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Preface

These proceedings contain the papers presented at the Nineteenth Nordic
Seminar on Computational Mechanics, held at Lund University, Lund,
Sweden, 20-21 October 2006. The Nordic Seminars on Computational
Mechanics represent the major activity of the Nordic Association for
Computational Mechanics (NOACM). The NOACM was founded in 1988
with the objective to stimulate and promote research and practice in
computational mechanics, to foster the interchange of ideas among the
various fields contributing to computational mechanics, and to provide
forums and meetings for dissemination of knowledge in computational
mechanics. Younger researchers, including doctorate students etc., are
especially encouraged to take part at these seminars. The member countries
of NOACM are the Nordic countries (Denmark, Finland, Iceland, Norway
and Sweden) and the Baltic countries (Estonia, Latvia and Lithuania).
NoACM is a subchapter of the International Organization for
Computational Mechanics (IACM) and the European Community on
Computational Methods in Applied Sciences (ECCOMAS).

The responsibility for organizing this year’s seminar was assigned by NoACM
to the Division of Structural Mechanics, Lund University. This year’s seminar
contains four invited lectures and 53 contributed presentations divided
into 14 sessions. In the present volume, all the invited lectures are placed
first, followed by the contributed papers in the order of appearance. New
this year is the announcement of mini sessions suggested by members of
the community; Biomechanics, multiscale modelling, fracture mechanics.

On behalf of the organizers, sincere appreciations are extended to all
contributors at the seminar, not least to the invited lecturers and to the
other speakers for their efforts in preparing talks and papers.

Lund, 11 October 2006

The editors






Local Organizing Committee

Ola Dahlblom

Lazlo Fuchs

Kent Persson

Matti Ristinmaa

Goran Sandberg (chair)
Ingrid Svensson

Program Committee

Kjell Magne Mathisen & Trond Kvamsdal Norway
Anders Eriksson & Gdran Sandberg Sweden
Roland Rikards Latvia (Baltic countries)

Juha Paavola & Jouni Freund Finland

Niels Olhoff & Jens Sgrensen Denmark

NSCM16 Secretariat

Christina Glans

Phone: +46 46 2227421

E-mail: Christina.Glans@bekon.Ith.se
Lund University, Faculty of Engineering,
Department of Construction Sciences

Goran Sandberg

Phone: +46 46 2228146

E-mail: goran.sandberg@byggmek.Ith.se
Lund University, Faculty of Engineering,
Department of Construction Sciences






=0 vd
o D
D S
=
38 TAVA

| |
006l 0L°Z1

leusie /g
uoneziwndo 99
OSIN 69

solueyosy ainoel{ g
ainpoel) + ajeosnNi €9
Builjspow aeosHINN  Zd
solueyospy ainoel{ g

Ss)}oNnpold VA

aiddo ov
add gv
Ss)1onpold i7avA
[eUsleN €V

solueyoswiolg  Zv

vamc\lvv‘gu vamc\lmm|a||

solueyoswolg Ly

siaded suolIssas
jo 'oN
| @ /4
o
984400 | 8 ¥ Aoy
(en
| S A
| |
€4
99}J0) AL
ev
| | | | |
0€'Gl 0L'Gl 0g€l GLeEl

oLzcl

od

ov

cd

A4

abeuweq yum S[apojy 8ANNISuo) onseau|
Jo uonelBaju| 8y} UO SuOlBAIBSJQ BWOS
eiynoy| ofiay 10ssaj0.1d

¥ Koy

poyjaw jJuswald siseq paonpal ay |
}sinbugy |\ seulg Jossajouid
€ Aoy
ainjoel4 puog
oeIa)U| JO Uolje|Nd[e) |EDUBWNN
uasuar aJyAp YlIUdH Jossajold
Z Ray
sanbe|d onjoJa|osolayy
uewnH Joj sisAjeuy ainydny
|ajdez|oH pieytan 1ossajoid

| Aoy
<d
88JJ0D) ¢ Koy
Sv Aepinjeg
ld
89JJ0) | Koy uonensibay
A7 Kepuig
| | | |
geol GLol Ge'60 0060

0€°80






yoa] usujuuep abeweq ypm
1O AlUN BJUIS|IH ‘YO3IAl ONJ)IS JO geT pue Solijewayley O JsuU|| pue ‘usuleyiieH ‘ejodig oliey eIynoy| S|OPOIA SAIINJSUOD Jnse|au| Jo uoljelBaju] 8y} U0 SUOIBAISS]QD SWOS
NNLN ‘seouslog |eonewsayiep jo 1daq N Jeuiq 1sinbugy poylaW Juswa|e siseq paonpal ay |
Ausloniun Biogley aIYAN YuusH uasusp ainjoel puog aoepau| JO Uoe[NdjED [BoLIBWINN
SolUBYOSIN PIIOS 40 Jdoq ‘HIM Jawiwiog ‘lassen) pJeyso |a)dezjoH sanbe|d o)joJajosolay)y uewny 1oy sisAjeuy ainydny
7 suoissag Aay]
uonesiuebiQ loyjne-09 loyny ETHT 7

suoissag Aoy




Buussuibug jeoiueyosyy Jo daq ‘Aysianiun Buidoyui Bungiey og| jejusisio] saljlwe jonpold Jed jo ubisaq |enydasuo) ul sainpojy [ewndo
waishg 99| |

ABojouyoa] jo isu| Bialgs3 ‘Austaniun Bioqy uasdar ‘Aeg ‘ussie siapuy| uasualsuy Buidde] s|ppes aioysyQ Ue Jo sisAjeue }0BJUOD pue uoleziialeweled
‘P37 ABojouyoa] InIoN pues ‘aowbuIoH euy| Jayyes sleqal papo.Iod YIM sweaq Oy Jo suoieinuwis [eouswnyN| |
BuiuadQ mopuipp [eua) |

ABojouyoa] pue aouaIog jo Jdag ‘AemioN NNLN K  [eAiy ‘Aunpy ‘weypeld| JUSDUIA 1Yy yjesioH UM sweld [j4u] Joj uoneindwo) YipIpA IniS jeuobelq jusieainbg
S)ONpolid ‘/y Uoissas

“MOJ} Ju|NgJn} BulIms

saoualog ABlau3 Jjo 1daq ‘H17 ‘AlsiaAlun pun syon4 aydoisuyn BimnQg e Jo uonisodwoda [euoboyuQ Jadoid pue uonenwis App3 abie
saplyay buisseq| |

s9oualog Abisu3 jo 1daq ‘H11 ‘ANsianiun pun zsezg snubepy Biaqy| Ajleoipoued Aq pejessuss) Jallieg e puiysg sosnody 8y} Jo uoleinuwis
saoualog ABieug jo ydeq ‘H17 ‘Ausiealun pun syon4 Uue}oz Uaqoy zsezg | Jaquieyd uoisnquod auiqin} seb e ul pjaly o13snooe ay Jo sisAleue qOd|
solueyoa Jo 1deq ‘HIM| uosseyor ‘Jemnoylaig [slueq uewyy s}al-||lem jus|ngin} [BWISYIOSI-UOU JO UOHE|NWIS [eollswNnu 10a41qQ| |
Q49 ‘gv uoissag

ML

ABojouyos | jo Aysianiun uis|eH ‘solweuApolay jo Alojeloge] INETETN puelg S 37 Jo uonewnsT Jolig ul uonejodelixg uospieyory Jo asn
eAel)SO JO AJISIaAluN [eOIUYD8] - GSA Ae|soler jowodez * JaIAeN AJeuoneisuou ay) BulA|OS 10} poylaWl UoIjed0[j00 Mau | |
Q49 ‘Gv uoissag

saoualog Abiau3 jo 1daq ‘H17 ‘AusiaAlun pun ueyor JpB1SAyY ¢ - 9dooss|a) able| Ajswalixa ue Jo ainsojous ay} jo ubisap jenydaouo)

SolUBYODI |Blnjonu)S JO AIQ ‘AJISIaAlun pun JpeysAay ‘Biaqpues jusy| uosslad| | - edoossje) abie| Ajpwalixa ue Jo ainsojoua ay} jo ubisep |enjdeouo)

SOIUBYOSI [BJNjoNu)S JO AIQ ‘HLT ‘AlsiaAlun pun |losisny MY uoss|O Joeju0) Buljjoy ul Jaqgny jo saiuadold oiweuiq ayy Buljlepoly

Ausianiun ofxen uiglqio] [TENE saueJo ol|nelpAy jo jouoo jewndo up

Buuesuibug [eolueoss|y jo 1deqg ‘NLa BiagsboH TEES NVEDY sainjony)s 9|qixa|4 uo siadweq ssew paung a|diy N Jo ubiseqg
sjonpold ‘yy uoisses

SOlUBYDSI\ PIIOS Jo 1daq ‘HLT ‘AlsiaAlun pun eewiunsy selyie uljlepm\ abewep onse|d-ojses Joy wyyLiobje uonelbayul uy

AnswwAg jeusiely a1gny o0} uoneoyddy

SOIUBYDSI PIIOS 4O AIQ ‘HLT ‘AlIsiaAlun pun eewunsly ‘uossAlleH snubely| uossAlieH yum suieng ablieT je [eusjepy 01dosjosiuy Jo uonenwio [eneds v

Swia|qold Solueyoaw

ABojouyoa | jo Aysianiun siswieyd uossle] yleuusy  uossauny  -010d Joj swi]-a0edg ul Ajadepy pue joyuo) Jodig [eljusnbag-awi |

Buussuibuz A1) jo ydeq ‘Ajisieaiun Biogley ap|Mweq NUusH uaspuel s|elajew 21sojNn||99 10} |opow sisalaysAy uondios
|elidjel\ ‘€Y uoissag

1INI ‘Aisianiun Buidoyui uosspey| ‘biagpury ajnoley) woQ 8]01sAg bBulng a1nyosiydly 198ys ul sebuey) jeiodwa |

Bu3 onug Jo deq ‘solueyoswolg Jo AIQ ‘AemIoN NNLN pniajeys ‘ueula] auny yio7 NIA9|[9H SOA|BA OJ)I0. |EDIUBYDSW JO SOIWEBUAD pIn|q

1INI ‘Aussaniun Buidoyuin uosspey| eulejey| Biagpury Bul|i4 Buung sulens oeipied ul seoualayiq |eneds

asuodsay aneA

ABojouyos | pue 80ualog JO AlsiaAIUN ueliBaMION pniajexs USLIOJOIN 101d|  [BJ)A ®Y} UO 8epioyD By} JO 8oUBN|U| By} JO SasAjeuy juawa|g ayul

auelquiap

AjisiaAiun sniujip seysneueA| sewoy seuoleg| Mau| snolod e yim siosussolg deb-aje|d jo Buijjepoly [euoneindwod
sojueyoawolg ‘gy uoissag

s90UaI0g buuesulibug ‘HiM uossyg eipuluepy ajydey sjuswaAOW d130golpue uewny 1o} suonenwis lewido

uassnuwisey ‘uasuaisuyd

Aysieniun Biogey ‘pseebsweqaddiyg [geyoipy uasJiapuy Swia)sAS ajeuIwWIB}Bp-I18AQ JO SISAjeuy dlewaUy
sojueyoawolg ‘L uoissag

uonesiuebiQ loyjine-09 loyny ETITHN 7

SuoISsag Y



SOIUBYDSIA JO AIQ ‘HLT ‘“AlsiaAlun pun Jaubeo ulAy Ipeyy anbiuyoa} 34 Buisn ssaoo0.d Buipjapp JIS UOIOLH B JO Uohe|nwIS
SolUBYOSIN PIIOS J0 1daq ‘HiIM eus| Blequoig| uonoelaju] ainjoniiS-pinj4 0} yoeoudde ue se Alosyy ainpxipy wnnupuod| |
AjIsianiun punT ‘solueyos|y pljos jo iJda@| eewunsiy ‘uossueyeH ueyeH Biaq|ieH [99]S OI}IUS)SNY Ul UO)BWIOJSUBI] 8SByd OljISUSLEIN JO uojeinwig| |
uoudIO quolno)| |
Bislgs3 Ayssoniun Biogley ap|Mweq ueyopr uasne|D -IYOI\ PBLIPOIA 8Uj} JO uoneuawa|dwi-\ 34 Juaioiye pue ajdwis
wnojeloge |euoljeN asiy pieebjid sieq ussiIN |jopow Ayonsed yuspusayo ydo( jusipesd uiess e ul yymoub-yoeiny|
[ev)e ‘Lg uoISsag|
AjslaAlun nue jobun | ueer dojo syoelto yym sded |eouayds onsejaul jo ubisep [ewndo
sonbiuyosy| |
olueyos| paljddy ‘ABojouyoa] jo Alsianlun siawieyd plweH| 1ybeygeroly uoneziwndo [eoo] pue |eqolb Buisn sainjonJis Jo uolonNpal uonelqiA
uasua)suy] SINOjJuoo| |
Bialgsg Ausianiun Blogjey ‘pun-] ‘ussiapad sie ap|yjweq dieys yym Buuayly pleog-iax9ayd parosdwi - uoieziwndo ABojodo |
sonewsayie Jo idaq ‘yewua(q Jo AlSIaAIUN [BDIUYDD | ad|o}g| osinoT-auely| uassnwisey swajqo.d ubisep ABojodoy aja.osip Buinjos 1o) poyjow [gjeed |
sisAjeue Ayiqeljal [eanjonsy| |
Jewlapn AlisiaAlun-sneyneg ‘solueyoal |BJnionalS Jo anjisu| layong sewoy ] 1SON sjuaiolye Joj yoeosdde aoepns asuodsal anndepe ue jo uoledlddy
uoneziwndQ ‘9g uoISsag|
SOIUBYDSI [BINJONIIS JO AIQ ‘HLT ‘AlsSiaAlun punT Biagpues SBUO[| UUBWAPUIT pL9S a8y} Joj |enod uoneoiddy jybiamybi v
solueyoa Jo 1daq ‘seoualog Buusauibug H1M zZjueny Jeuuns uaql| salbojeuy ssni] Aq sessaung |ediould Buiyoea |
"OSI|N ‘Gg UOISSag|
2|0y B yym sweaq Jjaquiiy[ |
Ajslanlun punq ueyor Jad uossjeisng 0} paidde Aioay) weaq e Aq sisAjeue ajel aseajas ABiaua apow paxi
SOIUBYDSI PIIOS Mo 1daq ‘HIM Boysoleq peuw| wnosieg| Jeays pue uoisua] pauiquio) ul ainydny jo Bullepoly |ESIUBYDSWOIIN
90UBI0G S|eudlel\ JO AIQ ‘AlISIaAIUN QB eunsuyn uaylalg UIMOID) ¥oBeID JO UoiBINWIS - dJNjoeI4 UdALIQ uonnjossiq
TTE] uossueH syoeld anbiie} Woys jo Buljiepow uoieoo|siq
Buoel) uoisollo)
SOIUBYDDI\ PIIOS jo 1daq ‘Alslaniun owiep uaylalg N uewloH pajsissy UleJ)S JO uonenwig pue juswiadx3 - Buiyouelq 3oeun
SOlUBYO3|\ d4njoel ‘pg UOISSOS
80UDI0G S|eldle JO AIQ ‘AlISIAILN QUIIB wey ubuis uonewJoy Ja)si|q apLpAY 0} anp sagny ainssaud Aojje-iz Jo ainyeld| |
= diy yoeuo
Buuaauibug sjeusle 40 UoISIAIQ ‘HLT ‘Alsiaalun pun sle]| UuOSSqodefQ| 8y} 0} SO0 SBAIND adue|dwod SUIWIS}ap 0} PoyldW [BluswadXa Uy
Buispoy
9)N}Isu| yoleasay pue Bunsa] |euoieN Usipams ‘ds uosslJeT ‘uossauny yagoy exoeq||i ajeasijn\ jeuoneindwo) ul Ssal)g aueld Jo uonejuswaldw| ay} uQ
Kyonseld [eyshig yusipeln
ABojouyoa] jo Aysianiun siswieyd uossauny ‘Jawhio snubepy 3| yum sauljjeisAiohjod jo Buiiapoly ajeasiniy uo syoadsy jeuoneindwo)
sojueyoaw ainjoel4 pue Buijjapow ajeasy|npy ‘cg uoissasg
uspams ‘AJIsIaAluUN Bawn ‘sollewsayiey Jo Juswiedsqg swa|qoud
uossauny ‘uossie] ueyeH| UOSSUBYO[| UONEdIIIUSPI Jajaweled Ul SI0LI8 UOIIBZI}2JOSIp pUe [9poW JO Uoljew}s]
uspamg ‘sofjewsyie|y jo uawpedsaq ‘AlsIoAlUn BBWN  PUNISPOS Pue uoslie Mupal4 uozbuag podsuel] - moj4 pajdno) Jo uonenwiS Juawa|3 a)iul aAldepy
AjllenQ jo Jamod ay] - suoneindwod JAY
sojueyoa|\ paljddy jo 1daq ‘ABojouyda] Jo AusiaAlun siswieyd uossauny Mupal4 uossle]  uo paseg Buiapoly 8|edsI|N|A JUsLINdU0D PaJ|0JIU0YD JoLIT Uo s}oadsy
sonjewsayie Jo ydaq ‘Aysianiun aewn ‘D sie\ uossie SPOYIB|\ 9|edsNIA |euonele  aaldepy
Buijjapow ajeasyn ‘zg uoissag
SOJUBYDSIA PIIOS JO AIJ ‘HLT ‘AlsieAlun pun ugyuelg ‘1N Jad a|yels 198yg Uiy buipong e ul Ayuenbuig diy yoeid
SUONIPUOD d2E4 MoelD
SOIUBYDSIN PIIOS 40 AIQ ‘HLT ‘ANIsiaAlun pun ysaways ‘e|0joN alse|  S|IS-syueg  d|geawtadw] YIm solwela)) dL108|80zald 10} [elBaju| dAjBAIaSUOD) VY
SOluBYO3|\ d4njokeld ‘L g UoISSaS
uonesiuebiQ loyjne-0) loyny 9L 7

suoissas g







Rupture Analysis for Human Atherosclerotic Plaques

G.A. Holzapfel, C.T. Gasser, G. Sommer

Department of Solid Mechanics
Royal Institute of Technology (KTH)
Osquars backe 1, SE-100 44 Stockholm
E-mail: gh@hallf.kth.se

Recent results on the anisotropic dissection properties of human arterial tissues are
presented. They serve as a basis for the material and numerical modeling of plaque
rupture which may occur spontaneously or traumatic. A patient-specific biomechanical
analysis of plaque rupture during balloon-angioplasty is shown. The lecture closes by
pointing out some multi-disciplinary future challenges in the field of tissue biomechanics
with academia, industry and clinical importance.



Numerical Calculation of Interface Bond Fracture

Henrik Myhre Jensen

Department of Civil Engineering
Aalborg University, Aalborg, Denmark
e-mail: hmj@civil.aau.dk

Summary A description of two methods for numerical prediction of crack propagation through an adhesive
layer is presented. The first method is based on a fracture mechanical approach where the edge of the bond
region is treated as an interface crack front. Along the front, the energy release rate and the mode I, Il and 111
stress intensity factors are calculated. A method for predicting quasi-static crack growth is presented by
introducing a crack growth criterion. The shape of the crack front and the critical applied load to propagate
the crack is obtained. The second method is based on a cohesive zone description of the adhesive layer.
Comparisons of results based on the two approaches are shown.

Introduction

Examples of plate or shell structures, which are adhesively bonded, include composite structures
applied in the aeroplane, automotive and the wind turbine blade industry. Traditional methods for
calculating the failure strength of adhesive bonds include the model of Volkersen [1] and the model
of Goland and Reissner [2]. Both models are stress based and they are used as simple design tools
for dimensioning single lap joints. The theory has later been expanded to other geometries as
described by Adams [3].

Fracture mechanical models for predicting bond failure have been developed more recently.
Fracture mechanical solutions for initiation of failure in spot welds have been formulated in Radaj
[4] and Zhang [5] and in Jensen [6], [7] for initiation and propagation of fracture in adhesive joints.
A thin adhesive layer can be analyzed as an external interface crack front. Assuming linear elastic
fracture mechanics, the energy release rate G at the crack front is given by the effective crack tip
loads. The fracture mechanical model uses a mixed mode interface fracture criterion coupled with a
propagation formulation, embedded in an outer finite element model.

In the cohesive zone model, the adhesive bond region is represented by non-linear springs
used to model the fracture process. The cohesive zone is embedded in a finite element model of the
adherends. Cohesive zone models have been applied to model fracture in elastic—plastic solids in
e.g. Tvergaard and Hutchinson [8]. Plastically deforming adhesive joints in Modes 1 and 2 loading
conditions have been modeled using a cohesive zone representation of the bond region in Wei and
Hutchinson [9] and Yang and Thouless [10]. In Feraren and Jensen [11] the cohesive zone model
predictions were compared to fracture mechanical predictions of the crack front shape during the
process of interface bond failure.

The basic joint geometry considered consists of two partly overlapping shells, bonded
along a thin adhesive layer. In this case the thickness of the adherends are required to be
significantly higher than that of the adhesive layer, and it is assumed that the fracture process is
limited to the bond region. The significance of fracture process zone parameters is investigated.

Fracture mechanics

The edge of the bond zone is regarded as an interface crack front, which is subject to combined
mode I, Il and 111 loading. The energy release rate, G, and the mode I, Il and Il contributions to G



can be calculated by the coupling of an inner, fracture mechanics based solution close to the crack
tip with an outer solution for the stress state in the adherends.

The relation between the energy release rate and the stress intensity factors K,, K, and K,
is given by

1 1(1 1 1(1+v 1+v,
= | S+ (KF+K] )+ S| ——+—= K], (1)
cosh®(me) 2 E  E, 2 E

The subscript ( )s refers to the lower plate, which may have elastic properties E; and v; different
from those of the top plate. In (1) & denotes the bimaterial index.
A family of interface fracture criteria formulated in Jensen et al. [12] is applied in the form

GI +7\‘ZGII +7\‘3GIII = Glc (2)

where A, and Az denote parameters between 0 and 1 adjusting the relative contributions of mode
I1 and 111 to the fracture criterion, and Gy is the mode I fracture toughness of the bond.

The criterion (2) has been applied to thin film debonding problems in e.g. Jensen et al. [12]
and Jensen and Thouless [13]. The fracture criterion captures the mixed mode dependence of
interface fracture toughness due to plastic deformation at the crack tip [8] or rough crack faces
contacting under mode Il and Il dominant loading conditions (Evans and Hutchinson [14] and
Jensen [15]).

The application of (2) requires a separation of the energy release rate into mode I, Il and 111
components, This follows from the definitions of the phase angles of loading v and ¢ introduced
in Jensen et al. [12]

Im((K, +iK, )h*)
Re((K, +iK,)h*)

Su

tany = , COS = ©)

where i is the imaginary unit (i = \/—71), ¢ is the bimaterial constant and h is the thickness of the
top plate. The results below are presented for the case of a large difference in bottom and top plate
thickness but this is not a restriction on the method.

The fracture mechanical approach to interface crack propagation works by increasing the
load incrementally until (2) is exceeded. A crack growth criterion point wise along the crack front
during further incremental loading is assumed of the type

Cp.y = C; +8A(G(1+ (L A,)sin” ysin® g + (1 ) cos? §) -G, | (4)

Here, C; denotes the crack front curve at increment number i, which has the unit normal vector n
and & and p are parameters chosen so that during incremental loading the fracture criterion is
satisfied along the propagating part of the crack front, and the fracture criterion is not exceeded
elsewhere.

Results and discussion

Results are presented below for the case of planar plates subject to in-plane loads. The following
parameters are introduced



20
k =
(1-v) (1+(r, ~Dsin® o)

12 ®)
2EG,,

GC: -
(1-v*)h (1+(1, ~D)sin’ )

The angle o is a weak function of the elastic mismatch in the system. It has been tabulated in Suo
and Hutchinson [16] and for most systems 40° < @ < 60° .

The stress, o, has the interpretation as being the critical stress required to propagate a
plane strain edge crack under steady-state conditions.

In Fig. 1 shapes of initially circular bond regions during fracture are shown. Results are
presented for three values of parameters in the fracture criterion (2) characterised by k in (5).

original circular
crack front

Fig. 1. Shapes of circular bond during failure for three different fracture criteria.

Initial stable crack propagation in the bond region is predicted indicating a significant residual
strength of the bond after initial failure. The failure strength of the bond is denoted by o, and is
obtained as part of the numerical predictions. The initial stable crack propagation following
initiation is illustrated in Fig. 2 where the stress required to propagate the crack is shown as a
function of the relative area change of the bond region, which is introduced as a measure of the
amount of crack growth.

The bond strength, oy , is written as

oo 1 2EG,, )
TR (V) (140, ~Dsin )

where F, denotes the peak value of the left hand side of (2) along the crack front for a given
applied external load.
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Fig. 2. Stress for crack propagation as a function of relative area change of bond region.

As seen in Fig. 2 the residual strength of the bond is sensitive to the interface fracture criterion. The
classical mode independent Griffith fracture criterion correspondsto k=3 .

As described, the cohesive zone model assumes the bond region to be described by non-
linear springs. A tri-linear relationship between crack surface tractions and crack opening

displacements is assumed (Feraren and Jensen [11]). A measured traction separation law is shown
in Fig. 3 for a glass fibre epoxy beam.

Cohesiwe law 6(8)
25E+6

20E+6 a

i

[ ]
< 15E+6 1 ; :
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" 10E+6 - %
(5]
> 3
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()
ey
@}
© 5E+6 .' / '\

"Q' >
~ %
)
Bo_
000E+0 | | End opening & [m]
OE+0 1E-5 2E5 3E5 4E5 5E-5 6E-5

[m]

Fig. 3. Measured traction vs. separation law.



A comparison between calculated shapes of the crack front based of the fracture mechanics
approach and the cohesive zone model is shown in Fig. 4. A good agreement is observed.

symmetry

Fig. 4. Crack front predicted by fracture mechanics and cohesive zone model.

The advantage of the cohesive zone model over the fracture mechanical model is that large
curvature of the crack front is allowed for. Also plastic deformation in large scale in the adherends
can be taken into account. A realistic situation in adhesive bond problems is the occurrence of
trapped air-bubbles or flaws, which reduces the strength of the bond. In Fig. 5 the shape of a crack
propagating at an interface and interacting with a circular flaw is shown.

~ Initial
¢ crack fromt
AAA =1
045 035
055 0.3
=

AATA

=015
025

A\

Fig. 5. Predicted crack front shape around a circular interface flaw.

The stress vs. relative area change prediction corresponding to Fig. 5 are shown in Fig. 6 by which
the reduction in bond strength can be predicted. The three curves in Fig. 6 denoted A, B and C
correspond to three cohesive laws with the same toughness but different strength.
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Fig. 6. Stress vs. relative area change for three cohesive laws.
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Abstract

The reduced basis element method is a new approach for approximating the solution
of problems described by partial differential equations. The method takes its roots in
domain decomposition methods and reduced basis discretizations [1-5].

The basic idea is to first decompose the computational domain into a series of sub-
domains that are similar to a few reference domains (or generic computational parts).
Associated with each reference domain are precomputed solutions corresponding to the
same governing partial differential equation, and the same boundary conditions, but
solved for different choices of some underlying parameter. In this work, the parameters
are representing the geometric shape associated with a computational part. The approx-
imation corresponding to a new shape is then taken to be a linear combination of the
precomputed solutions, mapped from the reference domain for the part to the actual
domain [6].

We discuss the basic ideas related to the construction of the basis functions and to
"gluing” the local approximations together in the multidomain case. We also discuss the
computational cost associated with this approach, as well as a posteriori error bounds
in order to certify the quality of the reduced basis approximations. Finally, we present
application of the method to a thermal fin problem [7], and to simulating hierarchical
flow systems [8, 9].

This is joint work with Professor Yvon Maday at Laboratoire Jacques-Louis Lions,
Université Pierre et Marie Curie, and with Dr. Alf Emil Lgvgren at Department of
Mathematical Sciences, Norwegian University of Science and Technology.
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Summary Accurate integration of inelastic constitutive modelslirding damage is a challenging task
due to the different nature of plastic/viscous and damag&igun processes. Stability of the integration
scheme is guaranteed if all the eigenvalues of the stahilitirix have modulus less than unity. For standard
implicit schemes this is automatically satisfied for plastnd viscous models, since all the eigenvalues of
the system’s Jacobian matrix are negative. However, foraggmg materials the notion of stability is not
relevant, due to the unstable character of the damage rotlesrefore, strongly dissipative implicit algo-
rithms, like backward Euler, do not perform well in integngtinelastic constitutive models with damage.
Application of discontinuos Galerkin type methods will Healissed.

Introduction

There are many different algorithms for the integrationn&astic constitutive models. However,
the fully implicit backward Euler scheme seems to be the mopular, although it is only first-
order accurate [1, 2, 3]. In practical problems, especialyhose of creep and viscoplasticity,
the time steps are often large, several magnitudes largerthie critical time step of some explicit
methods, e.g. the forward Euler method. Therefore, thgtiater should be unconditionally stable
and sufficiently accurate for large time steps.

As shown in [4], the asymptotic convergence rate does natssecily reflect high accuracy
outside the asymptotic range, which usually means step sinaller than the critical time step of
the explicit Euler method. For large time steps, the firsteoraccurate backward Euler method
seems to be more accurate than many higher-order schemeefdne, an integrator for inelastic
constitutive models should be at least [4, 5]:

e [-stable

e and forg 4+ Ao = 0, A = constant, the stability function should be

- strictly positive, and
- monotonous with respect to time step.
It is obvious that the standard backward Euler scheme &utfikése requirements.

When damage is included in the constitutive model, behawbthe solution of the governing
evolution equations is completely different from that dfadus and plastic solutions. Solutions of
problems in creep, plasticity and viscoplasticity arewiite and decay exponentially with time
whereas damage produces reactive type of solutions gramipgnentially with time.

To demonstrate the difference of the solution types, a sinopiiaxial Maxwell type creep
model is considered first. The inelastic strain rate is ddfas; = Tv—pl(a/ar), wherery,, is the
viscosity parameter ang. is an arbitrary reference stress. The resulting evolutgpragon for the
stress is the following simple first order ordinary diffetiahequation with constant coefficients

G+ —— = B¢ (1)

whereF is the Young’s modulus andis the total strain rate. With the initial conditier{ty) = oy,



the nondimensional form of the problem is

€
y=—, ylto) =10 (2)
Tvptr €r

Y+

wherey = o /oy, yo = o/op ande, = o,/E. Typically, in non-linear finite element codes the
strain rate is constant over an increment(¢.), in which case the solution of problem (2) can be
expressed in a closed form as follows

y(t) = Typée [1 + <Tyoé - 1> exp (— tT;;O)] . 3)
vp€c r

Notice thaty(t) — 74é. ast — .
For a damage, if a slightly modified Kachanov/Rabotnov typawion equation is chosen,
the constitutive model can be written in the form

. 1+D /Y
=(1-D)FE and D= — 4
o =(1-D)Be 2(5) @
whereD is the nondimensional scalar damage variablés the thermodynamic force, conjugate
to the damage rat® and has the expression = %EeQ. The reference valug, is chosen as

Y = %Ur2/E- (5)

For a constant strain rate loading¢) = é.t, and initial conditionD(t) = Dy, the solution of the
damage evolution equation (s

. 2r+1 . 2r+1

Performance of different time integrators for the modelléton equations (1) and (4) is
shown in Fig. 1 for single time step computation as a functibthe nondimensional time step,
normalized with respect to the relaxation timese, andrqe,. In creep analysis, conditionally sta-
ble explicit methods are not feasible due to the restriatniical time step. The implicit backward
Euler method in turn seems to be the most popular integratanélastic constitutive models. This
is probably due to its good accuracy properties when timesstee large [4]. An intepretation by
Alberty and Carstensen [6] is that the backward Euler scheaméadditional exactness properties
in some examples”. The discontinuous Galerkin method viritkalr interpolation, dG(1), is inte-
grated using either the the two point Gauss-Legendre omtb@bint Gauss-Lobatto quadratures.
When the integrals in the dG(1) scheme are underintegratedibg the two-point Gauss-Lobatto
scheme (endpoint rule) the dG(1) scheme is identical to thatto 111C type implicit Runge-Kutta
method, see Ref. [7], which also exhibits good accuracygnas for large time steps [4, 5].

Unfortunately, the good behaviour of the simple backwarteEscheme for plasticity and
viscoplasticity computations is not inherited for damagedeis. The backward Euler scheme
even blows up when\t/74 = (e;/¢)?". The fundamental difference of models (1) and,(#hen
written in a generic formy = f(y), is that the eigenvalues of the Jacobiafy 0y are negative for
the creep model and positive for the damage model. Soluimmsither “diffusive”, exponentially
decaying, Eq. (3), or “reactive”, exponentially growingy.K6).
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Figure 1: Performance of different integrators in a singd® £omputation under uniaxial constant strain-
rate loading. (a) Creep model (1) with,é. = 1 andt, = 0, (b) damage model (4) withyé. = 1 and

to = 27q€,. Abbreviation dG(1)-L denotes the dG(1)-scheme with twinpGauss-Lobatto integration,
while dG(1)-G stands for the dG(1)-scheme with two point &aliegendre integration and eRK-2 for the
explicit two stage Runge-Kutta scheme.

Due to the unstable character of the damage process, thecelimiting critical time-steps
for explicit methods. Even the most simple time-integratbe explicit forward Euler scheme,
performs better than its implicit counterpart. As it can bersfrom the Fig.1b, the second order
accurate explicit two-stage Runge-Kutta scheme (eRK-@ppas well. In this simple example,
the dG(1)-scheme is clearly the best, both in asymptotivexgence rate and accuraty when time
steps are large.

Consgtitutive model

In this paper, the integration schemes are tested for a mdudeh describes the strain-rate depen-
dent ductile-to-brittle transition [8]. The ductile bel@vis considered as a viscoplastic feature,
whereas the strain softening behaviour, after reachingréwesition strain-rate, is dealt with a
continuum damage model.

Thermodynamic formulation
The constitutive model is derived using a thermodynamimidation, in which the material be-
haviour is described completely through the Helmholz freergy and the dissipation potential in
terms of the variables of state and dissipation and coneglénat the Clausius-Duhem inequality
is satisfied [9].

The Helmholtz free energy

Y= Tﬁ(ﬁe,w) (7

is assumed to be a function of the elastic straipsand the scalar integrity parameter,describ-
ing damagev = 1 — D. For undamaged material= 1 and D = 0, whereas the material is fully
damaged whets = 0 andD = 1. Restricting the discussion to linear kinematics, the itggimal
strain tensore, can be additively decomposed into elastic and inelastits g&

€ =€+ €. (8)



As usual in the solid mechanics, the dissipation potential

o =¢(0,Y) (9)

is expressed in terms of the thermodynamic forcaadY dual to the fluxes; andw, respectively.
The dissipation potential is associated with the power sdigation;y, such that
_ O 09
fy—a—U.U—FaYY. (20)
Convexity is not a prerequisite for the dissipation potniiut the condition that the product
(0p/00) : o+ (0p/0Y )Y is non-negative.
The Clausius-Duhem inequality, in the absence of thernfettsf is formulated as

wherep is the material density. Using decomposition (8) and defirimat 0y /0w = Y, the
definition (10) and expression (Lesults in equation

(J—p?—i):ée+<éi—g—(§>:a+<—w—g—§>§/:0. (12)

Then, if eq. (12) holds for any evolution @éf, o andY’, inequality (11) is satisfied and the
following relevant constitutive relations are obtained:

o . B . dp

o — __9% 13
Poc 97 Bg YT T oy (13)

g =
Particular model
A particular expression for the free energy, describing dlasstic material behaviour with the
reduction effect due to damage, is given by

1
pY = guwee : Ce : € (14)

whereC is the elasticity tensor.
To model the ductile-to-brittle transition due to incremgstrain-rate, the dissipation potential
is decomposed into the brittle damaging pa«t, and the ductile viscoplastic patt,,,, as

@(0,Y) = @a(Y)pu(0) + @vp(0), (15)

where the transition functiony,,, deals with the change in the mode of deformation when the
strain-rate; increases. Applying an overstress type of viscoplast[@ify 11, 12] and the principle
of strain equivalence [13, 14], the following choices aralmtb characterize the inelastic material

behaviour:
1 }/r Y 7”+1
— il 1
o= (5] (16)
1 1 c \"1"
@nz——[ <(’>} : (17)
N [ Tyvp? \ WOy
1 o &\
o = ——— —— ) 18
P p+ 17y <w0r> (18)



where parameters;, » andn are associated with the damage evolution, and parametgesdp
with the visco-plastic flow. In additiom; denotes the inelastic transition strain-rate. The pseudo
relaxation timesry andr,,, have the dimension of time and the exponents > 0 andn > 1
are dimensionlessz is a scalar function of stress, e.g. the effective steegs= /3.J5, where
Jo is the second invariant of the deviatoric stress. The ratmevalues’; ando, can be chosen
arbitrarily, and they are used to make the expressions diimeailly reasonable.

Making use of Egs. (8) and (13), choices (14)-(18) yield tikoiving constitutive equations:

o=wCe: (e —¢), (19)

_ np—l _ D _ _

. ©d o 1 o 8_0 o 8_0
. [(T"Pn)nwar <war> - TvpW <war> ] do o) 0o’ 29

. Ptr Y\
== Byl I 21
. Tqw <Yr> (21)
Moreover, .
N A R AR IO

Y—paw —2(6 €):Co: (€ 61)—2w20.C’e ;o (22)

Properties of this model are discussed in [8]. However,dusthbe mentioned that the Clausius-
Duhem inequality (11) is satisfiealpriori for any admissible isothermal process. In addition, the
constraint for the integrity thatw € [0, 1] is satisfied automatically, sineg(z,0) =1, w < 0
andw — 0 asw — 0.

Algorithmic treatment
Using matrix notation, the constitutive model (19)-(21)awvritten in the form

o= fo(o->w)7 (23)
w= fu(o,w) (24)

where
folo,w) =wC.(€ — &) + i—wa =wC, <é - g(&,w)?—i) + %0', (25)

fw(avw) = - i

Y T
— | . 2
Tqw <Yr> (26)
The backward Euler method
Applying the backward Euler scheme and the Newton’s lisaéion method to the evolution
equations (23) and (24) results in the linear system of éopugt

Hi; hyp do | fo | | Ao
[h;q Hﬂ}{éw}_m{ fw} {Aw}, (27)
where
Hy =1 e hiy = Ao, (28)
o ow
Of. Of.
hgl = —Ata—a, H22 =1- Ata—w (29)

1The symbolsA ands refer to incremental and iterative values,'! = ¢, + do',, Act, = 0!, — 0,1, where
the sub- and superscripts refer to step- and iteration nisnkespectively.
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Figure 2: Discontinuous Galerkin method, dG(1); notation.

The algorithmic tangent matrix, i.e. the Jacobian of thewilgmic stress-strain relation, has
the simple form

C =wHy, C,, (30)

where .
Hyy = Hy — hioHy,'hy, . (31)

Due to the damage the Jacobian matrix is in general nonsyriemdthe Jacobian matrix is a
necessity for the Newton’s method to obtain asymptoticqilpdratic rate of convergence of the
global equilibrium iterations. Notice that the Jacobia@)(@an be ill-conditioned whef s = 0.

The discontinuous Galerkin method
Denoting the evolution equations (23) as

v =fy), (32)

wherey = [o,w]” and f = [f,, f.]*. The discontinuous Galerkin method of degreean be
stated as follows[15]. For a given time intenégl = (¢, t,+1] find y (polynomial of degree)
such that

| @ f@) 5 a5 =0 (33)
For the test functiong, polynomials of degree are used. The notations’ andy,, are the limits

yif =lim._oy(t, £ |e]), [¥,] = y;7 — y;,. These notations are illustrated in Fig. 2.
After the Newton'’s linearisation step, the following systef linear equations is obtained

[AllI_Mll Aol — M ]i{&u‘ }
Anl — Moy (14 Age)l — My oy

ES Sl oA R G TP S
T Aol Axl yt yt =y, [’

Az‘j = NZN] dt, Mz'j = / Nig—iNj dt, r, = / N, f dt, (35)
I, In

where

andN;’s are the linear interpolation function$;, = (¢t — t,,)/At, Ny = 1 — (t — t,,)/At, which
can be collected into a row vect®¥ = [N, No|.



Partitioning the unknows in the vectgrasy = [(o)7, (™), wT}T, wherew = [w™, w]”,
the coefficient matrix on the right hand side of Eq. (34) camk#en as
B By G
Jacay= | B2 I+ By Ga |, (36)
Gwl Gw2 wa
where
of 5
In
Giw=—-| N, af"N dt, Goi=— NT%Ni dt, (38)
5, Ow I, oo
~ of, ~ Aqy Aga
Goo=A— | NTZEN de, A= . 39
In Ow |: A21 1 +A22 ( )
The Jacobian of the algorithmic stress-strain relatiorttierdG(1)-method has the form
~ ~ ~_1~ ~  ~_]
C = w(B11 — BzByy Bo1) ' (I — B12By, )C.., (40)
where N
Bij = B;j — Gi,G G (41)

Explicit-implicit split

From the results of the subsequent section, it seems thd@G(B-method performs well in com-
puting inelastic material behaviour with damage. The omgwdback is that the method is twice
as laborous as the backward Euler scheme. One alternategst could be an explicit-implicit
split strategy, where the reactive like damage componeimtegrated by explicit schemes, like
two-stage explicit Runge-Kutta method, and the diffusiegt pusing an implicit scheme. The
split can be performed when there exists at least one pegigenvalue in the Jacobian matrix
J = 0f /0y. Atthat state use of a similarity transformatiah= T AT !, whereA is a diagonal
matrix containing the eigenvalues #f and the coordinate transformatien= Ty will result in

2=TFf(T '2). (42)

Now, the vectoez can be divided into two parts_ andz ., corresponding to negative and positive
eigenvalues of the Jacobian, respectively. The componrents then integrated with an explicit
scheme keeping the component fixed after which the component_ is integrated with an
implicit scheme keeping the new valueszof fixed.

Numerical example
Performance of the integrators is tested for the couplecous-damage model (19)-(21). For
simplicity the transition function is assumed to be unityhiis example, i.epy, = 1. The accu-
racy properties, when sufficiently large time steps are Juseaf primary interest. The following
material parameters are used: Young’'s modulus 40 GPa, reference stress = 20 Mpa, the
viscocity parameters,, = 1000 s,rq = 0.2 s and the exponengs= r = 4. The reference valug.
is chosen as in Eq. 5.

The stress-strain curves for an uniaxial constant straméa= 5 - 10~* s~! are shown
in Fig. 3, where the true dG(1) solution, i.e. discontinyopiecewise linear approximation is
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Figure 3: Uniaxial constant strain-rate loading.

depicted. To keep the figure readable, the endpoint solw@bums for the dG(1) methods are
connected in Fig. 4, where the stress, damage and ineltsiic are shown as a function of strain.
Ten equal time steps are used for strain ugdQ thus At = 0.4 s. Inability of the backward
Euler scheme to capture the damage evolution well is clegsiple in these figures. The “exact”
solution shown in Figs. 3 and 4 is obtained by using the d@{&)hod with time step\¢ = 8-10~4

s, resulting in 5000 steps in the range shown in Fig. 4. Eséicheelative error for this solution is
less than 10°.

Concluding remarks
Behaviour of some time-integrators has been investigatededmaging inelastic material models.
Due to the unstable nature of damage, the conventional tmadkiauler method does not perform
well. Oscillations in the damage variable can result in esggnce problems in the local Newton
iteration at the integration point level. The discontinsiguiecewise linear Galerkin method seems
to perform well. It is third order method, but it has also ga@aturacy properties for large time
steps. If purely plastic/viscoplastic problems are to beesh the classical backward Euler method
is a good choise. Evaluating the integrals in the dG(1)+#®ehby the two point Gauss-Lobatto
quadrature, results in a asymptotically second order ndetvtuch gives accurate solutions also
for large time steps. However, when combining the ineladiormation with damage, the dG(1)
scheme with two point Gauss-Legendre quadrature is battarib the asymptotic range and for
large time steps.

Future work will include implementation of the explicit-piicit split method.
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Summary This paper proposes a general solution to the well-knowrblpro of kinematic over-
determinacy when driving a mechanical model from measuegd th the form of marker tracjectories.
The proposed solution is based on solving an appropriatstined weighted least-squares optimization
problem for each discrete time step with the system cootelénas unknowns. The method is demonstrated
on a 12 degree-of-freedom 3-D rigid-body model of gait.

Introduction

When it is desired to drive a musculo-skeletal model fromiamotapture data for inverse dynam-
ics analysis, it is very often the case that the resultingobetjuations will be over-determinate,
i.e. the measurement results in more measured degreeseafsin (DOF) than the DOF of the
model. As these measurements are affected by skin-astifabich is the primary source-of-error,
noise, and small modeling errors, kinematic analysis resaidifficult task.

Several solutions to this problem have been posed in thratitee. They are essentially split into
two groups: 1) methods that work on a segment-to-segmeig [gs2], and 2) methods that
use model information, such as joint constraints, to redheeeffects of skin-artifacts [3, 4, 5].
However, none of these methods are in a form that can be usegkineral purpose computer-aided
analysis system, where both forward and inverse kinematityais may be desired.

Kinematic Analysis - An Optimization-Based Approach

The first step in inverse dynamics is always to perform kin@ranalysis to find the positions,
velocities and acceleration of the time-dependent systwondiatesg(t) € Q, i.e. given some
system description we wish to findt), ¢(¢) andg(t). We shall define the dimension @ft) asn.

In the rest of the paper, we shall only wrigeand leave it understood that it is a time-dependent
variable.

For systems with holonomic constraints, the position asigalgan be formulated as solving a set
of m equations [6]:

T=7(¢q,t)=0 1)
These independent constraint equations are usually cadmdsonstraints describing joints and

constraints that describe the motion. We shall assumehtbagtequations are differentiable suffi-
ciently many times.



If there are as many constraint equatioms,as unknownsy, this set of equations can be solved
numerically using methods like the Newton-Raphson metbhdidditionally, the linear velocity
and acceleration equations can also be derived using tlie kha on equation (1). However, in
this paper we shall only focus on the case wheré> n, i.e the system is either determinate or
over-determinate and there may not exigtthat solves equation (1) for some or all time steps.

Position Analysis
To accommodate this over-determinacy, we shall presunettisapossible to split equation (1)

into two sets:
T(a.1) = [ Via.t) ] @)

whereU = W¥(q,t) is a set of equations that only have to be solved “as well asilples in
some sense and the remainifig= ®(q,t) equations have to be fulfilled exactly. For instance
when driving a musculo-skeletal model from motion captuséada reasonable choice of these
sets would be that the experimental data belongd tnd joint constraints and additional driver
equations teb.

In other words, we want to solve the following optimizatiamiplem:

min  G(¥(q,1))
q

3)
st. ®(q,t)=0
One reasonable choice @fwould be a weighted least-square:
G(¥(g,t)) = (g, t)" W (t)¥(g,1) 4)

whereWV (t) is a differentiable, time-dependent weight matrix.

This optimization problem is in general nonlinear and nonvex, which implies that for large-
scale systems, such as a full human body model, only locahrization is feasible.

Velocity Analysis

Having solved the optimization problem in equation (3), $kistem coordinateg, will be known

for the discrete time steps where the optimization problesolved. However, it still remains to
find the velocities and accelerations. Although an appraiom of the velocities and accelerations
could be found by finite differences, it is indeed possiblde¢dve exact equations for these as we
shall show in the following.

