drying times.
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ABSTRACT 

Summary This paper describes a new concrete material model specially developed to handle impact 
loading situations. The main feature of this model is the simplicity to include pressure sensitivity, strain 
rate dependency and damage behaviour effects characteristics of concrete materials. Based on the 
numerical predictions so far, this model represents a good compromise between simplicity and accuracy 
for large-scale numerical analysis of structures under impact loading.  
 
INTRODUCTION 
 
It is well known that concrete exhibits a rate-dependent behaviour when subjected to high rate 
straining, with significant increase of dynamic strength. This particular behaviour is rather 
important under impulsive loading, as it occurs when structures are subjected to impacts or 
explosions (e.g. strain rates ε ). For these strain rates dynamic strength can be enhanced, 
with respect to the static one, up to at least 80 % in tension and 25 % in compression. 

1  1 −> s&

 
On the other hand, under a multiaxial state of stress the damage mechanisms activated are 
highly dependent on the loading path. Mazars [1] proposes an interesting classification to 
illustrate which are the main damage modes involved depending on the loading state as shown 
in Table 1. The complexity of a numerical model will depend on the objectives to simulate the 
basic mechanism involved in a certain type of problems or in the generality to consider all types 
of loading. In particular, for impact and penetration problems these three mechanisms: cracking, 
shearing and compaction are present at the same time, see Fig. 1. In addition, the modelling 
complexity is increased because strain rate effects (different for each mechanism) should be 
included.  
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c o m p re s s io n
w ith  c o n fin in g  p r e s s u re

Fig. 1 Mechanisms activated during impact 
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Type of loading Particularity Local damage mode loading examples 
A: tension and 
compression (low 
lateral pressure)  
• uniaxial 
• biaxial 
• triaxial 

extensions 
brittle/softening 

behaviour 

cracking mode I and 
mode I+II 
(debonding+branching) 
 

σ

ε

σ

 
B: compression, 
moderate-high lateral 
pressure 
• triaxial 

no extension 
"ductile" 
behaviour 

cracking mainly in mode 
II and III (branching) 

σ

ε

σ1

σ2

 
C: hydrostatic pressure 
in compression 
• triaxial 

no extension 
hardening and 

stiffening 

consolidation of the 
microporous structure 

p

µ
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Based on these arguments this paper introduces a new concrete material model representing a 
nice compromise between simplicity and accuracy for concrete structures exposed, in particular, 
to impact loading conditions. 
 
THE CONCRETE MODEL 
 
The concrete model proposed [2] is an enhanced version of the original model of Holmquist et 
al. [3] and it uses a factorised formulation as follows: 
 

3
*   Jratepressureeq FFF=σ  1

  
In particular, for the pressure sensitivity the proposal consists of working with one simple 
continuous function defined as:  
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The material parameters  are calibrated from classical results from the literature. The 
rate sensitivity adopts the formulation proposed by Camacho and Ortiz [4] and largely used by 
Borvik for metals [5]: 
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Finally, a reduction of the shear strength on the compressive meridian can be considered by 
introducing an elliptic function  depending on the deviatoric polar angle  and the 
normalized out-of-roundness parameter, , as proposed by Willam and Warnke [6] defined as: 
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The damage behaviour is treated separately according to each mechanism. For this purpose, 
three damage internal variables: , representing the brittle, shear and compaction 
damage, respectively, are introduced. 
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NUMERICAL SIMULATION OF A PENETRATION PROBLEM 
 
The penetration computations are based on a test performed by Hanchak et al. [7] where a 
square reinforced concrete plate of 610x610x178 mm was impacted. Three layers of square-
pattern reinforcement steel rods with a diameter of 5.6 mm were used. The uniaxial compressive 
and tensile strength of the concrete was 48=cf  MPa and 4=tf  MPa, respectively. In addition 
to the pressure-compaction curves, triaxial tests were performed under various confining 
pressure levels so that shear strength-pressure curves could be established. 
 
A 30-mm, smooth-bore powder gun was used to launch a 0.50 kg ogival-nose steel projectiles 
with a length of 143.7 mm and a diameter of 25.4 mm. The striking velocity was 434 m/s. 2D 
axisymmetric elements were used in the computations. In total 5000 elements were used. The 
erosion element option of LS-DYNA was adopted in the numerical calculations. The numerical 
model predicts a residual velocity of 205 m/s, which compares fairly well with the experimental 
residual velocity of 214 m/s reported by Hanchack, see Fig. 2. Consequently, the present model 
represents a good compromise between simplicity and accuracy for large-scale numerical 
analysis of structures under impact loading. However, further numerical validation tests are still 
needed.  
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Fig. 2 Residual velocity of the projectile after perforation 
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ABSTRACT 

Summary A wound roll of paper is loaded against a nip roller and the measured values of the nip width 
and the roll indentation are compared with the corresponding calculated values. The numerical problem is 
solved using the Finite Element Method in conjunction with the Panagiotopoulos process. A suitable form 
of the incremental stress-strain relation will be discussed. A least squares fit to the experimental results is 
used to determine values for the paper roll elastic moduli. 
 
INTRODUCTION 
  
Winding a flexible web into a compact roll is a widely used process for materials such as paper, 
thin films and magnetic tapes. By the aid of winding models [1,2] one can analyse the internal 
stress state of the roll, which is an important part of the defect free roll structure design. 
Winding models can predict several roll defects directly, and will help to understand many 
others. 
 
Every winding model needs a proper constitutive law for the material wound and numerical 
values for the material parameters. The earliest models were based on the assumption that the 
wound roll could be treated as a linear, plane strain and orthotropic medium. Later the radial 
modulus of a wound roll was modeled as a nonlinear function of the radial stress or strain [3] 
and also viscoelastic effects were accounted for [4]. A common feature of modern winding is 
the presence of a nip in the winding path. It should be noted that the nip-induced stresses 
destroy the rotational symmetry of the stress field of the wound roll. Therefore, shear stresses 
are generated into the roll. Since the conventional models concentrate solely on cases with 
rotational symmetry, the information on elastic constants in the literature is restricted to the 
tangential and radial moduli. However, there is an increasing interest and need for models of 
winding with a nip so that the values of the shear moduli and Poisson’s ratios also become 
important. It has been shown recently, in particular, that the value of the shear modulus of the 
roll may have a marked effect on the nip width [2]. 
 
The aim of the present work is to present a method for the determination of the elastic moduli of 
the roll by comparing the results of roll compression tests with those of a nonlinear FE-model in 
the sense of a least squares fit. 



THEORY 
 
The basic contact configuration of a paper roll and a nip roller is shown in Figure 1, which 
shows the wound roll pressed against the steel drum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Nip contact configuration and the coordinate system used. 
 
Let us consider first a general stress-strain relation of an orthotropic nonlinearly elastic material. 
In a plane strain state, some distance away from the roll ends, the incremental constitutive 
equation in the principal directions of the material can be written as  
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In general, all the coefficients Err , Erθ , Eθ r , Eθθ  and Grθ may depend on the strain components 
εr , εθ and γrθ . For a hyperelastic material one can derive the stresses from an elastic potential 
function so that Erθ = Eθ r . One may ask, of what form are the terms Err , Erθ , Eθ r , Eθθ  and Grθ in 
the case of a paper roll? No general answer exists so far. Pfeiffer, for example, suggests [5] the 
relations 
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Instead of equation (2) Hakiel prefers the relation [1] 
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In the present work we consider the parameters Eθθ , Erθ and Grθ as constants and employ 
equation (2) for the radial modulus.  
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Our numerical solution of the compression experiment consists of two main steps as described 
below: 

• The elastic solution, i.e. the flexural matrix for the discretized contact surface is 
calculated using FEM. 

• The contact stress distributions are calculated using the Panagiotopoulos iteration 
utilizing the flexural matrix. 

 
The winding steel drum can be considered as rigid when compared to the paper roll. The finite 
element mesh of the roll cross section is shown in Figure 2. The calculated contact pressures are 
used to update the stress and strain state of the material and a new elastic solution is sought. 
This process is repeated until a prescribed accuracy in the contact force distribution is obtained.  
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Figure 2. Cross section of the paper roll meshed with four node quadrilateral elements. 
 
Typically six or seven material iterations are needed to reach a relative change ≤ 10-6 of forces 
in successive iterations. Note that a wound roll represents a strongly pre-stressed body of 
material. Therefore, it is important to account for the initial strains in the solution procedure. If 
the wound-in-tension history of a roll is known, one can account for the initial strains of a 
finished axisymmetric roll using Hakiel’s model; otherwise, experimentally determined (pull 
tab) values must be used. 
 
Calculations show that the value of Erθ has practically no effect, whereas Grθ has a significant 
effect on the contact width and indentation depth. Hence, it is evident that the value of Grθ can 
be determined by a least squares fitting to measured data. The residual error to be minimized is 
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Here ai and δi denote the measured values of the nip half-width and the roll indentation, 
respectively, for the line loads Pi (i = 1,…, N ) used in the compression experiment, whereas 



a(Grθ ; Pi) and δ (Grθ ; Pi) denote the corresponding numerically computed values. Note that in 
place of Grθ  in eqs (5) and ( 6 ) there may be several unknown elastic parameters. In practice, 
however, the computational cost may be reduced by taking the values of K1 and K2 from a stack 
test and the value of Eθθ  from a machine direction tensile test.  
 
EXPERIMENTAL SETUP 
 
The experimental setup resembles the configuration shown in Figure 1. A paper roll of radius R1 
rests on a nip roller of radius R2. A compressive load is applied from the core chucks to the roll. 
The resulting nip load P is calculated from the roll weight and the core load. The distance x of 
the roll top from a fixed point is measured with a high precision laser sensor (resolution < 10 
µm). It is assumed that the nip and core loads do not cause any significant deformation at the 
roll top. Hence, the nip compression can be calculated from the measured value of x. The nip 
width was measured using the Pressurex Micro Film. The smallest measurable pressure with 
this film is 13.8 kPa and, hence, also the nip edges could be quite accurately detected. The 
evenness of the nip distribution was checked by measuring the nip width from three locations of 
the roll: both edges and the center. The initial internal pressure distribution of the roll was 
estimated by pull tab measurements. The total number of pull tabs was 10. Near the roll 
periphery the internal pressure was measured at 50 mm spacings. The nip roller diameter was 
0.425 m and the roll diameter 1 m. 
 
CONCLUSIONS 
 
An indirect method for determining the values of elastic moduli of a paper roll is presented. In 
particular, the value of the shear moduli Grθ�  is rarely reported in existing literature, and yet it 
is an important parameter in modern winding models including the nip action. The present 
method can in principle be utilized in an automated on-line measurement system. 
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ABSTRACT

Summary   We consider general 3D truss structures. The design variables are the cross–sections of the truss
bars together with the joint coordinates and these design variables are considered to be continuos variables.
Using the design variables we will simultaneously do size optimization (areas) and shape optimization
(joint positions). The structures are subjected to multiple load cases and the objective of the optimizations
is minimum mass with constraints on eigenfrequencies (possible multiple), displacements and stresses.

1.  Introduction
Optimization of trusses using numerical methods has been an active area of research since it was
initiated by the work of [2] and of [3]. In the paper [5] it was shown that we have the possibility
of simultaneously using the area of the cross section of the bar and the joint coordinates as the design
variables. A large number of papers have been published in the area of truss optimization, for a re-
view see [1] and references therein. There is however a very limited amount of papers dealing with
the introduction of constraints on eigenfrequencies in connection with the optimization of truss
structures, but from a practical point of view it seems reasonable to include this. The introduction
of constraints on eigenfrequencies also have the possibility of removing the degenerated structures
you might find in optimization. The main contribution of the present paper is the inclusion of
constraints on eigenfrequencies, in a general setting of truss optimization. In the following sections
we give an outline, for a more thorough explanation see [7].

2.  Stress Constraints
If a bar is in tension we have an simple constraint specifying that the stress ( �� 0 ) must be smaller
than a stress related to the yield stress ( �y ).

�� �y�� (1)

where  �  is a safety factor. In compression we have a similar limit on the stress but we also want
to avoid buckling in the slender members.  To be able to make a more clear comparison between
the optimized structures shown in the example and the actually used designs we will apply a stress
constraint that is given by the Danish standards DS409,DS410 and DS412.  In figure 1 we show
the allowable compressive stress in bars for different profile types together with  the allowable
stress for the ideal truss.
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Figure 1. Allowable compressive stress in bars as a function of slenderness ratio,  � , using

DS409,410,412. (Steel S355, �y� 3.55 108 N�m2  E� 2.1 1011 N�m2).

3  Sensitivities
When we are using SLP (Sequential Linear Programming). as the optimization method we need
the sensitivities of the objective as well as of the constraints with respect to the design parameters.
Most of the sensitivities can be found straight forward, see e.g. [4]. In the following we will only
describe the sensitivities of eigen frequencies. If we have a distinct eigenpair,  (�2, {�}) , then the
sensitivity with respect to a design parameter,  h , is given by
where  [M]  is the mass matrix and  [S]  is the stiffness matrix, and we have assumed the normaliza-
tion of the eigenvector . If we have a multiple eigen frequency we can not use (2). The derivation
below is primarily taken from [6]. We will assume that we have a double eigenfrequency with two
corresponding eigenvectors,  (�2, {�} 1, {�} 2) . The derivations for higher order of multiplicity can
be done in a similar way. We will again assume that the eigenvectors are normalized and that the
two eigenvectors are orthogonal.

{�} T
1[M]{ �} 1� 1 {�} T

2[M]{ �} 2� 1 {�} T
1[M]{ �} 2� 0 (3)

The problem is that any linear combination of the two eigenvectors will also be an eigenvector with
the same eigenfrequency.

{�
_

} � c1{�} 1� c2{�} 2
(4)

c2
1� c2

2� 1� {�
_

} T[M]{ �
_

} � 1 (5)

The sensitivity is therefore not only related to the change in the design space, given by the change
in design parameter  h , but also by the choice of the eigenvector. Only for two specific eigenvectors
will the sensitivities have physical meaning. By inserting (4) in the sensitivity (2) we get

d�2

dh
� c2

1g11� c2
2g22� 2c1c2g12 (6)

gnm� {�} T
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dh
� �2 d[M]
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){�} m (7)



To find the extreme values of (6) we differentiate with respect to the two constants,  c1,c2 , and set
this equal to zero.

�g11
g12

g12
g22
��c1

c2
� � �00� (8)

We now solve the eigenvalue problem (8) and find the eigenpairs.

(ga, {c} a) , (gb, {c} b) (9)

The physical sensitivities of the double eigenfrequency is given directly by  ga  and  gb , and the
corresponding eigenvectors are given by (4) with the constants taken from the vectors  {c} a  and
{ c} b .

4  Example
In this example we will compare an optimized result to a real life application. In the spring of 2001
the national football stadium of Denmark was fitted with a roof. The size of the roof is
140m� 95 m . The actual end beam used in the roof is shown in figure 2 and has a mass of 65
metric ton. The roof is supported at four points indicated by balls in figure 2.

3

1

2

Figure 2.  Original end beam of the folding roof, mass 65 metric ton.

