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Preface 

These proceedings contain the papers presented at the twenty-fifth Nordic Seminar on 
Computational Mechanics, held at Lund University, Lund, Sweden, 25-26 October 2012. 
The Nordic Seminars on Computational Mechanics represent the major activity of the 
Nordic Association for Computational Mechanics (NoACM). The NoACM was founded in 
1988 with the objective to stimulate and promote research and practice in computational 
mechanics, to foster the interchange of ideas among the various fields contributing to 
computational mechanics, and to provide forums and meetings for dissemination of 
knowledge in computational mechanics. Younger researchers, including doctorate 
students etc., are especially encouraged to take part at these seminars. The member 
countries of NoACM are the Nordic countries (Denmark, Finland, Iceland, Norway and 
Sweden) and the Baltic countries (Estonia, Latvia and Lithuania). NoACM is a subchapter 
of the International Organization for Computational Mechanics (IACM) and the European 
Community on Computational Methods in Applied Sciences (ECCOMAS).  
 
The responsibility for organising this year's seminar was assigned by NoACM to the 
Divisions of Structural Mechanics, Solid Mechanics and Fluid Mechanics at Lund University. 
This year's seminar contains invited lectures, a special session given in honor of Professor 
Niels Saabye Ottosen and more than 60 contributed presentations divided into three 
parallel sessions. In the present volume, all the invited lectures are placed first, followed by 
the contributed papers in the order of appearance.  
 
On behalf of the organisers, sincere appreciations are extended to all contributors at the 
seminar, not least to the invited lectures in the Professor Ottosen session, the plenary 
lecturers and to the other speakers for their efforts in preparing talks and papers. 
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The editors 





Organising committee 

MSc Ola Flodén 
Associate Professor Kent Persson 
MSc Peter Persson 
Professor Johan Revstedt 
Professor Göran Sandberg 
Associate Professor Mathias Wallin 

Programme Committee 

Göran Sandberg, Sweden 
Trond Kvamsdal, Norway 
Knut Morten Okstad, Norway 
Kjell Magne Mathisen, Norway 
Erik Lund, Denmark 
Jens Honoré Walther, Denmark 
Arkadi Berezovski, Estonia (Baltic countries) 
Jouni Freund, Finland 
Reijo Kouhia, Finland 
Ragnar Larsson, Sweden 
Gunnar Tibert, Sweden  

NSCM-25 secretariat 

Department of Construction Sciences 
Lund University 
PO Box 118 
S-221 00 Lund  
SWEDEN 
Phone:  +46 46 222 7370 
Fax: +46 46 222 4420 
info-nscm25@listserver.lu.se 
http://nscm25.lth.se 
 

mailto:info-nscm25@listserver.lu.se�


 



08
:2

0
08

:3
0

09
:1

5
09

:3
0

C
om

pu
ta

tio
na

l F
lu

id
 M

ec
ha

ni
cs

C
om

pu
ta

tio
na

l T
ec

hn
iq

ue
s

S
ol

id
 M

ec
ha

ni
cs

 I
R

oo
m

: 3
04

R
oo

m
: L

illa
 H

ör
sa

le
n

R
oo

m
: S

to
ra

 H
ör

sa
le

n
11

:3
0

K
ey

no
te

 L
ec

tu
re

 - 
P

et
er

 H
an

sb
o ,

 R
oo

m
: S

to
ra

 H
ör

sa
le

n
12

:1
5

13
:1

5
Fi

ni
te

 E
le

m
en

t T
ec

hn
iq

ue
s

S
tr

uc
tu

ra
l M

ec
ha

ni
cs

 I
S

es
si

on
 in

 h
on

or
 o

f N
ie

ls
 S

. O
tto

se
n

R
oo

m
: 3

04
R

oo
m

: L
illa

 H
ör

sa
le

n
R

oo
m

: S
to

ra
 H

ör
sa

le
n

15
:1

5
16

:0
0

16
:1

5
S

ile
nt

 S
pa

ce
s

O
pt

im
is

at
io

n
C

on
st

itu
tiv

e 
M

od
el

lin
g

R
oo

m
: 3

04
R

oo
m

: L
illa

 H
ör

sa
le

n
R

oo
m

: S
to

ra
 H

ör
sa

le
n

09
:0

0
09

:4
5

10
:0

0
D

yn
am

ic
s

S
tr

uc
tu

ra
l M

ec
ha

ni
cs

 II
S

ol
id

 M
ec

ha
ni

cs
 II

R
oo

m
: 3

04
R

oo
m

: L
illa

 H
ör

sa
le

n
R

oo
m

: S
to

ra
 H

ör
sa

le
n

12
:0

0
12

:1
5

13
:0

0

K
ey

no
te

 L
ec

tu
re

 - 
V

ill
e 

V
uo

ri
ne

n ,
 R

oo
m

: S
to

ra
 H

ör
sa

le
n

O
pe

ni
ng

, R
oo

m
: S

to
ra

 H
ör

sa
le

n
Th

ur
sd

ay
 O

ct
ob

er
 2

5

S
es

si
on

s 
I

C
lo

si
ng

Lu
nc

h
D

em
on

st
ra

tio
n 

of
 V

ib
ra

tio
n 

an
d 

A
co

us
tic

s 
La

bo
ra

to
ry

, V
-B

ui
ld

in
g

C
of

fe
e

S
es

si
on

s 
IV

K
ey

no
te

 L
ec

tu
re

 - 
H

an
s 

P
et

te
r 

La
ng

ta
ng

en
,  R

oo
m

: S
to

ra
 H

ör
sa

le
n

Fr
id

ay
 O

ct
ob

er
 2

6

S
es

si
on

s 
III

C
of

fe
e

K
ey

no
te

 L
ec

tu
re

 - 
Je

sp
er

 H
at

te
l , 

R
oo

m
: S

to
ra

 H
ör

sa
le

n

S
es

si
on

s 
II

Lu
nc

h

C
of

fe
e



D
e
ve

lo
p

m
e
n

ts
 o

n
 f

lo
w

 s
o

lv
e
rs

 a
n

d
 n

u
m

e
ri

ca
l 
sc

h
e
m

e
s 

fo
r 

la
rg

e
 e

d
d

y 
si

m
u

la
ti

o
n

 o
f 

tu
rb

u
le

n
t 

fl
o

w
s 

u
si

n
g

 

O
p
e
n

-F
O

A
M

V
. 

V
u

o
ri

n
e
n

T
a
n

g
e
n

ti
a
l 
d

if
fe

re
n

ti
a
l 
o

p
e
ra

to
rs

 a
n

d
 f

in
it

e
 e

le
m

e
n

ts
 f

o
r 

e
la

st
ic

it
y 

o
n

 t
h

in
 c

u
rv

e
d

 d
o

m
a
in

s
P
. 

H
a
n

sb
o

, 
M

. 
G

. 
La

rs
o

n
,

M
u

lt
ip

h
ys

ic
s 

m
o

d
e
lli

n
g

 o
f 

m
a
n

u
fa

ct
u

ri
n

g
 p

ro
ce

ss
e
s

J.
 H

a
tt

e
l

Fl
e
xi

b
le

 s
o

ft
w

a
re

 t
o

o
ls

 f
o

r 
co

m
p

u
ta

ti
o

n
a
l 
tu

rb
u

le
n

ce
H

. 
P
. 

La
n

g
ta

n
g

e
n

, 
M

. 
M

o
rt

e
n

se
n

C
o

m
p

u
ta

ti
o

n
a
l 
re

sp
ir

a
to

ry
 f

lo
w

 d
yn

a
m

ic
s 

fo
r 

d
is

ti
n

g
u

is
h
in

g
 b

e
tw

e
e
n

 h
e
a
lt

h
y 

a
n

d
 d

is
e
a
se

M
. 

M
ih
ǎ

e
sc

u
, 

N
. 

P
o

w
e
ll,

 E
. 

G
u

tm
a
rk

, 
a
n

d
 L

. 
Fu

ch
s

O
n
e
 d

im
e
n

si
o

n
a
l 
n

e
tw

o
rk

 m
o

d
e
ls

 f
o

r 
ca

rd
io

va
sc

u
la

r 
a
p

p
lic

a
ti

o
n

s
V

. 
E
ck

, 
P
. 

R
. 

Le
in

a
n

, 
L.

 R
. 

H
e
lle

vi
k

E
ff

e
ct

 o
f 

d
ila

ta
ti

o
n

 o
n

 t
h

e
 t

u
rb

u
le

n
ce

 l
e
ve

l 
in

 c
o
m

p
re

ss
ib

le
 q

u
a
si

 o
n

e
-d

im
e
n

si
o

n
a
l 
st

e
a
d

y 
n

o
zz

le
 f

lo
w

I.
 G

ri
g

o
ri

e
v,

 G
. 

B
re

th
o

u
w

e
r,

 A
. 

V
. 

Jo
h

a
n

ss
o

n
, 

S
. 

W
a
lli

n

La
rg

e
 e

d
d

y 
si

m
u

la
ti

o
n

 o
f 

a
 b

lu
ff

 b
o

d
y 

fl
a
m

e
 n

e
a
r 

le
a
n

 b
lo

w
 o

ff
 u

si
n

g
 d

e
ta

ile
d

 c
h
e
m

is
tr

y
E
. 

H
o

d
zi

c,
 C

. 
D

u
w

ig
, 

R
. 

Z
. 

S
zá

sz
, 

L.
 F

u
ch

s

D
ir

e
ct

 n
u

m
e
ri

ca
l 
si

m
u

la
ti

o
n

 o
f 

co
n

st
a
n

t 
vo

lu
m

e
 a

u
to

-i
g

n
ti

o
n

 o
f 

le
a
n

 h
yd

ro
g

e
n

/a
ir

 m
ix

tu
re

R
. 

Y
u

, 
X

. 
s.

 B
a
i

Fl
u

id
-s

tr
u
ct

u
re

 i
n

te
ra

ct
io

n
 o

f 
th

e
 t

ra
n

si
e
n

t 
e
vo

lu
ti

o
n

 o
f 

ca
n

ti
le

ve
r 

b
e
a
m

A
. 

C
e
su

r,
 A

. 
Fe

ym
a
rk

D
is

co
n

ti
n

u
o

u
s 

P
e
tr

o
v-

G
a
le

rk
in

 f
in

it
e
 e

le
m

e
n

t 
m

e
th

o
d

 f
o

r 
th

e
 R

e
is

sn
e
r-

M
in

d
lin

 p
la

te
 b

e
n

d
in

g
 m

o
d

e
l

A
. 

H
. 

N
ie

m
i,
 N

. 
O

. 
C

o
lli

e
r,

 V
. 

M
. 

C
a
lo

A
 h

ig
h

 o
rd

e
r 

so
lv

e
r 

fo
r 

th
e
 u

n
b

o
u

n
d

e
d

 P
o

is
so

n
 e

q
u

a
ti

o
n

M
. 

M
. 

H
e
jle

se
n

, 
J.

 T
. 

R
a
sm

u
ss

e
n

, 
P
. 

C
h

a
te

la
in

, 
J.

 H
. 

W
a
lt

h
e
r

E
ff

e
ct

 o
f 

sc
a
le

 o
n

 t
h

e
 c

e
llu

la
r 

m
a
te

ri
a
l 
st

re
n

g
th

A
. 

K
a
ra

k
o
ҫ
, 

J.
 F

re
u

n
d

A
 w

o
rk

b
e
n

ch
 f

o
r 

m
u

lt
ib

o
d

y 
sy

st
e
m

s 
O

D
E
 a

n
d

 D
A

E
 s

o
lv

e
rs

C
. 

A
n

d
e
rs

so
n

, 
C

. 
Fü

h
re

r,
 J

. 
Å

k
e
ss

o
n

G
o
a
l-

o
ri

e
n

te
d

 a
d

a
p

ti
vi

ty
 f

o
r 

th
e
 Q

u
a
si

-C
o

n
ti

n
u

u
m

 m
e
th

o
d

A
. 

M
e
m

a
rn

a
h

a
va

n
d

i,
 F

. 
La

rs
so

n
, 

K
. 

R
u

n
e
ss

o
n

A
 c

o
n

se
rv

a
ti

ve
 q

u
a
te

rn
io

n
-b

a
se

d
 t

im
e
 i
n

te
g

ra
ti

o
n

 a
lg

o
ri

th
m

 f
o

r 
ri

g
id

 b
o

d
y 

ro
ta

ti
o

n
s 

w
it

h
 i
m

p
lic

it
 

co
n

st
ra

in
ts

M
. 

B
. 

N
ie

ls
e
n

, 
S
. 

K
re

n
k

Fr
e
e
 v

ib
ra

ti
o

n
s 

o
f 

n
o

n
-i

so
tr

o
p

ic
 p

la
te

s 
w

it
h

 c
u
t-

o
u

ts
A

. 
V

. 
Le

b
e
d

e
v,

 A
. 

L.
 S

m
ir

n
o

v

W
a
ve

 p
ro

p
a
g

a
ti

o
n

 a
n

d
 d

is
p
e
rs

io
n

 i
n

 m
ic

ro
st

ru
ct

u
re

d
 s

o
lid

s
A

. 
B

e
re

zo
vs

k
i,
 J

. 
E
n

g
e
lb

re
ch

t,
 M

. 
l 
B

e
re

zo
vs

k
i

B
lo

w
u

p
 o

f 
th

e
 s

e
n

si
ti

vi
ty

 o
f 

th
e
 e

la
st

ic
 e

n
e
rg

y 
w

it
h

 r
e
sp

e
ct

 t
o

 t
h

e
 u

n
ce

rt
a
in

ti
e
s 

in
 t

h
e
 P

o
is

so
n

's
 r

a
ti

o
O

. 
M

a
li,

 S
. 

R
e
p

in

R
e
ce

n
t 

a
d

va
n

ce
s 

in
 t

h
e
 e

xp
e
ri

m
e
n

ta
l 
a
n

a
ly

si
s 

o
f 

th
e
 m

e
ch

a
n

ic
s 

o
f 

sa
n

d
S
. 

A
. 

H
a
ll,

 J
. 

W
ri

g
h

t

S
im

u
la

ti
o

n
 o

f 
in

d
e
n

te
r 

g
e
o

m
e
tr

y 
e
ff

e
ct

s 
in

 n
a
n

o
in

d
e
n

ta
ti

o
n

L.
 C

h
e
n

, 
A

. 
A

h
a
d

i,
 J

. 
Z
h

o
u

S
tr

e
ss

 a
n

a
ly

si
s 

a
ro

u
n

d
 a

 t
h

ro
u

g
h

 c
ra

ck
 s

h
a
p

e
d

 d
e
fe

ct
 i
n

 a
 t

h
in

 c
o
p

p
e
r 

fi
lm

 u
si

n
g

 m
o

le
cu

la
r 

d
yn

a
m

ic
s

D
. 

Jo
h

a
n

ss
o

n
, 

P
. 

H
a
n

ss
o

n
, 

S
. 

M
e
lin

K
e

y
n

o
te

 L
e

ct
u

re
s

K
e

y
n

o
te

 L
e

ct
u

re
 I

, 
T
h

u
rs

d
a
y 

2
5

/1
0

, 
8

:3
0

-9
:1

5
, 

R
o

o
m

: 
S
to

ra
 H

ö
rs

a
le

n

K
e

y
n

o
te

 L
e

ct
u

re
 I

I,
 T

h
u

rs
d
a
y 

2
5

/1
0

, 
1

1
:3

0
-1

2
:1

5
, 

R
o

o
m

: 
S
to

ra
 H

ö
rs

a
le

n

K
e

y
n

o
te

 L
e

ct
u

re
 I

II
, 

T
h

u
rs

d
a
y 

2
5

/1
0

, 
1

5
:1

5
-1

6
:0

0
, 

R
o

o
m

: 
S
to

ra
 H

ö
rs

a
le

n

K
e

y
n

o
te

 L
e

ct
u

re
 I

V
, 

Fr
id

a
y 

2
6

/1
0

, 
9

:0
0

-9
:4

5
, 

R
o

o
m

: 
S
to

ra
 H

ö
rs

a
le

n

S
e

ss
io

n
s 

I,
 T

h
u

rs
d
a
y 

O
ct

 2
5

, 
9

:3
0

-1
1

:3
0

F
lu

id
 M

e
ch

a
n

ic
s,

 R
o

o
m

: 
3

0
4

C
o

m
p

u
ta

ti
o

n
a

l 
T

e
ch

n
iq

u
e

s,
 R

o
o

m
: 

Li
lla

 H
ö

rs
a
le

n

S
o

li
d

 M
e

ch
a

n
ic

s 
I,

 R
o

o
m

: 
S
to

ra
 H

ö
rs

a
le

n



R
e
co

ve
ry

 b
a
se

d
 a

p
p
ro

a
ch

 t
o
 d

e
si

g
n
 a

 p
o
st

e
ri
o
ri
 e

rr
o
r 

e
st

im
a
to

r 
in

 is
o
g
e
o
m

e
tr

ic
 a

n
a
ly

si
s

T
. 
K

va
m

sd
a
l, 

M
. 
K

u
m

a
r,

 K
. 
A

. 
Jo

h
a
n
n
e
ss

e
n
, 
K

. 
M

. 
O

k
st

a
d

M
o
rt

a
r-

b
a
se

d
 is

o
g
e
o
m

e
tr

ic
 a

n
a
ly

si
s 

a
p
p
lie

d
 t

o
 f

ri
ct

io
n
le

ss
 la

rg
e
 d

e
fo

rm
a
ti
o
n
 e

la
st

o
p
la

st
ic

 c
o
n
ta

ct
 

p
ro

b
le

m
s

K
. 
M

. 
M

a
th

is
e
n
, 
K

. 
M

. 
O

k
st

a
d
, 
T
. 
K

va
m

sd
a
l, 

S
. 
B
. 
R
a
k
n
e
s

N
it
sc

h
e
's

 m
e
th

o
d
 f

o
r 

d
is

co
n
ti
n
u
o
u
s 

m
a
te

ri
a
l p

a
ra

m
e
te

rs
M

. 
Ju

n
tu

n
e
n
, 
R
. 
S
te

n
b
e
rg

Is
o
g
e
o
m

e
tr

ic
 F

E
 a

n
a
ly

si
s 

o
f 

th
in

 p
la

te
s 

w
it
ch

 c
ra

ck
s

K
. 
M

. 
O

k
st

a
d
, 
T
. 
K

va
m

sd
a
l, 

K
. 
A

. 
Jo

h
a
n
n
e
ss

e
n

Is
o
g
e
o
m

e
tr

ic
 a

n
a
ly

si
s 

o
f 

th
in

 s
tr

u
ct

u
re

s
S
. 
B
. 
R
a
k
n
e
s,

 Y
. 
B
a
zi

le
vs

, 
K

. 
M

. 
M

a
th

is
e
n
, 
T
. 
K

va
m

sd
a
l,

K
. 
M

. 
O

k
st

a
d

Is
o
g
e
o
m

e
tr

ic
 c

o
llo

ca
ti
o
n
 m

e
th

o
d
 u

si
n
g
 r

e
d
u
ce

d
 c

o
n
ti
n
u
it
y 

o
rd

e
r 

N
U

R
B
S
 a

n
d
 T

-s
p
lin

e
s

M
. 
K

u
m

a
r,

 T
. 
K

va
m

sd
a
l

A
 t

h
re

e
 d

im
e
n
si

o
n
a
l p

la
st

ic
it
y 

m
o
d
e
l f

o
r 

p
e
rp

e
n
d
ic

u
la

r 
to

 g
ra

in
 c

o
h
e
si

ve
 f

ra
ct

u
re

 in
 w

o
o
d
 -

a
n
 a

b
st

ra
ct

H
. 
D

a
n
ie

ls
so

n
, 
P
. 
J.

 G
u
st

a
fs

so
n

Fi
n
it
e
-e

le
m

e
n
t 

a
n
a
ly

si
s 

o
f 

m
u
lt
ila

ye
re

d
 s

h
e
lls

 d
e
fo

rm
a
ti
o
n
 u

n
d
e
r 

th
e
 lo

a
d
 w

it
h
 a

 f
la

t 
b
a
se

S
. 
М

. 
B
a
u
e
r,

 L
. 
А

. 
K

a
ra

m
sh

in
a

G
ro

u
te

d
 c

o
n
n
e
ct

io
n
s 

w
it
h
 s

h
e
a
r 

k
e
ys

 -
 n

u
m

e
ri
ca

l m
o
d
e
lli

n
g
 w

it
h
 A

B
A

Q
U

S
R
. 
R
. 
P
e
d
e
rs

e
n
, 
M

. 
B
. 
Jø

rg
e
n
se

n
, 
L.

 D
a
m

k
ild

e
,

H
. 
B
. 
C

la
u
se

n
, 
K

. 
A

n
d
e
rs

e
n

A
 r

e
d
u
ce

d
 m

o
d
e
l f

o
r 

g
la

ss
 s

tr
u
ct

u
re

s 
su

b
je

ct
e
d
 t

o
 d

yn
a
m

ic
 im

p
a
ct

 lo
a
d
s

M
. 
Fr

ö
lin

g
, 
K

. 
P
e
rs

so
n
, 
P
. 
E
. 
A

u
st

re
ll

M
u
lt
is

ca
le

 m
o
d
e
lin

g
 o

f 
p
o
ro

u
s 

m
e
d
ia

C
. 
S
a
n
d
st

rö
m

, 
F.

 L
a
rs

so
n

S
tr

u
ct

u
ra

l m
o
d
e
lin

g
 a

n
d
 a

n
a
ly

si
s 

o
f 

a
 w

a
ve

 e
n
e
rg

y 
co

n
ve

rt
e
r

A
. 
S
. 
Z
u
rk

in
d
e
n
, 
S
. 
H

. 
La

m
b
e
rs

te
n
, 
L.

 D
a
m

k
ild

e

O
n
 t

h
e
 c

o
m

p
u
ta

ti
o
n
a
l h

o
m

o
g
e
n
iz

a
ti
o
n
 o

f 
m

e
so

sc
a
le

 g
ra

d
ie

n
t 

vi
sc

o
p
la

st
ic

it
y

K
. 
R
u
n
e
ss

o
n
, 
M

. 
E
k
h
, 
F.

 L
a
rs

so
n

A
 g

e
o
m

e
tr

ic
 a

p
p
ro

a
ch

 in
 c

o
m

p
u
ta

ti
o
n
a
l s

ta
b
ili

ty
 a

n
a
ly

si
s

A
. 
Fe

d
o
ro

ff
, 
R
. 
K

o
u
h
ia

, 
J.

 M
ä
k
in

e
n

M
e
sh

in
g
 e

ff
e
ct

s 
o
n
 m

o
d
e
lli

n
g
 o

f 
e
vo

lv
in

g
 b

o
n
e
 d

u
ri
n
g
 d

is
tr

a
ct

io
n
 o

st
e
o
g
e
n
e
si

s
V

. 
La

R
u
ss

a
, 
B
. 
S
k
a
lle

ru
d

D
e
la

m
in

a
ti
o
n
 b

e
tw

e
e
n
 a

 u
n
id

ir
e
ct

io
n
a
l a

n
d
 w

o
ve

n
 c

o
m

p
o
si

te
L.

 B
a
n
k
s-

S
ill

s,
 M

. 
G

o
h
fe

ld
, 
R
. 
E
lia

si

T
o
p
o
lo

g
y 

o
p
ti
m

iz
a
ti
o
n
 b

a
se

d
 a

 p
h
a
se

-f
ie

ld
 a

p
p
ro

a
ch

 a
n
d
 H

o
w

a
rd

's
 a

lg
o
ri
th

m
M

. 
R
is

ti
n
m

a
a
, 
M

. 
W

a
lli

n

T
h
e
rm

o
d
yn

a
m

ic
a
lly

 b
a
se

d
 f

ic
ti
ti
o
u
s 

cr
a
ck

/in
te

rf
a
ce

 m
o
d
e
l f

o
r 

g
e
n
e
ra

l n
o
rm

a
l a

n
d
 s

h
e
a
r 

lo
a
d
in

g
N

. 
S
. 
O

tt
o
se

n
, 
M

. 
R
is

ti
n
m

a
a

S
e
ss

io
n

s 
II

, 
T
h
u
rs

d
a
y 

O
ct

 2
5
, 
1
3
:1

5
-1

5
:1

5

F
in

it
e
 E

le
m

e
n

t 
T
e
ch

n
iq

u
e
s,

 R
o
o
m

: 
3
0
4

S
tr

u
ct

u
ra

l 
M

e
ch

a
n

ic
s 

I,
 R

o
o
m

: 
Li

lla
 H

ö
rs

a
le

n

S
e
ss

io
n

 i
n

 h
o

n
o

r 
o

f 
N

ie
ls

 S
. 
O

tt
o

se
n

, 
R
o
o
m

: 
S
to

ra
 H

ö
rs

a
le

n



R
e
d

u
ct

io
n

 o
f 

g
ro

u
n

d
 v

ib
ra

ti
o

n
s 

b
y 

la
n

d
sc

a
p

e
 s

h
a
p

in
g

P
. 

P
e
rs

so
n

, 
K

. 
P
e
rs

so
n

, 
P
. 

Jø
rs

ta
d

, 
G

. 
S
a
n

d
b

e
rg

R
e
d

u
ct

io
n

 o
f 

m
o

d
e
ls

 f
o

r 
vi

b
ra

ti
o

n
 a

n
a
ly

se
s 

o
f 

lig
h

tw
e
ig

h
t 

m
u

lt
i-

st
o
re

y 
b

u
ild

in
g

s
O

. 
Fl

o
d

é
n

, 
K

. 
P
e
rs

so
n

, 
G

. 
S
a
n

d
b

e
rg

Fi
n

it
e
 e

le
m

e
n

t 
a
n

a
ly

si
s 

o
f 

fl
a
n

k
in

g
 t

ra
n

sm
is

si
o

n
 i
n

 a
 l
ig

h
tw

e
ig

h
t 

ju
n

ct
io

n
 w

it
h

 e
la

st
ic

 l
a
ye

rs
J.

 N
e
g

re
ir

a
, 

D
. 

B
a
rd

, 
K

. 
P
e
rs

so
n

, 
G

. 
S
a
n

d
b

e
rg

 

Fi
n

it
e
 e

le
m

e
n

t 
va

lid
a
ti

o
n

 o
f 

lig
h

tw
e
ig

h
t 

w
o
o

d
e
n

 T
-j

u
n

ct
io

n
 m

o
d

e
ls

A
. 

S
jö

st
rö

m
, 

J.
 N

e
g

re
ir

a
, 

D
. 

B
a
rd

, 
G

. 
S
a
n

d
b

e
rg

In
ve

st
ig

a
ti

n
g

 a
co

u
st

ic
 f

a
ti

g
u

e
 u

si
n

g
 C

FD
 a

n
d

 F
E
M

 o
n

 a
 m

o
d

e
l 
p

ro
b

le
m

J.
 N

ils
so

n
, 

 R
. 

Z
. 

S
zá

sz
, 

P
. 

E
. 

A
u

st
re

ll

T
h

e
 i
n

ve
rs

e
 m

o
ti

o
n

 p
ro

b
le

m
 f

o
r 

q
u

a
si

-i
n

co
m

p
re

ss
ib

le
 e

le
ct

ro
e
la

st
ic

it
y

A
. 

A
sk

, 
R

. 
D

e
n

ze
r,

 A
. 

M
e
n

ze
l,
 M

. 
R

is
ti
n

m
a
a

S
to

ch
a
st

ic
 m

o
d

e
l 
re

d
u

ct
io

n
 a

p
p

lie
d

 t
o

 i
n

ve
rs

e
 p

ro
b

le
m

s
T
. 

G
a
rb

o
w

sk
i,
 M

. 
P
u

to
w

sk
i

N
u

m
e
ri

ca
l 
m

o
d

e
lli

n
g

 a
n

d
 o

p
ti

m
iz

a
ti

o
n

 o
f 

a
ll 

p
ly

w
o

o
d

 s
a
n

d
w

ic
h

 p
a
n

e
ls

 w
it

h
 r

ib
-s

ti
ff

e
n

e
d

 c
o
re

s
E
. 

La
b

a
n

s,
 K

. 
K

a
ln

in
s

T
h

ic
k
n

e
ss

 o
p

ti
m

iz
a
ti

o
n

 o
f 

la
m

in
a
te

d
 c

o
m

p
o

si
te

s 
u

si
n

g
 t

h
e
 d

is
cr

e
te

 m
a
te

ri
a
l 
o

p
ti

m
iz

a
ti

o
n

 m
e
th

o
d

S
. 

N
ø

rg
a
a
rd

 S
ø

re
n

se
n

, 
R

.S
ø

re
n

se
n

, 
E
. 

Lu
n

d

D
e
si

g
n

 a
n

d
 o

p
ti

m
iz

a
ti

o
n

 o
f 

a
 s

p
ri

n
g

-l
o

a
d

e
d

 c
a
b

le
-d

ri
ve

n
 r

o
b

o
ti

c 
e
xo

sk
e
le

to
n

L.
 Z

h
o

u
, 

S
. 

B
a
i,
 M

. 
S
k
ip

p
e
r 

A
n

d
e
rs

e
n

, 
J.

 R
a
sm

u
ss

e
n

M
e
so

sc
a
le

 m
o

d
e
lin

g
 o

f 
d

is
lo

ca
ti

o
n

 d
e
n

si
ty

 g
ra

d
ie

n
ts

 a
n

d
 m

ic
ro

st
ru

ct
u
re

 e
vo

lu
ti

o
n

H
. 

H
a
llb

e
rg

, 
M

. 
R

is
ti
n

m
a
a

M
o

d
e
lin

g
 o

f 
th

e
 c

yc
lic

 b
e
h

a
vi

o
u

r 
o

f 
H

a
yn

e
s 

2
8

2
, 

in
cl

u
d

in
g

 c
yc

lic
 s

o
ft

e
n

in
g

R
. 

B
ro

m
m

e
ss

o
n

, 
M

. 
E
k
h

C
o

m
p

a
ri

so
n

 o
f 

th
e
 B

P
A

 m
o

d
e
l 
to

 D
IC

 m
e
a
su

re
m

e
n

ts
 o

f 
p

o
ly

ca
rb

o
n

a
te

J.
 E

n
g

q
vi

st
, 

M
. 

W
a
lli

n
, 

S
. 

H
a
ll 

, 
M

. 
R

is
ti
n

m
a
a

A
 c

o
n

st
it

u
ti

ve
 m

o
d

e
l 
fo

r 
th

e
 o

u
t-

o
f-

p
la

n
e
 b

e
h

a
vi

o
u

r 
o

f 
p

a
p

e
rb

o
a
rd

E
. 

B
o

rg
q

vi
st

, 
M

. 
W

a
lli

n
, 

M
. 

R
is

ti
n

m
a
a

P
h

ys
ic

a
lly

 b
a
se

d
 p

la
st

ic
it

y 
m

o
d

e
l 
co

u
p

le
d

 w
it
h

 p
re

ci
p

it
a
te

 m
o

d
e
l 
fo

r 
IN

7
1

8
M

. 
Fi

sk
, 

L.
 E

. 
Li

n
d

g
re

n

S
e

ss
io

n
s 

II
I,

 T
h

u
rs

d
a
y 

O
ct

 2
5

, 
1

6
:1

5
-1

7
:5

5

S
il

e
n

t 
S

p
a

ce
s,

 R
o

o
m

: 
3

0
4

O
p

ti
m

is
a
ti

o
n

, 
R

o
o

m
: 

Li
lla

 H
ö

rs
a
le

n

C
o

n
st

it
u

ti
v

e
 M

o
d

e
ll

in
g

, 
R

o
o

m
: 

S
to

ra
 H

ö
rs

a
le

n



C
o

m
p

a
ra

ti
o

n
 o

f 
vi

b
ra

ti
o

n
 s

u
p

re
ss

io
n

 o
f 

fl
e
xi

b
le

 r
o

to
rs

 s
u
p

p
o

rt
e
d

 b
y 

p
a
ss

iv
e
 a

n
d

 c
o
n

tr
o

lla
b

le
 c

o
n

st
ra

in
t 

e
le

m
e
n

ts
 d

u
ri

n
g

 p
a
ss

in
g

 t
h

e
ir

 c
ri

ti
ca

l 
sp

e
e
d

s

J.
 Z

a
p

o
m
ě

l,
 P

. 
Fe

rf
e
ck

i

O
p
ti

m
a
l 
b

ra
in

 s
u

rg
e
o

n
 o

n
 a

rt
if

ic
ia

l 
n

e
u

ra
l 
n

e
tw

o
rk

s 
in

 n
o

n
lin

e
a
r 

st
ru

ct
u

ra
l 
d

yn
a
m

ic
s

N
. 

H
. 

C
h

ri
st

ia
n

se
n

, 
J.

 H
u

lt
m

a
n

n
 J

o
b

, 
K

. 
K

ly
ve

r,
 J

. 
H

ø
g

sb
rg

A
 s

e
m

i-
a
n

a
ly

ti
ca

l 
m

o
d

e
l 
fo

r 
fr

e
e
 v

ib
ra

ti
o

n
s 

o
f 

o
ff

sh
o

re
 f

re
e
 s

p
a
n

n
in

g
 p

ip
e
lin

e
s

K
. 

V
e
d

e
ld

, 
H

. 
S
o

llu
n

d

A
n

a
ly

ti
ca

l 
st

if
fn

e
ss

 o
p

ti
m

iz
a
ti

o
n

 o
f 

h
ig

h
-p

re
ci

si
o

n
 h

e
xa

p
o

d
s 

fo
r 

la
rg

e
 o

p
ti

ca
l 
te

le
sc

o
p

e
 a

p
p

lic
a
ti

o
n

s
B

. 
A

fz
a
li 

Fa
r,

 P
. 

Li
d

st
rö

m
, 

K
. 

N
ils

so
n

, 
A

. 
A

rd
e
b

e
rg

A
n

 a
n

a
ly

ti
ca

l 
a
p

p
ro

a
ch

 t
o

 s
o

lv
in

g
 t

h
e
 r

ig
id

 s
lid

in
g

 r
o

d
 o

n
 t

h
e
 s

m
o

o
th

 w
a
lls

A
. 

M
o

h
a
m

m
a
d

i,
 M

. 
M

o
h

a
m

m
a
d

i

M
u

lt
i-

p
a
ra

m
e
tr

ic
 s

ta
b

ili
ty

 i
n

ve
st

ig
a
ti

o
n

s 
fo

r 
p

re
ss

u
ri

ze
d

 t
h

in
 m

e
m

b
ra

n
e
s

A
. 

E
ri

k
ss

o
n

A
p

p
ro

xi
m

a
te

 b
u

ck
lin

g
 m

o
d

e
l 
fo

r 
st

e
e
l-

e
la

st
o
m

e
r 

sa
n

d
w

ic
h

 p
la

te
s

O
. 

J.
 H

a
re

id
e
, 

L.
 B

ru
b

a
k
, 

E
. 

S
te

e
n

, 
J.

 H
e
lle

sl
a
n

d

S
ta

ti
c 

re
d

u
n

d
a
n

cy
 f

a
ct

o
rs

 i
n

 c
o
n

ce
p

tu
a
l 
d

e
si

g
n

G
. 

T
ib

e
rt

, 
L.

 M
. 

A
ch

U
si

n
g

 t
o

u
ch

 a
n

d
 m

u
lt

i-
to

u
ch

 i
n

te
rf

a
ce

s 
in

 s
tr

u
ct

u
ra

l 
m

e
ch

a
n

ic
s 

so
ft

w
a
re

J.
 L

in
d

e
m

a
n

n
, 

D
. 

Å
k
e
ss

o
n

Fi
n

it
e
 e

le
m

e
n

t 
si

m
u

la
ti

o
n

 o
f 

a
n

 e
xc

a
va

ti
o

n
 u

si
n

g
 d

ia
p

h
ra

g
m

 w
a
ll

A
. 

S
p

e
tz

, 
O

. 
D

a
h

lb
lo

m
, 

P
. 

Li
n

d
h

T
h

e
 i
n

fl
u

e
n

ce
 o

f 
su

rf
a
ce

 e
la

st
ic

it
y 

o
n

 t
h

e
 f

le
xu

ra
l 
ri

g
id

it
y 

o
f 

n
a
n

o
w

ir
e
s

P
. 

A
. 

T
. 

O
ls

so
n

, 
H

. 
S
. 

P
a
rk

M
o

d
e
lli

n
g

 o
f 

st
re

ss
 d

ri
ve

n
 m

a
te

ri
a
l 
d

is
so

lu
ti

o
n

P
. 

S
tå

h
le

, 
E
. 

H
a
n

se
n

M
ix

e
d

 m
e
th

o
d

s 
fo

r 
vi

sc
o

e
la

st
ic

 s
o
lid

s 
w

it
h

 w
e
a
k
 s

ym
m

e
tr

y 
e
le

m
e
n

ts
D

. 
N

. 
A

rn
o

ld
, 

J.
 J

. 
Le

e

D
e
b

o
n

d
in

g
 a

n
a
ly

se
s 

in
 a

n
is

o
tr

o
p

ic
 m

a
te

ri
a
ls

 w
it

h
 s

tr
a
in

-g
ra

d
ie

n
t 

e
ff

e
ct

s
B

. 
N

yv
a
n

g
 L

e
g

a
rt

h

A
 n

o
n

-a
ff

in
e
 m

ic
ro

-s
p
h

e
re

 f
o

rm
u

la
ti

o
n

 f
o

r 
e
le

ct
ro

a
ct

iv
e
 p

o
ly

m
e
rs

S
. 

T
h

yl
a
n

d
e
r,

 A
. 

M
e
n

ze
l,
 M

. 
R

is
ti
n

m
a
a

D
u

ct
ile

 d
yn

a
m

ic
 f

ra
ct

u
re

 m
o

d
e
lin

g
 u

si
n

g
 e

m
b

e
d

d
e
d

 s
tr

o
n

g
 d

is
co

n
ti

n
u

it
ie

s 
in

 C
G

I 
m

a
ch

in
in

g
 s

im
u

la
ti

o
n

s
G

. 
Lj

u
st

in
a
, 

R
. 

La
rs

so
n

, 
M

. 
Fa

g
e
rs

tr
ö

m

C
o

m
p

o
si

te
 m

a
n

u
fa

ct
u

ri
n

g
 m

o
d

e
lin

g
 u

si
n

g
 p

o
ro

u
s 

m
e
d

ia
 t

h
e
o

ry
M

. 
R

o
u

h
i,
 M

. 
W

ys
o

ck
i,
 R

. 
La

rs
so

n

S
o

li
d

 M
e

ch
a

n
ic

s 
II

, 
R

o
o

m
: 

S
to

ra
 H

ö
rs

a
le

n

S
e

ss
io

n
s 

IV
, 

Fr
id

a
y 

O
ct

 2
6

, 
1

0
:0

0
-1

2
:0

0

D
y
n

a
m

ic
s,

 R
o

o
m

: 
3

0
4

S
tr

u
ct

u
ra

l 
M

e
ch

a
n

ic
s 

II
, 

R
o

o
m

: 
Li

lla
 H

ö
rs

a
le

n



Denna sida skall vara tom!



Proceedings of the 25th Nordic Seminar on Computational Mechanics
K. Persson, J. Revstedt, G. Sandberg, M. Wallin (Eds.)
c©Lund University, 2012

Developments on Flow Solvers and Numerical Schemes for
Large Eddy Simulation of Turbulent Flows Using Open-
FOAM

Ville Vuorinen
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Summary. During the recent years, the opensource computational fluid dynamics (CFD) toolbox
OpenFOAM R© has become highly popular in solving various problems of continuum physics with partic-
ular focus on solving conservation laws. New simulation solvers can be implemented in ’top-level’ scripts
with compact syntax and capability for FOAM (field operation and manipulation). OpenFOAM relies
on the finite volume method (FVM). Although a sophisticated C++ architecture for discretization and
parallel computing exists, OpenFOAM still lacks some standard academic algorithms for the solution
of turbulent flows. Furthermore, the low order of accuracy has been and is still a limiting factor for
truly high-fidelity simulations. In the present paper a brief discussion on practical implementation of
Runge-Kutta based solution methods for compressible and incompressible flows is given in the Open-
FOAM environment. Validation studies involving laminar and turbulent conditions with increasing level
of complexity are given. The concept of scale-selective discretization (SSD) is presented for reducing
numerical diffusion of any present-day numerical scheme.

Key words: Runge-Kutta, projection methods, density based solution, opensource, scale-selective dis-

cretization.

Introduction

In mathematical terms, the governing partial differential equations of laminar and turbulent
fluid flow are the Navier-Stokes (NS) equations [1]. In the present work the main interest lies
in developing numerical tools to simulate turbulence, i.e. chaotic swirling of fluids, in engine
related applications. Here, methods called Large-Eddy Simulation (LES) and Direct Numerical
Simulation (DNS) are of particular interest due to their capability of resolving the temporal and
spatial structure of turbulence.

To date, one of the most popular computational fluid dynamics (CFD) methods to simulate
turbulence in complex geometries is the finite volume method (FVM) which reduces to the
finite difference method (FDM) on Cartesian grids [4, 2, 3]. The FVM is based on applying the
Gauss’ theorem on general conservation laws. Thereby, the convection and diffusion terms of
form∇·F (x, y, z, t) in the NS-equations can be evaluated as volume integrals over computational
cells Ωh resulting in ∇ · F (x, y, z, t) ≈ 1

Ωh

∫
Ωh
∇ · F (x, y, z, t)dΩ =

∫
∂Ωh

F (x, y, z, t)dS [4]. The
spatial accuracy of FVM boils down to the interpolation of fluxes on the cell faces from the
cell-centers.

The field of CFD could be roughly divided into academic CFD (ACFD) and industrially
oriented CFD (ICFD). ACFD aims typically at high order of accuracy and high resolution in
simple geometries whereas ICFD aims at robustness and fast code execution times in complex
geometries. Within ACFD novel methods such as high-order compact differences or spectral
elements may be employed alongside with high order Runge-Kutta time integration methods
[1]. In contrast, in ICFD second order spatial and temporal accuracy is typically a standard



level of accuracy. Also some algorithmic differences can be listed between ACFD and ICFD.
In incompressible flows velocity and pressure are coupled via the pressure Poisson equation.
In ICFD the coupling is implemented non-linearly using e.g. the PISO method [5] whereas
in ACFD projection methods, as first introduced by Chorin and Themam [1], are typically
employed. In contrast, compressible flows can be solved in principle using fully explicit methods.
However, in ICFD pressure based solution strategies (i.e. leading to the solution of Poisson
equation) are still employed as this approach decouples the acoustic waves from the solution
with computational speedup. In contrast, in compressible ACFD studies the explicit density
based Runge-Kutta methods have become accurate state-of-the-art methods at the expense of
increased computational cost since acoustic waves are also resolved.

The present paper is based on our recent, ongoing work [8]-[10]. Some important steps
for bridging the gap between ICFD and ACFD are presented with the aim of doing better
quality LES/DNS in the future studies using the widely popular OpenFOAM toolbox. Practical
programming examples of implementing the classical fourth order Runge-Kutta (RK4) methods
into OpenFOAM are given. Example code of the incompressible projection method and the
compressible density based method is shown. Finally, a new, novel approach to improve the
diffusion properties of the present day upwind schemes on unstructured grids is presented.

Governing Equations and Solution Approaches

Incompressible Navier-Stokes Equations

The incompressible Navier-Stokes (NS) equation describes the flow of incompressible fluids and
it is also known to approximate well the flow of low-speed (Ma < 0.3) gases. In the present
study we apply the dimensional form of the NS-equations and embed the fluid density (as being a
constant in incompressible flows) into the pressure. Under these assumptions, using the Einstein
notation, the NS-equation reads:

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+ ν

∂2ui
∂xk∂xk

, i, j, k = 1, 2, 3. (1)

Additionally, to ensure incompressibility, the mass conservation is guaranteed by the incom-
pressibility constraint

∇ · u =
∂ui
∂xi

= 0. (2)

In incompressible flows the pressure and velocity are coupled in an elliptic manner via the
Poisson equation. This is seen by taking the divergence from the both sides of the equation (1)
which results in the Poisson equation for the pressure i.e.

∂2p

∂xj∂xj
= −∂ui

∂xj

∂uj
∂xi

. (3)

Thus, for a given (non-linear) convection term Ci =
∂uiuj
∂xj

one may find a pressure by solving

∂2p
∂xj∂xj

= −∂Ci
∂xi

. The projection methods, as first developed by Chorin and Themam for the case

of explicit Euler time integration, are based on this principle [1]. According to the Helmholtz-
Hodge decomposition of vector fields any vector field u may be decomposed into two parts:
a divergence free and a curl free part. For this decomposition a scalar potential p needs to
introduced so that:

ui = u∗i −
∂p

∂xi
. (4)

In the equation (4)
∂u∗i
∂xi
6= 0, ∂ui

∂xi
= 0 and ∇×∇p = 0 i.e. the gradient of the scalar potential is

curl-free. Hence, p is a solution of the Poisson equation with appropriate boundary conditions.



The Helmholtz-Hodge decomposition forms the mathematical basis for coupling velocity and
pressure in incompressible flows.

Compressible Navier-Stokes Equations

The full NS-equations describe the conservation of mass, momentum and energy [4]. The un-
knowns are the density (ρ), the momentum density (ρui) and the energy density (ρe). The full
NS-equations read:

∂ρ

∂t
+
∂ρuj
∂xj

= 0 (5)

∂ρui
∂t

+
∂(ρuiuj)

∂xj
=

∂

∂xj
(−pδij + σij) (6)

∂ρe

∂t
+
∂((ρe+ p)uj)

∂xj
=

∂

∂xj
(σijui) +

∂

∂xj

(
λ
∂T

∂xj

)
. (7)

In equation (6) the viscous stress tensor is defined as

σij = µ(
∂ui
∂xj

+
∂uj
∂xi

) + (µb −
2

3
µ)
∂ui
∂xj

δij , (8)

where µ is the dynamic viscosity and µb the bulk viscosity of the fluid. Often, µb is assumed
to be zero. In our compressible solvers, we use a model for µb in order to capture the sharp
gradients at the shock positions [11].

In equations 6-7 the pressure is explicitly coupled to the density and the temperature via the
equation of state which allows usage of fully explicit RK-methods without a Poisson equation

p = ρRT. (9)

Furthermore, the internal energy of the flow is defined as the sum of thermodynamic and kinetic
energies

e = cvT +
1

2
u2. (10)

Once ρ, ρui and ρe are known the pressure and temperature can be constructed from equation
(9).

Scale-Selective Discretization

The SSD concept has particular relevance on unstructured grids where a narrow spatial dis-
cretization stencil has to be typically applied. The motivation for the SSD scheme [9] is based
on the fact that very often some upwinding has to be introduced to stabilize numerical simula-
tions via numerical diffusion. Yet, upwinding reduces the order of the method which may have
an overly damping effect on the structure of the turbulent flow. The question is: why use up-
winding on the whole solution when actually the numerical problems lies in the smallest scales,
i.e. at wavelengths close to 2∆x, only? In other words: how to limit numerical diffusion to the
smallest scales of the flow? We have overcome the problem by separating the scales of the flow
using a high-pass filter HP (...). For example, a field variable ui can be separated into smooth
component ûi = ui − u′i and fluctuating component u′i = HP (ui) using the filter. Thereby, e.g.

a derivative of form ∂ui
∂xj

can be decomposed as ∂ui
∂xj

= ∂ûi
∂xj

+
∂u′i
∂xj

. The SSD procedure applies a

centered scheme to the first, smooth term and an upwind biased scheme to the latter, fluctuating
term. As a result, on unstructured grids, the overall accuracy of the scheme stays 2nd order in
contrast to falling down to 1st order. Yet, the desired diffusive nature of the scheme is implicitly



retained in the diffusive truncation error of the scheme being O(∆x3). The SSD procedure is
very useful in the so called implicit LES (ILES). In ILES turbulent dissipation is modeled via
diffusive numerics i.e. an implicit filter built into the truncation error of the numerical scheme.

Code Implementation

In OpenFOAM new flow solvers can be easily implemented into a ’top-level’ script. The basic
idea is very simple as one essentially needs to add a for-loop for time stepping and the spatial
discretization of the equations is provided within the software package. Thereby, solving PDEs
with explicit time integration methods boils down to essentially evaluating time changes (e.g.
dρ) using the spatial derivatives and adding fields together. Also matrix equations can be
conveniently solved at top-level. The examples below show some code syntax for incompressible
and compressible RK-solvers.

Implementation of the Projection Method Using OpenFOAM R©

The above described steps can be described the easiest by applying them together with the
explicit Euler method which boils down to the original Chorin-Themam algorithm [1]. The
projection algorithm below leads to a numerically stable formulation and corresponds to the
algorithm given recently by Hirsch [4].

Step 0: Find the flux of convecting velocity (which is free of divergence) on the cell faces by
taking the dot product of linearly interpolated velocity with cell face outer normal vector:

phi=interpolate(U)&mesh.Sf();

Note indeed that: U is divergence free at this point at the beginning of a time step.

Step 1: Find the change in velocity at cell centers using the convection and the diffusion terms
without the pressure gradient.

dU = dt*(-fvc::div(phi, U) + nu*fvc::Laplacian(U));

Step 2: Update the velocity first at cell centroids only and then update the velocity boundary
conditions

U = U + dU;

U.correctBoundaryConditions();

Step 3: Find the flux of velocity on the cell faces by taking the dot product of linearly interpolated
velocity with cell face outer normal vector:

phi=interpolate(U)&mesh.Sf();

Step 4: Solve the Poisson equation for the pressure:

fvm::Laplacian(p) = fvc::div(phi);

Step 5: Project the velocity onto its divergence free component, first only at cell centers, and
after that correct the boundary conditions:

U = U - fvc::grad(p);

U.correctBoundaryConditions();

In order to implement e.g. the classical RK4 algorithm the above mentioned steps are repeated
four times.



Figure 1. Velocity profiles along the horizontal and axial centerlines.

Explicit Runge-Kutta Methods for Subsonic Flows

In compressible flows, pressure is directly linked to density and temperature via the equation of
state p = ρRT . Hence, an explicit flow solver can be implemented without the solution of an
algebraic group of equations. The general idea of solving them using OpenFOAM is basically
the same as in the incompressible case. Bringing the governing full NS-equations into the δ-form
and neglecting the viscous terms for simplicity, leads to the following code syntax:

drho = -dt*fvc::div(phi, rho);

drhoU = -dt*(fvc::div(phi, rhoU) + fvc::grad(p));

drhoE = -dt*(fvc::div(phi, rhoE + p));

Importantly, the code examples shown in the present paper work readily in 1d,2d and 3d cases
as well as in parallel.

Some Validation Studies

Flow in a Cavity

The flow in a lid-driven cavity is a well known benchmark problem of CFD-codes [4, 6]. The
setup consists of a 2D square box filled with incompressible fluid with viscosity ν. The box is
enclosed by four walls of length L. The topmost wall is moving from left to right with velocity
U so that a vortex forms inside the cavity. The newly implemented RK-based solvers (RK4,
ARK3) for compressible and incompressible flows are all shown to be in excellent agreement
with the standard PISO method and the reference data by Erturk et al. [6].

Turbulent Channel Flow

As an example of the capability of the implemented simulation codes we study the turbulent
channel flow at a relatively low friction Reynolds number of Reτ = 180. Such a flow is statisti-
cally stationary due to driving gravity which maintains the flow. The grid resolution is rather
fine corresponding to a DNS where all the spatial/temporal scales of the flow are resolved. An
instantaneous overview of the velocity magnitude is shown in Figure 2 which shows the turbu-
lent nature of the flow. The mean and fluctuating velocity components are plotted in Figure 3
showing the excellent match to the reference data by Moser et al. [7].



Figure 2. Visualization of the instantaneous velocity snapshot from the fully developed state for a channel
flow at Reτ = 590 using the ARK3 solver.

Figure 3. Reynolds stresses using the developed RK solvers and the standard PISO solver of OpenFOAM
with second order backward time integration. The newly developed flow solvers perform very similarly
with each other, the standard PISO algorithm and the data by Moser et al.[7]. Top: Diagonal components
(RMS). Bottom: Off-diagonal component.



Figure 4. The classical picture on shock wave structures in underexpanded jets is reproduced by the
present LES [12]. The visualization shows a close-up to the nozzle pipe exit.

Supersonic Jet

As a challenging fluid dynamical example a supersonic jet is considered. Such a jet may form e.g.
when pressurized gas is released from a bottle through a nozzle hole i.e. the situation is similar
to the injection of e.g. natural gas fuel into the cylinder of a gas engine. The challenge in this
type of simulations is to simultaneously capture shocks and still maintain the turbulence. As
seen in Figure 4 the newly developed density based RK4 solver is able to capture a complicated
shock pattern involving the Mach disk, the barrel shock and a sequence of reflected shocks
[12]. Furthermore we have found an excellent agreement between the shock dimensions with
experimental data [10]. Simultaneously with the shocks, turbulence develops in the shear layers
of the jet implying that the numerical method is not overly dissipative. The periodic motions
of the transition process produce sound at distinguished frequencies as visually noted in Figure
4.