From local optimization theory, it is known that the Karushhn-Tucker (KKT) conditions are
the necessary conditions for optimality:

T
Gr+olx=0
b -0 ®)

where X is known as the Lagrange multipliers and the subserigenotes the partial derivative
with respect tag. It is important to remember that this equation will hold oty time step the
optimization problem is solved.



As all involved functions are assumed to be differentiatite, velocity equations can be derived
by differentiation of equation (5) with respect to time wgthe chain rule and re-writing to matrix

form:
Gl + (<I>qT)\)q oT q]_ ~GT, — @I\ ©)
A —P,

q
o, 0

Acceleration Analysis

Similarly to the velocity analysis, the acceleration eaqurat can be derived by differentiation once
again with respect to time:
q T
i = 7
HEE ™

— T . T y T . . T - T T . T
n=-2(o] )\)q G — 2007 — (GLd), 4 — 26T — Gl — 2 (DLN) g — DL

- ((@1),4) 4 ®)

T2 == (‘I)qQ)qq —2®4q — Py

Gag + (252), @4

o, 0

where:

Examples and Results

The method has been applied to a 12 DOF, 3-D, rigid-body gadtehcomprised of four segments
(pelvis, thigh, shank, and foot) and driven using measuradken trajectories from the Hip98
cd [7]. An illustration of the leg and the trajectories of tiharkers are given in Figure 1.

(a) (b)

Figure 1: An illustration of the leg model. The red curvestheetrajectories of the measured markers and
the blue curves are the trajectories of the correspondiimggim the model calculated from the analysis.

The kinematics of the model is formulated using the so-ddildl Cartesian formulation where
q is composed of translational and rotational coordinatesefich segment [6]. We use Euler
parameters as the rotational coordinates. The hip joinbidaled as a spherical joint, the knee as
a revolute joint, and the ankle as a universal joint. Thegggare put ind(q, t) together with the
constraints on the Euler parameters. The difference betwee7 measured marker trajectories
and their corresponding point in the model is used in the adbje function, i.e in¥(q,t) in
equation (4). This amounts to 37 equations and 28 unknowns.
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Figure 2: Trajectory of the translational coordinates d¥ijse (a) Position. (b) Velocity. (c) Acceleration.

When solving the optimization problem for position anadyshe weight matrix in equation (4) is
set to the identity matrix for all time steps. The resultingrker trajectories can be seen together
with the leg illustration in Figure 1. Hereafter, velocitydaacceleration analysis is carried out and
the result for the translation of pelvis can be seen in Figure

As seen in Figure 1, the resulting motion closely resemitliesnteasured motion. Additionally,
the solution of the velocity and acceleration equationg gfie expected result (see Figure 2).

Conclusion

In this paper we presented a new method for analysis of kitieatlst over-determinate systems
using optimization. Not only does the method allow us to eupdactical over-determinate sys-
tems, it also provides methods for finding exact velocitied accelerations of the involved coor-
dinates.

The presented formulation holds for both forward kinengtinverse kinematics and any possi-
ble combination of those. Actually, the same model has beeduged using generalized joint
coordinates iy as verification and the two models produce exactly the santiemaf the bodies.
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Summary This paper discusses the simulation of forces creating motion in robotic and musculoskeletal
systems. Main focus is put on the treatment of dynamic equilibrium for a redundant force system. The
dynamic equilibrium during movement is solved through a temporal finite element form for treatment of
target-controlled movements. Different criteria for optimality can be introduced. It is concluded that this
method is able to describe the optimal movements, and that the criteria affect the resulting movements.
With respect to musculoskeletal simulations, it can be concluded that existing numerical descriptions for
muscular behavior are missing some important aspects.

Introduction

Computational modeling of load-carrying structures is a conventional tool in mechanical, struc-
tural and robotic engineering. These modeling possibilities are more or less general in their rep-
resentation of the behavior of the structures and components, when subjected to load. Many such
tools have also been used for bio-mechanical problems, in the form of special simulation packages,
such as the Danish project AnyBody (http://anybody.auc.dk), as specialized additions to general
simulation programs for rigid mechanisms, e.g. ADAMS (MSC Software, Santa Ana, CA, USA),
or as components in e.g. car crash simulations with general elasto-dynamic programs, [1]. In or-
der to allow for these extremely complex simulation models, significant simplifications of the real
behavior of the biological systems are often necessary. These simplifications thereby often repre-
sent the human body parts as rigid, undeformable links, connected by perfect hinges and affected
by very simplified muscle models — ’rubber-band’ or at best "Hill-type’, [2]. The created bio-
mechanical models can be subjected to active or passive forces, and predict with some accuracy
the expected response of the modeled object, at least for rather common situations of, primarily,
repetitive movements at reasonable loading levels.

The musculoskeletal system is, in contrast to a robotic system with well-defined actuators, a highly
redundant force system for most loading cases, [3]. The indeterminacy in force distribution is
related to the high number of alternative components over most joints. The redundancy allows
very complex movements under neural control, but causes computational difficulties when sim-
ulating the behavior. The control system must be modeled in simulations of any will-controlled
movements, [4], when evaluating the response to external forces. It is, however, not always easily
represented, as it consists of several levels of learnt and instant control, [5].

The exact functioning of the control system is not fully known, but a common approach is to
assume that the forces are distributed between the muscles following some optimization rule:
minimum forces, nominal efforts, activation, energy consumption, maximum smoothness, efc. In
simulations, these can be formulated as mathematical rules, and solutions thereby obtained. Sev-
eral investigations have, however, pointed to the fact that there is probably no universal rule for
this distribution of forces, [6]. A special aspect of this is the distribution of forces between syner-
gistic muscles, [7], which is often seen as a static or dynamic optimization problem, [8]; several
methods and criteria for static optimization can easily be set in a common algorithm, [9]. An in-
teresting question is related to the similarities and differences obtained with different criteria for



optimality, and also the possibilities to introduce kinematical and strength restrictions in the search
for optimal movements. Rapid dynamic situations emphasize the problems.

Numerical formulation of dynamics

With N, displacement coordinates describing the current configuration, the dynamic problem is
governed by N, = N, equilibrium equations. Allowing very general formulations, these are for a
specific time instance ¢ collected as, [10]:

Mal(t) + f(q(t),v(t)) — p(t) — Ecc(t) = 0 (D)

using the mass matrix M together with the coordinates g(t), velocities v(t) and accelerations a(t).
The vector f describes all internal forces and displacement affected loads. Known external force
variations are described by p(t), and the effects of N, control forces c(t) by an action description
matrix E., of size Ny x N,.. With these assumptions, a time instance residual form is written;

e(t) = e(q(t), v(t), a(t),p(t), c(t);t) = 0 2)

for a specific structural system.

In the simulation, the whole movement is described by a collection of time stations:

Q=[Q",Q"",Q*,....QN"]" 3)

where
Q = Q) = (a(t), a1 (), qa(8), ...,y () @)

when a time interval T is discretized by N; + 1 equally spaced time stations: t/ = j - % 0<5<
Ny); Q is a vector of length 2 Ng(N; + 1).

The whole set of unknown control force components is collected as:
c=[c'T,c?T,....cMT]! 5)

where
T =e(r) = [ar(r), ea(r) .y en ()] ©

for0 <79 <T,and 1 < 7 < Ng, a set of control time instances.

Through a Hermitian third-order interpolation of the displacement coordinates, and a linear for the
controls, a global system of equilibrium equations can be formulated:

EQ.C.P)=0 (7
A set of N, linear boundary conditions on the discrete coordinates are introduced by:
B(Q)=BgQ-byp=0 (8)

In addition, the displacements and control forces are restricted by mechanical, anatomical or phys-
iological limits. These can be described as:

Bc<g>—bgzo ©)

obtained from a repetition of time instance restrictions.



Optimization problem

With excessive control force components available, an optimal solution can be sought. This needs
a ‘cost’ or ‘performance’ function to minimize: one class measures some aspect of the needed
control forces, another class the displacements. Of the latter class, seeking an optimally smooth
movement, a jerkiness ‘cost’ can be formulated, based on the idea in [11]. This leads to an opti-
mization problem, [12]:

mimimize II, =II(2)
under equality constraints b;(z) =0 (10)
and inequalities by(z) > 0

where the unknown z contains both the displacements and the control forces:

z_(g> (11)

The equalities are the non-linear equilibrium equations and the linear boundary value conditions,
whereas the restrictions lead to, normally linear, inequalities

An in-house optimization function based on sequential linear programming was developed for the
stated problem, [10, 13]. In a more general, but also more computationally expensive, approach, a
standard package for constrained optimization was used. The function ‘fmincon’ included in the
‘Optimization toolbox’ of Matlab offers a suitable format for solving the stated problem; it uses
a sequential quadratic programming approach. An estimate of the Hessian of the Lagrangian is
updated in each iteration using a BFGS method, [12]. A line search is performed in each iterative
step.

Demonstration example

As one example, a specified movement of a sagittal model of an upper limb was studied. Given
anatomical and physiological data, a set of results were obtained, clearly indicating the effects of
the optimal movement strategies as a function of, e.g., the restrictions on muscular forces and joint
movement ranges, as well as on the time defined for the specified movement. Numerical conclu-
sions on the used optimization method, and the time discretization were also drawn. Performed
experiments also verify the importance of correctly specifying the time variation of displacements
at the initial and final stages.

Concluding remarks

The present paper discusses the treatment of dynamics of a redundant robotic or musculoskeletal
system through optimizations methods. Discussed basic formulations were shown to give good
tools for the analysis of postures and movements. It was concluded that the mechanical formula-
tions strongly affect the results, but also that the criteria behind an assumed neural optimization
criterion are very important for the simulated behavior.

As a description of real human movements, the descriptions of course have some shortcomings,
as they are not closely enough related to physiological behavior. In addition to not considering
the neural control of movement, the muscular descriptions are over-simplified. The demands for a
better representation of the history dependence in muscular force production is emphasized by the
examples.



As the used algorithms establish very large systems of equations, computational efficiency is es-
sential. In the present context, good use can be made of a sparse matrix solvers, but it is believed
to be possible and important to develop other solution methods, where the full matrix is never
needed. Efforts are presently devoted to a partial inversion of the stated problem in Eq. (10), aim-
ing at usage of a ‘CCSA’ optimization algorithm, [14].
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As a result of their wide use in the form of sensors and actuators, much interest has been
focused on the reliability and failure behavior of piezoelectric materials. This leads to the
need to develop techniques for predicting crack growth under monotonic and fatigue
loading (both mechanical and electric). To this end, accurate methods are required for
calculating stress and electric flux density intensity factors in these materials. The
solution is affected by the mechanical and electrical coupling, as well as material
anisotropy in its poled state.

In this study, a conservative integral is derived for calculating the intensity factors
associated with piezoelectric material for an impermeable crack. This is an extension of
the M-integral or interaction energy integral for mode separation in mechanical problems.
In addition, the method of displacement extrapolation is extended for this application as a
check on results obtained with the conservative integral. The crack is assumed along the
x-axis in the xy — plane. Poling is at an arbitrary angle with respect to the crack plane
with poling within the z = 0 plane. These methods were extended in this study in order to
calibrate specimens for carrying out fracture tests in piezoelectric materials.

To obtain the M-integral, use is made of the relation between the energy release rate and
the J-integral. The former is given by

G=%th (1)

where K is the intensity factor vector, namely k' =[K,,K,,K,,,K,,] , and L is one of
the Barnett-Lothe tensors. The path independent J-integral is given by [1]

3= (hn,-T,u;,+ DInE,)ds )

where T is a path beginning at the lower crack face and ending at the upper crack face, h
is the electric enthalpy density given by



1 1
h=§Cijks€ijgks _E’cijEiEj — & E.8y (3)

n is the unit outward normal to I', T,=oyn; is the traction, u; and D, are the

displacement and electric flux density fields, and E, is the electric field in the x, -

direction. The material properties consist of the stiffness tensor C;,; which is measured

with the electric field held constant, «; is the permittivity tensor measured with the strain
held constant and eg; is the array of piezoelectric coupling coefficients. Indicial notation
is used with i1, j,k,s=1,2,3 and the comma represents differentiation.

To obtain the M-integral, two equilibrium solutions are assumed and superposed; this is
possible since the material behaves linearly. Thus, the expressions for the stress, strain,
displacement, electric fields, the electric flux density and the intensity factors are written
as a combination of two solutions. The first solution is the sought after solution; the
fields are obtained by means of a finite element calculation. The second solution consists
of four auxiliary solutions which are derived from the first term of the asymptotic
solution. By the usual manipulation, two expressions for the M-integral are derived and
equated.

Several problems are analyzed by means of the finite element method with the program
ANSYS [2]. Eight noded quadrilateral coupled field elements are employed. Quarter-
point elements are used at the crack tip, so that the square-root singularity is well
modeled. In order to accurately calculate the stress and electric fields at the crack tip, the
mesh density is increased in that region. Several benchmark problems are examined to
demonstrate the accuracy of the method. Numerical difficulties encountered resulting
from multiplication of large and small numbers is solved by normalizing the variables.
Since an analytical solution exists, a finite length crack in an infinite body is also
considered. In addition, a four point bend specimen subjected to both an applied load and
an electric field is presented for a crack at an angle to the poling direction. It is seen that
neglecting the piezoelectric effect in calculating stress intensity factors may lead to
errors.
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Summary The effect of buckling on stress distribution in the crack tip vicinity is explored. The computed
stress state reveal that the buckling leads to a weaker crack tip singularity than the one of linear elastic
fracture mechanics. The change of the singularity has been studied in this work by post-buckling analysis
using FE method. The weaker singularity has been taken into account in a modified fracture mechanical
theory. The implications for fracture mechanical predictions are discussed.

Introduction

When thin cracked plates are subjected to tensile loading in a direction perpendicular to the crack
surface buckling is observed when the load exceed a critical limt. Experimental data by Dixon and
Strannigan [1], shows that the maximum stress at a crack tip was about 30 % for a buckled sample
in comparison to a sample where buckling was artificially held back. Li et al. [2] suggests that the
asymptotic stresses are singular but the singularity is weaker that the square root stress singularity
of linear fracture mechanics. The change of the singularity implies that the stress intensity factor
become undefined after buckling.

The buckling of thin plates containing cracks has been studied in previous works although most
investigators address prediction of the critical buckling load for various crack orientations (cf.
Markstrom and Storékers [3] and Sih and Lee [4]). Recently Brighenti [5] also conducted an
investigation of postbuckled cracked plates using nonlinear FE analyses although the work mainly
focus on the critical buckling load.

Problem formulation

Consider a thin and rectangular shaped plate containing a crack. The plate consists of a homo-
geneous, isotropic elastic material described by the modulus of elasticity £ and Poissons ratio v.
The bending stiffness of the plate is D = Et3/[12(1 — v?)]. One of two studied geometries, an
edge crack is given in Fig. 1. The other geometry is a centred cracked panel. The right half of that
geometry is defined also by Fig. 1.

The in plane stresses are divided into a membrane part given as a force per unit of thickness
Ngz, Nyy and Ny, and bending moment per unit of thickness M, My, and M,,,.

For the centered crack, the applied displacement on the constrained opposed edges v = Voo,
u=w=0and dw/dy =00n0 < z < b (x| < b for the centre cracked plate) and |y| = h. All
other boundaries are traction free.

Because of the symmetric geometry and load across x = 0 and across y = 0 only one quarter
of the plate is studied. Plausible buckling modes are symmetry and antisymmetry for the out of
plane displacement w. The lowest buckling mode is obtained for w(z,y) = w(z, —y) = w(—=z,y)



meaning that the plate moves either strictly toward z > 0 or to z < 0 (cf. Markstrom and Storakers
[3D.

For low load, in the vicinity of the crack tip, stresses are assumed to be singular as expected for
linear fracture mechanics

Ki
Oyy = ———
v \2mr

where the polar coordinates 7 = /2 + y2 and § = tan~!(y/x) are used. The angular function
fyy(8) is known. Straight ahead of the crack tip f,(0) equals unity.

fuy(9), (1

At post buckling loads it is assumed that the crack tip stresses may be written as

oyy = K(2m7r)°gyy (0), (2)
where gy, (6) is chosen to be unity straight ahead of the crack tip.

Numerical method

To perform the buckling and the post-buckling analysis, the finite element method is utilized
through the commercial software ABAQUS [6]. With regard to the symmetry, the calculations
are performed using one quarter of the central cracked plate and one half of the edge cracked
plate. The following dimensions are used to describe the model: h/w = 1.5 and ¢/w = 0.0001.
Two different crack lengths are modeled for the centre cracked plate, i.e. a/w = 0.1 and 0.2,
respectively, and for the edge cracked plate a crack with a/w = 0.1 is investigated. The size of the
plate is assumed sufficient to represent very large plates. The relation between bending stiffness
and tensile stiffness enters the equations only through the ratio ¢/a, which is very small.

The element net uses 6-node triangular thin shell elements with five degrees of freedom per node.
Quadratic shape functions are used. The mesh region near crack tip is made denser as the distance
to the tip decreases. A denser element net is also used, where the number of nodes is doubled on
the edges and the distribution is kept the same as for the coarser case. The coarser case consists
of approximately 10 000 elements and the denser case up to approximately 37 000 elements. The
length of shortest side of the elements for the entire model is 1.310~%a for the coarser case and
6.510""a for the denser case.

To obtain the post buckling responses a modified Riks method was used. This method appears
to be most successful among some suggested methods solving unstable problems Ramm [7] and
Crisfield [8]. It is able to obtain static equilibrium solutions for unstable problem where the load
magnitude is determined by one single scalar parameter. To be able to analyze the post-buckling
response the problem needs to be converted into a continuous response instead of bifurcation. A
geometric imperfection is introduced as a superimposed displacement field of a buckling mode
from the eigenvalue estimation and a scale factor is applied to the field to scale the applied imper-
fection. The basic of the modified Riks method is the Newton-Raphson method (cf. Riks [9], [10]).
The load magnitude taken into consideration as an additional unknown thus the method solves both
the load and the displacement at the same time on the equilibrium path. The implemented Riks
method by ABAQUS [6] uses an arc length to designate the progress of the calculation, Riks [11].
The choice of the size of the arc length is governed by the convergence rate-dependent, automatic



incrementation algorithm for static cases within the Abaqus standard solver. The finite element
implementation of the modification of Riks method is known to suffer from an inability to deal
with wrongly chosen direction of integration path along the response curve, thus the solution oc-
casionally get stuck in a loop (Silver et al. [12]; ABAQUS [6]).

Results

The analysis for the central cracked plate could be carried out to an extent of where the applied
load reached 100 times for the corresponding buckling load while for the edge cracked plate only
about 2 times the corresponding buckling load was reached.

The critical load is expected to increase with increasing thickness in proportion to ¢2. For di-
mensional reasons the critical buckling stress may therefore be written: o), = AFE(t/a)? , where
A is a geometry and load case dependent dimensionless parameter. For the central crack with
a/w = 0.1,0.2 and for the edge crack with a/w = 0.1 the result is 2.2883, 2.674 and 28.1835
respectively.
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Figure 1: Comparison of stresses normalized by the applied stresses and scaled by the 7| —dependence of
the unbuckled case straight ahead of the crack tip between pre- and post-buckling for the edge crack with
a/w=0.1

Stresses in the x direction straight ahead of the crack tip normalized with the applied stresses and
the r-dependence of the unbuckled case are plotted against the distance from the crack tip normal-
ized with the crack length in a log-log diagram in Fig. 2. The comparison is made between the
last steps of the post-buckling analyses versus a buckle restrained case. The stress responses of the
buckle restrained case should maintain the characteristics of a case where linear fracture mecha-
nism is valid; therefore the slope of the curve should correspond to the square-root singularity in
a region close to the crack tip. By selecting the region between 107> < 7/a < 10~* an exponent
|s| in the /%l depending stresses, is less than 1% below the theoretical value, -1/2. A difference
of inclination between the buckled case and the buckle restrained case indicates that a different
crack tip singularity is at play after the occurrence of buckling. To clearly identify the differences
of the singularity the normalized stress response is rescaled with ® where s = —0.505, is plotted
against r/a in Fig. 5, where s is the singularity calculated from the buckle restrained cases. The
result shows that the singularity is weaker in a post-buckled state. This result is in accordance with
the preliminary calculations by Li et al. [2].



Conclusions

A thin plate containing a central crack or an edge crack under tensile load in the direction perpen-
dicular to the crack surface was studied. FEM calculations of the post-buckling behaviour using
non-linear geometries have been conducted. The post-buckling calculation was performed by the
modified Riks method where the plate is considered as imperfect prior buckling.

The post-buckling analyses have shown that within a region of 0.0001a ahead of the crack tip the
stress field is found to be of the form % f(6)

The field possesses a weaker singularity than a square root singularity that is found for in-plane
deformation. Already when the buckling load is exceeded by 100 times the singularity decreases
from -0.5 to -0.49, this applied load that causes a 2% drop of the singularity may seem quite small.
However, maximum stress in a sheet of paper containing a crack of the length of 20% of the width
at the moment of fracture is several thousand times larger than its buckling load and the drop of
singularity could be of considerably larger as load of such magnitude is reached.

Different a/w relations for the central cracks appears to have little influence on the weakening of
singularity. As a result by the presented data it can be concluded that if the apply load remain below
100 times the buckling load of the specimen then fracture criteria by linear fracture mechanics
should retain validity for a central crack. References

References

[1] J. R. Dixon and J. S. Strannigan. Stress distribution and buckling in thin sheets with central slits. 2nd
International Conference on Fracture, Brighton, 105-118, (1969)

[2] C, Li, R. Espinosa and P. Stahle. Fracture mechanics for membranes. The 15th Europan Conference of
Fracture, Stocholm, (2004)

[3] K. Markstrom and B. Stordkers. Buckling of cracked members under tension. nternational Journals of
Solid Mechanics, 16, 217-229 (1980)

[4] G.C.Sihand Y. D. Lee. Tensile and compressive buckling of plates weakened by cracks. Theoretical
and Applied Fracture Mechanics,6, 129-138, (1986)

[5] R. Brighenti. Buckling of cracked thin-plates under tension or compression. Thin-walled Structures,
1-16, (2004)

[6] ABAQUS. Analysis Users Manual ver. 6.4. Hibbit, Karlsson & Sorensen Inc., (2003)

[71 E. Ramm. Strategies for Tracing the Nonlinear Response Near Limit Points. Nonlinear Finite Element

Analysis in Structural Mechanics, Edited by E. Wunderlich, E. Stein, and K. J. Bathe, Springer-Verlag,
Berlin, (1981)

[8] M. A. Crisfield. A fast incremental/iterative solution procedure that handles snap-through. Computers
& Structures, 13, 55-62, (1981)

[9] E. Riks. The application of Newtons method to the problem of elastic stability. Journal of Applied
Mechanics, 39, 1060-1066, (1972)

[10] E. Riks. An incremental approach to the solution of snapping and buckling problems. International
Journal of Solids and Structures, 15, 529-551, (1979)

[11] E. Riks, C. C. Rankin and F. A. Brogan An incremental approach to the solution of snapping and
buckling problems. International Journal of Solids and Structures, 15, 529-551, (1979)

[12] M.J. Silver, J. D. Hinkle and L. D. Peterson. The buckling behavior of a central crack in a plate under
tension. Engineering Fracture Mechanics, 43, no. 4, 529-548, (1992)



Computational Modelling of Plate-gap Biosensorswith a Porous
Inert Membrane

Romas Baronas*

Faculty of Mathematics and Informatics
Vilnius University, Vilnius, Lithuania
e—mail: romas.baronas@maf.vu.lt

Feliksas | vanauskas

Institute of Mathematics and Informatics,
Vilnius University, Vilnius, Lithuania
e—mail: feliksas.ivanauskas@maf.vu.lt

Summary This paper presents a two-dimensional-in-space matheahatiodel of a plate-gap biosensor
with a porous inert membrane acting under internal and eateliffusion limitations. The model is based
on non-linear reaction-diffusion equations. The probleaswolved numerically using finite-difference
technique. Using numerical simulation the influence of teergetry of the porous membrane as well as of
the external diffusion region on the biosensor responsednvastigated.

Introduction

Biosensors are sensing devices made up of a combinatiorpetdis biological entity, usually the
enzyme, that recognizes a specific analyte and the transthaderanslates the changes in the bio-
molecule into an electrical signal [1]. The signal is prdjmal to the concentration of the analyte.
The biosensors are classified according to the nature ohiysqal transducer. The amperometric
biosensors measure the faradic current that arises on angarklicator electrode by direct elec-
trochemical oxidation or reduction of the product. The aropeetric biosensors are known to be
reliable, cheap and highly sensitive for environment,icéihand industrial purposes [2].

Very recently a plate-gap model of a porous electrode waggsed and successfully applied to
carbon paste based biosensors [3, 4]. The purpose of thiswas to enhance the mathematical
model of the plate-gap biosensors with the external diffudimiting region. The model is based
on reaction-diffusion equations containing a non-lineamt related to Michaelis-Menten kinet-
ics of the enzymatic reaction. The model involves four ragidhe enzyme layer where enzyme
reaction as well as mass transport by diffusion take plae®t membrane and external diffusion
regions where only a mass transport by diffusion takes pkwe a convective region, where the
analyte concentration is maintained constant.

Using numerical simulation of the biosensor action, theugrice of the geometry of the porous
membrane as well as of the external diffusion region on tbedrisor response was investigated.
The behaviour of the plate-gap biosensor was compared téthaf a flat mono-layer biosen-
sor [5]. The simulation was carried out using the finite ddfece technique [6].

M athematical model

Fig. 1a shows a profile of a biosensor, where enzyme filled g odelled by right quadrangular
prisms of bas@a; by c distributed uniformly so, that the distance between adjapgasms equals
to 2(ay — a1), a is the half width of the gaps; is the gap depth and is the thickness of the
inert membrane. Due to the uniform distribution of the gapis reasonable to consider only a



unit consisting of a single gap together with the regionsvbeh adjacent gaps. Because of the
symmetry and the relatively great length of the gaps we denginly a half of the unit.

Fig. 1b shows the profile of a unit cell to be considered in miatétical modelling of a plate-gap
biosensorc = b, is the depth of the gapd,= b, — b is the thickness of the porous membrane and
0 = bg — by is the thickness of the external diffusion layer.
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Figure 1: Profiles of a plate-gap biosensor and the unit cell.

Let Qq, Q9, Q23 be open regions corresponding to the enzyme-filled gapsupanembrane and
diffusion layer, respectively,'; - the electrode border arid, is the inert membrane/bulk solution
boundary
N = (0,a1) x (0,b1), Qo= (0,a2) x (b1,b2), 3= (0,a2) x (ba,b3), )
Iy = ([0,a1] x {0}) U ({a1} x [0,01]) U ([a1, az] x {b1}), T2 =[0,as] x {b2}.

The biosensor action is described by the following reactidiffusion system# > 0):

aSl Vmaxsl af)l Vmaxsl

— = D;AS; — = Di1AP + —— Q 2

5 1AS5; Ky 45, ot 1AP + Ko 1 50 (z,y) € O, 2
oS oP; .

whereA is the LaplacianS;(z, y, t) is the concentration of the substratelipn P;(x,y,t) is the
concentration of the reaction productii, i = 1,2, 3, V,,.. iS the maximal enzymatic rate and
K,y is the Michaelis constant.

Let ©; be the closure of the corresponding open redipni = 1,2, 3. The biosensor operation
starts when the substrate of concentratfgrappears over the surface of the inert membrane. This
is used in the initial conditiong & 0):

S1(z,y,0) =0, (x,9) € Qy,

So(z,9,0) =0, (x,y) € Q2 \Ta, Sa(z,y,0) =Sy, (z,y) € Ty, @
S3(z,y,0) = So, (z,y) € Qs,

Pi(z,y,0) =0, (z,y) €, i=12,3.

Assumingby = 0, the following boundary conditions express the symmetrthef biosensor

(t>0):
op;
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or, o5,

™ = =0 bji—1,bj], j=2,3. 6
aﬂc r=az 83; r=as ? Y € [ j—1 ]]7 J 9 ( )
The following boundary condition on the electrode borfedefines the electrochemical process:
oSy,
| =0 B=0 Ty, k=12 7
on r, ’ k ’ (.%',y) cly, ) 4y ( )

wheren stands for the normal direction.

If the bulk solution is well-stirred and in powerful motiohean the diffusion layer remains at a
constant thickness ¢ 0),

S3(x7b370) - SO7 Pg(.%',bg,O) - SOv T E [O,G,Q]. (8)

On the boundary between adjacent regitgsandQ;.; we define the matching conditions =
1,2¢>0),

a8, oS
Dk—k = Di41 k+1 ‘ , S, b, t) = Spy1(x, by, t),
Oy ly=by, Oy ly=by
DaPk 8Pk+1‘ Pulbiot) = Pos(zbust), (2,9) € BN 9)
"9, = T = T X '
k 8y _— k+1 ay y:bka kL, Uk, k+1\+L Uk, L), Y k k+1

The measured current is accepted as a response of a bioseasmtual experiment. The current
depends upon the flux of the reaction product at the elecsadace, i.e. on the bordér;. The
densityi(t) of the current at time is obtained explicitly from Faraday’s and Fick’s laws,

, neF “ 9P b op 2 Py

i(t) = o <D1/0 3—y yzod:c + D1/0 e xzaldy + Dy /a1 a—y ybldac> ,  (10)
wheren, is a number of electrons involved in a charge transfer Brid Faraday constant. We
assume, that the system (2)-(9) approaches steady - statelwh oo, i, = tlirglo i(t).

The problem was solved numerically using the finite diffeetechnique [6]. We introduced a
non-uniform discrete grid in all three directions:y andt. Using the alternating direction method,
an implicit finite difference scheme was built as a resulthaf tlifference approximation of the
model. The resulting systems of linear algebraic equatiomr® solved efficiently because of the
tridiagonality of their matrices.

Results of calculations

The thicknes® = b3 — b, of the external diffusion layer depends upon stirring ofgbkution and
is inversely proportional to the intensity of solution stig [5]. To investigate the effect of the
external diffusion on the biosensor response we calcuthedormalized steady-state current,

. iso(9)
5) =

in(6) ()’

wherei (0) is the steady-state biosensor current at given thickhe$she diffusion layer. Fig. 2

shows the results of calculations.

0=1bg—b2, 620, (11)

One can see in Fig. 2, thdly is a monotonous decreasing function of the thickngsd the
diffusion layer in the cases of high enzymatic rdtg,. > 1 mM/s. Due to the external diffusion
the biosensor current can vary even several times. In tleeafaslatively low enzymatic rates, the
biosensor response practically does not depend upon ttiendsss of the diffusion layer. This
property is valid for wide rages of the substrate conceotmei, and the thicknessg of the porous
inert membrane.
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Figure 2: The normalized steady-state curigntersus the thicknesgsof the diffusion layer for two values
of the thicknesgl = b, — b, of the inert membrane: (), 2 (b) um, Sp: 0.01 (1-3), 1 (3-4) MMV ,4.: 0.1
(1,4),1(2,5),10(3,6)mM/sy; =1,a0 =2,by =4,by =6um, bz =by + 6, Dy =100,D5 = 10pum?/s, D3
=2D1, Ky =1mM,n, = 2.

Concluding remarks

The mathematical model (2)-(9) of the operation of the ammetric plate-gap biosensors with a
porous inert membrane can be used to investigate pecigiaci the biosensor response in stirred
and non stirred analytes.

In the case of relatively high ratg,,., of the enzymatic reaction, the steady-state current is a
monotonous decreasing function of the thickness of thermatealiffusion layer and that layer
should be taken into consideration when modelling the Inisseaction (Fig. 2).

In the case of relatively low values &f,,,, the biosensor response practically does not depend
upon the intensity of stirring of analyte (Fig. 2), and th¢eemal diffusion layer may be neglected
to model the operation of biosensors with inert membrane.
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Summary The mitral valve is a very important valve between the left atrium and left ventricle of the
heart. During the systole the mitral apparatus prevents blood from flowing back into the atrium when the
ventricle contracts. Hence, it is of major importance in order to avoid regurgitation. The purpose of this
study is to develop a three-dimensional finite element model of the mitral valve in order to understand its
function and its behaviour using a transversely isotropic material model for the mitral valve leaflets.

Introduction

The mitral valve is one of the four valves of the heart. It consists of two leaflets: the anterior, and
posterior. The anterior leaflet is much larger than the posterior leaflet. Both leaflets are attached
to the annulus and to the chordae tendinae. The chordae tendinae are further attached to the pap-
illary muscles. The mitral valve combined with the mitral annulus, the chordae, and the papillary
muscles are often referred to as the mitral apparatus, see Figure 1. In this study, we present a

L

A Annulus
ﬁ/

Valve Leaflets

‘\ l"_ Chordae

\‘{l = Papillary Muscles

Figure 1: Mitral apparatus

three-dimensional finite element model of the porcine mitral valve that simulates a part of the
heart cycle: starting at end of diastole and ending at the maximum pressure in the left ventricle.
Three finite element analyses were performed in order to investigate the role of the chordae on
the mitral valve response. The first one considered the marginal chordae attached to the free edge
of the leaflets only (pathological state). The second one considered marginal chordae and strut
chordae (i.e, chordae attached beyond the free edge). In the healthy mitral valve these two types of
chordae are present. In the last simulation, the mitral apparatus was modeled with too soft chordae.
This last case corresponds to the Marfan’s syndrome.



Methods
Geometry and boundary conditions

The dimensions of the porcine mitral valve were measured during the autopsy of a pig on which
3D ultrasound measurements had been carried out. These dimensions are reported in Figure 2. The
annulus was assumed to be flat and the commissures of the mitral valve were neglected. Then some

Annulus &

Posterior 8mm

Anterior 16mm L
W
\/ \
Thickness of the \|
leaflet: 1mm 3 3
Chordae are fixed at .
the papillary muscles /2 — Marginal chordae
. H . 2
Commissures of the tendlnae- 1 mm

mitral valve were
neglected

Figure 2: Initial geometry of the valve at the beginning of systole with related boundary conditions

additional simulations were conducted with a saddle annulus and accounting for the commissural
area of the mitral valve.

The leaflets were meshed with triangular membrane elements MBREUS element) and the
chordae tendinae with truss elements T3BBAQUS element). The leaflets were allowed to rotate

at the annular attachment. The translations were constrained at the attachment between the chordae
and the papillary muscles. We assumed fixed boundary conditions for the papillary muscles. In
order to prevent the leaflets from interpenetrating each other upon closure, a contact conditionwas
set between the two surfaces. The measured blood pressure in the left ventricle of the pig during
the isovolumetric contraction phase up to the maximum pressure in the left ventricle in the ejection
phase was applied as load history.

Material models

The leaflets were modeled with an incompressible hyperelastic transversely isotropic material
model. The formulation of transversely isotropic hyperelasticity is based on the account provided
by Holzapfel [1], and the constitutive model was derived from the strain-energy function proposed

by Holzapfel et al. [2],

W(Iy, 1) = colexper =3 Fe2(a=® _ 474 p(y— 1), (1)

where,c;, i = 0, 1, 2, are material parameterg,/, represensents the stretch of the collagen fibers
and the scalap serves as an inderteminate Lagrange multiplier.
The material parameters were determined from the experimental data provided by May-Newman



and Yin [4]. The expression of the spatial elasticity tensor derived from relation (1) is,

c = 4WYnBeB+4Yyy(Bra®kat+aa®B)+4yya®a®a®a

Op
+21®<F6CF >—2p]1, )
o

The material model was implemented iBAQUS/standard by using the user-defined subroutine
UVAT. The details of the material model are given in [3]. The comparison between the analytical
Cauchy stresses and those obtained from the FE analysis on a displacement controlled single
membrane element equibiaxial test is presented in Figure 3 for the posterior leaflet.

For the chordae, an isotropic incompressible hyperelastic material model was implemented into
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Figure 3: Equibiaxial test on the posterior leafle§ & 0.171 kPa, ¢; = 5.28, co = 6.46)

the ABAQUS/Standard user-defined subroutlitdYPER. The material model was derived from the
following strain-energy functiofi/,

U(L) = ai(l1 — 3) + agfexp1=3) — 1], (3)

whereaq, a2 andag are the material parameters determined from experiemental tensile tests pub-
lished by Kunzelman and Cochran [5].

Results

The first simulation considered only marginal chordae, i.e related to a pathological state. In Fig-
ure 4, it appears for this case that the displacement in the 3-direction (see Figure 2) is approxi-
matively 2 mm larger than the displacement obtained from the ultrasound measurement. Thus, in
order to reduce the displacement of the anterior leaflet in the 3-direction, strut chordae (i.e chordae
attached beyond the free edge of the leaflet) were attached to the anterior leaflet in addition to the
marginal chordae already attached. Hence, a FE analysis with six strut chordae, i.e. related to a
healthy state, was performed.

Finally, a third simulation with softer chordae was performed, i.e related to a pathological case. In
this last case, the displacement in the 3-direction of the anterior leaflet is much larger than for the
two first cases.
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Figure 4: Left ventricle blood pressure versus the computed displacements in the 3-direction for a node
located at the middle of the anterior leaflet. The dashed curve shows the pressure-displacement relation-
ship for the model with marginal chordae (pathological state), while the solid curve shows the pressure-
displacement relationship for the model with marginal and strut chordae (healthy state). The dashdot curve
shows the pressure-displacement relationship for the model with softer chordae. The dots show the mea-
sured data of the corresponding node obtained from the ultrasound measurements carried out on the pig.

Concluding remarks

This study shows the importance of the chordae to prevent the leaflets from collapsing into the left
atrium.

In additions, these simulations were performed with realistic material models for both mitral
leaflets and chordae tendinae. This three-dimensional finite element model allows the simulation
of mitral valve response for both healthy and diseased conditions.
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Summary Mechanical prosthetic heart valves are an important option in surgical treatment of human
pathological heart valves. In the design of a mechanical heart valve, at least three design criteria are of
importance: a) the prosthesis should mimic the function of a physiological valve as closely as possible, b)
the shear stresses in the blood flow through the valve should be minimized to reduce risk of thrombosis, and
¢) the risk of structural failure must be low.

In this paper we report results from work in progress on numerical and experimental modeling of
mechanical heart valves. A strongly coupled fluid structure interaction scheme was utilized for the
numerical simulations. Experiments have been carried out in a pulsatile flow loop for a Bjork-Shilely
Convexo-Concave heart valve prosthesis. Discrepancies were found between experimental and numerical
predictions of the valve opening angle. However, by employing a moment of inertia yielding dynamical
similarity for the 2D simulations, improved time-stepping scheme and boundary conditions, we believe
that better agreement will be obtained.

Introduction

Mechanical prosthetic heart valves have been used in surgical treatment of pathological valves for
the last fifty years. The design of mechanical heart valves have improved greatly in this period.
The aim has been to mimic the function of a physiological valve as best as possible, at the same
time as the blood flow around the valve must be controlled to ensure low flow velocities and shear
stresses. High shear stresses damage the blood, mainly by destroying the red blood cells and also
contribute to thrombus initiation. Durability is also a major concern, as mechanical valves must
able to withstand the stresses inflicted from millions of heart beats.

Fluid structure interaction (FSI) simulations has recently emerged as a promising approach, which
alongside experiments, may be used to study the hemodynamic of prosthetic heart valves.

In this paper we employ an arbitrary Lagrangian-Eulerian (ALE) coupling procedure, where the
valve motion, is strongly coupled with the solution of the flow field, inspired by [1]. A backward
Euler-scheme was used for the valve motion, rather than the Newmark scheme[1]. The dynamic
mesh model in the commercial CFD-package FLUENT 6.2 was used for the ALE-simulations.
The coupling procedure was implemented as a user-defined function in FLUENT.

A Bjork-Shiley Convexo-Concave (BSCC) valve was chosen as the specific valve for the experi-
mental work, as it was readily available to us.

Method

Experimental setup

In the pulsatile flow loop, a fluid reservoir were connected to a tube leading to the mitral entrance
of the ventricular chamber. A second tube representing the aorta leaves the ventricular chamber at
a 90° angle, to the mitral entrance and completes the loop back to the reservoir (see Fig. 1).

The ventricular chamber, the first part of the aorta and the mitral entrance are all made of Plexiglas.
The ventricular chamber is square box connected to a bellow pump. The first part of the aorta and
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Figur 1: A schematic diagram of the pulsatile flow loop with the positions of the pressure transducers and
the high speed camera positions.

the mitral ventricular entrance are made of Plexiglas tubes with an inner diameter of 28 mm, and
lengths of 250 and 100mm, respectively. The volume change over time in is control by a rood
connected to the pump and an eccentric disk. The profile of the disk combined with the rotational
velocity controls the volume rate time in the ventricular chamber.

A high speed video camera (Phantom Vision) was used to allow for visualization of the flow field
(BXXX and water mixture inserted by a needle), investigation of the opening and closing behavior
of the valve, and measurements of the valve closing time (see Fig. 1).

Pressures were measured (BD DTX Plus Blood Pressure Transducers) at two locations; the ventri-
cular chamber upstream of the valve, and in the tube representing the aorta, 200 mm downstream
of the ventricle (see Fig. 1).

The average volume flow and the ventricular ejection volume were by collecting the return flow in
a graduated flask and average over the time period and the number of strokes, respectively.

Numerical simulations

The numerical simulations were performed using the dynamic mesh model in FLUENT 6.2, a
commercial software package. All simulations were performed in 2D to reduce the computational
costs in this initial study. The Navier-Stokes equations, in a conservative ALE formulation, were
solved with time-varying pressure boundary conditions.

The valve was modeled as a rigid body, rotating around a given axis of rotation, with the equation
of motion: )
M=1-0 @))

where M is the net moment of forces acting on the valve, I the moment of inertia and € the angular
position of the valve. To obtain geometric similarity between experiments and simulations, the
valve length in the 2D simulations [, were taken as the diameter of the valve in the experiments.
For the moment of inertia around the axis of rotation, the value for a thin rectangular plate was
used:

I="— )



where m denotes the mass of the valve.

To provide a better coupling between the fluid and structural solvers, and a higher degree of impli-
city, subiterations are used (denoted by subscript k), with a Newton-type correction of the moment:

OM /.. . .
My, + Y <9k+1 - 91c) ~ IOk (3)
. My, — 2L g,
Ops1 = % 4)
06

The % may be considered as a Jacobian, which must be estimated numerically:

OM My — My,
86 Oy — 01

(&)

To start the sub-iteration scheme an initial perturbation of 6 must be provided. For more details
see [1]. The convergence criterion for the sub-iterations is:

| My, — 16 <e (6)

The equation of motion is integrated with a backward Euler scheme:

A A\ (7

gt = gm0 tIAL (8)

Results

Measurements on the closure time for both the inline and angular displacement of the valve were
carried out. The experimental fluid was water and experiments were performed with and without
an aortic compliance to be better able to compare the experiments, to the numerical simulation
which do not include an aortic compliance.The aortic compliance in the pulsatile flow loop was
incorporated to make the model more realistic physiologically and to produce results for suitable
for comparison with results from other experimental flow loops.

Figur 2: High speed video camera recordings of the opening av the valve.

The high speed video camera recordings allowed for both visualization of the flow field (Fig. 2)
and for experimental estimates of the inline and angular displacements of the valve as a function
of time.

In all the numerical simulations the thermodynamic properties of water were used for the fluid.
The FSI simulations provide estimates of the velocity, pressure, vorticity during the simulated
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Figur 3: Velocity vectors during closure of the valve.

cycle as illustrated in Fig. 3. Time-varying pressure boundary conditions were imposed, with the
intention to mimic the pressures recorded in the experiments. However, a shorter fundamental
frequency was used in the pressure boundary conditions, corresponding to a shorter diastole, to
save computational time.
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Figur 4: Comparison of the valve angle during closure between experiments with and without compliance
and simulations.

Preliminary comparison between experimental measurements and FSI predictions of BSCC angle
as a function of time are illustrated in Fig. 4. The measurements were done by examining high
speed photos from the experiments, and recording the angle per time by using computer software
accompanying the high speed camera. This software included the possibility to store coordinates
from each frame captured by the high speed camera.

Discussion

In this paper we have presented work in progress on the fluid dynamics mechanical aortic valves.
In particular, the BSCC valve have been investigated experimetally and numerically. Substantial
discrepancies were found between experiments and simulations for the prediction of the opening
angle of the valve as a function of time, in particular for the compliant case. However, by employ-
ing a moment of inertia which provides dynamical similarity (i.e. for a circular disc), a higher order
time-stepping scheme, using the full cycle of the pressures obtained experimentally as boundary
conditions, and simulating for several cycles, we believe that better agreement will be obtained.
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Spatial Differencesin Cardiac Strains During Filling
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Summary Radiopaque marker technology provides data for detailed studies of cardiac kinematics. We
developed a strain estimation method tailored for data from a transmural myocardial bead array. This
method is accurate and robust and reveals interesting transmural discrepancies in the relationship between
circumferential strain and percentage filling volume during diastole in the lateral equatorial left ventricular
wall of the ovine heart.

I ntroduction

Knowledge of normal cardiac mechanics is important when attempting to understand the mech-
anisms that impair the contractile function of the heart in the setting of disease. Although ven-
tricular pressures and volumes are valuable for assessing the global pumping performance of the
heart, suitable measures of the regional kinematics of the myocardium are needed to understand
the underlying structural basis of ventricular function. The scope of this project was the detailed
study of cardiac strain during diastole, i.e. during left ventricular filling.

M ethod

The global heart kinematics can be studied by radiopaque markers that are surgically implanted
to silhouette the walls of the heart chambers. Three-dimensional coordinates of the markers are
acquired by merging two simultaneously acquired two-dimensional X-ray video images from two
different views [1]. To study strain of the heart wall, three transmural columns of close-spaced
radiopaque beads can be inserted in a dense region through the left ventricular wall. The three-
dimensional bead coordinates are acquired in the same manner as the marker coordinates [1].

To estimate the Lagrangian strain tensor, defined by E = 1 (FTF — I) where F is the deformation
gradient tensor and T is the identity tensor, in the region of the beads, the position field as a
function of the position in the reference configuration could be determined. Different ways of
doing this has been presented [2, 3]. The method of Waldman et al. [2] assumes strain to be
constant within tetrahedral regions bordered by the beads, and computes the constant strain within
these regions. The finite element method presented by McCulloch et al. [3] greatly improves the
strain estimations. Instead of assuming constant strain within regions, a bilinear-cubic or a bilinear-
quadratic displacement field is fitted to the bead positions.

We developed a method for strain estimation tailored for coordinate data from a transmural my-
ocardial bead array that fits a polynomial forthright without isoparametric formulation to the bead
coordinates, without loss in accuracy [4]. The number of beads in each column of the bead array
is subjected to surgical and acquiremental limitations. A benefit with this polynomial method for
strain estimation is its ability to avoid loss of accuracy for the case of a missing bead [4].