To be able to compare the designs from optimization with the design in figure 2 we will constrain
the optimization so that it will fulfill the same safety as specified by Danish standard (DS409–412).
According to the standards we have six loads:

�Snow load, {Fs} (900 N�m2) �self–weight, {Fg}
�Lift due to wind,  {Fwl} (wind speed 24m�s) �Downward force due to wind, {Fwd}
�Horizontal wind load,  {Fw} �Horizontal force,  {Fc} (3500 N�m)

From these loads we get three different load cases:

Load case 1 : {Fg} � { Fc} � 1.5{Fs} � 0.5{Fwd} � 0.5{Fw}
Load case 2 : {Fg} � { Fc} � 0.5{Fs} � 0.5{Fwd} � 1.5{Fw}
Load case 3 : {Fg} � { Fc} � 1.5{Fwl} � 0.5{Fw}

The constraints on the eigenfrequency is that the first eigenfrequency should be greater than  1Hz .
At the same time we will apply the displacement constraint that the maximum deflection is  1/200



of the total span of the beam. Figure 3 shows the optimized structure, it should be noted that nodes
which are loaded or constrained are not allowed to change position. From figure 3 we see that the
design has changed compared to figure 2. The original beam had a maximum height of  6.75m
this is in the optimized design reduced to  5.85m . At the same time the width of the lower flange
is reduced from  3.40m  to  1.66m . The objective (mass) of the optimization was reduced to 41.2
metric ton. For this example the constraints on displacement and eigenfrequency is not active so
the design is fully controlled by the stress constraints.

3
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2

Figure 3.  Optimized design of end beam, mass 41.2 metric ton.
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ABSTRACT

Summary  In this study we consider the design sensitivity analysis of structures exhibiting large
deflections. Based on governing FEM equilibrium equations and direct differentiation method, we derive
both total and incremental sensitivity formulas for elastic and elasto-plastic responses, respectively.

Introduction

The design sensitivity analysis is an essential part of a general optimisation problem. A well-
posed, standard-form optimisation problem can be solved using a suitable mathematical
minimisation algorithm, whereas the data regarding the physical character of the problem is
brought into the computation via requested function values and their derivatives with respect to
design variables. In a general structural optimisation problem, the finite element method serves
as a standard tool for evaluating the objective and constraint function values and their design
derivatives.

In this study we concentrate on design sensitivity analysis of quasi-static structural systems that
are discretised using the finite element method. We consider the displacement sensitivity both
for large deflection problems as well as rate-independent elasto-plasticity. However, we restrict
the discussion on problems that exhibit monotonically increasing unique load-deflection paths,
i.e. we handle only structures that are not prone to buckling. As concluded in many research
papers, see e.g. [1,2], the direct differentiation method (DDM) is superior to the adjoint system
method, especially in elasto-plastic problems. Indeed, throughout this study also we use the
DDM.

Displacement sensitivity

During the minimisation process, the design derivative dq/dx of nodal displacements q with
respect to design variables x at the final load level λk+1pref, say, is needed. Here pref is the
reference load vector, λ is the external load factor and the subscript denotes increment number.
In the so called total sensitivity approach, the governing equilibrium equation

r q p 0( ) − =λ ref
        (1)

is differentiated with respect to design variable vector x leading, after standard manipulation, to

K
q
x
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xT

d

d
= − ∂

∂
.         (2)



In above r  is the internal nodal force vector and K T is the tangent stiffness matrix.

After regular path continuation up to desired load level λk+1pref, the design sensitivity can be
obtained from (2) just by formulating the right-hand side of (2) for the used element type and
adopting an already manipulated stiffness matrix K T. Thus, whenever the total sensitivity
approach gives appropriate results, it should be adopted because of its low computational costs.
Because the total sensitivity approach is based on differentiation of the equilibrium equation at
fixed but arbitrary state, the obtained sensitivity equation (2) can not give accurate results if the
nodal displacements are somehow history-dependent. For example, in elasto-plastic problems
(2) must not be used.

Opposite to the total sensitivity scheme, path-dependent problems can be handled using an
accumulated sensitivity approach that is incremental in nature. To begin with, we first write the
equilibrium equation (1) in an incremental form as

∆r p rk+1 k+1 ref k= −λ ,         (3)

in which the right-hand side terms contain fixed values of external and internal force vectors at
equilibrium states k and k+1 and the left-hand side term is due to the iteration process from
equilibrium state k to k+1. Differentiation of (3) with respect to design variable vector x leads
us, after some computations, to
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Using (4) it is straightforward to compute the required design derivative at equilibrium state k+1
as
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+ += + ∆ .         (5)

In (4) K g is the geometric stiffness matrix , B is the kinematic matrix and σ is the vector of
stresses. Compared to total sensitivity formula (2), one additional stress sensitivity term dσ/dx is
required in the incremental approach (4). Indeed, this single term contains all the information
concerning the adopted constitutive model. Computation of this term during the elasto-plastic
analysis can be briefly described as follows.

Stress sensitivity

Up to equilibrium state k the stress is updated as

σ σ σk k 1 k= +− ∆ ,         (6)

in which the increment ∆σσk is accumulated during the increment from equilibrium state k to
k+1. Differentiation of (6) with respect to design variable vector x gives
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in which the latter derivative is dependent on the used elasto-plastic stress updating algorithm.
In the case of explicit time integration algorithm, the latter derivative can be written, after some
manipulations, as
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In (8) Dcont is the continuum elasto-plastic material stiffness matrix following from the explicit
stress updating analysis. The formulas (4), (5) and (8) together serve as the so called
incremental sensitivity algorithm.

Examples

At this point, we adopt two examples to present some typical results of non-linear response
sensitivity. The first example, a two-bar truss [1] depicted in Figure 1, offers a highly suitable
test for the accuracy of the sensitivity algorithms because the sensitivity of vertical displacement
v of node 2 with respect to bar cross-sectional area A = A1 = A2 can be expressed for large
displacements in closed form as
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.          (9)

When deriving (9), a linear constitutive relationship between Green-Lagrangian (GL) strains
and second Piola-Kirchhoff (PK) stresses is assumed. We test the total sensitivity approach (2)
with fixed design variable values A1 and A2 and an increasing external load P as shown in Figure
1. Because our aim is to handle only pre-buckling range, we follow the sensitivity path, depicted
in Figure 2, up to load value P = 0.95 kN with increments of  0.05 kN, while buckling would
occur at Pcr = 0.981 kN. As expected in the light of the theory, the obtained numerical
sensitivity path is coincident with the analytical one.
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Figure 1. Symmetric two-bar truss.
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Figure 2. Vertical displacement sensitivity
with respect to cross-section area as a function
of load value.

In order to highlight the results of sensitivity analysis at elasto-plastic range, we use the very
simple example problem shown in Figure 3. For the material, we assume a bilinear GL-stress-
PK-strain curve with slopes E and Et  at elastic and elasto-plastic ranges, respectively, and a
yield stress σy as depicted in Figure 3. We consider the structure up to load level P = 10 kN with
load steps of 1 kN. The sensitivity path in Figure 4 is computed using the incremental sensitivity
approach (4). The results are coincident with the analytical ones, see e.g. [3, pp.142-144].



P

L

L  =  1 0 0 0  m m
P  =  1 0  k N
E  =  1 0 0  G P a
E t  =  1 0  G P a
σy  =  2 5 0  M P a
A  =  2 0  m m 2

u

Figure 3. Stretched elasto-plastic bar
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  Figure 4. Design sensitivity for the elasto-plastic
bar problem.

Conclusions

In this brief report we have discussed on some central phases of non-linear sensitivity analysis.
From the major formulas (2) and (4) we can see clearly that for geometrically-only non-linear
problems the sensitivity analysis requires only rather light computations; though the path-
following procedure is incremental, the sensitivity analysis has to be performed only once at the
final load level. For the materially non-linear case, the sensitivity analysis is considerably more
complex because the stress sensitivity term (7) is path-dependent. Consequently, the whole
sensitivity analysis has to be carried out incrementally. The very form of the stress sensitivity is
dependent e.g. on the used constitutive time integration method and from the fact whether
updated or total lagrangian approach is used. The incremental approach has also some other
non-trivial aspects, such as a sensitivity jump at the yield load level, that are to be studied and
discussed in forthcoming papers.
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ABSTRACT 

Summary The objective of this paper is to apply the genetic algorithm to optimize the dimension of 
cold-formed Z-shape purlin under gravity load. The objective function, the design variables and the 
constraints are described. The formula that is used to transfer the constraint problem to the unconstraint 
problem is given. The design example is presented and the optimization results are obtained. 
 
Introduction. Roof systems commonly used throughout the world often consist of cold-formed 
steel C and Z-section purlins fastened to high tensile profiled steel sheeting. Many bends along 
the flange and web, and using the multiple lip stiffeners will make the section very resistant to 
the local buckling and less prone to twist under the uplift wind load and gravity load. The 
multiple choices of the cross section raise the questions of the optimal shape. Due to the 
complex constraints of the design of the cold-formed steel purlin based on the Eurocode 3, Part 
1.3 [1], the Genetic Algorithm (GA) is used to optimize the dimension of the Z-section purlin. 
GA is general-purpose, derivative-free, stochastic, search algorithm [2][3] and starts from 
randomly choosing initial population that consists of candidate solutions to the problem in hand. 
Each individual in the population is characterized by a fixed length binary bit string that is 
called chromosome. These chromosomes are evaluated by means of a fitness function. A new 
generation of chromosomes is created by combining the fittest individuals from the previous 
population. Evolutionary operators such as selection, crossover, and mutation are used to create 
this new population. Besides, ‘Elitism’ may be incorporated into the algorithm to avoid losing 
the best individual. These processes continue until the specified level of fitness arrives. 
 
Optimization formulation. The dimension of the Z-section of the cold-formed purlin shown in 
Figure 1 will be optimized using GA. The purlin is assumed continuous over the two spans and 
is under the gravity load as shown in Figure 2. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
    Figure 1 Dimension of the Z-section     Figure 2 Two span purlin under gravity load 
 
The objective of our problem is to develop a set of design curves that minimizes the total purlin 
weight, )2( LAW g ⋅⋅⋅= ρ , while satisfying the Eurocode 3 specification. From these design 
curves, the optimum dimension can be easily determined under the given load. 
 
Since the GA is suitable for unconstraint optimization problem, the constraint problem 
mentioned above should be transformed into unconstraint problem by using penalty function. 
According to [4], the objective function including the penalty function is defined as 
 

)1( CCKWWF ⋅+⋅+=  
 
where F  is the modified objective function and CC  is constraint violation function and ∑= icCC , 

in which ic  are the constraint violations and can be expressed as  
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where iα  is the normalized constraints. The constant, K , is set to 10. 
 
Demonstrate design example. The standard GA, which is based on bit representation, 
multiple-point crossover, bit-flip mutation and roulette wheel selection (with elitism) is used to 
optimize the Z-shape purlin with 4500=L  mm under 2 kN/m of gravity load. The yield 
strength is 350 MPa and the Young’s modulus is 210 GPa. Table 1 shows the results for 20 
runs, where one run is defined as one completely running of GA. 
 
Table 1 shows that the optimized dimension for the cross section is the thickness of 1.8 mm, the 
height of 170 mm for the web, the length of 55 mm for the flange and the depth of 22 mm for 
the lip, i.e. the ratio of C to A is 0.40. Besides, most part of source code of GA-based design are 
made by Matlab except that the calculation of the section properties is taken from [5]. 
 
 
 
 
 

A

B

t

C

C

H

L L



 
 
 

Table 1 Optimization results for 20 runs 
 

No. of 
run 

t  
)(mm  

H  
)(mm  

A  
( mm ) 

C 
( mm ) gA  

( 2mm ) 

Weight  
)(kg  

1 1.8 190 58 16.24 574.63 405.98 
2 1.9 170 54 18.90 564.46 398.79 
3 1.7 190 59 20.06 558.55 394.61 
4 1.6 200 61 24.40 560.81 396.21 
5 2.2 140 48 26.40 594.98 420.36 
6 1.6 200 61 24.40 560.81 396.21 
7 1.6 200 61 24.40 560.81 396.21 
8 1.8 170 55 22.55 551.08 389.34 
9 1.6 200 61 24.40 560.81 396.21 

10 2.6 130 46 21.16 639.01 451.46 
11 1.6 200 61 24.40 560.81 396.21 
12 1.4 220 65 37.70 564.09 398.53 
13 1.9 170 54 18.90 564.46 398.79 
14 1.4 220 65 36.40 560.56 396.03 
15 1.4 220 65 37.70 564.09 398.53 
16 1.5 210 63 30.87 564.69 398.95 
17 1.8 170 55 22.00 549.15 387.97 
18 1.7 190 59 20.06 558.55 394.61 
19 2 160 53 17.49 565.10 399.24 
20 1.8 170 55 22.00 549.15 387.97 

 
 
 
Conclusions. This paper shows that the genetic algorithm can be used to optimize the 
dimension of the Z cross section of cold-formed purlin. This GA-based design method can be 
applied further to develop a set of design curves, from which the optimum dimension can be 
easily determined under the given load. Besides, this method can be also applied to optimize the 
other shape of cold-formed steel purlin. 
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ABSTRACT

Summary The asymptotic solution to a mode III crack growth problem in a creeping solid in the
framework of the continuum damage mechanics is presented. The solution is based on introducing a self
– similar variable proposed by Riedel for the creep power constitutive law coupled with the power kinetic
law of the damage evolution. The asymptotic expansions of the stress tensor components and the integrity
parameter for large distances from the crack tip are obtained. It is shown that a totally damaged zone near
the crack tip does exist. The geometry of the totally damaged zone is given.

Recently a number of papers devoted to the static and growing crack problems coupling elasticity,
plasticity and creep with damage in the framework of continuum damage mechanics have gained
[1-8]. Effects of the damage evolution on the stress – strain state and vice versa are of interest to
study. From the practical point of view it is important to have an estimation of the crack growth
rate. Some characteristic features related to the two – dimensional damage coupled crack problems
can be outlined. It is shown [1-4] that the effect of the damage evolution on the stress – strain
state near the crack tip appears as either smoothing the stress singularity near the crack tip or
its significant reduction. The following feature inherent in the considered class of the problems
is the presence of a totally damaged zone where all stress tensor components and the integrity
parameter are equalled to zero [1], [2]. Determination of the shape of the totally damaged zone or
the active damage process zone is worthy of notice. In [6], [7] where asymptotic fields of stress,
creep strain rate and damage of a mode I creep crack in steady-state growth are analyzed according
to the experimental observation on the damage distribution around a mode I creep crack in steady-
state growth contour of the damage field is represented by a semi-ellipse in front of the crack
and by a wake parallel to the crack plane behind the crack. Thus, the problem of determining
the configuration of the totally damaged zone or the progressively damaged zone still remains
unsolved. The present paper is concerned with an asymptotic analysis of the stress, creep strain
rate and the integrity parameter fields at large distances from the crack tip. The asymptotic analysis
is based on a self – similar variable proposed by Riedel [8]. The asymptotic fields allow to obtain
the configuration of the totally damaged zone modelled in the vicinity of the crack.

Let us consider a semi-infinite crack in an infinite body in a material with constitutive equations
formulated on the basis of the creep power law in the framework of continuum damage mechanics

_"ij =
3

2
B

�
�e

 

�n�1
sij

 
; (1)

where is the integrity parameter;_"ij is the creep strain rate tensor components;sij is the stress
deviator tensor components;�e =

p
3sijsij=2 is the stress intensity;B; n are the material con-

stants.



The initial conditions have the form

�ij(r; �; t = 0) =

�
C
�

BInr

�1=(n+1)

�ij(�; n); (2)

whereC� is the path-independent integral of the steady state creep theory,In is the function
depending onn and defined as dimensionlessC�-integral,�ij(�; n) is the functions known from
the Hutchison-Rice-Rosengren (HRR) [9];r; � are the polar coordinates in the vicinity of the
growing crack. Asymptotic conditions atr ! 1 are determined by the HRR-solution to the
problem without considering the damage accumulation process( � 1) and are given by (2).