Outlook

Here a brief overview of the recent attempts to bridge the gap between academic CFD and
industrial CFD was given. OpenFOAM provides a powerful syntax for solving very complicated
flow problems on parallel computers with some tens of top-level code lines. The newly developed
RK based solvers are able to simulate a vast number of CFD applications with increased level
of flow physics and accuracy. The scale selective discretization (SSD) approach, as applied in
the study, is able to non-dissipatively capture the turbulence while maintaining the numerical
diffusion in the simulations in a delicate manner.

Some important challenges remain to bring the novel methods of ACFD into the ICFD codes.
Perhaps the most important computational challenge for ICFD is to increase the order of spatial
accuracy of the present day ICFD codes. In principle, the task sounds simple as it is more or
less a question of interpolation. However, to date this has not been done in most of the existing
ICFD codes due to the unstructured nature of the computational grids which complicate the
task significantly. We continue our efforts and aim ultimately at Large-Eddy Simulation of
combustion engines at our research group of combustion engines at the Aalto University School
of Engineering. The objective involves LES in moving geometries (piston and valves), complex
chemistry modeling using flamelet generated manifolds (FGM) and multiphase flow modeling



including sprays. These topics are all under current investigations.
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Summary. A Galerkin finite element method for the membrane elasticity problem on a meshed surface
is constructed by using two-dimensional elements extended into three dimensions.

Key words: surface gradient, elasticity, membrane, finite element methods

Models of thin-shell structures are often established using differential geometry to define the
ruling differential equations in two dimensions, cf., e.g., Ciarlet and Lods [1]. In the mid ’90s,
Delfour and Zolesio [2] instead established elasticity models on surfaces using the signed distance
function, which can be used to describe the geometric properties of a surface. In particular,
the intrinsic tangential derivatives were used for modeling purposes as the main differential
geometric tool and the partial differential equations were established in three dimensions. A
similar approach had been used earlier in a finite element setting for the numerical discretization
of the Laplace-Beltrami operator on surfaces by Dziuk [4], resulting in a remarkably clean and
simple implementation. For diffusion-like problems, the intrinsic approach has become the focal
point of resent research on numerical solutions of problems posed on surfaces, cf., e.g., [3, 5, 7].

The purpose of this presentation is to indicate the possibilities of the intrinsic approach
in finite element modeling of thin-shell structures, focusing on the simplest model, that of the
membrane shell without bending stiffness, as presented in [6]. We discuss mechanical as well as
numerical modeling issues and give some numerical examples.

The intrinsic approach makes use of the tangential derivative on a surface using the projector

P = I − n⊗ n

where n is the normal to the surface, I the identity tensor, and ⊗ denotes the exterior product.
The surface gradient is then written ∇Σ = P∇ and the Laplace-Beltrami problem on a (closed)
surface Σ can be formulated as seeking u such that

−∇Σ · ∇Σu = f on Σ

where f is a known source term. We will similarly derive the equilibrium equations on a surface
as

−∇Σ · σΣ = f on Σ

where σΣ is an in–plane stress tensor and f is a force term. Thus the framework of [4] is
immediately applicable also to elasticity, but we will also discuss more elaborate finite element
models using variable normals and parametrizations.
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During the last couple of decades the possibility of modeling multiphysics phenomena has 
increased dramatically, thus making numerical simulation of very complex manufacturing 
processes possible. These types of simulations often involve computational fluid dynamics, 
numerical heat transfer, computational solid mechanics and computational material science and 
they frequently require high computational power with calculation times varying from hours to 
days or even weeks. The lecture will present various examples covering different processes and 
application areas. Moreover, the possibility of combining process simulation with optimization 
will be addressed. 
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Flexible software tools for computational turbulence
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Summary. This article briefly describes new, flexible software tools for computing the solutions of
systems of nonlinear partial differential equations in general, and various systems describing turbulent
fluid flow in particular. Computational turbulence investigations need extensive software flexibility for
composing models and adjusting the elements in the numerical methods. We describe how this flexibility
can be met by building on the FEniCS project and utilizing the Python programming language. We
also favorably assess the computational efficiency gained by this approach by comparing our codes with
leading competing codes for turbulent flow.

Key words: turbulent flow, RANS models, systems of nonlinear partial differential equations, finite ele-

ment methods, linearization techniques, Python, C++, FEniCS

Motivation

Most fluid flows in nature and technological devices are turbulent. With recent advances in hard-
ware, numerical methods, and software, simulation of widely different turbulent flow phenomena
has become feasible. However, choosing the right mathematical model for a given turbulent flow
case is demanding. First one has to decide on the basic class of turbulent flow models: Di-
rect Numerical Simulation (DNS), Large Eddy Simulation (LES), or Reynolds-averaged models
(RANS/URANS). The RANS models come in numerous flavors of various complexity. Except
for the simplest shear flow cases, it is difficult to know beforehand which type of RANS model
to use, and extensive experimentation with different models is desirable.

A fundamental problem with the highly nonlinear partial differential equations that enter
RANS models, is to obtain convergent and fast solution of the system of nonlinear algebraic
equations to be solved at each time level. Straightforward Newton methods may easily diverge,
while simple Picard schemes may lead to slow convergence. Often, a combination of Newton
and Picard methods, tailored to the particular differential equations at hand, is the best way
to go. Besides the chosen linearization technique of the particular differential equations, there
are numerous other choices of numerical ingredients, like higher or lower order discretizations,
iterative linear solvers and preconditioners, and strategies for parallelization.

The computational turbulence investigator needs, ideally, a very flexible software tool for
composing the various differential equation models, linearization methods, discretizations, solvers,
etc., and experimenting with various choices. Commercial CFD software, like FLUENT, offer
a selection of RANS models, but is quite limited in its numerical flexibility and does not offer
sophisticated RANS models such as elliptic relaxation. To meet the requirements in modern
computational turbulence, we present two new software tools, cbc.pdesys and cbc.cfd, built on
top of the FEniCS software. These tools provide access to a new programming technology for
solving partial differential equation. Since RANS models are basically different types of highly
nonlinear systems of partial differential equations, a flexible software tool for RANS modeling



will contain components that are useful far beyond computational turbulence. Essentially, we
first create a sufficiently flexible tool (cbc.pdesys) for handling systems of partial differential
equations and then we tailor this tool to the particular needs of turbulence modeling (cbc.cfd).

The FEniCS project

FEniCS (fenicsproject.org) can be viewed as the next generation software for programming with
finite element methods. The user can write down almost any variational form in Python, using
a syntax that is very close to the mathematical formulation of the problem, and flexibly choose
function spaces. In particular, function spaces can easily be combined to form mixed finite
elements. When executing the Python code, it will generate efficient C++ code adapted to
and optimized for the finite element problem at hand and link it with finite element libraries
and third-party linear algebra software, such as PETSc, Trilinos, or uBLAS. FEniCS has been
tested on a wide range of different problems in computational solid and fluid mechanics as well
as electromagnetics.

Our new tools

While FEniCS provides an ideal language for solving a scalar or vector partial differential equa-
tion, the Python code grows in size when the mathematical model contains a large system of
equations. Much of this code is repetitive and can be made once and for all by introducing the
right abstractions and data structures. We view the system of partial differential equations as
a composition of subsystems. Each individual equation is identified by a name or symbol and
a corresponding variational form. By combining names in a list, we can in Python easily define
a subsystem of equations. A combination of such lists defines the overall system to be solved.
Each subsystem is solved in a fully implicit manner, and then all the subsystems are solved by
an outer iteration. The degree of implicitness is hence dictated by defining subsystems. For
example, a segregated solution method views each individual partial differential equation as a
subsystem.

In a simple k-ǫ model, one may split the Navier-Stokes part into a fractional step method,
with one pass through the forward step, the Poisson equation, and the correction, while the k

and ǫ equations may then be solved by a fully implicit formulation. The way we linearize the
nonlinear k and ǫ equations also dictates the degree of implicitness. Here we have introduced a
notational convenience: by adding an underscore to an unknown function we linearize that term
in the sense of using the most recently computed values of the function rather than leaving it
as unknown in the algebraic system. This means that through grouping names of the unknowns
in lists and by adding or removing underscores, we can very flexibly control the degree of
implicitness when solving large systems of partial differential equations.

Based on the subsystem composition and the associated variational forms, we can automat-
ically generate dictionaries of various objects needed in FEniCS simulators, including function
spaces and finite element functions. The Python code doing this makes heavy use of textual
constructions at run-time that are turned into live code with the aid of the eval function.

In the presentation we will first describe the complexity of turbulence modeling for the
computational investigator. Then we give a brief introduction to the FEniCS programming
environment, before we present the general components of cbc.pdesys and the specialization
cbc.cfd for computational turbulence. The work with these codes has also provided insight into
how the finite element method works for fluid flow problems. Finally, we present an investigation
of the cost of the obtained flexibility by comparing our general finite element solvers with
OpenFOAM and the Stanford code CDP in large-scale, parallel simulations. The cost of the
flexibility is quite low, owing to the fact that most of the CPU time is spent in linear solvers
and preconditioners, and for these computations we use efficient third-party software (PETSc).
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SummarySummarySummarySummary. An upper respiratory tract simulator is proposed as a tool for quantifying the 
respiratory flow at the pre-treatment condition and for assessing the effect of treatment. The 
approach utilizes medical imaging data for extracting patient specific upper respiratory tract 
anatomy and Computational Fluid Dynamics (CFD) for predicting the respiratory flow. The 
technique is applied to a number of four patients at pre and post-treatment conditions and four 
healthy subjects. The analysed CFD data allow differentiating between healthy subjects and 
individuals with an obstructive disorder and can be useful data within the diagnosis process.  

Key words: unsteady computational fluid dynamics, airway disorders, diagnosis 

Introduction 

Intermittent, unsteady flows through curved conduits are encountered in many human body 

systems including the respiratory system. The flow complexity is increased even more when 

constrictions are obstructing the airway. Abnormal obstructions connected to various airway 

disorders are found in a large number of individuals [1]. It is believed that the changes in the 

flow patterns associated with the obstruction are playing a role in the progress of the disorder 

over the time. Often, the interaction between the flow and the obstruction involves dynamic 

changes in the flow regime, flow separation and recirculation regions, nonlinear pressure-

drop/flow rate relations, self-excited oscillations of the soft tissue, and generated noise. 

Occurring at the level of the pharyngeal airway, Obstructive Sleep Apnea (OSA) is the most 

common obstructive airway disorder [2]. It is characterized by partial or complete narrowing of 

the pharyngeal airway during sleep (hypopneas and apneas), resulting in airflow cessation and 

oxygen de-saturation. It affects more than 12 million people in US alone. Overnight 

Polysomnography (PSG) is considered the gold-standard for the diagnosis of OSA. It is an 

expensive and time consuming process for both patient and evaluator. The OSA severity is 

expressed using Apnea-Hypopnea Index (AHI), which represents the total number of hypopneas 

and apneas occurring in one hour of sleep. A mild OSA is indicated by an AHI between 5 to 

15/hour, while severe conditions are those for which AHI is greater than 30/hour. Computed 

Tomography (CT) or Magnetic Resonance (MR) imaging facilitated anatomical measurement of 

the airway, but they have little clinical utility for quantifying the functional impact of an 



obstruction. These techniques cannot offer details about the effect of the airway’s anatomical 

features on the airflow or on airway resistance. 

A numerical approach based on medical imaging data and CFD is proposed to expand basic 

understanding of flow dynamics in 3D realistic pharyngeal airway models. It is used to 

characterize the flow in healthy subjects and patients with OSA before and after treatment. 

Approach 

The pharyngeal airway models are reconstructed from CT imaging data acquired at Stanford 

University Sleep and Research Center. The medical imaging software MIMICS® (Materialise, 

Belgium) is used with this purpose. The procedure implies grouping voxels in the Hounsfield 

Units ranges of interest (≈ -1000HU for air) into separate masks from which, by surface 

triangulation, the raw 3D airway model is generated. Then, the model is exported into a re-

mesher where the individual faces of the airway are demarcated and the mesh quality at the 

surfaces is improved. From the surface mesh one may construct an unstructured tri/tetrahedral 

hybrid mesh within the airway volume using an appropriate mesh generator. A finer grid density 

is achieved with the tetrahedral layers close to the wall surface with the aim of enhancing 

resolution on the complex geometrical boundary. 

  

a) b) 

Figure 1. Pharyngeal airway before (a) and after (b) treatment (surgery). Top and bottom 

(base of epiglottis) surfaces of the models are marked; A - minimum cross-sectional area in 

the retro-palatal region at pre-treatment; B - oral-pharyngeal junction; C - epiglottis tip. 

In order to solve the relatively low Reynolds number flow fields (1800 < Re < 7000), a 

more suitable formulation than the steady-state Reynolds Averaged Navier-Stokes is provided 

by an approach that resolves the dynamics of the flow. The approach used can be said to be 

locally as Large Eddy Simulation in character, capturing the airflow unsteadiness. It gives a well 

resolved numerical solution of the Navier-Stokes equations, since it behaves as Direct 

Numerical Simulation in most of the airway. Only when unresolved small scale motion 

develops, one has to employ a model for the effects of these un-resolved small scales. Still, it 

must be stressed out that the turbulence in the airway is hardly developed enough to be handled 

by “universal” Sub-Grid-Scale models. Such an unsteady flow simulation can predict localized 

rotational flow structures that may have an impact on tissue irritation as well as on the wall 

tissue excitation and airway wall dynamics. The validated computational approach [3] is applied 

for characterising the unsteady flow at pre and post-treatment conditions in four patients with 

OSA. Figure 1 depicts sagittal CT imaging data and the generated pharyngeal airway models 

before and after surgery for one of the patients. In addition, four healthy subjects are considered 
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as part of the study as a reference group (Controls). The unsteady flow simulations were 

performed under peak inspiratory and expiratory flow conditions, using a flow rate of 30 L/min. 

Axial velocity at the inlet plane, no-slip velocities at the wall, and flux-conserving zero-gradient 

condition at the outlet are imposed as boundary conditions. 
 

 

 

 

 

 

 

 

  
 

Figure 2. Pre-treatment (peak inspiratory flow condition): characteristic frequencies in the flow 

recirculation region (M1) and in the jet reattachment region (M2). 

 

 

 

 

 

 

 

 

  

Figure 3. Post-treatment (peak inspiratory flow condition): frequencies obtained at the 
monitoring point locations N1 and N2 as shown in the far left figure. 

Results and Conclusions 

Axial velocity distributions along different cross-sectional planes and a longitudinal mid-plane 

are shown together with power spectral density plots in Figures 2 and 3 for pre and post-

treatment conditions, respectively. The data obtained at the peak inspiratory flow are for the 

OSA patient presented in Fig. 1. At pre-treatment, flow separation occurs just downstream of 

the minimum cross-sectional area (Fig. 2). A recirculation flow region is observed on the 

airway’s anterior side in the oral-pharyngeal junction (line B in Figs. 1 and 2). The initiated 

vortices in the jet-like shear-layers, convected by the flow are impinging on the anterior airway 

wall between B-C marks. Naturally, larger shear results on the airway wall in the reattachment 

region. In time, cumulative effect of such flow-airway wall interactions could cause tissue 

irritation and potential injury. Frequencies in the neighborhood of 32Hz are attributed to the 

M1 

M2 

bottom 

surface 

A 

B 

C 

top 

surface 

F
lo
w
 d
ir
e
c
ti
o
n
 

bottom 

surface 

A 

B 

C 

top 

surface 

N1 

N2 

F
lo
w
 d
ir
e
c
ti
o
n
 



large and slow rotating recirculation bubble (monitoring point M1), while the frequencies in the 

neighborhood of 400Hz (M2) are attributed to the vortical structures impinging on the airway 

wall. Such flow instabilities developed during inspiration just downstream of uvula may induce 

soft tissue vibration and snoring. Post-surgery, the flow is streamlined with minimal separation 

as shown in Fig. 3. Negligible instabilities are developed in the flow field as shown in the power 

spectral density plots obtained at N1 and N2 locations. The amplitudes of the characteristic 

frequencies are one or two orders of magnitude lower as compared with those from the pre-

treatment condition.  

Clinical and CFD based data concerning four healthy adult subjects and four OSA patients 

at pre and post-treatment conditions are presented in Fig. 4. Despite of the low number of 

subjects considered, a strong correlation is observed between the CFD data (mean pharyngeal 

airway resistance) and the clinically obtained AHI values. A correlation coefficient (r) of 0.764 

was calculated. About an order of magnitude difference between the pre (red) and the post -

treatment resistances (green) is found. The post-treatment airway resistances are bellow or in the 

range of the averaged airway resistance estimated for the healthy subjects. 

In conclusion, pharyngeal airflow was quantified in a number of subjects, both OSA patients 

and healthy individuals. The analysed data allowed differentiating between healthy and disease. 

Such quantitative assessment of pharyngeal airflow can contribute to a non-intrusive and 

inexpensive diagnosis of sleep-disordered breathing condition. 

 

 

Figure 4. Predicted airway resistance and clinically measured AHI plotted for four Controls and 

four OSA patients at pre- and post-treatment conditions. Correlation coefficient:  r = 0.764 
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Summary. This work presents a flexible and fast method for one dimensional flow and pressure wave
simulations in arterial networks. The pressure and flow waves in the arterial system are characterized by
means of cross-sectionally averaged 1D governing equations for mass and momentum, discretized with
a MacCormack scheme (explicit and second order in time and space). The method was successfully
validated with the simulation of the systemic arterial tree of an individual in two different life stages.
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Introduction

Simulation of pressure and flow waves in the arterial system by means of cross-sectionally av-
eraged 1D governing equations for mass and momentum has been subject of many studies. In
particular the influence of stenoses, aneurysms, and other vascular diseases has been investi-
gated. Such a distributed modelling approach offers more detailed physics (pressure, flow and
wall shear stress in axial direction and time) than lumped models that have no spatial depen-
dence and thus cannot describe wave phenomena [2]. Further, a distributed approach is much
less computational demanding than e.g. a 3D fluid-structure interaction approach (FSI), which
is yet not feasible for larger vascular networks [1].
In this paper we present a very flexible and fast simulation model for blood flow simulations of
the human systemic circulation.

Mathematics

An unclosed non-linear system for pressure (P ), volume flow (Q) and cross-sectional area (A),
in a compliant vessel is given by the conservation of mass and momentum (eq. 1a and 1b) [6].

∂A

∂t
+
∂Q

∂z
= 0 (1a)

∂Q

∂t
+

∂

∂z

(
2π

∫ R

0
rv2dr

)
+
A

ρ

∂P

∂z
= −2π

µ

ρ

[
∂v

∂r

]
r=R

(1b)

The walls of blood vessels have elastic properties, i.e. the cross-sectional area (A) changes
due to the pressure and flow waves propagating through the vessel, which is described with the
vessel compliance (C) (eq. 2). The vessel compliance is in general non-linearly dependent on
the pressure and the location in the vascular tree.

C(z, t, P, β) =
∂A(P )

∂P
(2)



To take the elastic properties of the vessel walls into account, i.e determine the compliance, a
relation between the cross-sectional area and pressure is stated with a linear or non-linear consti-
tutive model. A simplified constitutive model based on the Laplace-Law [3] and its compliance
may be given by:

P = Ps + β(
√
A−

√
As), (3)

C =
2

β

√
As +

2

β2
(P − Ps) (4)

where β is a stiffness parameter, Ps is a reference pressure at the reference area As. Our code
offers the possibility to choose between different linear and non-linear constitutive models for
each vessel in the network.

Inserting the compliance (eq. 2) into the system equations (eq.1a and 1b) reduces and closes
the system given by the primary variables P and Q. With introduction of a velocity profile
model, the convective acceleration (second term) and viscous forces (fourth term) in the 1D
momentum balance (1b), can be approximated. Here assumed shape profiles are applied, where
in general, a function φ(r) is defined such that:

v(z, r, t) = φ(r)vz(z, t), (5)

where vx(x, t) is the mean (cross sectional) axial velocity and φ(r) is a shape function. For e.g.
a power law profile, φ(r) is assumed to be [5]:

φ(r) =
γ + 2

γ

(
1−

( r
R

)γ)
, (6)

where R is the radius of the vessel, and γ determines the bluntness of the velocity profile. The
closed system of governing equation can be written as followed:

∂P

∂t
+

1

C

∂Q

∂z
= 0, (7a)

∂Q

∂t
+ δ

∂
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(
Q2

A

)
+
A

ρ

∂P

∂z
= −2π(γ + 2)

µ

ρ

Q

A
(7b)

where δ = (γ+2)
(γ+1) .

Rearranged in matrix form, the system of governing equations becomes:

∂u

∂t
+ M(u)

∂u

∂z
= b(u) with u =

[
P
Q

]
, (8)

where

M =

[
0 1

C
C(c2 − δv2z) 2δvz

]
, b =

[
0

−2π(γ + 2)µρvz

]
, c2 =

A

ρC
. (9)

The equation system (eq. 8) can be transformed into a system of decoupled characteristic
variables w = [w1, w2] (eq. 10) using the eigenvalue matrix Λ and the left L and right R eigen-
vector matrices of the system matrix M [3]. The characteristic variables w1 and w2 represent
the forward and backward propagating information respectively.

∂w

∂t
+ Λ

∂w

∂z
= Lb (10)

The characteristic variables are used to impose boundary conditions and for solving network
bifurcations. Applying the boundary values with Riemann variables yields in prescribing either
forward or backward directed pressure or flow waves. In contrast, setting the flow or pressure at
the boundary directly, prescribes the total waves (forward and backward), i.e. a part of the solu-
tion, the backward contribution would be prescribed, as well. In addition, it is possible to apply
different in-ward and out-ward directed conditions at a boundary without interference. E.g.
prescribed inflow combined with a reflection coefficient for the backwards Riemann variables.



Numerical methodology

The implementation of our code is based on Python for the framework and overall structure.
Further are C and Fortran used for all algorithms which require fast numerical calculations. The
code is strictly kept object-oriented, to achieve more transparency and flexibility.

A vascular network consist of a ramified network of blood vessels. Each vessel is defined
as individual object. The connection between vessels is described with the mother-daughter
relation, i.e. each vessel can be a ’mother’-vessel of maximum two ’daughter’-vessels. Blood ves-
sels branch only into two smaller daughter vessels, which is emulated with the mother-daughter
relation as the maximum amount of daughters is fixed to two; a left and right daughter. With
this topology, less information is required to describe the network connections compared to e.g.
a node-description where each vessel has a start and end node. In addition, the network can
be seen and handled as binary tree. During the solver procedure and other calculations, the
network is traversed by means of a binary tree.

The numerical speed cnum = ∆x/∆t is bounded through the CFL-condition (resulting in a
small time-step), to capture the physics of wave phenomena, nevertheless regarding the type of
numerical scheme; explicit or implicit [4]. As the system matrices change each time step due
to the non-linearity and the elastic wall properties, the explicit scheme is the more convenient
choice, regarding computational speed and implementation of the system matrices. Therefore
an explicit time-stepping scheme is applied, which allows also the modularisation of the solver
procedure. In addition, are calculations efficient to parallelise, as the solution of each time-step
depends only on the solution of the previous one.

The network shows three different type of numerical problems which need to be solved; 1D
discretized vessels, boundary conditions and bifurcations. To solve the non-linear system of
governing equations of a vessel segment the explicit McKormack scheme is applied. The two
step method (predictor and corrector step) is second order in space and time. Each predictor
and corrector step, boundary grid points of each vessel are determined either by boundary
conditions or connections. The boundary conditions are imposed by Riemann variables from
which the correct pressure and flow values are determined. At network bifurcations six equations
are solved with a Newton iteration scheme; the conservation of mass and conservation of total
pressure, for the boundary nodes and three equations to ensure, new values do not change the
Riemann variables leaving the vessels.

As the time iteration scheme is explicit, all three numerical problems can be solved at each
step independently. Thus a vascular network can be defined as accumulation of numerical
objects with individual solver methods of three different types; vessels, boundary conditions
and connections. Each numerical object of a vascular network is initialized as specialized class
instance of a superior vessel-, boundary- and connection-class respectively. During the solver
procedure, the defined numerical objects are solved by traversing the binary tree of the network,
from the root node to the ends, twice per time step (once for the predictor and once for the
corrector step). As the numerical objects can be solved independently, the process is very
suitable for parallel computing. By traversing the tree from inside to the outside it is possible
to start solving e.g the next predictor step of the root vessel, while the last numerical objects of
the previous corrector step are still calculated.

Results

For validation of our model the systemic arterial tree of a human in two life stages, corresponding
to a young and old individual, is simulated. The results (fig. 1) illustrate the change of pressure
waves in the ascending aorta by variations of the compliance. Especially the pathology of systolic
hypertension of the old individual, i.e. drastic increase of the systolic pressure (maximum) due
to stiffer arteries, is represented by our model outstanding. In addition, show the pressure waves
characteristic patterns, similar to those found comparative clinical studies.



Figure 1. Left: vascular network of the arterial tree consisting of 49 vessels. Right: pressure waves in the
ascending aorta (vessel number 0) of a young individual (top) and old individual (bottom); straight line:
total pressure, dashed line: forward contribution, dotted line: backward contribution

Conclusion

The results obtained let us conclude that our distributed 1D model, which creates an individual
solver procedure with specific numerical objects for a given vascular network, is able to predict
qualitative physiologic pressure and flow patterns of the systemic circulation.
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Summary. An explicit algebraic Reynolds-stress model (EARSM) was developed for compressible tur-
bulent flow. In this work it is applied to the modelling of steady quasi one-dimensional nozzle flow. The
results obtained indicate that dilatation works analogously to the streamwise shear-strain leading to the
amplification of turbulent kinetic energy level, the dilatation being prevailing in supersonic regime. Due
to turbulent kinetic energy the transition from subsonic to supersonic regime and vice versa takes place
at smaller Ainlet/Athroat.

Key words: EARSM, k − ω model, compressible turbulence, nozzle flow

Outline

One of the primary issues in the investigation of compressible turbulent flows is a pressure
strain-rate correlation used. The main problem is to appropriately account for mean dilatation
effect in the model. It is especially important in systems with zero spanwise shear-strain, the
main practical example is flow through the nozzle, where mean dilatation and streamwise shear
are the only possible turbulence-driving factors. And here the question arises, which of the two
factors will dominate in particular regime of the flow. Combined with the approach based on an
explicit algebraic Reynolds-stress model [1], the modelling of compressible turbulence appears
very attractive method, being both clear physically and not much demanding computationally.
Here we use EARSM with renewed consideration of mean dilatation effects. The nozzle flow,
besides being a good example to examine the effect of dilatation on the turbulence level, is an
important engineering facility to accelerate subsonic flow to supersonic speed and to decelerate
supersonic flow to subsonic speed, in both cases the sonic regime is achieved in the throat [2]. It’s
of practical importance to predict the influence of turbulence on required geometrical parameters
to arrive at the operational regime of the nozzle.

The non-diagonal components of Reynolds-stress tensor Rij , associated with spanwise shear,
are zero, and diagonal are:

Rxx = k

(
β1 J +

β2
3

+
2

3

)
, Ryy = k

(
− β1 J +

β2
3

+
2

3

)
,

β1 = − 6

5N
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ρ̄
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k

ε
,

(1)

where c′ = 9/4 (c1 − 1) and c1 is Rotta’s constant.



The application of k − ω model for the steady case reads:

ρ̄ U ∂x U = −∂x p− ∂xRxx + µ∂x
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3
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ε
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2
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(2)

where µt is turbulent viscosity and α, β, βs are modelling parameters. This system is treated
here with a simple solver, second derivatives are evaluated implementing quickly converging
procedure.

Results

As seen in figure 1. (for the flow going from subsonic to supersonic regime withM = 1 at x = 0.5)
for high-enough turbulent time-scale τ the turbulence can be amplified due to streamwise shear,
competing with negative effect of dilatation, even in the abscence of spanwise shear.

Similarly, in figure 2. the corresponding results are shown for the transition from supersonic
to subsonic regime (M = 1 at x = 0.5). But in this case for the turbulence growth to occur we
need much more less values of τ , because here the dilatation production is positive too.

The production of kinetic energy due to dilatation in comparison to production governed
by streamwise strain is negligible in subsonic region and is overwhelming in supersonic, a sharp
transition coincides with common transonic regime 0.8 < M < 1.2.

To initiate a flow to transcend M = 1 point at the throat, we have to impose a large enough
area ratio of the inlet and the throat. The examination of turbulence action on the flow shows,
that it makes the necessary value Ainlet/Athroat smaller.

The model extends in a straightforward way to the more realistic two-dimensional rectangular
nozzle geometry, which can be computed by the same solver. In particular this may be interesting
in view of analysis of interplay and competition of shear-strain and dilatation. We are going to
perform it in further investigations.
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Figure 1. Turbulent kinetic energy under transi-
tion from M=0.6 to M=1.48: τ ∂xU = 5.5 - crosses,
τ ∂xU = 1 - asterisks, τ ∂xU = 0.55 - circles
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Summary. A lean premixed flame near lean blow off was simulated with Large Eddy 
Simulation (LES) and finite rate chemistry. The goal is to predict lean blow-off and understand 
flame stabilization. The results are compared to corresponding laser diagnostics showing that 
the LES tool captures accurately the recirculation zone and flame location. Further, the 
snapshots are examined evidencing two regions in the flame and the influence of surrounding 
air entrainment. The results show that it is possible to study the dynamics of blow-out 
phenomena by examining the 3D results which successfully characterizes the flame. 

Key words: Large Eddy Simulation, Premixed combustion, lean blow off 

Introduction 

In order to reduce harmful emissions, the current trend in the design of industrial combustors is 
to operate under fuel lean and premixed conditions near the blow-out limit [1]. Peak 
temperature in the combustion device is reduced together with NOX emissions but instabilities, 
flashback or flame blow off might occur. Indeed the very fuel lean conditions enabling low 
emissions often result in flames that are very sensitive to perturbations. Therefore, a key issue 
for viability of industrial devices is flame stabilization and flame holding. A possibility for 
flame stabilization is to anchor the flame in a recirculation zone, where hot gases are trapped in 
the wake of a body to ignite fresh gases. The body creates a recirculation zone (RZ), bringing 
burnt hot gases towards the fresh gases and thereby maintain the combustion at rather lean 
condition [2]. The contact between hot (burnt) gases and incoming fresh (unburnt) gases 
delimits the flame front. Successful stabilization implies capturing sufficient amount of hot 
gases in the RZ and maintaining the high temperature during operation. If these two conditions 
are not fulfilled, lean blow off (LBO) occurs with decreasing temperature in the RZ until the 
flame is not sustained. Considering a wake behind a cone, Kariuki et al. [2] exemplified the 
LBO sequence by decreasing the fuel supply, varying the equivalence ratio from 0.64 to 0.63. 
Figure 1 shows the corresponding response followed by high-speed laser diagnostics. The 
response is originally slow and with relatively small variations of the OH field but evolves to a 
rapid decrease of OH signal just before (few milliseconds) LBO. This behavior highlights the 
complex nature of turbulent combustion in general and LBO in particular.  



 

Figure 1. Left: example of LBO in a bluff body stabilized flame captured by time resolved OH-
PLIF [2]. The flame responds to a decrease of equivalence ratio from 0.64 to 0.63. The time t0 

denotes the LBO. Right: schematic of the bluff body [2] – dimensions are in mm. 

Despite more than 60 years of research, turbulent combustion still poses considerable challenges 
for the community [3]. The interaction between turbulent structures and chemical reactions 
features a multi-scale non-linear problem. Far from LBO (hence well established flame), 
laboratory scale experiments often fall in the flamelet regime and have led to numerous studies 
and successful modeling activities [3-4]. However, this regime is not always relevant to 
industrial combustion devices, which commonly operate in the distributed combustion regime or 
close to LBO. Under these conditions, the scale separation between the flow and the flame is not 
valid and requires a coupled treatment with time dependent flow governing equations 
supplemented by finite rate chemistry. The following sections present the modeling approach 
and the burner geometry before discussing the results.  

Modeling approach 

Since LBO and flames near LBO exhibit significant time dependent behavior, we based the 
modelling on Large Eddy Simulation (LES). In addition, to the filtered continuity and Navier-
Stokes equations, we resolve one filtered transport equation per chemical specie of interest and 
the filtered enthalpy equation. The reaction term in the filtered scalar equations requires closure 
and based on experience, we chose Implicit LES (ILES), also referred sometimes as 
Monotonically Integrated LES - MILES. When applied to the heat release the corresponding 
ILES expression can be simplified to:   

where j is the index of the reaction in the species j-equation which depends on temperature and 
all other species i. The rate is obtained from an Arrhenius expression. We should highlight here 
that relation (1) would fail in the RANS framework but is valid for laminar flow simulation and 
direct numerical simulation (DNS). LES being an intermediate between RANS and DNS, the 
validity of (1) would depend on the relative grid resolution and on the subgrid physics. In fact, 
using a typical LES-grid (i.e. far from DNS), relation (1) may approximate reasonably well the 
reaction rate as reviewed in [5]. Incorporating combustion chemistry into LES involves finding 
a suitable reaction mechanism and solving the filtered species equations. For methane 
combustion, comprehensive chemical kinetics mechanisms can potentially involve hundreds of 
species and thousands of reactions. A pragmatic choice consists of selecting a skeletal 
mechanism, including some features of the finite rate chemistry considering only 20 species [6]. 

 
 )~,~(),( TYwTYw ijij  = . (1) 



The ILES was performed using a LES solver based upon the OpenFOAM object-oriented 
library [7] and features a reacting low Mach number formulation. The spatial discretisation uses 
an unstructured FV method, [7], based on Gauss theorem. The reconstruction of convective 
fluxes by central differencing gives second order accuracy in space and second order accurate 
backward discretisation is used in time. The convective terms in the scalar equations are treated 
using a Total Variation Diminishing scheme maintaining high resolution and second order 
accuracy while preserving boundedness. Time stepping is done implicitly; the pressure-velocity 
coupling is done with the PISO method. The present settings are well in line with previous 
works and the reader is referred to [5] for more details. 

Presentation of the computational case 

We consider a lean flame near LBO investigated by Kariuki et al [2], referred as case A1. The 
burner geometry consists of a conical flame holder shown in Figure 1. For the case A1, the 
fuel/air mixture matches a fuel/air equivalence ratio of 0.75 and is supplied at the bottom of the 
burner and guided to issue around the bluff body. The fuel/air supply features an annular jet 
surrounding the flame and RZ. The grid includes 1.5M polyhedral cells, 90% of them being 
cubes (in the flow) while the rest are prism and polyhedron featuring the wall and refinement 
layers around the walls.  A maximum Courant-Fredrich-Levy number of 0.3 is enforced 
corresponding to a physical time step Δt~10-6s. The experimental data (PIV and PLIF images) 
are taken from [2]. 
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Figure 2. Axial velocity field along radial lines downstream of the bluff body – LES and PIV 

data. Mean and RMS fields are presented at X/D=0.04, 0.696, 1.344 and 1.667. 

Results and discussion  

Mean flow field 

The mean and RMS velocity profiles normalized by the bulk velocity from LES are compared 
to PIV data in Figure 2 at four different downstream locations. Very good agreement is found 
for the average and RMS values. Recirculation zone development is also seen and the highest 
RMS:s are as expected at the shear layer location.  

 
 



Snapshots and flame dynamics 

 
Snapshots of the flame front are shown in Figure 3 where OH-LES and OH-PLIF images are 
compared to each other. Furthermore, the temperature and CH2O field are also shown. Both 
OH-LES and OH-PLIF show similar flame pattern with bands of high OH values and sharp 
decrease delimiting the flame location. The 3D OH level image shows the flame front and the 
impact of the negative radial velocity causing large scale wrinkling on the top of the flame front. 
This negative radial velocity causes the entrainment of air into the recirculation zone.  

 

Figure 3. Snapshots of the flame front; from left to right: temperature field (LES), CH2O field 
(LES), OH field (LES), OH signal (PLIF) [2], 3D OH level (LES). 
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Summary. This paper reports on three-dimensional (3D) and two-dimensional (2D) direct 
numerical simulations (DNS) of a constant-volume auto-ignition of a lean H2/air mixture with 
temperature stratification. The combined propagation of spontaneous ignition front and 
deflagration front is identified in 3D configuration. The difference between 2D- and 3D-DNS is 
investigated by comparing the evolutions of global combustion parameters such as the averaged 
heat release rate, total reaction front area and the averaged displacement speed of the reaction 
front. The extra space dimension is found to lead an overall delay but more rapid bulk ignition.  

Key words: 2D/3D DNS, Reacting flow, Auto-Ignition, HCCI  

Introduction 

In past decade homogenous charge compression ignition (HCCI) engines have attracted great 
attention from the engine industry and the combustion research community owing to its promise 
of high efficiency and low emission. A realistic HCCI combustion occurs in a turbulent 
environment with certain level inhomogeneity in temperature and sometimes fuel concentration. 
The reaction front of HCCI combustion is different from the classical flames. Depending on the 
temperature gradient, the reaction front may propagate as a premixed flame or as an ignition 
wave [1]. Understanding the fundamental structures of HCCI reaction fronts is important for 
developing control method of HCCI combustion. 
    Previous studies of HCCI process rely on performing two-dimensional (2D) direct numerical 
simulations (DNS) of the ignition of a thermally stratified turbulent H2/air mixture in a 
periodical rectangular domain[2, 3]. The 2D-DNS studies have provided useful insight into the 
physics of HCCI combustion; however, the lack of one spatial dimension casts doubt on the 
previous conclusions.  
    With the recent development in an efficient DNS solver for reacting flow [4], we present in 
this work a combined 2D/3D-DNS study of lean H2/air auto-ignition similar to the 2D-DNS 
work in [2]. The emphasis is on the similarity and difference between 2D and 3D simulation of 
auto-ignition problem.  

Numerical methods and running conditions 



An in-house DNS solver for reacting flow with detailed chemistry and transport properties is 
used. The solver relies on the low Mach number assumption to allow large time steps for 
speeding up computation. The temporal integration is performed using the 2nd order 
symmetrical Strang splitting algorithm [5] with one full time step of chemistry calculation 
placed in between of two half-step calculations of the diffusion and convection. The diffusion 
integration is further split into multiple sub-steps of integrations. The chemistry is computed 
with an accurate stiff solve DVODE [6]. The spatial discretion is a mixed 6th order center 
difference and 5th order WENO scheme [7]. The spatial/temporal accuracy has been verified 
with grid/time-step dependency tests. The code is written in a vector form enabling simulations 
from 1D to 3D [4]. 
   The 3D case is an extension of the 2D setup in [2]. The computational domain is a 4.1 mm3 
periodical cube described by a 5123 grid. The H2/air mechanism in [8] is used. The initial 
mixture has an equivalence ratio Φ=0.1, mean temperature of T0=1070 K and pressure of P0=41 
atm. The initial turbulence field is generated using the Passot-Pouquet spectrum [9]. The 
turbulence integral scale is 1 mm and the integral velocity is u0=0.5 m/s. For the initial 
temperature field, the integral scale is 1.32 mm and the rms is ܶᇱ=15 K. Based on the above 
condition the homogenous ignition delay time is ߬=3.3 ms and the maximum heat release rate 
is HR0=2.94 ൈ 10ଵ J/m3/s. The computational time step is set to 1 µs. Two additional 2D-DNS 
runs are also performed with the same setup except the grid: one with a 5122 grid, another with 
a 10242 grid, comparable to [2].  

Results and discussions 

Fig.1 shows multiple disconnected reaction fronts in the domain, created most likely by 
spontaneous auto-ignition of local hot spots. The growth of the already ignited spots due to the 
combined propagations of deflagration and ignition fronts, together with the new front surface 
from ignition, leads to a rapid increase in the total front surface area. It is seen that at early 
ignition (2.4 ms) most of the reaction front propagates as a slow deflagration wave, with small 
portion of the reaction front propagating as the fast ignition wave, e.g. around the sharp tip 
region of the ignited spots. Later the fraction of ignition front within the total reaction front 
becomes larger, at 2.9 ms the area of the fast ignition fronts are comparable to that of the slow 
deflagration fronts, suggesting that the averaged front speed is increasing.   

 

Fig. 1. The 3D instantaneous front surfaces at 2.4 and 2.9 ms. The grey shadow denotes the slow 
deflagration front while purple shadow represents the fast spontaneous ignition front.   



     Fig. 2 shows the pressure trace and the normalized heat release rate from the 3D/2D-DNS. 
The main ignition events in all cases (peak heat release rate) can be found around 3.05 ms. The 
peak values of the normalized heat release from two 2D cases are around 0.33, comparable to 
0.34 in [2]. However the 3D DNS shows a delayed ignition but more rapid heat release (0.40 in 
the normalized peak value, 15% higher than in 2D), as also shown by the pressure traces. 
 

 

Fig. 2. Pressure and the normalized heat release rate (HR/HR0) from 3D/2D DNS cases. 

    Fig. 3 shows that compared with 2D, 3D-DNS predicts a slower increase of the front area 
during early ignition. Later, the reaction front area increases more rapidly in 3D; it reach to a 
higher maximum value at 3.05 ms (can be expected from Fig.3). At this instance the heat release 
rate reaches peak, however the averaged front speed (Sd

*) in 3D is not higher than the 2D one. 
The higher peak heat release rate in 3D than in 2D is achieved through a larger total front area. 

 

Fig.3. Averaged front displacement speed(Sd
*) and total reaction front area from all DNS cases.  

   Fig. 4.a shows that the 3D-DNS predicts a much faster temperature field mixing (quicker drop 
in the rms temperature ܶ’) during the early evolution than the 2D-DNS, which results in the 
observed 3D rapid heat release at the later ignition of the bulk mixture. Assuming no density 
variation and negligible reaction during the early period, the evolution equation of ܶ’ shows that 
the ܶ’ decay is just decided by the mean temperature gradient square, which is plotted in fig4.b 
to start the same but increase faster and reach to a higher value in 3D. From the evolution 
equation of mean temperature gradient square it is further seen that its production rate is 
determined by a multiplication of three terms involving the mean strain rate, the mean 
temperature square itself and a normalized term. The last term has been found evolving 
similarly under all cases. Fig. 4.c shows the 3D strain rate starts from an higher initial value (1.5 
time of the 2D one) and also has an early increase raise compared to the monotonically decrease 



in 2D. The 1.5 time of initial strain rate in 3D than in 2D is the consequence of one extra space 
dimension, for the 3D initial turbulence field to maintain the same values of both the time and 
length scales as in 2D. The early rising of 3D strain rate is also due to one extra dimension, 
since the strain rate production is through a strain-self-amplification term, which is positive in 
3D while zero in 2D [10].  

 

Fig. 4. Normalized rms temperature ( ܶ′/ ܶᇱ , a), mean temperature gradient square( ܶ|ۦ|ଶۧ,  b), 
and square of the velocity strain rate (ൻ ܵଶ ൿ, c), during early ignition time from all DNS cases. 
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Summary. This paper comprises the study of transient dynamics of a cantilever beam in a 
fluid-structure interaction context. The investigation is focused on the dynamical response of a 
cantilever exposed to fluid flow at Re=50000, where the implicitly coupling method serves as 
the key function in the study. 
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Introduction 

Fluid-Structure Interaction (FSI) is a multiphysics problem where a fluid and solid domain 

interact via their mutual interface at the boundary between the fluid flow and solid structure. 

Aero- and hydroelasticity are typical important areas for fluid-structure interaction problems, 

where the former considers engineering problems as, e.g., aerodynamic flutter on aeroplane 

wings whereas the latter involves the analysis and prediction of e.g. wave-induced vibrations, 

such as whipping and slamming, propeller singing, signature levels from submarines etc. Other 

FSI related engineering problems are encountered within the biomedical industry. Here, 

ongoing study is established in order to understand and treat human diseases, e.g. the 

investigation of back-pressure in veins in the upper part of the body, which may lead to collapse 

of the veins etc. A typical FSI problem can computationally be formulated either using the 

monolithic or partitioned approach, where the former solves the fluid- and the solid equations 

simultaneously, [1], and the latter utilizes a sequential technique, [2]. The monolithic approach 

is considered to be more stable and accurate, however expensive in computational time whereas 

the partitioned approach is considered to be more flexible. 

The aim of this study is to investigate the behaviour and the features of a parallelized 

partitioned coupling method capable of producing accurate and reliable predictions of FSI 

related problems. This study also comprises the development of an interface between two 

different open source codes OpenFOAM, [3], for fluid dynamics and OOFEM, [4], for 

structural dynamics. 
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Numerical method and Computational Setup 

Finite Volume for Fluid flow 

The fluid under consideration is isothermal, incompressible and Newtonian. The flow is 

governed by the time-dependent, three-dimensional conservation equations of mass and 

momentum for a linear viscous fluid, extended to handle moving grids, e.g., 

where v  is the velocity, mv  the grid velocity, p the pressure, ετ 2  is the viscous stress 

tensor, )(
2
1 T

vvε   the rate-of-strain tensor and   the viscosity. 

The system of governing equations in Eq. (1) are discretized using an unstructured 

collocated Finite Volume (FV) method in which the discretization uses Gauss theorem together 

with a multi-step time-integration method, [5]. Furthermore, here Implicit Large Eddy 

Simulation (ILES), which effectively filters the system of governing equations over the grid 

using an anisotropic kernel defined by the tessellation of the computational domain into a set of 

non-overlapping finite volumes, [6], has served as the turbulence model. 

Finite Element for Structure 

The counterpart to Eq. (1) for solid dynamics reads 

and describes the balance relation of linear momentum for a continuous body in the Total 

Lagrangian context based on the virtual work expression. This formulation naturally leads to 

deformations described in terms of the Green strain tensor, E , corresponding to the conjugate 

second Piola-Kirchhoff stress tensor, S . The discretization has been conducted in OOFEM 

using the Nonlinear Finite Element Method (NLFEM), which allows for large deformations and 

small strains. The solution procedure is performed by utilizing implicit time integration for the 

dynamic problem, where the nonlinear Newmark algorithm, [7] has functioned in conjunction 

with Newton-Raphson iteration scheme to achieve numerical convergence and accuracy of the 

solution. 

Problem Setup 

The computations have been performed for the case of confined flow past a beam in a 

rectangular channel with quadratic cross-section at a Reynolds number of 50000, based on bulk 

velocity and beam hydraulic diameter (D). The dimensions of the computational domain, shaped 

as a rectangular cuboid, are 9D, 9D, and 30D, in the x-, y- and z-direction, respectively. The 

beam has the dimensions 1D, 1D and 5D, where 1D = 0.02 m, and is horizontally centred 9D 

from the inlet. The flow is in the z-direction with a freestream velocity of 2.875 m/s and the 

beam has no restrictions in its motional degrees of freedom, whatsoever.  

At the inlet, a Dirichlet condition is used for the velocity and Neumann condition for the 

pressure. At the outlet, Neumann conditions are used for the velocity, and a Dirichlet condition 

for the pressure. At the top and sides, slip conditions have been posed whereas a Dirichlet 

condition was used for the bottom of the fluid domain. Moreover, the flexible beam was 

consolidated with no-slip condition. The flow is predicted using ILES on a grid with 5104   

cells. 
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The Coupling 

The focus of the coupling method in question lies on creating an interface, between the fluid- 

and structural solver, which is accurate and stable enough to be able to handle relevant FSI 

problems occurring in real life applications. The procedure has been facilitated by making sure 

that the two solvers communicate the solution information as a single executable and by 

restricting the interface topology to have the same number of nodes and faces. This yields an 

exactly matching interface surface with a predetermined tolerance, where no interpolation 

routine is needed. Furthermore, the coupling methodology itself relies on an implicit, [8], 

algorithm of the partitioned solution procedure of the system of equations. Another choice 

would be to perform the coupling conditions explicitly, [9]. Nevertheless, due to improved 

numerical stability and accuracy, better energy and momentum conservation, the ability to use 

larger time steps, and also, the nature of the problem itself made implicit partitioned solution 

procedure the choice for the conducted simulations in this study. Furthermore, the data transfer 

in-between the two solvers, which is not trivial in parallel communication, has been addressed 

using Portable, Extensible Toolkit for Scientific Computation (PETSc), [10]. 

Results and Conclusions 

The FSI simulations results illustrated in Figure 1 are for a case where the coupling tolerance 

between fluid and structure surface meshes is 10
-8

, the fluid to structure density ratio is 0.2, and, 

the Poisson number and Young’s modulus are 0.3  and 0.03 GPa, respectively. 

a) b)

c) d) 

Figure 1: a) Maximum structural forces. b) Maximum structural displacement. c) Velocity in z-

direction at t = 0.304 s d) Pressure field at t = 0.304 s. 
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At the top part of Figure 1 the dynamical response in terms of structural force and structural 

displacement in the flow direction is presented for the cantilever beam. As can be seen, the 

structure achieves quite large deformations initially where the fluid flow is not yet fully 

developed. Nevertheless, as the fluid flow becomes fully developed this trend transitions 

gradually to a stable pattern with average deformation around 4.5 mm, where a constant 

maximum to minimum amplitude of displacement is perceived. The same pattern can be 

observed for the forces, however, with rather stronger transient fluctuations. It should be noted 

that the first 10 data points of the structural forces have been removed in Figure 1 due to heavy 

fluctuations.  

At the bottom right of Figure 1, the pressure distribution in the fluid field at time, t = 0.304 

s, around the cantilever is shown, with an almost constant pressure on the upstream and 

downstream side. This behaviour can be associated to the counterpart of the almost constant 

wavelength character of the structural force. Furthermore, the velocity field at the bottom left in 

Figure 1 illustrates that the maximum velocity occurs at the top of the cantilever and then 

decreases in a pulsating manner further in the wake, indicating an oscillatory and undamped 

behaviour of the cantilever dynamics. 
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Discontinuous Petrov-Galerkin Finite Element Method for
the Reissner-Mindlin Plate Bending Model
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Summary. We apply the discontinuous Petrov-Galerkin (DPG) finite element method to the Reissner-
Mindlin model of plate bending. We show that the hybrid variational formulation underlying the DPG
method is well-posed (stable) with a thickness-dependent constant in a norm encompassing the L2-norms
of the bending moment, shear force, transverse deflection and the rotation vector. We then construct a
numerical solution scheme based on quadrilateral scalar and vector finite elements of degree p. We show
that for affine meshes the discretization inherits the stability of the continuous formulation provided that
the optimal test functions are approximated by polynomials of degree p+ 3. We prove a theoretical error
estimate in terms of the mesh size h and polynomial degree p and demonstrate numerical convergence on
affine as well as non-affine mesh sequences.

Key words: plate bending; finite element method; discontinuous Petrov-Galerkin; discrete stability;

Introduction

Displacement-based finite elements are the most widely used tools for computing the deforma-
tions and stresses of elastic bodies under external loads. However, in the modeling of thin-walled
structures, the basic formulation leads to so-called locking, or numerical over-stiffness, unless
special techniques (reduced integration, nonconforming elements) are applied. Another diffi-
culty related to the displacement based formulations is stress recovery. It is well known that the
accuracy of the stress field derived from the displacement field can be much lower than that of
the displacement field. Therefore special recovery techniques are often applied to improve the
accuracy of stress approximations. Practical finite element design relies heavily on heuristics,
intuition and engineering expertise which makes numerical analysis of the formulations very
difficult. This is because the various physical and geometrical assumptions do not have obvious
interpretations in the functional analytic setting required for mathematical error analysis.

Mixed formulations where stresses are declared as independent unknowns are attractive
because they often avoid the problem of locking by construction and allow direct approximation
of the quantities of interest. However, in contrast to pure displacement formulations, mixed finite
element methods do not inherit stability from the continuous formulation, but the stability of
the discretization must be independently verified for each choice of finite element spaces. The
recently introduced discontinuous Petrov-Galerkin (DPG) variational framework provides means
for automatic computation of test functions that guarantee discrete stability for any choice of
trial functions, see [1, 2]. In this work, we will present a numerical analysis of the framework
when applied to the Reissner-Mindlin model of plate bending.



Reissner-Mindlin Plate Model

The model for bending of a plate corresponds to a system of partial differential equations

γ−1t2V −∇w +ψ = 0, C−1M−∇Sψ = 0

−∇ ·V = p, −∇ ·M−V = 0
on Ω (1)

where Ω is taken to be a convex polygonal domain in R2 representing the middle surface of a
plate. We take L = diam(Ω) as the length unit and assume that the plate thickness t is small
as compared with unity, that is the plate is thin. The deformation of the plate is described in
terms of the transverse deflection w and the rotation vector ψ. The first row in (1) relates them
to the shear force vector V and the bending moment tensor M. In these constitutive laws C−1

is a two-dimensional “compliance tensor” (we assume homogeneous isotropic material), and γ
is the shear correction factor used in plate theory. The second row in (1) then constitutes the
basic laws of static equilibrium.

The DPG approximation of the model is based on the ultra-weak hybrid form of (1). This
is associated to a partitioning of Ω to elements and is obtained by integration by parts. We
are able to show in [3] that this variational form is well-posed and can be used to construct
finite element approximations with a best-approximation property in a norm encompassing the
L2(Ω)-norms of w,ψ,V,M.