Material
Ovine marker coordinate data

Marker and bead coordinate data, acquired without interventions eight weeks after marker implan-
tation, from seven closed-chest sheep have been used in this project. Details about the surgery and



data acquisition are to be found in [1]. Briefly, 13 radiopaque markers were surgically implanted
to silhouette the left ventricular chamber, along with three transmural columns of four beads each
in the lateral equatorial left ventricular wall in a region equally-spaced between the papillary mus-
cles. The marker and bead arrays used in this project are shown in Figure 1. The Lagrangian strain

Figure 1: Left ventricular chamber silhouette markers (#1-13) and the transmural bead array (#15-26) as
well as the local cartesian cardiac coordinate system (X, X, Xg). There are three columns of beads:
#15-18, #19-22 and #23-26.

tensor was estimated at subepicardium (20% of wall thickness below the epicardial surface) and
subendocardium (80% of wall thickness) at each time increment during left ventricular filling us-
ing a linear-quadratic polynomial assumption, with filling onset used as the reference configuration

[5].
Analytical model

An analytical model of the left ventricle can be used to predict the theoretical relationship between
circumferential strain at endo- and epicardium and relative left ventricular filling volume during
diastole. The model is implemented as a thick-walled incompressible cylinder with appropriate
dimensions of the ovine left ventricle. The theoretical endo- and epicardial circumferential strain
and relative left ventricular filling volume during diastole can be computed by increasing the inner
radius linearly from Ry = 2.0 cm to r; = 2.2 cm while the height A = 8.0 cm of the cylinder is
kept constant and thereby increasing the volume inside the cylinder (Figure 2). The outer radius is
set to Ry = 3.0 cm at filling onset. This deformation is given by

= \/R2—R%+T1

© @
z = J



Figure 2: Analytical model of the left ventricle. Diastolic deformation with dimensions of the cylinder at
filling onset (solid lines) and ED (dashed lines).

where upper-case letters denote reference configuration (filling onset) and lower-case letters de-
note deformed configuration.
The analytical solution for the deformation gradient tensor of the cylinder is given by
I N
dR ROO 07
r5h hoe "oz | Ro )
0z 1 0z 0z
oR RO0© 02

where the parenthesized expression is the deformation gradient tensor of components of F referred
to cylindrical coordinates [6]. The rotation matrices R and Ry are introduced to transform the
deformation gradient tensor from the cylindrical coordinate system to the cartesian coordinate
system and are defined as

singd 0 cosf sin® 0 cos®
R=| cosf 0 —sinf |, Rop=| cos® 0 —sin® 3
0 1 0 0 1 0

Results

The theoretical relationships between percentage filling volume and circumferential strain (Fo¢)
at the inner and outer surfaces of the analytical cylinder model are linear (Figure 3, open sym-
bols), but left ventricular volume increase is more sensitive to changes in epicardial circumference
than to endocardial circumferential strain [5]. Figure 3 compares subendocardial and subepicardial
theoretical strains with the experimentally measured group mean circumferential strains from the
lateral equatorial left ventricular wall of the ovine heart. There is a close relationship in the suben-
docardium between theoretically predicted and experimentally measured values, but the subepi-
cardium shows a significant divergence from the theoretical values. Subepicardial circumferential



expansion is virtually complete after about one third of the filling interval, which clearly is not the
behaviour of a simple linear system acted on only by left ventricular inflow.
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Figure 3: Theoretical and mean experimental circumferential strain versus percentage filling volume.

Concluding remarks

The polynomial method for strain estimation is accurate and robust and suitable for a transmural
myocardial bead array. The experimental relationship between circumferential strain and percent-
age filling volume is close to the theoretical relationship at the subendocardium, but diverges sig-
nificantly from the theoretical values at the subepicardium. This calls for further research taking
the myocardial fiber and sheet architecture into account in order to understand the mechanisms
that underlie the rapid increase in subepicardial circumferential strain during early left ventricular
filling.
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Summary The end-diastolic (ED) orientations of muscle fibers and sheets in the myocardium can be
directly measured using quantitative histology by terminating an ovine heart at ED. The ED architecture as
well as myocardial strains during the cardiac cycle may be used for determining fiber and sheet orientations
at any time during the cardiac cycle. This paper aims to describe the method and to give a brief analysis of
the temporal changes in myocardial architecture from ED to end-systole (ES).

I ntroduction

Left ventricular (LV) myofibers are connected by an extensive extracellular collagen matrix to
form myolaminar sheets. The sheet architecture and deformation are thought to underlie LV me-
chanics during systole and diastole. Sheet structure at end-diastole (ED) has previously been
shown to be transmurally inhomogeneous and it has been suggested that a laminar deforma-
tion during the cardiac cycle could create an “accordion-like” wall thickening mechanism with
a temporal change in sheet directions [1]. The orientations of muscle fibers and sheets in the my-
ocardium can be directly measured using guantitative histology after terminating an ovine heart.
However, since a heart can only be terminated once, only the myocardial structure at that partic-
ular configuration is obtained. With the use of continuum mechanics theory, the fiber and sheet
orientation at any time during the cardiac cycle can be determined [2]. In this paper the method
for determining sheet orientations will be described and a brief analysis of temporal changes in
myocardial architecture at different depths of the myocardium will be given.

Materials and Methods

The cardiac wall kinematics were studied using biplane videofluoroscopic images of myocardial
markers and two bead arrays implanted in the left ventricle according to figure 1 [3]. Bead array
coordinates were acquired at 60 Hz during two cardiac cycles eight weeks after surgery and the
sheet angle, (3, was measured at end-diastolic pressure in the arrested hearts at approximately 20%
(subepicardium), 50% (midwall) and 80% (subendocardium) of wall depth [3]. The 3D coordinates
of all markers were transformed from their reference coordinate system to a Cartesian cardiac
coordinate system (X7, X2, X3), where X7 is the circumferential axis, directed clockwise in a
short-axis view seen from apex, X5 is the longitudinal axis with positive direction apex-to-base,
and X35 is the radial axis, directed outwards from the ventricle. The local Cartesian fiber coordinate
system has the coordinate directions of the muscle fiber axis (X;), the myofiber sheet axis (X)
and the axis normal to the sheets (X,,). The fiber angle, «, is defined as the angle between the fiber
axis (Xy) and the cardiac circumferential axis (X;) and the sheet angle, (3, as the angle between
the sheet axis (X;) and the cardiac radial axis (X3) according to figure 1. X_. is the cross-fiber
axis, perpendicular to X, within the X1, X5-plane.

The configuration at ED was used as reference state and strains in the cardiac wall were char-
acterized by a continuous polynomial position field with quadratic dependence in X3 and linear
dependence in both X; and X, using least-squares fitting [4]. The Lagrangian strain tensor (E*)
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Figure 1: The fiber and sheet architecture at three transmural depths of the lateral equatorial left ventricular
myocardium.

was then calculated at each time frame k during the cardiac cycle, in the subendocardium, midwall
and subepicardium. It can be shown that for the radial strain component, F3s, it holds that [5]

Es3 = cos® 3 Ess + sin 26 Egy, + sin® 8 Ep, @

which indicates that the strain in radial direction depends on the sheet angle only and is indepen-
dent of the fiber angle. Hence, since we are interested in changes in myocardial architecture as the
wall thickness changes we will focus on temporal changes in .

Sheet rearrangement

Figure 2 depicts a transmural section of LV free wall cut perpendicular to the local muscle fiber
axis before and after deformation. The fiber axis (Xy/xy) points into the page, the radial axis
(Xs/x3) is the local normal to the epicardial tangent plane and the cross-fiber axis (X./x.) is
perpendicular to the fiber axis and the radial axis and parallel to the epicardial tangent plane. The
sheet axis (X /x;) is oriented perpendicular to the fiber axis. The sheet angle (6/3°) is the angle
between the sheet and the radial axes.
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Figure 2: Deformation of the sheet angle, 3. Left: Reference state. The line segments dsg and d$ (starting
and ending in black squares) are located in X ; and X . direction respectively. The angle between them is ~.
X, X3 and X lie in the same plane, orthogonal to X ; which points into the page. Right: Deformed state.
The line segments dsy and ds, have become dsand ds. The angle between them is ~’.

In order to find the angle 3’ the scalar product between ds andds was calculated. By substituting

da;=Gg= dX; and dz;= G dX; the scalar product may be written



a’li‘k c’?xk cos c’?xk c’?xk
ox.0x. " 9X,0X;
The Lagrangian strain tensor is defined as [6]

1 /0x,, Oxm
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where d;; is the Kronecker Delta. Thus from (2) and (3) we get

ds ds cosy' = ( sin~y) - dsg dsp 2

(2(Eee + 1) cosy + 2E.3 sin ) dsg ds

/
= 4
o ds ds @
The stretches (A;) of the line segments in X.- and X -directions are defined as
A, = dsd—isgso = ds=(1+A.)dso -
ds — ds - _
ASZST,OSO = ds=(1+Ay)dso

A. and A; may then be computed by using the change in the squares of the length elements during
deformation [6], i.e.

d82 - dsg =2 Eij dXZ dXJ (6)
d§2 — d8_02 = 2Eij dXZ dXJ
The final equation for ~’ is obtained by combining (4), (5) and (6) and the expression for 5’ is
obtained by substituting y=m-@ and v’ =n-5".
(2(Eee +1) sin 8+ 2E.3 cos [3)
(V2E. +1)(\/2(E,. sin® 3+ E33 cos2 3 + 2 E.3 sin 3 cos 3) + 1)

where E.. and E.3 are obtained by rotating the X7, X5, X3 - system through an angle « around
the X3-axis

()

sinf3 =

E. = sin?aFEj; —2cosasina Ejg + cos? a Eay
E.3 = cosakFy3 —sina Fg

(®)

Results

Table 1 shows that there are temporal variations in sheet architecture in the midwall (50%) and in
the subendocardium (80%), but not in the subepicardium (20%).



Table 1: Temporal changes in sheet angle, 3, from ED to ES. Reference angles measured at ED at lateral
and anterior site compared with calculated angles at ES. Students paired t-test were performed between ED
and ES. Values are means + SE, N=7 for lateral site, N=6 for anterior site and *=p<0.05, **=p<0.01.

Lateral Site Anterior Site
Wall depth ED ES ED ES
20% 37.3£125 | 38.5+11.7 |- 8.34+20.1 |- 3.7+£16.6
50% -37.1£2.3 | -26.6+3.3** | 40.3+4.3 29.744.2**
80% 62.3+4.7 55.54+5.8* | -30.3£14.0 | -22.94115

Conclusion

The magnitude of the sheet angle decreased from ED to ES at midwall and subendocardium,
hence suggesting an "accordion-like” [1] movement of the sheets in the two inner thirds of the
myocardium as the wall thickness changes. The principle is illustrated in figure 3.
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Figure 3: Two-dimensional representation of the positions of the lateral subepicardial, midwall and suben-
docardial sheets at ED and ES. An "accordion-like” movement of the sheets is observed in the inner two
thirds of the cardiac wall as the wall thickness changes.
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Summary

Recent multiscale algorithms are based on solution of a combination of global and local problems,
where the global problem captures the coarse scale behavior of the system and the local problems
resolve fine scale behavior and are used to compute feedback from fine to coarse scales.

In this talk we present a framework for systematic construction of the subgrid problems in a vari-
ational setting, see [1]. The subgrid problems are used to compute the effects of fine scales on
coarse scales and to resolve the fine scale details of the solution. We also discuss extensions in-
cluding several levels of subgrid problems and subgrid problems which contain other types of
physics than the global model. The subgrid problems are solved numerically on localized patches
with individually adapted mesh size and patch size.

We develop a posteriori error estimates for automatic adaptive tuning of the size of the patches
and the subgrid meshes. The adaptive tuning of the discretization parameters is essential to guar-
antee overall accuracy in these complex methods where errors interact over several scales and to
optimize the use of computing resources.

We discuss several applications involving materials with microstructure coefficients.
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Summary The basic ingredient in concurrent multiscale modeling (CMM) is the calculation of the
macroscale stress, for given macroscale deformation, via computations on a representative volume element
(RVE). In this paper CMM-computations are carried out subjected to combined model and discretization
error control, while a condition of (macroscale) plane stress is imposed. A particular measure of model
error is considered: The subscale discretization. This type of two-scale error computation requires access
to the corresponding dual solutions on the subscale (RVE-solution) as well as the macroscale. As a new
result, it is shown how the same dual solutions can be conveniently used in computing the algorithmic tan-
gent stiffness tensor for the macroscale plane stress condition, thereby demonstrating the ”power of duality”.

Introduction

Based on the assumption of complete scale separation, one may account for the effect of the ma-
terial substructure in constitutive modeling by Concurrent Multiscale Modeling (CMM). The key
ingredient is thereby to compute macroscale stresses from homogenization on a Representative
Volume Element (RVE) subjected to the constraint of macro-homogeneity, cf. Miehe and cowork-
ers [1, 2]. This means that the subscale and macroscale quantities must be chosen such that the
equivalence of subscale and macroscale virtual work is satisfied. To obtain representative results,
the size of the RVE must be sufficiently larger than the characteristic length of the meso-scale
structure, e.g. the particle spacing in a particle-reinforced composite.

Apart from the basic assumption on scale separation, a number of other model assumptions are
(implicitly or explicitly) made as part of the computations in practice. One such model assumption,
valid for thin structures (such as metal sheets) is “macroscale plane stress”, which was discussed
extensively by Lillbacka et al. [3]. Another type of assumptions relate to the choice of substruc-
ture modeling (constitutive moddeling of constituents, size and type of boundary conditions of
the RVE, discretization of the RVE, to mention the most important assumptions. Hence, it is in-
evitable that model errors are introduced, and they should be quantified in addition to the standard
discretization errors on the macroscale. Methods for estimating the model error estimators have
been developed by, for instance, Stein and coworkers [4], Oden and coworkers [5], and Larsson
and Runesson [6, 7].

The purpose of this paper is to discuss various aspects on the fully adaptive two-scale CMM
computations, whereby the appropriate dual solutions on the subscale (RVE solution), as well
as on the macroscale, are exploited. Moreover, the dual method is adopted for computing the
macroscale ATS-tensor (with a brief remark on the primal method), which is an added bonus in
terms of increased efficiency.

Computational results

In order to investigate the performance of a fully adaptive procedure, we consider the coupled
meso-macro-scale computation for Cook’s membrane, as illustrated in Figure 1(b). The overall
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Figure 1: (a) RVE with periodic meso-scale arrangement of particles in matrix (2 x 2 unit cells shown in
the figure), (b) Cook’s membrane used in computational example of adaptive modeling.

dimension of the membrane is 48 x 60mm?2. The periodic meso-structure is depicted in Fig-
ure 1(a). The stiffness ratio particle/matrix is chosen as: Gpar/Gmat = 5 and Kpar/Kmat = 2.
Moreover, the volume fraction of particles is Vjar J/V = 4m /25 ~ 50%. The membrane, which is
assumed to be subjected to plane strain (in the present calculations), is loaded at its right end with
a conservative shear loading defined by the nominal traction

t()(X) = T*Gmateg for X € le, (1)

where Gy 1S the shear modulus, es is the unit base vector and 7 is a loading factor.

As the goal functional we choose the macro-scale displacement gradient component H1; in point
A, shown in Figure 1(b).

In Figure 2, we show the adapted mesh and model distribution obtained after 6 adaptive remesh-
ing/remodelling steps corresponding to an estimated error E™' ~ 5.8%. Finally, examples of
adaptively meshed RVEs using different tolerence levels for the subscale discretization (defining
the model hierarchy) are shown in Figure 3 for ¢ = 1, ¢ = 2 and ¢ = 3, where the tolerance is
defined as TOL(q) = 10~(@+1/2_ In particular, we note that the required mesh refinement also
resolves the substructure of the composite in terms of the boundary between the particles and the
matrix.



Figure 2: Adapted mesh (left) and model distribution (right), ¢ € {1, 2,3} (dark-light), for T* = 0.1. 6th
iteration corresponding to £™' = 5.8% is shown.

Figure 3: Examples of RVEs deformed according to the actual H for different tolerance levels (¢ = 1,2, 3).
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Summary

In this talk we present an adaptive finite element method for solution of coupled flow and transport
problems. We present applications to cooling processes and filters. The flow may be governed by
a pressure equation or the Navier-Stokes equations.

The method is based on adaptive finite element solution of the flow equation followed by solution
of the transport equation and builds on an a posteriori error estimate for the quantity of interest
in the transport equation, for instance the total integrated heat flux through the boundary of a hot
object. The a posteriori error estimate is derived using duality techniques involving two duals one
for the transport and one for the flow problem. The proper dual for the flow equation is determined
in the analysis and takes the specific coupling between the two problems into account.

The resulting estimate is of weighted residual type and can be used to guide individual adaptive
mesh refinement in the two problems. Furthermore, the dual problems may also be solved on
separate meshes.
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Summary Parameter identification is essentially a non-linear lsgsares fit of predicted model response
to experimental data. In this short paper we describe howakaiented a posteriori error estimation can
be used to assess errors introduced by finite element disdien of the underlying model. Moreover, it
turns out that the same procedure can be used to assessinaiaced by the particular model we seek
to calibrate.

Introduction

The calibration of constitutive models is an optimizationlgem, where the parameter values are
sought to minimize the discrepancy between the predictgubrese (which depends on the sought
parameters) and the observed response in a least-squases Isethe present situation the under-
lying equation of state is solved using a finite element naktlamd consequently, discretization
errors will be introduced such that the optimal paramet&resawill be perturbed. In order to en-
sure good quality of the parameter values, the errors (fetions) of the parameters arising from
the FE-discretization are estimategosteriori using the solution of an appropriate dual problem.
The general framework for calibration with sensitivity @ssments and error computation can be
found in [1] and [2].

In this paper, we seek to investigate the effects of califigad more inclusive model compared
to choosing a simple one. In particular, we strive to estintaé outcome without actually having
to carry out the full calibration of the more inclusive madelfact, it turns out that model errors
can be perceived as a special kind of discretiztion errgs.delieved that such information can be
vital in the subsequent task of validating the calibratedleho

Identification problem

We consider thealibration of a model describing some physical phenomenon in spaeeasihe
task of finding values of a parameter setuch that minimal discrepancy is achieved between ex-
perimental observations®® and predicted respons¢p, u). The predicted response is a function
of the variableu, which is the solution of atate problem, typically a partial differential equation.
We thus wish to solve the optimization problem: Fing: P such that the objective function(al)
of least-squares type,

Fp,w) = 5lls(p,u(p) — 5P ()

is minimized under the constraint thaandu € U satisfy the appropriate equation of state given
on abstract form as
a(p,u,v) =1(p,v) Vvl )

The Lagrangian function(al) pertinent to the minimizatimoblem defined by (1) and (2) is de-
fined as

ﬁ(p>u7 >\) = f(p, U) + a(p,u, >\) - l(p7 >\) (3)



wherep € P, v € U and the costate variablec U° are considered as independent variables. The

costate (or adjoint) solution plays the role of the lagrangnultiplier in the optimality conditions

characterizing a stationary poinatdéf (p,u, \) of L. Thus, we seek € Z 4f b« U x U such

that the Gateaux-derivative gfwith respect to: is zero, i.e.
LL(262) =0 ¥ozez0 ¥ Px10x 10 (4)
In order to be more explicit, we keep in mind that (4) considtdiree components
L(z;6p) = F(p,u; 6p) + a,(p, u, A; 6p) — I (p, \;0p) =0 Vop € P (5)

L) (z;0u) = F(p,u; 0u) + al,(p,u, \;0u) =0 Véu € U° (6)
L4(2500) = aj(p,u, A 6X) — 3 (p, A) = a(p,u, 6X) — (p,63) =0 VoAU’ (7)
where we denote (6) the costate equation and (7) is the sjatdien.

For the numerical solution of (4), we introduce a Finite Edindiscretization. Firstly, the state
spaceU is replaced by a finite-dimensional counterpdst C U in which the FE-solutionu,
resides. Consequently, we hakg < [U?L. Furthermore, we will consider the situation where we
make a restriction (not necessarily of FE type) in the patanspaceP, C P with the "discrete”
parameter sei;,. We write the FE-discretized version of (4) as follows: Find= (pp, upn, A\p) €

Zy, C 7 such that

©p, x U9 x 19 (8)

A natural choice of how to solve the nonlinear set of equati@) is by Newton’s method involving
the HessiarC”_, which in principle reads as follows: Find a better solut'aélﬁ“) = zf(bk) + Az

zz!

where the updaté z;, is solved from the linear Newton system

E'Z(zh; 5Zh) =0 Viz, € Z(})L

£ (oM 62n, Azy) = —LL(2");62) Yoz, € 7Y ©)

The practical implementation and solution scheme is orhittere.

We consider parametric models that hrerarchial in the sense that from a given model a coarser
(or simpler) version is obtained by prescribing some patamseo fixed values. One example
of such a hierarchy is Plasticity as a special type of Visasiatity (where "pure” plasticity is
retrieved if the relaxation time is set to zero). Anotherrapée is the Neo-Hooke hyperelastic
model, which is a simplified version of the Mooney-Rivlin n@bdvhich, in turn, is a special
choice of Ogden model.

The model hierarchy allows a specific model to be represeoyed suitable restriction in the
parameter spac. This important property allows us to treat model errorsxactly the same
manner as discretization errors, since this restrictiom ¢@mplete analogy to the restriction made
in the state spacB by the introduction of the FE-spaés,.

A posteriori error estimation

Upon introducing the discrete counterpart of the optingadindition in (8) above, discretization
errors arise. These errors are denoted asz — z;, and we assume that there is an error in each
componente, = p — pp, e, = u — up @andey = A — \p,. In order to estimate the effect of these
errors we will employ goal-oriented posteriori error estimations, as described in [1]. As a point



of departure we define a goal quanti®(z) of engineering interest, in which we wish to estimate
the error. Here, we focus on the analysis of the errors in éiharpeters, i.eQ(z) = p;. In order to

estimate the error in the goal quantity, we define the errasme ag (2, zp,) o Q(z) — Q(zn)
measuring the effect of computing using the discrete solutiop), rather than the actual solution
z. The secant form of the error measure and the linear appetiaimof the secant form can be
written as

1
Ezan) = O(z)— Qlap) = / Q. (en + s(= — zp)i€)ds & Oz, znie)
0

~ Q(zn znie) = Q(znse) (10)
In a similar way, we define the residuiland its secant form as

R(zp;0z) & L(282) =L (213 62)
=0

1
= / LY (zn + 8(z — 21); 02, €)ds & LY (z,2p;0z,€)
0

~ LY (2n, 20 0z,€) = L1, (2n;02,€) Yoz € Z° (11)
By the introduction of the dual variable' € Z as the solution to thdual problem
Ll (2,2, 2%,02) = Q(2,21,;62) Yoz €Z° (12)

we may (formally) obtain the exact error representationytilizing e € Z°, as
E(z,zp) = [Q'Z(z,zh;e) = ﬁgz(z,zh;z*,e)] = R(zp; 2") (13)

Unfortunately, it is not possible to solve the dual probldr@)(exactly, since it requires knowledge
of the unknown solutionr. Instead, we may utilize the approximations in (10) and (dlgrrive
at the linearized dual problem, which itself is discretizee seekz; < Z?L such that

L (zp: 25, 62) = Q. (zn;02,) Vo2, € 72 (14)
2z h z h

By subtracting an interpolant;, z; < Z?L of the dual solution the error representation (13) is split
into two terms, as

o def ~% ~% ~% ~%
E(z,zp) ~ E(z,2n) = Rizn; 7)) = Rzn; 25 — mh25) + R(zn; mh25) (15)
The first term in (15) estimates the error from the discrétnawhereas the second term estimates
the solution errors which arise in practice, typically frantermination criterion for the Newton
iterations.

From (5)-(7) it is natural to also split the residudl and consequently the error representation,
into p, u— andA—components. We can thus express (15) as

5(2, Zh) ~ R(Zh, 5;; — ﬂh,%;) + R(Zh,ﬂ'hz;i)

Model error Discretization error
o\ o\

= Ry(2n: B}, — Th}y) + Rulzns @ — mniiy) + R(2ns Ny — ThAL)
+ Ry (2n; Th) + Rou(2n; mhi)y) + Ra(zn; mhAp)  (16)

Residual error Solution error



Note here that the decomposition in (16) is chosen such figatémponents correspond to dif-
ferent special cases. In order to illustrate this, we nowediard the solution and residual errors,
and consider the model and disretization errors. If we hazdemmo enrichment of the parameter
space, i.eP; = P, the model error component vanishes and we estimate ordyetiization er-
rors. Analogously, if we make no refinement of the state spaeel? = U?, we measure only
model errors. In the case where b&thandU!) are enriched both sources of errors interact.

Example

In order to give an example of the underlying problem, we wrsthe calibration of the evo-
lution law for the Norton viscoelasticity. The model is cheterized by the parameter get=
{E, 7, n.}, which are, the E-modulus, relaxation time and creep expomespectively. The
simple model in this case is Maxwell's viscoelasticity miotiet is obtained by restricting the
exponent, to unity. For given synthetic data we consider four casesaase mesh and Maxwell
model, whose optimal parameter sepi$®™ = {10.0589, 43.619, 1}, a coarse mesh but the
Norton model,plg{)Ort = {10.6142, 0.97599, 1.97444}, a very fine mesh and the Maxwell model
pMax = {96585, 45.5588, 1} and, finally, a fine mesh and the Norton mogt™ = {10.0005,
1.0835, 1.9793}. Also, another synthetic data set constructed to give smaiffors was tested.

Although we do not give the detailed results here, in the oakgge model errorsr(andn. varies
more than one magnitude) it was found that the error estimagives poor precision (effectivity
indicesny = 0.4—3) while, in the case of moderate model errargi(dn, varies more 10-40%), we
obtain better precisiom(= 0.5 — 1.2) of the error estimations. A graphical interpretation igegi

in Figure 1. Since we make use of a linearization arquijtt for the error estimation, we can only
expect to estimate the pap§™ — pX™* andpMax — pMax although we really seek to determine
prNe‘g“ — p¥*. Thus, a good precision in the error estimations requirasttie discretization and
model errors are independent of each other, i.e. the foutisnk should form a parallelogram in
P-space. In the case of large model errors, it can be seerhthdidcretization errors change quite

a bit between the Maxwell and Norton models compared to tke ohmoderate model errors.
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Figure 1: True error if® (£ — 7-plane) for large model errdteft) and for moderate model errénight).

References

[1] H. Johansson and K. Runesson. Parameter identificatiooristitutive models via optimization with
a posteriori error controlnt. J. Num. Meth. Eng., 62, 1315-1340, (2005).

[2] R.Becker and B. Vexler. Mesh refinement and numericaigigity analysis for parameter calibration
of partial differential equationsJ. Comput. Phys., 206, 95-110, (2005).



A sorption hysteresis model for cellulosic materials

Henrik Lund Frandsen

Department of Civil Engineering
Aalborg University, Aalborg, Denmark
e—mail: hif@civil.aau.dk

Lars Damkilde

Esbjerg Institute of Technology
Aalborg University, Esbjerg, Denmark
e—mail: ld@aaue.dk

Summary The equilibrium concentration of adsorbed water in cellidanaterials is dependent on the
history of the variations of vapor pressure in the ambienti&. sorption hysteresis. Existing models to
describe this phenomenon such as the independent domaiwy theeve numerical drawbacks and/or imply
accounting for the entire history variations of every mialgyoint. This paper presents a sorption hysteresis
model based on a state formulation and expressed in clasaddolutions, which makes it suitable for
implementation into a numerical method.

Introduction

Cellulosic materials adsorb water from the ambient air mdisig of the water molecules to hy-
droxyl groups on cellulose. The amount of adsorbed wateefeddent on the relative humidity
of the air and on the amount of hydroxyl groups available cwldigain is dependent on the varia-
tion of the relative humidity. Hence, at a given relative hdity a cellulosic material may contain
more or less water dependent on the preceding path of thesegtaumidity variations, see figure
2. During adsorption the material swells and more hydroxgligs become available for adsorp-
tion. Since water occupies the hydroxyl groups, hydrogemdbdetween the cellulose molecules
are prevented from re-establishment during desorptions;Timore hydroxyl groups are available
during desorption than during adsorption. For an arbitvaryation of the relative humidity, more
or less hydroxyl groups may be available leading to conalitibetween pure adsorption and pure
desorption on so-called scanning curves.

In figure 1 the terminology is presented by the variation &dtree humidity in the ambient aif,
and moisture content in woogh (=concentration of water /dry density of cellulosic madéri

My 0.3 o measurement of,
- A measurement afy
5 = 0.25 ¢ measurement ofi,
= Qo simulation
2 £ 02
c o
S o 0.15
9 Med A g ’
S Md R A % 01
.g M |- oo : 3 : 'g '
= TA: adsorption 0.05
- boundary curve
. . N . # 0 n n n n
0 Tope ha  hed 1 0 0.2 0.4 0.6 0.8 1
relative humidity,k relative humidity,h

Figure 1: The terminology of sorption hysteresisFigure 2: Measurements of boundary and an ad-
sorption scanning curve in Norway Spruce [1].

Existing models

A classical approach for modeling sorption hysteresisadrnldependent domain model developed
by Everett et al. [2], refined to require less calibration sueaments by Mualem [3], and applied



to wood and paper by Peralta [4] and Chatterjee [5], respgEgtiThe independent domain theory
involves complicated accounting for a volume integral ofiaction over a varying 2D-domain
for each point in a material to obtain the moisture conterddifionally it implicitly involves
singularities of the function over the domain, as shown |n [6

A simpler model by Pedersen [7], stated as a set of diffeakatjuations, provides a good alter-
native. Though, the differential equationfirandm must be solved numerically in the vicinity of
the actual state for each step in time.

The proposed model
The proposed sorption hysteresis model has the followingradges:

e Formulated in terms of current state, thus no accountinghimistory of the relative hu-
midity variations is required.

e Formulated as closed-form expressions enabling easy titegration.

e Generalizes the scanning curves to be independent of thpetatare dependent boundary
curves by a normalization .

Uniqueness of scanning curves

In [6] itis argued that adsorption scanning curves origirahdifferent points will not intersect and
likewise for the desorption scanning curves, see figure Bcklea state within the boundary curves
are uniquely defined by the origin of the scanning curve legadb the state, i.e:0 = {h2, m{}
andz) = {h),mJ}, see figure 4.

---- adsorption scanning ' ---- adsorption scanning

&€ | — desorption scanning g — desorption scanning
2 7 2
5 5
o = o
g B g 0 4
2 ’ 2 Py S0
2 %)
o o
S 1S

relative humidity,h
Figure 3: Grid of non-intersecting adsorption scarkigure 4: Definition of a state from the scanning
ning curves and non-intersecting desorption scaedrves origin states? andzJ).
ning curves.

Generalization of scanning curves

The expression for the scanning curves will be stated in ¢nmalized parametet(h), which is
the fractional amount of exploited hydroxyl groups at theegirelative humidity
m(h) — ma(h)
s(h) = 1
Hereby the material-, species- and temperature-depebdentdary curvesi,(h) andmgy(h) are

excluded from the expression for the scanning curves. Indgb and 6, some scanning curves
from the different measurements are presented in the 1 byrialized domain.

The mathematical model

As seenin figures 5 and 6, the slope of the desorption scannings originating at the adsorption
boundary curvel{ = h?, s = 0) will approach the desorption boundary curse=¢ 1) asymp-
totically, i.e. ds/0Oh — 0. Similar observations are made for the adsorption scancimges
originating at the desorption boundary curse= 19, s = 1), i.e.ds/0h — 0T for s — 0.



The mathematical model in equation (2) implicitly fulfilleese requirements and implies the
scanning curves to be uniquely defined by their oridif\endhr), see figure 4

( )(ln<d2<1 hO)))

142 h>0 A sp>0

—h
—h0
s= ( )< d2h°) 2
22 h<0 A sp<1
0 h>0 A sp=0
1 h<0 A sp=1

whered; andd; are shape parameters. Equations (2a) and (2b) model theisgairves during
adsorption { > 0) and during desorption(< 0), respectively. Equation (2c) simply states that
a state with origin on the adsorption boundary curve=(0) will follow the adsorption boundary
curve if adsorption is taking placé & 0) and similarly for desorption in equation (2d). Since the
scanning curves are known to trail through the initial state= {hq, mo}, the expressions far?
andh can be obtained by solving (2a) and (2b) fdrand”9, respectively

ho = holdeho)™ . BG=1—(1—ho)(da(1 — ho))* 3)
where
__In(In(2)) — In(In(2 — s9)) _ In(In(2 )) ln( (14 s0))
U= @) —mmC—s0) -d 27 @) -mmd 1) -d D

The result in terms af.(h) can be obtained by the reverse mapping) = (mq(h)—mq(h))s(h)+
mq(h). An analytical expression for the derivative for time imtgpn into a numerical method is
also easily obtained.

Fitting of the model

In figures 5, 7 and 2, measurements of scanning curves fotigoiip Yellow Poplar by Peralta
[8] and Norway Spruce by Ahlgren [1] are simulated by the psmal model. The scanning curves
for sorption in a bleached-kraft paperboard measured byt€tee [5] are simulated in figures 6
and 8. The applied shape parametérandd, for wood and paper are shown in table 1.

1= 1
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0.6f 0.6f

0.4} 0.4}
——— meas. degorp. [8]
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— — — sirqulation
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0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
relative humidity, relative humidity,r
Figure 5: Scanning curves from sorption in NorFigure 6: Desorption scanning curves from sorp-
way Spruce [1] and Yellow Poplar [8]. tion in bleached-kraft paperboard [5].

In figures 5 and 6 at — 0 and ath — 1, the deviations of the measurements displayed wik
a function ofh appear larger, since the denominatos @pproaches zeror{, ~ my).
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Figure 7: Desorption scanning curves from sorg-igure 8: Desorption scanning curves from sorp-
tion in Yellow Poplar [8]. tion in bleached-kraft paperboard [5].

Wood Paper
dy -1.32 -1.28

ds 088 0.57
Table 1: Shape parameters of the scanning curves

Conclusion

The present paper proposes a sorption hysteresis modeh wiiers advantages for implementa-

tion in a numerical method. Easy time integration is obtdibg expressing the scanning curves
in closed-form solutions with the current state as the omput parameter. General applicability

is provided by excluding the material, wood-species angtature dependent boundary curves
boundary curves from the hysteresis scanning curves.
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Summary The paper outlines a novel time-sequential space-timetadeagirategy for the finite element
method applied to a class of nonlinear and time-dependebtgmns. In particular, the non-linear coupled
problem of poro-mechanics is studied as a prototype problem

I ntroduction

The poromechanics problem, which is of particular releeangeotechnical engineering, is a cou-
pled problem in displacement and pore pressure (in its gishfibrm), and it may involve geomet-

rical as well as material nonlinearity. Typically, fine-gread soils are modelled as (visco)plastic
media. The natural variational setting allows for spaoeetiFE using dG- or cG-methods in
time depending on the expected dominating character (sfa#isi or dynamic). Previous work

in this area, applied to the mathematically similar problginthermoelasticity, focuses either on
space adaptivity [1] or time adaptivity [2] separately, l@hiestricting to linear elastic response.
In this paper, we discuss goal-oriented error computatiahthe suitable strategy for the com-
bined space-time adaptivity while accounting for nondiriges. In particular, we discuss ways of
avoiding complete remeshing in time due to the strong digsip (damping of error) via a time-

sequential space-time adaptation of the mesh. In this manaigher complete re-computations
nor excessive data storage are required.

Numerical results for a geometrically nonlinear hyperstgsorous solid with fluid-filled pores are
presented. In particular, we study the accuracy of the ptedeerror estimation and the efficiency
of the proposed adaptive strategy for different choserr eneasures and different levels of non-
linearities.

The abstract problem
We establish the weak form of the space-time problem asdistio

Z/I [(de®[2],62) + al=:62)] dt + (P [=(65)] L 6=(t0)) +Z D62 )

—Z 157: dt + (®[20], 02(t]))

where®|z] is the conservation quantity,e; e) is a spatially weak form pertinent to the balance
relation(s), possibly non-linear, ah@) represents (spatial) data/loading to the problem. The sum-
mation in the weak form is made over each discrete time-sl@peover,z denotes the unknown
solution and®,, is the initial condition on®[z]. In the studied case of quasi-static loading of a
porous medium, we may set= (u, p), whereu andp are the displacement of the solid skeleton
and the pore-pressure, respectively. Given a finite eleaggmoximation ok, we may compute

the space-time residual & zy; dz).



Based on duality arguments, we seek the error in a quantitytefest, &/, via the solution of

the auxiliary dual problem. A hierarchical decompositidrihee pertinent dual solution* can be
expressed as

(s)

=+ AP AP A

25+ AT,

wherez; is the part inside the FE-approximation spaﬁé?* is the spatial enhancemem,(?* is

t), . . . . .
the temporal enhancement, Where‘ﬁ(é)* is the combined enhancement. Using the hierarchical

split of the dual solution, we may express the error in terfrt@residual as follows:

(s) (®) (st)
z

R(2,°%2%) = R(z,7% 23) + R(2, % A2 ) + R(5°% AZ ) + R(5°% A 2), (1)
~F ~FsoL (s) (t) (st)
=EFEM =EFEM = F FEM

(s)
wherekE,,,; is the error due to incomplete solution of the non-linea$&E-equations and pry,
(t) (st)
FrrMm and E ggy are the discretization errors.
Based on a coarse dual solution, i.e. a coarse primal- arlesdludion sweep, the error estimate
can be evaluated sequentially, without recursive comjpusiof the entire problem. In this man-
ner, the problem is solved in one single step, aiminggfobal error control in space and time in
a quantity of interest.

Numerical example

The proposed strategy is employed for the solution of a meal poro-(hyper-)elastic problem.
Snap-shots of the resulting spatial meshes for a targetancof0.5% in a time-integrated pres-
sures value is shown in Figure 1.
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Figure 1: Snapshots of resulting meshes using a time-ségLataptive strategy. The adaptivity targets the
accuracy in a time-integrated (regularized) point-wisespure.
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An integration algorithm for elasto-plastic damage

Mathias Wallin* and M atti Ristinmaa
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Summary In this work the constitutive evolution equations are reformulated using the assumption of
constant strain rate which results in a set of ODEs. The set of ODEs is reduced using a compact description
of the stress space. To calculate the consistent tangent an extra set of ODEs needs to be solved. This
set of additional ODEs is solved simultaneously with the evolution equations, which allows for an effi-
cient numerical treatment. To investigate the solution method an elasto-plastic damage model is considered.

Introduction

To make practical use of constitutive material models some numerical method, e.g. the finite ele-
ment method, must be employed and the constitutive equations must be solved (integrated) over a
finite step in time. Due to the importance and complexity of this problem, several approximative
algorithms have been developed with different accuracy and stability properties. However, these
algorithms have not only importance for the accuracy of the numerical integration of the con-
stitutive equations, but they also influence the corresponding algorithmic (or consistent) tangent
stiffness matrix used in a truly Newton-Raphson scheme when the global equilibrium iterations
are performed.

The canonical method, today, for integrating the constitute laws is the closest point projection
method. This method is based on an implicit scheme where the yield criterion is enforced at the
end of the time step. In the present work the constitutive equations are reformulated using the as-
sumption of constant strain rate within a time step. The assumption allows the evolution equations
that govern the response of the material to be rewritten as a set of ordinary differential equations
(ODEs). Several methods for solving ODEs exists in the literature and in this work we will make
use of a Runge-Kutta scheme.

Assumption of constant strain rate

The finite element solution procedure provides the displacement field at discrete time steps and
the task for the constitutive driver is to update the stresses and internal variables accordingly. In
order to formulate the constitutive equations as a set of ODEs some assumption of how the strain
vary in the time step must be made. For the situation where small strains applies the simplest and
most natural assumption is to take the strain rate to be constant during the integration process, i.e.

e A
At

where Ae and At are the strain increment and time increment between two states in the time
discretization, respectively. Using this assumption it will be shown that the evolution laws for the
plastic strain and the internal variables can be written as a set of ODEs, i.e.

Y= f(y, € (2)

The size of the system is mainly determined by the number and rank of the internal variables. For
complex constitutive models the size of system becomes significant and in the present approach

(D



we will make use of a set of reduced variables to describe the stress space. This approach has been
used by Krieg and Krieg [1] and Ristinmaa and Tryding [2] who was able to obtain a closed form
solution for some simple constitutive models. It turns out that for the isotropic hardening elasto-
plastic damage model that will be considered a system of only three variables must be integrated.
However, it turns out that no closed form solution can be obtained, i.e. a numerical integration
scheme must be adopted.

Before an integration of (2) can be performed the integration limits must be identified. Using (1)
it turns out that one (possible non-linear) scalar function can be used to determine the integration
limits, i.e. the time when the response switches from being elastic to elasto-plastic. Having the
integration limits a standard ODE solver will provide the solution. A group of solvers that have
proved to be reliable for stress updating are the Runge-Family solvers, cf. Wallin and Ristinmaa
[3]. One important feature of the Runge-Kutta solvers is that they provide an estimate of the error.
This error control can be used to determine an acceptable step-length.

Consistent linearization

The use of the ATS tensor that follows from a consistent linearization of the algorithmic elasto-
plastic laws is crucial for the convergence rate in a Newton-Raphson scheme. In the present algo-
rithm it turns out that the set of internal variables y must be differentiated with respect to the new
displacement field, i.e.

dy
X =— 3
e 3)
must be obtained. Straight forward differentiation of (2) with respect to the strain results in
. Of of
X=X+ 4
oy + e 4)

It should be noted that (4) constitutes a set of ODE:s. In the present approach (2) and (4) are solved
simultaneously which significantly reduces the computational cost. In conclusion, the set of ODEs
that needs to be solved takes the form

. d |y | .
z_%[X}_F(Z,e) &)

From the updated solution Z it follows that all internal variables as well as the algorithmic tangent
stiffness tensor can be calculated.
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A SPATIAL FORMULATION OF ANISOTROPIC MATERIAL AT
LARGE STRAINSWITH APPLICATION TO CUBIC MATERIAL
SYMMETRY
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Summary An anisotropic large strain elasto-plastic material model based on a spatial formulation is
presented. The anisotropic properties of the material are modeled by structural variables. The evolution
of the anisotropy is accounted for by introducing a linear map similar to the deformation gradient, but
operating on the substructure instead of the continuum. The performance of the model is investigated for
cup drawing of a material with cubic symmetry.

Introduction

The modeling of anisotropic material is often made by introducing additional variables account-
ing for the directional dependent properties for the material, e.g. [1]. As the material is deformed
by external load one would expect that these directional dependent properties would be affected
and evolve in some way. When modeling large strains the usual approach is to decompose the
deformation gradient into an elastic and a plastic part and by doing so one automatically intro-
duce an intermediate configuration. The orientation of this configuration has to be dealt with by
care, especially for anisotropic materials. This was discussed by e.g. [2]. Here the evolution of the
substructure was accounted for by a skew symmetric tensor called the plastic spin, describing the
spinning of the substructure in reference to the continuum. However, when adopting a spatial for-
mulation it can be shown that no specific choice of the intermediate configuration has to be made.
Furthermore, based on [3], the evolution for the substructure is in the presented work described
by second order tensors, i.e. a more general format. The development of evolution laws for the
continuum and for the directional variables is made in a thermodynamically consistent way. By
investigating the dissipation inequality the definitions of the stress, here the Kirchhoff stress, and
for the stress driving the evolution of the directional variables can be obtained.

Procedures and results

The modeling of elasto-plastic material at large strains is here accounted for by a multiplicative
decomposition of the deformation gradient, ' = F'°FP, into an elastic, F'®, and a plastic part,
FP. To model the anisotropic material behavior unit directional vectors, V(O‘), are introduced
in the reference configuration. These director vectors represent in a phenomenological way the
substructure of the material which is assumed to hold the directional dependent properties of the
material. As the material is deformed the director vectors are affected and a new set of director
vectors in the current configuration is obtained as v(®) = A(@ V(@) A(®) represent linear maps,
here called substructural deformation gradients, which operates on respective director vector. It is
emphasized that this is a general second order tensor. In a similar fashion as for the deformation
gradient these maps are decomposed, A = a(®3(®) into one part associated to the elastic
deformation, a(®), and one part associated to the plastic deformation, 3(®. The kinematics for the
continuum and the substructure are summarized in Fig.1 From the multiplicative decomposition of
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Figure 1: Deformation of the (a) continuum and (b) the substructure.

the deformation gradient and of the substructural deformation gradient one obtains the following
relations

L,(b°) = —2sym(LPb°)

L0 @) = (P — Al M
where £, (b¢) and £, (v(®)) denotes the Lie-derivative of the elastic Finger’s tensor, b¢ = F¢FT,
and the Lie-derivative of the spatial director vectors, respectively. LP represent the spatial plastic
velocity gradient for the continuum and (@) the equivalent quantity for the substructure.

To derive specific evolution laws associative plasticity was assumed where the yield function acts
as convex plastic potential function. For the evolution of the substructure the following specific
form was adopted

A® = 2 (brb ! — 1) @)

here A is the non-negative plastic multilayer, 7 a material parameter and 7 is the Kirchhoff stress
tensor. The result of this specific evolution law will be that the plastic deformation rotates the
director vectors in the intermediate configuration to a different orthogonal triad and the unit length
will be preserved.

For an anisotropic material the standard exponential integration scheme is not convenient to use,
this due to the non-coaxiallity of the stresses and their conjugated flow directions. Here a fairly
simple integration routine is used where an extra constrain is introduced to assure plastic incom-
pressibility.

To test the model simulation of a cup drawing process was performed. A typical result from the
simulations is viewed in Fig.2. From Fig.2 it is shown that the characteristic “earing” shape of the
cup has been successfully simulated.
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Figure 2: Result from simulation of the cup drawing process.
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Computational Aspectson Multiscale M odeling of Polycrystallines
with Gradient Crystal Plasticity
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Summary This contribution deals with humerical aspects concermmifiscale modeling of polycrys-
talline metals. Each grain in the microstructure is modégdrystal plasticity with gradient hardening in
order to capture size-effects in the modeling.

Introduction

This contribution deals with the simulation of the behawiba grain structure of a polycrystalline
metal. If such a grain structure is sufficiently large it canrbgarded as a representative volume
element (RVE), which plays a key role in multiscale modelifignaterials. The behavior of such
a grain structure depends on, e.g., grain geometry, voluastidn of different phases, and grain
size. A way of including the grain size dependence in the nimglef the grain structure will be
presented. Alternative formulations can be found in, €14, [2].

Within the framework of continuum thermodynamics and fisiteins, we formulate a model for
crystal (visco)plasticity, crystal and gradient hardgnihe gradient hardening gives a contribu-
tion for each slip system which is added to the well establislocal hardening.

In order to solve the arising coupled field equations (fordisplacements and the hardening of
the slip systems) the dual mixed FE algorithm proposed iis[8pplied. The contribution presents
numerical study how model parameters (such as grain siléhfiience the homogenized macro-
scopic stress-strain response of a 2D model of a polycrystal

Finally, an algorithm that parallelize the total FE problanto an FE problem for each grain is
presented.
Crystal plasticity model

In order to include a gradient dependence of the hardenirigbla k., associated with the slip
directions,, we propose the following free energy (per unit undeformeldme):

U(C ko, 8o+ Vha) = We(C) + ) EHﬂcZ + 3 Hg 2 (50 Vhof? (1)

whereC is the elastic Cauchy-Green tensor.

The plastic part of the free energy can now be used to defindofloying the arguments put
forward by [4] the local hardening stress; and the gradient hardening stress,:

ov
Ral = _% = _Hl k:a (2)
ov 0%k
-V — =H, 222
,‘img \% 6Vka gla 653 (3)



Hence, the total hardening, in each slip system consists of a local and a gradient part:

o5 0%k,
Ko = Ka,l T Ka,g = —Hy ko + Hg I, @ 4)
In summary, we assume the following evolution equationgiefassociative type):
_ . . 0P, . -
b=Fp =) da==%=> Aa[8a®my] (5)
(0% 6M (0%
. . O .
ka = )\aa— = _)\a (6)
Ok

where, in a viscoplastic formak,, can be expressed as
1 [(@O)]m

e

67

A rate-independent solution is obtained.if— 0. In the above expression the yield functiéy
is defined as:

P, = Mt : [Ea & ’I’_na] — Ra — Oy« (7)
where M is the elastic Mandel stress.