Note the asymptotic condition (2) is a hypothesis according to which the stress field away from
the crack tip is the stress field near the crack tip of a static crack in material with the creep power
constitutive law. However, the problem being investigated is the creep crack growth problem. Thus,
the truth of the hypothesis (2) or its incorrectness should be proved by the solution.

It is found [8] that there is a self-similar variable

R =
r

k(n) (At)
(n+1)=m

(3)

for the initial and boundary conditions (2), wherek(n) = C
�
=(BIn); A;m are the constants of

the damage evolution law

d 

dt
= �A

�
�e

 

�m

: (4)

For the case the stress tensor components and the integrity parameter are represented as

�ij(r; �; t) = (At)
(n+1)=m

�̂ij(R; �);  (r; �; t) =  ̂(R; �);

where�̂ij(R; �) and ̂(R; �) are the dimensionless function ofR; � and should be obtained from
the solutions of different boundary value problems.

It is expedient to start study of phenomenon with the most simple problem from mathematical
point of view — a mode III crack problem. Therefore, let us consider the subcritical creep mode
III crack growth in a solid with damage.

One can find asymptotic expansions of the effective stress tensor components and the integrity
parameter at large distances from the crack tipR (at large distances in comparison with a char-
acteristic length of the totally damaged zone, but at as yet small distances in comparison with a
characteristic length of the body or the crack length). By virtue of the fact that the totally dam-
aged zone near the crack tip does exist it is not possible to seek for the asymptotic expansions in
the vicinity of the crack tip. Thus, the asymptotic expansions of the stress tensor components and
integrity parameter asymptotic expansions are sought in the form

�ij

 
(R; �) = R

s
f
(0)

ij
(�) +R

s1f
(1)

ij
(�) +R

s2f
(2)

ij
(�) + :::;

(5)

 (R; �) = 1�Rq
g
(0)(�)�Rq1g

(1)(�)�Rq2g
(2)(�)� ::: (R!1; s < 0):



The geometry of the totally damaged zone for different values of the material constants is deter-
mined by the equation

 (R; �) = 1�R
q
g
(0)

(�)�R
q1g

(1)
(�)�R

q2g
(2)

(�) = 0: (6)

It is found thats1 = s+sm; s2 = s+2sm andq = sm; q1 = 2sm; q2 = 3sm: It is obtained that
HRR-solution does not govern the configuration of the totally damaged zone. Thus, the remote
boundary condition is assumed to be

�ij(r; �; t)! ~Cr
s
�ij(�): (7)

The self-similar variableR = r(tA ~Cm)1=sm can be introduced for the case. The asymptotic
expansions (5) are again used and new values of the eigenvalues leading to the ”convergent”
contours of the totally damaged zone for the different valuesn; m are found.

Table. The eigenvalues obtained for different values of the material constants.

n = m = 1 s = �1:5

n = 2; m = 0:7n s = �1:2303

n = 3; m = 0:7n s = �1:1830

n = 4; m = 0:7n s = �1:1648

n = 5; m = 0:7n s = �1:1553

n = 6; m = 0:7n s = �1:1495

n = 7; m = 0:7n s = �1:1455

n = 8; m = 0:7n s = �1:1425

n = 9; m = 0:7n s = �1:1405

n = 10; m = 0:7n s = �1:1390

It can be concluded the HRR-field does not govern the geometry of the totally damaged zone.
The new stress asymptotic at infinity is found. It is shown that it is precisely the stress asymptotic
that governs the configuration of the totally damaged zones for different values of the material
constants. The geometry of the totally damaged zone is given in Figure 1-2, where the following
notations are accepted: 1 — the configuration of the totally damaged zone given by the two-term
asymptotic expansion for the integrity parameter; 2 — the configuration of the totally damaged
zone given by the three-term asymptotic expansion for the integrity parameter; 3 — the configu-
ration of the totally damaged zone given by the four-term asymptotic expansion for the integrity
parameter.
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ABSTRACT

Summary The split cylinder test has been modelled in a fem-program using the fictitious crack model
by Hillerborg [1] in combination with a Coulomb plastic yield condition. It is shown that under certain
circumstances the peak load determined from the split cylinder test is not uniquely correlated to the tensile
strength. Moreover, the stress crack opening relationship of the material has a significant influence on the
peak load. The results indicate that care should be taken when using this test method.

INTRODUCTION

The split cylinder test is widely used for determination of the tensile strength of concrete and
other cementitious materials. The test is conducted by loading a standard cylindrical specimen
with a line load on two diametrically opposite generatrices, see Figure 1a . This loading condition
produces tensile stresses perpendicular to the loading plane, and at some load level, splitting of the
specimen occurs. However, also compressive failure occurs near the loading strips and produce
two failure wedges, see Figure 1b. Thus, the failure mode is not a pure tensile failure, and the peak
load is therefore influenced by the width of the loading strips, the compressive strength, the friction
angle and the cohesion of the material. The tensile splitting is governed by a crack propagating
in the plane of loading. Crack propagation is described by Hillerborg in [1] introducing the stress
crack opening relationship as a material characteristic. It turns out that the stress crack opening
relationship of the material influences the peak load significantly due to the influence on the crack
propagation. The purpose of this paper is to investigate the influence of the stress crack opening
relationship on the behavior of the split cylinder test.

ANALYSIS

Traditionally, the tensile strength is obtained from the peak load of the split test using a linear
elastic model. If the loads are assumed to be ideal line loads, the elastic solution is given by
fsp = 2Pu= (�hD), [2], wherePu is the peak load,h is the height of the specimen andD is
the specimen diameter. The split tensile strength,fsp, is equal to the true tensile strength if the
material under consideration is perfectly brittle. However, this is not achievable in practise, and
reduction factors are commonly used to correctfsp. If the material under investigation behaves
as a modified coulomb material, a plastic solution will be applicable as described in Nielsen, [3].
In this case, a minimized upper bound solution, based on the failure mechanism shown on Figure
1 or the exact solution based on a slip line field derived by Izbicki [4] may be applied. Also a
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Figure 1: Loading of the split cylinder (a) and failure mode (b)

fracture mechanical solution based on the fictitious crack model has been developed by Rocco et
al [2]. They offer a formula which has been calibrated to fit the results of their numerical model.
The above mentioned models are compared with the numerical model presented here.

The present numerical model is illustrated in Figure 2a where the failure mode in Figure 1b has
been adopted. One quarter of a cylinder is modelled. The model is simply supported on the radial
sections and the splitting crack is modelled using interface elements on the vertical radial section.

 
Coulomb 
failure 
plane 

Direct tension 
crack plane 

Failure 
wedge 

(a)

 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 
Z�>PP@ 

6W
UH
VV
�>
0
3
D@

 

 
Legend 

ft 
[MPa] 

Lch 

[mm] 
  0.5 10920 
  1.5 1213 
  2.0 683 
  3.0 303 
  3.5 223 

 

(b)

Figure 2: Model used in the finite element analysis (a) and the applied stress-crack opening rela-
tionships withGf = 91N

m
(b), as given by the area under the curve.

The interface elements are given zero thickness before cracking. Cracking is initiated when the
normal traction in an element reaches the tensile strength. After the tensile strength has been
reached the normal traction is governed by one of the prescribed stress-crack opening relation-



ships shown in Figure 2b. These bilinear stress-crack opening relationships all represent the same
fracture energy and the same normalized slope of the second branch; the normalization with re-
spect to the tensile strength. They differ in tensile strength and the initial slopes are adjusted in
order to keep the fracture energy constant. Thus, the curves represent different ratios between ten-
sile strength and fracture energy. The characteristic lengthLch = EGf=f

2

t reflects the material
brittleness.

After a certain propagation of the splitting crack, a compressive failure occurs as shown in Figure
1b. This failure is an integrated part of the failure of the split cylinder, and must be modelled.
Interface elements are used on the side of the wedge shown in Figure 2b and a coulomb frictional
criterion is specified. The compressive strength is determined from the tensile strength using a
standard empirical formula,fc = (ft=0:35)

2. The cohesion,c, the friction angle,', and the angle
of the side of the wedge,� that minimizes the upper bound solution, [3], are given byc = fc

4
; ' =

37 Æ; � = 26:5 Æ. The model has been implemented in the finite element program DIANA and
calculations have been performed with the stress-crack opening relationships shown in Figure
1. The calculations are controlled by adaptive control of the crack opening at the center of the
cylinder. The results will be discussed in the next section.

DISCUSSION

The results of the finite element calculations show that the peak-load is strongly influenced by the
ratio between tensile strength and fracture energy of the material under consideration, see Figure
3a and 3b. It is seen how in all cases a yield plateau is eventually reached. This is an artifact of
the model due to the ideal plastic assumption of the compressive failure. Only the first peak of the
curves is ascribed physical meaning. The example in Figure 3a with a tensile strength of 2.5 MPa
shows a clear distinction between the tensile crack propagation and the later compressive - plastic
- failure. First the crack propagates through the cylinder, which results in an unloading (the first
peak), whereafter stresses again build up and finally, a compressive failure occurs. Forft = 1:0

MPa, there is no clear distinction between the two failure modes. They occur simultaneously but
eventually, the load carried by the specimen drops to the load carried by the modified Coulomb
plastic failure plane, when the crack is widely open and stress free.

Figure 3b shows the first peak for different choices of tensile strength and softening behavior.
Also, the linear elastic solution, the plastic solutions from [3] and [4] and the model based on a
pure fictitious crack analysis, [2], are shown. The cohesive model is only shown in the range of
3.0-3.5 MPa, where it is close to the results of the numerical model and the linear elastic analysis.
The reason is that the model is not valid for lower values offt in combination with the present
selection of the remaining parameters. This is due to a build-in singularity that breaks down the
model for some sets of parameters. The model results of this paper are seen to undergo a transition
from plastic to brittle behavior. For low tensile strengths, where theft=Gf -ratio is low, it is seen
how the result fits the plastic model (Izbicki), while the model fits the linear elastic results for
high tensile strengths. The latter is expected since the stress crack opening relationships in these
cases model very brittle materials. However, for a normal choice of parameters (ft = 2:0 MPa),
it is seen that the result is neither plastic, nor elastic, but in fact quasi-brittle. It is also seen how
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Figure 3: Load-displacement curves for different stress-crack opening relationships (a) and peak
load as function of tensile strength (b)

this plastic-elastic transition results in a flat plateau, where the change in tensile strength has little
influence on the peak load. These problems will be revealed if the test method is used for concrete
in early age, since theft=Gf -ratio is higher than for mature concrete. It is also well known thatft
is independent ofGf , e.g. it is possible to change the latter by adding fibers or changing aggregate
size without changing the tensile strength.

CONCLUSIONS

Potential problems with the split cylinder test method have been identified. This is due to the fact
that the peak load of the test is influenced not only by the tensile strength, but also by the stress
crack opening relationship, and thus the fracture energy of the material. Further investigations are
needed to confirm these results.
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ABSTRACT

Summary In the present study some preliminary results of �nite element analyses of cracked
sheets loaded in tension are presented. The sheets response are governed by the combined e�ect
of buckling, ductile tearing, and plastic deformations.

INTRODUCTION

Thin plates loaded in tension are in most cases not associated with instable response
(disregarding softening material and necking e�ects). Introducing cracks perpendicular to
a dominating tensile load may lead to instable behaviour. This is caused by two phe-
nomena. First, the crack makes the material above and below the crack faces prone to
buckling due to compressive stresses parallel to the crack. Second, in a ductile material
crack growth occcur during increasing applied load, eventually reaching some limit point.
In combination, these two e�ects may also interact, and in order to calculate reasonable
capacities, these e�ects have to be accounted for simultaneously in the simulation. Hence,
in the �nite element analysis nonlinear geometry, elasto-plastic shell behaviour, and duc-
tile tearing have to be combined. In this respect, it is the modeling and simulation of
the ductile tearing that is most challenging[1][2][3][4][5]. Many approaches are available,
classi�ed as critical crack tip opening angle, cohesive zones, and nonlinear springs. The
latter approach is employed herein, combined with the ANDES thin shell formulation and
stress resultant plasticity modelling presented by Skallerud and Haugen[6].

MODELING AND SIMULATION

The physics of creating new material surfaces (i.e. breaking of atomic bonds) during a
fracture process is complicated, and at present mesoscopic or continuum mechanics are
employed. But micromechanical models are under development. A very important e�ect in
(ductile) fracture is linked to the concept of constraint. The higher the constraint around
a plastic zone near a crack tip is, the higher is the stresses. Hence, this a�ects the damage
dissipation and fracture capacity. The familiar fracture toughness thickness dependency is
an example of this. In thin sheets the constraint is low, and the ductile failure approaches
a rupture mode of slant localised plastic deformations. In many applications of cracked
thin shells there is a need for caclulationg crack growth of magnitude up to meters in order
to predict ultimate capacity. The bulk of numerical studies of ductile fracture is limited to
predicting a few millimetres of crack growth, using 1/10-millimeter �nite element sizes in



Figure 1: Center cracked aluminium plate with local buckling and tearing crack growth.

the crack growth regions. This is not feasible in predicting large scale crack growth. The
present modeling is based on nonlinear springs with a softening behaviour that mimics the
stress carrying capability approaching zero as the crack grows through the elements. The
spring model is calibrated to resemble the damage growth in the sheet at a given thickness
(governing constraint). Furthermore, with such softening behaviour the mesh sensisitivity
has to be accounted for. This may be done by calibration to a test. Alternatives exist
that reduce the mesh sensitivity (introducing other length scale parameters, visco-plastic
regularisation etc). Fig.1 shows the case analysed herein. It is a rectangular aluminium
sheet (Al 2024-T3) of thickness 2.3mm. A central trough crack is introduced, and tensile
loading is applied. Fig.1 depicts the deformed coarse �nite element mesh used (see [6] for
formulation). It is noted that signi�cant ductile grack growth has evolved and transverse
local buckling is present. Reasonable ulitmate load prediction compared to test results is
obtained.
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ABSTRACT

Summary To overcome shortcomings of classical theories for local fracture mechanics and continuum
damage mechanics, a non-local model for damage simulation in elastic-plastic materials with micro-
defects is proposed. This model is suited to solve engineering problems when plasticity occurs to large
extent and the global concepts of fracture mechanics are no longer valid. The model is based on the non-
local continuum theory, which employs a homogenization technique with selection methods of
evolutionary algorithms. The homogenization technique with the selection methods has been used for the
following reasons: (i) to enforce the consistency conditions during the integration of the stress tensor over
a loading increment and (ii) to improve modeling of the internal energy dissipation in the context of the
finite plastic strain problem.

Analysts and designers in the engineering industry want not only more accurate but more
universal ways to analyze the various problems of fracture mechanics. Since fracture mechanics
essentially relies on continuum mechanics concepts for global phenomena, an improved
modeling of local phenomena at stress concentration, which are observed in engineering
materials of structures, is necessary. It should be noted, that in many cases, encountered in
classical elastic-plastic fracture mechanics, the stress field does not agree with plane strain HRR
solution well. In other word, the classical J-integral concepts may not be directly applicable as
fracture parameter. The main reasons are: (i) the influence of the stress triaxiality at the crack
tip, which depends on geometry and loading of the cracked structure, and (ii) the influence of
unloading, which occurs during cyclic loading or crack growth. When micro-damage
phenomena in the ductile materials are considered, the inherent complexity of the hierarchical
analysis makes this approach impractical.