Results

Some illustrative results are shown in Table 1 for a model problem with a softly clamped square
plate under uniform loading. The computational domain Ω is partitioned into a uniform N ×N
mesh and the main unknowns w,ψ,V,M are represented as bilinear functions on each element.
The results show the convergence of the deflection w and the bending moment −M11 at the
center of a plate as the number of elements is increased. For comparison, we show also the
values obtained with the bilinear element based on the standard energy principle and selective
reduced integration (SRI). The results show that on a very coarse mesh DPG gives much better
results, but the difference between the methods diminishes as the mesh is refined.

Table 1. Clamped Square Plate Under Uniform Loading.

Convergence of the Central Deflection
Mesh 2× 2 8× 8 32× 32
t DPG SRI DPG SRI DPG SRI True

0.05 1.609 0.067 1.345 1.314 1.329 1.326 1.329
0.01 1.560 0.003 1.288 1.253 1.268 1.267 1.268
0.001 1.559 0.000 1.285 1.251 1.265 1.264 1.265
0.0001 1.559 0.000 1.285 1.251 1.265 1.264 1.265

Convergence of the Central Moment
Mesh 2× 2 8× 8 32× 32
t DPG SRI DPG SRI DPG SRI True

0.05 2.926 0.000 2.356 2.334 2.304 2.302 2.301
0.01 2.927 0.000 2.349 2.331 2.294 2.293 2.291
0.001 2.927 0.000 2.348 2.331 2.293 2.293 2.291
0.0001 2.927 0.000 2.348 2.331 2.293 2.293 2.291
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Summary. This work improves upon Hockney and Eastwood’s Fourier-based algorithm for the un-
bounded Poisson equation to formally achieve arbitrary high order of convergence without any additional
computational cost. We assess the methodology on the kinematic relations between the velocity and
vorticity fields.

Key words: Poisson solver, unbounded domain, numerical integration, particle-mesh methods

Introduction

The solution of the Poisson equation on an unbounded domain is essential in many physical
problems and appear among others in the field of fluid dynamics, molecular dynamics, and
astrophysics. The Poisson equation often describes the energy or potential of a physical system,
and is either directly or indirectly governing for the dynamics of the system.

We find the Green’s function solution to the Poisson equation through an integral formulation
carried out in a discrete sense by convolving the field with an integration kernel. In order to
achieve free-space boundary conditions the domain must be extended to twice the size, to avoid
the periodicity of the discrete convolution operator. Hockney and Eastwood [1] showed that it is
possible to impose free-space boundary conditions by zero-padding the right-hand side density
field and convolving this with a free-space integration kernel of equal size.

The convolution of the density field and the integral kernels is inherently based on a mid-
point numerical quadrature and is therefore limited to a second order convergence as shown
by Rasmussen [2]. In the present work the Greens function based Poisson solver is extended
to achieve a high order of convergence of the convolution integral for a continuous field by
formulating regularised integration kernels. These are derived based on the work of Beale and
Majda [3] and Winckelmans and Leonard [4] who used Gaussian and algebraic smoothing to
achieve high order regularised integration kernels for mesh-free vortex methods.

Vorticity-velocity equations and Fourier-based convolution for their solution

In fluid mechanics, kinematics relates the vorticity ω and the velocity u fields. By defining a
solenoidal vector potential (ψ: ∇ · ψ = 0) referred to as the stream function, the velocity field
can be calculated from the vorticity field by the three kinematic relations

ω ≡ ∇× u, u ≡ ∇×ψ, ∇2ψ = −ω. (1)



The latter relation constitutes the well known Poisson equation which can be solved on the
unbounded domain R

d using a Green’s function approach, yielding

ψ = G ∗ω or u = ∇× (G ∗ω). (2)

G is the Green’s functions for which ∇2
G(x) = −δ(x − ξ) and ∗ denotes the discrete linear

convolution operator. Linear convolution is obtained by zero-padding the vorticity field to twice
the domain size and applying the discrete cyclic convolution operator to the now zero-padded
vorticity field and the integration kernel of equal size.

The convolution is performed efficiently in Fourier space whereas the linearity of the problem
also enables the curl of the stream function to be carried out in Fourier space to calculate the
velocity directly.

ψ̂ = Ĝ ω̂ or û = ιk × ψ̂ = ιk × Ĝ ω̂ (3)

Here ·̂ denotes the Fourier transform, ι is the imaginary unit and k = {kx, ky, kz} is the
wavenumber corresponding to the Fourier coefficients.

High order methods: Regularised integration kernels

As the Greens function is constructed from a delta function the resulting integration kernel G is
singular at |x| = 0. The singularity of the integration kernels is impossible to represent discretely
and one is forced to replace the singularity with a finite value which introduces additional errors
to the integration and thereby restricts the method to a limited order of accuracy.

In the present work, we remove the singularity and achieve higher order by using smoothing
functions. Effectively, a smoothed version of the right-hand side of the Poisson equation is
considered

ωǫ = ζǫ ∗ ω (4)

where ζǫ is a filter function with a smoothing radius ǫ. For conservation properties we have∫
Rd ζǫ(x) dx = 1.

The convolution of this smoothed source term with the Green’s function can be written as

ψǫ = G ∗ (ζǫ ∗ ω) = (G ∗ ζǫ) ∗ ω = Gǫ ∗ω. (5)

where Gǫ is the mollified Green’s function. For a given filter function ζǫ, it is straightforward to
derive the Gǫ from ∇2

Gǫ(x) = −ζǫ(x− ξ).
The order of accuracy of the smoothed solution is now determined by the number of vanishing

moments of the smoothing function ζǫ. Anm-order accurate radially-symmetric filter will satisfy

0β =

∫
ρ
β
ζǫ(ρ) dρ where β = {0, 2, ...,m − 2}.

Because we use a family of radially-symmetric kernels, the odd moments will be satisfied
automatically whereas in order to obtain an m-order integration kernels the smoothing function
ζǫ must satisfy m/2 equations. Using a Gaussian kernel the smoothing function is constructed
by

ζǫ(ρ) = Pm(ρ) exp(ρ2/2) where Pm(ρ) = a1 + a2ρ
2 + a3ρ

4 + ...+ am/2ρ
m−2 (6)

is an even polynomial of order m− 2 that supplies the m/2 degrees of freedom. The coefficients
a1, a2, ..., am/2 can be calculated by solving the system of equations consisting of the m/2 equa-
tions for the m moments. Alternatively, one can follow Chatelain and Leonard [5] and apply
successive extrapolations to ζǫ(ρ) where an m + 1 order scheme can be built from an m-order
scheme with

Pm+2 =

(
1 +

d

m
− 1

m
ρ

)
Pm +

2

m
ρ
∂Pm

∂ρ
. (7)



For the Gaussian smoothing function of the regularised Greens function kernel Gǫ takes the
general form

Gǫ(|x|) =





1

2π

(
log (|x|)−Qm

( |x|
ǫ

)
exp

(−|x|2
2ǫ2

)
+ E1

( |x|2
2ǫ2

))
in 2D

− 1

4π|x|

(
1√
2π
Rm

( |x|
ǫ

)
exp

(−|x|2
2ǫ2

)
+ erf

( |x|√
2ǫ

))
in 3D

(8)

where E1(z) is the first exponential integral function, erf(z) is the regular error function and the
polynomials Qm and Rm for m = 4, 6, 8, 10 are

Q4(ρ) = 1− 1

2
ρ
2

R4(ρ) = −2ρ+ ρ
3 (9)

Q6(ρ) = 1− ρ
2 +

1

8
ρ
4

R6(ρ) = −2ρ+
9

4
ρ
3 − 1

4
ρ
5 (10)

Q8(ρ) = 1− 3

2
ρ
2 +

3

8
ρ
4 − 1

48
ρ
6

R8(ρ) = −2ρ+
89

24
ρ
3 − 20

24
ρ
5 +

1

24
ρ
7 (11)

Q10(ρ) = 1− 2ρ2 +
3

4
ρ
4 − 1

12
ρ
6 +

1

384
ρ
8

R10(ρ) = −2ρ+
1027

192
ρ
3 − 349

192
ρ
5 +

35

192
ρ
7 − 1

192
ρ
9

(12)

The finite centre value of the regularised Green’s function Gǫ(0) is given by

Gǫ(0) = lim
x→0

(Gǫ) =





1

2π

(
γ

2
+ log

(√
2ǫ
)
+Qm (0)

)
in 2D

√
2

8π3/2



Rm

(
|x|
ǫ

)

|x|




x=0

+

√
2

4π3/2ǫ
in 3D

(13)

Here the centre value of the 2D mollified Green’s function is derived using a infinite series
expansion of E1(z) [6].

Validation

To investigate the convergence of the free-space Poisson solver, the test function i.e. the vorticity
distribution, must be enclosed within the computational domain. This is achieved by using a
compact vortex blob to form a vorticity patch in 2D and a torus shaped vortex ring in 3D. We
propose the use of a bump function distribution with an infinite number of continuous derivatives
to avoid limitations of the convergence rate. The bump function is defined as

f(ρ) =





exp

(
− c

1− ρ2

)
for |ρ| < 1

0 for |ρ| ≥ 1

(14)

where c = 20 is an arbitrary positive constant. Using centred polar (r, θ) and cylindrical (r, θ, z)
coordinates for the 2D and 3D case, respectively, the stream functions are defined as

ψ = f

(
r

R

)
in 2D ψ = f

(√
(r −R)2 + z2

R

)
eθ in 3D (15)

where R is the radius of the centre of the vorticity patch and eθ is the azimuthal normal vector.
The initial vorticity field and the resulting velocity field are found analytically by Eq. (1).

The root-mean-squared (rms) error of the 2D and 3D test cases are shown in Fig. 1 for
the regularised integration kernels Gǫ with m = 4, 6, 8, 10. As seen, the 2D and the 3D con-
vergence is virtually identical and the convergence rate corresponds to the respective design of
the integration kernels. The same convergence rate is observed with the maximum error (not
shown).
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Figure 1. The rms error of the resulting stream function (A) and velocity field (B). ( ): from
top h

2, h4, h6, h8, h10; ( ): round off error; Integration kernels: ( ): non-regularised;
( ): m = 4; ( ): m = 6; ( ): m = 8; ( ): m = 10. Full line: 2D; Bold dashed
line: 3D.

Conclusion

A convolution integral method was presented for calculating the solution to the Poisson equation
of a continuous field in an unbounded domain to an arbitrary high order of convergence. The
smoothing method applied in mesh-free vortex methods to produce vortex blobs was combined
with the FFT-based Poisson solver of particle-mesh methods to achieve a high rate of convergence
at a low computational cost.
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Summary. This article presents the relationship between the scale and strength of the cellular 
materials. Specimens with irregular hexagonal cell geometries are tested for different sizes and 
the results are expressed in terms of the mean values and standard deviations of the critical 
external stress defining the cellular material strength. As a result of the study, it is deduced that 
the increase in scale inversely influences the strength of tested cellular materials.    

Key words: Scale, strength, critical external stress, cellular material. 

Introduction 

A cellular material is considered as an aggregate of cells and their surrounding walls. When 
such material is subjected to the external stresses to a stress of increasing magnitude, it is likely 
to experience failure on a cell wall at some point [1]. The stress at which the weakest cell wall 
fails refers to the cellular material strength. According to [2, 3], the strength in this sense 
depends on the size of the cellular material. The phenomenon, called as the scale effect in the 
literature, cannot be predicted through a deterministic model [4]. Despite the importance of the 
phenomenon in the structural applications, relatively little attention has been paid on prediction 
of strength in statistical sense and the effect of scale on the predictions. 

The aim of the present study is to explain the effect of scale on the cellular material strength 
in terms of the mean value and standard deviation of the critical external stress. The material 
element of the study has a planar hexagonal cellular structure points of which are given random 
offsets from their regular positions, which brings a non-deterministic element into the model. 

Methodology 

Material element 

The material element of the strength simulation experiment is a planar hexagonal cellular 
structure of figure 1. The independent variables of the experiment are the measure of 
geometrical irregularity   and the number of cells n  in the material element. The regularity of 
the material is described by a one parameter model, in which 0   and 0   correspond to the 
regular and irregular material geometries, respectively. To be precise, the cell vertex points are 
randomly picked from the lists of uniformly distributed points over the disks of radius 



0h h  , the centre  coordinates of which are equal to the vertex coordinates of the regular 
cellular material having cell wall length 0h . 

 

Figure 1. Material element: (a) solution domain  , boundary domain   and illustration of 
regular and irregular cell geometries, (b) external stresses acting on  . 

Micromechanical model 

In the micromechanical model, the cell walls of figure 1 are modelled as elastic Bernoulli 
beams. The material inside the cells is taken to be soft compared to that of the walls, thus its 
influence on the mechanical response is neglected.  
 
Strength criterion 

The failure mechanism is taken to be bending so that a beam fails when the magnitude of its 
bending moment Mj exceeds the given critical value Mcr. Under linearity assumption, the critical 
external stress tensor crs  resulting in the first element to fail is obtained by scaling  

in which the maximum is taken over the cell walls in   and s  is the external stress tensor. The 
value obtained in this manner describes the strength in direction s  of the stress space. 

Experiments 

A simulation experiment is designed similar to a physical one: in order to study the population 
characteristics, such as strength of an irregular cellular material, experiment is repeated on a 
random sample, and the failure initiation statistics is estimated based on the results of the 
sample. In the current experiments, the sample size is 20 and populations used were 
characterized by 0.3   and {40,160, 360}n . A large value of   is used to obtain a clearly 
non-deterministic material behaviour. The loadings applied to the specimen correspond consists 
of 101010 directions of the (three dimensional) stress space. 

The dependent variable in these experiments is the critical external stress value of failure 
initiation crs  which is obtained through expression (1). Material parameters of the model are 
assumed to satisfy the condition  2/ 1s sE I E Ah   so that the bending effect is significant [5]. 

 cr
cr max j

M
M

s s , (1) 

Y 

X 
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H  
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Results and discussions 

The mean values and standard deviations of the critical external stresses, which determine the 
cellular material strength, are listed in table 1 for selected loading cases (I), (II) and (III) 
corresponding to uni-axial tensions along X-, Y-axes  and pure shear, respectively. 
 
Table 1. Mean value and standard deviation of critical external stress as function of loading 
direction and number of cells. 

 

 

 

 

 

The results of table 1 indicate a clear relationship between the scale and strength of the cellular 
materials. A clearer picture is obtained by repeating the calculation for more directions of the 
stress space. The outcome gives the failure initiation probability of the hexagonal cell material 
sample of certain size under the known stress e.g. the strength of the material in statistical sense. 
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  Loading 
     case n cr( ) s s  cr( ) s s  

  
(I) 

  
 

40  
160 
360  

 

2.28 
1.88 
1.76 

 

0.48 
0.17 
0.12 

   
(II) 

  

40  
160 
360  

 

2.18 
1.89 
1.79 

 

0.32 
0.14 
0.13 

   
(III) 

  

40  
160 
360  

  

1.17 
1.00 
0.94 

0.16 
0.07 
0.06 
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Summary. A workbench, Assimulo, is presented. Assimulo is a simulation package connecting a
variety of different codes for solving ordinary differential equations, among them special purpose multi-
body solvers. The intention of this talk is to describe on one hand the special design of Assimulo and
its suitability for multibody systems simulations. On the other hand, we want to emphasize a complete
workflow from multibody systems modeling software to a simulation tool by a newly defined standard.

Key words: Assimulo, Multibody systems, ODEs, DAEs

Introduction

During the last three decades, a vast variety of methods to numerically solve ordinary differ-
ential equations (ODEs) and differential algebraic equations (DAEs) has been developed and
investigated. Few of them met industrial standards and even less are available within indus-
trial multibody simulation software. Multibody Systems (MBS) offer a challenging class [5] of
applications for these methods, since the resulting system equations are in the unconstrained
case ODEs which are often stiff or highly oscillatory. In the constrained case the equations
are DAEs of index-3 or less. Friction and impact in the MBS model introduce discontinuities
into these equations while coupling to discrete controllers and hardware-in-the-loop components
couple these equations to additional time discrete descriptions. Many of the developed numer-
ical methods have promising qualities for these types of problems, but rarely got the chance
to be tested on large scale problems. One reason is the closed software concept of most of the
leading multibody system simulation tools or interface concepts with a high threshold to over-
come. Thus, these ideas never left the academic environment with their perhaps complex but
dimensionally low scale test problems. In this talk we will present a workbench, Assimulo [4],
which allows easy and direct incorporation of new methods for solving ODEs or DAEs written
in FORTRAN, C, Python or even MATLAB and which indirectly interfaces to multibody pro-
grams such as Dymola [1] and Simpack [2], via a standardized interface, the functional mock-up
interface [3].

The Functional Mock-up Interface (FMI)

The Functional Mock-up Interface (FMI) defines a standard for model exchange with a small
set of functions for model interaction while at the same time it provides the necessary means
for simulation of complex hybrid dynamic models. The FMI is a result of the ITEA2 project
MODELISAR where the idea is that a modeling and / or simulation environment generates a



dynamic library or source files, written in C, which then can be exchanged between different
tools and connected to other models.

FMI 1.0 was released in January 2010 and has received a significant amount of attention
among vendors. There are currently 28 tools that support or plan to support the FMI. Example
of tools includes the commercial products Dymola and Simpack as well as the open-source
platform JModelica.org [8].

Assimulo

Assimulo is a workbench for solving ordinary differential equations formulated as first or second
order explicit ordinary differential equations, (1) and implicit ordinary differential equations
(differential–algebraic equations, DAEs), (2).

ẏ = f(t, y), y(t0) = y0 (1)

F (t, y, ẏ) = 0, y(t0) = y0, ẏ(t0) = ẏ0. (2)

Assimulo is written in the high-level programming language Python and combines a variety
of different solvers written in FORTRAN, C and even Python via a common high-level interface.
Assimulo consists of mainly two parts, problem definitions and solvers. The problem definitions
are not only limited to, for instance the right-hand-side of the problem, but they may also contain
event functions in order to support hybrid systems with state, step and time events. Additionally,
a problem definition can specify options related to the problem such as which states are actually
algebraic variables. The idea is to keep information related to a problem separate from the
solver. For instance, the tolerances, which are important quantities to control the solver, are
attributes of the solver class rather and are kept separate from the problem description.

The solvers interfaced to Assimulo consist of a variety of different codes. The codes include
explicit and implicit Runge–Kutta methods, Rosenbrock-Wanner methods, multistep methods
of Adams and BDF type, Newmark and HHT-α methods. It is planned to include even extrapo-
lation methods for DAEs. Some methods come with a continuous solution representation which
enables root-finding for event detection to correctly handle hybrid systems.

Problem
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Figure 1. Connection between the different problem formulations and the different solvers available in
Assimulo. The connection of the Functional Mock-up Interface to Assimulo is also shown.

The solver and problem classes are related to each other corresponding to Figure 1. The most
universal solver class handles implicit ODEs. Explict ODEs are thus transformed to their im-
plicit counterpart (residual formulation), when solved with an implicit solver. Correspondingly
overdetermined mechanical DAEs [6] are in this case transformed to fully determined DAEs by



using a GGL-stabilization technique [7]. Also, mechanical problems given as second order ODEs
are automatically transcribed to implicit ODEs, when exposed to a solver of that class.

Example

For racing applications, finding the maximal performance of the car is crucial. One method
to quickly estimate the impact on performance of a change to the vehicle setup is to solve for
the steady state limits under different driving conditions. Identifying a set of critical points
along a race track and calculating the maximum achievable speed for each point can give a good
indication on how the change will affect the lap time.

Figure 2. Dymola model of a student formula race car with 47 states.

In this example, a race car is modeled in Dymola, Figure 2, and exported to an FMI compliant
model. The latter is then imported into Python, by means of the JModelica.org platform, and
made available for simulation using the integrators in Assimulo. The result of a simulation is
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Figure 3. Results from a simulation of the race car driving on an eight shaped course. The left figure
shows the angle of the steering wheel while the right figure shows the position of the race car. The model
was generated as an FMU from Dymola and simulated in Assimulo using the solver CVODE.

shown in Figure 3.
This demonstrates the potential of the presented concept to connect industrial models from

acknowledged multibody software to a wide range of ODE and DAE integrators.
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Summary. A goal-oriented algorithm for error control in quantities of interest is developed for the
Quasi-Continuum method, accounting for both discretization and quadrature. The procedure has been
applied on the molecular statics problem pertinent to the homogenization of a graphene monolayer with
sparse defects.
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Introduction

Mechanical properties of materials result from different mechanisms on vastly separated length
scales. In order to consider virtual materials (not physically manufactured), or in order to
predict complex behavior, on a higher length scale when the physics is better understood on
a lower scale, homogenization (coarse-graining) is an important tool. The homogenization of
atomistic systems can be used to derive continuum properties of materials, thus replacing the
need for empirical continuum models. When there is a large separation of scales, i.e. when
the length scales of the sought continuum solution by far exceeds the atomistic length scale,
computational homogenization can be adopted, cf. [1]. Using this approach, the continuum
stress-strain response can be obtained implicitly by considering a representative unit lattice
(RUL). In the case of scale-mixing, i.e. when the continuum scale and the atomistic scale needs be
resolved concurrently in the spatial domain, one popular method is the Quasi-Continuum (QC)
method, cf. [2, 3]. It allows for coarse-graining of atomistic response in terms of interpolation
on a ”finite-element-type” mesh. The QC method is an approximation of the atomistic problem,
which can thus be combined with a homogenization technique.

In this contribution we establish the macro-scale response using atomistic-to-continuum ho-
mogenization of a molecular statics problem (0 Kelvin temperature). In particular, we are
interested in computing the representative response for different imperfections in a lattice. To
this end, we wish to consider relatively large lattices on the atomistic scale. In order to facilitate
such an analysis, we proceed along the lines of, e.g., [4] and device a goal-oriented adaptive QC
procedure for solving the atomistic problem inside the RUL. Within the goal-oriented framework
it becomes natural to consider the macro scale (continuum) stress as the goal-quantity for which
the error is quantified and controlled.

The model problem

We consider the discrete problem of relaxing all atoms i ∈ I inside a window, while all atoms
in the surrounding (Cauchy-Born) frame CB are prescribed according to a macroscopic (contin-
uum) deformation gradient F̄ , cf. figure 1. The potential energy of the system is defined by
suitable inter-atomic potentials as V ({xi}). The molecular statics problem can be defined by
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Figure 1. Illustration of the representative unit lattice containing a defect, with interior relaxed atoms
(I) inside a Cuchy-Born frame (CB) with assumed homogeneous deformation.

the stationarity of the potential energy w.r.t. the unconstrained atom positions {xi}i∈I . The
resulting strong form of the problem thus reads

f i = 0 ∀i ∈ I, xi = F̄ ·Xi ∀i ∈ CB, (1)

where f i := dV/dxi and Xi is the reference positions of atom i. For a given solution, the
macroscale continuum stress can be evaluated as

P̄ =
1

|Ω�|
∑

i∈CB

f i ⊗Xi, (2)

where |Ω�| represents the reference volume occupied by the RUL.
We state the nonlinear problem in matrix notation as

f(x) = 0, (3)

where f and x are the collected tensors f i and xi, respectively, for all atoms i ∈ I.

The Quasi-Continuum method

The QC method is introduced in two steps. First, we consider the restriction of atom displace-
ments in terms of the ”representative atoms” as a model reduction, i.e., we describe the positions
of all atoms in terms of discrete weights and the placements of certain so-called representative
atoms. In short, the approximation can be described as the model reduction

xS = S x
R → f

R := S
T
f(xS) = 0, (4)

where xS is the placements of all the atoms, xR are the position of the representative atoms, S
is the typical model reduction matrix and f

R represents the reduced forces.
More specifically, the model reduction matrix S is typically built up by considering a linear

interpolation of all atoms within an ”element” being the region which vertices are the repre-
sentative atoms. Based on this approximation, while accounting for the exact summation of all
the bond-energies, we are able to compute goal-oriented error estimators in a straight-forward
fashion based on an adjoint (dual) problem pertaining to the chosen output of interest. This
computable error estimator pertains to a discretization error in the finite element method.

The second step in the QC method is that of quadrature. For large QC elements, i.e. for
a large amount of atoms whose placements are governed by the same representative atoms, the



bond energy and its derivatives are typically computed using an appropriate discrete quadrature.
In this presentation, we shall discuss different approximations where atoms inside a radius
r from each representative atom is considered; namely force-based and energy-based cluster
approximations. This approximation generates a model error (in addition to the discretization
error discussed above) by introducing the approximation f(y) ≈ f

(r)(y) for any vector y. In
summary, the approximate problem is stated as

f
R,(r) := S

T
f
(r)(xS,(r)) = 0, (5)

from which the approximate solution xS,(r) = S x
R
(R) can be solved for.

A posteriori error estimation

Using the goal-oriented error estimation technique, cf. [6], the error in a quantity of interest can
be estimated as

Q(x)−Q(xS,(r)) ≈ (x∗)T RS + (x∗)TR(r) (6)

where x
∗ is the dual solution, and the discretization and model residuals are

RS = −f
(r)
, R(r) = f

(r) − f, (7)

respectively. The derivation of the estimator relies on linearization of the problem as well as the
quantity of interest together with the formulation of the dual problem, stated as

K
T
x
∗ =

dQ

dx
, (8)

where K := df/dx.
In this contribution, we consider the macroscale stress P̄ as the quantity of interest and com-

pute approximate error estimators. In addition to computing the dual problem approximately,
we also introduce an hierarchical approach, whereby we restrict the residuals to a refined QC-
reduction

RS, R(r) →
(
S̃

)T
RS,

(
S̃

)T
R(r) (9)

(pertaining to the enriched approximation x ≈ S̃ x̃). Finally, the model residual R(r) is evaluated
approximately by comparing to the forces computed for larger radii of the cluster approximation,
i.e. f ≈ f

(r+∆r).
We remark that the error estimator is well suited for individual adaptation of the discretiza-

tion (S) and quadrature (r), thus allowing for efficient overall error control.

Numerical investigations

As a model problem, we consider a mono-layer of graphene. The homogenization of the macro-
scale membrane forces, including initial relaxation, is considered for defective graphene lattices.
The 0 Kelvin condition is considered by omitting lattice vibration and the Carbon-Carbon energy
bonds are modeled via the Tersoff-Brenner potential, cf. [5], which involves next-nearest neighbor
couplings. Preliminary results for adaptive QC-discretization, considering the discretization
error pertinent to the model reduction, are presented in figure 2.

Future developments

Future developments include periodic boundary conditions on the RUL and the extension of the
method to 3D material systems such as, e.g., crystalline metal.
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Figure 2. Example of an adaptive Quasi-Continuum mesh (left) and the convergence of the error in the
macroscale stress (the quantity of interest) for uniform and adaptive mesh refinement (right).
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for rigid body rotations with implicit constraints
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Summary. A conservative time integration algorithm for rigid body rotations is presented in a purely
algebraic form in terms of the four quaternions components and the four conjugate momentum variables
via Hamilton’s equations. The introduction of an extended mass matrix leads to a symmetric set of eight
state-space equations where constraints are embedded without explicit use of Lagrange multipliers. The
algorithm is developed by forming a finite increment of the Hamiltonian, which defines the proper selection
of increments and mean values that leads to conservation of energy and momentum. The accuracy and
conservation properties are illustrated by examples.
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Introduction

Time-integration of rigid body motion is of interest in numerous applications in engineering.
Conservative integration procedures derived from an integrated form of the equations of motion
are particularly attractive since they can be designed to provide energy and momentum con-
serving schemes, see e.g. [1] or [2]. However, the integration of finite rotations is complicated by
the fact that they do not obey simple vector addition rules.

In this paper, a conservative time-integration algorithm for rigid body rotations is presented
in terms of the four-component unit quaternions as this allows for a purely algebraic format
without singularities. The governing equations are derived from the finite increment of the
Hamiltonian in terms of the quaternion parameters and their four-component conjugate mo-
mentum vector yielding a symmetric set of eight state-space equations similar to [3]. However,
the present formulation illustrates that the Lagrange multiplier - initially introduced in con-
nection with the quaternion normalization constraint - can be eliminated by introduction of a
projection operator in front of the load potential gradient. Furthermore, the formulation makes
use of an extended mass matrix and role of the auxiliary inertia parameter is identified as an
enforcing multiplier on the normalization constraint.

Equations of rigid body motion

Unit quaternions or Euler parameters are characterized as a four component quantity composed
by a scalar part q0 and a vector part q in the form

qT = [q0, q
T ]. (1)

Only three independent parameters are required for describing three-dimensional rotations, and
thus the four quaternion parameters are redundant and satisfy the normalization constraint

qTq− 1 = 0. (2)



A particularly attractive feature of the quaternion representation of rotations is that the angular
velocity is a bi-linear form in terms of the quaternion q and its time-derivative q̇, hence the
kinetic energy can be expressed in the bi-quadratic format

T = 1
2 ΩΩΩ

TJΩΩΩ = 1
2 q̇

T M(q,q)q̇, (3)

Here, an augmented inertia matrix J = diag[J0,J ] is introduced with the auxiliary parameter
J0 > 0. This leads to a non-singular 4 × 4 mass matrix M(q,q) = 4Q(q)JQ(q)T where
Q(q) denotes the orthogonal 4× 4 matrix associated with quaternion pre-multiplication with q.
Several proposals for a specific value of J0 based on physical reasoning have been given in the
literature, e.g. [3]. However, the following examples demonstrate its role as a multiplier on the
normalization constraint (2) rather than a physical parameter.

The conjugate four-component momentum vector follows as the partial derivative of the
kinetic energy T with respect to q̇ as

p =
∂T
∂q̇T

= M(q,q) q̇, (4)

and is easily shown to satisfy the following orthogonality constraint

qTp = 0. (5)

This can be used to prove the alternative representations of the kinetic energy

T = 1
2 p

T M−1(q,q)p = 1
2 q

T M−1(p,p)q, (6)

where the roles of q and p can be interchanged without changing the value of the total product.
Hamilton’s equations is a convenient starting point for deriving the equations of motion for

rigid body rotations and can be expressed as the two first-order differential equations

q̇ =
∂H
∂pT

, ṗ = − ∂H
∂qT

. (7)

In the present formulation it is advantageous to use an augmented form of the Hamiltonian,
where the normalization constraint (2) initially is included via a Lagrange multiplier λ

H = T (q,p) + V(q) + λ(qTq− 1), (8)

and where it is assumed that the external forces can be derived from a potential V(q).
The equations of motion then follow by differentiation of (8) using either of the bi-quadratic

expressions for the kinetic energy (6). Hereby the kinematic and dynamic equations of motion
are obtained as

q̇ = M−1(q,q)p (9a)

ṗ = −M−1(p,p)q − ∂V/∂qT − 2λq. (9b)

In addition, differentiation with respect to the Lagrange multiplier gives the normalization con-
straint (2).

A crucial step in the present formulation is that the Lagrange multiplier can be eliminated
by using the time-derivative of the orthogonality condition (5) given by

qT ṗ+ pT q̇ = −qT
(
∂V/∂qT + 2λq

)
= 0. (10)

This determines the Lagrange multiplier and substitution into the dynamic equation (9b) yields

ṗ = −M−1(p,p)q −
(
I − qqT

qTq

)
∂V
∂qT

. (11)



It is seen that the effect of eliminating the Lagrange multiplier essentially corresponds to in-
troducing a projection operator in front of the external potential gradient that eliminates any
component proportional to q. Hereby the time-derivative of the orthogonality constraint (5) is
satisfied for any external potential V. In addition, it is easily verified that the time-derivative of
the normalization constraint (2) is contained in the kinematic equation (9a) by pre-multiplication
with qT and utilization of the orthogonality condition (5).

An energy and momentum conserving time-integration algorithm can be obtained by deriv-
ing the discretized form of the equations of motion via the finite increment of the augmented
Hamiltonian over the time interval ∆t. The kinetic energy (6) is a symmetric quadratic form,
and thus the increment can be expressed as twice the product of the increment of the first
factor and the mean value of the other factor. The potential gradient is introduced via its
finite derivative ∂V∗

/∂q, and the Lagrange multiplier is eliminated by using the incremental
form of (5) analogous to the equivalent continuous system. This ensures, that the two original
time-dependent constraint conditions are contained in the discrete equations of motion via their
increments, and thus, if the constraints are satisfied initially, they will also be satisfied at any
later time step without recourse to Lagrange multipliers.

Examples

The accuracy and conservation properties are illustrated by considering two examples: First a
freely rotating box is considered. The geometry and parameters are given in [2], and the motion
is initiated as unstable rotation around its intermediate axis of inertia with a small perturbation.

The local components of the angular velocity are illustrated in Fig. 2. Initially the box
rotates around the global x3-axis. At time t = t1 the box tips over approaching a preliminary
state with rotation about the initial rotation axis turned upside down, and at time t3 the box
returns to its initial configuration. This behavior is repeated in a periodic manner. While
the kinetic energy, the global components of the angular momentum and the magnitude of the
local angular momentum are conserved within a relative error of 10−12, the algorithm exhibits a
second-order period error. This can be evaluated as the difference between two turning points in

t = t0 t = t1 t = t2 t = t3

Figure 1. Motion of box at selected time steps, ∆t = 0.01.
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Figure 2. Local angular velocity components Ω1 (—), Ω2 (- -), Ω3 (-·-). (a) ∆t = 0.1, (b) ∆t = 0.01.
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Figure 3. (a) Configuration of rotating top. (b) Relative period error. Precessing top (+), Fast top (×),
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Fig. 2(a) and 2(b) corresponding to a shortening in time scale of approximately 8% when using
∆t = 0.1. Furthermore, simulations illustrate that the error on the normalization constraint (2)
decreases roughly in proportion to the increase in J0, while the orthogonality constraint (5) is
satisfied within the numerical accuracy irrespective of value of J0.

The second example considers the motion of a top in a gravitational field with one point
fixed. The motion is characterized in terms of the nutation angle θ, the precession angle ϕ and
the spin angle ψ as illustrated in Fig. 3(a). The dimensions correspond to the ones used in [3],
and two types of initial conditions have been applied: A fast top, i.e. 2V/T < 0.05, and a
purely precessing top, see e.g. [4]. For both cases the energy and the spatial component l3 of the
angular momentum are conserved within the iteration tolerance when the projection operator
is included in front of the gradient of the gravitational potential in (11), and the second-order
convergence is still retained in the presence of an external potential as illustrated in Fig. 3(b).

Conclusions

An energy and momentum conserving time-integration algorithm for rigid body rotations has
been presented in terms of the four quaternions parameters and their conjugate momentum
variables. It is illustrated that the two constraint conditions associated with the redundant
parametrization are embedded in the equations of motions and do not require special attention
apart from a projection of the external potential gradient. Furthermore, the role of the auxiliary
inertia parameter has been revealed as a weighting factor on the normalization constraint and
should be chosen large compared to the physical moments of inertia in order to ensure accurate
satisfaction of the constraint condition.
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Summary. The research refers to free vibrations off non-homogeneous (weakened with holes) isotropic
and non-isotropic elastic thin plates. The purpose of the study is to examine the effect of shape, area,
position, number and proportions of the holes, ratio of the plate sides and boundary conditions on free
vibrations of plates. The plates are considered to be thin enough to apply 2D Kirchhoff-Love theory.
Mathematically vibration problems for membranes and plates with cutouts are reduced to solution of
the eigenvalue problems for nonsimply connected domains, which are solved in the research with analytic
(when possible), asymptotic and numerical methods.
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Square plate

We start our study with a square plate weakened with a central square hole. Let the plate side
length be a and the hole side length be d, w(x, y) denotes the plate deflection. In [1] the formula
for free vibration frequencies for simply supported rectangular plate with a rectangular hole has
been reported. The deflection was represented in the form

w(x, y) = f sin(αx) sin(βy) (1)

, where α = mπ/a, β = nπ/b. Then Rayleigh-Ritz method was applied to get the following
formula for natural frequencies

ω2 =
D(s(S − S1)− c/(4αβ)(2ρ+m1m2) + 2(1− µ)αβρ

γh(S − S1 − 1/(4αβ)(2ρ+m1m2)
, (2)

where c = (α2 + β2)2, S = ab — the plate area, S1 = (x2 − x1)(y2) − y1 — the hole area,
m1 = sin 2αx1 − sin 2αx2, m2 = sin 2αy1 − sin 2αy2, ρ = m1(y2 − y1)β +m2(x2 − x1)α, D —
the plate cylindrical stiffness, γ — the plate density, h – the plate thickness. x1, x2, y1, y1 — the
coordinates of the hole vertices. It is easy to check that for a homogeneous plate one gets the
classical formula for natural frequencies of a rectangular plate [2].

It appears that this formula well agrees with numerical results for rectangular plates, but for
some cases badly agrees with numerical results for a square plate. In Fig.1 we plot the values for
several low free frequencies obtained with formula (1) (dashed lines) and by FEM (solid lines)
vs the hole size. For homogeneous square plate with symmetric boundary conditions the free
frequencies are double. The hole makes some frequencies to split and some not. It depends on
the wave number of the vibration mode. The frequencies split when both wave numbers are
both either different odd or different even numbers. In this case formula (1) works especially
badly since the one term representation of the deflection (1) is insufficient.

It may be proved that for small hole area the dependence of free frequencies on the hole side
length is

ω = ω0 + ω1d
2 + ω2d

4 + · · · ,



Figure 1. Free frequencies of a free supported square plate vs hole size

where ω1 = ±Λ ̸= 0, if n ̸= m and n,m are both even or odd.

Rectangular plate

For rectangular plate we study the effect of the hole ratio and multiple cut-outs on free frequen-
cies. Consider the simply supported rectangular plate with the side length ratio 2:1, the hole
area is constant S1 = 0.0625, the hole side ratio a/b =

√
1 + ε2, where ε = 0 for the square

hole and ε < 0 for the hole stretched on the y-direction. The results are plotted in Fig.2 The

Figure 2. Free frequencies of a free supported rectangular plate vs hole ratio

hole ratio effects the most significantly on the higher frequencies when the difference between
vibration mode numbers is large.

For the multiple cut outs the effect of the hole numbers is complex. We consider the case
when the total holes area is constant. Consider simply supported plate with the side ratio 2:1.
For that for small total area the value of the fundamental frequency converges to some constant
value when the number of holes increases. That is valid for holes set either in x (solid lines) or
y (dashed lines) directions. For larger holes area the free frequency decreases significantly with
the number of holes in x directions since the cut outs for large hole numbers practically cut the
plate. The new “edge” becomes weakly supported that makes the frequency goes down.



Figure 3. Free frequencies of a free supported rectangular plate vs hole numbers

Circular plate

For circular plate we study the effect of the hole area size and multiple cut-outs on free frequen-
cies. Consider the clamped circular plate with the radius R and the central circular hole with
area S∗. In this case the analytical solution may be obtained in Bessel functions. The effect of
the hole size on four lower frequencies obtained analytically (red dots) [5] and with FEM (solid
lines) is presented in Fig.4. For large values of the hole area all frequencies increase with the hole
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Figure 4. Free frequencies of a clamped circular plate vs hole size

area. It means that the loss of the plate mass plays more important role than the loss on the
plate stiffness. But for small values of the hole area some frequencies slightly decrease. There is
no significant difference (at least for the lower frequencies) between the results obtained for the
circular, elliptic or multiple holes of same total area, if the area is relatively small. However the
split of the initially double frequencies happens.

Elliptic plate

For free frequencies of the homogenous elliptic plate the approximate formula was obtained in
[3]. The problem can be solved using Mathieu functions [4]. Here we study the effect of the hole
area size and the shape of the hole and discuss only the results for the clamped elliptic plate
with the central circular hole of radius r. Since the elliptic plate with the circular hole is not
symmetric system all of the frequencies are simple. However for the large values of the hole size
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Figure 5. Free frequencies of a clamped elliptic plate vs hole size

the coupled frequencies merge. Before that the odd frequencies decrease and the even increase
with the hole area. For elliptic plate with central elliptic hole, the frequencies grow faster when
the hole and the plate ellipses are coaxial.

Conclusions

The most important and interesting is the effect of the area of a hole on natural frequencies
and modes of free vibrations. It appeared that the natural frequencies may either increase
or decrease with the hole area since the cutout affects both the stiffness and the mass of a
plate. Special attention is devoted to frequencies those are doubled for homogeneous plates,
for example, frequencies of the square plates with similar boundary conditions on all edges.
Depending on the wave numbers frequencies may split (or may not) as the hole area increases.
For small cutout area the asymptotic formula for natural frequencies has been obtained and the
asymptotic results have been compared with the results of numerical analysis. The values of the
natural frequencies appear to be very sensitive to proportion of the hole and plate. The change
of the ratio may cause the switch of the vibration modes. For elliptic plates, stretching the plate
and the hole along different axes makes frequency to go up faster, then stretching the plate and
the hole along one axis.
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Wave propagation and dispersion in microstructured solids
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Summary. A series of numerical simulations is carried on in order to understand the accuracy of
dispersive wave models for microstructured solids. The computations are performed by means of the
finite-volume numerical scheme, which belongs to the class of wave-propagation algorithms. The dis-
persion effects are analyzed in materials with different internal structures: microstructure described by
micromorphic theory, regular laminates, laminates with substructures, etc., for a large range of material
parameters and wavelengths.

Key words: microstructured solids, wave dispersion, numerical simulation

Introduction

Microstructural effects are observed in wave propagation in solids when the wavelength of a
travelling signal becomes comparable with the scale of material heterogeneities. A vivid example
of the influence of microstructure on wave propagation is the wave dispersion that profoundly
alters both the shape and the velocity of propagating waves. The most recognizable signature
of the wave dispersion is that the phase and group velocities of propagating waves differ from
each other. The dispersive effects of wave propagation in microstructured solids become non-
negligible for sufficiently high frequencies.

Wave propagation in heterogeneous solids has been a subject of considerable research for
many years. However, micro-structural details are rarely taken into account in large-scale struc-
tural dynamics or dynamic impact simulations. The reason is the enormous complexity of wave
phenomena in highly heterogeneous media. There exist two alternative approaches to the de-
scription of microstructural effects on wave propagation in solids. The first one is focused on
the determining so-called effective properties of a material. It is expected that these averaged
or smoothened properties reflect in some global sense the response of specimens of the material
to external loads. Another approach to involve microstructural effects into the description of
wave propagation is provided by higher order or generalized theories of elastic continua. These
theories have been proposed in 1960s [1, 2], and later clarified, classified, and extended [3]. The
well-established framework for higher grade and higher order theories is, however, accompanied
by too many usually undetermined phenomenological coefficients. Nevertheless, dispersive wave
equations in solid mechanics are based either on a homogenization procedure or on a generalized
continuum theory.

Dispersive wave models

Wave propagation in a homogeneous medium is a well known phenomenon in mechanics. The
corresponding one-dimensional wave equation is a classical example of hyperbolic partial differ-



ential equations in textbooks
utt = c2uxx, (1)

where u is the displacement, c is the elastic wave speed and subscripts denote derivatives. The
wave equation (1) possesses no dispersion. Considering a harmonic wave

u(x, t) = û exp [i(kx− ωt)] (2)

with wave number k and frequency ω, we obtain the dispersion relation

ω2 = c2k2. (3)

It is easy to see that here the group velocity ∂ω/∂k is equal to the phase velocity c, which means
that no dispersion is present.

To describe wave propagation in heterogeneous materials reflecting dispersion effects, sev-
eral modifications of the wave equation are proposed. The simplest generalization of the wave
equation is the linear version of the Boussinesq equation for elastic crystals (cf. [4])

utt = c2uxx + c2l2A11uxxxx, (4)

where l is an internal length parameter and A11 is a dimensionless coefficient. The dispersion
relation is obtained by using again the harmonic wave solution (2)

ω2 = c2k2 − c2l2A11k
4. (5)

This dispersion relation is nonlinear, which means that phase and group velocities are different.
Another generalization of the wave equation is the Love-Rayleigh equation for rods accounting
for lateral inertia (cf. [5], p.428)

utt = c2uxx + l2A12uxxtt, (6)

where A12 is again a dimensionless constant. The corresponding nonlinear dispersion equation
has the form

ω2 = c2k2 − l2A12ω
2k2. (7)

A more general equation combining the two dispersion models gives

utt = c2uxx + c2l2A11uxxxx + l2A12uxxtt. (8)

Similar model proposed by Engelbrecht and Pastrone [6] introduces additionally a contribution
of microstructure on slowing down of the propagation velocity c2A

utt =
(
c2 − c2A

)
uxx + c2l2A11uxxxx + l2A12uxxtt. (9)

Accordingly, it has the dispersion relation in the form

ω2 = (c2 − c2A)k
2 − c2l2A11k

4 − l2A12ω
2k2. (10)

Due to three additional terms combined, the last model has larger dispersion properties.
In its turn, the Maxwell-Rayleigh model of anomalous dispersion [4] introduces in consider-

ation the four-order time derivative

utt = c2uxx +
l2A22

c2
(
utt − c2uxx

)
tt
. (11)

Four-order time derivatives are included also in the ”causal” model for the dispersive wave
propagation proposed by Metrikine [7]

utt = c2uxx − c2l2A11uxxxx + l2A12uxxtt −
l2

c2
A22utttt, (12)



and in the model based on the Mindlin theory of microstructure [8], which can be represented
in the form

utt =
(
c2 − c2A

)
uxx + l2P

(
utt − c2 uxx

)
xx

+
l2

c2
Q
(
utt − c2 uxx

)
tt
. (13)

Here P and Q are dimensionless constants. It is clear hat corresponding dispersive relations are
nonlinear.

As it is shown recently [9], the last two models for dispersive wave propagation can be unified
as follows

utt =
(
c2 − c2A

)
uxx + l2P

(
utt − c2 uxx

)
xx

+
l2

c2
Q
(
utt − c2 uxx

)
tt
+ c2l2Ruxxxx. (14)

It is clear that the unified model (14) generalizes both approaches (12) and (13).

Numerical simulations

In order to understand the accuracy of the dispersive models, a series of numerical simulations
is carried on. The computations are performed by means of the finite-volume numerical scheme,
which belongs to the class of wave-propagation algorithms [10]. Details of the numerical scheme
can be found in [11]. The dispersion effects of 1D waves are demonstrated in materials with dif-
ferent internal structures: microstructure described by micromorphic theory, regular laminates,
laminates with substructures, etc.

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 3600  3800  4000  4200  4400  4600  4800

D
im

en
si

on
le

ss
 s

tr
es

s

Space steps

Microstuctured medium
Periodic medium

Figure 1. Deformed shape of an initially Gaussian stress pulse in periodic and microstructured solids.

One of the important problems is to compare the results obtained by means of various models.
As an example, the comparison of a direct numerical simulation of a Gaussian stress pulse
propagation along the elastic bar containing an inhomogeneous part constructed by periodically
alternating layers and a computation based on the Mindlin-type microstructure model (14) is
shown in Fig.1.

As one can see, the effect of microstructure in the model manifests itself only locally, whereas
the dispersion in the periodic laminate is non-local due to consecutive reflections. In principle,
the localization of the microstructure influence is expected, since the presence of the microstruc-
ture is invisible in the absence of loading.



In order to get matching results, one should critically revise the free energy function in
the micromorphic theory for adequate modelling of interaction forces between macro– and mi-
crostructures. In the considered case, the pulse length is 5 times longer than the inhomogeneity
size. This particular case was chosen because it clearly shows the synergy of the two microstruc-
ture models unified in [9]. The matching results are obtained by modifying the coupling between
macro- and microstructures including also the dependence on gradients of the internal variables.
The correlation between models is analyzed in detail for a large range of material parameters
and wavelengths.

The research was supported by the EU through the European Regional Development Fund
and by the Estonian Science Foundation (grant No. 8702).
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Summary. This paper describes the phenomena of the sensitivity blowup of the elastic energy with
respect to the uncertain Poisson’s ratio on the incompressibility limit. Moreover, we present two classes
of boundary conditions for which the behavior of the elastic energy increment on the incompressibility
limit is significantly different. The main tools to derive the results are the so called functional a posteriori
error estimates.
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Introduction

In real life simulations, the material data is often generated by measurements or the material
itself is not homogeneous as in, e.g., geomechanics, and exact parameters are difficult to define.
This motivates us to study the errors generated by incompletely known data.

We consider the linear elasticity model defined by equations

−divσ = f , in Ω ⊂ Rd (1)

σ = Lε(u), in Ω (2)

ε(u) = 1
2

(
gradu + (gradu)T

)
, in Ω (3)

u = g , on ΓD (4)

where in the constitutive relation (2) the elasticity tensor L is not completely known. In the
case of isotropic material, L can be expressed with the help of two material parameters (Lame
constants):

Lε(u) = λdivuI + 2µε(u).

Another pair of material parameters often used in engineering is the Young’s modulus E and
the Poisson’s ratio ν, which present λ and µ in the form

λ =
Eν

(1 + ν)(1− 2ν)
, µ =

E

2(1 + ν)
.

In our study, we are concerned on the incompletely known Poisson’s’s ratio ν ∈ [0, 1
2). In

particular, we are interested on the behavior on the incompressibility limit ν → 1
2 . For simplicity,

we assume that f = 0 and the elastic energy is

Eν(w) :=
1

2

∫
Ω

Lνε(w) : ε(w) dx.



We use the superscript ν to denote the dependence of various quantities on the Poisson’s ratio.
The set of admissible displacements for the problem (2)–(4) is

Vg := {w ∈ H1(Ω,Rd) |u = g , on ΓD},

where the boundary conditions are satisfied in the sense of traces. The variational form of the
problem is to find uν ∈ Vg such that

Eν(uν) = min
w∈Vg

Eν(w).

Lower estimate of the energy increment

Our main goal is to estimate energy sensitivity with respect to the ν and to show that for
some classes of linear elasticity problems exact solutions are extremely sensitive with respect to
the small variations of ν. We compare the energies of two solutions uν and uν+δ, which are
generated by problems, where Poisson’s ratios are ν and ν + δ, respectively. The quantity of
interest is the energy increment, i.e.,

4ν
δE :=

Eν+δ(uν+δ)− Eν(uν)

δ

and it’s normalized counterpart
4ν
δE
Eν

.

In the following theorem, we present a lower bound for the normalized energy increment.

Theorem 1 Let ug ∈ V be a function with the minimal divergence norm, i.e.,

‖divug‖ = min
u ∈Vg

‖ divu‖.

Then, for sufficiently small positive δ,

4ν
δE ≥

1

2
Cν1 ‖ divug‖2 − Cν2 ‖ε(ug)‖2.

Since the right hand side does not depend on δ, we can pass to the limit, δ → 0,

∂Eν

∂ν
≥ 1

2
Cν1 ‖ divug‖2 − Cν2 ‖ε(ug)‖2,

where

Cν1 :=
4(1 + 2ν2)

(5 + 2ν)(1 + ν)(1− 2ν)2

Cν2 :=
1

(1 + ν)2

(
1 +

(1 + 2ν2)(1− 2ν)

d(2 + ν + 2ν2)

)
.

Proof of Theorem 1 can be found from [2]. It exploits functional a posteriori error estimates,
which are widely discussed in [3, 4] and references therein. We note that if ‖div ug‖ = 0, the
elastic energy is bounded for all ν ∈ [0, 1

2). Indeed,

Eν(uν) ≤ Eν(ug) =
1

1 + ν

(
ν

1− 2ν
‖ divug‖2 + ‖ε(ug)‖2

)
.

Since ‖divug‖ = 0, we find that

Eν(uν) ≤ Eν(ug) =
1

1 + ν
‖ε(ug)‖2.



Concluding remarks

Theorem 1 indicates that if ‖ div ug‖ > 0, the sensitivity of the energy with respect to the
Poisson’s ratio tends to infinity on the incompressibility limit. It is important to realize that
this observation is relevant already before the asymptotic limit. The uncertainty of the Poisson’s
ratio may generate an accuracy limit for the solution that makes it impossible to obtain results
by desired engineering accuracy. We want to emphasize that the accuracy limit generated
by the incompletely known data is not related to any numerical method (it is another topic
to devise numerical methods that are able to produce high quality approximations for nearly
incompressible materials, see, e.g., [1]), but is a fundamental property of the problem itself.
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Summary. New experimental tools are now enabling analysis of the fundamental mechanics of granular
media at the key controlling scale, i.e., that of the grains. X-ray tomography imaging during loading,
linked with volumetric image analysis, already permits analysis of continuum strain and porosity fields,
individual grains kinematics and the structural organisation of the contacting grains. New developments
are now leading towards the detection and, eventually, quantification of force transfer through real 3D
granular materials, such as sand. These different approaches and example results are presented including
original results on intra-granular strain measurement.
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Introduction

Granular materials, such as sand, are complex systems in which relatively simple building blocks
(i.e., contacting particles - sand grains) interact collectively to produce structural evolution
over a range of different spatial and temporal scales from contacting-particle interactions to
intermediate (meso-) scale communication and structure formation (e.g., localised deformation
such as shear bands) to longer-range pattern formation. These kinematic effects are associated
with the build-up of stress and possible relaxation via structural reorganisation and particle
damage. Accurate simulation of the mechanical behaviour of granular systems is, thus, non-
trivial and remains a quite open challenge. However, many standard (and not-so standard)
modelling approaches exist, but there is also a need for experimental data, at the appropriate
scales, to identify and characterise the important mechanisms controlling the material responses,
to provide ground truth and to identify model input parameters. Unfortunately, traditional
experimental methods fall short of providing the necessary data for these ambitious modelling
approaches, as they provide information relating to the macro-scale, “averaged” response and no
details on internal structure evolution or deformation mechanisms, e.g., shear-band development,
individual grain kinematics and force-transmitting contact distributions.