Numerical examples

Henceforth, we consider a square Representative Volumadile(RVE). For simplicity, we as-
sume plane strain for the RVE. All the grains have four sliptegns, with directions randomly
chosen for all grains. Dirichlet boundary conditions onltbendaryl’ of the RVE are chosen that
correspond to a prescribed macro—scale deformation giaBie= I + H. Hence, the boundary
conditions are

u(X)=H-X, XeT (8)

We have assumed the boundary conditign= 0 (= k. = 0) at grain boundaries. Furthermore,
the results shown below are for the case of rate-indepeedére,t, — 0). The macroscopic
shear stres®|, vs the macroscopic shear straims shown in Fig. 2 for three values of the square
RVE’s side—lengthl.

Fig. 1 shows the size effect due to gradient hardening fodfixaterial parameters but for in-
creasing grain size. The plot shows a representation oflistigstrain field, in terms of effective
hardening strairkeg = \/k? + k2 + k3 + k3. Since the (absolute) size of the boundary layers
with large gradient effects should be approximately theesamgardless of the actual size of the
grains, the boundary layers will appear thinner when théngs&ze increases (which is clearly
demonstrated in Figure 2).




Figure 1: Effective hardening strait.s. Unconstrained displacement field. Comparison for RVE side
lengths 4,8,16:m (from left to right). The same color scale is used in all plots
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Figure 2: Macroscopic stress—strain respor3g {/s. ¥) showing the size dependence on the amount of
hardening.
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Summary Different aspects of the plane stress condition in conctirt&o-scale computational (first
order) homogenization are discussed. The basic ingrediermomputational homogenization is the
calculation of the macroscale stress, for given macrosdefermation, via RVE-computations. Two
modeling assumptions are compared: The subscale (Hil) tgpd macroscale type (Taylor type) plane
stress conditions. The corresponding iterative strasegiel the macroscale algorithmic tangent operators
are derived using the primal (conventional) approach. Téréopmance of the various iterative strategies
are compared for a single RVE-problem as well as in a fullycoorent analysis of a complex substructure
(duplex stainless steel) under realistic subscale magléliised on crystal plasticity with hardening.

Introduction

A general approach to account for the effect of the material sultsteuin constitutive modeling
is to carry out (analytical or) computational homogenization on a RepatsenVolume Element
(RVE) as the key ingredient of Computational Multiscale Modeling (CMM)isTgtesumes com-
plete scale separation such that the subscale solutions interact only viadimgigenized results
on the macroscale, typically via equilibrium of macroscale stresses. To obfaiesentative re-
sults, the size of the RVE must be sufficiently larger than the characterisgithlenthe subscale
structure, e.g. the particle spacing in a particle-reinforced composi#olefli and Wriggers [3].

Fully 3D concurrent multiscale computations for materials with complex substeuete still
prohibitidly expensive, which motivates resorting to 2D modeling when plessithereby, the
plane stress assumption is a classical condition; however, it is possible teertip® conditions in
two different ways in the context of homogenizationSipscale plane stressmeans that the plane
stress condition is imposed on the subscale everywhere within the RVE (whitetresponding
subscale out-of-plane strain componenets are unknowns to be comgu}eddpcroscale plane
stress means that the plane stress condition is imposed as the constraint of vamishirascale
stress (while assuming a Taylor assumption on the corresponding olaraf-gtrain components,
such that these macroscale components will be computed).

A particular issue is the efficient computation of the macroscale algorithmicriaeg#ness ten-
sor based on the availability of the corresponding subscale tangenth(ighobtained upon the
appropriate linearization of the time-integrated evolution equations for intearriables pertinent
to the subscale constituents).

The presentation is outlined as follows: First, the variational settings fordhgncious format
of the subscale and macroscale plane stress RVE-problems are esthfdlishéE-formulations
and pertinent iterative algorithms are then given, and the pertinent rsaate-algorithmic tan-
gent stiffness (ATS) tensor is computed (using the primal approack)middel problem for the
algorithmic evaluation is presented including a short summary of the cryssdigithamodel that
is used in order to have a realistic subscale modeling of the Duplex Stainlet{[3%S) mate-
rial, cf. Ekh et al. [2]. Computational results are given that illustrate theenite of the different



model assumptions as well as the performance of the various iteration ssdbegh for single
RVE computations and for full-fledged concurrent sub-macroscale atatign.

Computational results

For all calculations, a cold worked austenitic-ferritic duplex stainless §&8) with a phase
fraction of 50% for both phases is considered. The cold working gée®the characteristic elon-
gated phase structure that can be seen in Fig. 1. The underlying phasstgucture is identified
in the RVE, which is attached to every Gauss point in the macro-scale grkigcfl. The RVE is
generated using a Voronoi polygonization algorithm, cf. Cannmo et alaf] it is composed of
64 grains that are discretized using CST elements.

Voronoi

Austenite (FCC) Ferrite (BCC)

Figure 1: Grain/phase structure of DSS, the 2D RVE and ufig.ce

We shall consider the macroscale response of a single RVE for theatliffglane stress conditions
and iteration techniques. The macroscale in-plane deformation mode is sinagle which is
applied to the RVE as a prescribed macro-scale displacement gradiedlj.e.,ye; ® ez. As
the macroscale output we compute the Cauchy shear strgss

From the results in Fig. 2 it can be seen that the macroscale plane strel#socogives rise to

a stiffer response than does the subscale plane stress condition. dilgariebe rationalized by
recalling that the macroscale plane stress assumption introduces a staterafiged plane defor-
mation with respect to the out-of-plane direction. Hence, a Taylor typerafition is introduced

for the deformations in the out-of-plane direction. Obviously, this conditiorogep a kinematic
constraint as compared to the subscale plane stress condition, which thegtathe response will
be stiffer (in accordance with numerical observations).
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Figure 2: Macroscale Cauchy shear stress vs shear stragnddshed line corresponds to the macroscale
plane stress condition, whereas the solid line corresptntiiee subscale plane stress condition.

In order to investigate the difference in the stress and strain distributiotieesub-scale for the
two plane stress conditions, the (effective) von Mises stress is showg.i.Ht can be seen that,
by-en-large, the macroscale plane stress condition gives a somewdeat éfflective stress than
the subscale plane stress condition.
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Figure 3: Subscale von Mises effective stress and displantstiory = 1.0: Macroscale plane stress con-
dition (left) and subscale plane stress condition (right)

Another illustration of the difference between the macro- and subscale ptegss conditions is
given in Fig. 4, which shows the distribution of the out-of-plane Cauchgssirss. In particu-
lar, for the subscale plane stress condition the Cauchy stress is eqeabtm zhe whole RVE.
However, for the macroscale plane stress condition the stresses vwaumgebelarge tensile and
compressive values, although the volume average is always equabtazemposed).
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Figure 4: Subscale out-of-plane Cauchy steegsfor v = 1.0: Macro-scale plane stress condition (left) and
sub-scale plane stress condition (right)
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An experimental method to determine compliance curves
close to the crack tip and comparison with PD-signal for
fatigue cracks exposed to overloads
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ABSTRACT. Fatigue crack propagation rates are affected by the characteristics close
to the crack tip. A method is developed to measure the displacements along the crack,
close to the crack tip, using high resolution scanning electron microscope images.
Images are taken throughout the load cycles to observe the displacements of a crack
exposed to one single overload. The potential drop technique is used to measure the
electrical contact between the crack surfaces.

For experiments with R=0.03 and AK in the mid Paris region and higher, a remaining
displacement is detected and both the crack opening and closure loads are decreased
after the overload. This leads to an increasing effective stress intensity factor range
which results in an initially higher crack propagation rate following the overload.

INTRODUCTION

From the work by Elber [1] in the seventies it is well known that the crack closure level
has a pronounced influence on the crack propagation rate. The assumption is that the
stresses in the crack tip vicinity become positive at the stress level where the crack
opens. From this load, measured globally, and maximum load, an effective stress
intensity factor range can be calculated. With this entity, the dependence on stress ratio
R can be eliminated, so that the crack propagation rates are the same at same effective
stress intensity factor range.

When a fatigue crack is exposed to an overload, the crack opening level is changed and
the plastic zone size is increased, and this will influence the crack propagation rate
da/dN [2], [3], with a the crack length and N the number of cycles. Under small scale
yielding conditions the changes in da/dN are related to variations, through the load
cycles, in the crack shape close to the crack tip, and the shape may be affected due to
residual stresses, crack surface roughness or other features.

To measure the opening and closure stresses levels, different techniques can be used.
The compliance method provides the global load versus displacement, measured e.g. at
a point far from the crack, at the crack mouth, or along the crack path. For this, different
types of extensometers, or clip gages [4] are used, or microscope observations [5] made.
Another method to measure the crack closure and the crack propagation rate is the
potential drop technique [6], [7]. This method measures the electrical potential drop
over the crack mouth when a direct current passes through the test specimen.

The aim of this study is to investigate the characteristics of the crack tip displacements
continuously during the load cycles for the case of a fatigue crack, exposed to one single
overload. An in-situ scanning electron microscope (SEM) technique is used to take high



resolution images of the crack tip region, and the images are analyzed with an image
analyzing computer program.

EXPERIMENTAL PROCEDURE

In-situ SEM crack propagation experiments were performed on Inconel 718. The
experiments were run with load cycles with constant applied minimum and maximum
loads, resulting in increasing stress intensity factor with increasing crack length. The
crack was grown some distance away from the initial notch where after one single
overload cycle was applied. The overload cycle, the cycle before it and the one after
were observed. Compliance curves were measured at a small distance behind the crack
tip from high resolution SEM images taken during the load cycles.

RESULTS AND DISCUSSION

Compliance curves were produced from displacements close to the crack tip to include
effects from the plastic zone. This effect was obvious in the mid and high Paris regions,
with stress intensity factor ranges between 40 and 70 MPaVm and including one single
overload cycle. During the overload the plastic zone increased, resulting in a remaining
deformation of the crack faces, that separates them up to a distance of 10 um from the
crack tip at zero load. This is seen from the compliance curves in fig. 1 for the overload
cycle, the cycle before, and the one after the overload. Figure 1 applies to
AK=65MPa\/m, R=0.03, and K,~82 MPa\/m, with K,; denoting the overload stress
intensity factor.

The compliance curve after the overload, o in fig. 1, shows that the opening and closure
stresses have lower values as compared to prior to the overload, which gives less crack
closure. This results in a higher effective stress intensity factor range, which increases
the forces on the material at the crack tip, leading to increasing crack propagation rate
directly after the overload.

Observations of the shape of the crack close to the tip during the overload cycle show
that at moderate load levels, the crack tip is sharp even during the overload. When the
load level is increased, the crack tip starts to blunt due to the large plastic deformations
of the grains at the crack tip. These grains are damaged from plastic slip, which results
in a crack tip region with numerous sharp micro cracks. The following crack extension
starts from one of these micro cracks, and a sharp crack tip is formed through
coalescence with the blunted crack tip formed during the overload. There are no
remaining displacements in the crack vicinity for the some hundred cycles following the
overload.

For every cycle following the overload cycle the opening and closure loads from the
compliance curve increase due to increasing length of the sharp crack propagating away
from the blunted area. The shape of the compliance curve after the overload gradually
approach a shape similar to the one before the overload, but at a higher PD-signal level,
i.e. the potential drop is increased due to the increase in crack length.

One characteristic of the potential drop curves is a pronounced knee at high stress
intensity factor levels and this provides the level of crack opening and closure loads
where the crack surfaces have no electrical contact, cf. fig. 2. This load level is higher



than the opening and closure loads measured from the compliance curves. For loads
close to the threshold value there is no knee in the PD curve because the crack tip is
sharp and there is still electrical contact between the crack surfaces at maximum load.
This is in contrast to cracks in the mid and high Paris regions, where the crack opening
displacement is larger, and the crack surfaces are electrically separated at maximum
load.
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Figure 1. Compliance curves for the cycles before (A), during (o) and after (0) the
overload cycle. AK=65MPa\/m, R=0.03, K,=82 MPaVm. For J, cf. fig. 1.
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Figure 2. Potential drop signal versus applied load. The curves refer to before (A),
during (0) and after (o) the overload cycle. AK=65MPaVm, R=0.03, K,~=82MPavm.



CONCLUSIONS

To investigate the mechanisms affecting the crack propagation rate an image analyzing
technique was developed to measure the displacements close to the crack tip.
Compliance curves were obtained from the measured displacements, and crack opening
and closure loads determined for different load sequences.

It was found that the shape of a compliance curve is affected by the plastic zone close to
the crack tip, even at small scale yielding.

At potential drop measurements knees during loading as well as during unloading give
distinct levels of crack opening and closure. For the mid Paris region, the crack tip was
found to be sharp and electrical contact between the crack surfaces, even at maximum
load, was observed.

The compliance curves show lower values of crack opening and closure levels than the
potential drop measurements. This is because the compliance curve is based on the
plasticity influenced displacements close to the crack tip whereas the potential drop
technique is based on the electrical contact between the crack surfaces along the full
crack length.
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1. Introduction

Hydrogen migration under thermal stress gradient in zirconium alloys results in formation of
hydride blisters [1]. An array of blisters makes Zirconium alloy components of nuclear
reactors susceptible to fracture [2]. The whole process of hydride blister formation and
fracture of these components is very complex and involves hydrogen migration under thermal
gradient, hydride precipitation, straining of the matrix, setting up of hydrostatic stress
gradient, enhanced hydrogen migration under the combined influence of thermal and stress
gradient, stress-reorientation of hydrides [3], cracking of hydrides, crack growth by delayed
hydride cracking mechanism [4], interlinking of blisters and spontaneous fracture of the
component.

In this work we estimate the stress components in hydride blisters and the surrounding matrix
for certain assumed blister depths. The estimated stress predicts the hydride orientation in the
matrix surrounding the blisters and will be subsequently used to model the hydrogen diffusion
under hydrostatic stress and temperature gradients.

2. Computation

The matrix of dimension in the ratio 1:5 was considered. The matrix material was Zr having
hexagonal crystal structure with orthotropic elastic constants [5] and zirconium hydride has
faced centered cubic with isotropic elastic constants [6]. Computations were made for
axisymmetric case with symmetry axis along direction 2 (Fig. 1) and with hydride/matrix
yield strength ratio of 0.2 [7] and 1.0. Transformation of zirconium hydrogen solid solution
into hydride is associated with about 17 percent positive change in volume [8]. The body was
partitioned into several small layers with each layer transformed sequentially (Fig. 1). Phase
transformation was achieved by imposing small temperature rise and using thermal expansion
command [9].
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Fig. 1 Part of the body used for computation. Blister aspect ratio of 5 was considered.
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3. Results & Discussion

Fig. 2 shows the contour plot of equivalent stress in the blister and matrix around it for the
hydride/matrix yield strength ratio of 0.2 [7]. Phase transformation was achieved by raising
the temperature. As is evident from this figure most of the regions inside blister and matrix
are under negligible stress with a small strip at the boundary between blister and hydride
under very high stresses. Since the hydride is having much lower yield strength as compared
to matrix, most of the volume change is accommodated inside the blister by hydride plastic
flow.

Fig. 2 Contour plot of eqﬁivalent stress in the soft blister and matrix around it. Phase
transformation achieved in multiple steps.

Fig.3 shows the contour plot of the equivalent stress inside blister and matrix around it with
both hydride and matrix having identical yield strength. Phase transformation was achieved
by raising the temperature. The maximum value of equivalent stress was observed at the
interface between blister and matrix. The stress decays as one move away from the blister
matrix interface. All earlier investigations [9-10] on hydride blisters have achieved the phase
transformation by raising temperature and allowing the phase transformation of the whole
region transforming to hydride in one step. For comparison the contour plot of equivalent
stress inside blister and in the matrix around it are shown in Fig. 4. As is evident equivalent
stresses in the blister and matrix are higher for single step transformation than that for
multistep transformation. Since hydride blister grow sequentially single step phase
transformation results in overestimation of stress. For single step transformation elastic,
plastic dissipation and total energy are 91, 1369 is 1460 MJ for the whole body (Fig. 1) as
compared to 50.9, 1442.6 and 1493.5 MJ, respectively, for multiple step expansion.

Fig.5(a) shows the a section of hydride blister [11]. It is evident from this figure that a section
of hydride blister has three regions. Far away from the center of blister lies region I,
comprising of matrix and circumferential hydrides (horizontal dark lines). As one approaches
the center of blister, region II comprising of matrix, circumferential hydrides and radial
hydrides (normal to circumferential ones) can be seen. Region III is the region of single-phase
hydride. The texture and microstructure of cold worked and stress relieved Zr-alloy tubes is
such that under unstressed condition of hydride precipitation circumferential hydrides form.
When hydride precipitation takes place under stress greater than a threshold value, radial
hydride may form.
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Fig. 3 Contour plot of equivalent stress in the blister and matrix around it for hydride/matrix
Yield stress ratio of unity. Phase transformation achieved in multiple steps.

Fig. 4 Contour plot of equivalent stress in the blister and matrix around it for hydride/matrix
yield stress ratio of unity. Phase transformation achieved in single step.

In Fig. 5(b), the threshold stress variation across sample thickness is superimposed on the
plots of estimated stress for blister depths of 0.2, 0.5 and 1.0 mm. The hydride platelet
orientation at any location in the matrix around the blister is governed by the stresses
generated due to the hydride blisters. For the regions where tensile stress prevailing at any
point in the matrix is greater than the threshold stress for reorientation of hydrides, radial
hydride will also precipitate out.

5. Conclusions
Stress field in the hydride blister and Zr-matrix were estimated using finite element method.
The estimated stress computed by carrying out the single step transformation of hydride is



higher as compared to that obtained by multi-step transformation. The estimated stress field
could explain the formation of radial hydride in the matrix near the interface region.
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Fig. 5 shows (a) a section of blister in Zr-alloy [11] and (b) Comparison of the estimated
stress and threshold stress for reorientation of hydrides across the thickness of the plate used
for growing hydride blister.
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Introduction

Tuned mass dampers are increasingly used for structures such assbtmgers, buildings and
structural parts such as e.g. staircases. The classic design basisetbsay. by Den Hartog [1],
refers to a single damper mounted on a single structural mass. In the déesdlbé structures,

such as e.g. the Millennium Bridge in London [2] and the newly completed élang Pedestrian

Bridge in Copenhagen [3], several modes must be damped. This mayuogroédo new effects

into the design, namely a change in modal frequencies due to the dampes mssseated with
the other modes, and a possible change in the mode shapes.

This paper describes a simple procedure for design of a number of tuassl dampers used to
introduce controlled damping in several modes of a flexible structure.dlloavfng section gives
a brief summary of the design basis for a single damper, and this prodsdbhen extended to
flexible structures via a two-step procedure consisting of an initial estimeta eorrection based
on modal vibrations including the damper masses, but excluding the damfeegtefprovide a
real-valued vibration problem. The procedure is illustrated by an exampéeoted with damping
of the four lowest modes of a four-span bridge.

Single tuned mass damper

The classic design problem for a single tuned mass damper is illustrated in e &tructure is
represented by a massg, supported by a sprinky. The tuned mass damper consists of a damper
massmy mounted on the structural mass by a spring with stiffrigsand a viscous damper with
damper constant;. The motion is described by the motion of the structural masand the
relative motionz, of the damper.

0 xo + T4
kq
ko
mg my
Cd

Figure 1: Single degree of freedom with mass damper

The design procedure for a single tuned mass damper mounted on a wetiddgtfiuctural mass
makes use of the mass rafig the structural angular frequency;, the angular frequency of the
rigidly mounted damper mass; and the damping ratio of the rigidly mounted damper nigss

mq 2 ko 2 kaq Cd
n = ) WO - ) wd = ) Cd = (1)
mo mo mg 2wamy




The usual design procedure consists in selecting a sufficiently largeratass usually in the
order of 3-5%. The optimal frequency tuning and damping ratio are thienrdmed by

wo 1 %
_ , S 2
“i = T34 Ca 2T+ (2)

The classic damping value of Den Hartog [1] has a fa%tcbut it has recently been demonstrated
that the facto% leads to better damping of the structure and minimizes the relative motion of the
damper mass, [4]. Use of the optimal tuning parameters in Eq. 2 leads to twtedaiructural
modes with identical damping ratiQy ~ %Cd, [4]. Thus, a mass ratio gf = 0.05 leads to a
structural damping ratio af; ~ 0.077, sufficient to eliminate most vibration problems.

Multiple dampers on flexible structures

Let the flexible structure be represented by a discreized model with tHackspent vecton and
eqguation of motion

Mi(t) + Cu(t) + Ku(t) = Q(¢) (3)
M, C andK are the mass, damping and stiffness matrix of the structure(dngis the time
varying external load vector. Damping is typically introduced into the ind&idibration modes
u;, determined from the generalized eigenvalue problem

(K—w]zl\/[)ujzo , j=1,---,n 4)
wherew; is the natural frequency of moge The modal mass is defined as
m; = ll;-r M uy (5)

and represents the part of the structural mass that participates forrtioellpa mode. When one
or more mass dampers are mounted on the flexible structure to introduce dantpimgpde; the
effective damper mass for this group of dampers is

m? = uJT M;’-l u; (6)

WhereM? contains the masses of the dampers in the diagonal at the degrees ofifreexe-
sponding to the locations of the dampers on the structure. Thus, the\affa@ss ratio of modg
is given as

s,

m

Bj = —= (7)
m;

The optimal parameters for the tuned mass dampers associated with cartbe found by Eqg. 2.

For the flexible structure with dampers the vibration modes and naturakfnems become com-

plex valued due to phase differences. The complex modes and frégsieme found from the

expanded symmetric eigenvalue problem

([5 sle=[onPla]-1s] o

where the system matricéd, C, K and the displacement vectarinclude both structure and
dampers. The damping ratio is extracted as the relative imaginary part ddtimalfrequency,

+ w

G = ©)



Design procedure

The present design procedure for multiple tuned mass dampers relies aptithal expressions
in Eqg. 2 for a single tuned mass damper, where the mass ratio is defined in IHow&ver, to
take the effects from the other dampers into account, the proceduristsonfstwo steps: 1) A
preliminary design based on the undamped vibration modes and 2) a corfeasied on the mode
shape for the structure including mass and stiffness (from step 1) oaalpers forthe other
modes Thus, in step 2 the stiffnegs; and damper parametey from the preliminary design are
recalculated based on the modified vibration form due to the tuned mass dassperated with
the other modes that are being damped.

A I A A A
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37.5m 425m 425m  375m

Figure 2: Four-span bridge.

The design procedure is illustrated in terms of the four-span bridge shofig. 2. The elastic
modulusF, cross section ared, moment of inertial, mass per unit length and lengthZ are

E =300GPa , A=05m?> , I=008m' , p=6400kg/m , L = 160m

These properties represent typical values for e.g. pedestrian $ridtiespan lengths as shown in
Fig. 2. The aim is to introduce damping into the lowest four vibration modes withersbepes
shown in Fig. 3. Two tuned mass dampers with equal properties are indddimceach mode and
placed according to the maximum of the associated vibration modes as indic&igd3n

mode 1 /5\ mode 2
e N N/

mode 3 /g\ mode 4

Figure 3: Undamped vibration modes and damper location.

In the idealized form with a single structural mass the use of a single damijisrtisp original
undamped mode into two modes with equal damping rétio- %Cd. The use of two dampers
introduces a third mode in which the dampers act in opposite phase andytmetain the full
damping ratial; ~ (4. For flexible structures the behavior of the dampers may be more compli-
cated as illustrated for mode 1 in Fig. 4 showing the real part of the threatidbiforms.

The desirable mass ratio of the design procedure=s0.05 for all four modes. The results of the
two-step procedure is summarized in Table 1, where the damper paranmetéinge alamping ratio

for the structural modes are given for both the preliminary tuning (stepd.jtee correction (step
2). Itis seen how the correction step leads to a larger critical damping eat&ath mode.
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Figure 4: Mode shapes with dampers for mode 1. Dampers toneatbide 1 (circle), mode 2 (square), mode
3 (triangle) and mode 4 (diamond).

modej 1 2 3 4

wo 16.51 20.97 27.17 32.31
Damper mass 4700 / 4700 4450 / 4500 3900 / 3900 4150 / 4150

wq 15.72 19.97 25.87 30.77

Step 1 Ca 0.155 0.154 0.155 0.154
G 0.055 / 0.107 0.069 / 0.110 0.096 / 0.103 0.116 / 0.083

wd 14,91 17.17 26.26 32.29

Step 2 Ca 0.163 0.161 0.153 0.147
G 0.071 / 0.074 0.075 / 0.081 0.083 / 0.099 0.091 / 0.091

Table 1: Modal properties of bridge wigh= 0.05.

The effect of the correction step is illustrated in Fig. 5, showing the com@axal frequencies
for modes 1 and 2. The solid lines represent two half circles, repregeahtroot loci for a single
tuned mass damper, see [4]. These loci initiate from the three naturakfreigs wher; — 0.
The dashed line represent the expected damping rafio-6f0.077, whereby the two intersections
(circle) between the dashed line and the small locus represent the ekpetit@al tuning. The
three natural frequencies from step 1 (asterisk) are seen to be ebldtiv away from the the
expected locus. However, following step 2 of the procedure the ndtacglencies (crosses) move
very close to the expected locus and to the intersections (circle), rairgsthe desired efficiency
of 7.77% of critical damping.
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Figure 5: Complex roots for mode 1 (left) and 2 (right).
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Summary In the design of control systems, modeling is an important tool when studying how the
controlled system responds to a certain input. Often, modeling makes it also possible to identify existing
errors, if any, before the algorithms are used in real-world applications. The paper presents ongoing work
aiming at improve the maneuverability and facilitate for operator of the hydraulic cranes mounted on
forestry. Since the application should be able to run in real-time, the description of the system is based on
the rigid body assumption and generalized coordinates using the smallest number of variables possible to
describe the state. The paper presents results from numerical simulations of orthogonal crane tip control.

Introduction

In the design process of robot manipulators or other mechanical systems, accurate modeling of the
dynamics is vital to access forces applied to the structure. Moreover, modeling is also important
when designing fast and robust control systems[1].

Hydraulic cranes may be regarded as robot manipulators where the hydraulic cylinders serves as
actuators. Such cranes are very common in the rational and highly mechanized forestry but to
operate a crane efficiently is a highly qualified work that requires years of practice. The overall
aim of our work is to apply control theory to facilitate for beginners to handle the crane and make
it possible to have short breaks during the operation. This has been applied to mobile cranes[2].

Two approaches to model mechanical systems when the bodies are considered as rigid can be
distinguish. The first approach, used in most commercial rigid body softwares, uses six degrees
of freedom (three translations and three rotations) for each body. The coupling between bodies is
managed by constraint equations which are added to the systems of Ordinary Differential Equa-
tions (ODE) such that a system of Differential Algebraic Equations (DAE)[3] is formed. The
second approach uses a minimum number of parameters termed generalized coordinates[4, 5] (ei-
ther joint distances or rotational angles) to describe the motion. The resulting system of ODE:s
is comparably small, but more complicated to establish and to solve numerically. However, since
the models will be used in real-time computations in this application, we have adopted the second
approach in this work.

The hydraulic crane of forwarders

The crane (RK62) is mounted at a Rottne forwarder. In principle, it consists of mechanical links
(with som flexibility), joints (translational and rotational) and hydraulic actuators, see Fig.1 a. In
normal operating conditions, a rotator and a grapple is attached to the crane tip to handle the logs.
The maximum length is 6.9 m and the mass is approximately 1100 kg. Fig.1 b shows the idealized
crane used in the model. It is composed of rigid body parts, joints (positioned at the origin of the
coordinate systems), key points, rigid links (blue), and actuator elements (red). The motivation of
introducing rigid links is explained below.

Rigid body dynamics

Let us define a set of joint variables (generalized coordinates) g as either being rotations or trans-
lation between two coordinate frames. The state[5] of the rigid body systems could be determined



a) b)
Figure 1: a) CAD model of the crane. b) The idealized crane including the actuators and the torque link.
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1 .79B(q) .

i, a9 =Q M

n
. 0B(q) . .
B(q)g+ ) ———dq
@i+ 75
where @ is the generalized force vector associated to g and g (q) the gravity force vector. Further,
B(q) is the mass matrix defined by

n

B(q) = (Jo(@))" miJo(q)i + (Ju(@)i)" RYI'R*" 1, (q); 2
i=1

where m; is the mass, I° is the inertia tensor and .J ,(q); denotes the velocity Jacobian and J,(q);
the angular velocity Jacobian of the center of gravity of body i, expressed in frame (e!, 62, e?).
An actuator force u;; between two points P; and P; contributes to @ in (1) by
T
Qi = uij (Jo(@)p, — Ju(a)p,) " € (3)
where e?j is the unit vector from P; to P; and J .(q) p,, J»(q) p, are the velocity Jacobian of point
P; and P;, respectively.

Closed chains

To create rigid body models in a systematic manner using the concept of generalized coordinates,
adding of a mechanical link implies adding of a new joint variable. However, in certain cases the
links of the manipulator form closed chains i.e. the torque link of the crane. To resolve these cases,
a set of constraint equations

W (q(t),t) =0 )

are used. Differentiating (4) with respect to time two times yields

ovw .

g1~ Q° )

e w OW. 9 (0W

where



and if the Lagrange multiplier approach is adopted, (1) is expanded by the constraint equations
according to

v, O A Q°

where A is a vector of Lagrange multipliers.

[B(q) xqu][q}_[QJrg(q)—C(q,Q)q (7)

Motion control of the crane
Orthogonal control

The layout of the crane makes it possible to reach most points within the working space by an
infinite number of configurations since there is a redundant set of joint variables. One choice
among others to eliminate the redundancy and facilitate for the operator is orthogonal control,
where the objective is to minimize a certain quantity e.g. fuel consumption given the velocities :i:gt
of crane tip. Let us define the optimization problem
1 T
min  h(qq) = 5 (qa—40)" (44— qo)
2 ®)
st. &% —J.q,=0
where g is a vector of joint velocities which reflect the quantity of interest to minimize[5]. The
optimal solution ¢}; can be computed from

4 = T+ (1-717) 4 ©
where . .
JHE T (1T (10)
is the right pseudo inverse and I is the identity matrix.
Feedback control
Let g, denote the vector describing the desired trajectories expressed either in joint variables or
length of the actuator elements and g the vector of their actual values. By defining the error
€=q,—q (11

the PID[4] control law with gravity compensation imposes the control forces

t
u:g(q)+/ K,edt+ Kye — Kqq, (12)
0
where K;, K, and K 4 are positive definite matrices, to be applied by the actuators to the crane.

Simulation of orthogonal crane control

To give one example of orthogonal control, g is chosen such that the hydraulic cylinders should
remain as far as possible from their minimum and maximum length. At the crane tip a mass of
200 kg is attached. The crane is initially in rest and positioned as Fig.2 a indicates. The trajectory
to follow, is a triangle in the plane spanned by e and 62 shown in see Fig.2 a. In the same figure
result from the simulation is shown. Fig. 2 b shows the desired and actual length of the actuator
elements.

Fig.3 a shows the error e between the desired and actual length of the actuators and Fig.3 b shows
the actuator forces applied to the structure. However, the gravity forces g (q) c.f. (12), is not
included in the result shown.
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Figure 2: a) The initial position of the crane and the trajectory. b) Desired and actual length of the actuators.
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Figure 3: a) The error between desired and actual length of the actuators. b) Forces applied by the actuator.

Concluding remarks, further research

The paper has presented an approach to model rigid body dynamics based on generalized coordi-
nates. The approach is systematic and generates systems of ODE with a comparably small number
of unknowns. It was used to model orthogonal control of a hydraulic crane and in the near future,
the results will be realized and tested in laboratory conditions on a small-sized crane.
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Summary The dynamic response of rubber is dependent of both ampliandl frequency. This paper
studies two different finite element procedures to inclutdelitude and frequency dependent effects in con-
junction with rolling contact. It is shown how the non-limetynamic characteristics of the rubber material
influences the rolling contact. Analyzed examples includleng on a flat surface and rolling over a groove.

Introduction

The purpose of this paper is twofold. The first is to examine d¥fferent methods of incorporating
amplitude dependent effects into finite element models bbeu in rolling contact. The second
purpose is to highlight some important aspects of non-inegterial characteristics in general and
amplitude dependence in particular when rolling contastuslied.

For a harmonic load, the amplitude dependence can be seedeasemse in dynamic modulus
for increasing amplitude. For an increasing amplitude tamping will at first increase until a
maximum is reached after which further increased amplitudleresult in decreased damping.
Partly depending on the application and partly on the sgenifbber properties, the amplitude
dependent effects are in many cases far more pronouncedhthaate or frequency dependence
(Olsson & Austrell 2001). This is especially obvious for hggtions with moderate amplitudes
and low to moderate frequencies, as well as for rubber witlgla proportion of filler particles.
For very low or very high strain amplitudes these effectsuatgally of less interest.

This paper studies two different methods to account for dnathamplitude and frequency de-
pendence in a rolling contact finite element analysis. Tha finethod uses an elastoplastic-
viscoelastic model previously presented in (Austrell &0l 2001) and the second is based on an
approximate time-domain viscoelastic model presente@lgaspn et al. 2006). Both methods are
based on simple engineering approaches and utilize coratigt@vailable finite element codes,
keeping the added complexity to a minimum. The materiasteave previously been presented in
(Olsson & Austrell 2001).

Rubber covered rollers

From an industrial point of view, rubber covered rollers afrgreat importance in many industrial
applications. From a scientific perspective the simple gdomand loading of rubber covered
rollers make them ideal to study the dynamic effects of rulha&terial during rolling.

Depending on what industrial application or process thkerdas found in, different contact pa-
rameters are important. Contact parameters such as cevititht maximum pressure, pressure
gradient and surface strains are all governed by materiglgoties and design variables such as
rubber thickness, roller radius, applied load and rollimipeity, as seen in figure 1. In general
the design variables are simple to control but are hard telzade to what is happening in the the
contact region. The contact parameters on the other hareharer to correlate to the process but
harder to control. Hence, a good model describing the cglstiip between contact parameters
and design variables is the key to control the process.



Figure 1: Rubber covered roller, design variables and cop@rameters.

Rolling over a smooth surface

In the this section a rubber coated roller is studied whelingpbver a flat surface. Using this
example, both the equivalent viscoelastic and viscoeladtistoplastic models are used to analyze
the influence of the dynamic material properties.

The analyzed rubber coated roller has a rubber co28@fn and an outer radius @0mm. The
rolling velocity is10m/s and the compressive displacement of the roll€r.8snm. The roller is
modelled as a long rigid cylinder coated with a thin layeruditrer.

The contact pressures from both the equivalent viscoelastl the viscoelastic-elastoplastic finite
element model are shown in figure 2. Both models show goodeagat with each other. Unfor-
tunately it was not possible to obtain any experimental daompare with, but the agreement
between the two separate models suggests that the reslialde.

Contact pressure [Pa]

0 0.005 0.01 0.015 0.02 0.025 0.03
Contact surface [m]

Figure 2: Contact pressure when rolling over a flat surfacgtdd line: Overlay method; Solid line: Equiv-
alent viscoelastic method.

The asymmetric shape of the pressure distribution can baiard by the non-elastic properties
of the rubber material. At the first phase of the contact serthe rubber material is loaded until it
reaches the maximum contact pressure after which it is dethaSimilar to a cyclic material test,



the contact pressure response when unloading will dewiate the load curve. This behaviour
is caused by damping and will result in a loss of strain enefgs, the asymmetric shape of
the contact pressure is a result of the material damping.aBlyenmetric pressure results in an
increased initial pressure gradient which can be benefmiglome applications where fluids need
to be driven away from the contact area.

Rolling over a non-smooth surface

In this section a rubber covered roller is studied to see hifigrent material properties will
influence the contact prpoerties.

As was seen in figure 2 both the equivalent viscoelastic aastaglastic-viscoelastic model will
give the same pressure distribution rolling over a flat :efdrying different material models
indicated that the pressure distribution was not affeciethb material characteristics. The pres-
sure distribution over the contact area was the same ircdégpéf the rubber were modelled as
elastoplastic or viscoelastic.
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Figure 3: Contact pressure when rolling over a flat surfagegutctive material models)): Elastic model;
v Elastoplastic model\: Viscoelastic model.

To further prove this point two fictive materials were dedy®ne purely viscoelastic and one
purely elastoplastic. Both material models were fitted toilgik a constant damping ef = 0.35
for a frequency range of 5 to 188z and a shear strain amplitude range of 1 to 12%.

When rolled over a flat surface both models gave the same sifidipe contact pressure distribu-
tion, only differing in the maximum pressure. Figure 3 shbe tontact pressure as both models
are rolling at a speed of h@/sover the flat surface. A purely hyperelastic model is alsmshas

a reference.

Using the previously derived fictive material the same rolas studied when rolling over a
shallow groove. The groove isvimwide and 0.&nmdeep with the same length as the roller and
situated in the axial direction of the roller.

As seen from figure 4, the elastoplastic model better adapthe shape of the groove. The
elastoplastic model incorporates amplitude dependentigoudgh the viscoelastic and elastoplas-
tic models give the same result when rolled over a flat surikcan be concluded that including
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Figure 4: Element deformation when running over a small geagsing an viscoelastic (left) and an elasto-
plastic (right) finite element model.

the amplitude dependence, as done in the elastoplasticinwitleresult in a softer and more
deformable contact region.

Summary

Two different methods to include frequency and amplitudeetielence are studied. Both models
gave the same results for a flat surface, suggesting thabtitaat pressure when rolling over a
flat surface is mainly governed by dynamic modulus and dagnhaird is not dependent on how
the damping is modelled.

When comparing viscous and plastic damping mechanics,dtsgan that amplitude dependent
rubber resulted in much softer behaviour of the high stragians of the rubber surface. This local
softening effect will make the rubber deform more easily batter adapt to the geometry of the
groove.
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Introduction

The present project embraces the overall aim of developing an extremely large telescope capable
of performing major astronomic research, as well as its iconic and metaphorical value in
transmitting scientific interest and curiosity to a wide variety of persons and to the public
generally. Here the enclosure is investigated that introduces a number of special features. The
major ones are: the aerodynamic shape of the body of the construction that is planned, its elevated
position and the variable size of its opening to the outside, achieved through use of airfoil-like
panels. A basic conception involved in the proposal is that of the structure’s having a compound
asymmetrically curved body or shell. Its overall shape is to be an aerodynamic one.

The enclosure stands at a considerable distance above the ground supported by pylons, raising the
entire installation to a level well above the layer of turbulent air located at ground level, generated
by wind or produced thermally. The body of the enclosure is bisected by a combined observation
and ventilation aperture — the variable opening of which is controlled by adjustments achieved
through use of a series of shutters or panels that are aerofoil-like in section and are capable of
assuming a wide range of different deployment configurations. The possibilities that are found of
producing different configurations of the blades provides a means of actively creating a laminar
flow over the surface of the telescope and of achieving increased structural integrity when called
for during astronomic observations.

Figure 1: The telescope, the enclosure and the energy plant.



The present report is concerned primarily with CFD analysis of the action of wind, involving
computation of the wind action, wind turbulence and vorticity density, structural analysis based on
wind loading.

Statistics of the building structure A single blade

Total mass 18,000-10° kg Mass 50-10° kg
Total height 166 m Size 50x17.2x3 m®
Mass of the turnable part 4000-10° kg

Structural Model and Analysis

Complete three-dimensional models of the structural investigation, based on preliminary analysis
of the conceptual model, were generated, see Figure 2. The models are formulated in a manner
accommaodating each type of structural analysis referred to below.

Figure 2: The finite element models used for analyzing the dome in closed, opened and opened with blades
configurations.

The structural topology of the shell has not yet been defined in its entirety. The shell is modelled
as a sandwich structure, the core of which is defined in terms of its material density percentage.
The parametric model is defined in a manner allowing the material content to vary over the height
of the structure. This generates a true mass distribution over the structures entire height, also
allowing the dynamic behaviour of the structure to be simulated.

The model includes the following parameterized entities: t = overall thickness, t; = thickness of the
inner layer, t, = thickness of the outer layer, t; = thickness of the core, E; = modulus of elasticity of
the inner layer, E, = modulus of elasticity of the outer layer, t; = modulus of elasticity of the core,
see also Figure 3.
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Figure 3: Schematic sketch of the parameters used in the shell calculations.



Load cases

Three different configurations have been analysed for various load cases to determine the
deformations and stresses on the enclosure, the base ring and the columns:

Closed dome
e Survival loads
o Gravitation + Wind speed, 60m/s + Snow, 2000mm + Ice, 230mm
Open enclosure
e Operational loads
o Gravitation + Wind speed, 27m/s + Snow, 200mm + Ice, 50mm
o Effects of angular acceleration
o Gravitation + Angular acceleration
e Effects of loads produced by the moving blades
Open enclosure with four blades in an up position
e Operational loads
e Gravitation + Wind speed, 27m/s + Snow, 200mm + Ice, 50mm

Wind loads were applied as pressure on one side of the enclosure according to their distribution as
calculated on the basis of CFD-analyses. The snow load was applied to the top part of the
enclosure, whereas the ice load was applied to the enclosure in its entirety, except for the bottom
part. The pre-processor used in modelling was Abaqus CAE, a general-purpose pre-processor. The
various structural analyses conducted were performed using the general finite element program
Abaqus Version 6.5. The total number of elements was 370,000 and the total number of unknowns
employed was 280,000. The model was exported from Abaqus CAE to a general file format that
included the geometrical data for the CFD analyses. Some resulting stress and deformations are
shown in Figure 4.
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Figure 4: Stresses and deformations for enclosure in closed, opened and opened with blades configurations.

Analysis of the wind and fluid dynamics

The aim of the fluid mechanics study was to investigate the following: the wind load on the
building envelope, the airflow inside the building for various blade configurations, and the loading
of the blades. It was of interest here to examine how the flow direction is affected by the blades
and how the presence of the blades affects the turbulence. In the first part of the study, the closed



building at wind speeds of 27, 40 and 60 m/s was considered and in the second part a
configuration in which the building was almost fully open but the wind speed was very moderate,
4 mis.

The third part of the study involved two-dimensional simulations of a single blade and a set of
several blades at a wind speed of 27 m/s. The results of the closed-envelope simulations are used
as boundary data for structural analysis of the dome.

Assumptions and limitations

Simulating flow inside and around such a large structure is a formidable task, due to the extremely
high Reynolds number that applies, which results in very thin boundary layers along the structure.
Since use of time-resolved simulation methods (such as Large Eddy simulation) is not practical
here, a Reynolds Averaged Navier-Stokes approach in which statistically stationary wind
conditions are assumed was employed instead. The resolution close to the wall is critical to
obtaining the correct flow separation for the structure which in turn affects the pressure
distribution downwind of the building and thus the force loading as well. The pressure distribution
on the upwind side is more accurate since it is less sensitive to the point of separation. The flow is
assumed in both cases to be incompressible, density variations thus being neglected.

Analyses, tools and methods
Studies of the following were performed:

e The airflow around the closed building at high wind speeds for certain wind directions
e The airflow in and around the open building at low wind speed.
e The airflow around several of the blades at moderate wind speed.

The first two studies are 3-dimensional, whereas the third one is 2-dimensional in order to enable a
higher resolution of the flow to be obtained, particularly in the boundary layers.

For modelling the turbulence, use is made of the RNG k-g model, which is an improvement over
the standard k-& model through its employing a renormalisation group theory. This allows the eddy
viscosity close to the solid surfaces to be damped through the modification of C,. The equations
and parameters of the model are presented below.

The equations are applied to an unstructured tetrahedral grid, using a first-order upwind finite-
volume formulation. The size of the computational domain fro the three-dimensional cases is
1000x1000x500 m®, in the stream-wise and the cross-stream direction and in the direction normal
to the ground, respectively.

In the three-dimensional cases there are about 700,000 node points. Far away from the building,
the node distances are of about 25 m, whereas in the region close to the building the grid is refined
to the degree that on the building surface itself there are node distances of 1 m each. For the two-
dimensional case, the node distances vary from some 25 m in the far field to 1 m close to the
blades. Close to solid surfaces, further refinement is added, the first node being located 0.05 m
from the walls, resulting in a total of about 75,000 node points. A uniform velocity profile is set at
the inlet and the outflow, Neumann conditions being used for all the variables. Slip conditions are
set at the upper and the side boundaries. At the walls, no-slip conditions are assumed for the
velocities, and standard wall functions are used for the values for k and €. The air density is set to
0.96 kg/m® and the ambient static pressure to 75,000 Pa. At the inlet the turbulence intensity is set
to 1%, a dissipation-length scale of 1 m being employed. Figure 6 show some results of the
analyses.



Figure 6: Top: Streamlines for two wind directions, 0 and 45 degrees measured from the rear of the building,
below: Streamlines for the 2D flow around a blade configuration, coloured in terms of turbulence intensity.
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Summary Crack growth as the result of strain assisted chemically activated material dissolution is
numerically and experimentally investigated. The dissolution determines the position of the body surface
including the crack tip and crack surfaces, in contrast to conventional models for sharp crack tips using a
crack path criteria. A photelastic investigation during the experiment was also performed and indicated that
the cracks are prown to follow path dominated by a local Mode I, which also corresponds to the numerical
findings.

Introduction

Thin films of metals, ceramics and polymers are used on tools, instruments, mechanical and elec-
tronic components to improve corrosive, tribological, electrical, immunological and other proper-
ties. Often present in the film is an appreciable residual stress that is a potential driving force for
growing cracks. Here interest is focused on strain promomoting material dissolution.

During strain assisted dissolution, loss of atoms to the environment leads to crack growth. The
interacting dissolution and mechanical load can, due to surface instabilities, lead to the formation
of corrosion pits, cf. Stihle et al. [1]. From such pits or pre-existing notches cracks can develop.
Growth rate and growth direction are defined by the dissolution process. The crack path is deter-
mined simply as the evolution of the body surface. Thus, crack growth criteria are not needed.
Neither are crack path criteria needed, while also the direction of the crack extension is the re-
sult of the evolution of the body surface. This means that corrosion cracks are expected to branch
repeatedly, in contrast to ordinary cracks [5].

In the present study, crack paths in a bimaterial composite are calculated using an adaptive finite
element procedure, cf. [2]. At each time step the strain concentration computed from the load and
the geometry predicts the dissolution rate. The geometry is then re-meshed to reflect the updated
body geometry. The calculated paths show a large scatter of paths. Experiments are performed
to explore the source of this scatter. Here, experiments were performed in polycarbonate that
fracture through a dissolution process when it is under mechanical stress and is exposed to acetone.
An advantage of this choice is that photoelastic studies could be performed to verify the stress
calculations more directly.

Strain Dissolution Crack Growth

A plane surface subjected to strain assisted dissolution is an unstable configuration and pertur-
bation of the surface will develop a waviness with a stress dependent wavelength, cf. Grinfeldt
[3] and Asaro and Tiller [4]. The process is driven by the variation of the straining of the surface
that accompanies the waviness. Depressions into the body are sites with larger strain, where the
material corrodes faster. This leads to pitting and accelerated dissolution. The continuous tran-
sition from waviness via pitting to initial cracks makes up the initiatial phase of strain assisted
dissolution crack growth.



It is believed that there is a threshold strain, ¢y, under which the mechanical straining does not
give any significant material dissolution. For low loads this prohibits all further dissolution. For
loads larger than the threshold, the dissolution rate v perpendicular to the surface is assumed to
increase as follows:

v=C(e—¢ep)  for  e>ep, (1)

where C' is a parameter depending only on the materials ability to resist dissolution at the surface
and ¢ is the surface strain. Here the analysis is restricted to crack growth, assuming that a pit or
a notch is already present. The growth rate and growth direction of these cracks are results of
the dissolution process only. Thus the fracture process is naturally integrated in the model. No
other fracture processes are considered. Therefore criteria for crack growth and crack path are not
needed. The model brings additional features to the crack tip that solves many of the problems that
accompany the assumption that the fracture process region is treated as a point.