Recently, continuum damage mechanics has been proposed to deal with the relevant problems
by taking into account the local deformation and failure behavior of structural materials,
concerning micro-scale materials models (see in [2, 3 and 4]). Please note that the evolution of
the micro-damage phenomena can be numerically approximated to that extent, in which
microscopic phenomena are described macroscopically.



To solve these problems, a transfer from a measure of fracture parameters for small laboratory
specimens to evaluating the safety of large structural components is very important.
Additionally, this transfer requires taking into consideration the size effect. The size effect is a
problem of scaling, which performs an important role in every physical theory. Up to known, in
most of mechanical engineering branches the problem of scaling has been less pressing because
the structure or structural components can only be tested at full size. The size effect in ductile
materials characterizes a capability of the energy absorption. It is known, that the small
structures have larger ductility then the larger ones. Particularly, the size effect on energy
absorption capability is important for blast and impact.

Moreover, the macroscopic description of distributed cracking or other types of damage in
structural materials requires constitutive models that exhibit strain softening. Strain softening
behavior is characterized by a decrease of stress at increasing strain or in general a loss of
positive definiteness of the tangential moduli matrix of material. This behavior is observed
macroscopically in many materials, including various metals, which exhibit void nucleation and
growth in large strains. If the tangent modulus loses positive definiteness, then computational
difficulties follow as a result of that the Newton-Raphson procedure often fails to converge to
one equilibrium state. For initial boundary value problems, the softening response leads to a
change in type of governing partial differential equations. Under quasi-static loading conditions,
a loss of ellipticity of the governing equations is associated with a bifurcation. Additionally,
when the boundary value problems are not well posed, the results of finite element calculations
turn out to be dependent on the mesh spacing.

Many attempts to characterize the degradation of material stiffness by local inelastic continuum
theories, such as plasticity or continuum damage mechanics, have been unsatisfactory because
the phenomena of strain localization are difficult to describe precisely. Namely, it is difficult to
describe the response of the material in such cases, in which the physical quantities (influenced
on strain softening) are distributed into infinitesimal zones. Hence, a realistic prediction of the
failure of structures caused by progressive damage requires an application of localization
limiters, which give results independent of the mesh spacing. The localization limiters force the
strain-softening region to have a certain minimum finite size and thus ensure the energy
dissipation at failure to be finite. Therefore, they allow taking into account the influence of the
length scale associated with descending steeply strain field on the stress distribution at the
microscopic level. Two basic types of localization limiters may be applied:

• integral limiters, based on non-local constitutive equations,
• differential limiters, based on higher order derivatives of the strain tensor.

It is worthwhile to stress that one of the alternatives to the approach of localization limiters is
the micro-polar continuum description. The most promising way for damage simulation in
ductile materials seems to be an application of the non-local approach.

Improved spatial resolution for non-local analysis
The non-local continuum consists of multi-continuum points conceived as having properties
associated with a certain representative volume of the material. The size of this volume has to
be large enough in order to represent its local micro-properties by their mean values defined as
meso-properties through continuous variables. Special homogenization functions are used in the
non-local effective description of the material. Moreover, these functions are limited to the
prediction of the macro-defects initiation in cleavage and ductile modes. It seems that smooth



approximation functions have a clear advantage (see in [1]). The homogenization technique
consists in defining some variables in the constitutive equations by spatial averaging over the
representative volume according to the evolution adaptive scheme for (i+1)th updated and (i)th
previous variables. This scheme is represented by the following equations:
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weight function, which defines the averaging,

ζζζζ∆ - parameter, which determines a size of the influence domain,

λ - parameter of scale.

The weight functions contain minimum number of nodes within their domain of influence.
When a larger value for ζζζζ∆ is chosen, so that the weight function incorporates more
neighboring nodes.

The presented formula is sensitive on numerical disturbances. Therefore two homogenization
levels are used. The first in nodes between elements and the second to accurate describe the
process of internal dissipation energy in the material, which is directly connecting to the size
effect. Moreover, the special hybrid elements are used, which contain proper shape functions
averaging this process. Please note that the representative volume in the non-local continuum
corresponds to the representative volume in the statistical theory of heterogeneous materials.

Assuming, that there are imaginary rays penetrating the examining body from different angles,
the homogenization technique is incorporated in the implementation of the finite element
method. Furthermore, this technique is improved by employing special transformation functions
for adjacent nodes and Gauss integrating points. Formulating of the resulting local (single node)
and non-local (multi-node) state parameters allows a systematic approach to non-classical
description of the ductile material with micro-defects. The non-classical state-space parameters
obey certain inequalities and sum rules. The networks of interactions between: distinguished
nodes of representative volumes are described by joint distribution functions in the state
parameter-space in that way like variance and covariance tensors. Interactions lead to
superposition states, which comprise local coherence but also non-local entanglement. The
average variance and covariance tensors are distinguished entirely from their counter-pairs.
Non-local entanglement should get operational parameters when it is a need to switch between
local and non-local features of quantities by changing their so called perspective (plastic
reloading and elastic unloading).



Size effect
For ductile materials the size effect is determined by an internal length scale for the material by
means of localization limiters. Please note that for brittle materials the size effect is involved by
the weakest link idea and the distribution of the largest microscopic crack appearing in each
representative volume of the material. This distribution of non-local strength of representative
volumes is described by the Weibull statistics.

Application examples
The ideas given in the previous sections are verified by various case studies of the finite strain,
large deformation and incremental theory of plasticity. Examples of these case studies are
presented namely a finite element simulation of ductile crack growth in a compact tensile
specimen, a finite element simulation of cleavage fracture in a notched tensile specimen and
finite element simulations of the damage evolution in the plane-strain perforated block and
classical axi-symmetric tensile test specimens.

Figure. Initial and deformed finite element meshes of the plain-strain perforated block for
Gurson model of the damaged material
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ABSTRACT

Summary Themethodof holedrilling nearthecracktip is oftenusedin fatiguedamagerepair, seeShin
et al., 1996.In a recentpaperby Thomaset al., 2000optimumlocationof thedrilled holesarediscussed.
In this paperwe focuson the shapeof a singlehole centeredat (or in front of) the cracktip. With shape
optimizationit is shown thatthestressfield, at thecrackboundarycanbesignificantlyimproved.

1 Intr oduction

Themethodof holedrilling nearthecracktip is often usedin fatiguedamagerepair. In thesur-
vey by Shinet al., 1996comparisonswith alternative methodsarepresentedandit is concluded
thatholedrilling wasmosteffective. A numberof experimentalresultsarepresented.In a recent
paperby Thomasetal., 2000optimumlocationof thedrilled holesarediscussed,andthespecific
problemof a centercracked plateis studiedwith four relatively large holes(20-40mm) placed
symmetricallyrelative to thecrack.Only circularholesareapplied.Fromshapeoptimizationwe
know thatthecircularshapeis by nomeansoptimal,seePedersen,2000andPedersen,2001.

It is thereforeimportantto find theshapeof a hole,which in themosteffective way, releasesthe
stressconcentration.We shall restrict the descriptionto the elementarycaseshown in figure 1.
A simpleparametrization,usedin earliershapeoptimizations,is appliedandit is shown that an
almostuniform stressstatecanbeobtainedalongtheboundaryof thehole.Theshapeof thehole
is describedby thesuper-elliptic equation

���������
	�����������
	����
(1)

wherethex directionis thedirectionof thecrack,asshown in figure1. If we usea squaredesign
domain

�����
(super-circle), then the only designparameteris � . We analyzedthreedesigns

correspondingto � ���
(circular), � �������

(optimized)and � ���
. Valuesfor relative maximum

strain energy densitiesfor the threedesignsare 1.00, 0.67 and 1.13 correspondingto relative
maximumtangentialstresses1.00,0.82and1.06.Wenotethatconsiderablybetterdistributionsof
stressescanbeobtained.Evenmoreuniformfieldsalongtheholeboundarycanbeobtainedwhen
moredesignparametersareincluded.

The objective of the optimal shapedesignin relation to cracksis not completelyclear. At first
we may argue that the objective shouldbe to minimize the stressintensity factor. However, for
non-sharpcracktips theinterpretationof thestressintensityfactoris notclear. Thuswechooseto



Figure 1: Theanalyzedelementarycasewith  �!��"#"�$%$
, indicatingalsotheareaof thegraphs

(holesize & �'$%$
) . Analytical stressfieldsat thecracktip (without hole)asa functionof ( are

shown for four casesof orthotropy andfor isotropicmaterial.In the )+* graph,from below wehave,.- � ,0/ �"1���#��23"1����24���5"124������26����"
, respectively.

minimize themaximumtangentialstressat theboundaryof thedrilled hole.In thecaseof plane
stressthis alsocorrespondsto minimizing themaximumvon Misesstressor theenergy density.
For thecasesof non-isotropicmaterialsit seemsmostrelevant to minimizethemaximumenergy
density.

2 Sensitivity of the optimal shape

The exampleshown in the introductionis basedon a numberof assumptionsanda studyof the
sensitivity to theseassumptionsis needed.We will discussthe influencefrom the external load
andsizeof the hole, from materialpower law non-linearity, from materialanisotropy, andfrom
theallowabledomainof thehole.Graphicalillustrationswill only begivenin thelecture.

2.1 Influence fr om the external load and sizeof the hole.

Differentexternalloadscanbeexamined,eithergivenstresses(forces)or given forceddisplace-
ments.As expectedonly little influenceis seenas long as the crack is loadedmostly in mode
I. This follows from the fact that thenearcracktip field will, asa functionof theexternal load,
only changewith a commonfactor(thestressintensityfactor).Optimizationfor cracksin mode
II, modeIII andcombinedmodesneedsfurtherstudies.

In table1 we show therelative concentrationof theenergy density, for differentsizeof theholes
andfor two alternative load cases.In all casesthe bestof the analyzeddesignscorrespondto a



super-elliptic power of � �7�����
. Relative to the sizeof the hole (0.5 , 1.0 , 1.5 and2.0 mm),

with the1 mm sizeasreference,we got 1.92, 1.00, 0.68, 0.52, andlargerholesnaturallygive
a moreefficient stressrelease.The sizeof the hole is assumedto be determinedby alternative
considerations.

Shapeparameter � ����5" � ������#� � ������ � �98��5" � �98���� � �;:��5" � �<:����
size stressload 1.0 0.857 0.840 0.876 0.934 0.994 1.05
0.5mm displ. load 1.0 0.854 0.835 0.863 0.916 0.973 1.03
size stressload 1.0 0.857 0.843 0.894 0.970 1.05 1.13
1.0mm displ. load 1.0 0.852 0.833 0.875 0.944 1.02 1.09
size stressload 1.0 0.856 0.842 0.895 0.974 1.06 1.14
1.5mm displ. load 1.0 0.850 0.830 0.872 0.943 1.02 1.10
size stressload 1.0 0.854 0.841 0.894 0.973 1.06 1.15
2.0mm displ. load 1.0 0.847 0.826 0.866 0.937 1.01 1.09

Table1: Relative valuesof maximumenergy density(for circle, � ���
, thevalueis setto 1.0 ) .

Correspondingvaluesfor stressareequalto thesquare-rootof theshown values.Optimizedvalues
areshown in bold.

2.2 Influence fr om material power law non-linearity.

We also obtain resultsbasedon analysiswith materialnon-linearity. As expectedfrom earlier
results(Pedersen,2001)theoptimalshapeof theholeis ratherinsensitive to thepower = � =?> �@�
of thenon-linearity. Westill obtainalmostuniformenergy density(herevonMisesstress)alongthe
boundaryof thehole.Theisolinesshow equallevelsof reducedstiffness,describedby thefactor�BA3CD��AFE@��G

, where
AFC

is effectivestrainand
AFE

is thecorrespondingvaluethatgivesthetransitionfrom
linearity to non-linearity. Theassumptionsbehindthecalculationsleadingto theresultsanalyzed
for � �H��2F������23�JILKM�

(asfor the linearmaterial)correspondto deformationtheorywith a power
law of = �;"1�N�

Relativevaluesfor theseresultsarefor thesquaredmaximumvonMisesstress1.0,
0.98,1.11andfor theminimumstiffnessreductionfactors0.305,0.336,0.280.

2.3 Influence fr om material anisotropy.

It is expectedthat anisotropicmaterialbehaviour will influencethe optimal shapeto a large ex-
tend,seePedersenet al., 1992.Whenthe materialis stiffer in the crackdirectionwe seelittle
influenceon theoptimalshape,but whenit getsmoreflexible in thecrackdirectiontheinfluence
is pronounced.Wefoundthatanenergy concentrationwill alwaysappearfor simplesuper-elliptic
designs.With onemodificationfunctionto theshapeof thehole,asdescribedin detailsin Peder-
senet al., 1992,we obtaindesignswith almostuniform energy densityalongtheholeboundary.
A studyof thestressfieldsat a cracktip for this anisotropiccase,maygive anunderstandingfor
theneedof moreadvanceddesignsfor thesecases.Fromtheresults,a two parameterdescription
seemssufficient.



2.4 Influence fr om the allowabledomain of the hole.

By includingtheelliptic half-axes
�+2F�

asdesignparameters(theaddedconditionof
�1�O�PDQ�ISR@TU�JIVT

practicallyfixes the areaof the hole), we may further improve the levels of squaredvon Mises
stress.In all caseswe obtainalmostuniform distribution alongthehighly stressedboundary. The
resultscorrespondingto

�����0�����5"123"1��W�23"1��X�23"1�ZYJ2F"1���123�JILK["1���
, givetheresultingrelativemaximum

values
���5"123"1��W#��23"1��X�:�23"1�\Y���23"����#�123�JILK["1���#W

, andthusthesuper-ellipsehasdistinctadvantagesover
thesuper-circle.Theoptimalsuper-elliptic power � changewith theratio

�����
andfor thesolutions

referred,we got � �9������2F���]:�2F����8�2F���N�4�12F�1�N��"�24�#��W#�
, respectively.

Thesamesix designswereanalyzedbasedonastrongmaterialnon-linearity
� ) C'� ) E@�F^

E
andagain

almostconstantvon Misesstresswereobtainedalongtheboundary, althoughnow decreasedwith
almosta factorof four. Relative to the resultsgiven for the linear solution.The valueswith the
non-linearsolutionwere

"1����:�23"1���#8�23"1���#��2F"1������2F"1���#"126"1�N�@X
, respectively. The strongnon-linearity

levelsout thedifference,but still thepossibilityfor smallerratios
�1���

givesa bettersolution.

3 Conclusions

With illustrative exampleswe have shown that thestressfield, at theboundaryof a drilled stress
releasinghole,canbe significantlyimproved.To a large extendtheoneparametersuper-elliptic
shapeis ableto returna field of constanttangentialstressalongtheboundary. A shapelike this
will diminishthepossibilityfor furtherfatiguecrackinitiation.
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ABSTRACT

Summary   We present parallel strategies suited to the simulation of a wide class of non-linear problems.
On one hand, a domain decomposition technique or a parallel direct solver are used to efficiently solve
large linear global problems. On the other hand, in order to have a well-balanced load for the integration
of the constitutive laws we propose to use a kind of second domain decomposition. The implementation
of these strategies are carried out starting from the parallel language of the finite element code CAST3M.

Introduction
The numerical costs of complex non linear Finite Element simulations can be reduced by using
efficient numerical strategies, and by using parallel computers whose performances increase
rapidly [7]. However, one observes generally that the parallelization of existing codes leads to
complex developments, and that good parallel performances are usually obtained at the expense
of portability.