An overview of different recent experimental analyses will be presented that provide ex-
tended insight into the mechanics of granular media (specifically sand) over a range of scales;
from the sample-scale down to that of the grains and grain-contacts and further down to the
internal deformation of the grains themselves. The techniques used are “full-field” approaches
involving in-situ x-ray micro-tomography, 3D-volumetric digital image analysis/correlation and
grain tracking, in-situ 3D x-ray diffraction and in-situ, spatially-resolved neutron diffraction.
These approaches permit characterisation of phenomena including dilation, grain rotation and
grain-contact evolution associated with strain localisation plus new data and analyses that are
now providing new insight into inter-granular force transfer mechanisms.



Full-field measurement of strain localisation, dilation and grain kinematics

In experimental analysis of sand, x-ray tomography has been used since the early 1980s to
reveal localisation patterning and answer key questions on concepts of “critical state”; see [2] for
a review. In these early studies the image resolution possible was such that the studied sands had
to be considered as continua in both the imaging sense - grains were not seen individually and
a volume average of grains and porosity was given at each voxel (the 3D version of pixels) - and
the mechanics sense - any discrete or strongly-discontinuous deformation was blurred out by the
spatial resolution. Such approaches provided good insight into emergent structures associated
with deformation, e.g., localisation patterns (if accompanied by a sufficient density change), but
less into the underlying mechanisms.

X-ray tomography has advanced steadily, since its advent in the 1970s, such that now micro-
tomography and sub-micron tomography is possible using both synchrotron and laboratory fa-
cilities. For sands, whose grain-sizes are in the range of 100s µm (and bigger) micro-tomography
with resolutions of µm to 10s µm3 scale now allows sand to be studied as a discrete material,
i.e., one made up of individual, discrete particles. For example, [7] presented micro tomography
images of sand grains inside a shear band, showing organised structures that had only previously
been observed in 2D thin sections. In work by [5][6][1] x-ray micro-tomography imaging per-
formed during triaxial compression tests on samples containing about 50 000 to 100 000 grains
of sand, imaged with voxel sizes of around 14 x 14 x 14 µm3, permitted clear identification of
individual grains (with, in the order of, 5000 voxels per grain). Analysis of these data using
4D digital image analysis and correlation techniques (including both continuum and discrete
3D-volumetric Digital Image Correlation, DIC) allowed extraction of quantitative measures of
deformation phenomena and structural evolution such as porosity evolution, grain-contact net-
work development, tensor strain fields and individual grain kinematics.

Force transfer analysis

In recent years there has been much discussion of force transmission in granular media and, in
particular the development of “force chains” and their importance in controlling the mechanics
at the larger scale (e.g., [9]). Force chains can be thought of as spatially continuous lines of
forces between contacting grains, by which the boundary forces are transmitted though granular
masses. These have been observed in experiments using photoelastic materials (e.g., [3]) and in
discrete element method (DEM) simulations (e.g., [9]). The buckling of such force-chains has
been cited as a key mechanism associated with localised deformation and failure of granular
bodies (e.g., [7]). To understand such micro-scale mechanisms in granular materials requires
the ability to measure (i) the kinematics (particle displacements and rotations) (ii) the force
distribution through the granular assembly. Whilst insight into both can be gained from DEM
simulations, these are just models and can, therefore, only help in the absence of real experimen-
tal data. Photoelasticity experiments can be also very insightful, but, whilst “real”, are highly
simplified. For real granular materials (i.e., sands in this case), the first challenge, of charac-
terising full grain kinematics, can now be addressed as described above. The second challenge,
i.e., measuring force distributions in real (3D) materials remains open, but new work is heading
towards this possibility, as described below.

Whilst, forces cannot be measured, they might be inferred from strains. In physics, various
techniques, exploiting x-ray or neutron diffraction, have been proposed to measure crystal lattice
strains that might be related to the forces acting on them. [4] demonstrated the use of neutron
diffraction measurements over a small volume of grains in a larger sample; this could be extended
for spatial mapping in a “continuum’ type analysis. Other techniques exist that might permit
grain-resolved grain-strain measurements, namely three-dimensional x-ray diffraction (3DXRD)
([8]). First results of 3DXRD applied to granular materials were presented by [4], but challenges
associated with the geologic deformation history of real sand led to a new set of experiments



(a) (b) (c)

(d)

Figure 1. Preliminary results from combined 3DXRD and x-ray tomography measurements of an ‘ideal”
sand under 1D compression: (a) Radiography image through the upper fifth of the sample; (b)volume
rendering of the 3D tomography image at one stage of loading; (c) Principal strain vectors for 12 loading
stages up to 70 N and 3 unloading stages back to 28 N plotted at the grain centre-of-mass positions at
each load step for the grains in (b); (d) Zoom into a region of radiography images through the sample,
under a compressive load, showing the contacting grains and heterogeneous strain field signature - the
image sequence is taken at 0.01◦ interval sample rotations about an angle where “extinction” due to
Bragg diffraction was observed (grain size is about 400 µm and in total there were 95 grains, sample
diameter was 1.5 mm and height 5.21 mm)

using a “perfect” sand made from carefully eroded 1 mm cubes of single crystal quartz. These
experiments, carried out recently on beamline ID11 at the ESRF in Grenoble, France, involved
loading of about 100 such grains in 1D (œdeometric) compression with 3DXRD and x-ray to-
mography measurements performed at different stages of compression. Data analysis is still
underway, but first results are shown in Figure 1.

The results in Figure 1 present images of the perfect grains and 3DXRD-derived grain-
averaged principal strain vectors for different stages during loading and unloading. The strain
plot indicates some consistency in the strain orientations over different load steps, but with
some “flips” in direction. Currently work is underway to refine this strain analysis and also to
determine the grain-contact network to investigate how the grain-strains relate to the potential
force transfer pathways; this will lead to inferences on the force transfer paths and contact-forces
by inverse analysis. In addition, experimental developments are underway to assess the validity
of the approach whereby an average strain tensor per grain is determined by 3DXRD; due to
the granular nature of the material and the grain packing with small contact points between
adjacent grains, the strain field inside the constituent loaded grains can not be homogeneous.
In fact, measurements performed during the experiments demonstrated that the manufactured
grains are perfect single crystals with uniform diffraction, and thus uniform crystal structure,
over their volume in their unloaded state. However, as load was applied, the transmission of
forces across grain contacts led to inhomogeneous strain fields in the grains, which could be
observed as a change in the crystal lattice spacings, and thus of diffraction angles, through the
grains; see Figure 1. In particular, these results show the variations in deformation are focussed,
unsurprisingly, on the contact points between the grains. The challenge now is to the extend
the measurement technique to assess the strains associated with these intra-granular variations
in diffraction.



Conclusions

With the new experimental tools available, it is now possible to probe the fundamental mechanics
of granular media at the key controlling scale, i.e., that of the grains. In particular x-ray
tomography imaging during loading, linked with volumetric image analysis, permits analysis of
continuum strain and porosity fields, individual grains kinematics and the structural organisation
of the contacting grains. Furthermore, new developments are opening up the possibility to fill
in the final piece of the puzzle, i.e., detection and, eventually, quantification of the force transfer
through real 3D granular materials. Such results will provide a quite complete picture of the
granular mechanics and be the real experiment counterpart of the massive number of DEM
simulations currently being performed (and thus provide much needed calibration and ground-
truth for such approaches).

List of references

References
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Summary. The elastic-plastic behaviour as the response to indenter geometry, such as tip 
radius and angle, are simulated in the study. The hardness and the Young modulus of the 
material are determined combining both analytical and numerical methods and their dependence 
on the tip radius and angle is investigated.  
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Introduction 

Nanoindentation has been developed extensively over the last decades and is capable of very 
precise measurements of load and depth at small scales, such as thin films and coating 
technology. The classical analytical models used to extract mechanical properties, such as 
hardness and elastic modulus often have limitation and thus little consideration on effects of tip 
size, blunting effect, pile-up and sink-in phenomena as shown in Ref. [1-3]. Over the years, a 
number of methods have been developed to determine the actual indenter geometry. Area-
function calibration method was proposed by Ref. [1]. Determining the indenter tip shape by 
imaging the impressions left by large indentations using transmission electron microscopy and 
scanning electron microscopy was suggested by Ref. [2]. However, such methods are difficult to 
use and may not be valid for very shallow indentations because of elastic recovery effects. The 
purpose of this work is to investigate indenter geometric effects on elastic-plastic behavior with 
use of finite element (FE) method, in particular focus on the variation of indenter tip radii and 
indenter angles. A comparison is made between the mechanical properties results obtained using 
two different ways of calculating the contact area of indentation.  

Theory of nanoindentation 

The nanoindentation is a type of indentation test with a very low load and it is described in the 
ISO 14577-1. During the nanoindentation test the indentation depth is typically less than 0.2 
µm, and the indentation force does not exceed 2 N.  Typical load-displacement curve produced 
during the process is showed in figure 1.  



                      

Figure 1. Typical load-displacement curves during nanoindentation of plastic-elastic material.   

From the load-displacement curve, several essential parameters can be determined for further 
characterization of mechanical properties of test material. These include: the maximum depth of 
indenter hmax, the maximum indentation load Pmax, the contact depth at the maximum indentation 
load hc and the contact stiffness S=dP/dh. Mechanical properties, such as hardness (HIT) and 
Young’s modulus (EIT) can be derived, see Ref. [1]. The hardness HIT is described as:                

)(/max cpIT hAPH =                                        (1) 

where Ap(hc) is the contact area at the contact depth hc. The Young’s modulus EIT can be derived 
from the following equations: 
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where Er is the reduced modulus, accounting for elastic deformation in the indenter  and 
(dP/dh)unloading is the experimentally measured initial unloading stiffness.  The projected contact 
area often varies with the type of the indenter used. The most common indenters are the 
spherical, the Vickers and the Berkovich indenters. The contact area Ap is determined from the 
area function, Ap(hc), which expresses the projected area of the indenter in terms of the contact 
depth.  
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R, in the equations above, is the tip radius and θ=70.3°. The contact depth, hc, between the 
indenter and the test piece, is showed in the figure 1b. ε is a geometrical constant. Obviously, 
correct determination of the projected contact area Ap(hc) is a crucial factor in calculation of the 
hardness from (1) and the Young’s modulus from (2). 

  
 

Model and results 

The material model used for the test specimen is a Von Mises plasticity with isotropic 
hardening. Copper with mechanical properties of: elastic modulus ES = 140 GPa, yield stress σy 
= 1.3 GPa and Poisson’s ratio νS = 0.343, is chosen since copper is a single face material with 
simple structure. A diamond indenter is assumed in the simulation. The advantage of the 
simulation is that the indenter contact depth can be obtained by directly measuring the deformed 
specimen. With this approach, the effect of both elastic deformation of material and tip radius to 



the indenter contact depth was considered. Figure 2 shows the sink-in and pile-up of the 
specimen surface, from which the depth of sink-in hs and the contact depth hc can be 
determined. The second approach to determine hc by using  (3), in which the maximum depth 
hmax and the stiffness S=(dP/dh) are obtained from each force-displacement curves obtained 
from FE simulation. These values are denoted by hc.  

                          

Original sample surface
Sink-in

Indenter
(Rigid Part)

            

Original sample surface

Pile-up Indenter
(Rigid Part)

 

Figure 2. (a) Sink-in and (b) Pile-up  effects in nanaoindentation. 

Ideal sharp indenters do not exist. Due to the small scale of the indentations, tip radius may 
become an important issue if it becomes too severe. Simulation of six load-displacement curves 
which represent the six indenter tip radius varied from 20 nm to 400 nm, were performed. In 
order to study the geometrical influence of the angle of the indenter, the angle was varied.  The 
angle values of 68° and 70.3° correspond to the Vickers and Berkovich indenter respectively. 
Table 2 is the summary of the indenter contact depth for different indenter tip radii and angles 
measured with two different approaches. 

Due to machining differences during manufacturing, the indenter tip always has a certain degree 
of radius or curvature. When the indentation depth is small, most of the contact occurs in the 
uppermost spherical depth range, and real contact area is quite different from that of the ideal 
indenter. Therefore, the area function needs to be calibrated for a specific range of indentation 
depths for nanoindentation to obtain an accurate and simple geometrical representation. 

Table 1. Measured hc(FEM) and calculated hc at different indenter radii and angles. 
 

R (nm) hc(FEM)  (nm) hc (nm) hs (nm) Angle(°) hc(FEM) (nm) hc (nm) hs (nm) 

20 22.52 23.88 7.48 45 25.54 27.11 4.46 
40 21.97 23.59 8.03 50 24.86 26.82 5.14 
70 21.51 23.46 8.49 60 23.72 25.77 6.28 

100 21.43 22.88 8.57 68 23.35 25.65 6.65 
200 20.28 21.98 9.72 70.3 22.37 24.38 7.63 
400 18.68 21.04 11.32 75 21.55 23.89 8.45 

       

Table 2 indicates that the contact depths decrease with the increase of tip radius. The values of 
the contact depth hc(FEM) obtained  from FEM are about 10 % lower compared to the values of hc 
calculated analytically from equation (3). The determined values for the maximum force, the 
values for the contact area and stiffness are then used to evaluate the hardness HIT from (1), the 
reduced Young’s modulus Er from (2) and finally the Young’s modulus EIT from (2). Detailed 
calculations are presented in Ref. [4]. The variation of the hardness and the Young’s modulus 
with the tip radius of the indenter is presented in the figure 3, whereas the variation with the 



increased angle is seen in figure 4. These results are in agreement with the results for the 
hardness obtained by [5]. The Young modulus is an insintric material parameter and should not 
vary. However, it is difficult of calculate the projected contact area correctly are associated with 
the "pile-up" or "sink-in" of the material on the edges of the indent. None of the two analytical 
methods take into account these effects. 

                               

Figure 3. Effect of the tip radius on a) hardness and b) Young’s Modulus. 

                               

Figure 4. Effect of the angle on a) hardness and b) Young’s Modulus 
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Summary. A small rectangular strip of FCC Cu, containing a through crack on the nano-scale 
subjected to loading under displacement control, is simulated using molecular dynamics. The 
geometry is chosen to mimic that of a thin film between two stiff layers and therefore the height 
of the strip is much smaller than the width. A plain strain situation is modeled by applying 
periodic boundary conditions in the direction of the crack front. The Lennard-Jones pair 
potential is used for the inter-atomic forces. The centrally placed crack is created by removing a 
few atoms inside the specimen. The crack is loaded perpendicular to the crack plane and 
comparisons with traditional linear elastic fracture mechanics concepts are made. The ultimate 
goal is to find a limit in model size beneath which linear elastic fracture mechanics measures 
looses their meaning. 

Key words: Molecular dynamics simulations, Thin strip, Stress intensity, Fracture mechanics 

Introduction 

Considering thin metallic layers, one difficulty lies in finding proper dimensioning rules that are 
scientifically based and commonly accepted among designers. One challenge lies in the 
prediction of sudden failure of the layer induced by mechanical loading. One critical failure 
mode is cracking. Even if the crack is small, of the length of a few nanometers only, it might 
jeopardize the functionality of the coating and, eventually, extend to cause complete collapse of 
the component. Such unexpected events are, of course, necessary to understand and be able to 
predict. In this work, a thin strip of Cu, with height of only a few nanometers and holding a 
centrally placed crack loaded perpendicular to the crack plane through displacement control will 
be considered by molecular dynamics (MD) simulations using an in-house code. The results will 
be compared to traditional linear elastic fracture mechanics (LEFM) solutions to judge the 
impact of size of the geometry. 
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Problem specification 

A thin strip of Cu, holding a centrally placed crack shape defect of length 2a along the x-
direction according to Fig. 1 is studied. The defect is loaded perpendicular to the crack plane 
under displacement control. Coordinate directions (x, y, z) are shown in Figure 1. 
 

 
 

Figure.1. Model configuration. The crack is initially rectangular of size 2ax2b. 

The atomic arrangement in the strip is built from FCC Cu unit cells with lattice constant a0. The 
height of the strip in the z-direction is 2h, the width in the x-direction 2W and the thickness 2d. 
The basic model comprises six unit cells in the y-direction so that 2d = 6a0. By imposing 
periodic boundary conditions in the y-direction, a state of plane strain is reached. 

A crack is not naturally atomistically sharp and here the crack is introduced by removing a 
strip of height two unit cells along the crack line, giving a rectangular crack shape with length 
2a and height 2b = 2a0. 

Simulation procedure 

Because of its computational simplicity, in this paper the Lennard-Jones 12-6 pair potential  is 
employed, cf. [1,2] and the stresses is calculated according to [3]. 

Each molecular dynamics simulation comprises three phases; problem setup, relaxation and 
loading. During the problem setup phase all specific simulation parameters are imposed. The 
present choice stems from [4,5]. The atomic arrangement is generated, atoms are removed to 
form the crack defect and the boundary conditions are imposed at the bottom atomic layer. 

In the second phase, the relaxation phase, the chosen temperature is assigned. This is done 
by multiplying the velocity of each atom with a scaling factor at a certain interval. During the 
relaxation phase the strip in terms of size and volume moves towards a steady state, where the 
internal stress components only oscillate slightly around zero so that the relation between 
potential and kinetic energies keeps constant to a chosen magnitude. Further, during the 
relaxation, the atoms in atomic layer two to six have the same acceleration in the z-direction and 
the atoms in the top six atomic layers have the same acceleration in the z-direction. 

After remaining at steady state for a few thousand time steps, the loading phase is entered 
and the six top atom layers are given a constant velocity in positive z direction causing the 
displacement, and, hence, the simulations are displacement controlled. In this phase, the atoms 
in atomic layer two to six are not allowed to move in the z-direction. 

During all simulation steps, the atoms in the bottom layer are not allowed to move in the z-
direction.  

2W 
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Results and Discussion 

In Figure 2 the stresses  and  for the largest strip, which has 40 free unit cells in the z-
direction. Figure 2a and Figure 2c show the results from the MD simulation and Figure 2b and 
Figure 2d are the LEFM solutions for an infinitely sharp crack in a displacement control loaded 
finite strip as taken from [6]. The stresses in Figure 2b and Figure 2d are shown with the 
exclusion of an area of height 2a0 around the crack, marked by a line, in similarity to Figure 2a 
and Figure 2c from the MD simulation. Note that the length scales differ between the plots of 
the MD and LEFM results, and in Figure 2a and Figure 2c the areas for which the linear elastic 
solutions in Figure 2b and Figure 2d are presented, are framed. Also note that for the MD 
simulation, the entire height of the strip, 2h, is displayed.  
 

 
Figure.2. σzz and σzx for the right half of the largest simulation. Abscissa and ordinate are 
given in [nm]. The bars are in [GPa] a) and c): MD simulations. b) and d): LEFM solutions. 

When the stresses from the simulations were compared it could be observed that the ticker the 
film, the higher the stresses and the larger the high stress distribution area. Also, stresses in the 
z-direction were, far away from the crack tip, higher for thinner films. That result agreed with 
an observation done for simulations without a crack which showed that thinner films have a 
stiffer elastic response than thicker films, which can be seen in Figure 3.  
 
 
 
 
 
 
 
 

 

Figure.3. Elastic response to strip height. 

Another observation that was done is that the agreement between the simulations and the 
LEFM solutions concerning the stress distribution areas is better for large simulations, which 
can be seen in Figure 4. 
 

b) LEFM σzz  

crack 

d) LEFM σzx  

crack 

a) MD σzz  c) MD σzx  



 
Fig.4. σzz for the two atoms closest to the crack tip to the number of free unit cells. 

Conclusions 

Molecular dynamics simulations have shown that cracked layers of small enough size react 
differently than macroscopic components upon loading. In this investigation, displacement 
controlled loading of cracked layers of Cu, with layer thicknesses less than a nanometer, were 
considered. The stress fields obtained from the MD simulations were compared to LEFM 
continuum solutions close to the crack front. 

The stress fields as determined from MD and LEFM continuum solutions were, shown to 
increasingly deviate as the layer thickness decreased. Even so, the general appearances of the 
stress distributions were kept. The influence from boundaries increased markedly as the layer 
thickness decreased. Hence, LEFM will give a good approximation but due to boundary effects 
the LEFM result will only be able to describe the general shapes of the stress fields and give an 
idea of the stress magnitudes for the atoms that are very near the crack tip. 
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Summary. In Nitsche’s method the continuity of the solution and the flux are enforced weakly. Unfortu-
nately, if the material parameters are discontinuous, the conventional straightforward enforcing produces
oscillating fluxes. In this work we show how to derive Nitsche’s method through stabilized Lagrange mul-
tiplier method. This constructive derivation automatically gives the correct weighting for the enforcing
terms for discontinuous material parameters. Lastly the results are tested numerically.
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Introduction

One of the advantages of the Nitsche’s method is the simplicity of joining non-matching meshes.
It is often easiest to divide the domain along material edges which leads to a situation where
the material parameters are discontinuous over the subdomain interfaces. If the jump in the
material parameters is moderate, the method as it was described in, e.g., [2] readily applies.
However, large discontinuities may lead into poor results if Nitsche’s method is applied in a
straightforward matter, see [1, 4] and the references there in. Some of the problems are avoided
by finding a suitable material parameter dependent ratio for the fluxes, see [1, 6], and using this
as the mean flux over the interface. In this article we show a constructive derivation of Nitsche’s
method for a problem where the material parameters have large discontinuities. The derivation
takes advantage of the fact that Nitsche’s method can be derived through stabilized Lagrange
multiplier method [5].

Model problem

Consider a domain Ω ⊂ R2 with piecewise smooth boundary ∂Ω. Assume the domain is divided
into two non-overlapping subdomains Ω1 and Ω2. The subdomains cover the whole domain, that
is, Ω = Ω1 ∪Ω2 and they share a boundary Γ = ∂Ω1 ∩ ∂Ω2. We solve the Poisson problem such
that

−∇ · ki∇ui = f in Ωi, i = 1, 2, (1)

ui = 0 on ∂Ω, (2)

u1 − u2 = 0 on Γ, (3)

k1
∂u1

∂n1
+ k2

∂u2

∂n2
= 0 on Γ, (4)

in which ki : R2 → R, 0 < kmin < ki < kmax, i = 1, 2 are the material parameters, f ∈ L2(Ω) is
the load function, ki

∂ui
∂ni

= ki∇ui ·~ni, and ~n1 and ~n2 denote the outer normals of the subdomains.



For simplicity, assume the material parameters ki are element-wise constants.
Let the subdomains be divided into a set of non-overlapping elements denoted by T h1 and

T h2 , in which h denotes the maximum diameter of elements. These meshes induce meshes also
for the boundary Γ denoted by Gh1 and Gh2 . In what follows we will also need the intersection
mesh on boundary Γ denoted by GhI . This mesh is created with vertexes of both Gh1 and Gh2 and
it is such that each element in GhI overlaps with only one element in both Gh1 and Gh2 . In addition
to the intersection mesh, we define a mesh on the boundary Γ that is independent of meshes Gh1
and Gh2 . This mesh is denoted with GH in which H denotes the diameter of the elements.

Let the finite element subspaces be

V h
i = {v ∈ H3/2+ε(Ωi) : v|K ∈ Pk(K) ∀K ∈ T hi }, i = 1, 2, (5)

in which Pk denotes the polynomials of order k and ε > 0. In addition, we denote a pair of
finite dimensional functions by vh ∈ V h = V h

1 × V h
2 . For the Lagrange multiplier methods we

also need the space
ΛH = {v ∈ L2(Γ) : v|E ∈ P l(E) ∀E ∈ GH}. (6)

Stabilized Lagrange multiplier method

Next we recall the stabilized Lagrange multiplier method [5]. Constructing finite dimensional
spaces for the standard Lagrange multiplier method can be difficult but in the stabilized version
the spaces can be chosen freely.

The stabilized bilinear form is

Ah(uh, λH ; v, µ) =
2∑
i=1

(ki∇uhi ,∇vi)Ωi − (λH , [[v]])Γ − (
[[
uh
]]
, µ)Γ

−
2∑
i=1

∑
E∈Ghi

hi
γki

(
ki
∂uhi
∂n
− λH , ki

∂vi
∂n
− µ

)
E

, (7)

in which γ > 0 is a stability parameter and hi denotes the local element size of the element
E ∈ Ghi . Above [[v]] = v1 − v2 denotes the jump and to match this definition we also define
~n = ~n1 = −~n2. The stabilized problem is: Find (uh, λH) ∈ V h × ΛH such that

Ah(uh, λH ; v, µ) =
2∑
i=1

(f, vi)Ωi ∀(v, µ) ∈ V h × ΛH . (8)

Nitsche’s method

In this section we derive Nitsche’s method associated with the stabilized Lagrange multiplier
method. The idea is to solve the Lagrange multiplier analytically and then substitute the value
back to the equation. The advantage of this derivation becomes evident when we take into
account the local mesh size and the discontinuity of the material parameters ki.

Since the choice of finite element spaces is very flexible in the stabilized method, we can
state the problem as: Find (uh, θ) ∈ V h×L2(Γ) in (8) for all (v, µ) ∈ V h×L2(Γ). Now, testing
with (0, µ) ∈ V h × L2(Γ) and solving for θ gives

(θ, µ)Γ =
∑
E∈GhI

({{
k
∂uh

∂n

}}
− γk1k2

k2h1 + k1h2

[[
uh
]]
, µ

)
E

,

in which we have defined a weighted average{{
k
∂vh

∂n

}}
=

k2h1

k2h1 + k1h2
k1
∂vh1
∂n

+
k1h2

k2h1 + k1h2
k2
∂vh2
∂n

. (9)



Since this holds for all µ ∈ L2(Γ), we get

θ = θ(uh) =

{{
k
∂uh

∂n

}}
− γk1k2

k2h1 + k1h2

[[
uh
]]

(10)

on every E ∈ GhI . This function θ : V h → L2(Γ) gives the Lagrange multiplier associated with
any function v ∈ V h. Nitsche’s method is just the stabilized Lagrange multiplier method with
λ = θ(uh) and µ = θ(v) as the Lagrange multiplier and associated test function. In other words,
Nitsche’s method is: Find uh ∈ V h such that

Bh(uh, v) := Ah(uh, θ(uh); v, θ(v)) =
2∑
i=1

(f, vi)Ωi ∀v ∈ V h. (11)

The bilinear form, although it seems complicated at first, simplifies to

Bh(uh, v) (12)

=
2∑
i=1

(ki∇uhi ,∇vi)Ωi +
∑
E∈Gh∩

[
−
({{

k
∂uh

∂n

}}
, [[v]]

)
E

−
({{

k
∂v

∂n

}}
,
[[
uh
]])

E

+
γk1k2

k2h1 + k1h2

([[
uh
]]
, [[v]]

)
E
− γ−1h1h2

k2h1 + k1h2

([[
k ∂u

h

∂n

]]
,
[[
k ∂v∂n

]])
E

]
,

in which [[
k ∂u∂n

]]
= k1

∂u1

∂n
− k2

∂u2

∂n
= k1

∂u1

∂n1
+ k2

∂u2

∂n2
.

Observe that this form is similar to the usual Nitsche bilinear form [3]. Essentially the only
difference is that the coefficient are weighted with local parameters ki in (12). For example,
suppose that k = k1 = k2 and h = h1 = h2. Then the weighted average (9) becomes regular
average value and the other coefficients simplify to

k1k2

k2h1 + k1h2
=

1

2

k

h
and

h1h2

k2h1 + k1h2
=
h

k
,

which are exactly the values in the usual Nitsche’s method.

Error estimates

Since the proposed method is equivalent to the stabilized Lagrange multiplier method, the
stability and a priori results are inherited from the stabilized Lagrange multiplier. However,
these results are easy to derive directly for the proposed method too. The interesting part is
the a posteriori estimate. Taking the material parameters carefully into account yields slightly
modified a posteriori estimates, compared to e.g. [2]. In the case of discontinuous material
parameters the conventional estimate tends to over-refine the mesh near the interface. The new
estimate, on the other hand, refines the mesh near the boundary only on the side that has more
error, not on both sides. See Figure 2 for an example of this.

Numerical example

The model problem is the same as (1)–(4) with Ω = (0, 2)× (0, 1) ⊂ R2. The domain is divided
into Ω1 = (0, 1) × (0, 1) and Ω2 = (1, 2) × (0, 1). The model parameters are such that there is
a large discontinuity over the interface: k1 = 1 · 103 and k2 = 1 · 10−3. The load functional is
f = 1 in (0, 2)× (0.25, 1) and zero elsewhere.

Figure 1 shows the exact flux in the x-direction and the numerical approximations given with
the conventional and the proposed Nitsche’s method using linear elements. The figure shows
that the conventional method has oscillatory flux where as the proposed method gives a smooth
flux.



Figure 1. Flux in x-direction; top: exact, bottom left: proposed, bottom right: conventional.

Figure 2. Adaptive refinement applied to the model problem; left: proposed, right: conventional method.

References

[1] Chandrasekhar Annavarapu, Martin Hautefeuille, and John E. Dolbow. A robust nitsche’s
formulation for interface problems. Computer Methods in Applied Mechanics and Engineer-
ing, 225-228:44–54, 2012.

[2] Roland Becker, Peter Hansbo, and Rolf Stenberg. A finite element method for domain
decomposition with non-matching grids. M2AN Math. Model. Numer. Anal., 37(2):209–225,
2003.

[3] Mika Juntunen and Rolf Stenberg. Nitsche’s method for general boundary conditions. Math.
Comp., 78(267):1353–1374, 2009.

[4] Tod A. Laursen, Michael A. Puso, and Jessica Sanders. Mortar contact formulations for
deformable-deformable contact: past contributions and new extensions for enriched and
embedded interface formulations. Comput. Methods Appl. Mech. Engrg., 205/208:3–15, 2012.

[5] Rolf Stenberg. On some techniques for approximating boundary conditions in the finite
element method. J. Comput. Appl. Math., 63(1-3):139–148, 1995. International Symposium
on Mathematical Modelling and Computational Methods Modelling 94 (Prague, 1994).

[6] Rolf Stenberg. Mortaring by a method of J. A. Nitsche. In Computational mechanics (Buenos
Aires, 1998), pages CD–ROM file. Centro Internac. Métodos Numér. Ing., Barcelona, 1998.



Proceedings of the 25th Nordic Seminar on Computational Mechanics
K. Persson, J. Revstedt, G. Sandberg, M. Wallin (Eds.)
c©Lund University, 2012

Recovery based approach to design a posteriori error esti-
mator in isogeometric analysis

Trond Kvamsdal1, Mukesh Kumar1, Kjetil Andre Johannessen1, Knut Morten Okstad2

1Department of Mathematical Sciences, Norwegian University of Science andTechnology, Alfred
Getz vei 1, N-7491 Trondheim, Norway
2Department of Applied Mathematics, SINTEF ICT, N-7465 Trondheim, Norway
{Trond.Kvamsdal, Mukesh.Kumar, kjetijo}@math.ntnu.no, Knut.Morten.Okstad@sintef.no

Summary. In this article, we investigate an approach for a posteriori error estimation based on recovery
of an improved stress (gradient) field in isogeometric analysis (IGA). We design a local recovery procedure
of smoothing of stress (gradient) components over small patches of elements in isogeometric analysis
framework that fulfills the criteria of stress (gradient) recovery operator set out by Ainsworth and Craig
in [1]. Further the recovery technique is used in the computation of the Zienkiewicz-Zhu error estimator
[2] to demonstrate accurate estimation of the exact error attainable. Numerical test are performed to
illustrate the effectivity of the error estimators in the energy norm.

Key words: Isogeometric analysis, NURBS, LR B-splines, error estimation, stress recovery.

Introduction

Isogeometric analysis (IGA) has been introduced in [3] as an innovative numerical methodology
for the discretization of Partial Differential Equations (PDEs), which is based on developments
in the modeling of complex geometries using Computer Aided Design (CAD). Non-uniform
rational B-splines (NURBS) are the dominant geometric representation format for CAD. The
construction of NURBS are based on a tensor product structure and, as a consequence, knot
insertion is a global operation. Adaptive local refinement has become one of the key issues in iso-
geometric analysis. To solve this remedy several local refinement strategies has been proposed
using an alternative to NURBS, e.g., T-splines, LR B-splines, PHT-splines, and Hierarchical
B-splines. While to apply a local refinement strategy to solve PDEs problem in adaptive isoge-
ometric analysis the a posteriori error estimator is required. This is the subject of current work.

This work is motivated from the Superconvergent Patch Recovery (SPR) of [4]. Here we de-
sign a local recovery procedure of smoothing of stress (gradient) components over small patches
of elements in isogeometric analysis framework that fulfills the criteria of stress (gradient) re-
covery operator set out by Ainsworth and Craig in [1]. The implementation of this recovery
technique is simple and cost effective. Further the recovery technique is used in the computa-
tion of the Zienkiewicz-Zhu error estimator [2] and numerical test are performed to illustrate
the effectivity of the error estimators in the energy norm.

Isogeometric analysis

Let Ω ⊂ Rd, d ∈ Z+ be an open, bounded and connected Lipschitz domain with boundary
∂Ω = ∂ΩD ∪ ∂ΩN . Let n denote the outer unit normal vector to ∂Ω, and let f ∈ (L2(Ω))d and
g ∈ (L2(∂ΩN ))d be given functions. Find u : Ω→ Rd such that

Lu ≡ DTCDu = f in Ω, Gu = g on ∂Ω, (1)



where L is a second order elliptic partial differential operator and G is a linear operator that
describe the boundary conditions. The typical examples of this model problem are the scalar
diffusion problem and the linearized elasticity problem, where u is the displacement vector and
σ(u) = CDu is the stress tensor (or flux).

The variational form of the model problem (1) can be written as follows: Find u ∈ VD:

a(u,v) = `(v) ∀ v ∈ V0, (2)

where `(v) = (f ,v)Ω +(g,v)∂ΩN , the space V0 ⊂ (H1
0 (Ω))d contains test functions which vanish

at the Dirichlet boundary and we set VD ⊂ (H1(Ω))d consists of functions which fulfill the
Dirichlet boundary conditions on ∂ΩD.

The NURBS space on Ω is defined as the span of the push forward of the basis function Rk,p

Vh = span{R̂k,p = Rk,p ◦ F−1,k = 1, . . . ,n} ⊂ H1(Ω). (3)

The numerical solution of (2) is sought in the finite dimensional discrete NURBS space Vh =
(Vh)d ⊂ (H1(Ω))d. We define

Vh
0 = {v ∈ Vh : v|ΓD = 0} and Vh

D = {v ∈ Vh : v|ΓD = g} ⊂ (Vh)d ∩ (H1
∂ΩD

)d. (4)

The discrete formulation of (2) reads as: find uh ∈ Vh
D such that

a(uh,vh) = `(vh) ∀vh ∈ Vh
0 . (5)

The discrete solution uh in (5), for x ∈ Ω, is represented as

uh(x) =
n∑

k=1

ûkR̂k,p(x) = Rû (say), (6)

where the real valued coefficients ûk are referred to as control variables or degrees of freedom
(DOF) and R is the matrix crossponding to the functions {R̂k,p}nk=1. The directly computed
consistent, stresses (or gradients, fluxes) is obtain from (6) using the stress-displacement relation
as

σh = CDuh = CDRû = Sû (say). (7)

The computed stresses (or gradients, fluxes) σh in (7) involve the differention of the displacement
uh or the functions {R̂k,p}nk=1 with respect to the differential matrix D. Thus the computed
solution is less smooth than the exact one.

Stress recovery procedure

In this section, inspired by the origional SPR method [4] and its main idea of existence of some
points with high accuracy, i.e., superconvergent points, we explain a local smoothing procedure
for the improved stresses field components, σ∗α, expressed as

σ∗α = P(x)aα (8)

where P is a matrix of polynomial terms in the Cartesian coordinates, x = {x, y}T and aα are
the unknown coefficients. The coefficients aα are then determined from a least square fit of the
field σ∗α to the values of computed σhα at optimal sampling points within the elements in the
element patch as shown in Fig. 1, i.e., we minimize the following

F(aα) =

nelsp∑
i=1

(σ∗α,i − σhα,i)T (σ∗α,i − σhα,i) (9)



(a) Index/parametric space (b) Index/parametric space

(c) Physical space (d) Physical space

Figure 1. Element patch formation for bi-quadratic NURBS: normal case (left) and special case (right)

The stationary condition for F(Pα), gives

∂F
∂aα

= 0 ⇒ Aaα = B ⇒ aα = A−1B, (10)

with

A =

nelsp∑
i=1

PTi (xi)Pi(xi) and B =

nelsp∑
i=1

PTi (xi)σ
h
α,i

In order to construct a global recovered field, we follow Blacker and Belytschko [5] for conjoin
the polynomial expansion. Adopting this approach the control variable Pα of global recovered
stress σ∗α = RPα are obtain by Greville projection as interpolation of these recovered values by

R(τk)Pα = σ∗α,e(τk) (11)

Error measure and effectivity index

The energy norm for the model problem is defined as

‖e‖2 =

∫
Ω

(σ − σh)TC−1(σ − σh)dΩ, (12)

where C, e.g., elasticity matrix, is given by the source problem. Using Zienkiewicz and Zhu [2]
error estimator the approximate energy norm is defined as

η2 =

∫
Ω

(σ∗h − σh)TC−1(σ∗h − σh)dΩ, (13)

where σ∗h is the recovered gradient obtained using recovery techniques in isogeometric analysis.
In practice, these error norms are calculated over each knot elements and summed up as

η2 =
∑
i∈I

η2
i , with η2

i =

∫
Ωi

(σ∗h − σh)TC−1(σ∗h − σh)dΩi. (14)

To measure the quality and accuracy of an error estimator, the effectivity index is defined as

θ∗ =
‖η‖
‖e‖

θel =
‖eel‖
‖eel‖

(at element level). (15)

While the distribution of θel, d is defined by

d = θel − 1, if θel ≥ 1, and d = 1− 1

θel
, if θel < 1.



(a) L shaped domain (b) The energy norm error (c) Effectivity index θ

(d) Exact error estimator (e) Recovered error estimator (f) Distribution of effectivity index θel

Figure 2. Adaptive LR B-spline refinement at Last Step

Numerical results

We consider the model elliptic problem on L-shaped domain Ω = [−1, 1]2\[0, 1]2 with appropriate
boundary condition as shown in Fig. 2(a)., i.e.

∇2u = 0 in Ω, u = 0 on ∂ΩD and
∂u

∂n
= g on ∂ΩN ,

where g is based on the exact solution u given by u(r, θ) = r2/3 sin
(

2θ+π
3

)
. We perform adaptive

refinement using LR B-spline refinement algorithm taking with a posteriori error estimator
based on present SPR recovery technique. The numerical results shown in Fig. 2 demonstrate
the effectiveness of proposed a posteriori error estimator in isogeometric analysis.
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Summary. This paper focuses on the application of isogeometric analysis to model frictionless large
deformation elastoplastic contact between deformable bodies and rigid surfaces that may be represented
by analytical functions. The contact constraints are satisfied exactly with the augmented Lagrangian
method, and treated with a mortar-based approach combined with a simplified integration method to
avoid segmentation of the contact surfaces. The spatial discretization of the deformable body is performed
with arbitrary order NURBS and C0-continuous Lagrange polynomial elements. The numerical examples
demonstrate that isogeometric surface discretization delivers more accurate and robust predictions of the
response compared to Lagrange discretizations.

Key words: isogeometric analysis, NURBS, large deformation plasticity, contact mechanics, mortar method

Introduction

Large deformation elastoplastic contact problems involve geometrical, material and contact non-
linearity, which need to be solved simultaneously. Non-smooth C0-continuous finite element dis-
cretization techniques still constitute the most widely used approach in solving computational
contact problems. In order to improve the performance of contact algorithms, various smoothing
techniques have been proposed based on e.g. Hermite C1, Bézier and NURBS discretization of
the contact surface. Although surface smoothing improves the evolution of the contact pressure,
these approaches in general do not preserve consistency between volume and surface discretiza-
tion. Within the framework of isogeometric analysis, which was introduced by Hughes et al. [1],
smooth surface discretization can be achieved by representing the contact geometry by a NURBS
surface that is directly inherited from the NURBS discretization of the volume.

The robustness of contact computations also depends on an accurate and smooth description
of not only the contact geometry but also the contact pressure. It is well-known that node-to-
surface (NTS) contact formulations is affected by several pathologies, and has been shown not to
satisfy the contact patch test, which implies that mesh refinement do not necessarily increase the
accuracy of the contact pressure. Several improvements to the NTS (or knot-to-surface, KTS,
for isogeometric analysis) have been proposed, but they either do not satisfy the contact patch
test or cause LBB-instability. However, the more recent mortar-based approaches constitute
a method of consistently treating the global and local contact interaction, satisfying both the
patch test and LBB-stability, albeit at a higher computational cost.

The penalty (PL) method is the simplest and apparently the most widely used approach for
solving contact problems. It leads to a purely displacement formulation where the constraints



are enforced approximately. Furthermore, illconditioning may appear as the penalty parameter
is increased in order to improve the satisfaction of the contact constraints. To avoid the draw-
backs of the PL method, the augmented Lagrangian (AL) method may be adopted. There are
two solution schemes commonly used in the context of the AL method. The so-called Uzawa
method, which combines the AL regularization with a first-order update of the Lagrange multi-
pliers [2]. Alternatively, a Newton-like solution scheme can be applied to solve the saddle-point
problem simultaneously for the displacements and Lagrange multipliers as proposed by Alart
and Curnier [3]. In view of the ascertained drawbacks of a non-mortar approach, we apply a
mortar-based approach to satisfy the contact constraints combined with the latter version of the
AL method, which is characterized by a remarkable degree of robustness and yields an asymp-
totic quadratic convergence rate in the Newton iterations. For comparison purposes, we have
also implemented the PL method and C0-continuous Lagrange polynomial elements. In this
paper mortar-based isogeometric analysis as formulated by De Lorenzis et al. [4] is extended to
model large deformation elastoplastic contact problems.

Large deformation contact problem

This section gives a summary of the contact variables and the contact constraints within a
continuum formulation of large deformation frictionless contact between two bodies. More details
can be found in the monograph of Wriggers [2].

In this study finite deformation quasi-static frictionless contact problems will be considered
in a purely mechanical setting. Consider two bodies Bi, where the subscript i = {s,m} denotes
the slave (non-mortar) and master (mortar) bodies, respectively. The relation between the initial
(reference) configuration Xi, the displacement ui and the current configuration xi of a generic
point of each body is given by

xi = Xi + ui (1)

For modelling of contact between the two bodies Bs and Bm, the contact interface denoted
Γc := Γsc = Γmc is pulled back to Γc0 := Γsc0 6= Γmc0, where Γic and Γic0 denote the contact
boundary in the current and in the reference configuration of body Bi, respectively. In the
present formulation all contact integrals will be evaluated on Γsc0. Defining gN = (xs−xm) ·nm
to be the normal gap, λN the normal contact traction defined as the normal component of the
interface Piola traction t := tm = −ts = λNn

m; the Kuhn-Tucker conditions for impenetrability
on Γc0 are

gN ≥ 0, λN = t · nm ≤ 0 and gNλN = 0 (2)

The frictionless contact problem between deformable elastic bodies can be formulated as a
constrained minimization problem [2].

min
u

Π(u) subject to gN ≥ 0 on Γc (3)

where Π(u) is the potential energy.
In the PL method the contact constraints are enforced approximately

λN = εN 〈gN 〉− where 〈gN 〉− =

{
gN , gN ≤ 0
0, gN > 0

(4)

where εN > 0 is the penalty parameter. Applying the above penalty regularization the con-
strained minimization problem may be transformed into an unconstrained minimization problem

min
u

ΠPL(u) (5)

where the potential energy Π(u) has been augmented by the following contact contribution to
the virtal work

δΠPL
c =

∫
Γc0

tnδgNdΓ (6)



δgN denotes the variation of the normal gap.
For the solution of the constrained minimization problem we have adopted the AL method

as formulated by Alart and Curnier [3]. In the AL method, a dual field of Lagrange multipliers
λN is defined on the contact surface Γc, and the AL functional L is constructed as

L(u, λN ) = Π(u) +

∫
Γc0

ln(gN , λN )dΓ, ln(gN , λN ) =

{ (
λN + εN

2 gN
)
gN , λ̂N ≤ 0

− 1
2εN

λ2
N , λ̂N > 0

(7)

Here, εN > 0 is an arbitrary penalty parameter while the AL multiplier λ̂N = λN +εNgN is used
to discriminate between contact (λ̂N ≤ 0) and separation (λ̂N > 0). The main advantage of the
AL method over the PL method and the Lagrange multiplier alternatives is that lN and L are
C1-differentiable. Hence, the contact problem may now be reformulated as an unconstrained
saddle-point problem

min
u

max
λN
L(u, λN ) (8)

and the necessary condition of the saddle point takes the form

δL(u, λN ) = δΠ(u) +

∫
Γc0

[
λ̂eff
N δgN + CNδλN

]
dΓ = 0 (9)

where the following notation has been introduced [4]

λ̂eff
N =

∂lN
∂gN

=

{
λ̂N , λ̂N ≤ 0

0, λ̂N > 0
, CN =

∂lN
∂λN

=

{
gN , λ̂N ≤ 0

−λN
εN
, λ̂N > 0

(10)

The AL multiplier λ̂eff
N is the state dependent normal contact traction, whereas CN defines

the constraints that are active depending on the contact state. Due to the C1-differentiability
of L, continuity of both λ̂eff

N and CN is preserved as the contact state changes from contact
to separation, hence upon discretization the resulting equations can be efficiently solved with
Newton’s method. Also note that in contrast to the PL method, for the AL method the contact
constraints are enforced exactly regardless of the value of the penalty parameter, which can be
kept conveniently low to improve the convergence behavior.

Numerical results

A large deformation 2D example is considered to demonstrate that isogeometric surface dis-
cretization deliver more accurate and robust predictions of the response compared to Lagrange
discretization. A rigid cylinder is pressed vertically into an elastic slab (v = −0.075) and then
moved in the horizontal direction (u = 2). A standard compressible neo-Hookean hyperelastic
material behavior is assumed for the slab, with material parameters E = 1 and ν = 0.3. The
rectangular slab that is fixed vertically at the bottom has width 3.0 and height 1.0, while the
radius of the rigid cylinder is 0.5. A similar problem has also been studied by De Lorenzis et
al. [5]. However, they consider the cylinder being elastic (E = 1000 and ν = 0.3), account for
friction (µ = 0.3) and employed the PL method. Therefore, we cannot expect full compliance
with the results obtained in [5]. The slab is analyzed using quadratic and cubic NURBS as basis
functions, and compared with standard quadratic and cubic Lagrange elements. All NURBS
and Lagrange discretizations includes 49 basis functions in the horizontal and 25 in the vertical
direction, respectively.

The results in terms of Mises stress for the cubic NURBS mesh and strain energy for NURBS
and Lagrange discretizations of varying order are presented in Figure 1. The plot of the strain
energy demonstrate the remarkable smoothness obtained with the NURBS discretizations, while
in contrast the Lagrange solutions are stiffer and experience oscillations. The obtained results
stems from the higher degree of smoothness which is achived by representing the contact ge-
ometry by a NURBS surface that is directly inherited from the NURBS discretization of the
volume.
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Figure 1. Ironing problem: a) Deformed configuration with Mises stress for cubic order NURBS dis-
cretization. b) Strain energy for quadratic and cubic order NURBS and Lagrange discretizations.
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Summary. The fourth order Kirchhoff-Love thin plate theory is characterized by requiring C1 contin-
uous transversal displacements w. This is a challenge for traditional finite elements (FE) methods and
has typical been circumvented by introducing rotational degrees of freedom, that adds complexity to
the FE-formulation. However, the isogeometric FE approach is well suited to handle problems of higher
regularity as the B-spline or NURBS typically facilitate Cp−1 regularity. Thus, isogeometric elements
with p ≥ 2 may solve Kirchhoff-Love thin plate problems with only transversal displacements. The
extension to LR B-splines makes it straight forward to also model plates with cracks, as it enables the
representation of internal discontinuities in the geometry and solution field through the introduction of
internal mesh lines. In this study we use LR B-splines to conduct an isogeometric analysis of a thin plate
with an internal crack.

Key words: Thin plates, C1 finite elements, Isogeometry, LR B-splines, discontinuity

Introduction

The maritime and offshore structures are often characterized by being thin-walled, i.e. that the
thickness of structural elements like plates and shell are small compared to the in-plane size of
the element. A plate is a plane structural element whereas shell is non-planar, i.e. plates may
be consider a special (or simplified) type of shells.

For small deformations of plates we may use linear plate theories where we have decoupled the
in-plane (membrane) and out-of-plane (transversal) deformation modes. Kirchhoff-Love theory
is the common approach to solve thin plate problems involving pure transversal deformations.
It may be considered as the natural 2D extension of the Euler-Bernoulli 1D beam theory. It
may also be looked upon as a reduced order model, i.e., a 2D theory for representing 3D elastic
continua with one dimension (the thickness direction) much smaller than the two others.

Through the isogeometric FE analysis concept [1], using splines as basis functions instead
of the traditional Lagrange polynomials, the Kirchhoff-Love equations can efficiently be solved
numerically with FEM without the introduction of rotational degrees of freedom, since the
inter-element continuity is of order p − 1 for elements of order p. However, if the plate has a
discontinuity caused by cracks, such features can not be represented with a regular spline basis
due to their tensorial character, without dividing the plate into several patches with the added
complexity of retaining (at least) C1 continuity across the patch interfaces. Instead, we may
then use the recently proposed Locally Refined B-splines (LR B-splines) [2], which enables the
introduction of internal discontinuities in the geometry and solution field along internal mesh
lines of arbitrary length.



The mathematical formulation

The Kirchhoff-Love hypothesis implies that the 3D displacement field has the form:

uα(x1, x2, x3) = uα(x1, x2, 0)− x3
∂w(x1, x2, 0)

∂xα
; α = 1, 2 (1)

u3(x1, x2, x3) = w(x1, x2, 0) (2)

Herein, we will only address transversal loaded thin plates with small deformations and therefore
we only need to determine the transversal displacement of the mid-surface w := w(x1, x2, 0).

The governing equation for a homogeneous isotropic Kirchhoff-Love thin plate of constant
stiffness D only subjected to a transverse load q, is the following biharmonic partial differential
differential equation (PDE):

D∇4w = q in Ω (3)

w = w̄ on ∂Ωw (4)

∂w

∂n
= θ̄ on ∂Ωθ (5)

where n denotes the outer normal for the plate boundary, and w̄ is some prescribed deflection
along the boundary ∂Ωw and θ̄ some prescribed normal rotation along the boundary ∂Ωθ, with
∂Ω = ∂Ωw ∪ ∂Ωθ and ∂Ωw ∩ ∂Ωθ = ∅. The biharmonic operator ∇4 = ∇2∇2 is given by

∇4 ≡ ∂4

∂x4
+ 2

∂4

∂x2∂y2
+

∂4

∂y4
(6)

The corresponding finite element formulation is as follows: Find wh ∈ Wh ⊂ W such that

a(wh, vh) = l(vh) ∀vh ∈ Vh ⊂ V (7)

where the bilinear form a(·, ·) and the linear form l(·) is given by:

a(wh, vh) = (D∇2wh,∇2vh)Ω (8)

l(vh) = (q, vh)Ω (9)

and the inner product (·, ·)Ω is defined as

(u, v)Ω =

∫
Ω
u · v dV (10)

Proper function spaces for the trial- and test displacements w and v are as follows:

W =

{
w ∈ H2(Ω) | w = w̄ on ∂Ωw and

∂w

∂n
= θ̄ on ∂Ωθ

}
(11)

V =

{
v ∈ H2(Ω) | v = 0 on ∂Ωw and

∂v

∂n
= 0 on ∂Ωθ

}
(12)

In the isogeometric FE method using LR B-splines we use the notation Srp for our splines space,
where p and r denote the polynomial order and regularity, respectively, in both parameter
directions. Proper function spaces for respectively the FE trial displacements wh and the FE
test displacements vh to achieve compatible FE spaces are then as follows:

Wh(Ω) =
{
wh ∈ W(Ω) | wh(F−1(x1, x2)) ∈ Srp(ξ, η)

}
(13)

Vh(Ω) =
{
vh ∈ V(Ω) | vh(F−1(x1, x2)) ∈ Srp(ξ, η)

}
(14)

where the coordinate mapping F is assumed to be an onto and invertible mapping between the
parameter domain � and the true domain Ω i.e. for any (x1, x2) ∈ Ω there exist (ξ∗, η∗) ∈ �
such that (x1, x2) = F (ξ∗, η∗).



Uniform pressure, pz = 1000.0

Internal crack, ` = 0.2

Geometry: Length and width: 1.0
Thickness: t = 0.01

Material: E = 2.1× 1011

ν = 0.3
D = Et3

12(1−ν)

Figure 1. Simply supported rectangular plate with internal crack and uniform pressure load.