Experiments

To study a corrosive process leading to crack growth, polycarbonate exposed to acetone was cho-
sen. The stress field during crack growth was investigated in a standard polariscope.

A specimen was cut from a polycarbonate plate 100 mm wide, 50 mm high and 5 mm thick. A
force couple was applied at the mouth of a crack. The polycarbonate plate was glued to a thick
beam of aluminium along the side adjacent to the force couple using at two-component epoxy
glue. Care was taken to minimise imposed residual stresses from the interface due to the curing
of the epoxy. The aluminium bar is regarded as rigid as comparded with the polycarbonate. A 10
mm deep notch was made at the middle of the long free edge of the plate and in between the two
loading grips. The experimental configuration is shown in Fig. 1.a.

The load was increased to a level when the dissolution crack started propagating and the acetone
was supplied with a rate sufficient to sustain a slow dissolution crack growth. Acetone was gently
dropped in the notch and was, by capillary action, sucked to the notch tip. Care was taken to
prevent the plate sides outside of the notch from being exposed to the fluid. At regular interval,
the current crack and the corresponding fringe pattern was photographed during the crack growth.
The crack was allowed to propagate all the way through the specimen. The crack growth rate was
estimated to be roughly 20 to 50 mm/s.

The crack width was analysed with an ordinary light microscope to deduce the amount of material
dissolved in the process.

The relatively low load at which the cracks grow, made photoelastic observations difficult. There-
fore to each experiment a second specimen was used. In this a crack was sawed along the path
obtained at the experiment. The crack paths were incrementally sawed with an ordinary contour
saw making a 0.5 mm wide notch in the polycarbonate. At each increment the crack length was in-
creased approximately 4 mm and the plate was mounted in the polariscope. Then resulting fringes
were photographed using an ordinary digital system camera to identify the local stress state at the
crack tip. Even though a much larger load was applied to these stationary cracks not any plastic
deformation was observed.

Simulation of the crack propagation

To further explore crack growth based on the dissolution process, a numerical simulation was per-
formed using the finite element procedure developed by Jivkov, cf. [2]. The initial notch needed



to get a reliable result had to be longer than at the experiments and here the initial notch is 0.4L.
The development of the crack was followed in small time increments, the material removal is gov-
erned by Eq. (1) and the material model asumes a linear elastic material. The resulting evolution of
the crack surface demands re-meshing after each time increment. Approximately 2000 elements
are used during one time increment, and the ratio of the largest and the smallest element sides is
around 4000. The crack growth was followed during 2900 time increments.

Results and Discussion

Figure 1.a shows the resulting crack in its final state from simulation. A curved crack path and
branching was obtained in the case of the growth of a surface crack. These features were also
found in the experiment. As observed crack branching occurs when the crack has returned to the
same depth measured from the free edge, now with a direction heading towards the upper edge. In
the experiments however, the crack branched several times and never deviated considerably from
the initial direction of growth, towards the rigid interface, see Fig. 1.f. A reason for this could be
that in the simulations, plane strain condition and linear elastic prpoerties are assumed, while in
the experiment the elastic layer was a thin polycarbonate and polycarbonate does not behave as a
intirely linear elastic meterial.

An analysis of the stress field around the crack tip before and after branching is shown in Fig. 1.c
and d. This shows that the crack follows a path maintaining a mode I stress state in front of the
crack tip. To experimentally confirm this a replica of the crack was made with a saw in the poly-
carbonate. The plate was stressed and the fringe pattern shown in Fig. 1.e indicate a dominating
mode I stress state at the cracktip. This was true for the intire crack path.

For energetic reasons the stress intensity factor of the branches after symmetric branching are
around 70 % of the stress intensity factor of the main crack immediately before branching. Thus,
the total width of a branched crack should be approximately the same as before branching. This is
supported both by the experiment and by the simulation. The average ratio of width after branching
versus width before branching is 0.48. The scatter is large and the standard deviation is 0.17. A
crack branch is shown in Fig 1.b. This supports the suggested theory that the crack would branch
only if it could maintain a constant stress intensity factor after branching. A crack growing in this
manner could be caracterised as a fracture toughness controlled crack.

Additionally, at the location where acetone was applied initially there is evidence of a large area
of damaged material which may influence the experimental result. However, it is believed that the
criterion free method can be a plausible choice for studying situations where criteria for crack
growth, crack branching and crack path criteria fail, e.g. interface cracks, crack initiation from
notch or surface and meeting cracks.

Concluding remarks

Chemically assisted crack growth can be performed in polycarbonate.

Corrosion crack growth can be computed as a moving boundary problem. Crack growth and path
criteria are not needed. The crack follows a pure mode I path.

A threshold strain for acetone affected polycarbonate can be estimated. Finite element calculations
are confirmed by photoelastic experiments. This is in the sense that the individual cracks follow
near a pure mode I path. The scatter was large both in the experiments and simulations. We draw
the conclusion that the source of the scatter is connected to a wobbling crack path.



Figure 1: a) Numerical result from a stress corrosion crack gowth simualtion of a surface crack in a poly-
carbonate layer attached to a steel bar. b) A typical crach branching in polycarbonate from the experiment.
c¢) Stressfield around the cracktip before branching. d) Stressfield around the cracktip after branching. e)
Fringepattern at the cracktip. f) The final shape of the corrosion crack in polycarbonate.
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ABSTRACT. The influence of different load cycles on the growth of a short edge
crack has been studied using a discrete dislocation technique. The external boundary
is modeled with dislocation dipole elements and the plasticity is modeled by discrete
dislocations. The crack is located within one grain in a bcc material, and is assumed
to grow through a single shear mechanism, due to nucleation and annihilation of
discrete dislocations along preferred slip planes.

INTRODUCTION

It is well known that the behavior of short cracks deviates from that of long cracks.
Short cracks can grow at load levels well below the threshold value for long cracks at
high rates. Often, a large portion of a components life is spent by propagating of
microstructurally short cracks, typically of the size of a few grains. Such small cracks
can not be treated by the standard methods for long cracks due to the relative large
plastic zone and strong influence from the surrounding microstructure.

Experimental studies has shown that short cracks grow through a single shear
mechanism, cf. Surresh [1], creating a zigzag shaped crack. Other studies showing the
formation of a zigzag shaped crack were made by Uematsu et al. [2] in the low K
region in silicon iron and by Zhang [3] in ultra-fine grain size aluminum.

For very low growth rates, in the order of a few Burgers vectors per cycle only, it is
important to account for the discrete dislocations within the material. Riemelmoser et
al. [4] and Riemelmoser and Pippan [5] have developed such a discrete dislocation
model for a long mode | crack to study the cyclic crack tip plasticity and plastically
induced crack closure. A similar model describing a short propagating mode | crack
subjected to fatigue loading, was developed by Bjerkén and Melin [6, 7], to study the
growth behavior and influence of grain boundaries on the crack growth.

In this study a discrete dislocation model is developed to study a short propagating
edge crack, subjected to cyclic loading, located within one grain in a bcc material.
Both the geometry and the plasticity are described with discrete dislocations. The
crack growth is in this model due to nucleation, movement and annihilation of
discrete dislocations along preferred slip planes in the material.

STATEMENT OF THE PROBLEM

The growth of a microstructurally short edge crack located within one grain, subjected
to fatigue loading, cf. Fig. 1, have been investigated under plane strain conditions.
The crack grows in a single shear mechanism under quasi-static conditions due to
nucleation, movement and annihilation of discrete dislocations along preferred slip
planes separated an angle $, dashed lines in Fig. 1, within the material. The initial
crack, of length a, and inclined an angle « to the normal of the free edge, is located



within a semi-infinite body. The load is applied parallel to the free edge and is varied
between a maximum value o and a minimum value o, .. The grain boundary

yy max ! yy min

is parallel to the free edge, located a distance of /g5 in front of the original crack tip
position, and is treated as an impenetrable hinder for the dislocations.

Slip planes

Grain
boundary

2R EERE

Fig. 1. Initial geometry of the edge crack

DISCRETE DISLOCATION FORMULATION

The model in this study rests solely on a discrete dislocation formulation, describing
both the geometry and the plasticity by discrete dislocations. Only plane problems are
addressed and therefore only edge dislocations are used in the formulation.

External boundary

The external boundary, defined as the free edge together with the crack itself, is
modeled using dislocation dipole elements, cf. Hansson and Melin [8]. A dipole
element consists of four dislocations, two glide dislocations and two climb
dislocations with equal size of the two dislocations, with same character, but opposite
sign. The dislocations are situated at the end points of the element and the stress is
calculated at the center of the element. By both including climb and glide dislocations
in the formulation, both gliding and opening between the crack surfaces can be
modeled.

The dipole elements were placed along the free edge, at distances from the crack
mouth far larger than the crack length, to model the semi infinite body. While the
crack continued to grow along the upper slip plane only, the element size of the
elements closest to the crack mouth was increased, in order to model the growth of the
straight crack. When the crack started to grow in a zigzag shape additional elements
were added to model the newly formed crack surfaces.

The stress at an arbitrary point within the material is calculated as the sum of the
stress contributions from all dislocations, both the physical dislocations along the slip
planes and the dislocations in the dipole elements and the applied external load. The
magnitudes of the dipole dislocations are determined from an equilibrium
consideration, Eq. (1), describing the normal and shear stress along the external
boundary. Knowing that the normal and shear stresses must equal zero for the free
edge and the parts of the crack that is open, the magnitude of the dipole dislocations
can be calculated.

beoundary + bGinternal +06=0 (1)



In Eg. (1) G is matrix containing the influence functions, cf. Hills et al [9], describing
the stress field created by a dislocation along the external boundary. bpoundary IS @
vector holding the magnitudes of the dipole dislocations. b is the Burgers vector of the
material, Ginternar 1S @ Vector containing the influence functions for the internal
dislocations and o is a vector containing the contribution from the applied external
load.

Dislocation nucleation, motion and annihilation

At each load level, the resolved shear stress is calculated a small distance 7,,. in front
of the stress concentrations, i.e. the crack tip and eventual corner points of the crack.
If the resolved shear stress exceeds the nucleation stress, a dislocation pair is assumed
to nucleate along the slip plane emanating from this stress concentration. A
dislocation pair consists of two dislocations of equal size but opposite sign separated a
small distance, r,,.. When nucleated, the dislocation with burgers vector pointing
inwards in the material, moves inwards in the material along its slip plane. Such a
dislocation is called a positive dislocation. The other dislocation, called a negative
dislocation, remains at the crack tip causing either the crack surfaces to open or glide,
depending on which slip plane it is situated on. The positive dislocation moves along
its slip plane as long as the resolved shear stress at its position exceeds the lattice
resistance z.,;, of the material. The equilibrium position for the positive dislocation is
found through an iterative process, moving the dislocation a small distance a time
until the resolved shear stress at its position falls below z,.

Due to the complex geometry of the crack, a new method for determining the
nucleation stress was used [8]. The nucleation stress is defined as the lowest stress at
the nucleation point for which the positive dislocation in the newly nucleated pair
travels inwards in the material when nucleated. This definition of nucleation stress is
geometry dependent, meaning that the nucleation stress must be determined for all
new crack geometries, at the beginning of each new load cycle.

During the unloading part of the loading cycle, dislocations will move back towards
the crack. When a dislocation gets close enough, it annihilates with its negative
counterpart. Under the assumption that no healing of the crack surfaces occurs, this
results in crack growth a distance of one Burgers vector in the corresponding
direction.

Crack growth

It is assumed that no dislocations exist within the material at the beginning of the first
load cycle. A description of the first load cycle is seen in Fig. 2. When the applied
load is increased, dislocation pairs will nucleate from the crack tip and the positive
dislocations will move inwards in the material along its respective slip plane, whereas
the negative dislocations will remain at the crack tip. The nucleation of new
dislocations continues until the maximum load is reached and pile ups of dislocations
have been formed at the grain boundary. When the load is decreased, the dislocations
starts to move back towards the crack and some will eventually annihilate with its
negative counterpart. Annihilation results in crack growth in the corresponding
direction. If annihilation occurs along a new slip plane a kink is formed at the crack
tip and a new active slip plane is introduced.



Initial

Fig. 2. Schematic description of the first load cycle. Dashed lines are original slip
planes, dotted line is the new activated slip plane at the new crack tip position.

Initial conditions

The material in this study is pure iron and is assumed to be linear elastic with a body
centred cubic (bcc) crystal structure. The material parameters at room temperature are
shown in Table 1, cf. Askeland [10].

Table 1. Material data for bcc-iron

Shear modulus, u 80GPa
Poisson’s ratio, v 0.3

Burgers vector, b 0.25nm
Lattice resistance, 7. 40MPa
Distance to nucleation point, r,,. 6b
Nucleation stress, 7. 1.3-2.0GPa

In a bce material, slip occurs in the close packed {110} planes in <111> directions, cf.
Hull and Bacon [11]. In this study slip is assumed to take place in the (110) and (110)
planes, giving four possible slip directions. When constructing a 2-D model of the slip
system by combining two of these slip directions, two different 2-D systems are
created, depending on which slip directions that is considered. The difference between
the two 2-D models is the angle between the active slip planes, g, cf. Fig. 1, either g =
70.3° or = 109.4° [8].

RESULTS

The developed dislocation based model can be used for a number of different
simulations regarding the growth behavior of short cracks. Some examples are
simulations of the development of the plastic zone, the effects of overloads, influence
of the applied load range, crack growth per load cycle da/dN, resulting crack shape,
crack opening and crack closure.
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Dissolution Driven Fracture — Simulation of Crack Growth
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Summary The growth of a crack subjected to corrosion fatigue is studied using adaptive finite elements.
The crack growth is the result of a repeated cycle of dissolution of the material, formation of a protective
oxide film and break-down of the oxide film due to straining at the surface. The dissolution rate is assumed
to be proportional to this stretching. The growth of a semi-infinite crack lying in an infinite strip subjected to
different degrees of mixed-mode loading is studied.

Introduction

During stress corrosion, loss of atoms to the environment leads to crack growth. This is a
dissolution process that starts i.e. if bare metal is exposed to aggressive environments. Fortunately,
an impermeable film of mainly metal oxides or hydroxides is formed by dissolved metal on
several metals. Even though the thickness of this film is typically not more than 10 nm, it reduces
the rate of dissolution by several orders of magnitude, cf. [1]. An intact protective film increases
the life of the structure tremendously. However, repeated changes of the electrochemical
conditions or cyclic mechanical load damage the film, which leads to additional material loss.
Several experimental reports show that active loading in terms of either monotonically increasing
or fatigue load is an essential prerequisite for development of corrosion cracks, cf. [2]. The
passivating film is, as being an oxide or hydroxide compound, believed to have ceramic material
properties. As such it is presumably brittle. Here it is supposed to fracture when stretched more
than a threshold strain, &:

If the threshold strain is exceeded, the film breaks and leave gaps where bare metal is
exposed to the environment. The area extent of these gaps is assumed to be proportional to the
strain exceeding the threshold strain. The broken film leaves gaps that give a discontinuous
exposure to environment. In the present study, the dissolution rate is simply assumed to be
proportional to the mechanical stretching of the body surface reduced with the threshold strain.

The film is known to be extremely thin as compared with the linear dimensions of the
body. Therefore it is not contributing in any significant way to the structural stiffness. In the
present analysis, the presence of the film, broken or unbroken, is ignored when the mechanical
behaviour of the structure is computed.

The interacting dissolution and mechanical load leads to a roughening of the body surface,
and, after localization, to initiation of corrosion pits. For large threshold strains, the pits assume
the shape of cracks. These cracks are integral parts of the body surface. Growth rate and growth
direction are results of the dissolution process. The model brings additional features to the crack
tip in contrast to an assumed sharp crack tip, where the fracture processes are confined to a point
and all the details of the crack tip state is given by a single parameter, such as a stress intensity
factor or a crack tip driving force. This permits determination of the crack growth simply as the
evolution of the body surface. Thus, crack growth criteria are not needed. Neither are crack path
criteria needed, while also the direction of the crack extension results from dissolution rate along
the body boundaries in the crack tip vicinity.

In the present study, crack paths are calculated using an adaptive finite element procedure.
The strain concentration computed from the load and the geometry of the crack tip vicinity



predicts dissolution, i.e. removal of material and crack growth. The geometry is repeatedly re-
meshed as the body shape is updated to accommodate the extending crack. The mesh maintains a
resolution sufficient for a detailed calculation of the strain distribution in the crack tip region to
ensure that the crack growth direction is accurately predicted.

Paths are found for a few cases involving different degrees of mixed mode loading. The
results are compared with results for established crack path criteria.

Computational method

In the present study, a computational method that evolves a body surface by an adaptive finite
element procedure is used, cf. Jivkov [3]. The finite element code ABAQUS [4] is adopted for
computing the strains along the surface. During loading, the oxide film is assumed to crack if the
strain along the surface exceeds the threshold strain & . This results in dissolution of material. Thus
stretching of the body surface controls the rate of dissolution. A linear relation between the surface
strain ¢ and the dissolution rate v is assumed:

v=C(sg) fore>g (D

where C is a constant depending only on the environment. The rate v is, in the present context, the
linear extent per load cycle. The period of the load cycle is assumed to be long enough to allow
full recovery of the protective oxide film. The electrochemical potential of the system is contained
within C. The surface boundary is moved according to Eq. 1 along the normal direction of the
surface. Because of the extremely small thickness of the oxide film, it is not included in the finite
element model. Six-node triangular elements are used and re-meshing is done for each load cycle.
Further details of the model cf. Jivkov [3]. The material is assumed linear elastic, and is subjected
to fatigue loading under plane strain conditions.
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Figure 1.a) Geometry of the large strip used for the finite element analysis b) Mesh after 200 load cycles for
a strip with global K, load.

Results

The crack propagation during is simulated for a semi-infinite crack in a strip, with the initial crack
oriented parallel to the surface of the strip, loaded in different degrees of mixed mode. The



geometry used for the simulations are shown in Fig. 1.a. The length of strip is 2L and the thickness
2h, and the lower edge of the strip is allowed to move in the x-direction but is fixed in the y-
direction. The load is applied at the upper edge as prescribed displacements u, and u,. The crack
has an initial length L and it is located at y = A, between x = 0 and L, with its tip at x = L.
Simulations are performed for a few hundred cycles for eight different degrees of mixed mode
loading. In Fig. 1.b, a typical finite element mesh is shown. Approximately 2000 elements are used
during one load cycle, and the ratio of the largest and the smallest element sides is around 4000.
The displacement ratio u,/u, equals Ki/K;, and the following ratios are investigated: 0, 0.2, 0.5, 1,
2,5, 10 and oo.

In Fig. 2.a, the crack paths after 200 load cycles for the investigated Kj/Kj-ratios are
shown. The kinked part of a crack is approximately 4-10°L, the width of the crack is governed by
the load and &; cf. [3]. It can be seen that the larger the Kj;, the more stable the shape of the crack.
The crack driven by a global K-loading shows a tendency to branch at the crack tip. It can also be
noted that for pure K; global load the present method results in a crack path that is not horizontal
initially. Though, after additionally a few hundred cycles this crack will flatten and find a path that
is parallel with the initial crack.
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Figure 2.a) Crack paths for different Kj/Kj-ratios b) Kink angles versus K;/K; for different criteria

The kink angle, 8, is measured to the centre line of the crack, and the values are plotted in
Fig. 2.b. These results are compared to kink angles obtained by four different crack paths criteria
for sharp cracks found in the literature. Melin [5] computed kink angles by maximizing the local
mode I stress intensity factor, 4;, at the tip of an infinitesimal kink of a sharp crack. Richard et al.
[6] use a criterion based on a numerical adoption to experimental findings. Additionally, two of
the criteria studied by Bergqvist and Guex [7] are used for comparison; the criteria of maximum
principle stress by Erdogan and Sih [8] (Criterion A) and of the maximum J-integral by Sih [9]
(Criterion B). All criteria give similar results as in the present study. For dominating global K,
loading, i.e. K;=0, the hypothesis of maximum k; shows best agreement.

Discussion

The present method is based on the calculations of strains along the parts of a body that are
assumed to be in contact with a corrosive media. The tip of the resulting crack has a finite
geometry as opposed to conventional methods where it is treated as a single point. The part of the
crack tip region that exceeds the threshold strain for oxide film breakage will dissolve and the



crack grows by evolving the surface of the body. During crack growth local broadening of the
crack tip region will develop, which in turn can induce crack branching.

Conclusions/Concluding remarks

In the present study, it is shown that crack paths can be followed without criteria for neither crack
growth nor crack path. An adaptive finite element procedure was used to simulate the moving
boundary of a body subjected to strain driven corrosion fatigue.

Results for kink angles due to mixed mode loading of a crack computed with the presented
criteria free method was found to agree well with predictions from criteria for sharp cracks found
in the literature. The best agreement was found for dominating global Kj; loading, while for
dominating K| loading the deviation was larger.

It is believed that the criterion free method can be a plausible choice for studying
situations where criteria for crack growth, crack branching and crack path criteria fail, e.g.
interface cracks, crack initiation from notch or surface and meeting cracks.
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Summary A micromechanics model based on the theoretical framework of plastic localization
into a band introduced by Rice [1] is developed. The model employed consists of a planar band
with a square array of equally sized cells, with a spherical void located in the centre of each
cell. The micromechanics model is applied to analyze failure by ductile rupture in experiments
on double notched tube specimens subjected to combined tension and torsion carried out by
the present authors [2]. Two rupture mechanisms can be identified, void coalescence by internal
necking at high triaxiality and void coalescence by internal shearing at low triaxiality. The two
failure criteria capture the transition between the two rupture mechanisms successfully and are in
good agreement with the experimental result.

Introduction

In [3], experiments are carried out on a double notched tube specimen subjected to a com-
bination of tension and torsion. By applying different ratios of torsion and tension, stress
triaxiality can be controlled and varied in the tests. At sufficiently high stress triaxiality,
the specimens fail by a ductile rupture mechanism characterized by voids that have grown
to impingement and coalesce by internal necking, as seen by the fractograph in Figure
1(a). However, at sufficiently low stress triaxiality failure occurs by plastic shear local-
ization in ligaments between voids, see fractograph in Figure 1(b). In the present work a
micromechanics model was developed with the purpose to investigate the conditions that
govern the transition between the two rupture mechanisms observed in the experiments
[3] and shown in Figure 1.

Figure 1: Scanning electron microscope fractographs illustrating two different rupture mechanisms: (a)
void coalescence by internal necking and (b) void coalescence by internal shearing.



Micromechanical model

To model the failure in the tube experiment[3], we employ a micromechanical model where
the material deforms under the macroscopic stress state of combined generalized tension
and generalized shear as shown in Figure 2(a). The material is assumed to contain an
initial planar band with a regular square array of pre-existing voids, which can be viewed
as initial imperfections that may induce localization into a symmmetric mode, a shear
mode or a combination of both [1]. Due to the regular array of voids, attention can be
restricted to a three-dimensional unit cell as indicated in Figure 2(b). The initial ratio of
void size to void spacing is defined as xg = Ry/Dy, where Dy is the initial width of the
unit cell. The behavior of the matrix material is taken to be homogeneous, elastic-plastic
with isotropic hardening and modeled by a finite strain Jy flow theory. The unit cell is
loaded such that the macroscopic stresses acting on the cell follow the proportional history

Yoo /Y11 = E33/X11 = pn, X12/211 = ps, (1)

where p,, and p; are prescribed constants. By varying p,, and p, a stress state of combined
generalized tension and generalized shear can be accomplished. Hence, stress triaxiality T’
and the Lode parameter u will remain constant during the load history as

p=Zh__ _14%n (2)
Yo 3y/(1—pn)? +3p2
_ 22X % —-%m (1—pn) (3)
Y1 —Ym V= pa)? +4p2

where ¥y, and X}, are the mean and the Mises effective value of the macroscopic stresses
respectively and Y1 > ¥p; > Yyp7 are the principal stresses.
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Figure 2: Micromechanics model: (a) homogeneous material with a band containing pre-existing voids and
(b) macroscopic stresses acting on the unit cell referring to a Cartesian coordinate system with origin at
the centre of the void.

The deformation of the unit will consist of an uniform part outside the band of localized
deformation and a non-uniform part pertaining to the band of localized deformation. The
volume average of the deformation gradient for the 3D unit cell can be expressed as

F = F? 4 F? (4)



Here, F? denotes the uniform part the deformation gradient outside the band of localized
deformation whereas F? is the non-uniform part. Hence localization of deformation into a
narrow planar band can be defined as [4]

el ] = o= R

For further details regarding the micromechanical model and the numerical implementa-
tion c.f. [2, 5].

Results

Two materials with different stress-strain behavior were considered, Weldox 420 and Wel-
dox 960. The loading conditions of the unit cell, Eqn. (2, 3), were chosen such that it
resembles the stress state at failure in the centre of the notch of the double notched tube
specimen. The stress state, T vs. pu, at failure for the two materials is depicted in Figure
3, which were obtained from the experimental work in [3].
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Figure 3: The Lode parameter p vs. stress triaxiality 7" in the centre of the notch at failure (c.f. [3]). Open
circles pertain to Weldox 420 and solid circles pertain to Weldox 960.

The outcome of the micromechanics analysis are summarized and compared with the
experimental results in Figure 4(a) for Weldox 420 and in Figure 4(b) for Weldox 960,
where critical values of strain E. are plotted vs. triaxiality 7. The solid circles represent
the effective plastic strain in the centre of the notch at failure in the experiments. The
thin solid lines, corresponding to the three different yg values, are theoretical curves from
the micromechanics model that indicate failure by localization according to Eq. (5), which
marks the onset of void coalescence by internal necking between voids and subsequent
fracture by ductile rupture. Note that the theoretical curves captures the experimental
results well for triaxiality values larger than about 0.8 and 1.0 for Weldox 420 and Weldox
960, respectively. In the low triaxiality regime the solid lines representing the localization
criterion do not at all capture the experimental outcome. In fact the pre-existing layer
of voids does not seem to play a role for the onset of fracture. Instead a simple criterion
based on the attainment of a critical shear deformation was employed. For this purpose
it was assumed that failure occurs when the shear component F»; of the volume average



of the deformation gradient, Eq. (4), reaches a critical value. The thick lines in Figures 4
signifies this failure criterion. It can be observed that the agreement with the experimental
results are good.
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Figure 4: Failure locus for (a) Weldox 420 and (b) Weldox 960, where the macroscopic effective strain F.
at failure is plotted vs. stress triaxiality 7". The solid circles represents experimental results. The three thin
lines indicate failure by localization according to Eq. (5) and the thick line indicates failure when F»; = 1.6
and 0.8 is attained for Weldox 420 and Weldox 960, respectively.

Concluding remarks

In this study a micromechanical model to investigate the rupture mechanisms in combined
tension and shear is performed. The model which enables the examination of two rupture
mechanisms leading to ductile rupture, void coalescence by internal necking and void coa-
lescence by internal shearing, captures the experimental trend and the transition between
the two rupture mechanisms well. The void coalescence by internal necking is predicted
by the onset of localization of deformation, whereas shear failure is predicted by a critical
shear deformation criterion.
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ABSTRACT before NSCM October, 2006, in Lund

Wood is very weak perpendicular to its grain and the strength of timber structural elements and joints
is therefore often governed by tensile and shear fracture perpendicular to the grain. Strength design
relating to such fracture is in timber engineering codes of practice commonly dealt with by empirical
strength equations or by some simple maximum stress criterion. More rational strength analysis is
feasible by use of various material models and fracture criteria: deterministic/stochastic
linear/nonlinear material models with finite/infinite strength and zero/finite fracture energy of the
material, Table 1. The conventional deterministic linear elastic stress criterion assuming finite strength
and zero fracture energy is predominant in general timber engineering strength design. The possibility
of engineering applications of linear elastic fracture mechanics is however gaining increasing
attention. This is mostly by two reasons: a) element and joints with some kind of stress singularity can
not be analysed by conventional stress criteria and, b), the insight that timber engineering application
of fracture mechanics is often possible and simple by use of beam theory. The study discussed in this
presentation relates to further development of beam theory linear elastic fracture mechanics. The
material is assumed to be linear elastic with strongly anisotropic properties giving crack growth
according to the orientation of the material. The specific engineering application considered is strength
analysis of a glulam timber beam with rectangular hole, Figure 1 b). For this case is comparison made
with experimental data. Evaluation of beam theory results is also made means of plane stress finite
element analysis.

Table 1. Methods of strength analysis. Gy denotes fracture energy and f; material strength.

Deterministic Stochastic
f; finite fi > f; finite fi >
G;=0 | Conventional -- Weibull weakest --
stress criteria link model
G¢# 0 | Non-linear Linear elastic Probabilistic Probabilistic
fracture fracture non-linear fract. | linear
mechanics mechanics mech fract.mech.
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Figure 1. An end-notched beam (a), a beam with a hole (b), a part of infinitesimal length (c) and its
upper part (d).

An equation for the energy release rate during crack extension and the corresponding strength of end-
notched beams (Figure 1 a)) derived by compliance analysis using conventional beam theory was
presented and applied to timber beams about 20 years ago. This strength equation is now used in
timber engineering codes of practice. Use of the same kind of approach to beams with a hole may
seem close at hand but has proved to be more difficult both in relation to engineering analogies with
end-notched beams and more basic beam theory studies. This is due to: (1) significant influence of



shear makes division of the total energy release rate into modes 1 and 2 necessary, (2) normal force
acting on the cross section must be considered and (3) the cross sectional forces and moments acting
on the parts above and below the hole are statically indeterminate. Issue (1) is of a basic nature and
issues (2) and (3) makes the calculations more comprehensive.

An infinitesimally short part of the beam at the end of the hole is considered (Figure 1c)). The
horizontal and vertical forces and the bending moment acting across an infinitesimal horizontal section
(Figure 1d)) along the beam part can be calculated by the equations of equilibrium. The energy release
rates for modes 1 and 2 can then be obtained by using the method of work of crack closure calculation
with consideration to the deformations of the infinitesimal parts below and above the horizontal
section. The vertical force contributes to mode 1, the horizontal force to mode 2 and the moment
influences both modes. The strength of the beam is then found by using a mixed mode fracture
criterion, e.g. the Wu criterion. The general case gives an extensive strength equation, but for various
special cases of engineering interest can more user-friendly equations be found. Figure 2 shows an
example of theoretically predicted and experimentally determined strength. The example relates to
centrically located square holes with side length S, and with and without rounded corners. b is the
width of the beam, h is the height and V. is the shear force at failure.
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Figure 2. Shear strength of a glulam beam with a square hole with and without rounded corners.
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equations based on application of Bézier surfaces and curvilinear
coordinates
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Summary The flow of Newtonian liquids is governed by the Navier Stokes equations and the equation of
continuity. A new collocation method based on application of Bézier surfaces and curvilinear coordinates
has been developed for their solution. In the plane case there are three unknown functions, pressure and two
velocity components, that depend on time and on two space coordinates. The procedure starts from division
of the plane domain into a certain number of quadrilateral subdomains, whose geometry is described by
control points of Bernstein polynomials. Then the pressure and the velocity functions in each subdomain are
approximated by Bézier surfaces and these approximations are substituted into the Navier-Stokes equations
and the equation of continuity. The unknowns are the control points and their calculation starts from
satisfying the Navier-Stokes equations and the equation of continuity at a specified number of collocation
points, whose positions in the domains are defined by the curvilinear coordinates. This procedure results into
a set of overestimated linear algebraic equations. Magnitudes of the control points of the approximated
functions must satisfy some additional conditions that describe their continuity and continuity of their
derivatives at borders of the adjacent subdomains. Advantage of this approach is that it does not require
space discretization of the domains. This can be utilized especially in the case when the shape of the
investigated region is changed significantly ( large boundary displacements ).

Introduction

The isothermal 2D flow of incompressible Newtonian liquids is governed by a set of Navier-
Stokes equations (1) - (2), the equation of continuity (3), and by the relationships for the boundary

conditions

op ov, ov, ov, o*v, 0°v,
+ + + - + = 1
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+ + + - + = 2
aXz p 8‘[ Vl aXl VZ aXz n aXlz aX; ng ( )
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O0X, 0X,

X1, X2 - X, y cartesian coordinates,

Vi, V2 - velocity components in a cartesian frame of reference in X, y directions respectively,
p,t - pressure, time,

p,M - density, dynamical viscosity of the liquid,

g1, & - components of the gravity accelerations in X, y directions.

Equations (1) - (3) represent a set of nonlinear partial differential equations where the unknown
functions, pressure p and velocity components v, and v,, depend on the space coordinates and on



time. To solve them some numerical method must be used because their solution in a closed form
cannot be obtained. Application of a finite difference method requires to perform both the space
and time discritization and to replace the derivatives by corresponding differencies. A similar
approach is needed if a finite element or a finite volume methods are used.

Applicability of these methods depends on the shape of the domains and their usage is siutable
especially if it does not change. If it changes, the space discretization must be repeatedly modified
and the solution continues with newly created finite differencies, elements or volumes. To avoid
this problem a new collocation approach based on application of Bézier surfaces and curvilinear
coordinates has been developed.

Bézier surfaces

In general a Bézier surface is a function that assignes a value of some quantity to the points
situated in a quadrilateral domain and whose positions are defined by curvilinear coordinates. The
borders of this domain do not need to be straight lines but they can have a curvilinear form.

A Bézier surface is defined by a Bernstein polynomial

M N M ) . N ) .
i M-i N—
s = Zsij(.Jul(l—ul) [,]u%(l—uz) ! 4)

i=0 j=0 1 J
where
s - quantity,
M, N - nonnegative integer numbers defining the number of the control points,
Sij - control points (1=0,1,2 ... M,j=0,1,2,...N),
u, Uy - curvilinear coordinates describing position of points in the domain,

(OSulﬁl,OSuzél).

To achieve the required boundary conditions of the Bézier surfaces control points of the Bernstein
polynomials must satisfy some additional conditions.

If the Bézier surface should have a certain value at its domain border, then it must hold for the
control points

if u, =0 then So; =8 forj=0,1,2,..N Q)
if  u =1 then Smj = So forj=0,1,2,...N (6)
if  u,=0 then Sio =S, fori=0,1,2,.. M (7)
if u, =1 then Sixv = So fori=0,1,2,..M (8)

If two Bézier surfaces should be continuous at the common side of two adjacent domains, then
their control points must satisfy the conditions

if u =1 (domainl), u; =0 (domain2) then sy, =q, forj=0,1,2,..N 9)
if u,=1 (domainl), u, =0 (domain2) then s,, =q, fori=0,1,2,..M (10)

If two Bézier surfaces should be smooth on their common border ( their first partial derivatives
with respect to the variable curvilinear coordinate on their common border are equal ), then it is
valid for their control points



if u, =1 (domainl), u; =0 (domain2) then q,;=2sy;—s8y; forj=0,1,2,..N(11)
if u,=1(domainl), u,=0 (domain2) then q; =2S,y —Sy, fori=0,1,2,..M(12)
S0 Sij, qij - required value, control point of domain 1, control point of domain 2.

Solving a 2D flow by means of application of Bézier surfaces

The set of equations (1) - (3) must be solved numerically. For the time discretization a finite
difference scheme has been adopted. The Navier-Stokes equations are related to time t, the
equation of continuity to time t+At, and the derivatives of the velocity components with respect to
time are replaced by their forward differencies ( At - time increment )

2 2
MR JO Vi, M +V,, AT Vzl +|2 \/21 +g1+Vl’t (13)
At p|ox, |, ox, |, ox, | ) pl\Loxy | | ox5 ], At
2 2
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(14)

ov ov
aXl t+At aXZ t+At
X1, Xo - cartesian coordinates,

v, Vo - velocity components in X;, X, directions.

The developed collocation approach for solving the Navier Stokes equations and the equation of
continuity [2], [3], [4] consists in dividing the region, in which the flow is investigated, into one or
more quadrilateral domains and in approximation of the cartesian coordinates, of the pressure, and
of the velocity components by Bézier surfaces in each domain. The required boundary conditions
are achieved by adding the appropriate relations (5) - (8), (9) - (10) and (11) - (12).

Magnitudes of the unknown control points are calculated utilizing the assumption that the resulting
equations are satisfied at a specified number of collocation points, which are defined by chosen
values of the curvilinear coordinates u; and u,. This manipulation arrives at a set of overestimated
linear algebraic equations. Its solution is performed by means of a matrix pseudoinversion.

Example

The investigated 2D region ( Fig.1 ) is a channel through which the Newtonian liquid ( density
1000 kg/m’, dynamical viscosity - 0.002 Pas ) flows. The flow is induced by a pressure difference
between the inlet and outlet sides ( pressure at the inlet side - 150 kPa, pressure at the outlet side -
100 kPa ) and it is assumed that the liquid perfectly adheres to the channel surfaces. The task was
to analyze the pressure and the velocity fields.

The region was divided into 12 subdomains ( Fig.1 ). The geometry of each of them was described
by 49 control points. In each subdomain the unknown pressure and velocity functions were
approximated by Bernstein polynomials and each of them was defined by 132 control points. The
calculation arrived at an overestimated set of 3960 linear algebraic equations having 3428
unknown parameters.



At the beginning the liquid was in rest. Fig.2 shows the pressure distribution in the channel at time
1.35 ms. The profiles of the total velocity of the flow in sections of the channel having the x
coordinates 300 mm and 700 mm related to the same point of time are drawn in Fig.3.
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Figure 1: Investigated channel Figure 2: Pressure distribution Figure 3: Velocity profiles

Conclusion

The flow of Newtonian liquids is governed by the Navier-Stokes equations, by the equation of
continuity, and by relationships for the boundary conditions. The first step of application of a finite
difference, a finite element or a finite volume methods for their solution is a time and space
discretization of the region through which the liquid flows. If the region changes its shape, the
discretization must be done repeatedly. This disadvantage can be removed by application of a new
collocation method based on introduction of a curvilinear coordinates and approximation of the
geometry and distribution of the pressure and velocity fields by Bezier surfaces ( 2D flow ) or
bodies (3D flow ). Change of the shape of the investigated region has no influence on
specification of the position of collocation points because they are defined by curvilinear
coordinates. The procedure avoids solving a set of nonlinear algebraic equations at each
integration step. Instead of this manipulation it arrives at calculation of an overestimated set of
linear algebraic ones. Magnitudes of the control points from which the pressure distribution and
the velocity field in the investigated region is calculated are the results.
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Use of Richardson Extrapolation in Error Estimation of LES
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Summary The justification of estimating the numerical and modelling error of large eddy simulation
using the Richardson extrapolation is studied in a turbulent channel flow between two parallel walls. In the
present test case, the Richardson extrapolation is found to describe the effect of the subgrid-scale model on
the mean-velocity profile but not the effect of the numerical error.

Introduction

In large eddy simulation (LES), the so-called large scales of fluid motion are solved from the fil-
tered Navier—Stokes equations, and a subgrid-scale (SGS) model is applied to describe the effect
of the small scales on the resolved ones. Often, the grid resolution defines the separation between
the resolved and SGS scales, and the smallest resolved flow scales are of the same size as the grid
resolution. When, in addition, low-order finite-difference-type methods are applied to discretiza-
tion, the numerical error may be large in comparison to the effect of the SGS model [1, 2]. Many of
the error estimation methods applied in LES require data from direct numerical simulation (DNS)
or measurements (see e.g. [1, 2]) which are not usually available for complex LES applications.
For this purpose, use of the Richardson extrapolation has been suggested [3]. In this paper, this
method is applied in a similar test case as in [3] but with a different grid resolution. The assump-
tions made in [3] about the actual order of the numerical method and the effect of SGS modelling
are studied, and the obtained error components are compared to results obtained with an approach
based on the so-called grid-independent LES (see [4]).

Test Case

Here, the Richardson extrapolation is applied in a fully-developed turbulent channel flow between
two infinite parallel walls at Reynolds number Re. = 395 based on the friction velocity and
channel half-height, or Re ~ 6800 based on the mean bulk velocity. For this flow case, accurate
DNS exists [5], and it is thus possible to compare the total error obtained by the Richardson
extrapolation to the true total error. The LES equations are written here in the non-dimensional

form as:
ou;  9p o ( 1 [du  0u
at N 6952 + (%cj ( UZU] T + ReT <al'] + 6952))’ (1)

where (x1,x92,23) = (z,vy,2) refer to non-dimensional streamwise, wall-normal and spanwise
spatial coordinates, respectively, ¢ to time, (@1, @2, u3) = (u, v, w) to resolved velocity vector and
p to resolved pressure. Here, an eddy-viscosity-type model, the standard Smagorinsky, is applied
to model the SGS stress tensor w;u; — ;-
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In the above, C's = 0.085 is the model coefficient and Ag the model length scale, which controls
the size of the smallest resolved flow scales. In the base test case, Ag is equal to grid spacing



Ag = A = (Az Ay Az)'/3. In the near-wall regions, the van Driest damping is applied to reduce
the model length scale. The resolution of the LES grid for which the error analysis is performed
is given in Table 1. The second-order central-difference scheme is applied to space discretization
and an explicit, third-order Runge—Kutta method to time integration.

Table 1: Domain size and resolution of the applied LES grid in the base test case.

streamwise (x) spanwise (z) wall-normal (y)

extent of the domain / channel height 3.0 1.6 1.0
number of grid points 54 54 60
size of the grid cell in wall units (A™T) 44 23 2,...,27

wall units: ™ = Re,x, where z is scaled by the channel half-height.

Numerical and Modelling Error using Richardson Extrapolation

In the approach to error estimation proposed in [3], the difference between the exact solution, w,
and a numerical LES solution, @, obtained on a grid with resolution A, is approximated as

Un —u = ey A" + ey AT + O (AT AT (3)

where n is the order of the numerical method, m the order of modelling error, A is the grid
spacing, A the model length scale and c,, A™ represents the numerical error and c,,, A% the effect
of the SGS model. If values for n and m are known, three simulations are required to evaluate the
error components. As suggested in [3], by repeating the simulation first with a reduced resolution
(reducing A) and then with a reduced effect of the SGS model (here A is reduced), one can
form two additional equations like (3). If the higher-order terms are assumed to be negligible, i.e.
the resolution and the effect of the SGS model are in the so-called asymptotic range where the
methods obtain their formal accuracy, ¢, A™ and c,,, A", can be solved.

Obtained Error Components

To apply the approach presented in [3], the LES of the channel flow described above is repeated
with a grid resolution reduced from Table 1 by the factor of 1.5 (case “coarse™), and then with the
same resolution as given in Table 1 but with a model length scale, A g, reduced by the factor of 2
(case light™). As in [3], it is assumed that n = 2 and m = 2. The mean-velocity profiles from the
present simulations are given on the left-hand side of Figure 1 as function of a non-dimensional
wall distance, and the obtained error components on the right-hand side. In addition, the true total
error obtained as a difference from the DNS of [5] is included. We notice that the sum of the
modelling and numerical error is not even close to the true total error. This suggests that either one
or both of the error components cannot be approximated with the first term of the Taylor series
like in Eq. (3). The study was also repeated with a grid resolution twice the one used here and with
larger model length scales, but the results did not improve. In addition, as the grid resolution was
varied, the estimate for the total error did not behave in the same way as the true total error.

Order of Numerical and Modelling Error in Present LES

In the previous section, it was assumed that the numerical error and the effect of SGS modelling
are both of the second order, i.e. n = m = 2. In this section, we test the assumption.

To evaluate the order of the modelling error, m, the simulations are repeated keeping the grid
resolution A fixed to the one given in Table 1 and varying the model length scale Ag. The values
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Figure 1: Left: Mean-velocity profiles. Right: Obtained error components for the base test case.

0.5A, A and 1.5A are applied to Ag, and thus three equations like (3) can be written, ¢, A"
eliminated and ¢,,, and m solved. The obtained order of the modelling error for the mean velocity
is given on the left-hand side of Figure 2. In the logarithmic region, the order of the error is close
to the value m = 2 which was applied in the previous section. However, in the viscous sublayer,
where the total error is almost zero, the modelling error is not in the asymptotic range, and m
obtains even negative values. When the study was repeated with a finer grid, the area where m ~ 2
was somewhat thicker. Since the order for the modelling error is quite close to the theoretical one
in the logarithmic layer, the reason for the bad results for the total error obtained in the previous
section has to be the numerical error.

1 10  + 100 1 10 + 100
y y

Figure 2: Left: Obtained order of SGS modelling error. Right: Obtained order of numerical error.

The order of the numerical error, n, can be evaluated in the same way as the one of the modelling
error. The simulation was repeated keeping the model length scale A g equal to the grid spacing
given in Table 1, and using grid resolutions 1.5 and 1.52 times that of Table 1. The obtained order
of the numerical error is given on the right-hand side of Figure 2. n has only negative values which
indicates that the applied resolutions are not in the asymptotic range and thus the numerical error
cannot be described by the first term of the Taylor series, g, A™.

The study on the error components was also repeated for the diagonal Reynolds stress compo-
nents, and there the Richardson extrapolation was not able to predict either the numerical or the
modelling error, which is a drawback for the usability of the approach. Another possibility could



be to consider an extension of the Richardson extrapolation to cases where the convergence is not
monotonic, which is presented in [6].

Comparison with another Approach to Error Estimation

The modelling and numerical error of this same test case with the same numerical methods and
SGS model were previously studied using an approach based on the so-called grid-independent
LES [7]. The concept of grid-independent LES with the standard Smagorinsky model, which was
proposed in [4], has received some criticism, and the Richardson extrapolation was proposed as an
alternative approach [3]. Besides the different theoretical basis, the main difference between these
approaches is the dependency of the numerical error on modelling. If the error components are
defined using the grid-independent LES, smoothing of the resolved flow field provided by SGS
modelling is allowed to affect the numerical error. In the definition using the Richardson extrap-
olation (3), the numerical error is independent of modelling. However, when the modelling errors
obtained with the two approaches were compared, the results were quite close to each other. The
comparison was repeated for cases with smaller and larger model length scales, and the similarity
remained. This reinforces the conclusion on the suitability of the Richardson extrapolation to the
estimation of the modelling error.

Conclusions

In this paper, the use of the Richardson extrapolation to evaluation of the numerical and modelling
error in LES was studied in the turbulent channel flow. There was a clear difference between
the obtained estimation for the total simulation error and the true total error. This difference was
explained by the numerical error for which the Richardson extrapolation was not valid at the
applied grid resolutions. However, the use of Richardson extrapolation for the effect of the SGS
model on the mean-velocity profile was justified in the logarithmic region. As a conclusion we can
say that despite the promising results of [3], the use of the Richardson extrapolation in LES is not
straightforward, and the justification of its use is highly dependent on the applied grid resolution.
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Teaching Principal Stresses by Truss Analogies
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Summary An approach to increase students’ understanding of principal stresses and the flow of stresses
in complex structures is proposed. The strut-and-tie models for structural concrete provide a clear picture of
the stress flow in complex structures. In order to provide students with more time for critical thinking and
reflection, the equivalent trusses are generated by the user-friendly and web-based topology optimisation
software TopOpt, developed at DTU.

Introduction

In the civil engineering courses on elasticity theory at KTH in Stockholm, principal stresses and
strains have been taught only by showing how they are calculated: by formulas, Mohr’s circle or
as an eigenvalue problem. The distribution of principal stresses in a complex structure and their
importance in practical design have not been discussed in the lectures. As a result, many students
graduate without knowing how to use principal stresses in practical design; the vital connection
between theory and practice is missing.

The self-taught software ForcePAD, developed at LTH in Lund, can derive the flow of stresses in
a complex two-dimensional continuum with minimum effort by the students. Although ForcePAD
illustrates the stress flow well, it provides only limited information useful for design purposes,
especially for complex geometries, Figure 1.