The objective of this communication is to present a parallel approach suited to the simulation of
a wide class of non-linear problems for quasi-static response. It is based on the use of two
domain decompositions which goal is to balance the computation load over the various
processors by limiting the redistributions of the tasks. A good load balancing of the tasks as well
as keeping the communications as low as possible are key to an effective parallel algorithm.

Parallel approach using two domain decompositions
Non-linear problems are usually solved using the so-called incremental methods, which split the
studied time interval in a series of several increments of time. Using a guess for the
displacement leads to a time-independent non-linear problem, which is solved by means of
NEWTON type iterative methods. This algorithm leads mainly to solve two types of sub-
problems, which can be time consuming for large number of degrees of freedom and for
strongly non-linear constitutive laws, i.e. for industrial type problems. The proposed
parallelization strategy uses the mechanical properties of these two types of sub-problems.

On one hand, domain decomposition techniques [4] can be used to solve the linear global
problems. In order to be compatible with the BFGS type convergence speed-up strategies we
have chosen a direct resolution of the condensed problem  where we can reuse existing modules
of the sequential code. Moreover, this technique gives the same numerical solution that the
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direct approach and multifrontal factorization techniques provide good numerical performances
for sequential and parallel approaches [1].

On the other hand, the CPU time spent to integrate the constitutive laws depends on several
parameters: the material behavior, the position of the integration point in the structure, the
history of the loading path, … Therefore, for complex simulations, it is nearly impossible to
predict the space evolution of the numerical cost of this part with respect to the increments. In
order to have a well-balanced load during the integration of the constitutive laws, without
communication, we propose the use of a kind of second domain decomposition (decomposition
in blocs of elements) [3]. An optimization of the communications between the two domain
decompositions is necessary to obtain good numerical performances.

Numerical resolution of large scale linear problems

Figure 1: Geometry of the biaxial tensile specimen and model with 49 689 d.o.f.
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Figure 2: Numerical results for elastic linear computations

The computational cost of the factorization of the stiffness matrix quickly increases with the
number of degrees of freedom and often takes an important part in the complete CPU time of
non linear simulations. In order to limit fill in the factorization of the matrix, which has a great
influence on the numerical cost for large scale problems, a “nested dissection” ordering
approach [5] has been implemented. The principle is to carry out a partition of a mesh in two
zones separated by an interface. The order of classification of the nodes is initially the nodes of
a zone, then the nodes of the other zone, then those of the interface. The two zones being
uncoupled, during factorization each one will be factorized independently, then the factorization
of the interface will ensure the coupling of the zones. It is in the interface that some zeros will
remain at the factorization step. The process is then repeated recursively on each zone. In order
to minimize the complete size of the factorized matrix, well-balanced sub-domains are



requested and the size of the interfaces have to be minimize. This optimization problem is
carried out using a Monte Carlo method. In fact, this strategy is similar to a domain
decomposition technique.

Tests of a “multithreads” parallel version of this linear solver have been carried out on an IBM-
SP2-WH2 with 4 processors and 4 Gb shared memory. A biaxial tensile specimen (Figure 1) [2]
has been used. The symmetries allow us to study only one-sixteenth of the specimen.
Displacements are prescribed on one part of the bores that are drilled into the combs. Figure 2
presents, the size of the problem and the walk-clock time with respect to the number of d.o.f..
On such a computer, for meshes up to 500 000 d.o.f. a speed-up of more than 2 is reached with
4 processors (the parallelization of the ordering phase can increases the speed-up). For larger
problems the management time of the virtual memory (swap on disk) is penalizing for the walk-
clock time, but it allows to solve large problems.

Parallel implementation and an example of non linear simulation
In order to allow an easy development of parallel applications by using modules of the
sequential code, an extension of the user language of the code CAST3M has been done [2, 3].
The idea is to develop a machine-independent parallel programming language, which allows the
user of the code to distribute computations over the different processors of a parallel computer,
knowing that the system ensures the coherence of data during the sequence of tasks while
limiting waiting phases of applications. Thus he can reuse directly a great part of the sequential
code (the pre processor, the post processor and computational modules) to experiment parallel
strategies. The propounded system, that takes into accounts the capabilities of the various
computers types, allows two levels of parallelization: the user level and the programming level
only used for fine performance tuning.

Figure 3: Geometry and model of the specimen – mises equivalent stress

The implementation of the parallel strategy for non-linear simulations is carried out starting
from the parallel user language of CAST3M. We present the behaviour of this parallel algorithm
on a traction-torsion specimen  (figure 3) subjected to a combined loading of traction-torsion by
imposing on the extreme sections an axial displacement Uz = U0 sin (2ωt)  and a rotation
Θ =  Θ0 sin(ωt). The behavior of material is modelled by A Chaboche’s viscoplastic model
(material Z6CNDT17-11, AISI 316) [6].  The most stressed zone of the specimen the central



part. The two decompositions are presented figure 3. Figure 5 represents the evolution of the
strain and the stress in a point of the center section, for a cycle of loading.

Figure 3: Evolution of the stress et strain in the central part of the specimen

For the resolution of this 3D viscoplastic problem with more than 250 000 d.o.f. a speed-up of
more than 3.1 (wall clock time) is reached with 4 processors on an IBM-SP2-WH2 with 4 Gb
shared memory. The first tests show possibilities of the proposed parallel approach for non
linear simulations: a good load balancing of the computations over the different processors is
obtain with out redistributions of the tasks.
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ABSTRACT

Summary A shell element based on a flat facet three node element, previously formulated in [4] for investigation of
the elastic stability problems of shells is investigated here in the elasto-plastic domain. The element is based on the
natural formulation of TRIC element, [5], but modifications of the membrane and drilling stiffness were done using
interpolation scheme from [1]. The element is subjected to extension and flexure. Total number of eighteen Cartesian
degrees of freedom are included. Isotropic hardening of the material is assumed during numerical tests.

Introduction

Two sets of local coordinates are used to define kinematics of the element: the local Cartesian coordinate sys-
tem,Xe

1X
e
2X

e
3 , with the origin at the triangle’s centroid, and natural coordinate system�� , with three axes

parallel to the sides of the triangle. Following the main idea of free formulation theory, [7], that displacement

(b)(a)
MI MJ

Q�
Q�

MS�

MS� MA�
MA�

f�`�

f�`�

Figure 1: (a) The Cartesian and natural coordinates. (b) Generalized forces and moments in the natural coordinate system
for the side(�).

field can be expressed as combination of rigid-body and constant-strains modes (rc-modes) and higher-order
modes (h-modes), but, starting from a different point of view, troughthe natural mode method, developed by
Argyris and co-workers1 the state of displacement in the element is described with:� = [�0 �N ], where
�0 is the vector of six rigid-body motion while�N contains the twelve amplitudes of the pure deformational
modes, callednatural modes. These modes are related to the nodal displacements and rotations on the tri-
angular edges. For the TRIC element, four natural straining modes are defined for each side. These modes
are: axial stretching,�cm = ["ot� "ot� "ot ]

T , symmetric bending,�cs = [ S�  S�  S ]
T , and antisym-

metric rotation,�ha = [ A�  A�  A ]
T , that can be split into two components: antisymmetric bending,

�bha = [ bA�  
b
A�  

b
A ]

T , together with a transverse shear mode,�sha = [ sA�  
s
A�  

s
A ]

T . In addition, three
azimuth rotational modes,�hm = [ i  j  k]

T , are included. The natural modes vector,�N , has the form:

�N = ["ot� "
o
t� "

o
t  S�  S�  S  A�  A�  A  i  j  k] (1)

and can be divided on constant strain modes,�c = [�cm �cs]
T = ["ot� "ot� "

o
t  S�  S�  S ]

T and higher
order modes,�h = [�ha �hm]

T = [ A�  A�  A  i  j  k]
T .

1 [5] references all basic papers of Argyris and co-workers on natural mode method.



Natural strains, stresses and internal forces

Total natural axial strain and transverse shear strains can be derived as:

"t = Btc�c +Bth�ha ; t = Bsh �
s
ha (2)

where,Btc andBth depend on coordinates, andBsh is diagonal matrix containing 0.5, [2]. Energy orthogo-
nality is in Ref. [4] enforced by replacingBth by: �Bth = Bth � 1

V

R
V
Bth dV .

In the natural coordinate system the constitutive relations between stress and strain rates reads

_�t =
�

_�� _�� _�
�T

= �t _"t ; _� t =
�

_�� _�� _�
�T

= �tt (3)

Natural axial stresses and transverse shear stresses are uncoupled. Coefficients�ij , and�ij are related to the
counterpart coefficient in the local Cartesian coordinate system.

Axial load and symmetric bending moments which are the components natural internal forces vector (Fig. 1 b),
fN , are respectively,

�
f�l� f�l� fl MS� MS� MS

�T
=

Z
v

BT
tc�t dv (4)

while antisymmetric bending and azimuth moments related to asymmetric bending drilling rotations, respec-
tively, can be obtained as:MA = kA�ha, andM I = kz�hm, considering related deformations as elastic.

Relation between Cartesian and natural stress and strain states can be written as�
"t
s

�
=

�
T T
B �
� T s

��
"

0


0

�
^

�
�t
� s

�
=

�
T�1
B �
� T s

��
�

0

�
0

�
(5)

where�
0

=
�
�x �y

p
2�xy

�T
, and�

0

=
�
�xz �yz

�T
, represent Cartesian stress vectors, and trans-

formation matrices depend on the orientation of the local Cartesian system.

Natural stiffness matrix kN

Natural stiffness matrix will be:

kN
12� 12

=

2
6664
k� c
6 � 6

� �

� k� h
3 � 3

�

� � kz
3� 3

3
7775 (6)

wherek� c is the tangent constant strain stiffness matrix that refers to the constant strain modes�c, k� h is the
higher order stiffness matrix that refers to the higher order modes�ha, and,kz, is the azimuth stiffness matrix
which refers to drilling modes�hm. In this paper approach given in [3] is investigated so, the influence of the
shearing stresses on the elasto-plastic behaviour of the element is ignored and stiffness matricesk� h, andkz
remain elastic and can be found in [5] and [4], respectively.

Constant strain stiffness matrix can be obtained from the following expression:k� c =
R
v
BT
tc �tBtc dv, so the

natural tangential material stiffness�t determines element’s elasto-plastic behaviour. This matrix is obtained
from its Cartesian counterpart,ct that is related to consistent tangential operatorcT ,

�t = T�1
B ctT

�T
B (7)

In order to incorporate the natural force vector and stiffness matrix, into the Cartesian framework the trans-
formation from natural coordinates is necessary. The required transformation matrix [2] can be constructed as:
aN = [@�N=@�q

e
n] ; l = 1; 12 n = 1; 18, where the vector:�qe = [ �uei

�#
e

i �uej
�#
e

j �uek
�#
e

k ], contains the local
displacements at the three nodes of the element. Relations between natural and local Cartesian coordinates
for the original TRIC element are defined using strictly geometrical arguments. The membrane formulation
from [4] using the third order interpolation scheme introduced by Allman, [1] is adopted. This have direct
influence on transformation matrixaN and azimuth stiffness matrix.



Consistent tangent operator

Cartesian coordinate system is used for the elasto-plastic analysis. The transformation between natural and
Cartesian measures is easy with the help of the transformation (5). Strain increments (in Cartesian coordinates)
are re-computed as a change in strains from the last converged equilibrium (the end of the last increment).
The stresses are also updated from the stresses at the end of the last converged increment. With this procedure
(strongly recommended in [6]) a spurious unloading is avoided. An implicit integration algorithm for elasto-
plastic constitutive equations in plane stress analysis presented in [8] is adopted. This algorithm produces error
of the same order as the one obtained in three dimensional analysis with the radial return algorithm, [6].

A bilinear strain- stress law with an isotropic hardening rule is adopted. Parameters which define relation are:
yield stress,�Y , elasticity modulus,E, shear modulus,G, Poison coefficient,�, and hardening parameterH .

The consistent tangent elastoplastic stress-strain matrix which maintains the quadratic convergence of the
Newton-Raphson method used at the structural level is so,

cT = R

0
@I � aT Ra

aaT R+ H
1���1H

1
A (8)

where,

R =

2
64

E
2(1��)A1

+ G
A2

E
2(1��)A1

� G
A2

0
E

2(1��)A1

� G
A2

E
2(1��)A1

+ G
A2

0

0 0 G
A2

3
75 ; aT = 1

�e

�
2�x � �y 2�y � �x 6�xy

�
(9)

andA1, A2 and��1 are parameters depending on plastic strain-rate multiplier,��, and effective stress,�e.
Numerical integration is performed along z direction using Newton-Cotes closed quadratures (rules). The stress
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Figure 2: Pinched hemispherical shell.

and strain values are calculated for material points (only one point per layer) through thickness of the triangle
i.e. along z-axis which pass the centre of the triangle.

Examples

Figure 2 shows one quarter of the hemispherical shell with a free edge pinched by two concentrated refer-
ence forcesFx = �Fy = 0:001[kN ]. The total number of190 elements is employed trough co-rotational
formulation. The load displacement diagram for two loading points A and B is given. The results are compared
with [3], [9] and [10].

Figure 3 shows one octant of the short thin cylinder pinched by two radial reference forcesFo = Fz = 100[N ],
in the middle of the structure. The boundary conditions were given on the figure. The total number of392
elements is used. The results are compared with [3], [9], [10] and [11].
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ABSTRACT

Summary The present study addresses the merits of a nonlinear Morley thin shell �nite element
employed in inelastic, large or moderate rotation problems. Cylindrical shells and sti�ened plates
are employed as examples. EÆciency in terms of cpu consumption is commented.

INTRODUCTION

During accidental conditions ships and o�shore structures are subjected to extreme loads.
Local collapse is accepted provided that global integrity is not put into jeopardy. If such sit-
uations are to be considered in a nonlinear �nite element analysis, eÆcient computational
algorithms are required. The objective of the present work is to �nd simple formulations
that can be applied to predict the ultimate strength of sti�ened panels. In this context,
non{linear shell �nite elements and plasticity will be the main focus for the collapse analy-
ses. The formulation used in this paper is based on a triangular constant stress{resultants
shell �nite element belonging to the family of Morley elements [1],[2],[3]. The element has
twelve degrees{of{freedom including three displacement at each of the corner nodes and
one rotation at each of the mid{side nodes. The material formulation is based on stress{
resultants plasticity with one integration point in the element plane.
THEORY

The middle surface strain tensor and the tensor for curvature changes is expressed in terms
of displacement components as,

�� =
1

2
(u�;� + u�;� + u�;�u�;� + w;�w;�) (1)

��� = w;�� (2)

where u� (u1 = u, u2 = v) and w are the in{plane and out{of{plane displacement compo-
nents, respectively. While Equation (1) is valid for arbitrary rotations, Equation (2) is valid
only when the rotations remain moderate and the deformations are small. The changes of
curvatures will be modi�ed so that the expressions are extended to accommodate arbitrary
large rotations.