Numerical example

Figure 1 shows a simply supported rectangular plate with an internal crack, subjected to a
uniform pressure load. The crack is modelled by enforcing the multiplicity p of the mesh lines
along the crack, as depicted in Figure 2 for the case p = 2, such that the geometry (and solution)
here becomes C−1 continuous. This introduces a singularity in the solution at each crack tip.

To catch these singularities in the FE solution, it is necessary to focus the degrees of freedom
around the crack tip. This is most effectively done through some adaptive refinement scheme,
where we refine the mesh based on a computed error estimate. Herein, we use the energy norm
error ‖e∗‖ =

√
a(w∗ − wh, w∗ − wh), where w∗ represents an enhanced solution obtained by a

global L2-projection of the FE bending moments, mαβ
h onto the Cp−1 continuous basis of the

primary solution, wh.
In Figure 3 we plot the convergence of the energy norm error for four different simulations;

two uniform refinements with quadratic and cubic basis functions, respectively, and two adaptive
refinements with the same basis. We here clearly see that through adaptive refinement, the LR
B-spline basis is able to reproduce the theoretical convergence rate governed by the polynomial

Figure 2. Initial mesh for the Quadratic (p = 2) case illustrating the multiplicity along the crack and
external boundaries.



1.0

1.0

1.0

0.5

Figure 3. Convergence of the global relative error for two adaptive simulations and two uniform refinement
simulations, using quadratic (p = 2) and cubic (p = 3) LR B-spline elements.

order (illustrated by the two triangles in the plot), whereas the uniform refinement completely
fails to do so. The distribution of the error around the crack on the initial and 5th adaptively
refined mesh is shown in Figure 4 for the quadratic case.
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Summary. In this paper we introduce a large deformation thin beam in a dynamic non-linear setting.
The beam is described by Euler-Bernoulli theory using only transversal degrees of freedom. Not using
additional rotational degrees of freedom is possible as we parametrize by NURBS (Non Uniform Rational
B-Spline) elements.

Key words: Isogeometric analysis, NURBS, Euler-Bernoulli, large displacements, dynamic, non-linear.

Large-deformation 3D Euler-Bernoulli beam

We have developed isogeometric finite elements for simulating Euler-Bernoulli beams with curved
geometry in a dynamic non-linear setting. We have modelled a flexible Euler-Bernoulli beam as
a curve in 3D with a constant arbitrary cross section that remain plane and normal to the mid
curve during deformation. The beam is parametrized by NURBS in the length direction only,
as we pre-integrate over the cross sectional area. The beam is modelled to account for bending
and axial deformation.

Only translational degrees of freedom are used in our calculations. For the thin Euler-
Bernoulli beam we will have second derivatives in the variational formulation, meaning that we
need at least C1 continuity between the elements. Using NURBS as basis functions we obtain
Cp−1 continuity across element boundaries [1], see Figure 1. Thus, using isogeometric elements
with order p ≥ 2, we may solve Euler-Bernoulli thin beam problems with only transversal
displacements, and no rotational degrees of freedom.

Kinematics

We describe the beam by its reference configuration X and current configuration x. The dis-
placement is given by u = x − X and the deformation gradient by F = dx

dX . We introduce a
local curvilinear coordinate system with tangent x,ξ1(ξ1), binormal b(ξ1) and normal n(ξ1), as
shown in Figure 2. Similarly for the reference configuration. ξ1 represents the length direction,
ξ2 and ξ3 the cross section. In 3D the beam is described by

x3D(ξ1, ξ2, ξ3) = x(ξ1) + φ1(ξ2, ξ3)b(ξ1) + φ2(ξ2, ξ3)n(ξ1).

x(ξ1) represents the mid curve of the beam, while φ1(ξ2, ξ3) and φ2(ξ2, ξ3) gives the position on
the cross section in the directions of the binormal and the normal.



Element 2 Element 1 Element 3 Element 4 

Figure 1. Quadratic B-spline basis functions for knot vector H = {0, 0, 0, 0.25, 0.5, 0.75, 1, 1, 1}.
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Figure 2. Sketch of the beam

Strain measure

We use the Green-Lagrange strain tensor given by

E =
1

2
(FTF− I) = EαβG

α ⊗Gβ

where

Eαβ =
1

2
(gαgβ −GαGβ) =

1

2
(x3D
,ξα · x

3D
,ξβ
−X3D

,ξα ·X
3D
,ξβ

).

Gα are the reference contravariant basis vectors. For thin beams α, β = 1 and we only have the
term E11. After some calculations we can represent the dimensionless E11 = E11||G1||2 by a
term ε, that is the strain due to membrane action, and a term κ, that is the change in curvature
due to bending; E11 = ε+ φ2κ.

Constitutive equation

We use the second Piola-Kirchhoff stress tensor, S, and introduce a linear constitutive law on
the dimensionless stress-strain relation; S11 = EcE11. Ec is Young’s modulus.

Equilibrium of virtual work

The equilibrium of virtual work, δW = δW ext + δW int = 0, is given by

δW ext =

∫
V
δx ·

(
∂2x

∂t2
− f b

)
ρdV =

∫
L
δx ·

(
∂2x

∂t2
− f b

)
ρAdL,

δW int =

∫
V
S : δEdV =

∫
L

(EcAε) : δε+ (EcIκ) : δκdL.

V is the volume, A the cross sectional area, L the length, ρ the density per unit length and f b

the body forces per unit mass.
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Figure 3. Beam fixed at both ends and subjected to uniformly distributed transverse loading.
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Figure 4. Displacement and bending moment of beam subjected to uniformly distributed transverse quasi-
static loading. Results are compared to Abaqus [3] and an rotation-free formulation by Flores and Oñate
[2].

Solving the equations of motion

Next we state the equations of motion, perform the time integration and solve for the unknown
displacements by applying Newmark formulas, Newton iterations and the Generalized α-method.
Doing so we need to calculate the tangent stiffness matrix;

Kij =
∂2W int

∂ui∂uj
=

∫
L

(EcAε,i · ε,j + EcAε,ij · ε+ EcIκ,i · κ,j + EcIκ · κ,ij) dL.

Numerical examples

Beam subjected to uniformly distributed transverse quasi-static loading

We have considered a simply supported beam pinned at both ends and exposed to a uniformly
distributed load, P = 1N , as shown in Figure 3. The bending stiffness is set to EI = 426600Nm2

and the axial stiffness to EA = 32MN . The length of the beam is L = 10m. Both quadratic
and cubic elements are tested. Our results are compared to the Euler-Bernoulli beam element
in Abaqus [3], as well as to a rotation-free finite element formulation by Flores and Oñate [2].
Figure 4 shows that for p = 2 our NURBS based formulation gives more accurate displacements
than both Abaqus and those presented in [2]. Regarding the bending moment, our element
performs better than Abaqus. Using four elements we obtain the exact solution. However, for
p = 3, as shown in Figure 5, we get excellent results both for displacement and bending moment
when modelling half the beam with only one element.

Beam subjected to uniformly distributed transverse dynamic loading

We have considered the same beam configuration (Figure 3) in a dynamic setting with P (t) =
(2 · 105N) · t. In this example, the bending stiffness is set to EI = 2.2 · 106Nm2 and the axial
stiffness to EA = 2.2 ·106N . The length of the beam is now L = 20m. We have used the density
ρ = 0.3kg/m3 and a constant time step dt = 10−4s. Cubic elements are tested and compared to
the Euler-Bernoulli B33 element in Abaqus. Figure 6 shows that we get excellent results for all
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Figure 5. Displacement and bending moment of beam subjected to uniformly distributed transverse loading.
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Figure 6. Beam subjected to uniformly distributed transverse loading; dynamic response in mid point.

numbers of elements. Zooming in on the last part of the simulation, we observe that our results
are better than results from Abaqus.
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Summary. The authors in [1] initiate the study of collocation method in isogeometric analysis. The idea
is to connect the superior accuracy and smoothness of NURBS basis functions with the low computational
cost of collocation. The purpose of this paper is two-fold. First, a reduced continuity order NURBS based
isogeometric orthogonal collocation method is given. Second, we propose a T-spline based collocation
method using a particular class of T-splines of reduced continuity order on T-meshes [2]. The numerical
results are reported to illustrate the potential of these methodologies.

Key words: Isogeometric analysis, Non-uniform rational B-spline, T-splines, Collocation methods.

Introduction

Isogeometric analysis (IGA) has been introduced in [3] as an innovative numerical methodology
for the analysis of PDE’s problem, allowing for an exact description of CAD type geometries.
Non-uniform rational B-splines (NURBS) are a standard in Computer Aided Design (CAD)
community and the basis function used to define the geometry can be systematically enriched
by h-, p-, or k-refinement without altering the geometry or its parametrization. However the use
of high degree basis functions as k-refinement, raises the issue of an efficient implementation. In
[1], the authors initiate the study of an efficient NURBS based collocation method in isogeometric
analysis. They established the theoretical framework in 1D that allows to select the Greville
abscissae and second order Demko abscissae as a collocation points in the method. The purpose
of this article is two fold. First, an isogeometric orthogonal collocation method using reduced
continuity order NURBS basis collocating on mapped Gaussian points is given. This method
is the extension of [4] in isogeometric analsyis and shows optimal order accuracy of solution in
L∞-norm, i.e., fourth order in bi-cubic NURBS case. As T-spline seems to be an alternative
to break the tensor product structure of NURBS in geometrical modeling. Second, we propose
a T-spline based collocation method using a particular class of T-splines, namely the one of
reduced regularity, i.e., for T-splines of degree p and regularity α = p− 1− bp/2c, see [2].

Isogeometric collocation method

Consider the following boundary value problem

Lu = f in Ω, Gu = g on ∂Ω, (1)

where the solution u : Ω → R, L represents a scalar differential operator, Gu : ∂Ω → Rr is a
vector operator representing boundary conditions, and f , g are given data.

Then the isogeometric collocation approximation of (1) reads: find uh ∈ Vpα (NURBS or
T-splines space of degree p− 1 and regularity α) such that

Luh(τv) = f(τv) ∀ v ∈ IL, Guh(τv) = g(τv) ∀ v ∈ IG , (2)



where F is the geometrical mapping and τv = F(τ̂v), for all v ∈ I with finite set of points
{τ̂v}v∈I in the parametric space Ω̂ = [0, 1]2, which is divided into two distinct sets IL and IG ,
such that I = IL ∪ IG , and

v ∈ IL ⇒ τ̂v ∈ ∂Ω̂, #IL + r ·#IG = dimVpα,

where # indicates the cardinality of a set. The choice of collocation points is crucial for the
stability and good behavior of the discrete problem (2).

NURBS based isogeometric orthogonal collocation method

Assume Ξd = {0 = ζ1,d, ζ2,d, . . . , ζmd,d = 1}, d = 1, 2 as an ordered vector of knots without

repetitions in parametric space Ω̂ = [0, 1]2. Now we define k-Gauss points {ζ̂ij,d}kj=1 in each
intervals [ζi,d, ζi+1,d] by

ζ̂ij,d =
(ζi,d + ζi+1,d) + ρij(ζi+1,d − ζi,d)

2
, i = 1, . . . ,md − 1, j = 1, . . . , k, (3)

where ρij are the roots of orthogonal polynomial of degree k in each interval [ζi,d, ζi+1,d]. Now,
on combining the boundary points ζ1,d = 0, ζmd

= 1, d = 1, 2 with (md − 1)k Gaussian points,
we define the set of collocation points:

γ̂d = {γ1,d, . . . , γnd,d} := {0 = ζ1,d, ζ̂11,d, . . . , ζ̂1k,d︸ ︷︷ ︸
k terms

, . . . , ζ̂md−11,d, . . . , ζ̂md−1k,d︸ ︷︷ ︸
k terms

, ζmd,d = 1}.

It should be noted that all the Gaussian points ζ̂ij,d ∈ (0, 1) and dim(γ̂d) = nd = (md − 1)k+ 2.

Now we evaluate the collocation points τij ∈ Ω, by tensor product structure as

τi,j = F(τ̂ij), τ̂ij = (γi,1, γj,2), for i = 1, . . . , n1, j = 1, . . . , n2. (4)

Then, the isogeometric orthogonal collocation approximation reads: find uh ∈ Vm+k
m−1 :{

Luh(τij) = f(τij), i = 2, . . . , n1 − 1, j = 2, . . . , n2 − 1,
Guh(τij) = g(τij), (i, j) ∈ {1, n1} × {1, . . . , n2} ∪ {1, . . . , n1} × {1, n2}.

(5)

We wish to remark that collocation at Gaussian points shows optimal order convergence in
comparison to collocation at Greville abscissae for Vm+k

m−1 ⊂ Cm−1(Ω).

T-spline based isogeometric collocation method

In T-spline based collocation method, we consider the collocation points as the Greville abscissae
obtain from local knot vectors of each anchors of T-meshes. An example, in bi-cubic case, let
Ξas := {sa1, sa2, sa3, sa4, sa5} and Ξat := {ta1, ta2, ta3, ta4, ta5} be the local knot vector associated
with the anchor a ∈ U of T-mesh. Then its Greville abscissae points are given by

ξa = (sa2 + sa3 + sa4)/3, ηa = (ta2 + ta3 + ta4)/3.

Using this we define the collocation points τk ∈ Ω by

τk = F(τ̂k), τ̂k = (ξk, ηk) ∈ Ω̂, k = 1, ...,N .

Let G∂Ω be the set of (2n+ 2m) Greville abscissae points on the boundary associated with each
anchors {a = (i, j) ∈ U|(i, j) ∈ {1, n} × {1, ...,m} ∪ {1, ..., n} × {1,m}} and let GΩ\∂Ω be the set
of N − (2n+ 2m) Greville abscissae points within the domain Ω.

Then the isogeometric collocation approximation for T-splines space reads: find uT ∈ VT
such that

LuT (τk) = f(τk) k ∈ GΩ\∂Ω, BuT (τk) = g(τk) k ∈ G∂Ω. (6)



Some particular T-meshes

In this section we explore the possibility of employing Greville abscissae as collocation points in
(6) for some T-meshes of practical interest as shown in Fig. 1(a). Now we consider a T-spline
interpolation problem with Greville abscissae, defined by uT (τk) = f(τk) ∀τk ∈ K, where f
is any given smooth function. The growth of conditioning number of interpolation matrix is
reported in Fig. 1(b). This shows that Greville abscissae can provide a stability to collocation
formulation (6) on these types of particular T-meshes.

(a) Hierarchical T-meshes (b) Conditioning number

Figure 1. Sequences of Hierarchical T-meshes and growth of conditioning number w.r.t. mesh size ĥ.

A counter example on general T-meshes

First of all, a general question arises: Can the Greville abscissae on T-meshes always provide a
stability to collocation formulation ? The answer is negative as shown in Fig. 2(a). The T-spline
blending functions associated with anchors (3,4) and (4,5) are given by

B(3,4)(s, t) := N [0 0 1/2 1/2 1](s)N [0 1/2 1/2 1 1](t),

B(4,5)(s, t) := N [0 0 1/2 1/2 1](s)N [0 1/2 1/2 1 1](t).

By calculating the Greville abscissae for both anchors it comes equal to (1/3, 2/3). This gives
instability to collocation formulation on general T-meshes. To overcome this problem we consider
a particular class of T-splines with reduced regularity (on regular T-meshes), i.e., for T-splines
of degree p and regularity α = p− 1− bp/2c, for more details see [2].

(a) index/parametric space (b) Regular and Not-regular T-meshes

Figure 2. A counter example of Greville abscissae on T-mesh, and regular and not-regular T-meshes.

Numerical results

First, we consider an elliptic problem on a quarter of an annulus, Fig. 3(a)

−∆u+ u = f ∀x ∈ Ω, with bc’s u|∂Ω = 0, (7)



(a) Gaussian points(*) (b) L∞-norm error (NURBS)

Figure 3. Numerical results using C1 bi-cubic NURBS for problem (7).

(a) Last T-mesh (b) L∞-norm error (T-spline)

Figure 4. Numerical results using C1 bi-cubic T-spline for problem (8) with ε = 0.01

with f is chosen such that u = (x2 + y2 − 1)(x2 + y2 − 16) sin(x) sin(y). Here we consider C1

bi-cubic NURBS space in isogeometric orthogonal collocation method (5) to solve the problem
(7). It can be seen from the Fig. 3(b) that the orthogonal collocation method shows optimal
order of convergence, i.e., fourth order in comparison to second order method of [1].

Second, consider a singularly perturbed reaction diffusion problem on unit disk Ω = {(r, θ) :
r < 1}, defined as

−ε2∆u+ u = 1 ∀x ∈ Ω, with bc’s u|∂Ω = 0, (8)

with exact solution u(r, θ) = u(r) = 1 − I0(r/ε)
I0(1/ε) , where I0(r) is the modified Bessel function of

order zeros. We consider the C1 bi-cubic T-spline space in (6) to solve the problem (8) and
adaptive refinement results in comparison to uniform refinement with C1 bi-cubic NURBS is
shown in Fig. 4(b).
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Summary. A three dimensional cohesive zone model for perpendicular to grain fracture analysis of wood
is presented. The material model is derived within the framework of plasticity theory and implemented
for numerical calculations by the finite element method. The criterion used for strain instability and
localization to a fracture plane is according to the orthotropic Tsai-Wu criterion accounting for all six
stress components. The subsequent softening performance is governed by the three out-of-fracture plane
stress and plastic deformation components. The material model is applied to analysis of end-notched
beams and beams with a hole. Numerical results relating to beam strength and fracture course are
presented and compared to results of experimental tests.

Key words: wood, cohesive zone modeling, plasticity theory, orthotropy

Introduction

A three dimensional cohesive zone model for perpendicular to grain fracture analysis of wood
is presented. This type of failure, initiated by perpendicular to grain tensile stress and shear
stress, is a major concern in timber engineering and a relatively common cause for structural
damage. Wood has strongly anisotropic properties, with material strength and stiffness being
much lower perpendicular than parallel to grain. Wood further has anisotropic properties also in
the plane perpendicular to grain. The presented material model is derived within the framework
of plasticity theory and accounts for orthotropic properties since distinction is made concerning
material strength and stiffness in all three material principal directions and also concerning
fracture energy for the different modes of deformation.

Material model

A three dimensional macro scale continuum representation is used considering cylindrical or-
thotropy where distinction is made between the material longitudinal, radial and tangential
directions. The material is assumed to be homogeneous, meaning that knots and other defects
are disregarded. Small strain assumptions and additive decomposition of elastic and plastic
strains are used. The cohesive zone model is applied to a thin predefined potential crack plane,
within which a fracture process zone may initiate and evolve. This plane is here assumed to be
oriented as the global xz-plane and the global x-direction is further assumed to coincide with the
material longitudinal direction. The bulk material is modeled as a linearly elastic orthotropic
material.

The Tsai-Wu criterion [5] is often proposed as a suitable failure criterion for wood since it in-
cludes orthotropic strength properties and allows for different tensile and compressive strengths.



It is here used as criterion for initiation of yielding, i.e. the formation of a fracture process zone
and initiation of softening. An initial yield function F is hence defined according to

F (σ) = σ
Tq+ σ

TPσ − 1, (1)

where σ is the stress and where q and P are given by the material strengths properties. The
post softening initiation performance is assumed to be governed by the three out-of-fracture
plane stress and plastic deformation components. As softening has initiated, the yield function
is changed accordingly and the updated yield function f defined as

f(σ,K) = σ2
yyFyy + τ2xyFxy + τ2yzFyz −K, (2)

where Fyy, Fxy and Fyz are fictitious material strength parameters and K is a softening pa-
rameter. An associated plastic flow rule is adopted. Since the yield function f only depends
on the three out-of-fracture plane stress components, plastic strains are obtained only in these
three directions corresponding to the fracture mechanics modes of deformation I, II and III. The
softening parameter K is a function of the internal variable δeff and the following softening law
is adopted

K =

{
exp(ln(c)δmeff ) for δeff ≤ 1

0 δeff > 1
, (3)

where m is a model parameter determining the shape of the softening curve and where c should
be a small, but nonzero, number. The evolution law for the internal variable is defined as

δ̇eff =

√√√√
(

δ̇yy

Ayy

)2

+

(
δ̇xy

Axy

)2

+

(
δ̇yz

Ayz

)2

, (4)

where the incremental plastic deformations δ̇yy = hε̇
p
yy, δ̇xy = hγ̇

p
xy and δ̇yz = hγ̇

p
yz by assuming

constant strain over the small out-of-plane height h of the predefined potential crack plane. Ayy,
Axy and Ayz are scaling parameters of dimension length, defined such that the work required for
complete separation in any of the three modes of deformation equals the corresponding fracture
energy.

Numerical implementation

The material model is implemented for finite element analysis in Matlab using supplementary
routines from the toolbox Calfem. The highly nonlinear global response, often including snap-
back, is solved in an incremental-iterative fashion using an arc-length type of path following
method, see e.g. [1]. The constraint equation used to determine the increments in displacement
and load is based on an energy dissipation approach presented in [6]. The stress is determined
by numerical integration of the constitutive relations according to the fully implicit (Backward
Euler) return method, see e.g. [4].

Application examples

End notched beam

End notched beams are commonly used in beam-to-beam or beam-to-column connections in
timber structures. The analysis presented here deals with strength and fracture course for
beams of different sizes and with different orientations of the material principal directions, i.e.
with different growth ring patterns. Geometry, boundary conditions, loading and finite element
mesh is presented in figure 1. Experimental tests with corresponding setup are presented in
[3]. The nominal shear stress vs. displacement and considered growth ring patterns (with wide
horizontal lines indicating the locations of the crack planes) are presented in figure 2.
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Figure 1. End notch beam geometry, boundary conditions, loading (a) and finite element mesh (b).
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Figure 2. Nominal shear stress vs. displacement (a) for end notched beams with three types of growth
ring patterns (b). Horizontal lines in (a) represent maximum load for 7+7 individual experimental tests
with equal geometry and loading presented in [3].

Beam with a hole

Numerical analyses of glulam beams with a hole have also been carried out. The numerical results
have been compared to results of experimental tests, in general showing a fairly good agreement
both with respect to beam depth influence and general fracture behavior. A parameter study
related to influence of growth ring pattern, beam width and different types of initial cracks have
also been performed. The results indicate that all these parameter may influence the nominal
beams strength to a significant extent.

An example of analysis of a glulam beam with a hole is presented; with geometry, boundary
conditions, loading and finite element mesh according to figure 3. The beam has a cross section
of H×B = 180×115 mm2 and contains a quadratic hole of side length 60 mm which is placed in
the upper part of the beam. Numerical results in terms of nominal shear stress vs. displacement
is presented in figure 4 together with results of four individual experimental tests of a beam
with equal geometry and loading presented in [2]. Illustrations of the extension of the fracture
process zones on both sides of the hole are presented in figure 5; for maximum load and for the
last point of the snap-back part of the load vs. displacement path in figure 4.
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a) Geometry and boundary conditions
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b) Finite element mesh
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x

Figure 3. Geometry, boundary conditions, loading (a) and finite element mesh (b) for analysis of a beam
with a hole.
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Figure 4. Nominal shear stress vs. displacement (a) for a beam with a hole and growth ring pattern (b).
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Figure 5. Extensions of fracture process zones at maximum load (left) and at the last point of the snap-
back part of the load vs. displacement path (right): black elements represent traction-free crack, grey
elements represent fracture process zone and isolines represent δeff values of 0.1, 0.3, 0.5, 0.7 and 0.9.
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Summary. A finite-element model of two thin transversely-isotropic conjectured spherical 
shells with different radii of curvature and biomechanical properties under internal pressure and 
external load with a flat base are presented. Shell with the smaller radius splits into several 
layers of different thickness and elastic properties. The external load is applied to the shell of a 
smaller radius. The comparison of results obtained before and after the removal of shell layers is 
analyzed. The proposed finite-element model simulates the measurements of intraocular 
pressure (IOP) using Goldmann’s applanation tonometer (GAT) and Maklakov’s applanation 
tonometer (MAT) (weight 5 g and 10 g) and suitable for global analysis of cornea deformations 
before and after refractive surgery.  

Key words: intraocular pressure measurements, Goldmann’s tonometer, Maklakov’s 

tonometer, multilayer shells, refractive surgery, LASIK, PRK. 

Introduction 

The problem of the stress-stain state of soft and close to soft shells under the load with a flat 

base is important for the analysis of the data associated with the measurements of essential 

feature in ophthalmology – intraocular pressure (IOP). IOP plays an important role in diagnostic 

of a number of eye diseases and the development of effective methods for their treatment. 

Applanation tonometry estimates intraocular pressure (IOP) by quantifying the force needed 

to create a defined amount of deformation of the cornea (Goldmann’s tonometer) or by 

estimating the diameter of the circular contact area of the cornea and flat tonometer of defined 

load (Maklakov’s tonometer). See figure 1. 

 

 

 

 

 

 

 

 

Figure1. The cornea under the load with a flat base. 

mailto:s_bauer@mail.ru
mailto:l_karamshina@mail.ru
http://www.multitran.ru/c/m.exe?t=1800143_1_2
http://www.multitran.ru/c/m.exe?t=77119_1_2


It is known, that refractive surgery significantly changes the thickness and curvature of the 

cornea. At the present time it is recognized that cornea thickness and curvature significantly 

affect the IOP readings [1-6]. Standardization of IOP measurements and examination of the 

effect of different parameters of the eyeball onto the value of intraocular pressure are among 

urgent questions today. 

The changes in IOP readings after refractive surgery can’t be described by the theory of soft 

shells. In order to analyze the effect of decreasing of the corneal thickness in the central zone on 

the IOP readings obtained by Goldmann’s and Maklakov’s tonometers after refractive surgery 

the following model problem is considered.  

Problem statement 

The eye shell is modeled as conjectured spherical shells with different diameters and 

elastic properties (see figure 2). It is assumed that before loading the composite shell is filled by 

incompressible liquid with real pressure p (the true intraocular pressure). The cornea is modeled 

by a spherical segment with smaller radius which divided into four layers (see figure 3) that 

represent epithelium (L1), Boymen’s membrane (L2), stroma (L3), Descemet's membrane (L4) 

consequently. The sclera is modeled as monolayer spherical segment with the bigger radius (L5). 

 

 

 

Figure 2. The cornea is modeled by 

conjectured shells 

 Figure 3. The cornea is divided 

into four layers 
 

In figure 4 the layers of the cornea (L6), which are exposed to a laser beam in the 

refractive surgery LASIK and PRK are shown. 

 
LASIK 

 
PRK 

 

Figure 4. The cornea after refractive surgery: LASIK and PRK. 

According to experimental data [6] sclera and cornea can be considered as transversally- 

isotropic shells, therefore, on elastic coefficients the following conditions [7] are imposed: 
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Here iE  and iE  are elastic moduli under tension and compression on the surface of isotropy 
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and in the normal to this surface direction; i  and i   
 are Poisson ratios. Transverse moduli for 

the surface of isotropy are defined by the following relation  iii EG  12/ . 

Average values of the elastic moduli for the whole cornea in the tangential direction E   

and in the normal direction E  are determined from [8]: 
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Relations (1) and (2) allow us to estimate the effect of a multilayer structure of the cornea 

on average parameters of the whole cornea (thickness, elastic moduli and Poisson ratios), 

therefore, to estimate the change of the parameters of IOP. 

In the measurement of intraocular pressure by Maklakov’s method the tonometer with flat 

foundation (weight 10 g) is placed on cornea. Under the influence of this load cornea is 

deformed and the diameter of the contact area is registered.  

Goldman’s method is based on the measuring of the force that must be applied to a fixed 

central region of cornea. Flattened area should have a diameter of 3.06 mm, since for this 

contact area the force of 0.1 g applied to the tonometer corresponds to IOP equal to 1 mm Hg, 

therefore, force (in grams) is multiplied by ten and sets to be equal to IOP. 

Measurement of IOP by Maklakov’s and Goldmann’s tonometers are modeled by contact 

problems in program package ANSYS. At the first step the intraocular pressure is applied, next 

the force F= m g is applied. In the first problem the force applied to the cornea was equal to 10 

grams (0.1 H) and the contact area was estimated. In the second problem the force varied so that 

the contact area was equal to 3.06 mm. 

Numerical analysis 

In order to estimate the influence of multilayer structure of cornea on changes of 

intraocular pressure during measurements only elastic parameters of the cornea layers were 

varied, while the thickness and elastic modulus of sclera remained constant. For each series of 

calculation was carried out comparison of results obtained for multilayered shell and one-

layered shell with average elastic modulus.  

Calculations showed that in case of the IOP measurement by the use of Maklakov’s 

tonometer the contact area of the cornea and tonometer for the multilayer model appears bigger 

than for single-layer model with averaged elastic coefficients (2, 3). In the case of the measuring 

of IOP by Goldmann’s tonometer the value of the force that must be applied to the tonometer in 

order to obtain the contact area of the tonometer and shell was equal to 3.06 mm, appears lower 

for multilayer model. Thus, it was shown that multilayer corneal model gives a more accurate 

estimation of the true IOP. 

After LASIK surgery an additional layer (flap) is created. In order to estimate the 

influence of this layer on the IOP readings obtained after LASIK, cornea was  modeled with 

five layers, while after PRK cornea was modeled with four layers. It was assumed that the 

change in corneal thickness in both cases occurs on one value h.  
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Conclusions 

The calculations have shown that the heterogeneity of the  cornea in the thickness 

direction provides more closely adjacent values of the true and tonometric IOP. After refractive 

surgery the bending stiffness of the cornea reduces, and, consequently, reduces the IOP readings 

obtained by Goldmann’s and Maklakov’s applanation tonometers. The changes of IOP readings 

obtained by Maklakov’s tonometer are imperceivable. The IOP readings obtained by 

Goldmann’s tonometer after refractive surgery depend strongly on the depth of laser impact 

(ablation). 
The result of calculations showed that IOP readings obtained after LASIK are lower than 

the IOP readings obtained after PRK. It could be explained by the appearance of additional layer 

after LASIK. The increase of layers number reduces the bending stiffness of the cornea, and as a 

consequence, reduces the data of IOP obtained by Goldmann’s and Maklakov’s tonometers. 
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Summary. This paper presents a finite element model in the software package ABAQUS in which a
reliable analysis of grouted pile-to-sleeve connections with shear keys is the particular purpose. The
model is calibrated to experimental results and a consistent set of input parameters is estimated so that
different structural problems can be reproduced sucessfully.

Key words: Finite element method, ABAQUS, Plasticity, Damage, Grouted Connections, Shear Keys.

Introduction

The grouted pile-to-sleeve connection shown in Figure 1 has been used in oil & gas structures for
decades. In these structures the grouted connections mainly transfer axial compressive forces
and the diameter of the connections is relatively small. However, today grouted connections

Figure 1. A grouted connection with and without shear keys.

with much larger diameters are used between mono piles and wind turbine towers. Additionally,
these connections are exposed to significant cyclic bending moments next to the axial forces.
The first grouted connections of this type were designed based on the same design rules as used
for offshore oil & gas installations. Consequently, sliding damage was observed in many of these
connections and a revised design practice was necessary. Therefore, Det Norske Veritas (DNV)
reviewed the design practice for calculating the axial load capacity of grouted connections with
large diameters and without shear keys. DNV concluded that the existing design practice was
invalid and inaccurate. A joint industry project (JIP) phase 1 was established with the primary
goal to update and improve the design recommendations for grouted connections with large
diameters. Plain cylindrical shaped grouted connections without shear keys can no longer be
recommended and a new design methodology for conical shaped grouted connections is given



in DNV-OS-J101 (2011). During the JIP phase 2 a design procedure for cylindrical shaped
grouted connections with shear keys subjected to cyclic dynamic loading has been developed
and will be included in the coming DNV-OS-J101. The conclusions and results from the JIP
projects can be found in a publication from DNV [5]. A clear statement from the JIP report
regarding modelling of grouted connections with shear keys: Presently, there is no finite element

analysis method/programme readily available to the industry that can be used for reliable analysis

of the ultimate capacity of these connections. Therefore, the aim of this study is to examine if
ABAQUS can be used to simulate the failure process of a grouted connection with shear keys.
However, a numerical model in ABAQUS is only attractive for the industry if the model

• includes the physical mechanisms behind the mechanical properties of the grouted connec-
tion

• is robust i.e. no severe convergence problems

• is objective with respect to finite element size

• includes unique model parameters

Numerical model in ABAQUS

We have applied the Concrete Damaged Plasticity model available in ABAQUS, where the flow
potential G is similar to a Drucker-Prager hyperbolic function

G =

√
(ǫσc0 tanψ)

2 + q̄2 − p̄ tanψ, (1)

where p̄ is the hydrostatic pressure and q̄ is the equivalent Von Mises stress both expressed in
the effective stress space. The dilatation angle ψ, the eccentricity parameter ǫ and the initial
compression strength σc0 define the shape of G in the p− q plane. The Lubliner yield criteria [6]
is used

F =
1

1− α
(q̄ − 3αp̄ + β〈σ̄p,max〉+ γ〈−σ̄p,max〉)− σc(ε

pl
c ), (2)

where the scale parameter α depends on the initial material strengths, whereas β is controlled
by both the initial strengths and the current stress state, which depends on the equivalent
plastic strain and the damage level ω. The factor γ depends on the shape parameter Kc,
where Kc = 1 implies that the yield surface F is similar to a Drucker-Prager yield surface. The
maximum principal stress in the effective stress space is denoted σ̄p,max. The Concrete Damaged
Plasticity model in ABAQUS adopts the concept of isotropic damaged elasticity in combination
with isotropic tensile and compressive plasticity to represent the inelastic behaviour of concrete.
Furthermore, it is assumed that tensile cracking and compressive crushing are the main failure
mechanisms. Therefore, we need to input at integration point level the curves σc(ε

pl
c ) and σt(ε

pl
t ),

where εplc and εplt are the inelastic strain in compression and tension, respectively. Additionally,

we define the damage curves ωt(ε
pl
t ) and ωc(ε

pl
c ). The model is regularized by visco-plasticity

with the relaxation time µ as input. The regularization ensures more stable convergence and
objective results with respect to the finite element size. A successful model is able to capture
the correct force-displacement response as well as a realistic damage pattern (failure mode).
This requires a careful input of the 4 material curves and the relaxation time, which is the main
challenge of the material model in ABAQUS. In this calibration process we found inspiration
in [3]. We have been able to define a unique set of input curves and model parameters so
the same material model can be used to reproduce experimental observations from different
structural problems. Finally, we have defined friction between grout and steel with a friction
parameter µf = 0.4 and the main input parameters are presented in Table 1.



Table 1. Model parameters defined in the ABAQUS material model.

E ν σc0 σt0 ψ ǫ
σb0

σc0
Kc µ µf

[MPa] [-] [MPa] [MPa] [o] [-] [-] [-] [s] [-]

55000 0.19 150 7 38 1.0 1.12 0.666 0.001 0.4

Figure 2. Scaled axial compression test from [1], where the cracks and typical force-displacement curves
are shown. A compression strength σc0 = 150 MPa is used and h is the height of the shear key and s is
the spacing distance between the shear keys.

Results

In order to calibrate the model i.e. define a set of model parameters, adjust the inelastic strain-
stress and the inelastic strain-damage input curves we have done preliminary simulations with
plain grout in different structural set-ups: uni-axial tension, uni-axial compression, three-point
bending and compared to experimental results from the literature. Next we have studied the
experimental and numerical work on grouted connections from [7, 1, 2] among others. Here we
present the numerical results from ABAQUS, where the experiments from Steffen Anders [1]
are considered. Figure 2 shows the results from uni-axial compression tests [1], where the
influence of the shear key and the shear key spacing on the capacity of the grouted connection
is highlighted. The first sudden decrease in capacity is related to a slip between grout and
steel material which initiates the first tensile cracks between the shear keys on pile and sleeve,
see Figure 2 (left). The second sudden decrease in capacity is caused by the further slips
and compressive damage. The numerical results from an axi-symmetric model in ABAQUS
is presented in Figure 3. We have marked 5 points on the stress-deformation plot and the
corresponding damage plots are presented in Figure 4. The numerical results (h/s = 0.056)
correspond well with the experimental results in the displacement range [0-1.5] mm, where
the first capacity decrease due to tensile cracking (point 1-2) is captured. In order to fit the
next decrease (point 3) it is necessary to include yielding of the steel material. This is also in
agreement with the conclusions from [2]. The confinement of the grout material is decreased
when the steel material yields due to hoop stresses. Consequently, the grout material fails in
compression and when a full crushing zone is established, see Figure 4 (left), the second sudden
decrease is observed.



Figure 3. Numerical results from ABAQUS, where the results are compared to the experiments from [1].
The depicted element discretizations are tested and Type 2 mesh refers to the last mesh, where the grout
and steel elements are non-conforming.

Compressive damage Tensile damage

Figure 4. Numerical results from an axi-symmetric model in ABAQUS, where the evolutions of compres-
sive and tensile damage are shown for the 5 steps highlighted in Figure 3.

Concluding remarks

The Concrete Damaged Plasticity model from ABAQUS is adopted to simulate the failure pro-
cess of a grouted connection with shear keys exposed to uni-axial compression. We conclude that
the simulations are successful and that the model can be used to further analysis of structural
problems with grouted connections.
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Summary. A reduced model for determining the maximum principal stress of a glass pane subjected
to dynamic impact load is developed. The aim is to integrate the model into a glass design program for
strength design of glass structures. The model performs well for clamped glass panes of modest sized
in-plane glass dimensions. Further model development is required in order for the method to deal with
for instance varying glass pane dimensions and boundary conditions.

Key words: glass, strength design, dynamic impact load

Introduction

When performing strength design of glass structures, dynamic impact load is one of the load
cases which might be included in the analysis. Since glass is a brittle material, it is sensitive to
impact load and it is necessary to accurately determine the stress distribution in the glass due
to this load case. At present strength design of glass structures may be performed by means
of experimental tests. The European and Swedish standard SS-EN-12600, [1], is available to
classify glass for impact strength. However, when performing strength design of glass structures,
the properties of the system may be different from those prescribed in the standard. It is possible
to apply the impact load according to the standard to a glass structure, but the process is time
consuming when considering parameter variation in strength design. An alternative is to use
finite element simulations. Among others Persson and Doepker (2009), [2], performed a finite
element analysis of the test arrangement that is described by the standard. It was proven that
the finite element simulations yield results close to experimental results for standard parameter
values. Further analyses showed that the results are sensitive to parameter variations, which
implies that it is important to consider the actual conditions for the structure under consideration
when performing strength design. However, finite element modeling could be advanced and time
consuming. In this work, the aim is to develop a reduced model for strength design of glass
structures subjected to dynamic impact load. The resulting model is to be integrated into a glass
design computer program which allows fast and accurate strength design of glass structures.

A pendulum impact test for classifying glass for impact strength

The experimental test arrangement used to classify glass for impact strength, [1], consists of a
glass pane held within a steel frame and an impactor consisting of a weight encased in a tire.
During the test, the tire is swung in a pendulum motion into the glass pane. The dimensions
of the frame are standardized, as well as the weight of the impactor. For use in this work, the
impactor drop height is set to 1200 mm.



A reduced model for glass panes subjected to dynamic impact loads

A finite element model of the glass pane was made in Matlab. The two-dimensional geometry
of the pane is displayed in Figure 1.

The area A is the contact area between the impactor and the glass. In the finite element
model, a pressure load which represents the contact force distribution between the impactor and
the glass was applied to this area. In order to increase the computational efficiency, a solid-shell
element developed in [3] and whose efficiency when applied to glass structures was demonstrated
in [4], was used. The model was used to determine the maximum principal stress of the glass
pane. As a boundary condition, the frame was set as clamped.

The contact force between impactor and glass is F = kgumax, where kg is the generalized
stiffness of the glass and umax is the maximum displacement of the glass as determined by a
two-degree-of-freedom model of the system.

The material parameters were chosen in accordance with the dynamic finite element model
of Persson and Doepker (2009), [2].

In order to determine kg and umax, a standard two-degree-of-freedom model was used to
model the system, [5]. A sketch of the model is displayed in Figure 2.

k denotes stiffness and m denotes mass of the glass, g, and impactor, i, respectively. u1 and
u2 are the displacements of the glass and the impactor and u̇2(0) is the initial velocity of the
impactor. mi was known, [1], whereas the other mass and the stiffnesses were to be determined.

ki was determined by means of ABAQUS/CAE through a static application of the impactor
onto a rigid surface. From a linear approximation of the force-displacement relation for the
impactor, ki was obtained as the slope.

kg and mg could be determined by means of the finite element model in Matlab. A unit
force F = 1 was applied to A. The resulting solution of the system gave a distribution of
displacements, u(x, y). Following Chopra (2007), [5],

u(x, y) = Ψ(x, y)z, (1)

where Ψ(x, y) is the shape function and z is the generalized coordinate which here was chosen
as the maximum value of u(x, y). Ψ(x, y) is the fundamental mode of vibration of the glass. It
can be shown that

mg = ΨTMΨ =
uTMu

z2
, kg = ΨTKΨ =

uTKu

z2
, (2)

A

Figure 1. Two-dimensional geometry of glass pane.

kg

u1

mg

ki

u2

mi u2 (0)

Figure 2. Two-degree-of-freedom model for pendulum impact test.



where M is the mass matrix and K is the stiffness matrix. A system of equations could be set
up for the two-degree-of-freedom model, and a solution for free vibration of the system could be
obtained using standard methods, [5]. The solution provided a time series of values for u1 and
u2. The maximum (absolute) value of u1 is corresponding to umax.

Test example

As a test example of the modeling framework described in the previous section, a glass pane of
the dimensions corresponding to the standard SS-EN-12600 was chosen, [1]. The glass thickness
tg was set to 10 mm. The mass of the impactor was also chosen according to the standard, [1].
In Persson and Doepker (2009), [2], u̇2(0) for a drop height of 1200 mm is given and this value
is stated in Table 1.

The parameter values for the two-degree-of-freedom model are displayed in Table 1.
A is the estimated area of the glass which is in contact with the impactor at the moment of

maximum value of the displacements in the corresponding dynamic finite element simulation,
[2].

The solution of the two-degree-of-freedom model provided umax = 0.03 m. A graph showing
the displacements versus time is given in Figure 3. For comparison, the results for the displace-
ment of the center of the glass from the dynamic finite element simulation, [2], are provided. All
displacements have been multiplied by -1.

The resulting value of the maximum principal stress, σmax, normalized by the correspond-
ing quantity determined by means of a dynamic finite element computation, [2], σmax,dyn, is
presented in the first row of Table 2. The difference between the model results is around 1 %.

Table 1. Parameter values for two-degree-of-freedom model.

ki (kN/m) kg (kN/m) mg (kg) u̇2(0) (m/s) A (m2)

400 586 1.17 -4.85 0.2 × 0.18
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Figure 3. Displacements versus time for two-degree-of-freedom model.



Table 2. Normalized maximum principal stress for different glass dimensions.

Glass dimensions (mm2) σmax/σmax,dyn

1950 × 887 1.01
1000 × 1000 0.96
2000 × 2000 1.37

Varying the glass pane dimensions

In order to test whether the current model is valid for different glass pane dimensions, the test
case of the previous section was analyzed, but for varying glass pane dimensions. The normalized
test results are presented in Table 2.

The difference in model results is acceptable, which means less than 5 %, for the smaller
glass panes. When the dimensions of the glass pane reach 2× 2 m2, this difference is greater.

Conclusions and future work

A reduced model for determining the maximum principal stress of a glass pane subjected to
dynamic impact load has been developed. The model has been calibrated to results from Persson
and Doepker (2009), [2]. For smaller glass pane dimensions, the results of the reduced model are
good. When increasing the glass pane dimensions, it is necessary to further develop the model
in order to yield satisfactory results. Apparently it is not enough to represent the behavior of
glass pane by the fundamental mode of vibration, but higher modes of vibration have to be
included in the analysis. In the end, the reduced model framework is to be integrated into a
glass design program with the aim to perform strength design of glass structures. The model
has to be flexible enough to deal with variations in for instance glass dimensions and boundary
conditions.
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Summary. Homogenization of a Stokes flow in an open pore system is studied. The homogenization
results in a Darcy flow on the macroscale. On the heterogeneous subscale, a (possibly nonlinear) Stokes
flow problem is formulated on a Representative Volume Element (RVE). As periodicity on both the
velocity and pressure fields on the subscale satisfies the macrohomogeneity condition and due to the
difficulties involved in generating periodic meshes, especially in 3D, a method to impose weak periodicity
on the RVE is proposed.
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Introduction

Porous materials are present in many natural as well as engineered structures such as sandstone
which can contain oil, different kinds of filters and fiber networks during manufacturing of
composite materials to name a few. On the subscale, the material has a strongly heterogeneous
composition consisting of both a solid and a fluid phase, while on the macroscale the material
is often modeled as homogeneous using an averaged constitutive relation (e.g. Porous Media
Theory, cf. [1]). Due to the complexity of the substructure in this kind of materials, it is difficult to
make an accurate model on the macroscopic level, thus exploring the possibilities of a multiscale
approach is a natural step, see e.g. [2].

By separation of scales, it turns out that a Darcy flow is present on the macroscale, which is
solved using the Finite Element Method. However, instead of using a conventional constitutive
relation associating the seepage velocity to the pressure gradient, another Finite Element pro-
blem is solved in each Gausspoint in order to produce the velocity given the pressure gradient.
The problem solved in each Gausspoint is referred to as the subscale problem which consists of a
Stokes flow that is solved for on a Representative Volume Element (RVE)[3]. The RVE is a geo-
metrical representation of the substructure of the porous medium and must be large enough to
be representative to the material yet small enough to be computationally efficient. The solution
to the subscale problem is homogenized and the result determines the material response on the
macroscale. it can be shown that by imposing periodicity on the RVE, the macrohomogeneity
condition is satisfied which means that the macroscale and the subscale are equivalent in terms
of energy. The pertinent homogenization procedure is a generalization of classic homogenization,
following along the lines in [4]. This work introduces a method for imposing periodicity in a weak
sense, thus, the need for a periodic mesh is void.



Fully resolved Stokes flow

Consider a fully resolved domain Ω consisting of an topologically periodic open pore system ΩF

and solid obstacles which are assumed to be rigid. The boundary ΓF is the part of Γ := ∂Ω
which intersects the boundary of ΩF, i.e. the part of Γ where fluid can enter or exit the domain.
Furthermore, the boundary Γint is introduced as the part of ∂ΩF which is contained inside Ω,
i.e. the boundaries of the obstacles in the porous domain. A Stokes flow on Ω can be derived by

minimizing the potential function Φ(v ⊗∇) which is defined such that ∂Φ(v⊗∇)

∂v⊗∇ = σv where

σv is the deviatoric part of the Cauchy stress. The minimization problem can be given as

inf
v∈V

sup
p∈P

{∫
ΩF

Φ(v ⊗∇)dV −
∫

ΩF

p(∇ · v)dV −
∫

ΓF
P

t̂ · vdS

}
(1)

where

V =
{

[v ∈ H1
(
ΩF
)
]3 : v = 0 on Γint, v = v̂nn on ΓF

V

}
(2a)

P =
{
p ∈ L2

(
ΩF
)}

(2b)

and v is the fluid velocity, p is the pressure and t̂ is the traction defined as t̂ = p̂n where p̂ is
the prescribed pressure along the boundary ΓF

P and ΓF
V is the part of the boundary wehere the

velocity is prescribed. It should be noted that the pressure p is the Lagrange multiplier pertinent
to the incompressibility condition. We proceed by splitting the domain into a finite number n
domains Ω�,i such that Ω = ∪Ω�,i and such that each subdomain retains geometric periodicity.
We can now rewrite the first two terms in Equation 1 as the sum of each subdomain. Note that
up to this point, the velocity v and p are continous on the whole domain Ω.

inf
v∈V

sup
p∈P

n∑
i=1

{∫
ΩF

�,i

Φ(v ⊗∇)dV −
∫

ΩF
�,i

p(∇ · v)dV

}
−
∫

ΓF
P

t̂ · vdS (3)

At his point, we split the pressure p into a smooth macroscale path pM and a fluctuating subscale
part pS such that p = pM +pS. Using Gauss’s theorem on the resulting macroscale pressure part,
we get

inf
v∈V

sup
pM∈PM

pS∈PS

n∑
i=1

{∫
ΩF

�,i

Φ(v ⊗∇)dV −
∫

ΩF
�,i

pS(∇ · v)dV +

∫
ΩF

�,i

∇pM · vdV

}
−
∫

ΓF
V

n·vpMdS

(4)

where n is the outward pointing normal to ΓF. By removing the assumption on continuity on
v and p over the internal boundaries, reaction forces arise and the macrohomogeneity condition
can be stated as ∫

ΓF
�

tS · v dS = 0

where tS = (σv− pSI) ·n is the traction on the boundary. The condition is fulfilled by imposing
periodicity on v and pS on the boundary ΓF

�. Due to the difficulties involved in generating
periodic meshes, the periodicity is imposed in a weak sence. We now proceed by splitting the
boundary Γ� into two parts; one ΓF+

� which has a normal in the positive x or y direction and
one ΓF−

� which has a normal in the negative x or y direction. Moreover, we introduce the jump
operator J•K such that JfK = f |ΓF+

�
− f |ΓF−

�
and add the periodicity constraints JvK = 0 and



JpSK = 0. The additional conditions give rise to the Lagrange multipliers β and γ. Thus, Equation
4 is rewritten as

inf
v∈V�

sup
pM∈PM

pS∈PS
�

β∈B�

inf
γ∈G�

n∑
i=1

{∫
ΩF

�,i

Φ(v ⊗∇)− pS(∇ · v) +∇pM · vdV −
∫

ΓF+
�,i

JvK · β + JpSK · γdS

}

−
∫

ΓF
V

n · vpMdS

We can now produce the respective macroscale and subscale equations by varying the perti-
nent quantities. By varying the macroscale pressure pM and introducing the macroscale quantity
p̄ ∈ PM =

{
p̄ ∈ H1 (Ω) , p̄ = p̂ on ΓP

}
such that ∇p̄ = ∇pM, the macroscale equation is given

as ∫
Ω
w̄ ·∇δp̄dV =

∫
Γ
w̄ · nδp̄ dS ∀δp̄ ∈ PM,0

where seepage w̄ is defined as w̄ = φ 〈v〉�, φ is the porosity and the operator 〈•〉� is the
averaging operator defined as

〈f〉� =
1

| ΩF
� |

∫
ΩF

�

fdV

and the function space PM,0 is the linear counterpart of PM

By varying the subscale quantities v, pS, β and γ, the weak form of the subscale equation is
given as∫

ΩF
�,i

σv(v ⊗∇) : [δv ⊗∇]dV −
∫

ΩF
�,i

[δv ·∇]pSdV −
∫

ΓF
�,i

JδvK · βdS = −
∫

ΩF
�,i

∇pM · δvdV

−
∫

ΩF
�,i

[v ·∇]δpSdV −
∫

ΓF
�,i

JδpSKγdV = 0

−
∫

ΓF
�,i

JvK · δβdV = 0

−
∫

ΓF
�,i

JpSKδγdV = 0

Here, the solution spaces V�, PS
�, B� and G� govern the approximation and the testfunctions

are choosen as δv ∈ V0
�, δpS ∈ PS,0

� , δβ ∈ B� and δγ ∈ G� respectively. In particular, we follow
along the lines of [5] and introduce global polynomials for B� and G�.

Numerical example

The numerical example presented in this section illustrates how weak periodic boundary con-
ditions is imposed on a unit cell with a cicular obstacle which is slightly moved to the left in
order to create a non-periodic mesh. Note that by assuming periodicity, the subscale properties
are independent of the position of the RVE. A pressure gradient pM = [−1 0] is applied. In this
example, the Lagrange multipliers are approximated by a polynomial of degree 4. The resulting
shapes of the Lagrange multiplier functions β and γ can be seen in Figure 1 together with the
velocity field and pressure field.



β1 β2 γ

β1

β2

γ

Figur 1. Weak periodicity is imposed on an RVE by Lagrange multipliers approximated as polynomials
of degree 4.

Conclusions and outlook

It has been shown that imposing periodicity in a weak form on an RVE is possible and that the
solution convergence towards strong periodicity by increasing the number of degrees of freedom
of the approximations on the pertinent Lagrange multipliers.

As for future work, a method for a priori determination of the number of degrees of freedom
on the approximation of the Lagrange multipliers is desired in order to rid the need for frequent
convergence studies. As a main goal is to couple permeability and deformation, a transition to
3D is of the essence.
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Summary. A fatigue analysis is being carried out for a wave energy converter subjected to ocean wave
loads. The device is a bottom fixed structure, located in a shallow water environment. Interest is focused
on the local stress response of a structural detail and a subsequent calculation of its fatigue life by using
the rainflow counting approach. The wave energy converter is characterized by its ability to enter in a
storm protection mode which - whenever extreme conditions occur - will drastically reduce the exposure
to wave loads. The predicted fatigue life is calculated for two different control cases. Finally the question
will be answered which control strategy is more favorable regarding the trade off between fatigue damage
reduction and power production on the wave energy device.

Key words: Structural modeling, fatigue damage calculation, control strategies.