Methods to illustrate the stress flow in a continuum as a truss have been available since the early
1900s [1]. The truss-analogy for structural concrete, the strut-and-tie method, has led to a safe
and unified design approach where the overall flow of forces in critical regions are not overlooked
as they would be in a sectional design approach, [2], cf. the sinking of the Sleipner-A offshore
platform in 1991. Truss analogies are also used to determine the post-buckling load capacity of
thin sheets; the tension field theory by Wagner [3] assumes that the wrinkled web of a steel beam
behaves like a truss by replacing the wrinkles with bars in tension.
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Figure 1. ForcePAD-computed principal stresses for a deep beam with a hole: (a) compressive and (b)
tensile stresses.



The transformation of a complex continuum into a less complex truss makes it possible for both
designers and students to use simple truss calculations methods. Nevertheless, the difficulty of
the truss analogies lies in finding the geometry and topology of the truss that best represents
the force flow in the actual structure. The strut-and-tie method requires considerable experience
before suitable truss topologies can be obtained for more than the most simple structures, [4]. To
use the tension field theory, the post-buckling shape of the thin-sheet must be found, which usually
requires time-consuming non-linear finite element computations.

This study investigates the use of topology optimisation algorithms for the automatic generation of
the equivalent truss for the strut-and-tie method, [5], and how it can be implemented into a course
on elasticity theory for civil engineers.

Computer aided learning and critical thinking

A computer software can enhance students’ learning, but it needs to be tailored for educational
purposes and implemented with care to avoid opposite learning effects. The idea in this study is
to use a software to help students understand and interpret the flow of forces in a complex contin-
uum. However, if the software performs all the calculations for the students, the students do not
necessarily learn or understand. Jennings [6] warned already a decade ago about the risks of re-
placing traditional education in structural analysis by software: A computer package for structural
analysisis a lethal tool if put in the hands of a structural engineer with poor training but, if the
training is appropriate, the capabilities of the structural engineer will be very much enhanced.

Personal experience and a recent study at KTH [7] suggest that computer software require careful
implementation in structural mechanics education. General mathematics programs, such as MAT-
LAB and MathCAD, certainly help the students perform more calculations in less time. However,
if the students are unfamiliar with the use of the programs, their attention is shifted from the struc-
tural analysis to the handling of the program. General finite element programs produce impressive
plots, but they require understanding of the underlying principles in order to produce reliable re-
sults and experience to be used effectively. Thus, the generality of these programs make them less
user-friendly and more time is spent on learning the program than solving the problem. As a re-
sult, the students often have no time left to reflect on their obtained solutions. Hence, the challenge
here is to increase, or at least preserve, the level of critical thinking and reflection among students
while using computer software to aid learning. In this respect, educational structural analysis soft-
ware has been developed at LTH, i.e. ForcePAD, and at CTH in Gothenburg, i.e. pointSketch2D
[8]. These programs are limited in capacity and generality, but very user-friendly thanks to their
tab-based user interface.

Truss models by topology optimisation

As described in the introduction, the strut-and-tie method provides a clear and simple explanation
of the stress flow in a structure, but the design of the equivalent truss is very difficult for an
unexperienced person. Since the strut-and-tie method can significantly increase the understanding
of complex concrete structures it can be considered an important element of the civil engineering
curriculum. Therefore, the following simplification can be made to allow more time for learning:
the strut-and-tie model is automatically generated by a topology optimisation software so that the
students can concentrate on evaluating various designs in terms of stresses, reactions, amount of
reinforcement, etc.



Topology optimisation software

Topology optimisation capability is included in some general finite software, e.g. ANSYS and
MSC.Nastran, but, as explained above, these are not suitable for computer aided learning. At
DTU in Lyngby, the web-based topology optimisation software TopOpt has been developed (www .
topopt .dtu.dk), [9]. This software is as easy to use as ForcePAD and therefore suitable for
educational purposes.

Example

Constructing a complete truss model for the deep beam with a hole, Figure 2(a), based on the
stress trajectories is difficult and requires experience. Schlaich et al. [2] derive a complex model,
Figure 2(b), which actually is a combination of two different truss models. The optimal models by
Liang et al. [5] and the present by the TopOpt software are similar and not unlike the model by
Schlaich et al.. The important stress flows are well captured by the optimal models.
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Figure 2: Comparison of strut-and-tie models for a deep beam with an opening: (b) Complex model by
Schlaich et al. [2], (c) optimal model by Liang et al. [5] and (d) present optimal model by TopOpt.

The TopOpt program enables quick changes of geometry and load conditions, so the students can
see how the internal stresses take different paths as a result of those changes. In Figure 3(a), a
change in load position leads to a totally different truss model. In Figure 3(b), the hole is substi-
tuted by a cut-out on the left side, with the loads concentrated on the left side of the beam, clearly
illustrated by the blackness of the structure.
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Figure 3: Change of strut-and-tie model as the load and hole positions vary: (a) load position changes and
(b) hole and load position changes.

Concluding remarks

The proposed implementation of the programs ForcePAD and TopOpt in education will take place
in Spring 2007 in a 4th-year course on the civil engineering programme at KTH. The aim is to
provide the students with a tool that shows how the stress flow in a continuum can be illustrated
by a truss. The students can thus relate the analysis of continuum structures to their prior knowl-
edge of analysis of trusses. Hopefully, their understanding of the relationships between forces and
stresses will increase. A valuable bonus that surely will be appreciated by the students is the direct
connection between the truss analogy and practical design routines.
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Summary Taking advantage of grid resources often requires an utathelisg of the underlying concepts
of grid computing. The Lunarc Application Portal is an effiar provide an application oriented grid portal,
providing targeted user interfaces for commonly found i&agibns used at Lunarc. The developed portal
also provides a plugin based architecture that can be usadramework for developing web based user
interfaces for other grid-based applications. The postalso implemented using lightweight tools making
it easy deploy and maintain.

Introduction

To take advantage of grid resources today often requiresiderstanding of the underlying con-
cepts of grid computing and related middleware tools. Toerthk grid an attractive alternative for
more users, grid user interfaces must be provided on sdegeds. Currently most grid client tools
are command line based. This excludes a large user populatim easily taking advantage of
grid resources. There are also traditional HPC-usersjubawant to get the work done, without
creating scripts and typing commands.

The client tools provided by many grid middlewares [1, 2] @lten command line based and have
a quite advanced job description languages such as RSLR3L%4] or jdsl [5]. Adding to this
complexity is also a security model based on public key grt@g that many users are unfamiliar
with. Even users experienced with high performance comgytiPC) have difficulties using grid
client tools. Providing web based user interfaces is arcefie way of providing platform inde-
pendent access to grid resources, only requiring a recembvasvser. There exists today a num-
ber of projects for implementing web based interfaces fai ggsources, such as gridsphere[6],
CrossGrids[7], GridBlocks[8] and many more. Most of these«dill geared towards providing a
lot of advanced functionality not needed for many users.

The Lunarc Application Portal is an effort to provide an aggtion oriented web based environ-
ment for users not experienced in a HPC or grid environmeaoljighng targeted user interfaces
for commonly available applications. The portal can alsaubed as a framework for easily im-
plementing web interfaces to user applications, withoutimdevelopment effort. The Lunarc
Application Portal has also been used by NTNU for developivar portal solution, GRIDpor-
tal [9].

Lunarc Application Portal

To provide users easy access to grid resources as well agees@rovided locally, Lunarc has
initiated the development of a web based application ceepbrtal (LAP) that provides an easy to
use environment for submitting, monitoring and retrieviegults from grid jobs. The portal web
interface provide specific user interfaces for a number contynused applications at Lunarc,
such as MATLAB [10], OCTAVE [11], ABAQUS [12] and MOLCAS [13]The portal is also used

to provide wider access to research applications in the diedgtronomy and fire safety.



User interface

The fundamental design goal of the portal user interfac® igrovide a complete easy to use
environment for the user to get access to grid resourcese Bpcific, to provide:

¢ Certificate management on all platforms.

e User virtual organisation (VO) registration.

e Specific user interfaces for commonly used applications.

e A general user interface for job submit, management and tormyg.

e A user interface for job result retrieval and downloadingpo from jobs on storage ele-
ments.

e A user interface for managing users for a "Portal VO, that ba easily added to grid sites
controlling access to resources.

The overall user interface is designed in such way that ugerface elements are ordered in the
same way as the portal workflow.

Logging into the portal

When the user opens the portal url, a simple user interfaskds/n with a limited set of menu
choices. The first menu, Information, contains portal doentation, such as @etting started
guide,A User's guideand aProgramming guide. TheGetting started guide provides a system-
atic guide on how to download the Grid Certificate Manageitimge a signed certificate and how
to log into the portal. The second menu, Session, at thig paoily provides 2 menu choices, Log
in ... (proxy) and Log in .. (MyProxy). By choosing the first meitem, a simple login window is
shown. From this window, the user selects the previoushegdad proxy-certificate and selects
Login. If a correct proxy-certificate was submitted, thetpbnow shows a complete set of menus
for all functionality.

Main portal user interface

Menubar
¥

Information  Sesson  Join  Settings Manage  Storage  About..

! Welcome to the LUNARC application port] ABAQUS muttiple job...

: ABAQUS job (user routine)...
MATLAB single job...
MATLAB multiple job...
MOLCAS single job (BETA)...
OCTAVE single job...

! Credits: OCTAVE muttiple job...

H PovRay parallel job...

! Web application developed in Webwvare for Py StarSim single job...

E Grid access though NorduGrid/ARC middleware (ardli

+ HyperText HTML code generation library by John A. (Andy) Dustman

! jsDOMenuBar by Toh Zhigiang

\ LAP Version 0.8.0 (Currently undergeing revisy
! Copyright © 2004-2006 LUNARC, Lund Univer
! Distributed under the GNU Public License versi
+ Vuritten by: Jonas Lindemann

! User: /0=Grid/0=NorduGrid/OU=byggmek.Ith.se/CH=Janas Lindemann
 Proxy valid for: 23 hours, 48 minutes, 48 seconds

{ Workarea

Figure 1: Main portal user interface



The main portal user interface designed as a normal deskioication with a menu bar and a
work area. From the menu bar, all functionality of the podah be accessed. In the workarea
below the menubar all forms, windows and message boxessplaged. Figure 1

Job creation and job definitions

The Lunarc Application Portal uses the concept of job défing. A job definition contains a job
description (xrsl), associated job files and any needegtsdiar running the jobs on the grid. The
user provides any settings and input files using the webfagemprovided by the portal.

The portal comes with a number of job definition plugins fomeoonly found applications at
Lunarc. A job definition is created from th@reate menu. When a job definition template is
selected from the menu a input box appears asking for a jolen@his name is used later on for
identifying the job in the management and monitoring mekMisen This menu is completed the
main job definition window appears displaying more job omiosee figure 2.

— ABAQUS settings
Input file
Current file  |sample.inp

License server

r Job settings
CPU time (s) |60
Job name  |MyAbaqusJob

Email notification

Figure 2: Editing the job definition

In figure 2 the settings for an ABAQUS job is shown, with a brevisitton for selecting an input
file and an input box for providing a hostname to a licenseeseAll job definition user interfaces
also contain common settings such as requested CPU-tilmealoe and an email address for job
state notification.

Managing existing job definitions
All job definitions created can be managed fromMenage/Job definitionsmenu. Selecting this

menu displays window with a list of all created job definisomn the lower half of this window,
there are a set of buttons for managing the job definitions:

Edit — Brings up the job definition user interface for the selegodddefinition.
Submit — Submits the selected job definition for execution on grgbueces.

View results— Displays a list of downloaded result files for the selectdadefinition.
Delete— Deletes the job definition including any associated redudim the portal.

Managing running grid jobs

When a job has been submitted to a grid resource it is managjad theManage Grid Jobs
window accessible from thilanage/Running jobs... menu This window displays the status of
all the job submitted by the user, see figure 3.



JobID Jobllame Status
() gsiftp:/fnen.lunarc.lu.se: 2811 fjobs/198211524515091623465391 MyAbagusJob FAILED

() gsiftp:/fneo.lunare.lu.se: 2811 fjobs1222911524530551946 747410 MyabaqusJob INLRMS:R

Figure 3: Manage Grid Jobs window. From this window all rungnér finished grid jobs can be managed.

There are three buttons in the lower part of this window:

e Get— Download the job into the job definition result folder. Thegjuires that the job has
finished (FINISHED) is in a failed state (FAILED).

e Kill — Kills a running job. Requires the job to be in a executingestdNLRMS, EXE-
CUTED).

e Clean— Removes a finished job from a grid resource without downiapdny results. This
requires that the job has finished (FINISHED) is in a failextes{FAILED)

When a job is downloaded using tiiget button, the output files are placed together with the
associated job definition. When a job definition has been #tduhseveral times, each result is
stored in separate folders marked with the download timedaitel

Viewing job output files

To view the downloaded output files, théew results button is clicked with a job definition
selected. This shows a window with a list of all output filesvdibaded for this job definition. To
view a specific output file folder, theiew directory button is clicked. This brings up a list of all
the downloaded files for the specific grid job, see figure 4.

Type File Size Last modified
C gmiog 4098 Sun Jul 9 15:48:02 2006
O i abaqus_v6.env 53 Sun Jul 9 15:48:01 2006
o 3 run.sh 0 Sun Jul 9 15:48:02 2006
O i stdout. txt 0 Sun Jul 9 15:48:01 2006
Ll i stderr. tet 44 5un Jul 9 15:48:02 2006
O i ti-std.inp 774 Sun Jul 9 15:48:01 2006

Figure 4: Output files generated by a grid job.

In the window shown below, there are several buttons:

e View —View afile as text. Brings up a simple window with scrollbdisplaying the contents
of the file.

e Download— Downloads the selected file to the users browser, dispjayotownload dialog.

e Download all (.tar.gz) — Compresses the entire directory and downloads it to thesuse
browser, displaying a download dialog.



By providing the user with tools for examining the outputifra job, the user can save bandwidth
by not downloading failed or unsuccessful jobs.

Ongoing application projects

The following sections describe ongoing projects basederitinarc Application Portal frame-
work. The goals of these projects are to further the use dictipns currently only available
locally on the Lunarc clusters. By providing a easy to userfate these applications can be eas-
ily used by researcher world-wide, without having to recdengnd configure them for a specific
cluster.

StarSim — Astronomy

r General
Distance start [2000.0 (kod)
Distance increment 20000 (ko)

Distance end (30000 (ko)

Exptime  [23300.0 ()
Samping |2 (miliarcsec)

Imagesize [2048 (pinels)
PsFsize (2047 (pivels)
Strehl 0.6

Aperture (50 m)
Backlevel 50 (pinelvaluc)

Name prefix o

Name suffix

Storage element |gsiftp://se2 lunarc.lu.se

Load parameter set

r Job settings
Mumber of Jobs -1

CPU time (min) 60
Job name (prefix) [Test

Email notification

Figure 5: User interface and typical results from the Star&pplication

One of the applications that have been using the resourtematc, is the simulation the adaptive
optics [16, 15] of a coming extremely large telescope ELThim EUROS50 project. To make these
simulations available for more researchers a project aataiis implementing a special plugin
for the Lunarc Application Portal, providing a easy to uséweerface for the simulation code.
Typical results from the simulation code and the initialniséerface is shown in figure 5.

SMAFS - Fire safety design

An ongoing project is to integrate the SMAFS CFD applicatised for fire safety simulations [17,

18, 19]. The goal here is to create an easy to use interfadddarser to submit generated input
files to the Lunarc resources. The target users are from thusiry and a licensing model is under
development.

Implementation
The main implementation goals of the Lunarc Applicationt®IgiLAP) framework are:

¢ Lightweight — Easy to understand without large dependencies on othariéks. Easy to
deploy and maintain.

e Extendible — It should be easy to extend the portal using a built in phagithitecture.



e Customizable— The graphical design should be customizable to adapt shirgiweb de-
signs.

e Available — The next release will be available under an open sourcesecéGPL).

The portal framework is designed around the python web egjmdin toolkit Webware [20]. This

is a lightweight toolkit for developing object-oriented lwapplications. The toolkit contains de-
sign patterns for applications servers, server pagedetergession management and many other
features. The toolkit is modular and easily extendable.

The portal uses Webware as an application server integiratibseg Apache webserver [21] using
a special Apache module provided with Webware called mvebkit. For security reasons the
Apache webserver serves the web pages using the HTTPS @rotoc

To access the grid the portal uses the ARC [1] middlewares frhidldleware has special bindings
for Python, arclib [22]. The present version of the portasuarclib for certificate handling and
guerying for resources, but a transition is underway to mhkeportal use arclib exclusively as
this eliminates the need for problematic parsing of outputfthe ARC command line interface.

Plugin architecture

The portal framework also implements a plugin-architexfor easily extending the portal without
modifying the existing portal source code. The portal supgpihe following types of plugins:

e Job definition plugins — These plugins enable support for different type of appbog on
the grid. Implemented by 2 classes, one for the user interdac a second for describing
the job.

e Documentation plugins— Implements HTML based documentation with the portal. knpl
mented by 2 python classes (Secure and Non secure) and a HoddioEnt.

e VO plugins — Implements registration processes for different kind@rfial organisations.

The plugins are located in a special directory in the portaimdirectory and is parsed by the
portal application to generate the menu structure. Eadetdiry contains the needed python files
and a special information file containing the text that isgpear in the portal menu.

Conclusions

Most users are application expert and know how to generaid iior his or her application. By
using an application oriented web based grid portal, lile lthnarc Application Portal, a new
group of user can benefit from the advantages of grid ressuie providing explicit user in-

terfaces for user applications, eliminates the need farsusdearn details of the underlying grid
infrastructure.

The Lunarc Application Portal provides a lightweight andeexiable implementation of a web
based grid portal. Using lightweight tools in the implenaian, such as Python [14] and Web-
Ware [14], enable easy deployment and maintenance of tha pbne arclib [22] library provided
an effective tool for interfacing the ARC grid middlewarg {lith the portal.

Extending the portal with additional application types t@ndone without a large development
effort, using the plugin architecture of the portal framewd he portal framework has also been
used successfully by other grid portal projects [23].
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Summary

Direct numerical simulation is used to study the developnaen statistics of turbulent non-isothermal
wall-jets. The simulation code developed employs compaitefdifferences to solve the fully compressible
Navier-Stokes equations. Simulations are performed witbstantial density differences, including the
use of a temperature depending viscosity. Parallelizagfotne solution procedure is achieved by using
Message-passing-interface (MPI) routines.

Background

A plane wall-jet is obtained by injecting fluid along a solid wall in such a way thatv&locity
of the jet supersedes that of the ambient flow. The structure of a dexktagoulent wall-jet can
formally be described as two adjacent shear layers of differentceardhe inner layer, reaching
from the wall up to the maximum mean streamwise velocity, resembles a thin bguagar,
while the outer part, positioned above the inner layer and reaching out &nhint flow, can
be characterized as a free shear flow. As a consequence of thiddwatare, properties such as
mixing and momentum transfer exhibit distinctively different character tyinout the wall-jet.

Walls-jets are in practice often used for mixing and transport of scalarhéké and fuels. Ex-
amples of applications are for instance in thin film cooling, ventilation and in agparcontrol.

Wall-jets are also of interest in connection to combustion, since all combugifitations con-
tain regions where mixing and reaction takes place close to and are afiigchedall.

In the present study, we perform three-dimensional direct numeiialations in order to an-
alyze the development and properties of plane turbulent non-isotherailgjets. The jets are
non-isothermal in the sense that varying temperature and density proélspecified at the in-
let. The current work is a continuation of and builds on previous simulatiamtsf], where the
development and mixing in an isothermal wall-jet was investigated.

Simulation technique

The simulations are performed by employing a sixth order compact finite eliffer scheme[3]
for the spatial discretization, and a third order low-storage Runge-Kcitiense for the temporal
integration. The governing flow equations solved for are the fully consfislesNavier-Stokes
equations

dp  Opu;
- = 1
ot ax]‘ 0 ( )
Opu; ~ Opuiu dp | 07
- _r 2
ot Ox; Ox; " Ox; ?
OpE | OpEu; _ 0q;  O(ui(rij —pdij) 3)
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wherep denotes the mass density,the three velocity componenisthe pressurer;; the viscous
stress tensoly the total energy ang the heat diffusion.



In the simulations the viscosity varies with temperature according to Sutheslamd’

3/2
T+ Sy

I (4)

whereT is the fluid temperature ard and.S, constants.

The simulation code is written in Fortran and uses MPI routines to enable paiafiglations
on distributed memory computers. The parallelization is achieved by domaimgesiion and
distribution over the participating CPUs.

The domain used is a rectangular box with a no-slip wall positioned at the bofioeinlet
Reynolds number employedig;, = U h/v = 2000, whereU} is the the inlet jet center velocity
and h is the inlet jet height. The corresponding inlet Mach number used in the simmdago
M = Ujy/ec = 0.5. Above the jet a constant coflow &f. = 0.10U; is applied. The density
and temperature is varied over the jet profile to achieve either a cold jeageaitipg in a warm
surrounding or a heated jet in a cold surrounding. The wall temperatkepiconstant and equal
to the ambient flow temperature.

Results

The simulation code developed has been found capable of handling wall{jetsignificant den-
sity variations. Presently a smaller test simulation of a cold jet in a warm sutirmghas been
performed. The cold jet is defined by a density differencApf= (p; — p.)/ps = 0.4, wherep;

is the inlet jet density angd, the density of the ambient fluid. The inlet jet center temperature in
the simulation is set t@93 K. The domain size used #¥h x 12h x 2.4h in the streamwise, wall
normal and spanwise directions respectively, and the number of ngddsiai 28 x 128 x 32.
Examples of results from the simulation are presented in figure 1-3. Figgltevts a snapshot of
the wall-jet streamwise velocity. The jet is injected along the wall in the lower tefiar. The jet
propagation is initially laminar, before transition to turbulence is initiated. Dowastrof the tran-
sition the jet propagates fully turbulent. The wall-jet temperature is shownurefig,. As the cold
jet propagates downstream it is heated by its warmer surroundingsed@mows the growth rate
and streamwise velocity fluctuation intensity, at a downstream positiofvof= 15, and compares
it to results from the previously simulated isothermal wall-jet. The same inletddyand Mach
numbers, as well as inlet disturbances are used in both simulations. T gete is evaluated
using the velocity half-widthy, ,,, defined as the distance from the wall to the outer shear layer
position where the mean streamwise velocityis= (U,, — U..)/2. Observing the half-width, the
transition to turbulence is found to be slightly faster in the cold jet. The deveélgpmwvth rate,
downstream of the transition, is also found to be higher. However only gtédanlet heights
contain fully developed flow, and hence a simulation using a larger box dedee confirm the
validity of these observations. The mass-weighted velocity fluctuatibe; u—U = u—pu/p, is
found to agree well for the two cases, apart from in the inner regioarevne fluctuation intensity
is higher in the cold case. This in turn confirms the observation of a fastesitica.



Further work

As noted above further work include a larger, better resolved, simulafitmegresent cold jet
case. Also the opposite situation, a warm jet propagating in a cold suimguwdl be simulated.

The statistics from the non-isothermal jet will be investigated in order to domelasions on how
a varying density affects the wall-jet development and dynamics. Companigiti be made with

present simulation[1] and experimental data[2] of isothermal wall-jets.
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Figure 1: Snapshot of the cold wall-jehp = 0.4) streamwise velocity
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Figure 2: Cold wall-jet temperature (inlet normalized)ofles atz/h = 0 (dashed):/h = 10 (dash-
dotted),z/h = 15 (dotted) andc/h = 18 (solid)
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Figure 3: Wall-jet growth in terms of the velocity half-wid{left) and streamwise velocity fluctuation

intensity atz/h = 15 using outer scaling, whei€,.; = U,, — U, (right). Solid lines represent the cold jet
results and dashed lines isothermal results.
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Summary The acoustic field in an annular gas turbine combustion chamber is determined using a
hybrid approach. The flow solver is based on Large Eddy Simulations to account for turbulence and on a
flamelet-based method to model combustion. The acoustic part solves an inhomogeneous wave equation.
POD is used to identify the resulting acoustic modes.

Introduction

Thermo-acoustic instabilities are a major concern in the development of gas turbine combustion
chambers. The amplification of pressure oscillations may lead to the malfunctioning of the de-
vice, or, in the worst case, to its failure [2], thus it is needed that the combustion instabilities are
predicted as early as possible.

Here we focus on the acoustic field generated by a reacting flow field in an annular gas turbine
combustion chamber. The acoustic field can be determined by solving the compressible Navier-
Stokes equations using Direct Numerical Simulations (DNS) or Large Eddy Simulations (LES)
[3]. This direct method being highly inefficient for low-Mach number flows a hybrid method
is used in the present paper. The compressible Navier Stokes equations are split in a set of in-
compressible Navier Stokes equations and a set of acoustic equations. Using first-order approxi-
mations, the acoustic equations may be reorganized into an inhomogeneous wave equation. The
method was implemented by Mihaescu et al. [4] and further developed further by Duwig et al. [1]
to predict thermo-acoustic instabilities in a model gas turbine combustion chamber. Szasz et al.
[5] applied this hybrid approach to determine how the perturbations of the acoustic sources are
influencing the generated acoustic field.

The present work is a continuation of [5]. Proper Orthogonal Decomposition (POD) is used to
identify the dominant acoustic modes. The results show that except the case with perturbations in
time, an axial mode dominates the acoustic field.

Numerical methods

The acoustic field in an annular gas turbine combustion chamber is determined. The combustion
is equiped with thirty burners arranged equidistantly in azimuthal direction (see Fig. 1(a)). In the
followings all lengths are expressed in terms of the premixing tube diameter. The computations
are carried out in two steps. First, the flow field is computed and the acoustic sources are stored.
In the second step the acoustic sources are read in into the acoustic solver and eventually altered.

Since the flow computations are numerically expensive, the flow field is determined in a region of
the combustion chamber corresponding to a single burner (Fig. 1(b)). The flow computations are
based on LES to account for turbulence and on a flamelet-based approach to model combustion.

In the acoustic solver a non-homogeneous wave equation is solved on a cartesian grid. The whole
geometry is taken into account. In the base case the sources are copied identically in thirty in-
stances to account for the presence of thirty burners. To emulate counter-rotating motion, in the



second case, the acoustic sources are imposed in a mirrored way for every second burner. In the
third case the acoustic sources are rotated around the symmetry axis of the burner with six degrees.
The last case accounts for time shifts between consecutive burners by reading in the sources saved
at different time instances.

For each case, the acoustic density fluctuation in a longitudinal cross section (through the sym-
metry axis of the combustion chamber) and two transversal cross sections (at axial distances of 4
and 8 diameters) have been saved every fiftieth timestep for postprocessing. The data was post-
processed using POD to identify the dominant modes. Fur further details about the numerical
methods the reader is referred to [5].

@ (b)

Figure 1: The geometry of the combustion chamber (a) and sketch of the region considered in the flow
computations (b)

Results

Previous computations [5] revealed that counter-rotation or phase shift in space of the acoustic
sources have relatively small influence on the resulting acoustic density field which is restricted to
the higher frequencies of the spectra. Significant influence on the low frequencies was observed
only for the case when a time shift was imposed for the sources imposed at consecutive burners.

Figure 2 shows the isocontours of the first most dominant mode in a transversal cross section
located at an axial position of eight diameters. One can observe that in all cases except the case
with time shift (Fig. 2(d)) the dominant mode is an axial one. This is not surprising, since the
flow computations revealed also the presence of a dominant axial mode. Reconstruction of the
first dominant mode has shown that the observed axial mode has a Strouhal number of 0.6. This
agrees well with the observed dominant frequency in the acoustic density fluctuation spectra [5].
For the last case, the time shift imposed between consecutive burners results in the excitation of
an azimuthal mode. This azimuthal mode becomes the most dominant one.

The second most dominant mode for the considered cases is plotted at the same axial position in
Figure 3. One can observe that the imposed perturbations have significant influence on the second



mode. In the base case and spatial phase-shift case a radial-azimuthal mode can be seen. The
counter-rotating case is characterized by a clear azimuthal mode while in the case with time shift
the axial mode became the second most dominant.

(a) Base case (b) Counter-rotating

(c) Space shift (d) Time shift

Figure 2: The first most dominant acoustic mode

Concluding remarks

POD has been used to identify the acoustic modes computed using a hybrid method in an annular
gas turbine combustion chamber. The results show that an axial mode dominates all cases, except
when the acoustic perturbations were perturbed in time. The second most dominant mode was
different in each case.

References

[1] C. Duwig, B. Gherman, M. Mihaescu, M. Salewski, and L. Fuchs. Numerical study of thermo-acoustic
waves generation ny a swirling flame using a new approach based on large eddy simulation. ASME
paper, (GT2005-68136), 2005.



‘ L
.
-
(a) Base case
- .O g
.
'
» -
e P -
’ .
’ Viera s .
(c) Space shift (d) Time shift

Figure 3: The second most dominant acoustic mode

[2] T. Lieuwen and V. Yang. Combustion Instabilities in Gas Turbine Engines: Operational Experience,
Fundamental Mechanisms and Modeling. Number 210 in Progress in Astronautics and Aeronautics.
AIAA, 2006. ISBN 156347669X.

[3] S. Menon, C. Stone, V. Sankaran, and B. Sekar. Large-eddy simulation of combustion in gas turbine
combustors. AIAA paper, AIAA 2000-0960, 2000.

[4] M. Mihaescu, R.Z. Szasz, L. Fuchs, and E. Gutmark. Numerical investigations of the acoustics of a
coaxial nozzle. AlAA paper, 2005-0420, 2005.

[5] R.Z. Szasz, C. Duwig, and L. Fuchs. Computation of the acoustic field in an annular gas turbine
combustion chamber. In T. Lajos and J. Vad, editors, Proceedings of the Conference on Modelling
Fluid Flow, volume I, pages 363-370, H-1111 Budapest, Bertalan L.U. 4-6, Hungary, 2006. Budapest
University of Technology and Economics, Department of Fluid Mechanics, Budapest University of
Technology and Economics. ISBN 963 06 0361 6.



Simulation of the Acoustics Behind a Barrier Generated by
Periodically Passing Vehicles

Magnus Aberg* and Robert-Zoltan Szasz

Department of Energy Sciences
Lund University, Lund, Sweden
e—mail: magnus.aberg@vok.lth.se

Laszlo Fuchs

Department of Energy Sciences
Lund University, Lund, Sweden

Summary Noise generated by vehicles is a major environmental prolleinhabited areas along high-
ways. A way of reducing such noise is by introducing a sounddygwall) on the sides of the road.

In this work we consider a line of moving objects, represent vehicles, which are subject to a low
Mach number air stream and passing parallel to a wall. A llyépiproach is used in order to investigate
the influence of periodicity on acoustic field. Increasing fhequency of the vehicle passing rate leads
to increase in the intensity of the main acoustic modes. Tieeteon the frequency content itself is less
pronounced.

Introduction

Due to the development and increase of road traffic, noidetpoi is an important factor for the
nearby community. Federal restrictions and public intenase led to the development of several
noise control devices, acoustic barriers being a commautisol Traffic noise and attenuating
effects of barriers have been modelled using empiricalesgions for acoustic power emission
and then analytical or empirical formula for expressing diféraction [1]-[2] over a screen or
barrier. In the current work, a more systematic approachiapgsed. This approach is based on
computing the flow induced acoustical sources and than ctingpthe acoustic wave propaga-
tion. The time-dependent flow field is handled by Large Eddyuations (LES) to account for
the turbulence of the flow. As compared to a Reynold Averageas&tokes (RANS) closure, all
of the energy bearing eddies are resolved in space and time e acoustic sources are due to
the spatial fluctuations of the flow field, this implies thag #itoustic source spectrum is also well
resolved. Once the acoustical sources are found, the waypagation can be handled on a dif-
ferent, less resolved grid, since the wave numbers asedaidgth the acoustics are much smaller
than those associated with the turbulent flow. The presdmidhgpproach which takes advantage
of the separation of turbulent and acoustic scales is ctaized by its numerical efficiency while
maintaining good accuracy. The approach has been used taebtih and Moroianu [3] to eval-
uate the acoustic emission and propagation around a wibth&uand for assessing the acoustics
due to running jet engines [4].

Method

In the hybrid approach used, the flow and acoustics are deEmblyy assuming that the acoustic
pressure fluctuations are much smaller than the pressutadtions in the flow field. Thus, the
flow field generates the noise sources and the wave-equatiosed to propagate the acoustic
waves.



Governing equations

The flow solver is based on equations 1-2 which describe ttedasmal and incompressible con-
ditions in non-dimensional form.

aui
= 1
oz, 0 (1)
Ou;  Ouu; Jdp 1 Ou;
= — — 2
ot ox; ox; + Re Oz;x; )

In the momentum equation, Eq.2, Re is the Reynolds numbedbas the object frontal charac-
teristic width, D, and free-stream velocity.

In order to obtain an acoustic analogy in form of a wave equath decomposition of variables is
introduced in the full Navier-Stokes equations and theotiscterms are neglected. The different
terms are then recast into a form of an inhomogeneous wawiequn terms of’.

0?p/ 1 9%p 9*(uguy) 3)
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The primed variabp’ is referring to a perturbation around the incompressildéesHigher order
terms of of the perturbation have been neglected by assutmitighey are small.

Numerical method
The system of governing equations is discretized on Cariagiids using finite differences.

The flow equations are discretized on a staggered grid wiitth #imd fourth order spatial schemes
for the convective and viscous terms, respectively. Foe tinarching, a first order implicit scheme
is used. In order to achieve high resolution without refirtimg whole grid, local refinements are
used in areas where high gradients are expected.

The wave equation, Eq.3, is discretized using a Lax-Wehdtlkef method that is second order in
both time and space and solved using the Thomas algorittewlise.

The solver algorithm consists of two major steps. In the §itgp, the flow solution equations 1-2

is integrated one time step. The source-term field in Eq.8es evaluated and interpolated to
the acoustic grid using first order linear interpolation.the second step, the wave equation is
integrated while the flow field is advanced to next time step.

Problem setup

The computational domains for the flow and acoustics arensatiely shown in Fig.1 The vehicle
comprises of two bricks of width D. The distance from the gua(xz-plane) is 0.25D. The bulk of
the vehicle (the bottom brick) has a height of 0.5D and thal tethicle height from the ground is
D. The length, in z-direction, is 2D for the bulk and 1D for tiog brick. The height of the barrier
is 1D and the vehicle is located at 0.5D from the barrier. lheorto simulate a row of vehicles
periodic conditions are set between the inlet and outlehfaries. A no-slip condition is imposed
on the vehicle surface, on the ground and on the barrier.c8liylition is used on the remaining
walls.

In the acoustic solver, the barrier, ground and vehiclessgrhave reflecting boundary conditions.
All other boundaries are assumed to be non-reflecting. The dlad acoustics are resolved us-
ing approximately 10 and 8 million cells, respecively. Tlwastic solver has a spatial size of
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Figure 1: The computational domain for the flow and acoustieess. To the left, the flow field where the
acoustic sources are calculated can be seen. The right ijaves the acoustic domain including the flow
field from where the sources are interpolated

0.1D. Four periodic distances are considered 20D, 30D, 468D corresponding to the traffic
Strouhal numbers, Stt, 0.025, 0.0167, 0.0125 and 0.01 TieiR&q. (2) is 60000 for all the
cases and the Ma in Eq. (5) is 0.1.

Results

The source calculated from the flowfield is shown in Fig.2 Ahhigagnitude of the source is, not
surprisingly, located in the vicinity of the wake where \@tg gradients are largest.

Figure 2: Visualisation of instantaneous iso-contoursiefrion-dimensional acoustic source.

The acoustic spectral content of the four traffic frequendseplotted in Fig. 3. The frequency

distribution does not have significant differences whictlidgates that the large wave-numbers
induced by traffic load does not influence the small ones.ntalao be seen that the acoustic
signal for all of the St contains harmonics of St 0.2. Thegeals are harmonics of the periodic
shear instability around each vehicle. The increase of iaundel with the trafic frequency is due to

an inrease of source region rather then a change of the &ceastces as such.

Concluding remarks

A hybrid approach is used in order to investigate the infleeot periodicity on the flow and
acoustic field. In this method the problem is solved in twpstiérstly, the flow field around a line
of moving vehicles parallel to a barrier is modelled with LE& the induced acoustic sources
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Figure 3: The acoustic spectra is plotted for the four traffequencies at one point located in
(x,2)=(3D,75D) in the acoustic domain. St numbers are &%).8) 0.0167, c) 0.0125 and d) 0.01

are evaluated. Secondly, the acoustics is evaluated by asiracoustic analogy in form of an
inhomogeneous wave equation. Most of the energy carryiegugncies are resolved and it is
seen that periodicity is not influencing the spectral cantdrihe signal which is dominated by
harmonics of the dimensionless frequency of about 0.2. fiéigiency is related to the instability
of the shear-layer close to and in the wake of the vehicles.
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Summary Modelling turbulent flow is a vital issue in numerous engineering fields ranging from aerospace
to biomechanics. An example of very complex four-dimensional turbulent flow relates to the vortex-
breakdown. In the present paper, we consider a swirling flow undergoing an axis-symmetric sudden
expansion. The low pressure region along the combustor axis induces a backflow creating a forward
stagnation point. The dynamics of the stagnation point is studied using Large Eddy Simulation. The data are
further analyzed using Proper Orthogonal Decomposition.

Introduction

Modelling and understanding of swirling flow is a key issue in many industrial applications e.g.
flame stabilization. A swirling motion is given to a jet. The swirling jet is subject to centrifugal
forces leading to a radial expansion of the jet. A low-pressure region appears around the axis
region, close to the expansion. If the swirling motion is strong enough, the longitudinal pressure
gradient induces an axial back flow and leads to vortex breakdown. However, despite of more than
40 years of research, the mechanisms of vortex breakdown are only partially understood [1]. The
main difficulty of the problem is the non-linear and unsteady behaviour of this type of flow: large
structures resulting from vortex breakdown and the swirling shear-layers, affect strongly the flow
field. An example of the large scale unsteady motions arising during vortex breakdown is the
precessing vortex core (PVC) [1-3]. Experimental and numerical works [2, 3] have reported that
vortex breakdown might result in an off-axis precession of the central recirculation zone. The
recirculation zone undergoes a periodic rotation around the axis and the instantaneous flow field is
far from being axis-symmetric. However, time averaging over several cycles restores the axis-
symmetry.

The present work focuses on simulation and study of PVC arising during the vortex-break down.
The unsteady and multidimensional nature of the problem makes that one need to resolve both in
time and space the PVC and leads to use of Large Eddy Simulation (LES) based techniques.
However, capturing the PVC leads to an accumulation of a large amount of data and we use the
Proper Orthogonal Decomposition (POD) [4] to extract relevant information (i.e. related to the
PVC) from the collected data.

Numerical techniques

LES modelling

The basic equations describing the motion of an isothermal incompressible fluid are the
conservation of momentum, mass. In the case of LES the averaging operation corresponds to
spatial filtering (i.e. applying a “low-pass” filter which removes all the Fourier components that
have shorter length scale than the filter size). The filtering operator is linear and is assumed
commutative with time- and space-derivatives but is not commutative with non-linear terms. Thus,



non-linear terms lead to expressions that cannot be expressed in terms of the filtered quantities
requiring subgrid scale (SGS) modelling. In the momentum equations, the SGS terms should
account for the dissipative character of turbulence on the small (unresolved) scales as well as for
the transfer of energy among the resolved and unresolved scales. A computational grid can support
only Fourier components that have longer wavelengths than the grid size. Thus, a dependent
variable that is represented on a grid that is used together with a discrete approximation for the
derivatives leads to an implicit filtering. If no explicit SGS terms are added, then the numerical
scheme should account at least for the small scale dissipation. This is attained by using a
dissipative discretization scheme and is referred as implicit LES [5].

A Cartesian grid based finite difference LES code was used [5]. The spatial discretization is done
using a fourth order centered scheme except for the convective term in the momentum equations
that are treated using a third order upwind scheme. A second order finite difference scheme is used
for time discretization, the time integration is done implicitly [5].

Proper Orthogonal Decomposition

In order to extract only relevant information from the large amount of LES data, we perform a
proper orthogonal decomposition (POD) of the resolved turbulent flow. Within the POD, one
seeks to project the turbulent flow field on a vector base that maximizes the turbulent kinetic
energy content for any subset of the base. It allows an accurate description of the turbulent data
using only few modes [4]. Given a vector Q containing the field variables and a vector base @, the
POD gives:

QU0 ~Q" (x) = Y a0, @

Note that the approximation Q" of the turbulent data set Q converges to Q when N goes to infinity
and that i=0 corresponds to the averaged field. The base vectors are computed so that they satisfy
the eigenvalue problem [4]:
<Q(x,1)-Q" (x,t) > d(x) = AD(X) @)

where the superscript T denotes the transposed of the vector and <.> is the time averaging
operator. It is worth noticing that the vectors @ are the eigenvectors of the temporal auto-
correlation tensor. The eigenvalue A; characterizes the turbulent kinetic energy content of the mode
i. For practical reasons, it is seldom possible to solve Equation (2) if the turbulent data set is large.
Instead, one may reduce the computational costs by using Sirovich’s method of snap-shots e.g. [6].

Presentation of Dellenback’s swirling flow

LES together with POD was used for simulating and studying vortex breakdown in a model
combustor corresponding to the experiments conducted by Dellenback et al. [3]. The setup
consists of a swirling jet flowing into a pipe of diameter D that issues into a coaxial pipe of
diameter 2D. Figure 1 (left) shows a sketch of the geometry of the case.

Here we restrict our study to a Reynolds number of 30000 and a jet swirl number of 0.6 [3]. The
computational domain is a 12D*2D*2D box starting at the 2D upstream of the expansion as
presented on figure 1. The inflow conditions are enforced at X=-2D and were taken from measured
velocity profiles [3]. Non-slip walls and zero-gradient mass conservative boundaries where used
for the wall and outlet modelling. The computational grids contain ~1-10° mesh-points with about
50 cells across the diameter D.



The data are normalized with the pipe diameter D and the bulk velocity Uy in the pipe (i.e. the total
volume flow / 7D?).
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Figure 1: Left: Computational geometry corresponding to Dellenback’s experiment. Right: Time averaged
normalized axial velocity and velocity vectors obtained from LES.

Results

Time averaged results

Figure 1 (right) shows the time averaged normalized axial velocity. The flow field is axis-
symmetric. The flow is distributed over the pipe cross section and evolves toward an annular jet as
getting closer to the expansion. Consequenlty, a forward stagnation point appears on the axis close
to the expansion. Downstream of the expansion, two negative axial velocity regions are seen, one
central recirculation zone (CRZ) close to the axis and one toroidal external recirculation zone
(ERZ) close to the expansion. The CRZ results from vortex breakdown. Between the two
recirculation zones, the positive axial velocity is concentrated into an annular jet.

Figure 2 (a) shows the averaged profiles obtained by LES together with some experimental data
[3]. The agreement is good indicating that the averaged flow field is well captured by the LES. In
particular, the size and strength of the two recirculation zones are simulated accurately. Figure 2
(b) compares the root-mean-squared (RMS) of the axial velocity fluctuations obtained by
measurements and simulation. The data shows that high levels of fluctuation are seen in the shear-
layer between the annular jet and the recirculation zones. The overall agreement is reasonable but
the numerical results over-estimate the fluctuation intensity. However, the present results
reproduce well the vortex-breakdown and can be used for investigating the nature of the velocity
fluctuations.
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Figure 2: Statistical data plotted along radial lines at different locations in the combustor (a) Time averaged
axial velocity. (b) Root Mean Squared of the axial velocity fluctuation. The solid line represents the LES
predictions and the symbols are Dellenback’s measurements [3].



Analysis of the large turbulent structures

POD Modes 1 and 2 dominate clearly the other modes representing together ~20% of the total
turbulent kinetic energy. Figure 3 (a) shows a vortex-core visualization of mode 1. The mode
consists of a double helix that originates ~1D upstream of the expansion. The double helix covers
the region of vortex-breakdown. Note that mode 2 (not shown here) is almost identical to mode 1
rotated around the axis by 772 so that the combination of the two modes results in a rotation at the
PVC frequency. Figure 3 (b) shows the axial velocity fluctuation associated with mode 1. The
fluctuation is organized with a spiral shape and is anti-symmetric. The effect of mode 1 and 2 on
the averaged flow results in off-axis rotation of the central recirculation zone referred as PVC.

(a) ___ . (b)

Figure 3: Visualization of the POD modes (a) A,-visualization [7] of POD-mode 1. (b) Axial velocity iso-
surfaces (negative in yellow; positive in blue).

Concluding remarks

Large Eddy Simulation together with Proper Orthogonal Decomposition was used to study a
turbulent swirling flow. The results indicated that LES captures accurately the flow and the POD
enables to isolate large scale coherent structures. This methodology is suitable for studying and
understanding turbulent swirling flows.
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Summary In this paper an adaptive response surface approach fabilél analysis is presented. The
obtained numerical results are compared to these of direltsampling and the fekete point method.

Introduction

In engineering science the modeling and numerical anabfsomplex systems and relations
plays an important role. In order to realize such an invatibg, for example a stochastic analysis,
in areasonable computational time, approximation proeekave been developed. A very popular
approach is the response surface method, where the relstareen input and output quantities
is represented for example by global polynomials or loctrpolation schemes as Moving Least
Squares introduced by [1]. In recent years artificial nenedvorks (ANN) have been applied as
well for such purposes in several studies for stochastityaes, e.g. in [2].

Recently an adaptive response surface approach for talisdnalyses was proposed in [3]. This
method is very efficient concerning the number of expensiaé ktate function evaluations, but
due to the applied simplex interpolation the procedurenitdid to small dimensions. In [4] the
original approach in [3] was extended for larger dimensiosislg combined ANN and MLS re-
sponse surfaces for evaluating the adaptation criteriothi$ paper this approach is compared to
the standard directional sampling method [5] and the feeiet method [6].

Reliability analysis, response surface method and adaptity

By assuming a random vector
X =[X1,Xo,...,X,] (1)

of n mutually independent, standard normal random varialilleand a limit state functiomg(x)
the probability of failureP(F') reads

P(F) = /g(x)SO o (x)dx (2

wherey,, (.) denotes the-dimensional normal probability density. The limit stat@étion divides
the random variable space into a safe donfaia {x : g(x) > 0} and a failure domai’ = {x :
g(x) < 0}.

The computational challenge in determining the integrdt@f 2 lies in evaluating the limit state
function g(x), which for non-linear systems usually requires an increalBterative numerical
approach. For reliability analysis it is most important ftain support points for the response

surface very close to or exactly at the limit stgfe) = 0. For this purpose the random vec§r
in EqQ. 2 is replaced by a random direction unit vector

A:[A17A27"'>An] (3)
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Figure 1: Limit state with discrete points Figure 2: 3D Fekete point set with 500 points
and a random radiuB which leads to
X = AR. 4
Then the integral from Eqg. 2 reads
2, %2
PE) = [ 1= 0@ a@is(a) ©)
r(a)=1
with
glar®(a)) =0 (6)

wherebyfa (.) is the probability density of the random directional unittee A, x2(.) is the x>
distribution function withn degrees of freedom ant¥(a) denotes integration over the unit hyper-
spherer(a) = 1. For evaluating Eq. 5 only the distancega) of the limit state surface from the
origin in the direction ok have to be known.

The points required for the response surface approximatidhe limit stateg(x) = 0 can be
determined using Monte Carlo simulation based on direatisampling [5]. In Fig. 1 the limit
state with discrete points is shown in principle.

Better approximations can be achieved if the support pairggenerated in order to cover the unit
hyper-sphere almost uniformly. A very efficient method fuistpurpose are Fekete point sets [6]
which can be generated very simply even in high dimensionkid. 2 such a point set is shown

for three random variables.