In terms of stress resultants, the constitutive equation is de�ned as ds = Ctde where s
is the stress resultants tensor, e is the conjugate strain and curvature tensor, and Ct is
the tangent modulus. Let the local element degree of freedom vector, r, be represented

as rT =
h
aT 'T

i
=

h
uT vT wT 'T

i
, where u, v, w, and ' denote the membrane

displacements along the x and y{axes, out{of{plane displacements, and mid{side rotations.
From the displacement interpolation the membrane strains reads

 =

�
Ba1 +

1

2
Ba2

�
a (3)



The curvature changes reads
� = Bww +B'' (4)

Equation (2) and hence (4) are only valid within moderate rotations. Since the membrane
Equation (1) is applicable within large rotations, it may serve the purpose to employ
an updating technique to the changes of curvature so that the curvature changes may
accommodate large rotations. Considering only the facet geometry of the triangle, the
reference vectors in the current con�guration are related to the initial con�guration by the
expression [tn1 tn2 tn3 ]

T = [R] [t1 t2 t3]
T , where R is the rotation tensor. Since we need

to update only the unit{normal vector, the following transformation equation serves the
purpose tn3 = [R31 R32 R33] [t1 t2 t3]

T .

With respect to the instantaneously co{rotated con�guration, relative displacements and
rotations are introduced as a di�erence between the deformed and co{rotated reference
states. As a result, an expression similar to Equation (4) can be found as,

�̂ = Bwŵ +B''̂ (5)

where ŵ and '̂ denote the relative transverse displacements and relative rotations. This
expression may be extended into the regime of �nite rotation while strains remain small.
In this case, the rate equation for the discrete curvature changes may be expressed as

_� = Bw _wv +B' _' (6)

where the superposed dot indicates derivative with respect to a time{like parameter. The
component vector _wv contains the nodal velocities perpendicular to the instantaneously
�xed co{rotating con�guration. With reference to rotation of the normal vector for the
shell element, (6) may be expressed as,

_� = Bw (R31 _u+R32 _v +R33 _w) +B' _' (7)

The discrete equations of equilibrium can now be derived. A t the end of each increment
n+ 1, the following expressions apply,

 n+1 =  n +Ew

h
Rn31�u

n+1 +Rn32�v
n+1 +Rn33�w

n+1
i
+E'�'

n+1 (8)

n+1 =

�
Ba1 +

1

2
Bn+1
a2

�
an+1 +

1

2
Bn+1
 d
 n+1 (9)

�n+1 = �n +Bw

h
Rn31�u

n+1 +Rn32�v
n+1 +Rn33�w

n+1
i
+B'�'

n+1 (10)

Then, for an arbitrary incremental step, the �rst variation of the strain and curvature

tensors are given by Æ = (Ba1 +Ba2 +B dE�w) Æa + B dE'Æ' =
�
Ba +B� E�w

�
Æa +

B� E'Æ' and Æ� = B�wÆa+B'Æ'

The equations of equilibrium are derived from the principle of virtual work. For constant
stresses and strains the internal virtual work reads ÆW i = A ÆeT s. The variation of the in-
ternal virtual work, providing the tangent sti�ness, is given by Æ2W i = A

�
ÆeT Æs+ Æ2eT s

�
.

When isotropic hardening is considered, the original Ilyushin yield surface may be ex-

pressed in a general quadratic form as f(s; ep; �p) = sTAs�
�
1 + H�p

�Y

�2
= 0. The backward



Figure 1: Sti�ened panel: �nite element mesh and imperfection(exagerated)
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Euler stress resultant update can be written sn+1 =
�
Q [I+ 2��]�1Q�1

�
strialn+1 = Vstrialn+1 ,

where at this stage � remains the sole unknown. The matrices of eigenvalues � and eigen-
vectors Q represents CeA. The consistent elasto-plastic tangent modulus Ct for building
the material tangent sti�ness matrix and for use in the Newton{Raphson iterations reads

Ct = H� HggTH
gHg+�

. Details may be found in [3].

CONCLUDING REMARKS

Fig.1 illustrates the �nite element mesh and imperfection pattern for the simulations pre-
sented in Fig. 2. Some overprediction compared to the results with ABAQUS is observed,
this is due to the small nonconservatism inherent in the plasticity formulation and may
easily be accounted for. Fig.3 Shows the predicted response with the present formulation,
both using stress resultant modeling and 5 integration points through thickness. Compar-
ing with other published results, the agreement is good. Considering cpu time consumption,
using 5 integration points over shell thickness increases cpu about 50% compared to the
stress resultant approach. Furthermore, alternative moderate rotation formulations ([3])
use approximately 1/4 of cpu compared to the large rotation formulation presented herein.
Hence, if a moderate rotation formulation suÆces, it should be preferred in the analysis.
A complete presentation of the eÆciency issues will given in a separate publication.
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ABSTRACT

Summary In a particular class of coupled problems, the resulting set of equations is unsymmetrical.
This paper proposes a simple procedure for introducing a symmetric effective stiffness matrix, used in
the implicit stepping scheme for fluid-structure problems. As long as the time step is kept constant, the
factorization of the effective stiffness matrix only needs to be performed once.

There is a class of coupled problems that result in an unsymmetrical system of equations. The
reason for this, although the complete system is conservative, is how the information is passed
between the two domains. The unsymmetrical representation is the most compact representation of
the coupled system possible. However, the unsymmetrical system doubles the demand for storing
the system matrices and also double the number of operations to be performed for a specific
analysis. Hence, there is a benefit in reformulating the system creating a symmetric representation.
In a previous work, see [1], this has been done for the coupled eigenvalue problem.

The interacting fluid-structure problem can be written

�
Ms 0

�c2 HT Mf

� �
�d

�p

�
+

�
Ks �H

0 Kf

� �
d

p

�
=

�
fb
fq

�
(1)

whereMs is the structural mass matrix,Ks is the structural stiffness matrix,Mf is the fluid mass
matrix andKf is the fluid stiffness matrix. The coupling matrix can be expressed as

H =

Z
s

NT
s � nNfdS (2)

Introducing the multiplication factor� into the second line of equations in Eq. 1 yields

�
Ms 0

��c2 HT �Mf

� �
�d

�p

�
+

�
Ks �H

0 �Kf

� �
d

p

�
=

�
fb
�fq

�
(3)

Now consider a standard implicit time integration scheme

1. Initialize,u0, _u0, �u0

2. Form the effective stiffness matrix,Keff =M=� (�t)2 + C=��t+K

3. FactorizeKeff = LDLT .

For each time step perform the following steps



(a) Evaluate the effective forces

feff = fn+1 �M
�
un=� (�t)2 + _un=��t+ �un (1� 2�) =2�

�
(b) SolveLDLTa = feff .

(c) Calculate the accelerations and velocities at the new timestep.

The crucial part of the scheme is the factorization of the effective stiffness matrix In this case the
effective stiffness matrix according to Eq. 3 and step (2) is

Keff =

"
Ks +

1
�(�t)2

Ms �H

��c2

�(�t)2
HT �Kf +

�

�(�t)2
Mf

#
(4)

Based on the original system ,� = 1, the effective stiffness matrix is not symmetric and hence
symmric solvers can not be utilized. The matrix can be made symmetric, however , if

� = �

� (�t)2

�c2
(5)

For this choice of� the system matrix becomes

Keff =

"
Ks +

1

�(�t)2
Ms �H

�HT
�

�(�t)2

�c2
Kf �

1
�c2
Mf

#
(6)

The time step enters into the efficient stiffness matrix, hance as long as the time step is kept
constant, the same factorization can be used.

Preliminary results shows the anticipated speedup, going from unsymmetric to symmetric repre-
sentation, is acquired.
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ABSTRACT 

Summary Mathematical model of a high-speed drop impact on cold and hot rigid surfaces has been 
formulated. Numerical approach based on a lagrangian description, a FE method and an adaptive 
unstructured mesh has been developed. Main physical effects of the phenomenon simulated are briefly 
described in the present paper, which are a cumulative jet origination, a cavitation and a vaporisation in 
the thin layer near the hot wall, able to evoke a drop bouncing.  
 

While the interaction between liquid sprays and solid objects occurs in a wide variety of 
industrial, domestic and environmental applications, our understanding of the mechanisms 
involved in the process are far from complete. Of fundamental importance to such processes is 
the hydrodynamic and thermodynamic behaviour of individual droplets which impact a solid 
surface. Comprehensive reviews on impacts of drops on obstacles can be found in [1-4]. 
However, phenomenon of high velocity has not been adequately studied even qualitatively.  

We consider drops of water or nitrogen, impacting with initial velocities more than some 
tens of meters per second, a compressibility of the liquid being essential. Let’s describe firstly a 
scheme of such impact on a cold wall [5]. At the initial stage, the free surface, which does not 
contact the wall, does not deform. The compression region of the drop is bounded by a shock 
wave adjacent to the contact domain boundary (see Fig. 1A). This is because the velocity of 
motion of the contact boundary is infinitely large at the contact instant, and the disturbances 
propagating from the wall do not interact with the free surface. The compression of the liquid is 
maximal at the contact periphery and continues to increase. 

 

 
 

 
 

Fig.4. Top row: impact of a nitrogen drop on a cold wall with initial velocity smV /1860 = ; Bottom: 
impact on a hot wall. Pressure isolines are presented at the time moments 0.01, 0.2, 0.3, 0.9 00 /VR . 
At the critical instant, the shock wave leaves the contact boundary and interacts with the free 

surface to form a shock wave in the ambient gas and an expansion wave propagating inside the 
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drop. The free surface starts to deform and a near-wall high-velocity cumulative jet is formed 
(Fig. 1B). The time of jet formation depends on viscous and surface effects in the liquid near the 
wall, and the jet velocity far exceeds the impact one. When the shock wave in the drop 
approaches its top, the expansion wave, following the shock wave, causes the formation of a 
toroidal cavitation area whose cross section is shown in Fig. 1C. At the final stage of interaction, 
the expansion wave collapses at the symmetry axis, and a vast cavitation area with the greatest 
rarefaction near the axis is formed (Fig. 1D). The estimations of the time moments of splashing, 
the jet velocity and maximum pressures can be found in [5]. 

When impacting on hot wall, the liquid near the contact spot is getting warm and transfers to 
vapor. Due to short time of impact and comparatively low heat conductivity the layer of the 
vapor is in some orders smaller than the drop. Getting warm and rarefying, the vapor can push 
the liquid away. Such influence is negligible if the energy transferred from the wall to fluid 
during impact is much less than a kinetic energy of the bulk mass of the drop. The influence is 
valuable in case of the high wall temperature and the small radius of the drop. The smallness of 
the radius is needed, because the thickness of the heated layer changes approximately as a 
square root of the time of heating, and this time is proportional to the drop size. That is why the 
smaller the drop size the bigger is the ratio of layer and drop sizes, and consequently the more 
compatible are the energies. Under these conditions the shock wave propagating in liquid is 
forced by the layer and after reflection from the top free surface can evoke an acceleration of the 
liquid in opposite direction. In the other case of high temperature and big drop size the shock 
wave is not under the influence of the layer, but large time of interaction leads to dominant role 
of heat transfer due to convection. The transferred energy evokes the second wave of 
compression, able to accelerate in back direction the fraction of liquid near the top of the drop.  

To simulate these processes occurring in liquid and in incomparably small layer of liquid 
transferring to vapor two different mathematical models have been formulated, both in the 
lagrangian approach. Liquid in the drop, excepting the layer, is considered as barotropic fluid 
governed by the Euler’s equations and the Tait’s equation of state. Numerical method is based 
on synthesis of the Finite-Element approach and the TVD-scheme, applied on an adaptive 
lagrangian unstructured triangular computational mesh [6].  

 
Fig.2 A, Time dependence of pressure near the wall at the axis of symmetry for impacts on cold and hot 
walls and of the thickness of the vapour layer. B, C, The profiles of velocity, pressure and temperature 
across the layer at different time moments. 0V , 0R  are the initial velocity and drop radius. 
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1-D mathematical model of the layer is based on the heat transfer equation, the pressure 
constancy across the layer, the mass conservation law and the equation of state for both phases 
of given fluid. These equations give the relation of the fluid velocity on the layer boundary and 
the pressure. This relation is the boundary condition for the equations, governing the liquid in 
the domain of the bulk mass of the drop. Final mathematical model for the layer in 2D-case is 
under construction, the presented results have been obtained for a 1D-problem and in 2-D case 
by means of a simple approach. The modification of pressure near the wall at the axis of 
symmetry for the impact (shown on the Fig.1A-D) of nitrogen drop with initial velocity 186 m/s 
on a cold wall had been calculated. Applying this dependence for the model of the layer and 
supposing the radius of the drop to be equal to 1mkm, the pressure during the impact on a wall 
with temperature 600 K was obtained, shown on Fig. 2A along with the thickness of the vapour 
layer. (The profiles of velocity, pressure and temperature across the layer at different time 
moments are presented on Fig. 2B,C.) The difference of the pressure values for these cold and 
hot impacts characterises the influence of the vapour layer on the liquid. For oversimplified 
consideration of this influence we have carried out another 2-D simulation, supposing to be 
constant the pressure near the wall (1000 bar) if the influence of gas on liquid exceeds the 
pressure of liquid on the wall. The results of the simulation are shown on Fig.2E-H, which due 
to oversimplification should be considered as illustrative results.  
Conclusion 
In the present paper the main physical effects taking place during impacts of a liquid drop on a 
cold or heated solid surface were outlined. The mathematical and numerical models of the 
phenomena were given. Some illustrative results were presented for these two impacts. For the 
details and estimations on the impact on cold surface the readers are referred to the paper [5]. 
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ABSTRACT 

Summary This document provides information on specially developed and adopted finite element technique 
for Non-destructive Testing (NDT) problems. Proposed technique is nearly 10 times faster than commercial 
code ANSYS, and, on the other hand, enables to create and analyse models, solution of which is practically 
impossible by most commercially available finite element codes due to limitations on model size. 
 
Introduction  Short wavelength transient elastic vibrations could be treated as the dynamic 
processes in regions, dimensions of which 100 to 1000 times exceed length of the propagating wave. 
In engineering practice the short wave propagation phenomenon is encountered as ultrasonic or 
impact wave propagation. At the time being, ultrasonic technologies  play a prominent role in non-
destructive testing (NDT) and monitoring techniques. They afford useful and versatile methods for 
evaluating microstructures and mechanical properties, as well as detecting microscopic and 
macroscopic discontinuities in solid materials. A virtual feature of ultrasonic NDT is that each new 
type of  the test has to be analysed theoretically in order to position piezoelectric transducers on the 
surface of the body under investigation. A great advantage is to have a mathematical model enabling 
to simulate the testing process and to verify the results. Variety of the finite element codes (ANSYS, 
ALGOR, etc, however, commercial codes appear to be of little value when modelling NDT 
processes. Simulation of elastic wave propagation in bodies of complicated geometrical shape 
requires huge computational resources, which often exceed available capacities of computers. 
The motivation of this work is to demonstrate the advantage and efficiency of specially adopted 
Finite Element procedure in alliances of the regular quadrilateral and free triangular finite element 
meshes in order to save computational time for the short wavelength wave propagation modelling in 
NDT processes. The essence of the method lies in the composition of the comparatively small free 
meshed and large mapped meshed regions, in which explicit recursive formulae for displacements 
are implemented. This technique permits do not assemble global matrices of the whole structure 
what leads to high computational speed and small storage. 
Application of the finite element method  Short wavelength elastic wave propagation analysis is 
performed by solving the structural dynamic equation  
 

[ ]{ } [ ]{ } [ ]{ } ( ){ }tFUKUCUM =++ &&& ;     (1) 
 

where [ ] [ ] [ ] [MCKM ]α=,,
{ }U

 - the mass, stiffness and proportional damping matrices; { - the 
external load vector, ,

}F
{ }U& ,{ }U&&  - are the nodal displacement, velocity and acceleration vectors of 

the structure. 
The time integration is being performed by means of the central difference integration scheme: 
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Here ∆t corresponds to the time discretization step. Generally, the upper limits of discretization steps 
in space and time can be evaluated by means of the inequality 
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where c - velocity of the wave in the media, ∆t, ∆x - discretization step in time and space 
respectively.  
For elastic solid regions containing several materials we use the discretization steps based on the 
inequalities  
 

min
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,
5 2exc

c xx t
cω
∆

∆ < ∆ < ,      (4) 

 where  
ρ
E

=c  is velocity of propagation of the longitudinal wave , E - Young's modulus of the 

solid region and ρ - density of the material. Values , correspond to minimum and 
maximum wave propagation velocity if the structure contains several different materials. This leads 

to  huge computational amounts even in 2D  case. In steel regions with 

minc maxc

s
mc 5200≈  and excitation 

frequency MHzexc ≥ 3ω  we obtain   and the necessary number of elements of the 
square plate of dimension is about 4 million. 

mx 5105 −⋅<∆
mm 1.01.0 ×

Once concerning the NDT problems, the efficiency of the algorithms could be improved by taking in 
to account the specifics of the certain problem. As the approach should be oriented to very large 
models, the computational algorithm is being economised as follows. 
a)Large domains under investigation are subdivided into rectangular areas of uniform quadrilateral 
finite element meshes and  small number of areas  of arbitrary  geometrical shape presented by free 
meshes, Fig. 1. The recursive formulae for nodes displacement could be derived by proper time 
integration scheme modification.  
The product [ ]  for the regular domains is being obtained on the element level and then 
assembled to nodal vector. As all the matrices of the elements in this domain are identical, the 
calculation of the product corresponding to node ij , see Fig. 2,  can be presented by the simple  
recursive formula as 

{ tUK }
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(5) 

where [ ] 4,3,2,1,, =tsK est are blocks of dimension 2x2 of the stiffness matrix of the quadrilateral 
element the local nodal numbers of which are being assigned from the bottom left corner in 
counterclockwise direction.  