Introduction

The present study is concerned with the structural design of the Wavestar device which is cur-
rently being deployed in Hanstholm, at the Danish Westcoast. The Wavestar Hanstholm WEC
is a grid connected prototype with two floats each equipped with a generator. The prototype
has been in operation since 2007 with a total installed capacity of 110 kW. The electrical energy
produced by the two generators was 22.8 MWh in the period from May 2010 to April 2012. A
number of studies have been carried out during the last two years focusing on the numerical
modeling and the control of the device Ref. [1]. In [2] it was found that the effect of non-linear
buoyancy forces have a influence on the dynamics of the device for waves with a steepness factor
larger than 0.05. In order to account for non-linearities in the load calculation the only practical
option is a non-linear time domain motion analysis. On the other hand solutions based on time
series which account for non-linear effects are expensive to implement and may require long
computational time. However, the emphasis in the present paper is more given on the struc-
tural modeling rather than on an advanced hydrodynamical model. The hydrodynamical and
structural analysis are thus performed separately. The hydrodynamic analysis was conducted
previously based on diffracting panel elements over the wetted surface of the hemisphere-shaped
float by applying the Boundary Element Method (BEM). Rigid body motions were computed
by a linearized time domain model and are then used as boundary conditions in the structural
model. In the structural model the device is modeled as a flexible body consisting of shell
elements. Stress concentrations are assumed to occur in the connections joints. A transient
structural analysis is carried out in order to determine the dynamic response of the system
subjected to the time-varying control load calculated by the hydrodynamic analysis.



Hydrodynamical model - rigid body assumption

The rigid body motions were previously analyzed by the following integro-differential equation,
Ref.[3].

(M + a
∞)φ̈(t) +

∫ t

0
K(t− τ)φ̇(τ)dτ + Cφ(t) = MEx(t) +Mc(t) (1)

where φ(t) represents the angular rotation of the body around the bearing point A, see Fig.
1. M is the inertia coefficient of the rigid body motion; a∞ represents the added mass at infinite
high wave frequencies; the next term is the convolution of the radiation memory function K(t)
with the angular velocity φ̇(τ) and C represents the buoyancy coefficient. MEx(t) is the wave
excitation moment. The last term Mc(t) can be interpreted as any non-linear external force such
as viscous forces, mooring forces or feedback forces from a wave energy power take-off system. In
our case, a linear passively damped energy conversion system has been assumed which consists
of a damping coefficient c multiplied with the angular velocity φ̇. The equation of motion is
solved applying an explicit 4th order Runge-Kutta time integration scheme with a constant
time stepping. The control force Fc(t) = Mc(t)/x(t) is plotted in Fig. 2 in function of three
different damping coefficients c1,2,3 for an incident irregular wave train, (Jonswap: Hm0 = 1.5m,
Tp = 4.5s). By comparing the control force with the instantaneous power in Fig. 3, it can
be concluded that the optimum control parameter c may vary by considering the accumulated
damage in the structural detail, i.e. where the cylinder is connected to the structure.
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Figure 1. Equivalent beam model, multidirectional wave loading
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Structural model - flexible body

In a next step, the focus is given on the development of a global structural model which is used
to approximate the overall displacement and stress distribution in the arm under the given load
pattern. In order to account for inertial forces in the deformable body and at a latter stage of
the project for non-linear effects, the authors have decided to work out a transient structural
analysis for the given problem. The general equation of motion for the structural model is given
as follows:

MÜ+CU̇+ (K+ ks)U = F (2)

where M, C, and K are the global mass, damping and stiffness matrices. F is the vector of
externally applied loads and U, U̇, and Ü are the displacement, velocity and acceleration vectors
of the finite element assemblage. ks is a spring stiffness term which represents the support at
the end of the arm due to the presence of the water. The spring can only transfer pressure
loads, traction forces are omitted. Non-linear effects such as the non-linear buoyancy force may
be included by updating the stiffness coefficient ks at each time step. For the present case a
constant value of 192 kN/m has been assumed which is equal to the water plane area of the
float (d=5.0 m) times the density of the water (1000kg/m3).

ANSYS shell model

A detailed ANSYS shell model of the arm has been elaborated and is shown in Figure 4. Four-
noded shell elements were used to represent the global stiffness model. The shell structure
consists of 16887 elements, 16714 nodes and 96941 unknown variables. The modulus of elasticity
of steel was assumed to be 205 kN/mm

2. The structure is supported at two sections by a simply
supported boundary condition which allows a free rotation in the three directions. At the end of
the structure an external spring element is attached which allows longitudinal pressure forces.
The structure is subjected to a time-varying load Fc(t) shown in Figure 2 and is attached at the
connection between the arm and the cylinder. Results of the stress distribution in the welded
connection will be presented in the next paragraph.

stress analysis
in welded joint

Figure 4. Shell model, von Mises stress distribution assuming a stiffness coefficient of ks = 192kN/m

for a significant wave height: Hm0 = 1.5m and a peak period of Tp = 4.5s, assuming irregular waves
(Jonswap, γ = 3.3).

Results

The accumulated damage in the structural detail was calculated based on a rainflow counting
algorithm Ref. [4] and the given time series of the von Mises stresses, Fig. 5. At this moment



the simulation time was limited to 100 s. The damage ratios for the three different damping
coefficients are shown in Table 1.

Table 1. Average power production, accumulated damage for the calculated time series for three different
damping coefficients.

c1,2,3: 5e5 5e6 5e7 [kg/s]

Di : 6.58 · 10−8 1.217 · 10−6 7.6 · 10−5 [-]

Figure 5. Time series of stresses for c1 = 5 · 105kg/s at the structural detail.

Conclusion

A structural analysis of a wave energy converter has been carried out by a detailed finite element
model. The hydrodynamic loads were computed based on the diffraction theory and a rigid body
assumption. The separation of the hydrodynamic and structural models is justified, considering
the high eigenmodes of the flexible structure compared to the relatively low peak frequencies
encountered in a typical sea state. In order to analyze the effect of more advanced control
strategies it was suggested to perform a transient analysis in order to account for time dependent
control parameters. Short-term damage calculations have shown that the fatigue life of the
analyzed welded section is considerably increased for a less aggressive control strategy
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Summary. Computational homogenization is considered for a class of gradient-enhanced dissipative
mesoscale material models relevant for the modeling of size-dependent macroscale material response.
The adopted homogenization assumptions result in the classical equilibrium equation for a local con-
tinuum on the macroscale, while the internal variables ”live” on the mesoscale only. The macroscale
stress and ATS-tensor in a given time-increment are derived via stationarity conditions of an incremental
pseudo-potential, which represents an extension of the situation for a local continuum model. Bing-
ham viscoplasticity with gradient-enhanced hardening is chosen as the prototype model problem for the
numerical examples.
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Introduction

A large class of higher order continuum models, which can be used to represent the macroscale
response while the subscale features are incorporated in an approximate way, emerge after some
sort of (implicit or explicit) homogenization argument. Starting from a standard continuum
formulation on the mesoscale (the next lower scale in the material), a well-established approach
is to introduce, as a model assumption, higher order ”strain-like” quantities as part of a Taylor
series expansion of the macroscale displacement field. In the simplest case of linear expansion, the
classical first order homogenization models are obtained. The fluctuation field, which is added to
capture the fine-scale features, is implicitly accounted for only via the homogenization. Typical
proponents for this type of reasoning are the 2nd order homogenization model in [2] and the
micropolar model in [3]. Via this procedure, loosely speaking, a standard continuum description
on the subscale level translates to a generalized continuum on the macroscale. The important
fact is that the resulting macroscale problem becomes quite complex, both from modeling (higher
order boundary conditions) and numerical (higher regularity conditions) points of view.

A quite different approach to the modeling of (in particular) polycrystals is to incorporate a
”higher order” model on the mesoscale, viz. gradient effects within and between the grains. A
variety of phenomenological model concepts that involve gradient effects are then at our disposal.
One class of models employ gradients of internal variables in the free energy density. A recent
account on gradient-extended standard dissipative solids is given in [5]. For a polycrystal, it is
possible to impose further restrictions along the grain boundaries by formally introduce ”inter-
grain boundary conditions”, e.g. [4]. Obviously, a phenomenological model of the grain bound-
ary ”resistance” to deformation represents some sort of a priori homogenization of micro-effects
(below the mesolevel) in terms of dislocation gradients, etc. When applied to the polycrystal, it
is desirable that (first order) homogenization will lead to a standard continuum format on the
macroscale, involving the macroscale stress as the only relevant homogenized ”flux” variable,
whereas possible microstresses are confined to the mesoscale and are automatically ”suppressed”
on the macroscale as part of the homogenization.



Theory and method

In this contribution we apply a fairly general setting of variationally consistent homogenization
to the chosen class of non-standard continuum models on the mesoscale. The chosen setting
is that of the ”Variational Multiscale Method”, originally proposed in [1] in a quite different
context, and it is based on a Variationally Consistent Macrohomogeneity Condition, VCMC (that
generalizes the well-known Hill-Mandel condition to a large class of time-dependent and multi-
field problems, cf. [6]). Via the VCMC, the appropriate homogenized (macroscale) problem is
derived.

We consider a (sub)class of gradient-enhanced dissipative materials in the time-continuous
and the time-discrete formats. In particular, we establish the semi-dual format in terms of a
”micro-stress energy” (obtained after partial Legendre transformation of the free energy). The
resulting generalized saddle-point problem, based on an incremental pseudo-potential, represents
the ”workhorse” for evaluation of bounds on the macroscale stress (stiffness). The ”canonical
format” of the SVE-problem (SVE = Statistical Volume Element) for a single realization is
established via the assumption of weakly enforced micro(anti)periodicity of displacement fluc-
tuations and microtractions. Dirichlet and Neumann boundary conditions are considered as the
two extreme types in the chosen semi-dual variational setting. Finally, energetic bounds are
established for a single SVE.

Bingham viscoplasticity, cf. [7], complemented with gradient-enhanced hardening is chosen
as a prototype model for individual grains in a polycrystal, and the pertinent nested iteration
algorithm for solving the SVE-problem for different combinations of boundary conditions is out-
lined. Finally, computational results illustrate the various theoretical findings and predictions.
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(1)Aalto University, Department of Civil and Structural Engineering
P.O. Box 12100, 00760 Aalto, Finland, alexis.fedoroff@aalto.fi
(2)Tampere University of Tecchnology, Department of Mechanics and Design
P.O. Box 589, 33101 Tampere, Finland, reijo.kouhia@tut.fi, jari.m.makinen@tut.fi

Summary. In this paper a geometric approach, in which the eigenvector is considered as a locally
smooth function defined on the criticality manifold, is proposed. Special emphasis is given to the question
wheather the eigenmode resulted from a standard linear stability eigenvalue analysis is a relevant one.
Preliminary results for evaluating computable a priori error bounds on the eigenvalue and especially on
the eigenvector will be presented.

Key words: non-linear eigenvalue problem, critical point, critical eigenmode, criticality manifold

Introduction

In practical engineering analysis critical loads are usually determined by linearized stability
eigenvalue analysis, where the linearization is performed at the initial undeformed state. Accord-
ing to the knowledge of the authors, accuracy of the computed solution has not been addressed
in the literature and especially the question, whether the computed critical mode is a relevant
one, has not been discussed in the literature.

A proper stability analysis of a buckling sensitive structure should include determination of
the critical loads and its imperfection sensitivity. Computation of critical points on an equi-
librium path requires solution of a non-linear eigenvalue problem, for which solution several
techniques exist. Imperfection sensitivity analyses have been primarily focused on application
of Koiter’s initial post-buckling theory.

Determination of the critical point requires the solution of a non-linear eigenvalue problem.
However, if the pre-buckling displacements are negligible, it is usually sufficient to solve the
linearized eigenvalue problem, where the linearization is performed with respect to the unde-
formed configuration. However, as it will be shown in this paper, the linearity of the primary
equilibrium path is not sufficient to guarantee small error in the computed critical load and
especially the eigenmode.

The non-linear stability eigenvalue problem constitutes of solving the equilibrium equations
simultaneously with the criticality condition. First appearance of this idea seems to be from
1973 by Keener and Keller [1]. In their approach the criticality condition is augmented as an
eigenvalue equation, such approach has been used also in Refs. [2, 3, 4, 5, 6]. Another approach
uses a scalar equation indicating the criticality [7, 8] or expansion to a higher order polynomial
eigenvalue problem [9].



Stability eigenvalue problem

The problem of finding a critical point along an equilibrium path can be stated as: find the
critical values of q , λ and the corresponding eigenvector φ such that

f ′(q , λ)φ = 0 and f (q , λ) = 0 . (1)

where f is a vector defining the equilibrium equations and f ′ denotes the Gateaux derivative
(jacobian matrix) with respect to the state variables q , i.e. the stiffness matrix. At the critical
point the equilibrium equation (1)2 has to be satisfied at the same time with the criticality
condition (1)1, which states the zero stiffness in the direction of the critical eigenmode φ. Such
a system is considered in Refs. [10, 3].

The equilibrium equation (1)1 constitutes the balance of internal forces r and external loads
p, which is usually parametrized by a single variable λ, the load parameter, defining the intensity
of the load vector: f (q , λ) ≡ r(q) − λpr(q). If the loads does not dependent on deformations,
like in dead-weight loading, the reference load vector pr is independent of the displacement field
q .

Alternatively, the non-linear eigenvalue problem can be approximated by a polynomial eigen-
value problem. Assuming an equilibrium state (q∗, λ∗) with a regular tangent matrix, a Taylor
expansion of criticality condition (1)1 results in

(

K ∗ +∆λK̇ ∗ +
1

2
(∆λ)2K̈ ∗ + · · ·

)

φ = 0 , (2)

where ∆λ = λ−λ∗ and the superimposed dot denotes the differentiation with respect to the load
parameter λ. Expanding the displacement vector q = q∗ +∆q = q∗ +∆λq1 +

1
2(∆λ)2q2 + · · ·

the matrices in (2) are

K ∗ = f ′
∗, K̇ ∗ = f ′′

∗q1 + ḟ
′
∗, K̈ ∗ = f ′′

∗q2 + f ′′′
∗ q1q1 + ḟ

′′
∗q1 + f̈

′
∗, (3)

where f ∗ = f (q∗, λ∗) etc. Displacement vectors q i can be solved from linear systems as

K ∗q1 = −ḟ ∗, K ∗q2 = −
[

f ′′
∗q1q1 + 2ḟ

′
∗q1 + f̈ ∗

]

. (4)

It is worthwhile to notice that the coefficent matrix to solve q1, q2... is the same for all cases.
In the classical linear stability analysis the reference state is the undeformed stress free

configuration. Assuming dead weight loading, the term ḟ
′
∗ and its higher order derivatives

with respect to the load parameter will vanish. For the linear stability eigenvalue problem the
matrices are simply the following:

K 0 = f ′(0 , 0), K̇ 0 = f ′′(0 , 0)q1, (5)

where K 0q1 = pr. Therefore the strains are linear functions of the displacements q1 and the
geometric stiffness matrix K̇ is a linear function of the displacements q1.

In this paper the main emphasis is a study of the possible error in the eigenmode of the
standard linearized eigenvalue analysis as compared to the fully non-linear eigenvalue problem
(1).

Example

In figure 1 a simple three d.o.f model is shown. It represents a truss structure that is initially
plane with a loading constricted to that plane. The plane is the one orthogonal to e1 going
through the point A, which is always restricted to that plane. Two different buckling modes, or
combinations of them are possible: as a rigid bar, such that the segments A′

B
′ and B

′
C

′ remain
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Figure 1. A simple buckling model and the post-buckling equilibrium paths.

in line, or as Euler column buckling such as the nodes A
′ and C

′ remain in the original plane
while the “column” consisting of the rigid segments AB and BC “bends” at B′.

The point A′ is connected to the rigid frame via a “torsional” linear spring with coefficient
c1 whereas the relative angle of A′

B
′ with respect to B

′
C

′ is controlled by a “flexural” linear
spring with coefficient c2. The nodes A

′ and C
′ are connected with a axial linear spring of

coefficient k. The non-dimensional state variables are defined as: q1 := u / (2h), q2 := (ϕ2+ϕ1)/2
and q3 := (ϕ2 − ϕ1)/2 as well as the constants η1 := c1 / (k (2h)

2), η2 := 4 c2 / (k (2h)
2) and

λ := F / (k 2h).

Classical state space presentation. Fig. 1 shows the equilibrium paths projected on the
hyperplanes {q2 = 0 , q3 = 0} and {λ = 0}. The example has been calculated for a particular
case where the ratio of η2 to η1 is 20, meaning that the “torsional rigidity” c1 of the upper chord
of the truss is only 1/5 of the “flexural rigidity” c2 of the compressed vertical member.

Looking at the secondary equilibrium paths, it can be seen that at the lower positive critical
point given by the non-linear eigenproblem, the eigenmode is pointing almost in the direction
of q2, i.e. ϕ1 ≈ ϕ2, suggesting a rigid bar buckling mode. On the other hand the higher positive
critical point given by the non-linear eigenproblem suggests, by pointing almost at q3, a euler
column buckling mode (ϕ1 ≈ −ϕ2).

The result given by the linearized eigenproblem seems to point in the direction such that
q2 ≈ q3, which means that ϕ2 ≈ 0. Physically this eigenmode is rather unexpected considering
the values that have been given to the spring constants.

Presentation using the criticality manifold. Fig. 2 shows the primary jacobian path
JI embedded in the ambient R

3×3 space of symmetric square matrices. However, since the
jacobian matrix evaluated at the primary path of equilibrium is block diagonal and that the
block related to the primary state variable q1 is assumed to be non-singular (it is actually
constant in this case), the positive definiteness can be investigated from the block related to
the secondary state variables q2 and q3. Due to the symmetry of the matrices, it is easy to
draw the criticality manifold and the primary jacobian paths projected on the space spanned
by {e2 ⊗ e2, e3 ⊗ e3, e2 ⊗ e3}.

From fig. 2 it is easy to see that although the primary equilibrium path EI is linear, the
primary jacobian path JI is far from being linear. One can further notice that both the non-linear
jacobian path JI and the tangent space T0JI are fully contained in the plane {[K ]23 = −η1}
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Figure 2. Jacobian path and criticality manifold with parameter values η1 = 0.1 and η2 = 2.0

and that the tangent space is parallel to the vector e3 ⊗ e3 in the matrix space. The latter
statement implies that there is only one intersection between the criticality manifold and the
tangent space.
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Summary. This article presents a simple method to reduce inaccuracies in stiffness 
values due to finite element size when computing global stiffness of bone regenerate 
during leg-lengthening (distraction osteogenesis).  
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Introduction 

Distraction osteogenesis is a technique used to elongate parts of the skeleton in order to achieve 
longer limbs or repair major bone  trauma. An external frame is attached to the limb, with pre-
tensioned wires through the bone distal and proximal to the bone non-union, is employed. Axial 
rods are then screwed apart about one mm a day, pushing the two bone segments apart, until the 
intended limb length is obtained. This process may take several weeks. Then the frame is kept in 
place some more weeks for stability while the bone is consolidating (evolving into stiffer and 
more mature bone).  Finally the frame is removed. An important clinical question is: when is it 
safe to remove the frame without risking fracture of the newly developed bone callus? A 
promising method to answer this question is to combine μCT recordings and μ-finite element 
modeling. The CT scans provide bone density values that are strongly correlated to Young’s 
moduli and strength. With this, a heterogeneous solid finite element model, where each solid 
element has a site-specific stiffness, is obtained. This FE model can be used to estimate the 
global axial/bending/torsion-stiffness of the newly generated bone part. However, the finite 
element models derived from μCT data can become huge, and there is still a challenge to obtain 
simulation results within reasonable computer times.  One remedy for this is to use a mesh that 
is coarser than the one that naturally is obtained from the μCT scans. A μCT scan with e.g. 20 
μm resolution yields solid elements with extensions of the same magnitude. This is a detailed 
mesh that captures the micro-architecture and stiffness distribution. Using a 20 μm solid finite 
element based mesh on a typical bone re-generate leads to the order of 30∙109 finite elements, 
whereas coarsening to a 200 micrometer sized solid element reduces this to about  30 million 
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finite elements. This may, however, lead to loss of micro-architectural information and accuracy 
of predictions. The present study addresses the inaccuracy of coarsened meshes. The bone 
regenerate material used is from rabbit tibia[1]. 

 
Figure 1. Ilizarov frame used in distraction osteogenesis. 
 

Methods 

μCT scanning with resolution 20 micrometer for rabbit tibia was carried out 35 days after 
surgery, corresponding to end of the consolidation phase [1].  Five cubical volumes of interest 
(VOI)  of size 3mm were extracted from the μCT data at central part of the callus (see right part 
of Figure 2) [2]. The VOIs were discretised with finite elements of extension h=40, 60, 80, 100, 
120, 200 μm. Also a few models were generated with h=20 μm. Then the VOIs were subjected 
to nominal axial compression in three orthogonal directions separately (Fig. 2 B-D), in addition 
a shear loading case was simulated (Fig. 2 E) [2]. ABAQUS was employed, with C3D8 solid 
elements. 
The pixel value corresponding to each voxel was employed to find a grey value ranging from 0 
to 1. Value  0 corresponds to no density and zero stiffness, 1 corresponds to fully mineralized 
bone with a Young’s modulus representative for healthy mature tibial cortical bone. The 
elasticity assignment to each element was according to the following relationship: 
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γ
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Figure 2. Distracted rabbit tibia, volumes of interest and boundary conditions for 
simulations. 
 
Etissue is not found from the CT scans, and must be determined in order to do quantitative 
stiffness assessments of the callus. In the present study, focusing on the effects of finite element 
size, the Etissue is a common parameter to all simulations. Hence, normalizing a nominal stiffness 
corresponding to one mesh with the stiffness obtained from another mesh, Etissue cancels and has 
no effect on the mesh study. Herein, we present normalized stiffness as function of mesh 
refinement. The exponent γ is introduced as a mesh sensitive parameter. We assume that the 
finest mesh (h=20 μm) captures all details of micro-architecture and density distribution. Hence, 
the exponent is set to 1 in this case. First , all simulations are run with γ=1. Then γ is adjusted in 
order to make the nominal stiffness independent of the mesh. A similar approach has been 
employed for trabecular bone in [3] and [4]. 
One side of the cube was fixed, the opposite side was subjected to a nominal displacement. The 
resulting total reaction force was divided by nominal surface area in order to obtain nominal 
stress. Displacement was divided by nominal length to get nominal strain. The slope of stress-
strain curve then provided a nominal stiffness, i.e. Young’s modulus. 

Results 

Figure 3 shows one example of how the nominal Young’s moduli evolve for the five VOIs in 
one bone sample as function of finite element size. We note that the stiffness varies a lot 



between the different VOIs, showing heterogeneity. Also, the nominal stiffness increases as the 
mesh is getting coarser. In order to find an exponent γ that gives the same stiffness when h=200 
micrometer as for the “gold standard” stiffness corresponding to h=20 micrometer, an 
optimization on the square error between stiffnesses for the two meshes was carried out. The 
result is γ=1.1. In Figure 3, the use of exponent 1.1 for mesh 200 micrometer is depicted by the 
stars. A dotted line from stiffness for h=20 to h=200 is plotted in order to show the 
improvement in nominal stiffness prediction using γ=1.1 (compared to using gamma=1, the 
fully drawn lines). Similar results are obtained for loading in the other (x, y, and shear) 
directions. An interesting result is that in shear, the optimal exponent takes value 1.2.  This 
indicates that coarsening of the mesh has a more detrimental effect in shear compared to axial 
loadings. 

 
Figure 3. Influence  of finite element size on nominal normalised axial stiffness. 

Conclusion 

A method to determine nominal stiffnesses of callus tissue that reduces the inaccuracy of mesh 
coarsening is presented. With this, feasible finite element models of complete bone re-generate 
parts can be generated, that accounts for loss of micro-architecture and density distributions. 
With the development of more powerful computer power this will not be necessarcy, and μFEM 
from μCT can be utilised directly with the maximum resolution provided by the μCT scanners. 
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Summary. A delamination between a unidirectional fiber reinforced carbon/epoxy material with the
fibers in the 90�-direction and a balanced weave with fibers in the 0�/90� directions is considered (see
Fig. 1). The first term of the asymptotic solution for the stress and displacement fields is found. These
expressions are used to extend two methods for determining the stress intensity factors: displacement
extrapolation and the interaction energy or M -integral. The methods are employed in conjunction with
finite element calculations. The energy release rate and phase angles are also obtained. Sample solutions
are presented.

Key words: delamination, stress intensity factors, M -integral

Introduction

The problem of a delamination within a multi-directional laminate is of central importance
and has been receiving much attention. It is necessary to be able to predict the propagation
of such damage within structures. Tests using Brazilian disk specimens have been carried out
and presented in [1, 2] for the 0�/90� and +45�/ � 45� interfaces. In order to analyze the
test specimens, asymptotic fields were found previously and the displacement extrapolation
and M -integral methods were extended for those cases. In this study, the required analytical
and numerical methods are developed for the interface between a unidirectional fiber reinforced
carbon/epoxy material with the fibers in the 90�-direction and a balanced weave with fibers in
the 0�/90� directions as shown in Fig. 1). These tools will be used in the future to carry out
tests on this interface in order to obtain its fracture toughness.

Asymptotic solutions

The first term of the asymptotic solution is determined by means of the Stroh [3] and Lekhnitskii
[4] formalisms. It is found that there are two singular solutions, one in which the singularity
is square-root, oscillatory, and one in which it is square-root. For both cases, the displacement
field u and stress function � for each material are found. The in-plane and out-of-plane fields

Figure 1. Delamination front coordinates.



decouple. Note that the upper material is transversely isotropic with the symmetry plane x3 = 0
(see Fig. 1). It has five independent mechanical properties. The lower material is tetragonal
with six independent mechanical properties.

The in-plane stress field is given by
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whereas, the out-of-plane stress field is found as
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In eqs. (1) and (2) ↵,� = 1, 2, and k = 1, 2 denotes the upper and lower materials, respec-
tively. The symbols < and = denote the real and imaginary part of the quantity in parentheses,
respectively. The oscillatory parameter " is given by
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The expression for � may be found from the Barnett-Lotte tensors as
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1 � S2L

�1
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and tr(·) is the trace of the matrix in parentheses. The tensors Sk and Lk (k = 1, 2 represents
the upper and lower materials, respectively), known as the Barnett-Lothe tensors, are real and
related to the matrices A and B by

�AkB
�1
k = SkL

�1
k + iL�1

k , (8)

where there is no summation on k and i =
p
�1. The 3⇥3 matrices A and B are dependent on

the mechanical properties of the materials. The crack tip, polar coordinates r and ✓ are shown
in Fig. 1. The complex stress intensity factor in eq. (1) is given by

K = K1 + iK2 (9)

where K1 and K2 are real and, respectively, the modes 1 and 2 stress intensity factors; KIII

is the mode III stress intensity factor. The nondimensional functions k⌃
(1)
↵�(✓), k⌃

(2)
↵�(✓) and

k⌃
(III)
↵� (✓) depend on the coordinate ✓ and the mechanical properties; they are associated with

modes 1, 2 and III, respectively.
It is possible to show that the tractions along the interface may be related to the stress

intensity factors as
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General expressions for the in-plane displacement field may be written as
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whereas, the out-of-plane displacement is given by

u
(k)
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In eqs. (11) and (12), Hk and H̃k have units of stress, kU
(1)
↵ (✓), kU

(2)
↵ (✓) and kU

(III)
↵ (✓) are

nondimensional functions of ✓ and the mechanical properties and associated, respectively, with
modes 1, 2 and III.

The displacement jump across the crack faces near the crack tip is found as
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r
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where D11, D22 and D33 are diagonal elements of the matrix D in eq. (6). In addition

�ui = ui(r, ✓ = ⇡)� ui(r, ✓ = �⇡) . (14)

Other interfaces have been studied in the past. This is the first time in which a woven
composite has been considered.

Methods for extracting stress intensity factors

Stress intensity factors are calculated by two methods. First of all, finite element analyses are
carried out to determine the displacement field. Then the displacement extrapolation method
and the three-dimensional, interaction energy or M -integral are used to determine the K-values
along the crack front. These methods utilize the asymptotic solutions presented in the previous
section.

Sample problems

Several sample problems are solved for the interface considered in the study. Path independence
of the M -integral, as well as solution convergence are examined.

Conclusions

An interface delamination between a unidirectional fiber reinforced carbon/epoxy material with
the fibers in the 90�-direction and a balanced weave with fibers in the 0�/90� directions is
considered. Two methods for calculating stress intensity factors are used with results produced
for several problems. These methods will be used in the future to analyze test results.
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Summary. The topology optimization problem is formulated in a phase-field approach. The solution
procedure is based on the Allan-Cahn diffusion model. The functional defining the minimization problem
includes a gradient term which introduces cost for boundaries and thereby regularizing the problem. To
avoid non-physical densities obstacles are introduces. It is shown that the problem can be stated as a
variational inequality or a max-min problem. The numerical solution procedure are based on the finite
element method and Howard’s algorithm.
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Introduction

It is well-known that the classical SIMP (Simple Isotropic Material Penalization) scheme lacks
a solution but when used together with the finite element method a solution is obtained since a
length scale enters via the finite element discretization. Evidently, this solution is severely mesh
dependent and thus difficult to use. To overcome the mesh dependence, several strategies for
regularizing the problem have been proposed. Methods for regularizing the formulation have
historically been based on constraining the gradient of the density or via filtering techniques.

In the present paper we explore the phase-field approach for solving the maximum stiffness
problem. The objective functional consist of costs for compliance, for gradients and for diffuse
designs. The numerical algorithm for finding the optimal design is based on a steepest decent
algorithm which corresponds to the Allen-Cahn model. Upper and lower bounds on the density
are strictly enforced via a penalty function that includes barriers at the limits.

The barrier function imposing infinite penalty for densities exceeding the chosen limits gives
rise to a non-smooth problem. This class of problems, normally referred to as obstacle problems,
occur frequently in financial mathematics.

Problem formulation

The problem considered is that of finding a design ρ : Ω → [−1 1] that maximizes the stiffness
of an elastic structure within the design domain, Ω ∈ R

ndim. Void material is characterized by
ρ = −1 whereas material is defined by ρ = 1. The total amount of material available for the
design is given by Vo =

∫

Ω ρ dV . As an alternative to maximizing the stiffness, we choose to
minimize the compliance, C. The constitutive law for the elastic response is given by σ = D : ε

where the stiffness tensor, D scales with the material density, i.e. D(ρ) = g(ρ)D0. Moreover,
a distinct design is sought and therefore a penalization of diffuse designs is introduced. The
penalization is given by ψ = ψ(ρ) which satisfies ψ(−1) = ψ(1) = 0, i.e. no penalization is
imposed for void material and full material. A penalized stiffness problem will require a length
scale to be introduced and therefore also a cost for interfaces between material and non-material



is introduced. The cost for interfaces is taken to be proportional to the square of the gradient
of the density leading to

Φ(ρ) =

∫

Ω

(

1

ǫ
ψ(ρ) +

ǫ

2
∇ρ · ∇ρ

)

dV (1)

In conclusion the following objective functional is obtained,

E(ρ,u) = Φ(ρ) + ηC(ρ,u) (2)

where ǫ and η are numerical parameters that control the width of the interface separating
the two phases and the weight of the compliance to the objective functional, respectively. To
minimise (2), we make use of a steepest descent approach. The field equations associated with
the solution of (2) is solved using the finite element method. Since the penalty function ψ will
include obstacles the problem can be formulated as a max-min problem. Here we choose the
Howard’s policy iteration scheme for solving the max-min problem. The details of the solution
procedure can be found in [1].

Numerical example

The talk will be closed by demonstrating the optimization procedure for some test cases. Below
the evolution of the algorithm is shown for a classical Michell type structure.
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Figure 1. The evolution of the design for two initial designs using the same amount of material
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Summary. A crack model that considers general normal and shear loading is proposed. It involves
elasticity, plasticity and damage and it is thermodynamically based. An essential feature of the model is
its consistency with the concepts behind the fictitious crack model.
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Introduction

The fictitious crack model proposed by Hillerborg et. al (1976) was formulated for uniaxial
loading. Before crack initiation, no crack opening w occurs and the σ − w relation therefore
exhibits a stiffness at unloading that, initially, is infinitely large.

A number of formulations have been proposed that generalize the fictitious crack/interface
model to combined normal and shear loading and as, a prominent example, we mention the
formulation given by Carol et al. (1997). Some of these models provide predictions that are in
good agreement with experimental data obtained for complex load paths; often the experimental
data of Hassanzadeh (1990) are used as a reference. However, all these proposals have the
common feature that a certain crack opening occurs before crack initiation and this implies a
stiffness at unloading that initially is finite and not infinitely large as inherently required by
the concept of a fictitious crack. Even though this crack opening before crack initiation can be
made small, it is in contradiction with the intrinsic concepts of a fictitious crack. The reason
that this aspect normally is accepted, is that it facilitates the constitutive modeling significantly
as classic topics from plasticity and damage mechanics can be adopted directly.

Here, we present a constitutive formulation that is in complete accordance with the concepts
of a fictitious crack model. The formulation is thermodynamically based and it combines elas-
ticity, plasticity and damage; in addition, it is formulated for finite deformations in the general
3D situation. For the same set of parameters, model predictions are compared with various
experimental data for concrete and a close agreement is achieved.
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Summary. This extended abstract presents a numerical study on reduction of vibrations in 
ground by landscape shaping. The vibrations, induced by traffic, were investigated by means of 
the finite element method with steady-state analyses. It was concluded from the analyses that if 
more valleys than hills are applied in the shaped landscape, amplification may occur. When 
using continuous hills, the hills seem to capture and guide waves in the direction of the hill. 
Locally this could reduce vibrations of significant importance but also guide the waves towards 
the evaluation points. Applying the constraints given within the numerical example, vibration 
reduction of more than 20 % was seen. 

Keywords: vibration reduction, landscape shaping, soil dynamics, finite element method 

Introduction 

In this paper, vibration reduction at a high-tech facility, MAX IV, will serve as a numerical 

example, see Figure 1 for an architectural sketch. A new storage ring is needed to improve 

research possibilities. The research fields are e.g. material science and medicine. The storage 

ring is controlled by a large number of magnets that are distributed along the ring. Since the 

quality of the measurements is dependent on the vibration levels of the magnets, very low 

vibration levels at the magnet foundations are required. A mean vertical vibration level less than 

20-30 nm during one second in the frequency span 5-100 Hz is desirable. The goal of this study 

is to investigate the reduction of traffic-induced vibrations by applying different shapes to an 

initially flat landscape. The aim is to evaluate the influence of landscape shaping to minimize 

the vibration levels in the MAX IV facility, especially at the magnet foundations.  

The dynamic behaviour of the MAX IV facility and its surrounding landscape were 

analysed by means of the finite element (FE) method in a report, see [1]. It was concluded from 

the analyses that the material parameters of the soil have a significant influence on the vibration 

levels in the facility and more reliable material parameters are needed for the finite element 

analysis to achieve more precise results. A comparison between measurements at the 

construction site of the facility and results from the finite element model were carried out in [2]. 

It was concluded that the measurements and the calculations correlated fairly well. The 

FE-model was also improved in terms of accuracy and computational cost. Reduction of ground 

vibrations at MAX IV considering traffic-induced vibrations was investigated in [3]. To 

evaluate the traffic load from the nearby highway, green-field in-situ measurements were 



performed. In the previous work it was concluded that frequencies over 20 Hz in the traffic load 

have negligible influence on the vibration levels at the magnet foundations. It was also 

concluded that the stiffness and damping of the soil have a large influence on the vibration 

levels. 

At large construction sites, large amounts of soil will be excavated in order to smooth the 

surface before the construction starts. These masses of soil may instead be useful at the 

construction site in order to construct a shaped landscape with hills and valleys. The idea was 

originally suggested by the Division of Structural Mechanics at Lund University and 

implemented by the architects in the MAX IV project as it is an aesthetically desirable solution. 

The efficiency of landscape shaping on reducing ground vibrations was investigated with two-

dimensional (2D) as well as three-dimensional (3D) parametric studies by varying the shapes in 

the landscape.  

 

 

 

 

 

 

 

 

 

 

Figure 1. Shaped landscape at MAX IV. Left: Architectural sketch by Fojab and Snøhetta.  

Right: Aerial photograph of construction site by Perry Nordeng. 

Material properties 

In the numerical example, MAX IV, the area between the highway and the facility consists of 

14 m layer of soil, Low Baltic clay till, and bedrock consisting of shale. Since the materials are 

exposed to loads with low magnitude and the wave lengths are long compared to local 

variations, the pre-consolidated clay till as well as the shale were modelled as linear elastic 

isotropic materials. The material parameters, determined by geotechnical consultants in the 

MAX IV project, are shown in Table 1. The loss factor includes material damping and other 

attenuation effects, such as varying topology of the soil as well as the bedrock. 

Table 1. Material properties. 

Property Clay till Shale 

Depth 14 m - 

Young’s modulus 476 MPa 8809 MPa 

Density 2125 kg/m
3 

2600 kg/m
3
 

Poisson’s ratio 0.48 0.40 

Loss factor 0.14 0.10 

FE-model and numerical study 

Steady-state analyses were performed considering traffic load from the nearby highway, 

regarded as the main external vibration source. Geometric and material constraints, determined 

by the MAX IV project, were applied. The steady-state analyses consider a frequency span of 



5-20 Hz. Plain strain conditions were applied for the 2D FE-models. The 2D models ended up at 

29,960 elements using 120,714 degrees of freedom (dofs) and the 3D model ended up at 

518,400 elements using 1,093,358 dofs. To evaluate the traffic load from the nearby highway, 

green-field in-situ measurements were performed. The load was applied as a vertical point load 

in a node in the middle of the top surface of the models. The shapes were applied at a zone of 80 

m, starting 10 m from the excitation point and ending 10 m from the evaluation point, see 

Figure 2. Due to the scattering of the propagating waves in 3D, the displacements were 

evaluated along a straight line, 100 m from the excitation point.  

A constant curvature of the arcs that create the shapes was set as a constraint with a 

maximum slope of 30 degrees. The number of arcs that were used to create the shapes, always 

stretching over the same zone, was varied between 1-6 arcs. The maximum height/depth of the 

shaped hills and valleys was also varied. Three different principal shape configurations were 

investigated in the 3D analyses. The initial configuration of shapes corresponds to the shapes 

applied for the two-dimensional model, i.e. the arcs in the 2D were extruded. The second main 

configuration considers rotated extruded arcs, rotated 45 degrees in the horizontal plane. The 

difference to the previous version is that the incident surface waves will impinge with a 

different incident angle. The third main configuration was considered a checkered pattern of 

hills and/or valleys. This version resembles the architectural sketch in Figure 1. The vertical 

displacements were evaluated in terms of the root mean square value (RMS-value) of the 

magnitude of the complex amplitude.    

 

 

 

 

 

 

 

 

Figure 2. Location of loading point and evaluation point. 

Results and conclusions 

The numerical investigation showed that in general, shaped landscape generated a significant 

reduction of the vertical displacements at the evaluation points. However, for a negative volume 

change of soil, i.e. applying more valleys than hills amplification may occur, especially seen 

when only valleys were applied. However, only one deep valley will behave as a wave barrier 

and lead to reduction. Considering only hills, a few larger sized hills are more efficient than 

several smaller sized hills, stretching over the same zone. With smaller sized hills, the best 

solution is to apply hills exclusively.  

The two best performing shapes from the 2D analyses and the corresponding 3D analyses 

(straight shapes) are altering hills and valleys with two arcs, showing a vibration reduction of 

approximately 25 %. Continuous hills may capture and guide waves in the direction of the hill. 

This effect depends on the angle of the incident wave. By rotating the hills in the horizontal 

plane, local vibration reduction of up to 50 % was obtained. However, hills directed towards the 

evaluation point may also guide waves and thus generate amplification. A checkered pattern of 



hills and valleys behaves in the same manner as continuous hills, i.e. waves follow the paths of 

neighbouring hills. Applying only hills in the checkered pattern may create a straight path 

between the hills that guide the waves to the evaluation point and thus generate amplification. A 

checkered pattern of both hills and valleys with a fine defined pattern, see Figure 3, is the best 

performing checkered pattern showing vibration reduction of approximately 20 %.  

 

Figure 3. FE-model of 3D checkered shapes. Left: FE-mesh and loading point. Right: 

Visualisation of the vertical displacements. 

Further work 

The horizontal displacements may also be considered in order to draw more general conclusions 

regarding the efficiency of a shaped landscape in the sense of vibration reduction. The 

geometrical and mechanical constraints could be neglected to generate results and conclusions 

that are more applicable to other projects, i.e. the parametric studies could be extended to 

include more parameters. Different types of loading could also be considered, e.g. simulating 

the traffic load as a moving transient load. Use of materials with more defined material 

properties in the hills, could possibly be of significant importance. The 3D architectural 

landscape design suggested for MAX IV could also be investigated with FE-analyses. 
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(1)Division of Structural Mechanics, Lund University, Box 118, 221 00 Lund,
ola.floden@construction.lth.se

Summary. This paper presents an investigation of various model reduction techniques applied to
wooden floor and wall structures intended to be assembled into large building models. A finite ele-
ment model of a floor structure, previously compared to experimental studies, was used as a test case for
the analyses. The model was reduced using three different techniques; Guyan reduction, component mode
synthesis and structural elements. The reduced models were compared by performing both eigenvalue
and steady-state analyses and conclusions were made about the accuracy of the reduction techniques.

Key words: model reduction, finite element method, vibrations, buildings, multi-storey, lightweight, wood

Introduction

Application of wood as a construction material when building multi-storey buildings has advan-
tages such as light weight, sustainability and low energy consumption during the construction
and lifecycle of the building [1]. However, compared to heavy structures, it is a greater chal-
lenge to build lightweight structures without noise and disturbing vibrations between storeys
and rooms due to e.g. footsteps, vibrating machines or external sources like railways and roads.

The studies presented in this paper are part of a larger project where the aim is to create
finite element (FE) models for low-frequency vibration analyses of multi-storey wood buildings,
valid for general load-cases. The modelling is performed in a modular manner, where detailed
models of floor and wall structures are assembled into global models of complete buildings. When
assembling the models, the number of degrees of freedom (dofs) quickly increases to exceed the
limits of computer capacity, at least in a reasonable amount of time. The question then arises
of how the FE-models can be reduced in size while still being able to represent the dynamic
characteristics of the structures with sufficient accuracy.

The objective of the analyses in this paper is to evaluate methods for model reduction of
FE-models of floor and wall structures and to investigate the influence of reducing the compu-
tational cost on the dynamic response of the models in terms of eigenfrequencies, eigenmodes
and vibration transmission. The studies were performed using an FE-model of a wooden floor
structure as reference model and were restricted to the low-frequency range, 0-100 Hz.

Model reduction

There are many methods for reduction of the linear equation of motion available in literature.
The methods involve either a condensation of dofs, a transformation to generalised coordinates
or a combination of both. Condensations may be done by e.g. Guyan reduction [2] or dynamic
reduction [3]. The generalised coordinates are the amplitudes of some Ritz vectors, which may be
determined in different manners. In component mode synthesis (CMS) [4], a method frequently



used in structural dynamics, the vectors are the eigenmodes of the system. In the last years,
methods of model reduction from the area of control theory have been applied to problems in
structural mechanics. These methods can be divided into two main categories, methods based
on Krylov subspaces and balanced truncation.

Koutsovasilis and Beitelschmidt [5] compared several reduction methods for an eigenvalue
analysis of an elastic rod and concluded that Krylov methods perform well compared to methods
originating from structural mechanics. Witteveen [6] compared CMS to the methods from
control theory for a simple beam structure and found that the methods from control theory are
sensitive to off-tuning of the system by introducing a spring at one of the input/output dofs.
The situation of off-tuned systems is the case in this study, where models of floor and wall
structures are supposed to connect to other models in assemblies of complete buildings. Also,
Guyan reduction and CMS are the two methods of model reduction implemented in commercial
FE software and therefore these two methods are investigated in this paper together with a
third approach using structural finite elements. With structural elements, the constraints are
imposed on the analytic models of structural components instead of imposing constraints on the
dynamics of the discretised system, as is the case for the other methods mentioned.

Analyses

Flodén and Ejenstam [7] developed a 3D solid FE-model of a wooden floor-wall structure and
compared the eigenfrequencies and eigenmodes to measurements on a full-scale experimental
structure. The eigenfrequencies of the FE-model showed good agreement to measurements
below 100 Hz and the first eigenmodes were of good resemblance. The comparison of different
reduction methods presented in this paper uses a reference model developed from the FE-model
in [7]. A number of interface nodes were added at the boundary with both displacement and
rotational dofs in order to fulfil compatibility in the connection to other floor and wall models.

Reduced models were created by Guyan reduction, CMS with various numbers of retained
eigenmodes and structural elements. Two different analyses were performed to compare the
accuracy of the reduced models; an eigenvalue analysis and a steady-state analysis.

The eigenvalue analysis was performed in order to obtain both eigenfrequencies and eigen-
modes of the models. The eigenfrequencies were compared by studying the relative error of the
frequencies compared to the reference model and the eigenmodes were compared by using the
modal assurance criterion (MAC).

The steady-state analysis was made to study the vibration transmission. The floor models
were placed on top of three wall panels, one at each end of the floor and one in the middle. A
load was applied to the wall panel on one end and the amplitudes measured at the wall panel on
the other end. A frequency sweep was performed up to 100 Hz and in each step, an RMS-value
was calculated of the displacement magnitudes in all nodes of the receiver wall panel.

Results

Eigenvalue analysis

Table 1 shows the number of dofs and computation time needed for the eigenvalue analyses. The
analyses were performed on a personal computer with an Intel Xeon W3530 CPU of 2.80 GHz
and enough RAM memory to fit the eigenvalue analyses. It can be observed that the computation
time of CMS with 1000 retained eigenmodes is almost twice as long as for structural elements
even though the latter model contains far more dofs. This is a consequence of the fully populated
matrices obtained from model reduction with CMS in contrast to the banded FE matrices.

The relative error of the eigenfrequencies below 100 Hz from the reduced models compared to
the reference model is shown in Figure 1. With Guyan reduction, only the first eigenfrequencies
are of good accuracy and the error is 30 % at the eight eigenfrequency. The error of CMS is



Table 1. Size of the models and computation time of the eigenvalue analysis.

Model dofs Time [s]

Reference model 632820 434.0
Structural elements 24762 7.0
Guyan reduction 1038 1.6
CMS, 10 retained eigenmodes 1048 1.7
CMS, 50 retained eigenmodes 1088 3.0
CMS, 100 retained eigenmodes 1138 3.2
CMS, 500 retained eigenmodes 1538 6.2
CMS, 1000 retained eigenmodes 2038 12.0
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Figure 1. Normalised relative frequency differences for eigenfrequencies below 100 Hz.

reduced by increasing the number of retained eigenmodes and with 1000 retained eigenmodes
the error is below 0.1 % for all eigenfrequencies. The structural elements model produces errors
below 10 % for the 45 eigenfrequencies below 100 Hz and an average error below 4 %.

Corresponding observations were made from the comparison of eigenmodes; Guyan reduction
only modelled a few eigenmodes with good accuracy, while CMS with 1000 retained eigenmodes
resulted in very good correlation in the whole frequency range. With structural elements, only
a few eigenmodes were modelled with very good accuracy, but there was also a relatively good
correlation to the reference model at the higher frequencies.

Steady-state analysis

Figure 2 shows the RMS-values of the displacements at the receiver wall panel from the analyses
of the different models. Below 40 Hz, all the reduction methods display vibration levels close
to the reference model. Above 40 Hz, the accuracy of Guyan reduction is poor. By using
CMS with 10 retained eigenmodes, good accuracy is obtained up to 65 Hz, while 1000 retained
eigenmodes produces accurate results in the whole frequency range. The structural elements
model behaves very similar to the reference model, but with relatively large errors at particular
frequencies, indicating that some deformation patterns of the structure are affected by the
constraints imposed in the structural finite elements.

Conclusions

• As expected, the accuracy of Guyan reduction was poor due to its static nature. Acceptable
results were obtained only at the lower frequencies in both the eigenvalue and steady-state
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analysis.

• With CMS, there is a straightforward trade-off between accuracy and computational cost.
By including up to 100 retained eigenmodes, the accuracy increases quite rapidly. There-
after, the convergence is slower. With 1000 retained eigenmodes, there was a good ac-
curacy both in eigenfrequencies and eigenmodes as well as in the steady-state analysis.
However, the computation time is quite large compared to structural elements due to the
fully populated matrices.

• There is not a unique way of creating a model with structural elements and it is therefore
more difficult to draw general conclusions. The model behaved similar to the reference
model in the whole frequency range, but with relatively large errors at particular frequen-
cies. An optimisation of the model may lead to more accurate results.
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Summary. In this paper, a flanking transmission investigation when introducing a rubber foam material
in a lightweight junction is presented. Specifically, the variation in the transfer function when varying
the placement of the elastomer within the junction was studied for several types of floors and ceilings by
means of the finite element method.
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Introduction

When the Swedish construction code in 1994 allowed wooden multi-storey buildings, this type of
lightweight structures became popular due to low cost and ease of construction [1]. A drawback
in those buildings is disturbing vibrations and noise propagating in the construction, especially
through the junctions. To reduce noise and vibration through the junctions, rubber foam mate-
rials may be introduced between walls, floors and ceilings [1], especially in between prefabricated
building elements, [2]. In this study, the properties of a junction when introducing a rubber
foam material - Sylodyn R©- in between were investigated by means of the finite element method
using the commercial software Abaqus R©. The flanking transmission was specifically analysed.
Several types of floors and ceilings as well as different placements and properties of the Sylodyn
have been studied.

Problem description

In this investigation, a standard volume of a room (3.6x6x3 m) was considered. In Figure 1
the drawings from Lindbäcks Bygg’s project Brunnby Park in Upplands Väsby are shown. This
lightweight structure using volume modules was chosen due to its widespread use in Sweden
and also because of a feasible future comparison between finite element simulations and in-situ
measurements which have already been performed.

Two different setups were analysed as shown in Figure 2 (hereafter denoted as case A and
case B respectively). In both case A and B, the beams comprising the floor and the ceiling
were considered to be placed along the shorter dimension, i.e. widthwise. Furthermore, for
case A, the variation on the flanking transmission was also investigated when considering the
beams along the lengthwise direction. A parameter study varying the material properties for
the Sylodyn was carried out, and finally, an analysis of the same junction without Sylodyn was
performed.



Figure 1. Modular building system drawings. Separate floor and ceiling (left) and facade junction (right)

Figure 2. Different placements for the Sylodyn studied

Finite element model

Modelling a junction is a very complicated task as it must be able to capture all phenomena
occurring in reality. This first investigation aims, by studying the relative differences between
the modelled results; to gain knowledge on the behaviour of the structure, enabling to eventually
create a more refined model which could correlate experimental and simulation results.

In this first approach, massive wood was considered all over the whole model with exception
of the Sylodyn. This simplification will not disrupt the relative differences between the different
cases studied. Furthermore, only negligible vibrations are transmitted through the insulation.
Hence, in order to reduce calculation time, the insulation was excluded and taken into account
by increasing the damping of the other materials.

The elastomer used in the studied structure to reduce the noise and vibration transmission
was Sylodyn NE, a mixed cellular polyurethane dampening material developed by Getzner
Werkstoffe GmbH. It is shaped as 100x100x25 squared blocks. The distance c/c (centre-to-
centre) between two blocks was set to 400 mm. A linear elastic material model was applied
since the quasi-static tests shown in [3] depict a fairly linear behaviour within the recommended
operative range. As the structure will only be exposed to loads and displacements with low
magnitude, all non-linear behaviour was neglected and the wood was also modelled as linear
elastic. The properties of the materials considered were provided by the manufacturers.

All parts were individually created and assembled considering full coupling between them.
This creates stiff connections, as it is believed to be the case in the real structure. Only 8-nodes
brick elements were used (solid C3D8R elements for wood and the hybrid elements C3D8RH for
Sylodyn) giving a FE-model with approximately 2 million degrees of freedom.

A 5 N harmonic concentrated force at the middle of the floor was considered and a frequency
sweep was carried out from 10 to 100 Hz in steps of 1 Hz. Fixed boundary conditions were applied
at the top and bottom of the walls. The model (for case A) can be seen in Figure 3. The blocks
of Sylodyn are shown in grey, the floor in blue, the ceiling in red, the inner walls (apartment
separating walls) in yellow and the outer (facade) walls in green.



Figure 3. Case A with beams oriented widthwise

Figure 4. Case A widthwise. Acceleration magnitudes evaluated on the floor, ceiling, upper and bottom
walls (left) and acceleration magnitudes evaluated on top and bottom of the Sylodyn (right)

Results

The following results show the performance of the junctions regarding the flanking transmission
as plots of acceleration versus frequency. Furthermore, the vertical transmission from the source,
located on the middle of the floor, to the ceiling underneath through the long side of the room
was investigated. Although more calculations were done, just the results corresponding to case
A widthwise as well as the ones for the junction without Sylodyn are hereafter presented.