In this paper an adaptive response surface approach iedpgfich was presented by the authors
in [4] and is based on the method proposed by [3]. In [3] twepehdent response surfaces each
having a separate set of supports are used, whereby eacmsesgurface interpolates the condi-
tional probabilities of failure using simplices. As erratienate used for the adaptation the maxi-
mum difference between both response surfaces concetrergphditional probabilities of failure
was applied. Due to the limitation of the simplex interpmiatfor small dimensional problems, in
[4] the adaptive approach was extended for the applicatioreoral networks and Moving Least
Squares. There only one set of points with the two differ@praximation methods was used.



The adaptation criterion is carried out by using the maxinaliffierence of the conditional proba-
bilities of failure of both response surfaces

ep = mazx|(p;)2 — (p;)1l; i=1...Npg, (7)

where: is the evaluated directional sample out of a setN\gfs realizations. The conditional
probabilities of failure are computed as follows

pi =1 = xn(r (@) (8)

Numerical examples

In this section three numerical examples are investigdimit state functions consisting of one
and two hyperplanes. In Fig. 3 the limit state functions @emgwith the corresponding probability
of failure. Whereby LSF 1 and 3 contain only one efficient oegiLSF 2 contains two regions
with equal contribution to the failure probability. LSF 1da@ can be reproduced much better by
directional sampling and the fekete point method as LSH®gesin LSF 1 and 2 a larger area on
the unit hyper-sphere is covered by the effective regiohe. 8daptive response surface approach
leads for LSF 1 and 3 to better results with a smaller numbeaoiples as the already efficient
fekete point method. For LSF2 similar results as in the fekatiint method could be obtained.

Concluding remarks

The presented adaptive response surface approach can |l apy efficiently for structural
reliability analysis. For problems with effective regioosvering a medium or small area on the
unit hyper-sphere, which can be found mainly in practicalbfems, this method is very attrac-
tive compared to the fekete point method concerning the murobrequired samples to obtain a
certain accuracy. If the effective regions cover a relatil@ge area on the hyper-sphere similar
results could be obtained as with fekete points. In comparts directional sampling the proposed
method is always significantly more efficient.
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Summary This work achieves global solutions to several truss topology optimization problems by solving
a mixed-integer convex problem based on the Simultaneous ANalysis and Design (SAND) formulation.
Furthermore, we present additional valid inequalities and cuts (Combinatorial Benders’ and projected
Chvatal-Gomory) that strengthen the formulation and, hence, improve the efficiency, measured in solution
time and speed-up, of a parallel Branch-and-Bound method.

Introduction

The subject of this work is solving discrete truss topology optimization problems with local stress-
and displacement constraints to global optimum. We consider a formulation based on the Simulta-
neous ANalysis and Design (SAND) [5] for the ground structure approach to topology optimiza-
tion of trusses [4]. The intrinsically non-convex SAND problem is reformulated as a Mixed-Integer
Linear Program (MILP) by use of the mathematical structure of the problem as described in [1, 7].
This MILP is solved with a parallel implementation of the deterministic and convergent algorithm
Branch-and-Bound. For the parallel implementation, we use the master-worker paradigm imple-
mented in the open-source software SYMPHONY 5.0 [6].

Additional valid inequalities and cuts are introduced to give a stronger representation of the prob-
lem. The valid inequalities represent the physics, and the cuts (projected Chvatal-Gomory [2] and
Combinatorial Benders’ [3]) come from an understanding of the particular mathematical structure
of the reformulation. This work shows that adding the valid inequalities and projected Chvétal-
Gomory- and Combinatorial Benders’ cuts to the problem formulation significantly improves the
speed-up and decreases the solution time.

l —
1
2
0.5
2 : I
(a) The design-domain, with (b) The ground structure with (c) The optimal cross section ar-
lengths given in meters and the J = b4 bars and d = 36 degrees eas are given in 107> m?. The
load component f = 450 kN. of freedom. volume is V* = 0.0466 m>.

Figure 1: The design-domain (a), the ground structure (b), and an optimal structure (c) for the L-shape truss.



Problem formulation

The problem, that we consider, is to minimize the volume of a truss structure subject to force
equilibrium-, displacement-, and stress constraints. A given design-domain with defined supports
and an external load vector (see Figure 1 (a) for an example) is discretized into a ground structure,
i.e., a set of potential straight bars connecting a set of frictionless nodes, see e.g. Figure 1 (b). A
bar can take an area a; from a given set a; € {ai,...,az}, or else the bar is not present in the
design. The actual number of possible cross-section areas is I + 1, since 0 is not represented in
the set {a1,...,ar}. We denote x;; the binary design-variable, where

S 1 if the jth bar is present in the design with area a;, and
w 0 if the jth bar with area a; is not present in the design.

The truss structure is represented by the vector of design variables x € B!”, where J is the number
of potential bars in the ground structure.

For the jth bar, the length is denoted /; and Young’s modulus is F;. We denote by b; € R the
direction cosine vector in global coordinates for the jth bar, where d is the number of degrees of
freedom. The stiffness matrix K (x) € R?*? in global coordinates is then

J I
K(x) =Y z;(Eja;/l;)bb] , and K(xju=f
j=1i=1
expresses the force equilibrium constraints with the displacement- and external force vectors de-
noted by u € R% and f € R?, respectively.

The representation of the force equilibrium constraints is nonlinear. We reformulate these into
sets of linear inequality constraints. In the reformulation, continuous variables s;; are introduced,
and the direction cosine-relationships are represented in the matrix B € R%*!/_ The continuous
variables s;; represent the internal normal forces. Furthermore, the constants C?}in and ¢;;** are
introduced. These constants (cg!in and cg!ax) are determined from the limits u™™ and u™®* on the

displacements, which denote, respectively, the minimal and the maximal allowed displacements.

The problem of minimizing the volume subject to force equilibrium-, displacement-, and stress
constraints formulated as a MILP is
I

J
min - Z l; Z a;xij (volume)
J=1

x€B!J ucRd, sc i1
s.t. Bs=f, (force equilibrium)
zija;o™ < s < xija;0™, V(i,j)  (stress constraints)

i % b;fru —8ij > (L —@y)ei;™, V(i,j)  (compatibility)

L (1)

E;a;
l]< ijTu = 8i5 < (1 —@ij)ei;™, V(i,j)  (compatibility)
’ I
Z xy; <1, Vj (at most one area per bar)
=1
u™ < u < ™M (displacement constraints)

zi; €{0,1}, VY(i,j). (jthbar with ith area)
Note that representing the SAND formulation as a MILP is made possible from the fact that the
design variables are binary (x;; € {0,1}) and the displacement variables u are bounded.



Without valid inequalities and cuts With valid inequalities and cuts

P T: Speed-up T Speed-up

[s] 2 4 8 16 [s] 2 4 8 16
Lo, 33612 | 1.99 | 2.83 | 3.04 | 3.24 508 | 1.98 | 3.94 | 7.53 | 15.10
Ly, || 200117 | 1.52 | 1.58 | 1.70 | 1.69 8585 | 2.02 | 4.10 | 8.21 | 16.80
Ly, 549 | 2.01 | 4.07 | 8.12 | 16.11 337 1 1.94 | 3.82 | 7.95 | 14.62
Co, 56610 | 1.85 | 2.82 | 2.86 | 2.88 2359 | 2.06 | 1.83 | 3.74 | 8.73
Co, 19375 | 2.10 | 4.07 | 6.42 | 7.02 13553 | 2.17 | 4.47 | 9.91 | 19.90
Coy 73839 | 1.87 | 2.65 | 2.76 | 2.78 || 213091 | 1.83 | 2.45 | 2.75 | 2.77

Table 1: Solution statistics comparing Branch-and-Bound with and without added valid inequalities and
cuts. Notice the improved speed-up and the faster optimization time after adding valid inequalities and cuts.

Figure 1 illustrates a truss structure from design-domain (a), to ground structure (b), to the optimal
structure (c) found by solving the problem (1). The material data used in this example represents
aluminum (with Young’s Modulus E = 70 GPa), and the external load vector has the single load
component f = 450 kN. The stress limits are 0% = —¢™" = 170 MPa, and the displacement
constraints are =2 m. The area set consists of 3 areas, a; € {5,10}1072 m? and the area 0 m? is

also possible. This structure has the optimal volume V* = 0.0466 m?.

Numerical Experience

The parallelized Branch-and-Bound method implemented in SYMPHONY 5.0 [6] is based on a
master-worker paradigm. The master manages information which it sends to and receives from
the workers. The workers solve subproblems of the original problem, in our case, continuous
relaxations of the optimization problem (1).

For the master-worker paradigm, to show good performance, the workers should be constantly
busy solving subproblems. This is measured by the speed-up, where we compare the time for *one
master — one worker’ to *one master — several workers’. Denoting the computational time for *one
master — x workers’ by T, [s], the speed-up is
T
Speed-up = — .
peed-up T,

The ideal is to have the same speed-up as the number of workers. Note, however, a speed-up
of 19.90 in Table 1 when using 16 workers. These even larger speed-up values are because the
number of solved subproblems may differ.

The performance of this parallelized Branch-and-Bound method is presented in Table 1. We see for
each problem (P.) the time for solving the problem using ’one master — one worker’ (77) and the
speed-up when using several (2, 4, 8, and 16) workers. The problems we solve are the L-shape truss
problem from Figure 1 and a Cantilever 3D truss, see Figure 2. Figure 2 (c) illustrates the optimal
structure when using Young’s Modulus £ = 70 GPa, the load vector with four load components of
f = /2100 kN, the stress limits 0™ = —g™® = 170 MPa, and the displacement constraints
+2 m. The area set consists of 5 areas, a; € {2.5,5,7.5,10}1072 m? and the area 0 m? is also
possible. This structure has the optimal volume V* = 0.438 m3.

Both the L-shape truss and the Cantilever 3D truss are solved with the three different stress limits

o = gt — 170 MPa, oJ® = —ofit =120 MPa, and o} = —¢% = 90 MPa.
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(a) The design-domain, with (b) The ground structure with (c) The optimal cross section ar-
lengths given in meters and the J = 40 bars and d = 24 degrees eas are in 10~2 m?. The volume
four load components of f = of freedom. is V* = 0.438 m®. The dotted
v/2 - 100 kN. lines represent areas of 0 m>.

Figure 2: The design-domain (a), the ground structure (b), and an optimal structure (c) for the Cantilever
3D truss.

The L-shape truss problem with stress constraint o is denoted L, , and similarly, C,, denotes the
Cantilever 3D truss problem with stress constraint o7 .

Notice the improved speed-up and the faster optimization time after having added valid inequali-
ties and cuts in all problems but the C,, problem, i.e., the Cantilever 3D truss problem with stress
constraint o3. We believe that with more cuts, the speed-up will be better also for the C,, problem.

The reason we see such improved speed-up is because the workers are inactive for long time for
the problems without added valid inequalities and cuts, and the workers are almost constantly busy
in the problems with added valid inequalities and cuts. Furthermore, the added valid inequalities
and cuts give a stronger representation of the problem such that the Branch-and-Bound algorithm
shows better convergence in the sense of faster solution time.
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Summary In topology optimization it is mandatory to use a filtering technique in order to prevent
checker-boarder solutions. The paper examines a new filtering principle and demonstrates an improved
sharpness in the contours. This was not realized in the original proposal of the filter. Furthermore the paper
offers an explanation of the advantage of the filtering technique.

Introduction

Topology optimization is an important field in mechanics, and the book of Bendsge and Sigmund
[1] gives an excellent overview of the field. In this paper we concentrate on a small subject namely
the problem of distributing a given volume of material in order to reach the maximum stiffness.
Only a single loadcase is considered, and the problem is plane and linear. The problem is dis-
cretized by the finite element method.

The basic idea is to introduce a so-called relative material depsity0; 1] for each element. In

order to penalize intermediate densities which from a construction point of view is not suitable
the finite element solution is made by a reduced stiffness proportioné| teherep typically is

3. In this way intermediate densities are not very effective. The method is denoted SIMP (Solid
Isotropic Material with Penalization), and detailed explanations can be found in [1]. The analysis
continues through a number of iterations leading finally to an optimal design. In this paper we use
the Optimal Criteria Method which is very easy to implement and suitable see [1]. An alternative
optimization method can be based on the Method of Moving Asymptotes (MMA), and in this way
optimization problems with several loadcases and nonlinear mechanical behaviour can be treated,
see [1].

In the optimal solution all elements have the same strain density, and the solution is also a 0-1
density distribution i.e. elements are either with no (small) density or full density. If no special
precautions are made the solutions may have so-called checker-boarder patterns i.e. areas where
the density jumps from 0 to 1 between neighboring elements. In this way an intermediate material
density can be created without penalization. In order to avoid this non-physical phenomenon a
filtering technique can be implemented, see the pioneering work of Sigmund [2].

Checker-boarder filter

In the optimization algorithm the derivative of the strain densityith respect to density varia-
tions are needed. The basic idea of Sigmund [2] was to filter these sensitivities as shown in (1)

8wZ awj
8/), jz 8p p] pl

where the summation frorhto IV involves the neighboring elements as shown in Figure 1. The
sensitivities are weighted according to the difference between a chosen averagindraddithe

Mz

- 7’] (1)
_]=1
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Figure 1: Elements participating in filtering for element

distance-; from the center of elemento the center of elemerjttimes the density of the element

p;. In this filtering method variations in densities will have a large influence leading to less sharp
contours between voids and solid material. The filter technique has proven effective, but in the
literature different improvements are discussed, see e.g. [4] and [5].

Improved filter

The filter technigue used in this paper was original proposed by Back-Pedersen see [3], but the
paper did not fully recognized all the positive consequences. This might be due to the fact that a
more complicated problem was investigated involving several loadcases.

The basic idea is to remove the influence of density on the results. The sensitivities in the optimal
solutions will be equal both in elements with large and small densities. However, the density
weighting will change a smooth pattern along boundaries between dense parts and voids. The
proposed filtering process only secures continuous sensitivity solutions, and the checker-boarder
pattern is solemnly due to the finite element discretization. In (2) the filtering formula is given:

N
?:l Z 8w] Z vj(R—1j) @)
Jj=

Jj=1

where the notation is similar to the notation used in (1). In the filter we have included the influence
of different element volumes to have consistency for different element sizes.



Example

The example is solved with an algorithm similar to the 99-line program in [1] where more details
can be found. In Figure 2 an example with a cantilever beam is given. The design depends on

R=70

R=10

DObl

Figure 2: Different designs depending inTo the left the improved filter and to the right Sigmund’s filter.

the chosen material volume and the filtering radiu\ large value ofR will give a more simple

design on the cost of more material. The advantage of the improved filter is that the material
distribution becomes closer to the 0-1 design. The number of elements with intermediate densities
is very small with the new filter. This can improve the transfer of design data from the optimization
program to the CAD environment.

A big difference between the original filter and the improved is the ability of the filter to operate
with sharp transitions from 0 to 1 density. This is illustrated in Figure 3 and Figure 4. In Sigmund’s
filter the transition will normally involve an element with intermediate density, and this can be
seen in the gray parts of the design. Further it may be noticed th&t-ttedue has a very reduced
influence on the cost of the design in the new filter compared to Sigmund'’s filter.

Conclusion

The paper discusses a new filtering technique in topology optimization. The idea is to filter the
derivative of the strain densities with respect to density solely as a geometric filtering not including
the material density. In this way the checker-boarder pattern is avoided, and it is regarded solemnly
as a finite element discretization problem. The new filter results in a design with very limited
intermediate densities, and the contours are sharper. This will ease the transfer of data from the
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Figure 3: Density variation with the improved filter.
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Figure 4: Density variation with Sigmund’s filter.

optimization analysis to the CAD-programs. The conclusion is based on a simple linear problem
where the optimization is easy, and work on more complicated problems is in progress.
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Summary In order to solve vibration problem in large-scale structures a global optimization program based
on genetic algorithms has been integrated into an existing local optimization tool consisting of a commercial
finite element program and a local optimization program based on gradient methods. The developed
optimization tool has been tested on a 3D structure for vibration reduction purposes using seismic load as
excitation forces.

Introduction

The structural vibration optimization problem involves finding optimal parameters, called design
variables, in order to minimise or maximise an objective function with or without constraints.
Turner [1] and Tong and Jiang and Liu [2] considered the natural frequencies of the structure as
constraints in order to reduce the vibration level by avoiding structural resonance. Vibration
reduction may also be achieved by maximising the natural frequencies of the structure as done by
Negm and Maalawi [3]. Cheng, Kang, and Wang [4] have studied multiple-objective vibration
optimization of a turbine foundation using both weighs and vibration amplitude to consider safety
and costs simultaneously. Memari and Madhkan [5] studied 2D analyses of steel frames subjected
to seismic load considering the weight of the structure as the objective function.

In this work, the objective is set to minimise the maximum translational acceleration obtained over
all times t and over all finite element nodes in the structure when it is excited by ground motions
from earthquake.

Global and local optimization techniques

Global optimisation technique based on genetic algorithms, PIKAIA

The genetic algorithm (GA) is a global optimization technique based on evolution, where the user
provides the objective function and an environment. The environment consists of a population of
individuals represented by chromosomes with binary or decimal alphabet strings, which have
encoded the design variables. GA performs iteratively operations on individuals of each generation
to produce new generations of individuals until some termination criterion, which in many cases is
the number of generations, is satisfied. The best solution that appeared in any generation is
designated as the result of the GA for the run. The major disadvantages of GA are that they can not
take advantages of gradients during the search process resulting in generally slower convergence
than the local techniques. Moreover, GA does not guarantee the true global optimal solution.

PIKAIA is a GA-based function optimizer written in FORTRANT77 that seeks to maximize a user
supplied objective function. The program provides an input file, where the user can define 12
control-parameters to control the behaviour of the GA.



Local optimization technique based on gradient, IDESIGN

Most of the local techniques use direct search methods based on a chosen initial design and an
iteration process to find a better design. The algorithm finds first the best direction to move in and
then the best size of the step in that direction. The convergence criterion is based on the norm of
the design change and the violation of the constraints. The major disadvantages of gradient-based
algorithms are that the results of these algorithms depend on the choice of the starting point. The
optimums these algorithms find are usually in the neighbourhood of starting point. It means that in
the process of finding a global optimum one needs to run the algorithm several times with different
starting points. Moreover, computations of gradients are often time-consuming.

IDESIGN has several facilities that permit the user to interact with and control the optimization
process. The program is written in FORTRAN77 and a number of optimization algorithms are
available. The user must prepare the input data, such as the initial design, lower and upper limits
on design variables, problem parameters, convergence criteria, output-levels and write some
additional FORTRAN subroutines for the problem at hand.

Optimization design tool

In order to solve the vibration reduction problem, PIKAIA has been integrated with an existing
local optimization tool consisting of the finite element program ABAQUS and IDESIGN to create
a combined global and local optimization design tool.

3D building structure

As an application of the developed optimization tool, a large 3D four-story three span steel
structure subjected to the ground motion excited from earthquake has been analysed. The forcing
functions due to excitation from the El Centro N-S earthquake have been applied in the 1-direction
of the structure at the support points. The building structure, with the overall dimensions
LxWxH=13x13x14 m includes beams and columns with rigid connections and quadratic cross-
sections. A 3-D view of the structure is shown in Figure 1.

Figure 1: 3D view of the building structure.

The dynamic response of the structure calculated in the time domain by using parameterized
ABAQUS finite element models within the developed design optimisation tool. The problem is



formulated as: optimize cross-section dimensions for beams (Ap)and columns (Ac)as well as
rotational stiffness (ky) and rotational damping (C,) coefficients at the support points of the
structure by minimizing the objective function

f (t) peak — i ai2 (t) (1)

which is the peak, during the simulation time interval, of a vectorial sum of all three translational
accelerations over the whole structure and over all time increments

Results

Table 1 gives the results of the vibration reduction problem using PIKAIA. Figure 2 shows the
history of the objective function as a function of the generation number. Table 2 gives the results
of the vibration reduction problem by IDESIGN using PIKAIA’s optimum results as initial design.

Design variable Lower Upper Optimum design Obj. fun.
Kq [Nm] 0-5%4-6E8 2-0*4-6E8 0-5756*4-6E8
Cq [Nms] 0-5%1-0E6 2-0*1-0E6 1-4932*1-0E6 0-7309
A [m] 0-5*02  2:0%0-2 1.2951*0-2 [m/s?]
Ay, [m] 0-5*0-2 2-:0*0-2 1-5071*0-2

Table 1: Vibration reduction results by PIKAIA.

OBJECTIVE FUNCTION

GENERATION NUMBER

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20

Figure 2: History of objective function against the generation number.

Design variable Lower Upper Initial design  Final design  Obj. fun.
Kq [Nm] 0-5*4.6E8 2-0*4-6E8 0-5756*4-6E8 0-5756*4-6E8
Cq [Nms] 0-5*1-0E6 2-0*1.0E6 1.4932*1-0E6 1-4932*1.0E6 0-7309
A [m] 05%0-2  2:0%02  1.2951%0-2  1.2951%0-2  [m/s’]
A [m] 0-5*0-2 2-:0*0-2 1.5071*0-2 1.5071*0-2

Table 2: Vibration reduction results by IDESIGN.

Discussions

The GA optimisation took almost 12 days of computer time. It shall be noted that with an
increased number of generations, it is possible for PIKAIA to reduce the vibration level even



more. Clearly, the optimisation process should in itself be further optimized by switching
automatically from PIKAIA to IDESIGN at some best points during the optimization.

Concluding remarks

Genetic algorithms in conjunction with gradient-based optimization combine searching
capabilities of the global and excellent convergence behaviour of the local techniques in the
neighbourhood of an optimum. Vibration reduction of a structure subjected to ground motions has
been presented by means of integrating available programs in order to develop a combined global
and local optimisation design tool. The work can be improved by the considering of the following
1) multiple-objective optimisation in order to consider both costs and safety simultaneously, 2)
vibration reduction only in some part of the structure, 3) using more powerful computers and
parallel processing in order to reduce computational time to make the tool more practically
applicable and efficient to use for vibration reduction tasks.
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Summary

Problems of analysis and optimization of inelastic stepped spherical caps are studied. The problem of
maximization of limit load under given weight is discussed in a greater detail. Necessary optimality
conditions are derived with the aid of variational methods of the theory of optimal control. Numerical results
are presented for a ssimply supported spherical cap with single step of thickness.

Keywords: optimization, spherical shell, crack.

I ntroduction

Optimization of thin-walled plates and shells have both, theoretical and practical significance.
Various approaches to and results of load carrying capacity of spherical caps can be find in books
by Hodge (1981); Save, Massonnet, Saxce (1997); Chakrabarty (2000).

Optimal designs of spherical caps with a central hole were established by Lellep and Tungel
(2002) assuming that the thickness was piece wise constant and the material obeyed generalised
square yield condition. Spherical shells of Mises material were studied by Lellep and Tungel
(2005).

In the present paper stepped spherical caps with cracks at re-entrant corners of steps are considered
making use of approximations of the Tresca and Mises yield conditions. The aim of the paper isto
establish minimum weight designs of the shell under fixed limit load.

Formulation of the problem and basic equations

Consider a spherical cap of radius A ssimply supported or clamped at the edge with central angle
@ = [ (Fig. 1). The shell is subjected to the uniform external pressure of intensity P. The pressure
loading is quasi-static, inertial effects will be neglected in this paper. It is assumed that the
thickness of the shell is piece wise constant, eg. h=h,, for ¢ U(a;;a,,,) where j=0,...,n
and @,,, = B. Thicknesses h;(j =0,...,n) and angles @;(j =1...,n) will be treated as design

parameters to be defined so that a cost function attains its minimal value. In the fracture mechanics
it is wellknown that sharp corners in structures generate stress concentration which entails cracks.

Itis assumed hereinthat & ¢ = a;,(j =1...,n) circular cracks are located. We treat the cracks as
stable part through surface cracks of length c; at @ = a, . Note that the deepness of the crack is
not necessarily constant. In this case the length C; stands for the maximum of the deepness of the

crackat ¢ =a ; over the corresponding circle.

We are looking for the minimum weight design of the spherical cap for the fixed limit load. The
other problem we are dealing with consists in the maximization of the limit load for given materia
consumption.



Figure 1. Geometry of the shell.

There are different approaches to the evaluation of the material volume of a spherical cap. In the
present paper we assume that the material volume of the cap can be assessed as

V =27A*) " h, (cosa; —cosa,,) .

j=0

In the case of the problem which consists in the maximization the of ultimate load to be sustained
by the cap the volume V is considered as a given constant.
Due to the rotational symmetry the equilibrum equations of a shell element can be presented as
(see Chakrabarty, 2000)

(N, sing)'=N, cos¢ = Ssing,

(N, + N, + PA)sing =—(Ssing)',

(M,sing)-M, cos¢ = ASsing

In(2) N,, N, stand for membrane forcesand M ,, M, for bending moments in the two principal
directions, respectively, and S is the shear force. Here and henceforth prims denote the
differentiation with respect to ¢ .

Shells made of Tresca and Mises materials are considered. In the case of Tresca condition the
portion of the surface corresponding the ridge



M N
=1(1-()%)
My, No;
isused. Here M, =a,h?/4, Ny, =0,h;, g, being theyield stress of the material.
In the case of a von Mises materia the exact yield surface in the space of generalized stresses is
approximated as
: (M§+M§—M¢Mg)+Ni(N;+N§—N,,,Ng):l
0j 0]

for pU0(a;,a;.,); ] =0,..,n.

Numerical results

In order to derive necessary optimality conditions for minimum of the functional V under the
condition that governing equations of the problem are satisfied we introduce Lagrange an
multipliers and compile and extended functional. Calculating the total variation of the extended
functional yield necessary conditions of optimality. The obtained set of equations is solved
numerically.

The digtributions of the bending moment M¢/MO are presented in Fig 2 for a shell simply

supported at the edge of the cap and made of Tresca material. Fig 2 corresponds to the case of the
shell with a single step and [ =0.4. Here the solid line is obtained for the optimal solution
whereas the dotted line is associated with the reference shell of constant thickness. Optimal values
of parameters a; and h, / h, are presented in Table 1 for cap with 5 =1.0.
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Figure 2: Bending moment M, /M.



Concluding remarks

Methods of optimization of inelastic spherical caps subjected to external pressure loading are
accommodated for shells having part-through surface cracks at the re-entrant corners of steps. It
has been established that the deepness of the crack has quite weak influence on the design
parameters of the optimized shell.

Table 3: Optimal designfor £ =1.0.

p a A e=V/V,
0.99P, 0.9837 0.2338 0.9773
0.98P, 0.9658 0.3342 0.9588
0.97P, 0.9458 0.4144 0.9430
0.96P, 0.9230 0.4859 0.9234
0.95P, 0.8959 0.5542 0.9180
0.93P, 0.8071 0.7111 0.9049

Acknowledgement. The support from Estonian Science Foundation through the grant N° 5693 is
acknowledged.

References

J. Chakrabarty: Applied Plagticity. Springer, Berlin, New Y ork, (2000).

P.G. Hodge: Plastic Analysis of Structures. Krieger, New Y ork, (1981).

J. Lellep and E. Tungel: Optimization of plastic spherical shells with a central hole. Struct Multidisc Optim,
23, 3, 233-240, (2002).

J. Lellep and E. Tungel: Optimization of plastic spherical shells of von Mises material. Struct Multidisc
Optim, 30, 5, 381-387, (2005).

M. Save, C. Massonnet and G. Saxce: Plastic Limit Analysis of Plates, Shells and Discs. Elsevier,
Amsterdam, (1997).



Equivalent Diagonal Strut Width Computation for Infill Frame
with Central Window Opening

Assoc. Prof. Prajwal Lal Pradhan, Civil Engineering Department, IOE Pulchowk Campus Lalitpur Nepal
Prof. Karl Vincent Hoiseth, Department of Science and Technology, NTNU Norway
Prof. Dr. C.V.R. Murty, Civil Engineering Department, IIT Kanpur, India
Prof. Mohan Prasad Aryal, Civil Engineering Department, IOE Pulchowk Campus Lalitpur Nepal

ABSTRACT: The paper presents experimental and analytical micro model analyses on one bay and one storey brick
masonry infill frame with different sizes of central window opening with varying opening lengths and heights, subjected
to in plane lateral load. Based on the parametric studies obtained from diagonal strut model analyses results, in plane
lateral stiffness of the infill frames have been computed. Further, this lateral stiffness versus strut width reduction factors
have been computed. Nomographs have been made for different combinations of opening height and opening length
ratios.

1. INTRODUCTION

Application of Infill frames are in common practice these days. They are often constructed as composite
reinforced concrete skeleton frames with infill masonry walls, with or without openings. The infill frame
structures are assumed to carry the transverse load separately, resisting the entire load primarily in flexure. It is
well understood that infill actions of brick masonry with different wall openings inhibit lateral displacement
compatible with the composite frame action. There is no doubt that a frame with infill wall, with or without
opening, is considerably stiffer than the bare frame. However, the stiffness and strength contribution of the
infill can be difficult to assess.

Since the brick masonry wall possesses heterogeneous characteristics, a microscopic approach could be an
adequate tool for analysis. The model should account for nonlinear behavior due to separation of bricks,
cracking, bond slip in mortar joints and dowel actions. Such an approach is much more complicated than
earlier practice, but not necessarily more accurate, due to the uncertainties involved.

2. RESEARCH OBJECTIVES

Consultants need efficient calculation tools in their daily business. The brick infill is there for usually
neglected in design of lateral load carrying capacity. An improvement would be to include the stiffness and
capacity by a strut and tie model, however a representative strut width can be a tedious matter to estimate. The
main objective of the study was to develop a procedure for determination of equivalent strut width for infill
with various openings, by experiments as well as nonlinear analysis. Further on, the purpose was to present the
results by means of nomographs, for use in design.

3. PREVIOUS RESEARCH

For half a decade, almost, researchers have been investigating the mechanical behavior of infill frames, by
analytical as well as experimental works. Several studies were related to the estimation of lateral stiffness and
strength. Polyakov (1948) studied a hinged steel frame with infill under monotonic incremental loading, and
found that infill without openings lost their load carrying capacity by cracking of the mortar joints along the
compressive diagonal (strut). Holmes (1961) proposed semi-empirical methods showing the relation between
lateral load carrying capacity of the geometry and the compressive strength of the masonry. He used steel and
RCC frames with masonry infill. Smith (1968) concluded that when the gravity load reaches half of the load
carrying capacity, the maximum lateral failure load is achieved. Smith and Carter (1969) have predicted the
lateral stiffness of the infill frame using equivalent strut models. R.Jagadish et. al. (1992) studied the effect of
different types of stiffeners around the opening on the behavior of infill frames subjected to lateral load. Finite
element analysis showed that when perfect bond was assumed at the interface of the infill and the frame,
stiffeners do not have any considerable effect on the lateral stiffness. However, when separation at the
interface occurred, stiffeners played an active part in improving the lateral stiffness. Syed Shakeeb-ur Rahman
et. al. (1992) studied the effect of the size of infill panels on the behavior of infill frames subjected to lateral
loads.



4. EXPERIMENTAL WORK

The experimental work was performed in the heavy lab of the Civil Engineering department, Institute of
Engineering, Pulchowk Campus. The model specimens were made in one third reduced scale. The column and
beam sizes used in the prototype test specimens were 7.5 x 7.5 cm?and 7.5 x 10.0 cm? respectively. A concrete
mix design, which produced a concrete grade of 7 MPa was used. The model bricks, of size 7.5x3.5x2.5 cm®
(Table 4.1) obtained from Harisiddhi Brick and Tile Industry, were cut from eight inches square shaped tiles
with a 1 inch thickness. The production of the specimens, the form work and the infill masonry, is illustrated
in Fig 4.1- 4.2.

Figure. 4.1 Form work and
laying reinforcements for
beam and column elements

Figure. 4.2 Infill
masonry wall

Figure. 4.3 Infill wall with 60%
central opening before loading

Figure. 4.4 Infill wall with 60%
central opening after loading

The horizontal in plane lateral loading was applied at the left top corner of the infill frame using a hydraulic
ram of 25 mm diameter, see Fig. 4.3. The loading device was set as a force control device. Horizontal
deformations were measured with a dial gauge, see Fig. 4.4. Ten samples were tested, with and without
central opening in the wall. Openings were considered as 0% (No opening), 30%, 60%, 90% and 100% (Bare
frame).

Table 4.1 Material properties adopted for laboratory experiment as well as BINAP simulation

Material Properties Model Brick(75x35x25 mm®) Mortar 1:3 (50x50x50 mm® | Model Concrete (M7)
Ultimate Strength (MPa) 16.8 11.3 9.8
Crushing Strength (MPa) 7.8 9.6 8.3
Yielding Strength (MPa) 3.7 17 3.9
Modulus of Elasticity (MPa) 5388 9696 13290
Yield Strain 0.00138 0.000331 0.000311
Ultimate Strain 0.00585 0.004386 0.001434

5.NUMERICAL SIMULATION & BINAP APPLICATION

Simulation of the experimental tests were performed using the BINAP program, which receives the input and
output database, as generated by SAP2000 v8.0. BINAP performs the geometric as well as material non-linear
computations, considering loss of contact between bricks and mortar by interface elements with no tensile
capacity. The BINAP program updates the database and exports it as a subsequent input for SAP2000, which
consequently accounts also for the deformed shape. The structure is subjected to strength degradation at load
steps exceeding the elastic limit. This is accounted for by a stepwise reduction of Young's modulus of
elasticity of the materials for each and every element in the structure.

6. FINITE ELEMENT MODEL

In order to meet the objectives of the study, experimental and analytical small-scale model analyses on brick
masonry infill frame with central window opening subjected to in plane lateral load have been performed. A
single bay and one storey portal frame with various sizes of openings have been carried out experimentally.
The size of the portal frame was reduced to 1:3 scaled. Several analyses have performed, by using micro
models, with the same configurations as in the experimental testing. In the analyses, the brick elements were
represented by plane stress elements, whereas the mortar joints were modeled by link elements in the vertical
as well as the horizontal bed joints, separately. The elements are illustrated in Fig. 6.1. Frame analyses have
been performed for a number of opening lengths, opening heights and span lengths.
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7. RESULTS

For the numerical verification of BINAP, micro model for infill frames with the same configurations from the
laboratory experiments have been constructed and a series of infill frame analyses were performed using
SAP2000 and BINAP in a successive iteration. Load deformation curves were plotted and found more

closeness, when there is lesser opening size (Fig. 7.1 a-e).
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Fig. 7.1 Load/deformation curve for experimental infill frame and BINAP simulation for the same.
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The failure mechanisms were also simulated using BINAP application as shown below in fig. 7.2 and fig. 7.3.
The simulations were done for all the laboratory models with successive increments of in plane horizontal
loads.

Fig. 7.2 BINAP simulation of infill frame with no opening

Fig. 7.3 BINAP simulation of infill frame with 60% opening

8. CONCLUSIONS

Based on the numerical and experimental results, equivalent diagonal strut widths have been estimated.
Nomographs, showing the relation between strut width reduction and opening dimensions, are given in
Fig. 8.1. The figure illustrate the dependency of opening length versus length of span (I/L), as well as of the
ratio between opening- and storey height (h/H). Ko/K; represents the stiffness relation, that is stiffness with
opening/stiffness with complete infill.

1.2

Ko/Kf
K/Ks

e

1/L=08 g, |
1/L=0.85
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Fig. 8.1 Nomograph for determination of Strut width reduction factor
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Summary Corrosion of steel reinforcement continues to pose problems with regard to maintenance,
performance and service life of reinforced concrete structures. The present work has been devoted to the use
of nonlinear finite element analysis to simulate the mechanical response of reinforced concrete structures
with corroding steel reinforcement. The finite element simulations of medium scale beams were shown to be
in good agreement with the experimental results for different corrosion levels.

Introduction

The deterioration and ageing of the concrete structures and the increased traffic intensities and
loads are some of the major problems facing civil engineers, industry and researchers.
Deterioration of reinforced concrete may lead to a number of undesirable consequences such as
loss of serviceability, loss of load carrying capacity and reduction in safety of structures and
traffics [2]. Corrosion of steel reinforcement continues to be the principal cause of deterioration
of reinforced concrete structures. Reduction in bar cross sectional area, cracking and spalling of
concrete cover, reduction in bond strength and changes in bond stress-slip behaviour may severely
impair structural integrity.

Review of available results test data of experimental and numerical studies obtained in
international projects are presented in reports and other publications by several authors [1], but
no general approach or recommendations have been developed to predict the behaviour of
corroded concrete structures. Design Codes and Standards are intended primarily for new
construction, and may not contain the information required for an assessment of deteriorated
structures. The continued degradation of concrete infrastructure has thus exposed the need for
reliable methods to predict residual service life of deteriorated structures. The main objective of
this work is to get an opportunity to assess available test data for nonlinear element analysis to
obtain realistic prediction of behaviour of corroded concrete structures using commercial finite
element programs.

Finite element simulations

The experimental study carried out by Mangat and Elgarf [6] was chosen to be analysed in the
present study. Under-reinforced beams were subjected to accelerated corrosion. Different degrees
of corrosion were induced, ranging from 1.25 to 10 percent reduction in bar diameter. Details of
the beam section are presented in Fig.1. After casting, the beams were tested under four-points
bending to determine their load-deflection curves and the ultimate flexural strength. The beams
were prevented from shear failure by externally reinforcing the shear zones by means of tubular



steel collars. The middle-third span which undergoes pure bending was free from external shear
reinforcement. The beams exhibited a bending failure of an under-reinforced beam.
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Figure 1: Beam specimens tested by Mangat and Elgarf [6].

The numerical simulations carried out in the present study are based on the commercial finite
element code DIANA 9 [4]. Since the beam and loading scheme are symmetrical, it is sufficient
to model only the left half of the beam. In this model it was used eight-node quadrilateral CQ16M
plane stress elements for concrete and for the collar steel collars. It was assumed that the collar
extended over the entire length of the shear span and that the plate thickness was 5 mm. The steel
reinforcement was represented by discrete truss CL6TR elements located along the mesh of the
concrete elements. Bond stress-slip relations are implemented for intact as well as corroded bars
using interface elements IP33.

Basic material parameters for concrete and reinforcing steel were determined experimentally by
Mangat and Elgarf [6]. Some of the materials parameters used for finite element simulations were
calculated by CEB-FIP Model Code 1990 [3] and the Norwegian Code for Design of Concrete
Structures, NS 3473 [5].

In the analyses a fixed crack model based on total strain was used. The compressive stress-strain
curve for concrete was approximated by that of an elastic-ideally plastic material. The tensile
behaviour of concrete was represented by a bilinear approximation. Reinforcing steel is presented
as elastic-perfectly plastic material. The constitutive behaviour of the reinforcement steel and steel
collars was modelled by the Von Mises yield criterion. The bond stress-slip relationship for
uncorroded steel bars proposed in the CEB-FIP Model Code 1990 [3] for unconfined concrete
with good bond conditions was chosen to use in the present numerical simulation.

As the first, the numerical simulations by non-linear finite element method were performed for the
reference beam (no corrosion) with the slip values and the bond strength for uncorroded bars given
in the Model Code 1990. These values resulted in a structural response which was too stiff
compared with the experimental load-deflection diagram. It was found that the best fit to the load-
deflection behaviour of the reference beam was obtained with other set of parameters presented in
Fig.2.

As the second step, the numerical simulations of corroded bars were carried out. No data is given
by Mangat and Elgarf concerning bond strengths of corroded bars. In view of this and the fact that
failure of the corroded beams was governed by bond failure, it was decided to scale the bond
stress-slip curves for corroded bars the same proportion for both axes. The resulting bond stress-
slip curves for the following testes of no corrosion and of corrosion 1.25 %, 2.5 %, 3.75 %, 5.0 %,
7.5 %, 10.0 % are shown in Fig.2.
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Figure 2: Bond stress-slip curves for noncorroded and corroded bars.

Numerical results

The load-deflection diagram for the reference beam determined in the laboratory test is compared
with the behaviour obtained from the finite element simulations (Fig.3). The numerical solution is
in very good agreement with the experimental tests. Load-deflection diagrams for beams with
increasing levels of corrosion (from 1.25 % to 10.0 % diameter loss) are also shown in Fig.3. In all
cases the results from finite element simulations agree well with the experimental data. It is also
seen that the calculated mode of failure is bond failure resulting from the fact that the bond stress
along tensile reinforcement reaches the bond strength. For the two levels of corrosion (7.5 % and
10.0 %) the finite element analyses predict higher failure loads than the experimental values.
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Figure 3: Load-deflection diagrams. 0-10% reduction in diameter.



Conclusions remarks

The present work has been devoted to the use of nonlinear finite element analysis to simulate the
mechanical response of reinforced concrete structures with corroding steel reinforcement. The
validation of the finite element simulations was limited to the study of medium scale beams tested
in the laboratory. The beams tested by Mangat and Elgarf had only tensile reinforcement and
exhibited bond failure. The finite element simulations of these beams were shown to be in good
agreement with the experimental results for different corrosion levels. The present study has
attempted to address this problem by demonstration the potential and capabilities of the finite
element method in the analysis of reinforced concrete structures damaged by corrosion using the
commercial programs.
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Summary

A full 3D parametric CAD model of a Saddle Tapping Tee system for offshore maintenance operations has
been developed. For the verification of the structural behavior of the system, critical conditions are identified
and a parametric FEA model is established, which is automatically updated from user-defined parameters set
for the CAD-model. FEA employing contact is performed on a 4”x 4” Saddle Tapping Tee. An increased
level of detail has been achieved for verification and documentation in relation to offshore maintenance
operations.

Introduction

Often it is necessary to branch off a pipe section on an oilrig. This operation is often performed by
introducing a so-called “Hot Tapping” procedure, which involves welding a pipe and a flange onto
the pipe section undergoing maintenance. A spherical valve and a gate are mounted onto the
flange, i.e. weld-o-let. In order to perform the welding operations a so-called habitat must be
constructed. This habitat encapsulates the “Hot Tapping” spot and is relative costly. Thus, to avoid
welding operations onto the pipeline, a solution with clamps has been developed, i.e. a Saddle

Tapping Tee as shown in figure 1a and 1b as devised by Rambgll.
tkunning Branch Pipe

Welding Neck

Branch Pipe

Clamp

” .. '-‘-“""‘-\-__
Side Brackets h

Bottom (]nnp}

Figure 1: a) The Saddle Tapping Tee in a pipe section. b) The components in a Saddle Tapping Tee.

The Saddle Tapping Tee is clamped on the pipe section applying a gasket, see figure 1b. The
system is designed for an allowable pressure of 150[lbs], and the service temperature varies



between -40-38[C], i.e. an allowable pressure of 19.7[bar]. However, the system must be able to
withstand a test-pressure of 150% of the allowable non-shock pressure, i.e. the design pressure
30[bar] according to [1].

Parameterization of the structure

A parametric verification model is established based on considerations regarding the compaction
of the gasket and the stress level in the brackets of the clamp as illustrated in figure 2a and 2b.

Figure 2: Left) The parameters controlling the clamp geometry. Right) The parameters controlling the gasket
geometry.

The required minimum compaction pressure in the gasket is 1.4[N/mm] according to the European
Norm for pressure vessels EN13445 [2]. The pressure acting on the gasket is governed by the
pretension of the clamp, the position of the gasket, and the deformation of the clamp. The steel
applied is of the type ASTM A-420 GR 6, and welding is performed using longitudinal seamless
groove welds. The allowable stress in the weld is determined from paragraph K302.3.2 in ASME
B31.3 [1]. The material of the gasket is a Polymer Nitrile Rubber (NBR) with E = 3.7[MPa] and
Poisson’s ratio 0.48.

On the basis of the above considerations a full parametric 3D CAD model of the Saddle Tapping
Tee is developed. A number of user-defined parameters are controlled from an Excel spreadsheet
for example the parameters are shown in figure 2a defined by:

e=+r’—a’ —yr’ —p?
g="f —e, wherefis w
h=b-a

i =+/g° +h?® =length

length = \/(WpIate — welddisp. — (\/r2 —a? —r2—p? ))2 +(b-a)

— welddisplacement 1)

plate




The same Excel spread-sheet control a full 3D parametric FEA model which is automatically up-
dated from the user-defined parameters set for the CAD-model allowing parameter studies and
documentation to be generated effectively.

Analysis and results

As the gasket is subjected to a contact pressure arising from the clamping force acting on the pipe
section, a FE contact analysis is carried out. Two situations are examined, i.e. a load equivalent to
50% and 80% of the yield stress acting in the clamp bolts.

Figure 3: Stresses in the Saddle Tapping Tee type 4”x4”, i.e. stress von Mise stress distribution.
The contact analysis has been performed by applying the nonlinear element types

CONTA175/TARGE170 on a Saddle Tapping Tee type 4”x4” as depicted in figure 3. Friction is
set to 0.2, and initial penetration has been excluded.

<




The performed FE contact analysis has enabled inspection of deformations of the components in
physical contact, of stress levels in critical areas, of perpendicular stresses in the gasket, and
friction as shown in figure 4.

Due to the parameterization of the CAD model and the FEA model it is now possible for the
engineer to verify deformations of the gasket and stresses in the clamp. Parameter studies are
performed effectively for several models with a minimum user-interaction compared to present
verification methods. In addition to this, “Det Norske Veritas (DNV)” requires increased amounts
of documentation for these Saddle Tapping Tee systems for maintenance operations offshore.

Concluding remarks

The developed procedure allows the engineer to modify any required and relevant user-defined
parameter on the Saddle Tapping Tee from a single Excel spreadsheet in both the CAD model and
the FE model. A full 3D CAD model is effectively generated for dimensions in the range from
NPS % to NPS 24, and FEA can be performed to provide documentation of the behavior of a given
Saddle Tapping Tee. This documentation must be provided for verification by the “Det Norske
Veritas (DNV)”.
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Summary This paper extends structural optimization from single components, to families of products
built from shared partly shared or uniqgue modules. The design variables are local cross sectional properties
as well as geometrical positions of important structural joints. The structures are exposed to a variety of
different load conditions. The technique is applied to three cars constituting a family, the S40, V50 and the
C70 manufactured by Volvo Car Corporation in Gothenburg, Sweden.

Introduction

In an effort to stay competitive and not to loose market shares, many car manufactures offer the
customers a variety of new, sometimes closely related, products. The key issue is how to develop
various new products, most likely manufactured in shorter series, and still earn money. A basic
idea for achieving this goal, is to share as many components as possible, in a family of closely
related products.

Another severe restriction is that the time-to-market must not be too long. It is also a well-known
fact, that correct decisions as early as possible are of a great importance, both for success from a
cost-effective and economical point of view, and from the important perspective of how well the
product will fulfill its overall basic technical requirements [1].

Very early in a project, perhaps only the shape of the outer surface is defined, and no geometrical
information for how to design typical load-carrying structural components is available. Most of
todays available standard CAE-tools for making structural solid mechanics analyses are tailored
around geometry modeling tools and require 3D solid geometry definitions for mesh generation.
Several authors have identified this as a problem because these tools are too time-consuming to
use in very early stages of a project when the lifespan of design ideas is short, see [2] and [3].

The demand for fast, accurate and robust easy-to-use tools for conceptual design is significant.

The objective of this work is to perform simultaneous structural optimization of several products,
exposed to a number of load cases, where these products have partly shared identical modules.

The product family optimization problem

We consider a series of more or less similar products composed by a finite number of modules,
where each module consists of a number of components. The products define a product family and
the modules define a product platform, see [4]. A typical product family is visualized in Figure 1.
The number of products or modules can be arbitrary. The major problem, and the extension in this
work compared to classical structural optimization, is the sharing of modules and design variables
among the products in the family.