 
Fig. 1 Finite element model of a plate 
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Fig. 2 Fragment of the finite element model 
 
Formula (5) recalls the relations of the finite difference method described in [3] invoking similar 
number of arithmetic operations to be performed during each time integration step. However, the 
finite element approach avoids algorithmic difficulties encountered when the finite difference model 
has to be connected with adjacent regions of arbitrary shape modelled by free finite element meshes. 
The calculation of the product [ ]  for free meshed domains requires considerably greater 
computational time pro node, however usually the number of nodes in such domains is very small in 
comparison with the total number of nodes of the model. 

{ tUK }

}

}

b) Diagonal (lumped) mass and damping matrices are being used, therefore no matrix inverse is 
necessary in (4). 
c) The domain regularly meshed by quadrilateral elements is subdivided into rectangular 
subdomains displacements of which are stored as files on hard disc. For each subdomain the activity 
index is supplied indicating if the wave has reached the subdomain. Inactive subdomains are 
excluded from computation of and considerable time saving is achieved during first stages 
of the wave propagation. Similarly, the subdomains passed by the wave and containing only very 
small residual vibration are indicated as inactive and excluded from computation until  they are 
reached by  the next wavefront. Proposed technique by means of filtrating allows eliminate noise 
signal, which propagates more rapidly than longitudinal. Displacements of the nodes are being set to 
zero value if they do not exceed defined threshold. Actually it is sufficient to nullify all the values 
below the 10 , where  corresponds to the maximum value of the displacement since 
the start of program. Displacement’s control is being performed after every integration step. 

[ ]{ tUK

maxumax
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 d) Products [ ] could be evaluated for every individual rectangular area by using displacements 
of certain and adjacent areas. If matrices 

{ tUK
[ ]M̂  of the areas are diagonal, formula (2) is used for every 

area separately. That allows permanently to store in the computer memory only products 



[ ]{ tUK }corresponding to the nodes shared by adjacent areas while products [ ]{ tUK }corresponding 
to the internal nodes of the area are stored on computer hard disc. 
e) Since computation time may take dozens of hours, created computer program has an option that 
allows to restart computation from predefined point if process was terminated due to computer 
failure.   
Conclusions  Developed computer software was applied to NDT models of the dimension up to 
100,000 finite elements. Solution of problems of such dimension is practically impossible by most 
commercially available finite element codes. By comparing computational time for solution by 
conventional finite element method and by technique discussed above, it was found that the latter 
technique is nearly 10 times faster. The improvement of the effectiveness of the numerical 
simulation was achieved due to use of the explicit time integration schemes in uniform finite 
element meshes.  
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ABSTRACT

Summary   A pressure function of short squeeze film dampers is determined by averaging inertia terms
in the Navier-Stokes equation related to the axial direction of flow across the width of the damper gap.
Velocity components are obtained from a Reynolds’ equation. Cavitation areas are characterized by
constant value of the pressure. Because of damping forces the equation of motion of a rotor is nonlinear.
A series of manipulations ( calculation of the steady-state response on periodic excitation by a
trigonometric collocation method, calculation of Jacobi matrices of partial derivatives, etc. ) result in
setting up a transition matrix over the span of time of one period. Magnitudes of its eigenvalues determine
stability of the steady-state response.

Inertia effects and cavitation of the oil film
The observations show that squeeze film dampers can cause undesirable operating conditions of
rotors. If one or more parameters of the system are close to a stability limit, a bifurcation can
occur and the motion tends to jump between different attractors.
Squeeze film dampers are usually incorporated into computational models by means of
nonlinear force couplings. To calculate components of the damping force it is necessary to
know a pressure function that describes the pressure distribution in the layer of lubricant. If
design and geometry parameters of the damper make possible to consider it as short then the
pressure gradient is significant only in axial direction. The oil inertia is taken into account by
averaging the terms in the corresponding Navier-Stokes equation that are proportional to the oil
density across the width of the damper gap.
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p, η, ρ - pressure ( pressure function ), oil dynamical viscosity, density,
ϕ, Y, Z - circumferential, radial, axial coordinates,
u, v, w - circumferential, radial, axial velocity components of the oil flow,
h, R, t - width of the gap, radius of the inner ring of the damper, time.
Referring to results of measurements [1] the velocities can be determined from a Reynolds’
equation. Their substitution into (1) and consequent integration give the pressure function
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e - eccentricity of the journal centre, ( dots - derivations with respect to time ),
γ - position angle of the line of centres ( centers of the outer and inner rings ),
pa - pressure at both ends ( faces ) of the damper.
The simplest way how to incorporate cavitation into computational models is based on
knowledge that pressure of the medium in cavitated regions is approximately constant ( pcav ).
The mean value of the pressure profile in axial direction is then given

a
2

m pL.A
12
1)(p +=ϕ for cava

2 ppL.A
8
1 ≥+ (4)

a
cavacav3

cavcav
23

m p
L

Z)pp.(2
)Z.4ZL.3L.(

L.12
A)(p +

−
++−=ϕ for cava

2 ppL.A
8
1 <+ (5)

A
)pp.(2

4
LZ acav

2

cav

−
−= (6)

L - length of the damper.
Components of the damping force ( FHZ , FHY ) are calculated by integration of pm

∫
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mHZ dsin).(pL.RF (7)

Stability judgement of the periodic response
The model systems are assumed to possess the following properties : (i) the shaft is represented
by a beam like body that is discretized into finite elements, (ii) the stationary part is rigid and
motionless, (iii) the discs are absolutely rigid, (iv) inertia and gyroscopic effects of the shaft and
of the discs are taken into account, (v) material damping of the shaft is viscous, other kinds of
damping are linear, (vi) the rotor is supported by rolling-element bearings and squeeze film
dapmers, (vii) the rotor rotates at constant angular speed and (viii) is loaded by concentrated and
distributed forces of periodical time history. Lateral vibration of such rotors is described by a
nonlinear equation of motion

),,()..()...(. HVACSHV xxxfffxKKxGKBxM &&&&&& ++=Ω++Ω+η++ (8)

M, B, K, KC - mass, damping ( external ), stiffness, circulation matrices,
KSH - stiffness matrix of the shaft,

HVA ,, fff - vectors of generalized forces ( applied, constraint, damping ),
xxx &&& ,, - vectors of generalized displacements, velocities, accelerations,

ηV, Ω - coefficient of viscous damping, angular speed of the rotor rotation
and by relationships for boundary conditions given by vector xBC that represents static
misaligments of the bearing housings. To be satisfied the boundary conditions the equation of
motion (8) is transformed to the form

byAyAyA =++ ... 012 &&& (9)



Matrices A2, A1, A0 and vectors yyy &&& ,, and b are obtained from *
0

*
1

*
2 ,, AAA and bxxx ,,, &&& by

omitting their rows and columns corresponding to the degrees of freedom to which the
boundary conditions are assigned.

A M2
* = A B K G1

* . .= + +ηV SH Ω A K K0
* .= + Ω C (10)

BCxAfff .*
0HA

* −+= (11)

Steady-state response of the system on periodic excitation can be determineded for a certain
class of problems by means of a trigonometric collocation method [2], [4]. Then

y a a b= + 





+ 



=

∑0
1

2 2
j j

j

L

j
T

t j
T

t. cos . sinπ π
(12)

a0, aj, bj - vectors of Fourier coefficients ( j = 1, 2, ... L ).
Period of the response T is derived from the period of excitation. Substitution of the assumed
solution (12) into (9) for specified collocation points of time results into a set of nonlinear
algebraic equations. The unknowns are the Fourier coefficients.
To judge stability of the steady-state vibration of a rotor system its motion is slightly disturbed
at the beginning of the investigated period [2], [3]. Damping forces corresponding to the
disturbed vibration are determined by means of their expansion into a Taylor series

...),,(),,( KBMHH +∆+∆+∆+=∆+∆+∆+ xDxDxDxxxfxxxxxxf &&&&&&&&&&&& (13)

xxx &&& ∆∆∆ ,, - vectors of deviations of generalized displacements, velocities, accelerations,
DM, DB, DK - square matrices of partial derivatives.
A number of manipulations ( taking into account only the linear part of (13) and the boundary
conditions ) result into a differential equation of the first order describing time history of
deviations of displacements of the disturbed motion. Because of DM, DB and DK its coefficient
matrix is a periodic function of time. That’s why for stability judgement of the rotor system a
Floquet theory can be utilized. After dividing the period of T into N time subintervals ∆t, the
transtion matrix H(T,0) is expressed as a product of N partial transition matrices H(t+∆t,t)

)0,t().....t2t,tT().tT,T()0,T( ∆∆−∆−∆−= HHHH (14)

Employing kinematic relationships of a Newmark method a relation between kinematic
quantities corresponding to times t and t+∆t can be derived. The square matrix in it represents a
partial transition matrix ( I - identity matrix )
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Matrices A2, A1, A0 are obtained from *
0

*
1

*
2 ,, AAA  by omitting their rows and columns

corresponding to the degrees of freedom to which the boundary conditions are imposed



M
*
2 DMA −= BSHV

*
1 .. DGKBA −Ω+η+= KC

*
0 . DKKA −Ω+= (18)

Example
Shaft of the analyzed rotor system ( Fig.1 ) was loaded by two concentrated forces of
harmonical time history acting on it at the discs locations in radial directions ( 300 rad/s - D1,
200 rad/s - D2 ). Orbit of the rotor journal centre in damper SD1 is drawn in Fig.2. Distribution
of eigenvalues of the transition matrix in a Gauss plane is evident from Fig.3. Magnitudes of all
of them are less than 1 and it means that the investigated vibration is stable.

Fig.1 Fig.2 Fig.3

Conclusions
Among the significant advantages of the presented method there are (i) it makes possible to
express solution of the Navier-Stokes equation in a closed form and (ii) enables to take into
account the influence of inertia and rupture of the oil film on stability of lateral vibration of
rotors supported by squeeze film dampers. The carried out computer simulations brought some
experience : (i) a trigonometric collocation method is able to find both stable and unstable
periodic solutions of the equation of motion, (ii) the most difficult step of the procedure is
solving a set of nonlinear algebraic equations and (iii)  the described approach to setting up the
transition matrix does not require repeated calculations of exponential matrices.
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ABSTRACT

Summary The subject of this paper is the application of the method of separation of variables and
the Galerkin method for discretization of the equations of motion for a cantilevered cylindrical fluid-
conveying shell. The perturbation velocity potential is expressed in terms of a series of orthonormal
beam modal functions. Comparisons with results obtained from the more precise but also more difficult
Fourier transform method are made. Critical flow speeds predicted by the two methods generally agree well.

1 Introduction

Fluid-conveying cylindrical shells are found in numerous industrical applications, in particular
in connection with power generation. There are also numerous physiological applications, e.g.
in connection with respiratory systems and blood flow. The dynamics of fluid-conveying shells
have thus been studied rather extensively. In practical applications clamped-clamped boundary
conditions are probably the most common. But cantilevered (clamped-free) shells are also found.
For example, ref. [1] mentions a cantilever-type ‘intermediate’ heat exchanger in the reactor vessel
of a fast breeder reactor. No direct support is added at one end because of large thermal expansion.
But the main interest in cantilevered shells is probably as a model problem to study flow-induced
dynamic instabilities due to the non-conservative character of the fluid forces.

Analyses of complicated systems are commonly being based on the finite element method. In
contrast, fundamental studies of simpler systems are often based on ‘semi-analytical’ discretiza-
tion methods, such as power series expansion [2, 3], or the Galerkin method [4, 5]. Four boundary
conditions are specified at each end and accordingly, a power series expansion is limited to eight
wave numbers. The Galerkin method is not subject to this restriction and may therefore give more
accurate solutions.

Through the fundamental studies referred to up to this point, potential flow theory has proved to
be adequate in yielding correct stability characteristics. The variables in the perturbation velocity
potential �, expressed with respect to cylindrical polar coordinates (x; �; r), can be separated by
assuming solutions of the form

� = �(x; �; r; t) = R(r)X(x)�(�)T (t) (1)

where R(r), X(x), �(�), and T (t) are functions of one variable only, and t is the time. The
potential function � must satisfy the Laplace equation

�� = 0; (2)



where � is the Laplacian. By virtue of the solution assumption (1) and simple assumptions re-
garding �(�) and T (t), the partial differential equation (2) is split up into two ordinary differential
equations, a modified Bessel equation in R(r) (also including the circumferential mode number
n) and a one-dimensional wave equation in X(x),

X 00(x) + k2X(x) = 0; (3)

where k is a discrete wave number and a prime means differentiation with respect to the argument.
By the power series expansion method, the assumption X(x) = C exp(ikx) is applied, C being a
constant, and each term satisfies (3) for all possible sets of boundary conditions.

Modal expansion ofX(x) and the structural deflections is straightforward in the pinned-pinned
case and works well in connection with the Galerkin method, as the fluid and structural modes are
orthogonal, see e.g. ref. [6]. The situation is more complicated when clamped ends are involved. In
such cases the potential has previously been discretized by application of Fourier transform [4, 5].
A less restrictive variable separation is then used in the Laplace equation, namely

�(x; �; r; t) = R(r; x)�(�)T (t) (4)

and the r and x variables are separated in the Fourier domain by applying the Fourier transform
couple

R
�(r; k) =

Z
1

�1

R(r; x)eikxdx; R(r; x) =
1

2�

Z
1

�1

R
�(r; k)e�ikxdk; (5)

where k here is a continuously varying wave number. A drawback of this approach is that the
integrals most often only can be evaluated numerically. And for the case of a cantilevered shell,
a model of the jet issuing from the free end also needs to be included. This is unnecessary when
the problem is posed as a boundary value problem, as the behavior of the jet then is related to the
structure through boundary conditions.