The frequency dependent acceleration was evaluated at 6 nodes along the floor, walls and
ceiling, all placed 0.2 m from the junction (see Figure 2). An average acceleration for the 6
nodes was calculated and plotted for the different elements composing the junction. Likewise,
the acceleration magnitudes were also evaluated on top and bottom of the Sylodyn blocks.

As seen in Figure 4, for case A widthwise; the maximum acceleration magnitudes occur
between 35 and 60 Hz. One can also identify that Sylodyn dampens nearly all vibrations, as
the acceleration levels evaluated on the ceiling and the wall underneath are very low.

The performance of the junction without Sylodyn was also investigated (wood-wood con-
nections all over). The comparative results are shown in Figure 5. It is apparent that the
acceleration magnitudes evaluated at the bottom room without the Sylodyn are much higher,
which indicates the advantages of using the Sylodyn as a vibration insulator in the junction.



Figure 5. Comparison between the acceleration magnitudes for the junction with Sylodyn (left) and
without Sylodyn (right). Case A with widthwise beams. The acceleration was evaluated on the floor,
ceiling and both wall in the upper and lower level

Conclusions

An investigation regarding the flanking transmission when introducing Sylodyn in a lightweight
junction was carried out. It was shown for all cases studied, regardless of the orientation of the
load bearing beams in the floor and ceiling or the placement of the Sylodyn, that the reduction
of acceleration magnitudes within the blocks of Sylodyn is very effective. In addition, the
performance of a junction with Sylodyn was compared to the same junction without Sylodyn.
It was observed that the vibrations transmitted are much higher in the latter than in the former
case. Hence, using Sylodyn for this type of junction was proved to be advantageous.

Calculations not shown in this abstract portrayed through a parameter study that a variation
in the modulus of elasticity of the Sylodyn does not greatly influence the vibration transmission
through the junction. Likewise, it was seen that case B may perform better than case A, although
a more extensive study is needed in order to confirm this fact.

It was also shown that the linear elastic material model may not be accurate for the Sylodyn
as its behaviour does not resemble the real one (in reality not all vibrations are dampened out).
Dynamic measurements to get frequency-dependent properties are being performed.

An insight into the performance of this specific type of junction (although many on the
market are similar) regarding flanking transmission has been gained. Ultimately, this will allow
the creation of more refined models in order to correlate both experimental and simulation
results, which could be used as a prediction tool during the design phase of the structures.
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Introduction

Using lightweight materials, more specifically, timber materials, in buildings can be both cost
effective and time saving when constructing multistory buildings. However, the use of such
materials is often the cause of complaints related to sound transmission and vibration partic-
ularly in the low frequency region. In order to reliably predict the acoustic performance of
lightweight multi-storey buildings, knowledge on the behavior of the different types of junctions
present in the structure is needed. In this paper a finite element model of two types of junctions
typically found in lightweight wooden floors is validated using measured values from measure-
ments performed on mock-ups of the joints further studies on this type of joints can be found
in [1],[2],[3],[4],[5],[6],[7],[8],[9],[10]. The influence of the use of adhesives in addition to screws
on the performance of the joints is also investigated. A comparison between measurements and
simulations was carried out.

The Mock-ups

The junctions in the experimental part of this work were made out of timber and chipboard and
were suspended from soft rubber strings. They are divided into two types: A single continuos
plate of chipboard attached to a wooden beam, and two sheets of chipboard attached to a
wooden beam leaving a small gap between the plates. The dimensions of the single plate are
1.2m×0.6m with a thickness of 22mm and the dimensions of the dual plates are 0.6m×0.6m each
and with a thickness of 22mm. The plates were attached to the beam using screws. A schematic
of the two types of junctions can be seen in Figure 1. The same structures were built a second
time, but this time glue was applied around the screws on the contact surfaces, summing up a
total number of 4 mockups.

Finite Element Model

The model was implemented in in the commercial FEM package ABAQUS. All the individual
parts of the structure were modeled and assembled in the finite element model in order to re-



Figure 1. Types of junctions investigated.

Figure 2. Detail of mesh, glue in red, screws in yellow.

semble the real construction. The plate, the beam and the screws were modeled using solid
brick elements C3D8R which is an 8-node reduced integration linear brick element with hourglass
control. The glue was modeled using the cohesive element COH3D8 which is an 8-node three-
dimensional element. The screws were manifested as square pins going through the plate and
into the beam. In figure 2 a detail of the mesh can be seen, the screws are highlighted in yellow
and the glue layer is highlighted in red.

The structure was only exposed to small loads and displacements, meaning that all non-
linear behavior was neglected and hence allowing us to model the materials as linear elastic.
Likewise, a convergence analysis was performed on the constituent parts to decide the element
mesh size. The typical element size in the model is 4mm and the number of degrees of freedom
in the model is 937530. Having such a fine mesh enables us to resolve higher frequencies with
greater accuracy in further studies. In the modal analysis there were no boundary conditions in
the model, and in the frequency sweeps the model was fixed in the z-axis in two points towards
the short edges on the bottom side of the beam.

The FE-model was first used to perform a modal analysis for the four different structures
as discussed above. The model was also used to perform a parameter study on the influence of
the structural damping and the stiffness of the glue in the attenuation over the junction when
subjected to an impact.

The attenuation was compared over the four points on either side of the beam. To evaluate
the attenuation over the discontinuity in the junction, the frequency response function (frf) was
calculated for the case of dual plates glued together over the beam using a frequency sweep from
0 to 200 Hz.

Results

Some of the mode shapes for the measured and the simulated cases are shown in Figures 3, 4,
5 and 6. To compare the measured eigenmodes with the simulated ones the modal assurance
criteria (MAC) was used. The MAC-value for the i-th eigenmode is defined as



Figure 3. First measured eigenmode
!

Figure 4. First simulated eigenmode
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Figure 5. Third measured eigenmode
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Figure 6. Third simulated eigenmode
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Figure 7. MAC-values single plate glue

2 4 6 8 10
1

2

3

4

5

6

7

8

Dual Plate Glue

Eigenmode number, Simulated Modes

E
ig

e
n

m
o

d
e

 n
u

m
b

e
r,

 M
e

a
s
u

re
d

 M
o

d
e

s

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8. MAC-values dual plate glue
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Figure 9. MAC-values single plate no glue
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Figure 10. MAC-values dual plate no glue

Equation 1 is the normalized scalar product of the eigenvectors from the measured and the
simulated models. The MAC-value is in the range 0-1, where 1 represents total correlation. For
a more comprehensive explanation of the MAC see [2] In figure 7, 8, 9 and 10 the MAC-values
for the four cases are shown. There is a good correlation in the dual plate cases and in the glued
single plate case. The correlation in the unglued single plate case is worse than in the three
other cases, a fact that is reflected in the measured and simulated eigenfrequencies.



Conclusions

The parameter study performed in the FE-model indicates that the influence on the attenuation
from the stiffness of the glue is the most dominant. The same simulation was performed for the
single plate case both with and without glue. The effect of the damping ratio on the attenuation
could not be distinguished in the simulations, the only parameter in the study that had any
discernible effect in the parameter study was the stiffness in the glue.

In order to compare the two types of junctions, a frequency sweep was performed with a
single continuous plate over beam. Both glued and unglued cases were considered. It was be
noted that the attenuation in the two plate case is much higher than in the single plate case due
to the discontinuity in the plate in the two plate case. It was also be noted that the influence of
the glue on the attenuation is greater in the higher frequencies.
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Summary. In order to predict acoustic fatigue is desired to improve the prediction of the spatial dis-
tribution of the load that cause these issues. In this work the possibility to simulate the pressure load
by CFD is investigated on a model problem. The load is also applied to a FE-model of a panel structure
that is exposed to the load to investigate its response.
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Introduction

Acoustic fatigue is an issue concerning both civil and military aircraft. It is caused by high
frequency sound excitations with sound pressure level as high as 150-170 dB exciting structural
components such as skin panels. This typically occurs in areas near motor installation and
adjacent to the propeller wash / jet plume. Also geometrical sources introduced by flaps, cavities
or external installations on, or close to, the airframe can also lead to an acoustically excited
structure. Acoustic fatigue is often considered in a late stage of the design phase and when it
occurs it can cause time consuming and costly experimental investigations. The design methods
for acoustic fatigue is often based on design guidelines such as the ESDU [1], however the
rms stress predicted by the guidelines can at best be expected to be within a factor 2 from
the measured value. The design guidelines assume that the load on the panel structure has a
uniform spatial distribution. This is unlikely to be the case in reality and it is thought that
this assumption limits the accuracy of the response predictions. Cunningham et al. [2] found
that if the spatial distribution of the load is specified to something more realistic the response
predictions are dramatically improved.

To improve the knowledge of the spatial distribution of the load without resorting to expen-
sive measurements it is desired to be able to simulate the load instead. In this work the load
causing acoustic fatigue is computed with CFD. The simulated load can then be applied to a
FE model of the panel structure to obtain the panel response to predict the risks of fatigue.
To investigate this method, it has been applied to a model problem from an EURAM-BRITE
project called ACOUFAT (Acoustic fatigue and related damage tolerance of advanced composite
and metallic structures) [3].

Test case

The case studied in this work was originally investigated in the ACOUFAT program. It consists
of a table with a simple flap located upstream of a skin panel structure and the whole setup
was placed in a wind tunnel as illustrated by Figure 1. The load on the panel was measured
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Figure 1. Wind tunnel setup.

wind

Figure 2. Schematic figure of the CFD domain, not
to scale.

using microphones and static pressure sensors and the response of the panel was measured with
accelerometers and strain gauges. The measurements used in this work were done at a Mach
number of 0.7. As shown in Figure 1 the flap covers the full width of the table, which is 1300
mm, but the panel structure does not (only 736 mm wide). The details of the experiment are
reported in [3, 4, 5].

Method

To simulate the load on the panel and the panel response, a two step method has been used.
First a CFD simulation to determine the load was performed. This load was then applied to a
FE-model of the panel. This means that the system is coupled only one way as it is believed
that the effect of the panel on the flow can be neglected. The CFD-simulation is covered in
more detail in [6].

CFD simulation

The CFD simulation was made with a compressible solver (sonicDyMFoam) from the Open-
FOAM package [7]. The turbulence modelling is done by LES (Large Eddy Simulation) with
the Smagorinsky model for the subgrid stresses. To reduce the high computational demands
in the boundary layer, wall functions were used. From the measurements it seems that the 3D
effect of the flow going around the flap rather than over it is small. Therefore it was decided
to neglect this effect by letting the flap cover the whole computational domain and symmetry
boundary conditions are used at the sides, see Figure 2. This way the flap can be seen in the
simulations as infinitely wide. As discussed in [6] it is believed that a significant feature in the
load spectra was caused by the shed vortices interacting. This was in turn affected by a likely
vibration in the flap. To simulate this a prescribed rigid motion was applied to the flap. The
prescribed motion makes the flap vibrate back and forth with the point attached to the table
fixed which is a coarse approximation of the first bending mode of the flap.

FEM simulation

The FEM simulation of the panel structure was performed using the inhouse code CALFEM
[8]. The outer skin of the panel that is exposed to the flow is simulated using four node plate
elements. The pressure field from the CFD simulation was interpolated onto the FE-mesh. Then
the pressure load was applied to each element with the assumption that load is constant over
each element. Panel response and eigenmodes were investigated.

Results

The flow over the flap and panel is illustrated by the mean flow in Figure 3. The flap deflects
the flow and there is a recirculation bubble behind the flap. The reattachment point is close to
the downstream end of the panel in the mean flow, but it fluctuates along the downstream half
of the panel and the table behind the plate. An instantaneous load extracted on the plate is
shown time in Figure 4 and the panel response for the same time instant is given in Figure 5.



Figure 3. Mean velocities of the flow as seen from the side. The white marker at the bottom marks the
location of the instrumented panel as illustrated in Figure 1.

Figure 4. The pressure load on the panel structure after interpolation from the CFD simulation to the
FEM mesh for a given moment in time.

Figure 5. Panel response in terms of displacement for the same instance in time as Figure 4.
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Summary. In the inverse motion problem the deformed state of an elastic body for a given set of loads
and boundary conditions is specified and the undeformed configuration is found by solving the resulting
boundary value problem, e.g. with the finite element method. In this work the inverse motion problem
is formulated as a four-field mixed variational problem and solved for quasi-incompressible electroelastic
bodies.
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Introduction

Elastomers exhibiting electromechanically coupled behavior are often denoted electroactive.
Technological applications for electroactive elastomers include actuators, sensors and dampers.
A typical configuration is a capacitor set-up, with an elastomer film sandwiched between two
highly compliant electrodes, and variants of this configuration such as stack actuators or spring-
roll actuators. An increase in interest in electroactive elastomers in recent years motivates efforts
towards constitutive and numerical modeling of these materials.

Electromagnetic fields give rise to forces and torques on polarizable media and the usual bal-
ance equations of continuum mechanics must be altered accordingly. The theoretical framework
necessary to do so has long been well established, with early works including those of Brown [3]
and Toupin [10], and was further elaborated on by e.g. Eringen [5] and Maugin [7] and more re-
cently Dorfmann and Ogden [4]. Works on the numerical treatment of boundary value problems
for electroactive elastomers include e.g. Wissler and Mazza [12] and Vu and Steinmann [11].

The original numerical scheme for solving the inverse motion problem for elastic bodies
was introduced by Govindjee and Mihalic [6] and interpreted in the more general framework
of configurational mechanics by Steinmann et al. [9]. In this work, a four-field formulation in
the spirit of Simo et al. [8] is set up for the inverse motion problem for electroelastostatics. By
means of the finite element model, representative boundary value problems are then solved.

Kinematics

Let the initial or reference state of a body be denoted B0 and the deformed or current state at
time t be denoted Bt, c.f. Fig 1. Material points in B0 have position vectors X and the same
points in Bt have position vectors x . In the direct motion problem, the initial configuration
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Figure 1. Kinematics of the direct and inverse motion problem

B0 of a body is known together with certain loads and boundary conditions and the resulting
deformed state of the body is sought. In the inverse motion problem on the other hand, the
deformed state Bt at time t is known beforehand, and for a given set of loads and boundary
conditions one seeks the initial configuration B0 of the body.

The direct motion is described by the mapping x = ϕ(X , t) and the deformation gradient
by F = Gradϕ, with determinant detF = J . For the inverse motion problem, the map X =
Φ(x , t) is defined together with the inverse deformation gradient f = gradΦ with determinant
det f = j. The composition ϕ ◦ Φ = idBt

gives the identity map, and as a consequence, the
relation Φ = ϕ−1 holds as well as f = F−1.

The electric field e in Bt is the gradient of the scalar electric potential φ, so that e = − gradφ,
whereas the electric field E in B0 is given by E = −Gradφ. It follows that they are related as
E = e ·F .

To account for the incompressibility of the elastomer, a four-field approach as suggested by [8]
is adopted. The hydrostatic pressure p and a dilatation variable θ subject to the condition θ = J

in the continuum are therefore introduced in the formulation. This allows for the deformation
gradients to be decomposed as F̂ = θ

1/3F and f̂ = θ
−1/3f where F and f are the isochoric

parts of the deformations.

Boundary value problem

It is assumed that the material is described by an energy function Ω̂0(θ,F , E) which takes
the dilatation variable, the deformation gradient and the material electric field as independent
variables. The mechanical and electrical equlibrium equations are then given in integral form as

L1 =

∫

Bt

grad δϕ : σ dv −
∫

Bt

δϕ · bt dv −
∫

∂Bt

δϕ · t t ds = 0 , (1a)

L2 =

∫

Bt

grad δφ · d dv +

∫

∂Bt

δφ dt ds = 0 , (1b)

where σ = σ0 + p i is the stress, with i being the spatial identity tensor, and d is the electric
displacement. The mechanical boundary conditions are prescribed tractions t t and body force
bt. These are of mechanical origin, whereas the electromagnetic contributions are included via
an amended term in the free energy function. For the electric displacement, it must fulfill jump
conditions on surfaces of discontinuity given by [[d ]] = −q where q is the surface charge. On the
boundary the surface charge may be prescribed so that q = dt.

The problem is solved for the inverse motion by performing a reparameterization so that the
stress and electric displacements are considered functions of f and e rather than F and E . The
constitutive relations are given by

σ0 = 2 j f −1 · ∂Ω̂0

∂C
· f −t and d = −j

∂Ω̂0

∂E
· f −t

. (2)



Figure 2. Desired loaded and deformed configuration for the gripper with one arm excluded.

By linearizing the equilibrium equations in terms of f and e , and keeping the current configura-
tion x fixed, the finite element scheme will directly provide the inverse motion Φ. The governing
equations for the pressure and the dilatation variable are given by

L3 =

∫

Bt

δp

[
1− θ

J

]
dv = 0 , and L4 =

∫

Bt

δθ

[
∂Ω̂0

∂θ
− p

]
j dv = 0 . (3)

In this work a constant-pressure approximation is adopted, where p and θ are assumed constant
within each finite element.

Electroactive gripper

The specific material model and material parameters used can be found in [1] and [2]. As a
representative boundary value problem, an electroactive gripper is considered. In the loaded
state, the gripper is supposed to have a circular shape as seen in Fig. 2 . The gripper consists
of twelve identical arms, has an outer radius of 20 mm and a thickness of 1 mm. An electric
potential difference is applied over half of the thickness, inducing bending deformation. In
the loaded state, the potential difference is 5 kV. In Fig. 2, one of the arms is excluded for
visualisation purposes.

In Fig, 3, the undeformed configuration, found by solving the inverse motion problem, is
shown. This is then the configuration which, if loaded by a total potential difference of 5 kV as
specified above, would yield the desired deformed configuration in Fig. 2.
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Summary. This article describes the use of Gaussian Processes in model reduction techniques with
application to inverse problems. Mainly, the work is focused on the proper construction of the model
approximation, namely on training process based on minimal number of learning samples, by making use
of automatic samples selection through computed standard deviation of model prediction. An example
of application of stochastic surrogate model for the paperboard characterization through biaxial tensile
test and DIC measurements is also presented.
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Introduction

The inverse analysis often uses a numerical model as a counterpart to experiment in order to
build the discrepancy function between experimentally measured and numerically computed
quantities, such as displacements, reaction forces, strains, accelerations, etc. If the numerical
model is complex and/or has to be computed many times, the iterative minimization proce-
dure becomes very expensive, therefore, not attractive from practical point of view especially
when the test has to be performed ’in situ’ (i.e. without a computer which can handle heavy
computations). The alternative is to use a surrogate which approximates the behavior of the nu-
merical model but is much simpler, thus less expensive. The surrogate is usually constructed as
a ’black box’ where for the approximation the following methods, among others, are commonly
used: Radial Basis Functions (RBFs), Polynomials, Proper Orthogonal Decomposition (POD)
combined with RBFs, Artificial Neural Networks (ANNs) or Gaussian Processes (GP) [1, 2].

All listed here approximation techniques require the numerically computed responses (i.e.
training samples) in order to build a smooth and accurate analytical approximation of the
sought solution. It would be best to use a method which needs the smallest possible number of
’training’ points and in the same time is precise and robust. The approximation method based
on GP satisfies all above-mentioned requirements: it gives very good results when the number
of training examples is limited. Another important feature of GP is that it gives not only
the approximation of the mean value of sought solution but also its standard deviation. This
feature gives a possibility of automatic and systematic improvement of the solution, because
the computed standard deviation of the model prediction provides a localization where the
approximation is weak (and therefore, it points out where, in the parameter space, the additional
experimental or numerical data are necessary to improve the approximation).

The presented stochastic algorithm is formulated within Bayesian framework, thus provides
additional information about the magnitude of correlation between state variables (i.e. mea-
surable quantities) and control variables (i.e. parameters). It is very important to know the
relevance of input-output correlation because based on it one can exclude from the model the
parameters which do not influence the measurable quantities. Such reduction saves the experi-
mental efforts of finding parameters which appear to be irrelevant in particular simulation.



Model reduction through Gaussian Processes

In order to explain how to construct a model approximation by Gaussian Processes, first, a
linear regression model should be considered. It is a linear function of model parameters w and
nonlinear function of the input vector x, and usually is defined as:

y (x,w) =
M∑

j=1

wjφj (x) , (1)

which simply is a linear combination of fixed, nonlinear basis functions φj(x) of the input
variables (e.g. polynomial basis functions).

If we now take N given training patterns (xn, tn), xn being the input vector, tn the response
for n = 1 . . . N , then the parameters w of the linear model can be computed by, for example,
penalized least squares method:

w =
(
ΦT Φ + λI

)−1
ΦT t, (2)

where Φ is N×M design matrix with elements defined as φm(xn). The regularization parameter
λ is called hyperparameter and can be estimated using validation set or by applying Bayesian
inference and maximizing evidence of dataset p(t|λ) w.r.t. λ (details are given in [1]).

Gaussian Process

Gaussian process model can be obtained by reformulation of the linear model in terms of dual
representation. In this approach, linear model is trained by minimizing a regularized error,
which is defined using N ×N symmetric Gram matrix:

K = ΦΦT = φ(x)Tφ(x′) = k(x,x′), (3)

where k(x,x′) is a kernel function. The vector kn = k(xn,x) represents n-th row or column of
K matrix.

The prediction for a new input x∗ can be computed by the formula:

y(x∗) = k(x,x∗)T (K + λI)−1t, (4)

where k(x,x∗) is a covariance between a new input x∗ and the other inputs, t = (t1 . . . tN )T is
a vector of training target values.

From the Bayesian point of view the dual representation of linear model leads to the Gaussian
process, where the kernel function is interpreted as a covariance function of the GP. Application
of such regression model for prediction allows to compute the predictive distribution of the target
variable y(x∗) for a new input vector x∗. This requires evaluation of conditional distribution
p(y|t), which for the Gaussian processes is a Gaussian distribution with mean and covariance
respectively given by:

m(x∗) = kT C−1t, (5)

σ2(x∗) = c− kT C−1k, (6)

where C is the N ×N covariance matrix given by:

C(x,x′) = k(x,x′) + β−1I, (7)

where β is the variance of the target distribution. The covariance function C(x,x′) defines the
property that vectors xn and xm, which are close in input space, should give rise to highly
correlated outputs y(xn) and y(xm).



Covariance function

The covariance function can be any function that will generate a non-negative definite covariance
matrix for any ordered set of (input) vectors (x1, . . .xN ). A stationary, non-isotropic squared
exponential covariance function k (x,x′) is chosen here, and given by:

k (xn,xm) = ν exp

(
−1

2

d∑
i=1

wi

(
xi

n − xi
m

)2)+ b, (8)

where the term b represents a bias that controls the vertical offset of the Gaussian process, while
ν controls the vertical scale of the process. The wi parameters allow a different distance measure
for each dimension. If wi is small then the i-th input is downweighted and have little effect on
the input.

After defining the covariance function we can make predictions of the new input vectors but
it is necessary to learn the hyperparameters. In order to find those parameters one can search
for the most probable ones by maximizing the log likelihood function given by:

ln p(t|θ) =
1
2

ln |C| − 1
2
tC−1t− N

2
ln 2π, (9)

using gradient-based optimization algorithms, such as a first-order batch Levenberg-Marquardt
Algorithm (LMA), which provides fast and robust convergence.

Active learning

In order to optimize the training procedure of GP based surrogate model, the active learning
criterion, that improve the global model fit, is also utilized here. A new training points are
sequentially added in the zones where the model predictions are poor and/or in the vicinity
of the minimum of the approximated solution, meaning that the iterative re-training of the
surrogate model is performed by adding a new training patterns, sampled in the new locations
in the parameter space (selected by the algorithm itself). This approach is very efficient when
the number of training samples is limited, so the algorithm starts building approximation with
small selection of patterns (randomly or uniformly distributed) and improves the approximation
by sampling the parameter space in a clever way (based on its confidence about the quality of
the approximation). It stops when the maximum number of training samples is reached.

Application

In the present communication an example of a model characterization is used to show the
application of above described model reduction techniques. The examples show the use of GP
as numerical model surrogate for characterization of paperboard parameters [3] through biaxial
test and DIC measurements techniques combined with inverse analysis. From such test we can
identify most of the in-plane parameters of paperboard (for the details see [4]).

In the above examples the GP based approximation serves as a surrogate of numerical
model, which in combination with iterative minimization routine (e.g. trust-region algorithm)
or evolutionary-based techniques (e.g. particle swarm algorithm) gives very fast and accurate
results of model identification. The model reduction approach has the following important
advantages w.r.t. the procedure based on evaluation of full numerical model: (1) it’s fast (the
computational burden is moved to training phase) and (2) it doesn’t require to use powerful
computers for heavy and repetitive computations of numerical model, so once the model is
constructed it can be used ’in situ’ on the portable computer.



Summary

The GP approximation model which serves as a numerical model reduction is used here in
combination with inverse analysis to solve practical engineering identification problems. The
work is mainly focused on the proper construction of the GP model, namely on: (1) training
process based on minimal number of training data, by making use of automatic samples selection
through computed standard deviation of model prediction and (2) control parameters reduction
based on input-output correlation. The successful application of stochastic model reduction
techniques for the material model characterization problems is also shown here.
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Summary. The current paper deals with numerical modelling of all plywood sandwich panels 
with rib-stiffened core. Commercially available finite elements code ANSYS has been 
implemented to simulate mechanical behaviour of sandwich panels in bending, according to the 
EN 789 standard. It has been confirmed that in order to simulate plywood a multilayered panel 
model with shell type elements could adequately represent the mechanical behaviour of such a 
structure sufficiently well. Developed parametrical model has been initially validated with 
experimental results showing less than 10 % scatter among finite element model and physical 
model. Following this a validated numerical model has been implemented for structural 
parameter optimization resulting in significant improvement of  initial panel design. 

Key words: plywood, sandwich panels, ANSYS 

Introduction 

All plywood sandwich panels with hollow core structure could offer significant weight 
reduction comparing with conventional plywood boards for applications where the lightweight 
design could provide cost saving benefits in long term perspective, like freight cargo transport. 
However in order to develop effective therefore functional product some research effort is 
required to design a reliable methodology with sole ability to predict mechanical behaviour of 
such  item. 
The finite element method (FEM) analysis is well accepted design methodology by all sectors of 
industry and for sure scientific institutions. For example, numerical modelling of wood based 
sandwich panels are extensively studied and described in several recent papers [1,2] where good 
correlations between experimental and numerical results were found. 
All plywood sandwich panels with rib-stiffened and corrugated plywood core has been 
experimentally studied earlier by Zudrags [3] with aim to increase plywood specific stiffness. 
Kalnins [4] described theoretically optimal cross–sections configurations for sandwich panels 
with rib-stiffened cores. 
The aim of current research is to extend and to improve the numerical model`s accuracy for 
design of sandwich panels with multi angular stiffener orientations: longitudinal, transverse and 
diagonal direction along panel length. Moreover numerical models are validated with 



experimental tests in four point bending mode. Once numerical models has been validated and 
the convergence approved an optimization procedure with aim to increase stiffness/weight ratio 
of sandwich panels has been realised. 

Materials and methods 

Numerical model has been built using 4-node SHELL181 elements with multilayered structure 
(1.3 mm thin layers) implementing the birch mechanical properties. Panel’s geometrical 
tolerance and loading conditions are kept as close as possible to the experimental set up. 
Numerical model is made parametrical to be suitable for further optimizations tasks. The FE 
mesh step of 10 mm has been assigned to sandwich plate (Figure 1). Both deflection at the panel 
mid-span as well as strains and stresses at various plies have been extracted and applied as 
constraint for optimisation task. 
 
Four point bending test on static load frame INSTRON 8802 (Figure 1) has been performed 
according to EN 789 [5] for several types of sandwich panels (Table 1) in order to verify if 
developed numerical models appropriately represent the mechanical behaviour. The distance 
between supports is 1000 mm and between loading points 200 mm. The bending deflection of 
the panels have been measured with LVDT deflectometer at the bottom of the panel`s midspan.  
All sandwich panels were tested in elastic range up to 22 mm (about 1/50 of the span length) to 
deliver stiffness properties of such structure without reaching the ultimate load. Moreover in 
structural engineering applications deflection extending 1/150 of the span is restricted by 
legislation thus experimental results are within the range of good engineering practice 

 
 

 
 
 
 
 
 
 

Figure 1. Experimental test set-up in line with level of detail of numerical model of rib-stiffened 
panel and a  stress plot in each ply.  
 

Table 1. Specification of tested panels 
 

Series 
number 

Direction of 
stiffeners  

Average 
thickness, 

[mm] 

Thickness of 
stiffener, 

[mm] 

Distance 
between 

stiffeners, 
[mm] 

Surface 
thickness, 

[mm] 

Surface 
plies 

orientation 

Nr. 1 Diagonal 28.21 14.4 22.0 9.0 /-/-/-/ 

Nr. 2 Transverse 27.65 14.4 27.0 9.0 -/-/-/- 

Nr. 3 Longitudinal 28.42 14.4 22.0 9.0 /-/-/-/ 

 
/  fibres direction parallel to panel’s longitudinal direction 

fibres direction perpendicular to panel’s longitudinal direction 
 



Design parameters considered for the sandwich panel cross-section optimizations are following: 
the panel height, the thicknesses of separate components – the face sheets and stiffeners, all 
expressed in odd number of layers. Metamodelling technique has been employed to acquire 
sensitivity of each parameter and mechanical responses of plywood sandwich panel. The 
sequential experimental design based on Mean Square Error (MSE) space filling criteria has 
been elaborated in order to sample the design variables within the domain of interest. The 
optimization function is to maximise the stiffness/weight ratio. 

Results and discussion 

In order to compare the experimental and numerical results, the load/deflection and load/strain 
curves have been compared with numerical results obtained from ANSYS. It is obvious that 
sandwich structure has fully elastic mechanical behaviour within tested deflection range and 
linear numerical model describes structure behaviour sufficiently well. The difference between 
average experimentally obtained deflection at 5 kN load magnitude and one obtained numerical 
not exceeding 10 % for panels with diagonal, transverse(Figure 2) and longitudinal (Figure 3) 
orientation of stiffeners  

 

Figure 2. Load/deflection curves for panels with diagonal and  transverse orientation of 
stiffeners 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Load/deflection curves for panels with longitudinal orientation of stiffeners 

Deflection at midspan, mm

0 5 10 15 20 25

L
o
a

d
,N

0

1000

2000

3000

4000

5000

6000

Relative deflection at midspan, %

0.0 0.5 1.0 1.5 2.0 2.5

Specimen 2.1
Specimen 2.2
Specimen 2.3
ANSYS

Deflection at midspan, mm

0 5 10 15 20 25

L
o

a
d

,N

0

1000

2000

3000

4000

5000

6000

Relative deflection at midspan, %

0.0 0.5 1.0 1.5 2.0 2.5

Specimen 1.1
Specimen 1.2

Specimen 1.3
ANSYS

Deflection at midspan, mm

0 5 10 15 20 25

L
o

a
d

,N

0

1000

2000

3000

4000

5000

6000

Relative deflection at midspan, %

0.0 0.5 1.0 1.5 2.0 2.5

Specimen 3.1

Specimen 3.2
Specimen 3.3

ANSYS



Taking into the consideration a natural wood material property scatter, obtained accuracy of 
numerical model could be considered as adequate for employing it in further optimisation tasks. 
An overall efficiency of all plywood sandwich panels have been demonstrated by formulating 
Pareto optimization problem (Figure 3) where maximization of relative stiffness ΔK is done 
simultaneously by minimizing the relative volume ΔV of the panel. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3. Pareto optimality plot for panels with longitudinal stiffeners direction. 
 
Relative stiffness is acquired dividing numerically calculated conventional plywood board 
deflection with calculated deflection of sandwich panel with same length and thickness, under 
the same loading conditions.  Relative volume is acquired by dividing sandwich panel volume 
with full plywood panel volume.  Using these plots is possible to select beneficial combination 
of variables as well as improve initial design of prototype panels. It has been concluded that 
numerical optimisation task has generated improved design scenarios with up to 80% weight 
efficiency. A further prototyping will be carried out in order to validate the optimisation results. 
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Summary. This work concerns a novel large scale multi-material topology optimization method for
simultaneous determination of the optimum variable integer thickness and fiber orientation throughout
laminated composites with fixed outer geometries while adhering to certain manufacturing constraints.
The conceptual combinatorial/integer problem is relaxed to a continuous problem and solved on basis of
the so-called Discrete Material Optimization method, explicitly including the manufacturing constraints
as linear constraints.

Key words: Laminate design optimization, thickness optimization.

Introduction

Fiber reinforced laminated composites are applied in a variety of high performance structures
because the stiffness to weight ratio surpasses e.g., steel and aluminum alloys. The basis of this
work is laminated structures where the outer geometry for some reason is fixed which could be
the case for e.g., wind turbine blades where aerodynamics may govern the shape of the outer sur-
face. Weight reduction while maintaining sufficient stiffness of such structures implies that the
thickness of the laminate must vary inwards in an optimal manner. The individual layers/plies
that together constitute the laminate are typically chosen among a finite set of materials with fi-
nite sets of fiber angles, e.g., Carbon/Glass Fiber Reinforced Polymer (CFRP/GFRP) with {0◦,
+45◦, −45◦, 90◦} fiber orientation. The task for the designer is simultaneously to determine the
optimum variable integer thickness and fiber orientation throughout the laminate structure. The
problem is therefore conceptually a combinatorial multi-material topology optimization prob-
lem. This short paper presents a novel method that treats this problem. The optimized design
is typically subject to certain manufacturing constraints (MC): To accommodate application of
predefined fiber mats, large regions/patches within the layers of the total geometry/laminate
must be identical (MC1); to prevent failure such as delamination and matrix cracking prob-
lems, changes in thickness cannot be too abrupt (MC2); the number of identical contiguous
layers should not be too high (MC3), and intermediate void is not allowed (MC4). Explicit
inclusion of these manufacturing constraints in the topology optimization problem yields an op-
timized starting point for detailed post processing before true realization may take place. Stress
constraints and failure criteria are not considered explicitly in this work. However, fulfilling
MC1-MC4 will implicitly reduce the risk of failure.

Figure 1 illustrates a simplified 1D example, discretized as six Equivalent Single Layer (ESL)
shell elements (one ESL shell element per column), each containing three layers (rows).

The example in Figure 1 could represent the solution to an optimization problem subject
to the following requirements: Bottom layer is enforced material (i.e. free from void); choose
between void and {0◦, +45◦, −45◦, 90◦} CFRP; maximum allowable mass fraction is 13/18;



CFRP, 0◦

Void

Figure 1: Example of a thickness optimized laminate. The bottom layer is enforced material;
free from void.

besides void there must be fiber angle continuity in an entire row/layer (MC1); total allowable
thickness change is ± 1 ply thickness between neighbouring ESL shell elements (MC2); only a
single contiguous identical layer/ply is allowed (MC3); Intermediate void is not allowed (MC4).

Recent work on simultaneous material distribution and orientation has been summarized
in [2]. Although heuristic methods such as genetic algorithms are frequently applied and in
principle well suited for combinatorial/integer problems, they do, however, rely on extensive
amounts of finite element analyses. Despite the ever-increasing parallelizable computational
power, it is unacceptably expensive to apply such methods for large scale optimization prob-
lems. In this short paper, the combinatorial/integer thickness optimization problem is relaxed
thus allowing application of gradient based state-of-the-art optimizers as e.g., SNOPT [3] that
is used in this work. The problem is solved on basis of the so-called Discrete Material Optimiza-
tion method, see [4]. The manufacturing constraints MC1-MC4 are explicitly included in the
optimization problem as a large number of sparse linear constraints.

Problem Formulation

The method to be presented takes basis in multi-phase compliance minimization through the
density approach, see [1]. With this approach the constitutive properties of all layers in all ESL
shell elements in the discretized domain are functions of the densities (design variables). For
example, the effective constitutive matrix E

el
is obtained as

E
el
= E 0 +

ρ
el

1 + p(1− ρ
el
)

n
c∑

c=1

x
elc

1 + q(1− x
elc
)
(E c −E 0) , ∀(e, l) (1)

In (1), index e concerns a specific ESL shell element, index l concerns a specific layer, and
index c concerns a specific candidate material. E c is the constitutive matrix for candidate mate-
rial c, ρ

el
∈ [0, 1] are topology variables (densities), x

elc
∈ [0, 1] are candidate material variables,

p and q are penalization powers for the variables, and n
c is the number of specific candidate

materials. E 0 is massless and significantly more compliant than all E c. The parameterization
in (1) utilizes the material interpolation scheme RAMP (Rational Approximation of Material
Properties), see [5]. A result to the topology optimization problem is satisfactory when: Compli-
ance is reduced; all variables are binary; the mass constraint and the manufacturing constraints
(MC1-MC4) are satisfied.

Example and Results

The optimization approach is illustrated by the example defined by Figure 2. A corner hinged
8-layered plate is subjected to a mid-point load, and the plate is discretized by 50 × 50 square
ESL 9-node isoparametric shell elements. A layer has thickness t = 1mm.

The problem is solved for three different cases, illustrating how the design variables can be
associated both with elements and with larger patches having the same parameterization. In
case 1 all elements must have the same fiber angle in a given layer (MC1) and the total allowable
thickness change is ± 1 ply thickness between neighbouring ESL shell elements (MC2). Case
2 represents an expansion of the design space in case 1, as the layerwise material selection is
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Figure 2: A corner hinged 8-layered plate is subjected to a mid-point load, F = 10N. The square
element side length is denoted with w and t denotes the layer thickness. In optimization case 2
and 3 the plate is divided into the three patches illustrated on the right figure.

now performed individually for the three patches. Similarly, in case 3 all elements in each of
the three patches must have the same fiber angle (MC1) in a given layer. Furthermore, MC2 is
varying, such that thickness may change elementwise in patch 1 and in the two other patches
it can only change patchwise. The total allowable thickness change is still ± 1 ply thickness
between neighbouring elements. Thus, in case 2 and 3 inplane discontinuities in fiber angles are
allowed.

In all three cases the allowable mass fraction is 50%; the bottom layer is enforced to have
full density; only four contiguous identical layers are allowed (MC3); intermediate void is not
allowed (MC4). A distinct 0/1 solution is obtained nearly everywhere in the design domain for
all three cases.

The optimization problems are linearized and solved sequentially, using SNOPT with an
adaptive move limit update scheme. Each problem is solved in two consecutive steps. Step 1
converges without penalization. Step 2 continues with constant penalization.

Figures 3-5 illustrate the optimized thickness and fiber angle distributions obtained. Com-
paring the results between case 1 and case 2, it is clear that the expansion of the design space in
case 2 has resulted in a lower compliance (larger stiffness). Notice the influence of MC3 in patch
1 and 2 for case 2 (only four contiguous identical layers are allowed). Finally, case 3 with more
restrictions on allowable thickness change results in the largest compliance of the three cases.

Fiber
angle

90
◦

45
◦

0
◦

−45
◦

Figure 3: Minimum compliance design for case 1. All elements must have the same fiber angle
in a given layer but thickness may change elementwise. Layer thicknesses are scaled by a factor
of 20. Compliance is 0.7077.

Concluding Remarks

A novel method for simultaneous determination of optimum variable integer thickness and fiber
orientation in a laminated composite subject to certain manufacturing constraints has been
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Figure 4: Minimum compliance design for case 2. All elements in each of the three patches
must have the same fiber angle in a given layer, but thickness may change elementwise. Layer
thicknesses are scaled by a factor of 20. Compliance is 0.6701.
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Figure 5: Minimum compliance design for case 3. All elements in each of the three patches must
have the same fiber angle in a given layer. Thickness may change elementwise in patch 1 and in
the two other patches it can only change patchwise. Layer thicknesses are scaled by a factor of
20. Compliance is 1.922.

presented. The method is applicable for designs of composite structures with a fixed outer
geometry but may also be used for structures with a fixed plane of symmetry. The generality
of linking material and thickness variables to a given layered structure has been illustrated
for three different parameterizations of a corner hinged 8-layered plate. The sequential linear
programming strategy with an adaptive move limit update scheme causes large variations in the
required number of iterations until convergence, and the non-convexity of the posed optimization
problem entails the risk of sub-optimal local minima. Although the presented examples result
in a nearly binary design, this is not always the case. Different settings for the adaptive update
scheme and alternative solution approaches are elaborated in future work.
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Summary. An approach of designing a robotic exoskeleton for a partially paralyzed human upper extremity
is proposed in this paper. A musculoskeletal arm model is built to simulate the injury symptom in terms of
evaluating the muscle activations. The exoskeleton is built with a gravity compensation system. The biomechanical
human arm model and the exoskeleton are integrated together to form a bio-robotic system. Design analysis and
optimization are conducted in the bio-robotic system to evaluate parameters of the exoskeleton.

Key words: exoskeleton, spring-loaded, cable-driven, biomechanics

Introduction

Exoskeleton robots have attracted more and more research interests, as they have prospective applications
in rehabilitation and patient assistance. Effective means of motion assistance, such as weight balancing
orthoses, will be studied in this work. Several passive exoskeletons have been developed recently. The
X-ArT M exoskeletal arm with passive actuated joints is provided by Equipois to support human arms
in the working environment [1]. Wilmington Robotic Exoskeleton (WREX) is a two-segment, 4-DOF
(degree of freedom) passive orthoses provided by Nemours [2]. A variable impedance powered elbow
exoskeleton named NEUROExos [3] was developed for the rehabilitation task of stroke patients.

In this work, an integrated musculoskeletal-exoskeleton simulation approach is proposed for the
optimal design of exoskeletons. An important part of our work is an advanced biomechanical model
of the upper extremity, which provides a deep understanding of the elasticity required to support the
patient’s motion depending on the nature of the disability. The bio-robotic system is built in AnyBody
Modeling System, where the design parameters of the exoskeleton are formulated as an optimization
problem.

Modeling of the Bio-robotic System

The bio-robotic system is built by integrating a musculoskeletal model and a robotic exoskeleton model.

Biomechanical Modeling

The biomechanical study is conducted with the AnyBody Modeling System, in which the human arm
model is built and generated from the system’s model repository. The upper body is constrained at the
pelvis, and the right arm has seven joints to be activated.

In a musculoskeletal model, the biomechanics of muscles and bones is statically indeterminate. The



muscle recruitment can be formulated as an optimization problem as

min G(f(M))

s.t. Cf = d
f (M)
i ≥ 0, i ∈ {1, . . . ,n(M)} (1)

where f= [f(R), f(M)] is composed of a n-dimensional vector of joint reaction forces f(R) and muscle forces
f(M). The vector d is the external force, and C is a coefficient matrix generated from the arm anatomy
and muscle attachments. The choice of the objective function G(f(M)) depends on the muscle recruitment
criterion. The polynomial criterion is adopted as

G(f(M)) = ∑
i

(
f (M)
i
Ni

)p

(2)

where Ni are normalization factors or functions, which take the form of muscle strength in this work.
The power p indicates the synergy of muscles. p = 3 is recommended as it yields good results for most
submaximal muscle efforts. The ratio f (M)

i /Ni refers to the muscle activity. The overall muscle activity
can be calculated as

H = ∑
i

f (M)
i
Ni

(3)

In order to simulate the muscle condition of a patient, any single piece of muscle can be enabled or
disabled. In the model the muscle is disabled by setting its muscle force to zero.

Exoskeleton Modeling

The wearable exoskeleton stores the springs in a box which can be carried on the back (Fig. 2). As shown
in Fig. 1, the green lines are the cables for transferring spring forces. In this design, two springs are used
to drive the elbow joint and three springs to drive the shoulder joint.

Figure 1. A wearable cable-
driven exoskeleton.

Figure 2. Back view of the
wearable exoskeleton.
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2 spring cable

via points

Elbow upper

bracket

Elbow lower

bracket
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Figure 3. CAD embodiment of the exoskeleton.

At the elbow joint, two anchoring nodes are designed on the elbow lower bracket, as shown in Fig. 3.
Two cables linked to two springs from the anchoring point through the two via points on the elbow upper
bracket. The force in the spring cable is defined as

Fs = Fpre + k ∗∆l (4)

where Fpre denotes pre-load force of the spring. k is the spring stiffness co-efficient and ∆l is the variation
of the spring length.



A Bio-robotic Model

The bio-robotic is developed through integrating the human arm and the exoskeleton model, as shown in
Fig. 1. The exoskeleton model is built in SolidWorks and then exported to AnyBody. All joints need to
be defined in AnyBody. The armor part of the exoskeleton is fixed to the trunk of the human model. The
elbow lower bracket is connected to the lower arm through a translation-spherical joint. The attachment
of the upper bracket to the upper arm is modelled as a revolute joint.

Optimization on the Exoskeleton

In this work, the design of the exoskeleton is formed as an optimization problem through biomechanical
simulation. The kinematics and dynamics simulation of the bio-robotic system is conducted in AnyBody
Modeling System.

Brachial Plexus Injury

The brachial plexus is a network of nerves that conducts signals from the spinal cord, which is housed in
the spinal canal of the vertebral column (or spine), to the shoulder, arm and hand. The branches of the
brachial plexus and their associated muscles are listed in Table 1, sorted with respect to their roots.

Table 1. Branches of brachial plexus.

No. Nerve Roots From Muscles
1 axillary C5, C6 posterior cord deltoid, teres minor
2 radial C5, C6, C7, C8, T1 posterior cord triceps brachii, supinator, anconeus, the ex-

tensor muscles of the forearm, brachioradialis
3 upper subscapular nerve C5, C6 posterior cord subscapularis(upper part 1 2)
4 lower subscapular nerve C5, C6 posterior cord subscapularis(lower part 3 4 5 6), teres major
5 thoracodorsal nerve C6, C7, C8 posterior cord latissimus dorsi
6 lateral pectoral nerve C5, C6, C7 lateral cord pectoralis major
7 musculocutaneous nerve C5, C6, C7 lateral cord coracobrachialis, brachialis, biceps brachii
8 suprascapular nerve C5, C6 upper trunk supraspinatus, infraspinatus
9 long thoracic nerve C5, C6, C7 root serratus anterior

10 dorsal scapular nerve C5 root rhomboid muscles, levator scapulae

Formulation of Optimization

To simplify the optimization, the three springs for the shoulder joint use the same type of spring which
means they have the same stiffness co-efficient defined as ku. The two springs for the elbow joint also
use the same type of spring with the stiffness of kl . The objective of the exoskeleton is to reduce the
maximal muscle activation (MMA). The objective function is defined as

min
x

max f (x) = ∑
i

f (M)
i
Ni

(5)

x = [Fpre,k]

where Fpre = [F1, ...,F5] and k = [ku,kl], which means there are 7 design variables for the problem. The
optimization problem is solved by the Complex method [4].

Results and Discussions

Maximal Muscle Activation

The maximal muscle activation is calculated for different nerve lesion conditions. We categorized the
muscles into groups according to the nerve root and origin, as shown in Table 1. The motion of picking



up a mobile and making a call is captured with the duration of 4.6 seconds. The payload is 0.5kg holding
at hand. The calculated MMA of different nerve lesion is shown in Fig. 4. Note that the case BASE
refers to the motion without any nerve lesion.
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Figure 4. Maximal MMA of different nerve lesion cases.
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Figure 5. The comparison of the MMA after
optimization.

Optimization Results

For the case C8 in the motion of making a phone, we set a population number of 14 to the Complex
method for executing optimization. The objective convergence tolerance is 0.001, and the convergence
tolerance for the design variables is 0.1. The maximal MMA is reduced from 8.2 to 1.42 after optimiza-
tion with 269 iterations.

The optimal design variables are obtained as Fpre = [23.7,34.9,3.3,19.4,10.5], and k = [58.8,20.4].
The stiffness co-efficient is used to select springs for the exoskeleton. With the optimal parameters, the
MMA is calculated for the case without exoskeleton and the one with the optimal design, as plotted in
Fig. 5. Wearing the optimal designed exoskeleton, the patient can accomplished the motion of lifting the
arm and making a phone call.

Conclusions

A spring-loaded cable-driven exoskeleton was designed in this work. A musculoskeletal human arm
model was built to simulate the brachial plexus injury. The cable-driven exoskeleton model was integrat-
ed with the musculoskeletal model for dynamics simulation and design optimization of the exoskeleton.
Parameters of the exoskeleton were obtained through optimization. A prototype will be built to testify
the model and validate its application in patients’ daily living.
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Summary. The presence of grain boundaries in the microstructure of metallic materials causes heteroge-
neous distributions of dislocation density. In the present contribution, the evolution of dislocation density
is viewed as a reaction-diffusion system, involving mobile and immobile dislocations. Gradient effects are
introduced by making the immobilization of dislocations sensitive to presence of grain boundaries. The
model provides a macroscopic yield stress behavior of Hall-Petch type, without explicitly incorporating a
yield stress dependence on the grains size. In addition, the model is employed in a cellular automaton al-
gorithm, allowing a polycrystalline microstructure to evolve due to dynamic recrystallization, confirming
that the introduced gradients provide important additions to recrystallization modeling.

Key words: Gradient effects, Dislocation density, Grain boundaries, Hall-Petch, Recrystallization, Cellu-

lar automata

Introduction

Many important aspects of the macroscopic material behavior in metals are controlled by the
microlevel grain structure. Especially the presence of grain boundaries plays an important role
as they pose obstacles to slip deformation by preventing dislocation motion, resulting in localized
dislocation storage and heterogeneous deformation fields within the grains.

The dislocation storage at grain boundaries increases as the volume fraction of grain bound-
aries increase, i.e. as the average grain size decreases. This is macroscopically observable as a
Hall-Petch effect, cf. [1, 2], suggesting a proportionality between the macroscopic yield stress
σ̄y and the inverse of the square root of the average grain size d, i.e.

σ̄y = σ̄y0 +
k̄√
d

(1)

where σ̄y0 and k̄ are parameters.
In the present work, a mesoscale model of microstructure evolution is established where a

distinction is made between the densities of mobile and immobile dislocations. The two dislo-
cation species are allowed to evolve through a reaction-diffusion process, driven by macroscopic
deformation. Dislocation density gradients are introduced by making the reaction-diffusion sys-
tem sensitive to the presence of grain boundaries. The model is employed in simulations of
dislocation density evolution in single grains and polycrystals and the homogenized macroscopic
flow stress exhibits the expected Hall-Petch behavior in both cases.

The polycrystal model is formulated in a combined finite difference/cellular automaton set-
ting and a methodology for treating the dislocation density gradients due to grain boundaries
is introduced. This results in an efficient hybrid algorithm for mesoscale modeling of grain
microstructures.



Reaction-diffusion modeling of dislocation density evolution and gradients

The dislocation density is assumed to be comprised of the densities of mobile dislocations ρm
and immobile dislocations ρi. The two populations are assumed to evolve in a reaction-diffusion
process where the two types of dislocations are allowed to react with each other and each type is
allowed to diffuse through the crystal structure. Following [3, 4], the balance equation for each
type of dislocation density is given by

∂ρm
∂t

+∇jm =

(
k1

ρi
ρm

− k2ρm − k3
√
ρi

)
ε̇peff

∂ρi
∂t

+∇j i = (k2ρm + k3
√
ρi +−k4ρi) ε̇

p
eff

(2)

where ∇ is the divergence operator and jm,i the fluxes of mobile and immobile dislocations,
respectively. These fluxes are given by

∇jm = −Dm∇ρm and ∇j i = −Di∇ρi (3)

where Dm,i is the diffusion coefficient of each type of dislocations, satisfying Dm � Di.
The right-hand sides of eqs. (2) are allowed to depend on the rate of macroscopic effective

plastic strain ε̇peff , where a superposed dot denotes differentiation with respect to time t.
In eq. (2), the parameter k2 controls the decrease of mobile dislocation density due to inter-

action between mobile dislocations and the parameter k3 governs the immobilization of mobile
dislocations. The density of mobile dislocations is further influenced by a production term k1
and the density of immobile dislocations evolves under the influence of a dynamic recovery term
k4.

The total dislocation density, measuring the stored energy in the material, is taken as the
sum of the mobile and immobile dislocation densities, i.e. ρ = ρm + ρi.

To introduce dislocation density gradients in the vicinity of grain boundaries the parameter
k3 in eq. (2) is allowed to vary with the distance l to the boundary, i.e.

k3 = k3 (l) (4)

With k3 (l) attaining its highest value at the boundary, where l = 0, and then gradually fade
away for increasing values of l. This represents the physical processes of increased immobiliza-
tion and storage of dislocations as the grain boundary is approached. Grain boundaries are
in the present model assumed to be impenetrable for dislocations by prescribing zero fluxes.
Transmission of dislocations across the grain boundaries can, however, be incorporated into the
present formulation by prescribing non-zero fluxes.

Model formulation for polycrystals

To investigate the behavior of the reaction-diffusion model in the case of polycrystalline mate-
rials, a 2D microstructure is considered, noting that extension to 3D is straight-forward. An
explicit finite difference scheme is used for the evolution of the dislocation densities in a RVE de-
scribed by a fixed two-dimensional grid with dimensions 512×512 μm and a total of 1024×1024
grid divisions. Periodic boundary conditions are employed.

As the present dislocation model is also applied to cellular automata modeling of dynamic
recrystallization, the notion of each grid point being a “cell” is introduced. To each cell belongs
a number of state variables. For the present purpose, the state variables consist of the cell’s
density of mobile and immobile dislocations, respectively, and an identifying number stating to
which grain the cell belongs.