We establish a performance measure representing stiffness. This measure is based on solving the
state equation
¢ ‘ ¢
K (z(a))u, = Fg(z(a)), 1)
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Figure 1: A typical product family made up from shared, partly shared or unique modules.

representing equilibrium for a discretized FE-structure for load éasfeproducta. Kﬁ is the
global stiffness matrix and, the global load vector. The current state is described by the global
degrees-of-freedom vectar’, obtained by solving equation (1). Kﬁ is hon-singular we can
regardu’, as a function of the design variables), i.e.,

ug, = ug(z(a)) = Ko (2(a)) " Fo (). )

The performance measure used in this work is@oenplianceC?,, which is a global flexibility
measure here defined for every produ@nd load casé:

Calx(a) = Fq(a(a)) ug(z(a)). 3)

Minimizing this measure means maximizing the stiffness. It is obvious, that in a simplified case
with a design independent global load veck; containing only one non-zero component, this
expression just means maximizing the stiffness in one direction at one position of the structure.

Design variables

One group of design variables, here called sizing variables, used in this work, comes from the
parameterization of the cross section geometry of beams. That is, heights, widths and thicknesses,
and also the orientation of the cross section, can be used as design variables, see [5]. A second
group of design variables are altering the position of connection points between different beam
members. That is, both the length and the orientation of the local beam direction will change
during the optimization process, see [6]. Concerning the topology of the structure, sizing variables
can take values close to zero, which will remove beam members. One can thus start from a non-
manufacturable ground structure and the optimization process will show the optimal load transfer
path.

Let us define a global vector containing all unique design variables involved in a product
family represented by, products. Note that this is the vector which will be used in the final
structural optimization problem defined below. The relation between the design variable vector
x(«) for producta and this global vector is defined by Boolean matriceB, as follows:

B,z = z(a), a =1,...,ny, whereB, reflects how modules are shared between products.

Objective function

A total performance measui@(x) is defined as a weighted sum of compliances, where each
producta is exposed toy () load cases. The scalang, are weighting factors that reflect the



relative importance of different products and load cases. The following minimizing problem is
solved

(]P) a=1 /(=1

subject to
xe X,

and the stiffest product family is found subjected to constraints where the Miassust not be

larger than an upper mass lindif,, available for productt and X’ is a set of admissible designs.

The product family

To explore the power of this technique, an example from the car manufacturer Volvo has been used.
Three existing products, the former sedan S40, the estate wagon V50 and the C70 Convertible from
1997 have been at focus. The split of these car body structures into globally shared, partly shared
and unigue modules is governed by the manufacturing of these existing products. In Figure 2,

globally shared modules are shown in red and yellow, partly shared modules in green and unique
modules in grey colors. The yellow parts are in the real cars non-existing components. Boundary

conditions are illustrated in violet.

Figure 2: Ground structures and modular decomposition of the involved products

Loading conditions

Attention has been given to modeling the mass distribution as realistically as possible. Mass com-
ing both from load-carrying structural components and from non-structural components are taken
into account. That is, the mass distribution is design dependent and design derivatives of the load
vectorsFﬂ are required. The mass from an extensive number of non-structural components is ap-
plied as point and line masses and they are treated as design independent. The point masses are
attached to the structure by simple weightless bar elements tuned not to add any stiffness but to
distribute the forces emanating from the point mass as accurately as possible.

The applied load cases are bending, twisting, front crash and rear crash, all achieved by applying
an assumed acceleration vector acting on the current mass distribution. Finally, also a statical
roll-over load case is applied, defined by legal provisions.

Optimization algorithm

The optimization algorithm utilized is the well-known and often used Method of Moving Asymp-
totes (MMA) [7] which has been implemented into the general in-house finite element program
TRINITAS [8].



Results

The data output from this type of analysis is enormous and can be examined and evaluated in
many different ways. Most obviously, the objective function value, summed up of compliance
values from each product and loading case, may serve as a base for comparison. Secondly, the
obtained designs from different, closely related, optimization problems can be compared. In this
document only a very limited taste of the results can be given. In the left of Figure 3 the optimal
design of only the S40 optimized for all load cases and in the right of the figure the optimal design
of the S40 exposed to all load cases but here effected by the other two members of the family.

Figure 3: The S40 optimized as one product, or as one product in a family of products
Concluding remarks

This paper presents a technique, that can serve as an efficient tool, for investigations of what will
be the loss of performance and/or change in geometry, if one product is forced to share components
with other products, in a specific product family.

By use of this technique one can also conclude that sharing or not sharing modules triggers differ-
ent design solutions, all having closely the same compliance value.
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Summary A gradient dependent plasticity model is used modeling crack-growth in an elastic-plastic
material. The numerical simulation is based on an implementation of the Fleck-Hutchinson strain gradient
plasticity model from 2001. A user-element implementation in the commercial finite element program
ABAQUS is used. The crack-growth is modeled using a cohesive finite element. Simulation gives more
realistic predictions for crack-growth at strong bonded interfaces compared to a conventional elastic-
plastic model.

Introduction

Based on conventional plasticity models, crack growth can only be predicted for weak to
moderate strong interfaces. Despite experimental observations, crack growth is prevented by
crack tip blunting for interface bond strength above 4-5 times the yield stress of the material
even though typical separation stresses for cleavage or decohesion at the atomic level in metals
is of the order of 10 times or more the yield stress. In contradiction to experimental
observations, such numerical predictions result in cracks unable to grow. Similar separation
stresses are observed for polymer-glass interfaces [1].

On the other hand, for enhanced plasticity model such as e.g. the Fleck-Hutchinson [2] gradient
dependent plasticity model, more realistic crack growth predicted can be performed [3]. This is
do to the fact, that enhanced plasticity models through the incorporated length scales take the
microstructure of the material into account in an averaging. This is done without actually
modelling the underlying microstructure. In a number of cases, an accurate simulation of highly
localized deformation fields is crucial even for realistic predictions on the macroscopic level.
An example is the necessarily of an accurate prediction of the stress and strain field around a
crack tip in order to make realistic prediction of the overall failure of the overall structure [3].

In the present work, crack growth for a K-field dominated crack tip in a homogeneous elastic-
plastic material is modelled using the commercial finite element code ABAQUS [4]. The Fleck-
Hutchinson [2] strain gradient dependent plasticity model is implemented in the code using a
user subroutine interface. The numerical implementation is quite similar to the implementation
scheme outlined by Niordson and Hutchinson [5] and Niordson and Redanz [6]. The crack
growth is simulated using the cohesive element already available in the code. In the traction
versus separation law used in the cohesive elements, the work of separation and the peak
separation stress are considered as the two most important parameters [3]. Only for stress levels
exceeding the peak separation stress (interfacial bond strength), the crack will actually grow.

The strain gradient plasticity theory and its implementation

The Fleck and Hutchinson (2001) J,-flow version of the strain gradient dependent plasticity
model is implemented in the commercial finite element code ABAQUS using the user
subroutine interface (Uel). The implementation is quite similar to the implementation performed
by Niordson and Hutchinson [5] and only a brief description is given below.



A power-law hardening material law is used where the tangent modulus depends on a gradient
dependent effective plastic strain

EP =& + A&Teh +B,ele” +Ce” L

The coefficients Aj, B, and C, see [2] depends on three material length scales, /,, /,, /,,

the outward normal the plastic yield, m; =(3/2) s; / o, and the gradient thereof, m; , . A one
length scale parameter, /.., special case of (1) has been formulated as

B =& 406060 @)

Later, only results for the one parameter version are shown. The equilibrium equation for the
strain gradient plasticity model can be formulated trough the virtual work on incremental form

J'V [6”5;55 +Q0g" + 7,07 ]dV = J.S [‘I‘i5ui +t'§éP]dV +[equilibrium correction]  (3)

where higher order stresses, z;, and higher order tractions, t, are introduced.

A plane strain finite element model is formulated where both the nodal displacements and the
effective plastic strain is taken as fundamental unknowns. Following the scheme outlined of
Niordson and Hutchinson [5,6] the element matrix for the elements in the plastic range is given

on the following form
K, K, ul_[R],]c .
Ko K, & ]7[E] o ®

where U and £° are the fundamental unknowns and the last term with, C,, represent the

equilibrium correction term. The displacement degree of freedoms U are approximated be a 8-

noded isoparametric element, while the effective plastic strain £° are approximated using the
shape function from a 4-node isoparametric element. The element is integrated using 2x2
Gauss-points. This combination is used in order to avoid locking in the shear-dominated part
near the crack-tip and spurious zero energy-modes in the degree of freedoms representing the

effective plastic strain. In the elastic part, sufficiently large numbers are introduced in K, in
order to avoid spurious plastic strain increments.

Figure 1: Mesh used in the simulation.



Numerical Results

Crack-tip and growth simulation is performed in a homogenous elastic-plastic material. The
mesh used is shown in Fig. 1. The crack is loaded in pure mode | by prescribing a K,

displacement field on the outer boundary. Symmetric boundary condition is prescribed on the
lower left boundary while the lower right boundary is free to move representing the crack. For
the crack growth simulation, cohesive elements are used in the center of the lower boundary.
The cohesive law used has the trapeze form used by a number of authors, see e.g. [3, 7]. Fig. 2
shows the stress and plastic strain distribution near the crack-tip. In Fig. 3, the corresponding
variation is shown for a number of cases along the further crack path. Fig. 4. show the result
from a few crack growth simulations.
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Figure 2: Comparison of the stress levels found at a similar load level for simulation based on a
conventional and a strain gradient plasticity theory with a large incorporated length scale, respectively.
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Figure 3: Comparison of the stress level and gradient dependent plastic strain level along the symmetry
line found for a number of cases at similar load level.

Conclusion

From the crack tip results, it can be seen that the stress distribution transform smoothly from the
stress distribution found for a conventional plasticity solution for small length scale [8] to an
elastic kind of singularity for large incorporated length scale. This is supported by the



degreasing level of plastic deformation for increasing length scales as seen in Fig. 3b. As a
consequence, the crack-growth is observed to grow at lower steady state values for increasing
length scales.
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Figure 4: Crack-growth simulation showing the effective plastic strain variation at the instantanous crack-
tip and the dependency of the crack-growth resistance curve on the incorporated length scale. The crack

length Aa is normalized with a reference plastic zone size.
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Summary This paper presents a conceptually simple finite element implementation of the combined
elasto-plastic Mohr-Coulomb and Rankine material models, also known as Modified Mohr-Coulomb
plasticity. The stress update is based on a return mapping scheme where all manipulations are carried
out in principal stress space which simplifies the calculations. The model supports both associated and
non-associated perfect plasticity.

I ntroduction

Materials such as sand and concrete show pressure dependent strength properties. The simplest
material model which incorporates this pressure dependency is the Mohr-Coulomb material model.
The yield criterion uses the well known parameters friction angle, o, and cohesion, ¢

1+singp

: and o, =2cVk (1)
1—singp

fmc =koy — o3 — 0. =0, with &k =

where o1, o2 and o3 are the principal stresses. In this paper tension is taken as positive.

When ¢ > 0 the Mohr-Coulomb model predicts a tensile strength which is larger than the tensile
strength observed experimentally, see e.g. references [1], [2] and [3]. This discrepancy can be
mended by the introduction of the Rankine or "tension cut-off” criterion

fR=01—04=0 2

where oy is the "tension cut-off” value, which is the highest tensile stress allowed in the material.
The combination of these criteria is usually referred to as the Modified Mohr-Coulomb Criterion,
cf. [2]. On Fig. 1 this criterion can be seen in the principal stress space and in the i — o3 plane.
The Rankine part of the criterion, Eq. (2), is taken to be associated whereas the Mohr-Coulomb
part is non-associated.

03 apex
b
) f > 0 o’l = o't
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Figure 1: The Modified Mohr-Coulomb Criterion in a) principal stress space and b) the section through the
o1 — o3 plane.



Plastic stress update for yield planesin principal stress space

From Egs. (1), (2) and Fig. 1 it can be seen that the criterion consists of intersecting planes in the
principal stress space. As will be shown later the Modified Mohr-Coulomb criterion leads to nine
different types of stress return, which must be properly identified. This can be a cumbersome task
in general stress space. Therefore the method of [4] and [5] is very well suited for carrying out the
plastic integration and formation of the constitutive matrix. In the following a short summary of
the method will be given.

The stress update and formation of the consistent constitutive matrix require the derivative of
the yield function and the first and second derivatives of the plastic potential. As only isotropic
material models are considered the manipulations can be carried out with respect to any set of co-
ordinate axes. Therefore the predictor stress is transformed into principal stress space and returned
to the yield surface. Considering the fact that the stress return preserves the principal directions,
the updated stress can then be transformed back into the original coordinate system. This sim-
plifies the manipulations of the return mapping scheme considerably compared to the standard
formulation, see, e.g. [6]. There are two reasons for this. Firstly the dimension of the problem
reduces from six to three, and secondly, in the three-dimensional stress space the stress states can
be visualized graphically, making it possible to apply geometric arguments.

Linear yield criteria in the principal stresses are visualized as planes in principal stress space.
These planes intersect in lines and points, making three types of stress returns and constitutive
matrices necessary: Return to a yield plane, return to a line, e.g. intersection of two yield planes
and finally return to a point, e.g. intersection of three or more yield planes. The three types of
return are visualized on Fig. 2.

The formulae for the different returns will be established in the following. The conditions for de-
termining which return is needed will also be established by dividing the stress space into different
stress regions.

Vectors and matrices are expressed with respect to the principal axes. This means that the last three
components of vectors are always zero and are not be shown as a matter of convenience. Even so
all matrices and vectors are six-dimensional.
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Figure 2: Three intersecting yield planes in principal
stress space with three types of return shown.

Figure 3: Boundary plane p;;—; = 0 with
normal np;_y, which separates the stress
regions | and 1.



The task is to determine the updated stress, o, in the equation

o =0 - AoP? =0P - A)\D@ 3
do

where oB is the predictor stress state found by the solution of the global system of FEM equations,
AoP is the plastic corrector stress, A\ is a plastic multiplier, D is the elastic constitutive matrix
and g is the plastic potential.

Sressreturn to a plane

The equation of a yield plane and a plastic potential in the principal stress space can be written as
fle)=a'(c—-0;)=0 and g(o)=blo (4)

where o/ is a point on the plane and a and b are the gradients,

of 9y
== and b=_*> 5
a oo Jo ®)
Both a and b are constant. The plastic corrector stress can be computed as
f(a®) B . Db
AO'p: me:f(O' )I'p Wlth I'p: m (6)

where rP is the scaled direction of the plastic corrector in principal stress space, i.e. # is at an
angle with the plastic strain direction, b.

Sressreturnto aline
A line, [, in principal stress space has the equation
l: o=tr'+ 0oy @)

where ¢ is a parameter with the unit of stress, o7 is a point on the line and r; is the direction vector.
The parameter ¢ can be found as

(rf x r))T(o® — 0y)

+—
(Y x )T,

C))
where r} and r} are the plastic corrector vectors from Eq. (6) for the two yield planes intersecting
at the line.

Sress return to a point

If the stress is to be returned to a singularity point, &%, e.g. an apex point, see Figure 2, there is no
need for calculations, as the returned stress is simply

o® =o? 9



Sress regions

In this section it will be outlined how to determine to which plane, line or point the stress should
be returned. In order to do this the concept of stress regions is introduced, and the boundary planes
that separate them are defined. Each yield plane, line and point is associated with a particular
stress region. When the predictor stress is located in a given region it must be returned to the
corresponding plane, line or point. Two stress regions, | and Il, separated by a boundary plane,
pri—1 = 0 are illustrated on Figure 3.

When the yield functions and plastic potentials are linear in the principal stresses, the boundary
planes are also linear. The direction of the plastic corrector, 1, c.f. (6), and the direction vector
of the line, r;, define the orientation of the plane, and so the equation of a boundary plane can be
found as:

pu-i(o) = (r* xr)) (o —07) = nfj_j(6 —0y) =0 (10)

where ny;_ is the normal of the plane. The indices indicate that the normal points into region Il
from region 1. The point on the plane is o7, which can be taken as a point that also belongs to I,
see Fig. 3 and Eq. (7). If two stress regions are located as seen on Fig. 3, the following is valid for
a given predictor stress, o located outside the yield locus, i.e. f(a®) > 0:

pu-1(6®) <0 & Regionl < Returnto f =0

11
pu-1(6®) >0 < Regionll < Returnto! (1)

Constitutive matrix

The consistent constitutive matrix is also formed in principal stress space. Details are given in refs.
[4] and [5].

Modified M ohr-Coulomb plasticity

The principal stresses are ordered in descending order, i.e. oy = o9 = o3. This means that the
Modified Mohr-Coulomb criterion consists of only two planes in the principal stress space, see Fig.
4. As can be seen on the figure the geometry of the yield planes is bounded by five lines which
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Figure 4: a) The Modified Mohr-Coulomb criterion in principal stress space. b) Detail of the tension cut-off
plane, fr. The line, p, is the hydrostatic axis.



intersect at three points. With reference to Fig. 4 the equations for the lines and their direction
vectors are

lllvlc o= trllvlc + 0'240, I‘ll\/IC =1 k]T (12)
lévlc o= trlgvlc + 0'240, rg/IC =[1 k K" (13)
B o=tl+a,, =100 1" (14)
B o=trf 4ol =10 10" (15)

where ¢ is a parameter with the dimension of stress, and o>, &, and ot are the Mohr-Coulomb
apex (not shown on Fig. 4), the Modified Mohr-Coulomb apex and the intersection between lines
IMC and 1%, respectively. A fourth point, denoted o¥', is the intersection between lines ' and
I&}. These points have the coordinates

o Ot Ot Ot
oMC k _C 7 , oa=R01p, o= ot , ox =1 ko —o. (16)
ot koy — o koy — o,

The boundary planes that separate the nine stress regions can be seen on Fig. 5. The equations of
the 11 boundary planes will not be given here but can be found from the Egs. (10) and (12-16).

a) ot IX_ .-

Figure 5: a) Stress regions, denoted by roman numerals. b) Detail.

Numerical example

A finite element calculation is carried out on a rigid smooth footing resting on a frictional cohesive
soil. Two material models are employed. The first is a perfectly plastic Mohr-Coulomb model with
¢ = 20° 1 = 5° and ¢ = 20 kPa. The second is the Modified Mohr-Coulomb material model
with the same parameters and also a tension cut-off, oz = 0. A mesh of six-noded triangular linear
strain elements is created, and can be seen on Fig. 6. This element mesh has a total of 347 elements
with 1500 degrees of freedom. The radius/halfwidth of the footing is » and the domain has a width
of 12r and a height of 10r. A forced displacement is applied to the footing in steps, and the footing
pressure ¢ is found from the reaction forces. The soil has a selfweight of v = 20 kN/m?, a modulus
of elasticity of £ = 20 MPa and a Poisson’s ratio of v = 0.26. An initial earth pressure coefficient
of kg = 1 is used.
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Figure 6: Geometry, boundary conditions and ele- Figure 7: Normalized load-displacement curves.

ment mesh for the computational example.

On Fig. 7 the load-displacement curves can be seen. The displacement has been normalized with
respect to the footing radius and the load has been normalized according to Terzaghi’s superposi-
tion equation for the bearing capacity of surface footings

Gu = cN. + ’)/TNW (17)

Fig. 7 shows that the Mohr-Coulomb and the Modified Mohr-Coulomb model predict almost the
same bearing capacity with the Mohr-Coulomb bearing capacity being slightly larger. In a problem
with an eccentric load the difference would be more pronounced, as positive normal strains could
develop between the soil and a part of the footing without the development of tensile stresses.

Conclusion

A simple and efficient method of performing the plastic stress update for a Modified Mohr-
Coulomb material is presented. In the method all manipulations are carried out in the principal
stress space which simplifies these considerably compared to the equivalent manipulations in gen-
eral six-dimensional stress space. A numerical example shows the performance of the method.
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Summary A thermodynamically consistent constitutive model for diffusionless phase transformation in
austenitic steel is presented. An elasto-plastic model based on a multiplicative split of the deformation
gradient is used for the evolving plasticity while a transformation condition governs the evolution of
martensitic transformation and transformation strain.

Introduction

Increasing attention is being directed at austenitic steel undergoing martensitic transformation.
This is due in no small part to the fact that use of shape-memory alloys and so-called TRIP steels
are becoming increasingly common. The transformation from austenite to martensite has appeal-
ing traits, such as the high rate at which the transformation occur and the possibility to obtain a
material with inhomogeneous ductility, making these steels interesting in practical applications.

Phase transformations in steel occur either through slow diffusional processes or by very rapid mi-
crostructural rearrangements, not depending on diffusion. The formation of martensite that takes
place when deforming an austenitic steel is of the latter, diffusionless, kind. Martensitic phase
transformation also exhibit a strong temperature dependency since elevated temperatures restrain
transformation while lower temperatures promote it. The presence of an evolving martensitic phase
has substantial influence on the behavior of the material. Since the martensite phase has consid-
erably higher yield stress than the austenite, the martensite will enhance the hardening of the
material undergoing deformation. The difference in yield stress between the phases will also in-
duce a localization of the plastic deformation to the weaker austenite phase, inducing additional
plastic straining. These phenomena makes effective constitutive models that include phase trans-
formation desirable in many practical applications. One example is the simulation of high-velocity
metal forming operations which are too rapid for diffusion-based transformations to occur, but rely
on control of the amount and distribution of martensite, e.g. by controlling the temperature of the
tooling.

An elasto-plastic model based on a spatial formulation, and suitable for finite-strain simulations,
is developed, cf. [2]. The total deformation gradient is multiplicatively decomposed according to
F = F"F" into one reversible part describing the elastic deformation, and one irreversible part
which includes both slip deformation and deformation due to phase transformation. The evolution
of the transformation strain is assumed to be proportional to both the applied stress and the rate of
the transformation. This approach has previously been adopted in e.g. [3] and [4].

The volume fraction of martensite is included into the model as an additional internal variable
in the Helmholz free energy function. The evolution of this internal variable is derived from a
potential function which also constitute the transformation condition. Following e.g. [1], a con-
jugated thermodynamic force, driving the transformation, is identified from the transformation
potential. The shape of the transformation surface and the direction of the transformation strain
are estimated by considering the lattice rearrangement involved in the phase transformation, i.e.
the microstructural change between the austenitic fcc lattice and the martensitic bec lattice.



Discussion

The constitutive model incorporates the irreversible deformation both due to plastic slip and that
due to phase transformation. The plastic slip is included through the use of a standard .-plasticity
model with non-linear isotropic hardening. To determine the evolution of transformation strain, a
transformation potential A (F, z,0) < 0 can be formulated, where F' is the thermodynamic force
conjugated to the volume fraction of martensite. Much like the yield condition indicates if plastic
loading has occured or not, this transformation condition determines if phase transformation has
taken place. Also the evolution of z is determined from the potential 4. The modified Koistinen-
Marburger relation — where the evolution of z is driven by both stress and temperature — can be
retrieved.
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Figure 1: Left: Simulated stress-strain response (solid lines) compared with experimental results (symbols).
Right: The volume fraction of martensite as a function of plastic strain, corresponding to the left graph. The
experimental results are taken from uniaxial tension tests of AISI304 steel at different temperatures, cf. [5].

By considering a polycrystal with randomly oriented grains, a transformation surface can be es-
tablished. Due to the symmetry of the austenitic fcc lattice, 24 different martensite variants are
made possible. Considering a polycrystal and establishing a transformation condition for each one
of these variants in each grain, a transformation surface is obtained after a homogenization of all
grains. This surface shows close agreement with experimental findings. Using this crystallograph-
ically motivated surface as a guide, the phase transformation in the present model is based on a
function h according to

3bJ3

1/2
h(t,z,0) =K (z,0) <3J2 + 1—/2> + 01| — Firans (2,0) =0 @
J.

2

where b and ¢ are parameters to be fitted. F;,.q.s (2, 6) is a barrier function that act as a threshold
against transformation. By combining K (z,0) and F;,qns (2, 6), a calibration against experimen-
tal data is possible.

Figure 1 shows the model calibrated against experimental data found in [5] for AIS1304 steel. The
strong temperature dependence of the martensite evolution should be noted. Very little martensite
is formed at higher temperatures whereas most of the austenite is transformed into martensite at
lower temperatures.



Based on the above theory, a numerical implementation is preformed where it is seen that the
present model only involves one additional equation as compared with standard ;-plasticity with
isotropic hardening. This renders a computational model that is robust and convenient in FE-based
simulations.

Example

To illustrate the capabilities of the model and also the influence of a martensitic phase, consider a
rod exposed to a tensile loading. The geometry is shown in Figure 2 and i = 3 mmand ip = 9mm
is used in the simulations. To trigger necking, a small imperfection is introduced in the geometry
whereby the “waist” of the rod is reduced by 0.03%.
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Figure 2: Geometry of the simulation model representing a cylindrical rod exposed to tensile loading. Taking
advantage of the symmetry, only one fourth of the rod is actually analyzed (the hashed region). Points A
and B are used for reference. The tensile load is applied by enforcing a displacement u of one end of the
bar.
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Figure 3: Simulated response of an axisymmetric bar exposed to tensile loading at = 213 K. The left graph
show the response both with phase transformation (solid lines) and without (dashed lines). The graph at the
right show the corresponding evolution of martensite at the center end points of the simulated geometry, cf.
Figure 2. The dash-dotted lines are related to the end point B of the rod and the solid lines are related to the
center point A of the rod. Figure 4 shows the corresponding graphs at § = 293 K.

Figures 3 and 4 show load-displacement curves for the rod, with and without phase transformation.
At the lower temperature of § = 213 K, the martensite phase evolves rapidly, cf. Figure 3. The
localization of plastic deformation occurs almost at the same state of deformation, regardless of
phase transformation. This is due to the rod being quite homogeneously transformed into marten-
site, which is seen in the right graph in Figure 3. However, the hardening is greatly pronounced
in the presence of martensite. At room temperature, # = 293 K, the martensite evolves at a much
lower rate, cf. Figure 4. The hardening behavior is hardly affected by the harder martensite phase,
but the localization of deformation is markedly delayed. When localization is initiated, martensite
forms and rapidly stabilizes the region of localization.
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Figure 4: Simulated response of an axisymmetric bar exposed to tensile loading at 6 = 293 K.
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1 INTRODUCTION

The foundation of continuum mixture theory [1] is applied to fluid-structure models.
Equations of motion and continuity are deduced for a two constituent mixture, and
expressions for supply properties are suggested. The models are exemplified with
hydrostatics.

The approach may be used as a complement to ordinary boundary condition, by
considering an interaction with boundaries in a spatially distributed boundary layer, eg.
viscous layers in flow. The principles and consequencies of regarding an entire construction
as a mixture, will also be examined.

A coupling at the boundary may be considered a weak interaction, since it is present in the
equation after a weak formulation, or an integration. A coupling in the equation is more of a
strong interaction, and emanates from mixture modeling. (The coupling has similarities with
the heat source factor and heat flux in the energy balance equation.)

In hydrostatics, a modification of Archimedes principle, gives a pointwise distributed uplift
(buoyancy). For this buoyancy, a weak formulation is considered and a stability criterion at
’meso-level’, is formulated. At macro-level, this is in analogy to meta center level stability for
ships and off-shore structures.

2 STATIC MIXTURE MODEL

The constituents are assumed to be an ideal fluid, characterized by pressure psand density
pr, and a solid, with stress tensor s, and density ps. Neglecting inertia, the governing equations
based on [1] read

-grad ps + psg + div P=0 (1)

divs + psg - div P=0 (2)
where g is gravity, and div P, is momentum supply.

3 APPLICATION IN HYDROSTATICS

Assuming that P is a linear function of ps, and tr s, makes it possible to solve (1) for P,
P=c1/(1- ¢1)( prg y+ C2 tr s)1 (3) and p=1/(1- ¢1)( prg y+ Co tr s)+C (4)
where ¢, C,, C are material constants. Compared with classical hydrostatics, equation (4), is a
modified pressure formula. Insertion of (3) into (2), will give an uplift, due to fluid content,



and a modified Poissons ratio.

To derive a potential, a weak form of equilibrium for a sub-body of the solid constituent
is formulated. Assume a sub-body of solid partly submerged in fluid, with a cylindrical shape,
subjected to forces as seen in Figure 1. Equilibrium (2) holds, with a reaction force from the
anchor denoted by S, and at the upper part, P is zero.

With w being a weight function, the weak formulation, when c,=0 reads

II=Int (W' (div s + psg - div P+S&(location))dV , I1=0 (5)

When w is a virtual displacement, IT is known as a potential, [2]. Eq (5) is to hold for an
arbitrary w, eg. a rigid body motion around fluid surface quantified by a small rotation an
angle ¢. Since diffusion is neglected, the entire mixture will rotate with the solid, to the
configuration in Figure 1. Such a configuration is present, at a water surface with waves, or
when air cavities.

Figure 1. Rotational displacement of mixture

An integration by parts for P-term, gives, that uplift act at the upper fluid intersection
surface, since this is the boundary of the mixture. Stability at equilibrium requires that the
second differential of IT is positive, which gives the condition

U prg ¢°1-U prg §°Ve+kE(9,5)- psg ¢(K+V)a>0 (6)
where u is a constitutive parameter for momentum supply P, at the boundary, a and c are the
distance from origo to point a and c, K, V are the volumes above and submerged, I is the area-
inertia moment for the boundary surface and f is a function of conditions for the anchorage.
For k=0, equilibrium reads psg (K+V) =u psgV. Insertion in (6) gives the formula a+c<I/V,
which, for u=1, is in analogy to meta center stability for a ship in water, or an aircraft on air.
In mixture, as well as in traditional modeling, the density distribution may be a varying field,
(since the constituent does not occupy the entire space), which alters the formula.



In classical traditional modeling, the solid and fluid are two different bodies, momentum
supply P=0, and the coupling is at the boundary. In the weak formulation of the mixture
modeling, the momentum supply will act at the boundary, altered by a factor u.
Generalisations could be done to

Non-rigid body motion, strain implies a stress tensor, which give dependency on ¢,
anchorage force non-zero, (S=k¢? or k¢)
friction at solid-fluid intersection.

4 CONCLUSIONS

By considering the fluid and structure as a mixture, an alternative approach to fluid-
structure interaction was investigated. In mixture modeling, there are couplings also in the
field equations, and not only at the boundaries. Model were applied to stability for floating
objects.

Other areas where continuum mixture modeling is of interest are biomechanics, pressure-
dependence on depth, density, temperature, salinity, and influence from measurement
equipment.
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Part I1. Dynamics with relative motions

Key words: Diffusion, Weak formulation, Doppler effect, Aqua plane, Nonlinear simulation

1 INTRODUCTION

For a continuum mixture theory! featuring diffusion, equations for a two-constituent
mixture will be summarised. Assuming constituent to be fluid, solid and gas, models in
hydrodynamics are deduced. In applications of special relativity, a generalised Lorenz
transformation appears. To describe Doppler-shift, we consider a constituent (fluid or gas)
with velocity v; and density p;, that transmits an acoustic wave, mixed with an acoustic
medium at rest. Constituting the mixture to be an acoustic medium with sound/wave velocity
c, a Doppler effect that depend on ratio of velocity and sound speed, as well as densities of the
constituents are derived. For certain average values of densities, the classical relativistic
Doppler formula will appear, as a special case.

At aqua-plane, vertical forces are due to gravity, buoyancy, and an uplift proportional to
square of velocity, surface and density. Considering the angle to the water-surface as a degree
of freedom, a weak form® of equation of motion will give a nonlinear equation. At
linearisation, for different angles, a generalised format with eigen-frequency may be
identified. For large speeds, behaviour is non-stable.

2 CONTINUUM MIXTURE MODEL

For a mixture of two constituents [1] with densities p;and velocities d ix;, i=1,2,
the density and velocity are defined as
p=p1+p2, pd X =p1d Xy +pod Xz 1)

The stress tensor for the mixture is
2
Tmzslfsz'pl uU; T'pz u UzT ) o @)
where s; are stress tensors of the constituents, and u; =d x;-d ¢x are the relative velocities.

3 APPLICATIONS

3.1 Induced Lorenz expression for relativistic frames/measures

Preliminaries: Constituent 1 has an absolute velocity vi, and the stress tensor for the
mixture is the pressure of an acoustic medium[3] with sound/(light) wave speed c, here



specified to ideal gas p=pc’.

The first component of the stress tensor for constituent 1 will read (1),(2)

-(s1)12/c’=(1—(vIc)*(p%2/pp1))p +(S2)12/c? , where v is the velocity of the mixture.

An interpretation (for (sz)11=0) is: If p is a measure/property in the frame of the mixture,
then a corresponding measure in the frame 1 will be scaled by a ratio of v and c. This reminds
of the Lorenz factor, but v is the absolute speed, and scaling will also depend of ratio of
densities. Subsequently (1-(v/c)*(p%/pp1)) will be known as the L-field, £. Here £=£(v).

£ may be expressed in absolute velocity for frame 1, or relative velocity between frame 1
and mixture u=v-v; by (1). For the relative velocity £:£(u):(1—(u/c)2(p1/p)). If p,=0, the
velocity of the mixture equals the speed of frame 1, such that u=0, and £=1. This is since
frame 1 constitutes the entire mixture. l.e. a non-trivial £ requires p, nonzero, and the
classical Lorenz expression, may not be pointwise recovered. If p; and p, occupy different
regions (as in examples of special relativity), an integration over volume give mean values
that fulfil the classical Lorenz transformation.

3.2 Results for Doppler effect

We consider a mixture where constituent 1 and 2 not, necesarilly entirely, occupy the same
region in space. Preliminaries: Constituent 1 has a constant absolute velocity vi, and the
stress tensor s;=-p1(p1)1 , where p; and p; are the pressure and density of an acousic medium
such that p;, p1 fulfil the wave equation, with sound velocity c;-v; and p;=exp(io(t-x/(c1-v1))).
For the mixture, close to 2: T=-p1, where p=p(p2, ,) is the pressure of an acoustic medium
with sound velocity ¢, and p,=exp(iw(t-x/c)). For constituent 2: s,=-p,1.

Hereby, from (1)(2), p1 = p-(p1p2/p)Vi° -p2

By a quasi-weak formulation, properties of left hand side will be defined at the
neighbourhood of 1, and properties of right hand side defined at the neighbourhood of 2,
through integrating over volume with weighted average.

Differentiating twice with respect to time, and assuming that dip,>d (p; at 2 (thus defining
location2), and vice versa, d’p= c?dp, from the wave equation for ideal gas, and
di(p1p2/p)=-w2p2f(p1.p2), T being a function of the densities, it is achieved

0)1291(312 (1'(V1/C1))2:®229202 (1-f(p1.p2)( v1/C)2)-p2

®; IS detected frequency at location2, and w; is transmitted frequency at the locationl.

For c;=c and the ‘average‘ values p;=p, and f(p1,p2)=1 (since an integration over volume
was presumed), and omitting p,, the classical relativistic Doppler formula is recovered. The
assumption of sound velocity ci-vi, is probably valid at a limited distance to the moving
sound generator. When the function f(p1,p2) vanishes, which is the case far from 1 or 2, the
formula alters, which agrees with that the Doppler effect is more noticable, at close distance.

3.3 Aquaplane
For a boat on water, the uplift is due to relative velocity and buoyancy. Intersecting part of



boat and water is considered a mixture, such that (1)(2) holds.

At low depth, translation and buoyancy from pressure at depth is neglected. Vertical
equilibrium (neglecting momentum supply and nondiagonal terms in s;) then give

mig=e yT int(div s;dV)=e yT int(s1 ndA)= syyA, where A is projected area at water line, and
m; is mass. At constant horisontal relative speed u, an angular periodic motion around
equilibrium angle ¢ will be considered. The angle ¢ is defined positive CW, counted from ¢,
cf. Figure.

Guided by the expression (2), for the mixture, it is assumed that uplift is proportional to
p1U®. Hereby syy:kp1u2: m;g/A which will be used in a dynamical analysis, where potential
energy? is derived from equation of motion. Moment from uplift int(xxs; NdA)=x,SyyA, when
Syy Is uniformly distributed, x, denoting the center of uplift distribution.

Diffusion due to upward motion is neglected (in conjunction with assumption of low
depth). Potential from gravity and uplift, give a linear model in a 1st approximation when
uplift is determined from vertical equilibrium. Hereby V:¢Zsyyf(A,xu,rC) where f is a function
and r. is center of mass, and the Lagrangian T-V, where T=J(d¢)*/2, J being 2nd moment of
inertia.

Nonlinear model.

In a refined model, higher order terms are considered, and in resulting non-linear model,
the issue is what higher order terms to encount, and eventually, how to linearise. This may
depend on if the goal is, to model severe event, to optimise a design for a special purpose, or
to control the motion. Here, we will consider the (generalised) eigenfrequencies, the
behaviour at turning points, and the case when the boat flip backwards, not returning to
equilibrium.

For positive angles, since both x,(¢) and projected area, A(¢), depend on angle, the uplift
will increase of an higher order, which motivate a positive ¢°. (Refined small angle approx,
giving negative contribution, is assumed less.)

Due to angular velocity, the horisontal velocity and then the uplift will change. Replacing
Syy in V, with kp1(u+p2/pL(did)h)?, L being the boat-length, give a dependence of L(dih),
which give ‘bi-nonlinearity’. For negative angles, the horisontal velocity component is
increased at downward motion dip>0, compared to that at the equilibrium angle, which
increases the uplift. Therefore, at linearisation this will be included (in the potential energy) as
-(did)’d, higher order term in ¢ is linearised at equilibrium angle.

Hereby, a normalised Hamiltonian to the Lagrangian will be H=(d)*+aod*+a:$°—-ad(dd)?

When damping is neglected, simulation is done for constant energy H, corresponding to
initial velocity, that, if periodic motion, equals maximum velocity and determines
eigenfrequency.

For largest a;, the maximum positive angle will be small, and the acceleration is large at
positive turning point, such that the negative velocity causes an ‘escape from orbit’
corresponding to a flip backwards. For moderate a;, there is periodic motion, with larger
maximum negative angle and slower acceleration and velocity at negative turning point, such
that longer time ‘is spent there’.

For smaller H and largest a;, behaviour is stable periodic motion as seen for the innermost



circle.

Figure. Phase portrait di¢ versus ¢ for Hamiltonian H=1, and parameters [a, a;, 8,]=
[1,-0.3,0.7], [1,0, 0], [1,0.3,1], [1,1,1], [1,2,-1], and H=0.3[1,1,1], H=0.1][1,1,1],
from right at (dib,$)=(0,1.5), and diverging at $=0.5; H=1[1,0, 2].

4 CONCLUSIONS

Within the framework of acoustic, when constituents and mixture fulfil the wave equation,
characterised by sound speed, similarities with applications in special relativity, were notified.
A derivation of a modified formula for Doppler effect, with a dependence of spatially
distributed densities of constituents and mixture, were given.

At aqua-plane, a nonlinear equation of motion was derived. A simulation was done to
show the qualitative behaviour depending on velocity, geometry and density.

The approach may also be used as a complement to ordinary boundary condition in fluid-
structure interaction, by considering an interaction with boundaries in a spatially distributed
boundary layer, eg. viscous layers in flow. In mixture modeling, there are couplings both in
the field equations, and at the boundaries.
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Summary

In this paper a three dimensional FE model of the friction stir welding (FSW) is presented and the
FSW process is simulated. The model has been implemented in FE code Abaqus with user
subroutines DLOAD, DFLUX and UMASFL. The material data used to describe the welded
panels is from an aluminium alloy called AL-2024-T3 and the material is assumed to be isotropic
with temperature dependent yield stress and elastic modulus. A sequentially coupled non-linear
thermo-mechanical analysis was performed in order to study the temperature and stress
distribution.

Introduction

FSW was invented and experimentally proven at The Welding Institute (TWI) in the beginning of
the 90s and can be used for joining different materials and material combinations, if tool materials
and shapes can operate at the forging temperature of the welded material. During the FSW process,
the metal at high temperature, although not over the melting temperature, is exposed on powerful
plastic deformation. The method is carried out by use of a rotating tool, which is forced down into
the metal and carried along the welding direction, see Fig 1. In general, the tool comprises a
shoulder and a probe. When the rotating tool is forced down to the metal, heat is generated due to
friction. The tool also generates a significant amount of mechanical work under high pressure. The
two plates to be welded are sheared together and a homogenous structure is formed. The crushing,
stirring and forging action of the FSW tool produces a weld with a finer microstructure than the
parent material. The result is a weld with the highest quality, free from pores and enclosures.
Compared to other welding techniques where melting occurs, the FSW-method provides better
mechanical properties of the weld, increased closeness and reduced deformation due to heat,
because the material never reaches the melting temperature. Simulating the FSW process has been
under way for some years now and plays an important part in the developing and improving work
of this welding method. FSW process has been modeled using both Finite element and Finite
difference techniques. In this paper a finite element model of the FSW process is presented and
simulations are performed in FE code Abaqus.
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Figure 1: Illustration of the friction stir welding process.

Material properties

The material properties for aluminium alloy called AL-2024-T3 are used to model the welded
plates. The material is modelled as an isotropic elasto-plastic continuum with kinematic hardening.
Young’s modulus, c.f. [4] and the yield strength, c.f.  [3] are temperature dependent. Fig. 2
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shows the influence of temperature on the yield strength and Young’s modulus. The temperature
effect on Poisson’s ratio, v, is very modest and the density, p, decreases about 4% when the

temperature increases from room temperature to the melting point. Therefore, the Poisson’s ratio
and the density are assumed to be constants and they are set to 0,3 respectively 2770kg/m’.
Experimental data for the temperature effects on the thermal expansion coefficient, ¢ , are fitted
well as a linear approximation and varying from 2.43-10” to 2.8:10” over a temperature range
between 20°C to 500°C, c.f. [3]. The conductivity and specific heat are set to 120W/m°K
respectively 875J/kg-°K.
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Figure 2: The Young’s modulus and the yield stress dependency on the temperature for AL-2024-T3.

FE-model

The model simulates a 105 mm friction stir weld of two 150x60x5.85 mm AA2024-T3 plates. A
steel anvil with dimensions 240%240%25 mm is used as a backing plate. The tool shoulder radius is
9 mm and the tool probe radius is 3 mm. The weld starts 15 mm from one side and finishes 30 mm
from the other side. The friction stir weld process involves three characteristic phases. The plunge
period is a submerging of the tool into the AA2024-T3 plates with tool rotation speed of 600
rev/min and duration of 40 s. The dwell period is preheating at the start position with the same
rotational speed and duration of 5 s. The weld period is longitudinal motion of the tool along the
weld line with tool speed of 40 mm/min for the first 5 mm and then 80 mm/min for 100 mm. The
temperature is measured using thermocouples at different locations in the plates and anvil. A
dynamometer logged tool forces in three dimensions and the tool reaction torque. The finite
element simulation is a sequentially coupled nonlinear thermo-mechanical analysis. The first step
of the simulation is a nonlinear transient thermal analysis. The computed temperatures are then
passed in to a nonlinear static mechanical large displacement analysis as a field variable. The tool
is not included in the model as a physical body, but the effects of the tool are included in the
thermal model as well as in the mechanical model.

The thermal model

The plates and the anvil are included in the thermal model. The AA2024-T3 plates are modelled as
one single plate with the dimensions 150x120x5.85 mm. The plates are meshed as one single plate
with 18000 8-node linear brick forced convection elements (DCC3DS) and the anvil is meshed
with 12600 8-node linear brick elements (DC3D8). All free surfaces on the mesh is subjected to

Newton’s convection boundary condition ¢, = a-(6—6,) where g, is the heat flux per unit area
in the direction of the outer unit normal vector, € is the temperature on the surface of the plate or
anvil, 8, =25 °C is the room temperature and the convection coefficient & =15 W/(m>°C) . The
conductive heat transfer between the plate and the anvil is modelled as 4 :k(é ).(ep,m _ew_,)

where the thermal conductance k(é ) is a function of the average temperature g =(,,, +6,,,,)/2-

The value of the thermal conductance was adopted from [4] and adjusted based on the
experimentally measured temperatures. Heat is generated due to plastic deformation and friction.
The total heat power is derived from the mechanical power. The mechanical power



isP=wTl +Fv ,where wthe tool angular velocity is, 7 is the tool reaction torque, F. is the tool

reaction force in the direction of the joint line and v is the tool speed. The heat power that goes
into the weld is Q =nP, where 7 is an efficiency factor. The efficiency factor takes account for

the heat loss into the tool, radiation, vibrations, etc. An initial value of 7 =0.75 was taken from

[4], but the value was adjusted in the model, based on the experimentally measured temperatures.
The heat power generated at the shoulder is Q =0-0 and the heat power generated at the

shoulder

probeis O . =(1-9)-Q. The fraction of heat power generated at the shoulder is denoted by o'.

probe
An initial value of 6 =0.75 was taken from [4], but the value was adjusted in the model, based
on the experimentally measured temperature distribution.

The heat generated at the shoulder is applied onto the area beneath the shoulder as a surface heat
flux q,,,.4 - The flux is assumed to have the form

3 Q hould

qvhoulder (r) = 2_ R3 — ;3 r H Rpmbe,eﬁ <rs< Rshoulder,ef/' (1)
T shoulder,eff — L¥probe,eff

where r is the distance from the tool centre, R and R 1s the effective shoulder

shoulder eff probe,eff’

radius and effective probe radius, respectively. The values are R, 4, ., =10 mm and
R puiier oy =4mm, in accordance with  [4]. The heat generated at the probe is applied as an

uniform body heat flux onto the elements corresponding to the volume of the probe. The body flux
is,

O probe
7R Ifm pe.orl
where ¢ is the plate thickness. The thermal loads are implemented in a user subroutine DFLUX.
The mass flow was included in the model and was applied at a 1 mm thick layer below the
effective shoulder and at the volume corresponding to the effective probe. The mass flow per unit
area m was modelled as m = pwr where p is the density. The mass flow is implemented in a
user subroutine UMASFL. The nonlinear equations are solved using a modified Newton method
with asymmetric matrix storage and solution scheme. The trapezoidal rule is used for time
integration.

2

q probe =

The mechanical model

The anvil is not included in the mechanical model. The two plates are modelled as one single plate
and meshed with 18000 8-node linear brick with reduced integration with hourglass control
(C3D8R). The bottom of the plate is constrained from displacement in the z-direction by the
backing plate and the clamped edges of the plate are constrained from displacement in the x- and
y-direction. The forging force and the torque are applied as body forces to a top surface element
layer with a thickness of 0.75 mm. The forging force is applied as
F,
P . » I'< Rshoulder,eff (3)

”Rszhoulder,ef]’d
where F, is the experimentally measured forging force and d is the thickness of the layer on
which the body force is applied. The torque is divided into x- and y-components
3 T 3 T x
e N e

2’7[ Rshoulder,eﬂ‘d r 2’7[ Rxhoulder,eﬂ'd r
where T is the experimentally measured torque. The forces are described in a moving coordinate
system (x,y) with its origin at the tool centre. The mechanical loads are implemented in a user

subroutine DLOAD. The nonlinear equations are solved using the line search algorithm.

“)

Results

The temperature at different locations in the plates and the anvil is measured and compared to
experimental data in Fig 3. Fig 4 shows the distribution of the temperature and the von Misses
stress in the plate halfway trough the weld.
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Figure 3: The temperature at different locations in the plates and the anvil. The black dash-dot lines are
experimental data and the red solid lines are results from the FE thermal analysis.

Figure 4: The temperature and von Misses stress distribution in the plate halfway trough the weld.

Concluding remarks

A FE model for the FSW process has been presented. The model includes the tool loads and takes into
account the mass flow effects during the process. A simulation of the welding of two plates has been
performed. The result from the temperature at different points on the plate have been compared to
experimental data and showed good agreement.
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