The primary goal of the present paper is to derive simple, approximate expressions for the
generalized fluid forces, based on a Galerkin discretization of the coupled fluid-structure problem
where both the structural deflections and the fluid perturbation pressure are expanded in the same
set of orthonormal beam modal functions, fm(x) say. Rather than using Fourier transform, the
problem is posed as a boundary value problem. To carry this through, it will be accepted that (3) is
not satisfied exactly, but only approximately, in the averaged, ‘weak’ form of the Galerkin method.
This is because the fulfillment of the (structural) natural boundary conditions (@2fm=@x2 = 0 and
@3fm=@x

3 = 0) at the free end is given higher priority than satisfying the Laplace equation (2)
exactly.

2 Theory

Let U be the uniform entrance velocity of an incompressible inviscid fluid of density �, flowing
steadily in the axial direction within a flexible cylindrical shell of radius a. The fluid is entering at
the clamped end x = 0 and discharging at the free end x = L. The eigenfunctions Xm(x) of (3)
are, at the outset, expanded in terms of

Hmfm(x); (6)



where fm(x) are the eigenfunctions for a vibrating beam and Hm are constants. The eigenvalues
km are obtained from the Galerkin equations

1X
m=1

Hm

Z L

0

�
f 0mf

0

j � k2mfmfj
	
dx = 0; j = 1; 2; : : : ; (7)

which are obtained as the weak form of (3) with (6) inserted, and with imposition of boundary
conditions. [Again, a prime indicates differentiation with respect to the argument x.] As the to (7)
corresponding matrix is symmetric and positive definite, all eigenvalues are positive. The equa-
tion system is basically the Rayleigh-Ritz method by Kamke’s quotient (rather than Rayleigh’s
quotient) as the boundary conditions are not satisfied by the expansion functions fm(x), but incor-
porated through integration by parts.

The generalized fluid dynamics forces Qmsn can be written as

Qmsn = �!2�Q(1)
msn + 2i!U�Q(2)

msn + U2�Q(3)
msn; (8)

Q(1)
msn = ImnÆms; Q(2)

msn =
1
2(Imn + Isn)bms; Q

(3)
msn =

P
j Ijnbmjbjs; (9)

where ! is a frequency parameter, � is a structural mass parameter, Æms is Kronecker’s delta,
bms =

1
L

R L
0 f 0mfsdx, and Imn = In(kma)=kmaI

0

n(kma), In being the modified Bessel function

of first kind and order n. The three terms Q(j)
msn, j = 1; 2; 3, in (9) correspond to: (1) added mass;

(2) fluid damping; and (3) follower-type centrifugal force, respectively.

To validate the main results (9), they will be compared with those obtained by the Fourier
transform method. Following [4, 5, 7], the Fourier representation of Q(j)

msn, j = 1; 2; 3, is given by

Q(j�)
msn =

�j
2�

Z
1

�1

In

�Z 1

0
fme

i�k�xd�x+

Z
1

1
gme

i�k�xd�x

��Z 1

0
fse

�i�k�xd�x

�
d�k; (10)

where �j = 1;�i�k;��k2 for j = 1; 2; 3, respectively. gm(�x) is a so-called ‘outflow model’ [8], and
In = In(ka)=kaI

0

n(ka). An overbar indicates a non-dimensionalized quantity.

3 Numerical examples

In order to check the present method some dynamic stability calculations will be made for the
beam mode oscillations, i.e., for n = 1. This means that only deflections in radial direction will
be considered. As the focus point of this paper is on the fluid-dynamical modeling, the influence
of shear deformation on the tube dynamics will be ignored, although this may be of significance
in cases of short, ‘stubby’ tubes. Two non-dimensional parameters will be introduced, namely

�U = UL

s
fluid mass per unit length

bending stiffness
; � =

fluid mass per unit length
total mass per unit length

: (11)

Stability curves depicting critical flow speed �Ucr as function of the slenderness ratio a=L are
shown in Figure 1 for (a) � = 0:2, (b) � = 0:5, and (c) � = 0:8. Ten modal functions were
applied in all calculations. The solid curves depict the results of the modal expansion method,
while the dots are the results of the Fourier transform method. The agreement between the critical
flow speed predictions appear to be good in any case.



(a) (b) (c)

Figure 1. Non-dimensional critical flow speed �Ucr, at which dynamic instability is initiated, as
function of the slenderness ratio a=L: —, the present method; ● , the Fourier transform method.
(a) For the mass ratio � = 0:2; (b) for � = 0:5; (c) for � = 0:8.

4 Conclusion

The paper has proposed a modal expansion of the fluid velocity potential through application
of the method of separation of variables and the Galerkin method. The method is a useful, simple
alternative to the Fourier transform method in the analysis of dynamics and stability of cantilevered
fluid-conveying shells and short beams.
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ABSTRACT

Summary A virtual laboratory for analyzing vehicle structures is described with focus on the prediction
of the interior noise level in a vehicle compartment. The presentation points out the advantages and
possibilities of this modeling environment where research results can be implemented on realistic models.
Cooperation between different research projects is simplified as well as the interaction with industrial
groups.

The Swedish research programme Integral Vehicle Structure (IVS) deals with future generations
of vehicles. The programme includes four subprogrammes:

� Structural Design

� Vehicle Acoustics

� Drag Prediction and Flow

� Design and Materials and Manufacturing.

Each subprogramme consists of several research projects. In connection with this programme a
Virtual Integral Vehicle Structure Laboratory (VIVS-lab) is developed. This virtual laboratory
aims to be a common base where results from the different research projects can be implemented.
Having this base collaboration between research projects and communication between researchers
and industrial groups are simplified.

VIVS-lab is developed within the modeling framework AML (Adaptive Modeling Language).
AML has an underlying object-oriented architecture and enables integration of all steps in a prod-
uct development cycle by interfaces to different programs. The program to be used depends on the
task, which may involve design (CAD) or analysis (FEA), for example. In VIVS-lab generic ge-
ometry models of different vehicle structures are created. This allows research results to be tested
on realistic models.

The implementation in VIVS-lab of the coupled structure-acoustic fluid interaction problem using
the finite element method is described. The aim is to determine the vehicle interior noise produced
by a given excitation force. The analysis is based on substructuring and modal reduction where
the uncoupled modes of the two domains are used to reduce the problem.

To study this problem a simple geometry model is generated in VIVS-lab. The geometry is au-
tomatically meshed by use of MSC/Patran. The complexity of the geometry model is thereby
unimportant to the effort to achieve the finite element model.



a) b)

Figure 1: a) Simple geometry model, b) Finite element mesh.

The coupled analysis is divided into two parts. In the first step the coupled problem is analyzed in
MSC/Nastran. VIVS-lab generates the input data files on the basis of material properties, loads,
boundary conditions and the mesh that MSC/Patran provides. The coupling between the structural
and fluid domain is accomplished in MSC/Nastran.

In the second part an in-house code will be used to determine the response of the system. The
uncoupled eigenvalue problems, i.e. the structural domain and fluid domain separately, are solved
using MSC/Nastran. These results are then employed when analyzing the coupled problem with
the developed code. This shows the strength of this modeling environment where different analyzes
can be easily connected and research and computational results can be displayed in a readily
fashion.
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Summary The paper presents a hybrid method based on the combination of conventional finite 
element- and the scaled boundary finite element methods suitable for wave propagation problems in 
unbounded domains. Solution procedures for the coupled time-dependent non-linear system involving 
both ordinary differential equations and algebraic constraint equations are discussed. Furthermore, an 
example of high-speed train induced ground vibrations is presented. 
 

1. INTRODUCTION 
In Sweden[1] and other countries in Western Europe[2], propagating shock waves induced by high-
speed trains have been observed on actual lines where the railroad superstructure is built on soft soils 
possessing a very low natural wave propagation velocity. As the speed of trains approaches or even 
exceeds the Rayleigh wave velocity in the ground material, high-level vibrations may be generated in 
the track structure and the surrounding ground material. In extreme cases, potential risk for damage to 
the track structure and the power supply equipment may exist. The phenomenon has been recognised 
to have many similarities to supersonic booms in the field of fluid dynamics. 
In the present paper we concentrate on potential difficulties regarding finite element simulations of 
wave propagation in unbounded domains. Concerning simulations of railway induced wave 
propagation, no natural and distinct boundary conditions exist and special considerations regarding the 
boundaries of the domain are necessary in order to prevent unphysical reflections.  
Based on a combination of conventional finite elements and the scaled boundary finite element[3]-[5] 
method, we propose an efficient hybrid method for analysing wave propagation phenomena involving 
non-reflecting boundaries. Since ordinary finite elements are used in the interior of the domain, 
detailed geometrical modelling of the railway components also including non-linear material 
properties may be used. The approach also makes it possible to study how efficient different proposals 
of reinforcements reduce the amplitudes of the propagating waves.  

2. SCALED BOUNDARY FINITE ELEMENT METHOD 
In the current section we give a very short description of the basic concepts of the scaled boundary 
finite element method. A more complete description and derivation of the method can be found in 
Song and Wolf[5] or Ekevid and Wiberg[6]. 

2.1 Basic ideas 
The main objective of the scaled boundary finite element method is to establish a relation between 
deformations of the interface region and the corresponding reaction forces for the unbounded domain. 
If such relation, the unit impulse response matrix, is known at all times i.e. the response for a unit 
deformation for each one of the nodes, the total reaction forces can be obtained from a convolution 
integral according to (1).  
The method is based on four major concepts; the concept of similarity mapping, limit analysis for 
dynamic equilibrium as the thickness approaches zero for one layer of elements, introduction of 
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approximations in the continuous consistent infinitesimal finite-element cell equation and finally 
solution of the resulting matrix equations. 

Figure 1. One element for the scaled boundary finite element method. 
  Local coordinate directions 

In contrast to Boundary Elements or similar methods, no fundamental solution is required and free 
surfaces do not need to be discretized. The method is exact in the radial direction and any finite 
element approximation can be used in the other two local coordinate direction η  and ς , see Figure 1.  

( ) ( ) ( )
0

t

t t dτ τ τ∞= −�R aM  (1) 

From a computational aspect, the most expensive operation is the solution of the matrix equations, 
involving Schur factorisation of relatively large dense matrices to obtain the unit impulse response 
matrix. 

3. THE HYBRID METHOD 
The coupling between the conventional finite element and the scaled boundary discretization 
approximating the unbounded domain is based on dynamic equilibrium for the finite element domain. 
Since non-conforming grids are used in the interface region, a systematic approach based on Lagrange 
multipliers for handling general constraint equations has been adopted. For the finite element domain 
the dynamic equilibrium equation at n+1t  according to (2) and the additional constraint equation (3) 
have to be satisfied. 

( )ext a v d i
n 1 n 1 n 1 n 1 n 1 n 1

λ
+ + + + + +− + + + + =F F F F F R 0  (2) 

n 1+ =Φ 0  (3) 

Here, ext
n 1+F  are the external forces and , , ,a v d

n 1 n 1 n 1 n 1
λ

+ + + +F F F F  represents inertia forces, damping 

forces, internal forces and forces from constraint equations, respectively. Furthermore, i
n 1+R  denotes 

the interaction forces from the unbounded domain, see Figure 2, and n 1+Φ  the set of algebraic 
equations relating the displacements in the interface region. 
 

Figure 2. Illustration of coupling in the interface region between the finite element domain  
  and the unbounded domain represented by scaled boundary finite elements.  
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3.1 Solution procedure for DAE-system 
In the present stage we have adopted the ordinary Newmark procedure for the solution process of the 
non-linear DEA system (2)-(3) above. The evolution of the displacements n+1d  and velocities n+1v  at 
time n+1t  are assumed to follow (4) and by the choice 0.5, 0.5α β= =  we obtain the well-
documented constant average acceleration scheme which is energy conserving and unconditional 
stable. 

( )( )
( )( )

n 1 n n n n 1
2

n
n 1 n n n n n 1

t 1
tt 1
2

α α

β β

+ +

+ +

= + ∆ − +

∆= + ∆ + − +

v v a a

d d v a a
 (4) 

In order to compute the first set of residual forces we make a prediction according to (5).  

( )( )
( )( )

0
n 1 n
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2
0 0n
n 1 n n n n n 1

0
n 1 n

t 1
tt 1
2

α α

β β

+

+ +

+ +

+

=
= + ∆ − +

∆= + ∆ + − +

=

a a
v v a a

d d v a a

λ λ

 (5) 

Corrections of accelerations iδa and Lagrange multipliers iδ λ  are obtained from linearisation of (2)-
(3) applying an ordinary Newton iteration scheme until a prescribed tolerance criterion is fulfilled.  

( ) ( ) ( )
( )

* ii T id
a

i id
λ

δ
δ

� �� � � �
� �� � =� �
� �� � 	 
� � 	 


RaM Φ
λ RΦ 0

 (6) 

Here, ( )* i
M  is the efficient stiffness matrix according to (7), where M , ( )iC and ( )itK are the 

conventional mass, damping and tangent stiffness matrix, respectively and 1
∞M is the first unitimpulse 

response matrix from the convolution sum (10) associated to velocities n+1v . 

( ) ( ) ( )* i ii 2 t
n n n 1t t tα β α ∞= + ∆ + ∆ + ∆M M C K M  (7) 

Furthermore, dΦ is the Jacobian of the constraint equations containing the partial derivatives with 
respect to the displacement components. The right-hand side in (6) represents the residual forces and 
the violation of the constraint equations as: 

( ) ( )ii ext a v d i
a n 1 n 1 n 1 n 1 n 1 n 1

λ
+ + + + + += − + + + +R F F F F F R  (8) 

( )
i

i n 1
2

nt
λ β

+= −
∆
ΦR  (9) 

For each iteration cycle, accelerations, velocities and displacements and Lagrangie multipliers have to 
be updated accordingly before a successive iteration in the Newmark procedure is done. In the 
numerical procedure all unit response matrices are assumed to be constant in each time step and hence 
the convolution integral in (1) for the interface forces can be approximated by a corresponding 
convolution sum according to (10). 

( ) ( )
1

1

1 1 1 1 1 1 1 1 1
1 1

i

i

tn n
i
n n i n n n i i i

i it

dτ τ
−

+
∞ ∞ ∞ ∞

+ + − + + + − + −
= =

= = − + −�� �R M a M v M v M v v  (10) 

 



4. HIGH-SPEED EFFECTS, RESPONSE OF A RAILROAD SECTION  
In this example, we study the influence of different train velocities to the dynamic response of the 
railroad section in Figure 3 consisting of rails, sleepers, ballast and subground material. In this case the 
material is elastic but in the formulation described above any non-linearities can easily be included. 
Two different velocities of the train; 40 and 60 m/s are considered and the train is modelled as a 
collection of moving concentrated forces.  
The results in Figure 3b indicates presence of propagating shock waves as the velocity of the moving 
loads exceeds the surface velocity in the ground material. The displacement for points at the railhead 
and 6m from the centre-line of the rail have also been compared to in-situ measurements conducted in 
spring 2000 and the results show good agreement. For velocity 60 m/s, the displacement amplitude of 
the railhead exceeds 15 mm.  

 
                                     a) 

 
                                   b) 

Figure 3.  Global response of the railroad section. Two different train-speeds are considered  
   a) v= 40 m/s and b ) v = 60 m/s. Displacements magnified by a factor 200. 
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