In eq. (4), the parameter k3 was made dependent on the distance l to the grain boundary. To
keep track of the distance of each cell in a single grain, relative to the grain boundary, a distance



number ndist is assigned to the individual cells. The boundary cells of the grains are identified
and are given the distance number 1. All cells within the grain, having a neighbor with distance
number 1 are subsequently given the distance number 2 and so on. This is continued until all
cells are numbered.

Based on the distance numbers, the distance l from the boundary is identified as an integer
number of cells nl defining the distance from the boundary – where nl = 1 – and the function
k3 (l) is assumed to appear as

k3 (nl) = k3,max − (k3,max − k3,min) (1− exp [−w (nl − 1)]) , nl ≥ 1 (5)

In this form, eq. (5) satisfies k3 = k3,max at the boundary where nl = 1 and k3 = k3,min a
distance away from the boundary, indirectly determined by the parameter w.

The homogenized macroscopic yield stress is obtained from the RVE by considering σy =
σy0+αμb

√
ρ̄ where ρ̄ is the volume-averaged dislocation density. This homogenization procedure

is discussed further in [6].

Polycrystal simulations

To examine the grain size influence on the model behavior, a number of microstructures with
different grain sizes are generated and employed in simulations.

The different RVE microstructures are used with the present reaction-diffusion model to
simulate the evolution of dislocation densities up to a total strain of εpeff = 0.5. Material
parameters are set to values typical for steel. Fig. 1a shows the resulting, homogenized, flow
stress for some of the grain sizes under consideration when w = 0.1. As expected, an increased
flow stress can be observed in Fig. 1a as smaller grain sizes are considered.

The variation of the flow stress with grain size at εpeff = 0.25 is shown in Fig. 1b for different
values of the parameter w. In Fig. 1b, symbols represent simulation results and the solid lines
represent fits of the Hall-Petch relation in eq. (1).

As w = 0.1 is employed, grain boundary effects dominate far into the grain interiors. Con-
sequently, the simulation results in Fig. 1b obtained for w = 0.1 deviate significantly from a
Hall-Petch type of behavior as smaller grain sizes are considered, consistent with experimental
observations for small grain sizes.
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Figure 1. a) Homogenized flow stress obtained from the polycrystal simulations for some different grain
sizes and with w = 0.1. b) Variation of the flow stress, obtained at εp

eff
= 0.25, for different grain sizes

and for different values of the w-parameter. Symbols represent simulation results and solid lines show
least-squares fits of the Hall-Petch relation in eq. (1).
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Figure 2. Distribution of total dislocation density at a strain of εp
eff

= 0.5. The close-up shows how the
dislocation is concentrated primarily at triple junctions and secondly along grain boundaries.

Implications on recrystallization modeling

The distribution of total dislocation density at εpeff = 0.5 is shown in Fig. 2. The close-up view
shows how the highest levels of dislocation density can be found at triple junctions and to a
lesser extent along grain boundaries. The dislocation density gradients gradually decline as one
moves away from the grain boundaries and into the grain interiors where the dislocation density
is considerably reduced.

The heterogeneous concentrations of dislocation density have important implications in re-
crystallization modeling. Experiments show that nucleation of new grains occur at sites of high
stored energy, i.e. of high dislocation density, which are primarily located at triple junctions
and along grain boundaries. The usual approach in simulations of recrystallization is to manu-
ally place the recrystallization nuclei at these preferred sites. Using the present approach, with
dislocation density gradients, the nucleation sites emerge naturally without manual intervention.
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Summary. In this paper the mechanical behaviour of the Ni-based superalloy Haynes 282 is studied.
Haynes 282 is developed for high-temperature applications in aero and land based gas turbine engines.
To capture the cyclic hardening/softening of the material at different temperatures, a plasticity model
has been calibrated against LCF experiments. In this contribution special attention is given to the slow
cyclic softening that Haynes 282 shows at elevated temperatures. Two approaches to model the cyclic
softening are presented. The first approach consists of using negative isotropic hardening while the second
approach instead uses a kinematic hardening parameter dependent on the accumulated plastic strain. It
is shown that both approaches give good prediction of the cyclic behaviour with respect to experiments.

Key words: constitutive modeling, Ni-based superalloy, cyclic softening

Introduction

Thermomechanical fatigue (TMF) is a challenging problem for structural components in gas
turbine industry. The requirements of withstanding high temperatures while keeping efficient
and light designs put high demands on engineering with accurate modeling of the material
behaviour. Many constitutive models have been proposed to characterize the phenomenological
behavior of metals on the macroscale, see e.g. overviews [1], [2], [3]. For superalloys, used in
gas turbine applications, the constitutive model should be able to mimic phenomena such as
cyclic hardening/softening, the Bauschinger effect, ratchetting, shake down, creep and stress
relaxation.

Due to the high and varying temperatures in gas turbine applications, the rate and tem-
perature dependent phenomena are of great importance to give an adequate prediction of the
material behaviour. However, in this paper we focus on modeling of the thermal and cyclic
plasticity behaviour. As a base-model we choose a rate independent plasticity model that was
originally formulated in [4].

The predictions of the plasticity model are compared to experimental results for uniaxial
LCF experiments at various elevated temperatures. Special attention is given to the modeling
of the cyclic softening and how it is influenced by temperature. Two different approaches are
evaluated with respect to experimental results. The first approach is based on isotropic softening
(negative hardening) and the second approach is based on a kinematic softening parameter that
depends on the accumulated plastic strain.

Material model

In the model framework the stress is partitioned into a volumetric σvol and a deviatoric part
σdev which are related, by assuming linear isotropic elasticity, to the volumetric and deviatoric



parts of the elastic strain ǫe as follows

σ = σdev +
1

3
σvolI

σdev = 2Gǫe,dev

σvol = 3Kbǫvol

(1)

where G is the shear modulus and Kb is the bulk modulus. The elastic part of the strain ǫe is
obtained from the total strain ǫ by subtracting the plastic strain ǫp and the thermal strain

ǫe = ǫ− ǫp − α∆ΘI (2)

where α is the thermal expansion coefficient and ∆Θ is the temperature increase. Furthermore,
the plastic yielding is assumed to be governed by the von Mises yield function

Φ =

√
3

2
|σdev −B| − (σy − κ) (3)

where B is the back-stress (kinematic hardening), σy is the initial yield stress and κ is the
drag-stress (isotropic hardening). According to the normality rule, the plastic strain is assumed
to evolve in an associative fashion

ǫ̇p = λ̇
∂Φ

∂σ
= λ̇

√
3

2

σdev −B

|σdev −B| (4)

Furthermore, the evolution of isotropic and kinematic hardening are assumed to be of Voce
and of Armstrong-Frederick type

κ̇ = λ̇Hiso

(
1− κ

κ∞

)

Ḃ = λ̇H

(√
2

3

σdev −B

|σdev −B| −
B

B∞

) (5)

where Hiso, κ∞, H and B∞ are material parameters. The plastic multiplier λ̇ describes the
amount of plastic strain rate and is, for the case of rate independent inelasticity, determined
from the Kuhn-Tucker loading/unloading conditions

Φλ̇ = 0, λ̇ ≥ 0, Φ ≤ 0 (6)

To expand the model to include rate dependence the loading/unloading conditions could
easily be replaced by introducing an over-stress function (see e.g. [1]). It is further noted that
the parameters G, Kb, α, σy, Hiso, κ∞, H, and B∞ are in general dependent on temperature.

Cyclic softening

The evolution of the cyclic response of the material is modeled by two different approaches.
The first approach is based on negative isotropic hardening (Hiso < 0). In combination with
a negative value for the saturated drag stress (κ∞ < 0), a nonlinear cyclic softening can be
modeled. Saturation of the cyclic softening can then be controlled by the ratio Hiso/κ∞.

In the second approach the kinematic hardening parameters are dependent on the amount
of accumulated plastic strain via a coupling function

φ(a, v) = a+ (1− a) exp(−vλ̄) (7)

where a and v are temperature dependent material parameters and λ̄ is the accumulated plastic
strain. Here, the amount of cyclic softening is controlled by parameter a and the saturation of
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Figure 1. Experimental data and different model predictions showing cyclic softening at 650◦C in terms
of a) maximum stress and b) minimum stress.

cyclic softening is controlled by the value of parameter v. The function φ(a, v) can be used to
modify the total back-stress evolution multiplicatively

Ḃ = λ̇Hφ(a, v)

(√
2

3

σdev −B

|σdev −B| −
B

B∞

)
, φ < 1 (8)

or it can be used to only modify the saturation term of the back-stress evolution

Ḃ = λ̇H

(√
2

3

σdev −B

|σdev −B| − φ(a, v)
B

B∞

)
, φ > 1 (9)

Depending on the placement of φ(a, v) a difference in the model response can be observed in
the cyclic behaviour after some softening.

Numerical results

Since the experimental data for Haynes 282 are classified, the numerical values of model response
and experimental results cannot be given explicitly. Instead the presented numerical values and
results will be normalized by a stress xσ. Identification of the material parameters in the
constitutive model will be presented for uniaxial LCF experiments at various temperatures and
the dependency on temperature will be discussed. As an example, the model response of the
predicted maximum and minimum stress, using the two different approaches of modeling the
cyclic softening, is compared to experimental results in figure 1. The cyclic softening can also be
observed in figure 2, where the hysteresis loops at 25 and 75 % of the experimental life, Nf, are
given. From figure 1 it can be concluded that both approaches of modeling the cyclic softening
give good results with respect to LCF experiments for Haynes 282 at 650◦C. However, in figure 2
it can be observed that the cyclic model responses at 75% of Nf are different. This will affect
the choice of approach for including cyclic softening in the model.
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Summary. The well known eight chain BPA model for glassy polymers proposed by Boyce et al. is
reviewed and implemented. To evaluate the model, DIC measurements are performed and the simulated
responses are compared to the experimental results.
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Introduction

Glassy polymers are commonly used in industrial as well as consumer products. This has
created a need for reliable constitutive models that are able predict the mechanical response of
the material. A well known constitutive model for capturing the behaviour of glassy polymers
during monotonic loading is the BPA model that was proposed by Boyce, Parks and Argon [1].

The BPA model

The eight chain BPA model is based on the assumption that a glassy polymer can be represented
by an idealized chain network. The simplified network is assumed to consist of eight chain
segments that extend from the center point of a cube to its corners. The driving force for the
plasticity in the BPA model is the reduced Cauchy stress, σ̃, which is defined as

σ̃ = σ − F
e
BF

eT
, (1)

where σ is the Cauchy stress and B is the back stress. The principal components of the back
stress, Bα (α = 1, 2, 3), are expressed in terms of the principal plastic stretches, λp

α, as

Bα =
CR

√
N

3λp
L
−1

{
λ
p

√
N

}(
(λp

α)
2 − (λp)2

)
, λ

p =
1√
3

√∑

α

(λp
α)

2
, (2)

where CR and N are material parameters, λp is the plastic stretch on a chain and L
−1 is the

inverse Langevin function. The evolution law for the plastic deformation is

γ̇
p = γ̇0 exp(−

Ass

θ
(1− (

τ

ss
)
5
6 )), ss = s+ αp, (3)

where γ̇0, A and α are material parameters, p = −(trσ)/3 is the hydrostatic pressure, τ is the
equivalent stress, θ is the absolute temperature and s is the athermal shear stress. The athermal
shear stress evolves as

ṡ = h(1 − s/sss)γ̇
p
, s(0) = s0, (4)

where sss is the steady state or “preferred” state value of s. s0 and h are material parameters.



Experiments

Uniaxial tensile tests on flat, symmetrical notched specimens of polycarbonate (PC) were per-
formed using a custom built test machine. The experimental set-up and the geometry of the
specimen is shown in Figure 1. The tests were performed at a constant displacement rate of
2 mm/min of the machine grips. In addition to the axial force and the displacement the defor-
mation fields were measured using an Aramis 3D-surface digital image correlation (DIC) system.
The force-displacement curve from an uniaxial tensile test and the corresponding result from
the DIC are shown in Figure 2. The DIC results in Figure 2 are showing the largest principle
strain at four levels of deformation. The DIC measurements clearly shows an inhomogeneous
deformation field which shows a localization of the strain followed by a period of enlargement
of the necking zone until an almost uniform strain state is achieved in the neck region.
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Figure 1: The experimental set-up with the custom built tensile test machine is shown in (a).
The geometry of the specimen including the distance between the grips and the DIC measuring
zone are shown in (b).
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Figure 2: (a) is showing the force-displacement curve from an uniaxial tensile test. (b)-(d) are
showing the largest principle strains, λ, calculated from DIC at four levels of deformation.

Future work

The BPAmodel will be calibrated to the tensile tests based on the standard axial stress and strain
measurements. Deformation fields from the model will then be compared with the deformation
field obtained by the DIC measurements to further refine the parameters and develop the model.
Future modifications of the BPA model will be based on the results from small angle x-ray
scattering (SAXS) experiments, made at MAX-lab at Lund University, that will give insight
onto polymer chain orientation and alignment.
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Summary. An approach to model the out of plane behaviour of paperboard is presented together with
some general experimental characteristics. A scalar damage variable is introduced to take into account
the degradation of the material properties. A hyper elastic format is adopted with three different limit
surfaces. Simulations in a strain driven have been performed and fitted to experimental curves.
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Introduction

Paperboard is made of several layers of wood-fibers and is used as the basis material within the
packaging industry. The strive to improve the final product have during the last two decades
increased the need of computer simulations. Thus a need for more accurate models is called for.
In the present project, we aim to develop a computer model that is suitable for the creasing
and folding operations, c.f. Fig.1. In a creasing operation a male die is punched against the
paperboard causing the material to be damaged and fibers to debond. During this operation,
both delamination and micro cracking occurs. The creasing operation is done in order to preserve
the integrity of the package when the paperboard later is folded. It has been shown that the out
of plane properties, such as out of plane tension and shearing, are of importance during these
operations [1]. These properties have however not yet been entirely satisfactorily characterized.

Figure 1. Simulation of creasing operation in Abaqus



Several attempts have been made to establish models for paperboard. An excellent review on
the different aspects concerning the paperboard can be found in [2]. Due to the layered structure
of the paperboard in the manufacturing process, the paperboard have frequently been modelled
using cohesive zone elements (cf. [1],[3],[4]) together with an orthotropic elasto-plastic material
model. The modelling of the out of plane behaviour have previously been attributed to these
cohesive zones and the material model for the out of plane directions have often been calibrated
according to some apriori assumption. But due to the heterogeneous structure of paperboard,
it is not entirely obvious that the cohesive zones should be placed between the layers. In the
material model proposed herein, the effect of micro cracks is incorporated via the introduction
of a scalar damage variable.

Paperboard characteristics

The paperboard has very different behaviour in the different directions, which are denoted as
the Machine Direction (MD), Cross Direction (CD) and the out of plane direction (ZD), cf. Fig.
2 below. The failure stress is typically about 2-3 times higher in MD compared to CD and about
100 times higher than ZD.
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Figure 2. The preferred directions of the paperboard

The Poisson’s ratios between the out-of-plane direction and the in-plane direction have some
interesting characteristics. It has been shown in [5] that the (ZD) thickness increases initially as
the sample is loaded in MD/CD, i.e. the material exhibits a negative Poisson’s ratio. However,
this effect is usually very small and a good approximation (cf. [6]) is that the Poisson’s ratio
between the-out-of plane and the in-plane direction is zero.

The material shows a pressure dependency during shearing in the out-of-plane direction([5],
[7]). Moreover the shearing behaviour is significantly different when the shearing test is super-
imposed by a pressure in the ZD-direction. During the creasing operation the paperboard is
sheared in the out-of-plane direction, but also compressed in ZD. Therefore this friction like
effect needs to be accounted for in the material model.

Modelling

So far, a model based on small strains have been established. This model is currently under
development to be extended to large strains. The assumption that there is no coupling between
the in-plane and the out-of-plane behaviour is made. A hyperelastic format is proposed where
three structural tensors (N (α)

, α = {1, 2, 3}) are introduced to model the orthotropy together
with a scalar damage variable φ to model the material degradation. The potential function is
assumed to be a function of the following variables



ψ = ψ(ε− εI ,N (α)
, φ, κ

d
, κ

c
, κ

ip) (1)

where εI is the inelastic strain and κd, κc, κip are isotropic hardening variables related to different
yield surfaces. The inelastic strains are further assumed to additively decomposed into

εI = εip + εd + εc (2)

where the inelastic strain caused by micro cracks is denoted by εd above, the inelastic strain
that arises when the material is compressed in ZD is denoted εc and the in-plane inelastic strain
by εip. Three different surfaces are introduced for the evolution of the internal variables,

f
d = f

d(Y,σ,N (3)
, R), f

c = f
c(σ,N (3)

, C), f
p = f

p(σ,N (1)
,N (2)

,K) (3)

where Y is the conjugate damage force and R,C and K are hardening parameters conjugated
to κd, κc and κip, respectively.
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Figure 3. Shearing behaviour at different out of plane pressures (5 MPa, 1.7 MPa, 0.5 MPa, 0.42 MPa,
0.31 MPa and 0 MPa). Experiment curve (blue) and simulation curve (red). Experimental results taken
from [7].

Results

The out-of-plane behaviour has been modelled using the model described above. The pressure
dependent shearing behaviour has been fitted to the experiment data taken from [7]. The model
is able to capture the pressure dependent behaviour qualitatively and there is good agreement
between some of the experimental and simulated curves (5 MPa, 0.42 and 0 MPa). However,
more experimental data is needed to fully understand this behaviour.
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Summary. This talk describes the nucleation, growth and coarsening of γ′′ precipitates in Inconel 718
(IN718) during heat treatments. The model can be used in thermo-mechanical simulations of repair
welding followed by heat treatment to predict residual stresses and final microstructure in aeroengine
components. The interactions between precipitates and dislocations are included in a dislocation density
based material model.
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Introduction

The Nickel-based superalloy IN718 is a precipitate hardening alloy commonly used in aircraft
engines, power plants and gas turbines. The most important strengthening mechanism is pre-
cipitation hardening that results from around 13 vol.% of coherent ordered disk-shaped body-
centred tetragonal (BCT) γ′′ phase comprising nickel and niobium (Ni3Nb). There is also a
hardening contribution from ordered FCC γ′ precipitates (approx. 4 vol.%). It is, however,
not the dominant strengthening precipitate. The strengthening of the material depends mainly
on the size of the precipitates and the volume fraction. On the other hand, the size of the
precipitates depends on the ageing temperature and the time of a heat treatment.

The shape of the γ′′ precipitates are disc-shaped (assumed to be oblate-shaped in the fol-
lowing theory) where the aspect ratio of the precipitate changes with the size of the precipitate.
Due to the slightly difference in the minor and major axis for small precipitates, nucleation is
assumed to follow the theory for spherical precipitates whereas the growth and coarsening follow
the theory for a disc-shaped geometry. The interactions between precipitates and dislocations
are included in a dislocation density based material model. Compression tests have been per-
formed using solution annealed, fully-aged and half-aged material. Models were calibrated using
data for solution annealed and fully-aged material, and validated using data from half-aged
material.

Calculation of precipitate radii, nucleation rate and particle size distribution

One can distinguish three stages in a continuous precipitation process: 1) nucleation, 2) growth
of the nuclei until the matrix reaches its equilibrium concentration of the solute and 3) Ostwald
ripening. At least two processes may occur simultaneously, nucleation and growth or growth
and coarsening (Ostwald ripening).



Nucleation and growth

The growth rate of the average precipitate depends on two components: the growth rate of
existing particles of mean radius r̄p and the nucleation rate of new particles of the critical
nucleation radius. Thus, we can write:

dr̄p
dt

∣∣∣
n&g

=
dr̄p
dt

∣∣∣
g
− 1

N

dN

dt
(r̄p − r∗) (1)

where dr̄p/dt|g is the growth rate of the average radius of existing particles, r∗ is the critical
nucleation radius, Jn is the homogeneous nucleation rate and N is the number of precipitates.
If the nucleus is assumed to be spherical, the critical nucleation radius r∗ is:

r∗ =
1

S

2γVat
kT

=
R0

S
(2)

where γ is the matrix/precipitate interfacial energy, S is the driving force for nucleation and Vat
is the atomic volume. R0 is a thermodynamic parameter that has the dimension of length. The
nucleation rate depends on the surface area of the nucleus and the rate at which diffusion can
occur:

J0 =
dN

dt
= N0Zβ

∗ exp(−∆G∗

kT
) exp(−τ

t
) (3)

where N0 is the number of atoms per unit volume in the phase, Z is the Zeldovich factor (in the
order of 1/20 to 1/40), β∗ = (4πr∗2DC0)/a

4 and τ = 1/(2β∗Z) (an incubation time). C0 is the
initial solute mole fraction, a is the lattice parameter and D is the diffusion coefficient of solute
atoms in the matrix. ∆G∗ is the activation energy barrier for creation of new precipitates.

The rate of change of existing spherical particles assumes to grow as if they where disk-
shaped. The expression is [1]:

dr̄p
dt

∣∣∣
g

=
2qD

π

C − Ceq(r)

Cp − Ceq(r)
(4)

where Ceq(r) is the equilibrium solute concentration in the matrix next to the phase boundary
to a precipitate of radius r and q = L/h is the aspect ratio between the major axis L = 2rp and
the minor axis h of the disk respectively. The equilibrium concentration next to a precipitate of
radius r is given by the Gibbs-Thomson equation. C is the current colute balance in the matrix.

Growth and coarsening

In order to achieve transformation from a metastable single-phase state to a stable two-phase
state, second phase particles must first nucleate and then grow. Growth will continue until the
concentration of solute is in equilibrium with the two phases. Thereafter coarsening occurs;
larger precipitates will grow and smaller precipitates will disappear. In order to avoid a singu-
larity between the two states, a linear transition is applied. During coarsening we use the LSW
theory applied for disc-shape geometries [1]:

dr̄p
dt

∣∣∣
c

=
8q

27π

Ceq

Cp − Ceq

D

r̄p
R0 (5)

The corresponding rate of change in precipitate density can be written [2]:

dN

dt
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c

=
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r̄p

dr̄p
dt
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c

[
R0C

r̄p(Cp − C)

(
q

2πr̄3p
−N

)
− 3N

]
(6)

Devaux et al. [3] gives the average aspect ratio of the γ′′ precipitates, q, as a function of the
precipitate radius by comparing four different sources. It is seen that the aspect ratio of the
precipitates basically growth linearly where the growth rate, depending on their diameter, can
be collected into two groups. The change in growth rate is correlated with the loss of coherency.



Dislocation density model accounting for precipitate hardening

Plastic deformation occurs principally by shearing the atom planes, and is facilitated by the
introduction and movement of dislocations in the crystal lattice. The hardening and softening
process is associated with the interaction of the material structure, which is the lattice itself,
immobile dislocations, solutes, precipitates, defects etc. It is common to assume that they give
contributions to the macroscopic flow stress by using expressions similar to:

σy = σG + σ∗ + σp + . . . (7)

where σy is the flow (yield) stress, σG is an athermal stress due to long-range disturbances of the
lattice due to immobile dislocations, σ∗ is the short-range interaction and is the stress needed
to move dislocations past short-range obstacles, σp results from the additions stress required to
move dislocations around or through precipitate and solutes. The dots tells that there may be
other contributions.

The long-range term in Eq. (7) is an athermal stress contribution, which means that it is
independent of temperature, i.e. thermal vibrations cannot assist dislocations in overcoming
disturbances in the lattice. It is written:

σG = αGb
√
ρi (8)

where ρi is the effective immobile (forest) dislocation density within the microstructure of the
material during deformation, b is the Burgers vector, G is the shear modulus and M is the
Taylor factor. The factor α is a proportionality factor measuring the efficiency of dislocation
strengthening.

The second term in Eq. (7) is the stress needed to move dislocations past short-range
obstacles. It is based on the energy (Gibbs free energy) needed for a particle to overcome an
obstacle taking atomic thermal vibrations into account. It can be written as [4]:

σ∗ = τ0G

(
1−

(
kT

∆f0Gb3
ln

(
˙̄εref
˙̄εp

))1/q
)1/p

(9)

where the quantity τ0 is depending on the strength of the obstacle (dimensionless), ∆f0 is a
calibration constant, ˙̄εref is a reference strain rate and p and q are calibration constants. The
conditions for the exponents can be found in Lindgren et al. [4].

The last term in Eq. (7) describes the flow stress contribution due to precipitates. Precipi-
tates, or second-phase particles, commonly act as geometric barriers to dislocation glide. If all
the particles are sheared, it is possible to model the strengthening contribution as [2]:

σshear ∝
√
fp (10)

where G is shear modulus and fp is the particle volume fraction. For large precipitates, it is
assumed that dislocations bow around rather than shear through the particles. Ignoring the
strain hardening, the stress contribution due to bowing can be modelled as [2]:

σbow ∝
√
fp

r̄p
(11)

Results

The relation between the precipitate size and the addition of strengthening described earlier
makes it possible to calculate the yield stress for different ageing times. This - the dislocation
density model accounting for precipitate hardening and the nucleation growth and coarsening
- can be applied in an incremental fashion, which is applicable in a finite element code. The



model consists of relations that describe the precipitate evolution needed in the dislocation
density model according to the summary given in the previous section. The model is calibrated
using compression test data at 400 ◦C and 600 ◦C for two strain rates and two states; fully-aged
and solution annealed.

Figure a) shows the computational results of the particle diameter, L, height, h, and volume
fraction, fp. The results from the precipitate evolution are compared with experiments taken
from journal articles. All experiments are carried out at a temperature of 750 ◦C. Figure b)
shows measured (smoothed) and computed stress strain curves for fully-aged (heat treated for 5
h at 760 ◦C), half-age (heat treated for 30 min at 760 ◦C) and solution annealed IN718 material.
The line correspond to calculated values and the symbols are measured values.
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(a) Evolution of particle diameter, particle height and
particle volume fraction. Computational results (full
line) are compared with experiments (marks).

	   (b) Computed stress strain curves at 600 ◦C.

Conclusions

In this work, it is shown that a dislocation density based flow stress model can account for
precipitate hardening. Considering the simplifications that are necessary, the material model
shows good agreement with experimental measurements and is expected to be fit for its purpose;
thermo-mechanical simulation of the ageing process in IN718.
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Summary. Lateral vibration of rotating machines can be significantly reduced if damping 
devices are added to the constraint elements coupling the rotor and its casing. To achieve their 
optimum performance their damping effect must be controllable. The proposed constraint 
element is equipped with an electric coil generating magnetic field. It works on the principle of 
squeezing two concentric films formed by normal and magnetorheological oils. As the flow of 
the magnetorheological liquid depends on magnetic induction, the change of electric current can 
be used to control the damping force. The computational simulations proved that the proposed 
constraint element enabled to minimize the rotor vibration in the whole extent of the running 
velocities in contrast to application of normal (uncontrollable) squeeze film dampers frequently 
used to vibration reduction of rotating machines. 

Key words: flexible rotors, passing critical speed, magnetorheological damping element 

Introduction 

A common technological solution of reducing lateral vibration of 
rotors excited by imbalance forces is placing damping devices 
between the rotor and its casing. To achieve their optimum 
performance their damping effect must be controllable. 

For this purpose a concept of a new damping element has been 
proposed [1]. In fact, it represents a combination of classical and 
magnetorheological squeeze film dampers (figure 1). As resistance 
against the flow of magnetorheological fluid depends on magnetic 
induction, the change of electric current generating magnetic flux can 
be used to control the damping force.  

Efficiency of the proposed controllable constraint element was 
evaluated by comparing its performance with those of classical 
squeeze film dampers which are frequently used for reducing 
vibrations of rotating machines. 

 
Figure 1. 



Mathematical model of the proposed constraint element 

It is assumed in the developed mathematical model of the proposed constraint element that its 
geometry and design make it possible to consider it as short and that it is symmetric relative to 
its middle plane. The pressure distribution in the lubricating layers is governed by Reynolds 
equations [2], [3]. The one referred to the magnetorheological oil (2) has been modified for 
Bingham material which was used to represent the magnetorheological lubricant 
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hCO, hMR denote the thicknesses of the films of classical and magnetorheological oils [2], pCO  
denotes the pressure in the layer of the normal oil, η is its dynamic viscosity, MRMR  denote 
the pressure and the pressure gradient in the axial direction in the layer of magnetorheological 
fluid, ηB is the Bingham dynamical viscosity, τy represents the yield shear stress, Z is the axial 
coordinate and (.) denotes the first derivative with respect to time. More details on solving 
equation (2) can be found in [3]. 
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In the simplest design case the magnetorheological part of the proposed constraint element, 
can be considered as a divided core of an electromagnet. Then the dependence of the yield shear 
stress on magnetic induction can be approximately expressed 
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ky and ny are material constants of the magnetorheological liquid, NC is the number the coil turns 
and I is the electric current. 

In areas in the lubricating films where the pressure drops to a critical level a cavitation 
occurs. In the developed mathematical model it is assumed that pressure in cavitated regions 
remains constant and equal to the pressure in the ambient space. Components of the damping 
force are then calculated by integration of the pressure distributions in both lubricating films 
around the circumference and along the length of the constraint element. 

The classical squeeze film damper produce damping in one lubricating layer formed by 
normal oil. Its mathematical model and the procedure for determination of the damping force is 
analogous to those of the proposed constraint element.  

Computational simulations 

The investigated rotor is flexible with one disc (figure 2). It turns at variable angular speed and 
is loaded by its weight and by the disc unblance. The rotor is supported at both its ends: in the 
first design variant by normal squeeze film dampers, in the second variant by the proposed 
constraint elements. In both cases the squirrels prings are prestressed to be eliminated their 
deflection caused by the weight of the rotor. 

In the computational model the rotor was represented by a Jeffcott one and the constraint 
elements by springs and force couplings. The task was to analyse the rotor vibration during its 
acceleration to study efficiency of the proposed constraint device. 
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 Figure 2.  Figure 3. 

Vibration of the investigated rotor system is governed by a set of four nonlinear differential 
equations of the first and second order 

  (4) ϑϑϑϑ sincos2 &&&&&& TTBSSP memeykykybym +++−−=

  (5) mgmemezkzkzbzm TTBSSP −−++−−= ϑϑϑϑ cossin2 &&&&&&

 ( ) dyBBSS Fykkyk 220 ++−=  (6) 

 ( ) dzBBSS Fzkkzk 220 ++−=  (7) 

m is the disc mass, kS is stiffness of the shaft, kB is stiffness of each squirrel spring, bP is the 
coefficient of the disc external damping, eT is eccentricity of the disc centre of gravity, g is the 
gravity acceleration, y, z, yB, zB are displacements of the disc and shaft journal centres in the 
horizontal and vertical directions, ϑ is the angle of the disc rotation, Fdy, Fdz are the y and z 
components of the damping force and (..) denotes the second derivative with respect to time. 

Time histories of lateral displacements of the disc centre for three constant magnitudes of 
the applied current are depicted in figure 4. The results show that for lower angular velocities of 
the rotor rotation higher current arrives at reducing amplitude of the rotor vibration and this 
reduction is significant especially in the resonance area. But in the interval of higher angular 
speeds increasing current leads to rising the vibration amplitude. This implies that a suitable 
control of the applied current according to angular velocity of the rotor rotation makes it 
possible to minimize amplitude of the rotor vibration in the whole extent of its running speeds. 
Time history of the disc centre displacement in the horizontal direction drawn in figure 6 
correspond to the current control carried out according to the diagram in figure 5.  
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 Figure 4.  Figure 5.  Figure 6. 



To study efficiency of the proposed constraint element its performance was compared with 
performance of three variants of normal squeeze film dampers whose design solution differ in 
the width of the clearance (100 μm, 200 μm, 300 μm) which determines magnitude of the 
damping force. The results are summarized in figure 7. It is evident that in all cases the 
proposed controllable constraint device attenuates the rotor vibration more efficiently and 
suppresses significantly the resonance peaks. 
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Figure 7. 

Conclusions 

The proposed constraint element attenuates the rotor lateral vibration due to squeezeing the 
films of normal and magnetorheological oils. It is equipped with an electric coil generating 
magnetic flux passing through the layer of magnetorheological lubricant and as its flow depends 
on magnetic induction the change of electric current makes it possible to control the damping 
force. The carried out computer simulations showed that its properties were strongly nonlinear. 
They confirmed that if the damping force was suitably adapted to the rotor angular speed its 
vibration could be minimized in the whole extent of the running velocities in contrast to 
application of commonly used classical (uncontrollable) squeeze film dampers. Advantage of 
the proposed constraint element is that it does not require an expensive and complicated control 
system for its operation. Its magnetorheological part works as an auxiliary damping device 
which can be switched on only if required by the operating conditions. This enables to simplify 
the design solution of the proposed constraint element and to reach its lower consumption of 
magnetorheological oil. 

This work was supported by the research projects P101/10/0209 and MSM 6198910027. 
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Summary. It is shown how the procedure know as optimal brain surgeon can be used to trim and op-
timize artificial neural networks in nonlinear structural dynamics. Beside optimizing the neural network,
and thereby minimizing computational cost in simulation, the surgery procedure can also serve as a quick
input parameter study based on one simulation only.

Key words: Nonlinear structural dynamics, Artificial neural networks, Optimal brain surgeon.

Introduction

Time domain simulation of nonlinear systems using finite element method (FEM) analysis can
be computationally very expensive. One method that have shown to be very time saving is the
use of artificial neural networks (ANN). In the literature it has been shown on various types
of structures how this method can reduce calculation time by up to two orders of magnitude
[1, 2]. However, a major problem with this method is the difficulty of developing a robust
algorithm that automatically generates an optimized ANN for a given structure. In this paper
it is shown how a trained ANN can be further optimized and reduced in size by the procedure
known as optimal brain surgeon (OBS). This procedure prunes the least salient network weights
in an ANN. Besides trimming the network this operation can be used as a quick ranking of
the importance of the various inputs that go into the analysis. Dynamic response of structures
often depends on several external loads. By applying the OBS procedure to a trained ANN it
is possible to determine which of these external force components that play the least significant
role and also evaluate if one or more components can be ignored completely in the analysis.
Hence, the OBS procedure can serve as an input parameter study based on one simulation only.

Artificial neural networks and optimal brain surgeon

Artificial neural networks are in principal mathematical models that replicate the human brain’s
impressive ability to do high speed pattern recognition. They serve as tools which perform
nonlinear mapping between a given input and a corresponding output without time consuming
equilibrium iterations. There exists vast literature on the fundamentals of neural networks and
the philosophy behind. Since the ANN is not the main object in this paper it will be left to the
reader to consuls e.g. [3] for further information on that topic. Here it will just be mentioned
that an ANN with one input layer, one hidden layer with tangent hyperbolic as activation
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Figure 1. Left: ANN with one hidden layer. Right: Model of cantilevered beam.

function and a liner output layer as sketched in the left part of figure 1 is used in the following
study.

OBS is a procedure that prunes the least salient network weights in a trained ANN. When
training an ANN the first derivative of the error function is used to find the direction in which
to step in weight space in order to minimize the error. The OBS procedure uses the second
derivative to find the curvature of the error function in weight space. That information can be
used to arrange all network weights and to find out which weight is least salient and thereby
’cheapest’ to delete [4]. The saliency of a weight q is calculated by

Lq =
1

2

w
2
q

[H−1]qq
, (1)

where H−1 is the inverse of the Hessian matrix (H ≡ ∂
2
E/∂w2) containing all second order

derivatives. Having found the least salient weight we can update the rest of the weights using

δw = − wq

[H−1]qq
H−1 · eq, (2)

where eq is the unit vector in weight space. The inverse Hessian is calculated directly using
a slightly modified version of the Sherman-Morrison formula (3) and a single sequential pass
through the training data 1 ≤ m ≤ P .

H−1
m+1 = H−1

m − H−1
m Xm+1 ·XT

m+1 ·H−
m1

P +XT
m+1H

−1
m Xm+1

, (3)

where P is the number of training data sets.
So the procedure is to take a network that has been trained to a local minimum, calculate

H−1 using (3), find the network weight that gives the smallest saliency using (1), and determine
the adjustment of the network weights (2). This procedure can in principal be repeated until all
weights are deleted. However, after each deletion of the cheapest weight one can evaluate the
increase in error and see if it exceeds an acceptable level. In that case the procedure must be
stopped.

Structural model

To demonstrate the OBS method a 3D FEM model of a cantilevered beam is set up. The
beam has the properties listed in table 1 and is shown to the right in figure 1. The model uses
the co-rotational beam element formulation as described in [5]. Hence, it is a nonlinear model
able to handle large rotations and deflections. The beam model is divided into five elements of
equal length and is damped through Rayleigh damping. The beam is subject to two stochastic
load histories working in two different directions at the beam tip. The two load histories are



l E Iy Iz A ρ

10 m 1 · 105 MPa 1 · 104 mm
4 1 · 105 mm

4 1 · 105 mm
2 1 · 105 kg/m

3

Table 1. Beam properties

different but have equal characteristics in terms of mean value, standard deviation and dominant
frequency. The load has a mean of 2.7 kN with a standard deviation of 0.3 kN and a dominating
frequency around 0.7 Hz. The response of the beam is calculated by Newmark’s method of
direct integration. The Newton-Raphson method is used to achieve force equilibrium in each
time step, i.e. to update system matrices in accordance with the procedures described in [5].
Time step size is 0.1 sec. and equilibrium is assumed when force and displacement residuals are
below 1× 10−6.

Data generated by the FEM is used to train an ANN to predict the horizontal response
yt(t) of the beam tip. A 400 sec. simulated response history is divided into 3 sets. The first
set is used for training the ANN, the second set is used for testing and the last set is saved to
demonstrate the accuracy of the pruned ANN on new data. The ANN has 40 neurons in the
hidden layer and 13 neurons in the input layer. The network input vector consists of the four
previous time steps of the tip response and the two loads, as indicated in figure 1. This gives a
[13 × 40] weight matrix Wi between input and hidden layer and a [40 × 1] weight matrix Wo

between hidden and output layer.
One step in the OBS procedure is to evaluate the network error each time a network weight

is deleted. Depending on the structure and the type of analysis carried out one must decide
an error increase tolerance for when to stop the deletion of weights. Figure 2 shows how the
network error increases with the number of deleted weights. It is seen that it is possible to delete
about half the weights without increasing the network error considerably.
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Figure 2. Test error vs. number of pruned weights.

Figure 3 shows response histories calculated by the FEM model and the pruned ANN. It is
seen that even though almost half of the network connections have been deleted the ANN still
predicts the horizontal deflection very accurately. Note that the ANN in this case simulates
about two orders of magnitude faster than the FEM. If we examine the input weight matrix Wi

containing all connection weights between the input layer and the hidden layer it is possible to
do some interpretation of the importance of the input variables.

As the procedure deletes the least important weights and since the loads on the beam are
arranged in the network input vector it is possible to evaluate the importance of the loads and
whether one or more inputs can be neglected. The pruned weight matrix Wi,prune is written
below. As actual values of individual weights are unimportant for this evaluation of the pruned
matrix positive and negative weights are marked by +/− while deleted weights are denoted 0. It
is seen that the load in the z−direction is almost completely ruled out by the OBS and thereby
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Figure 3. Comparison of calculated response after pruning of 250 network weights.

possibly can be completely neglected in the response simulation. This is as one intuitively would
expect since fz works vertically and the analysis considers the horizontal deflection.

It should be noted that two runs with the OBS procedure will not give identical pruned
weight matrices. This is due to the fact that the ANN is initiated with random weights before
training. However, the simulation will still be as accurate as the one shown in figure 3 and the
conclusions drawn from the interpretation of Wi,pruned will be the same despite some minor
changes in the matrix.
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fz
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Wi,pruned
⇒ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 + - + + 0 0 0 + - + - 0 0 - 0 - 0 - 0 + 0 0 + + 0 0 0 0 0 0 + - 0 + + +

0 + 0 0 0 + + 0 + 0 0 0 0 0 + + 0 + - 0 0 0 + + - 0 - 0 0 0 0 0 + 0 - - 0 - + 0










yt
0 - + 0 0 - - - - 0 0 0 + - - - 0 - + + 0 + - - + 0 + 0 0 0 0 0 - 0 + + - + - -

0 + 0 0 + + + + + 0 0 + - + + + 0 + - - - - + + - 0 - + 0 0 + 0 + - - - + - + +

+ - + - - - - - - - - - + - - - - - + + + + - - + + + - - + - - - + + + - + - -

0 - 0 0 0 - - 0 - 0 0 0 0 0 - - 0 - 0 0 0 0 - - + 0 + 0 0 0 0 0 - 0 + + - + 0 0

}

Bias

Concluding remarks

The example presented in this paper demonstrates that an trained ANN can be trimmed and
reduced considerably in size by the OBS procedure. The above analysis was carried out on a
very simple structure and with simple load patterns. However, it may be possible to use this
method on more complex structures subject to more complicated loads. In that case the OBS
procedure can serve as a quick input parameter study that can help reducing the computational
cost on nonlinear simulations.
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Summary.  

An exact analytical solution to the Euler-Bernoulli beam on a partial elastic foundation 

is presented. The solution is based on a Rayleigh-Ritz approach and the displacement 

assumption is taken as a Fourier sine series. The model evades complex time consuming FE 

modeling and is more accurate than the simple semi-empirical formulae of Fyrileiv & Mørk [1]. 

The methodology is easily implemented and determines static and harmonic response with 

excellent accuracy. Compared to the solution of Fyrileiv & Mørk [1], accuracy is increased and 

the range of applicability is extended. The solution is validated based on comparisons to 

detailed FE analyses. 

Introduction 

A      B 

 
Figure 1 – Panel A: Typical pipeline free span configuration. Panel B: Free span modeling and 

nomenclature 

Fig. 1 displays a typical pipeline free span scenario. In Panel A, the gap e is the distance 

between bottom of pipe and the seabed. The length is termed Ls. The total effective mass me is 

used for dynamic analyses and taken as the sum of the dry and the added mass. In Panel B, the 

static vertical displacement δ is the static displacement at mid span due to submerged weight 

and the effective axial force. For the purpose of this paper, the pipe-soil interaction will be 

modeled according to DNV-RP-F105 [2], applying linear soil stiffness, given as ksoil in Panel B. 

The effective axial force for an axially constrained pipe Seff,i , Ref. [3], is defined as: 
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In Eq (1), Heff is the residual lay tension, Δpi is the internal pressure difference relative 

to laying, Ai is the internal area of the pipe cross-section, As is the steel cross-sectional area, E is 

the Young’s modulus, ΔT is the temperature difference relative to laying and α is the 

temperature expansion coefficient.  

Methodology 

Three solutions are necessary to generate in order to determine the harmonic response of free 

spans: 

1. A solution for the static equilibrium case where the pipe is subject to its submerged 

weight q and effective axial force Seff. 

2. A solution to determine the Eigen-frequencies, later referred to simply as frequencies, 

and associated Eigen-modes, later referred to as mode shapes, for the linearized 

harmonic Eigen-value problem in in-line direction subject to pipe effective mass me and 

effective axial force in equilibrium configuration Seff. 

3. A solution to determine frequencies and mode shapes for the linearized harmonic 

Eigen-value problem in cross-flow direction, accounting for the stiffening effect of 

vertical static displacement, effective mass me and effective axial force in equilibrium 

configuration Seff.  

The equilibrium effective axial force is calculated according to Eq. (2) below, where the 

axial strain caused by static deformation is estimated: 

 

In Eq. (2), Seff,i is the initial effective axial force prior to application of static loading and 

vs is the vertical static displacement. In a curvilinear coordinate system, the only non-zero strain 

component is the tangential strain εtt given by, Ref. Tarnopolskaya [4]: 

 

where the unknown displacements u0 and v0 are the tangential and the normal 

displacements, respectively, of a point on the centroidal axis. From Eq. (3) the following 

differential operator can be determined: 

 

Based on a Fourier sine approximation to u0 and v0, and assumed linear soil stiffness parameters, 

the expressions for the displacements, stiffness and mass matrices become: 
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Results 

20 representative cases were selected and compared between the presented analytical 

solution and FE modeling using PIPE31 elements in ABAQUS. Static sag, equilibrium effective 

axial force, modal frequencies for three modes in-line and three modes cross-flow, and 

corresponding modal stresses were compared for all 20 cases. Relative differences between 

ABAQUS results and the analytical model presented herein were less than 1% for all compared 

parameters and all cases. Based on the comparisons to FE-analyses, the semi-analytical model is 

considered verified and accurate. 

Comparing results for the semi-empirical model of Fyrileiv & Mørk [1], comparisons for the 

fundamental frequency and associated modal stresses are presented for one representative case: 

 

 

Figure 4 – Comparisons between semi-analytical solutions and the semi-empirical formulae of 

Fyrileiv & Mørk for fundamental frequencies and associated modal stresses 
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From Fig. 4 it is observed that the in-line fundamental frequency calculated by the two 

methodologies constitutes a substantial match. The biggest relative difference between the two 

methodologies is 4.6%, with relative differences increasing for increasing L/D. Consequently, 

the semi-empirical model gives excellent predictions for in-line fundamental frequencies also 

for L/D > 140 in the present example. For L/D < 100, the semi-empirical model predicts 

frequencies very accurately but for increasing L/D it underestimates frequencies cross-flow. The 

largest relative difference between the models is 24.9%, but limited to 7.1% if L/D < 140. There 

are two reasons why the cross-flow frequency is less accurately predicted by the semi-empirical 

method than the in-line frequency. Firstly, the sag correction in the semi-empirical model is 

only approximate. The second reason may be observed for relative length 225. For this length, 

the present example yields a static mid-span deflection of 5D. For large vertical static 

deflections, the stiffening effect introduced by the static deformation configuration suppresses 

the first symmetric cross-flow mode, and the first anti-symmetric mode achieves the lower 

frequency. 

The maximum relative differences for unit diameter stress amplitudes in-line and cross-

flow, disregarding L/D > 225 cross-flow, is 43% in-line and 50.7% cross-flow. If L/D < 140, 

these relative differences decrease to 5.4% in-line and 14.7% cross-flow. Consequently, the 

analytical model of Fyrileiv & Mørk is more accurate for estimating frequencies compared to 

modal stresses. 

Conclusions 

 The semi-analytical methodology developed in this paper is accurate to within 1% 

deviation compared to detailed FE analyses, regardless of free span lengths, level of 

effective axial force and static deformation configuration. 

 Euler-Bernoulli beam theory is sufficient with regard to pipeline free span modeling, 

since shear deformation has been shown not to influence the static and dynamic 

response behavior. 

 The semi-analytical model is more than 600 times faster than typical detailed FE 

analyses with no loss of accuracy. 

 Compared to the semi-empirical method developed by Fyrileiv & Mørk, the semi-

analytical model developed in this paper has better accuracy, particularly on modal 

stresses, and no limitations on range of validity. 
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Summary. An analytical stiffness and eigenfrequency model of symmetric parallel 6-6 Stewart 

platforms (hexapods) is developed based on geometrical design variables to optimize the 

dynamical performance. The model is based upon Lagrangean dynamics in which the Bryant 

angles are used for the kinematics formulation. With the analytical eigenfrequency model, 

optimum stiffness characteristics can be obtained for any industrial application with limited 

workspace such as optical collimation systems. The actuator length-flexibility dependency is 

also considered in the analytical model. It is proposed that to increase the actuation bandwidth 

in six degrees of freedom, an eigenfrequency cost function can be defined and optimized. 

 

Key words: Gough Stewart platform, hexapod, analytical, stiffness, eigenfrequency, telescope 

Introduction 

Cassegrain-type [1] large optical telescopes for astronomy have two mirrors; the secondary 

mirror (M2) is the optical element which reflects the light collected by the primary mirror (M1) 

to the scientific instrument (figure 1). Active collimation of M2 corrects image-quality defects 

due to structure deformations caused by gravity and thermal variations. Due to the tracking 

velocity of optical telescopes, the bandwidth required is approximately 0.01 Hz [2]. The image-

quality of a stable telescope with a well-figured M1 surface and well-collimated M2 is limited 

by the atmospheric disturbances. Further improvement of the image-quality requires correction 

of at least first-order defects due to the atmospheric disturbances as well as errors caused by 

telescope structural vibrations. Such first-order defects of atmospheric disturbances can be 

compensated by tilting M2 with a sufficient high bandwidth. In practice, tilting is responsible 

for a major part of the image degradation caused by the atmosphere. Given the importance of 

tilting, major improvements of observed image-quality can be achieved through two-axes 

rotations (tip-tilt), first-order compensatory movements of M2 [3]. Successful operation requires 

a very stiff yet light-weight system including the active mechanism, M2 and its support 

structure. The tip-tilt movements are controlled with a bandwidth of at least 10 Hz, in closed-
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loop mode via an optical sensor. The corresponding angular range should be several arcsec. The 

system will, in addition to effects of atmospheric disturbances, correct for image degradation 

due to structural vibrations caused by wind buffeting. Mainly due to precision and stiffness 

requirements for the collimation system of M2, high-precision hexapods can be used in large 

telescopes [4]. For further improvements of image-quality, a stiff high-bandwidth hexapod can 

provide three additional useful degrees of freedom (decentering in two axes and focusing) 

compared with only using tip-tilt.  
 

 
 

Figure 1. Model of a Cassegrain-type large optical telescope 

 

Hexapods have attracted the attention of researchers and designers since the time it was first 

introduced by Stewart in 1965. A hexapod is the minimum arrangement of a parallel robot to 

provide six degrees of freedom. Hexapods are also known as Stewart platforms or Gough-

Stewart platforms which have a wide range of precision engineering applications such as in 

machining technology, astronomical telescopes and surgical robots [5]. Parallel robots in 

general and hexapods in particular have some advantages over serial robots. Among these 

advantages, for the large optical telescope application which is the interest of this paper, 

precision and stiffness are of great importance. Much research has been carried out on the 

kinematics of hexapods, but few on stiffness [6,7]. The stiffness matrix can be obtained using 

Jacobian matrix methods or as a product of force and deformation related matrices [8]. The 

stiffness matrix can also be assembled from the linearization of the equations of motion. There 

are some studies about the workspace evaluation based on stiffness [9]. H. Jiang [10,11] 

calculates the eigenfrequencies and studies geometric conditions leading to equal 

eigenfrequencies, however, the length-flexibility dependency and optimum geometries using an 

eigenfrequency cost function remain to be evaluated. 

This abstract introduces an analytical eigenfrequency model for hexapods, based on the 

geometrical design variables to optimize the geometry restricted by eigenmodal requirements. 

Geometrical variables of hexapods are important, especially in the telescope applications where 

the workspace is quite limited. Therefore, to increase the actuation bandwidth and precision for 

all six degrees of freedom, which are limited by the eigenfrequencies of any system, 

optimization of the hexapod geometry is a key objective.  

Secondary mirror  

Primary mirror  

Scientific Instrument 



Stiffness and eigenfrequency Modeling 

 
In the present study, formulation of the stiffness model of hexapods starts with solving the 

reverse kinematics of the system. Reverse kinematics means obtaining the length of each 

actuator with a given configuration of the platform (figure 2). The kinematics is formulated 

using a general geometry of symmetric hexapods. There are totally 12 nodes on the planar base 

(figure 2) and the planar platform where the actuator ends are attached with spherical joints. All 

the joint nodes of each platform are located on a circle with an arrangement leading to three 

pairs of actuators with 120 degrees axial symmetry in the neutral configuration. The base and 

the platform are considered rigid but the actuators are flexible elements without mass. The 

geometrical design variables are; the ratio of the base and platform radii, the ratio of the height 

of the hexapod over the base radius, and the angles between the nearest two nodes on each 

platform.  

 
 

 

 

 

 

 

 

Figure 2. A general symmetric 6-6 Stewart platform 
 

 By assuming small angles, which is the case in vibrations, the choice of Bryant angles for 

the rotation matrix leads to a very simple formulation for the angular velocity and it is shown 

that these angles are decoupled for all six eigenmodes of symmetric hexapods. In addition to the 

simplicity of equations, the nonsingularity for small angles is an advantage of the Bryant angles.  

 The equations of motion of the system are solved with the Lagrangean dynamics approach. 

Stiffness modeling is based on two generalized coordinate systems, Cartesian and length 

coordinates. Analytical Stiffness and mass matrices for both coordinate systems are developed. 

Furthermore, the analytical eigenfrequencies of the system as well as the eigenmodes are 

formulated based on the geometric design variables.  

To avoid optimum results on the boundary of the design variables domain and to consider 

stiffness practicalities, the flexibility of each actuator is assumed to be proportional to its length 

in the neutral configuration. This realistic approach leads to analytical optimum values for each 

design variable based on the requirements of the system dynamical performance.  

To reduce the system of six equations for each eigenfrequency, an eigenfrequency cost 

function is defined which is driven mainly by the minimum eigenfrequency. The method 

presented is an analytical approach to design an optimal hexapod with the maximum dynamical 

performance. 



Conclusion 

In the present work, an analytical eigenfrequency model of a general symmetric hexapod is 

formulated based on geometrical design variables for optimizing stiffness of limited workspace 

applications such as in large optical telescopes. High-precision hexapods can be used as an 

active mechanism for large telescopes to collimate mirrors against gravity and temperature in 

low bandwidth, and to improve the image-quality by compensating for structural vibrations and 

atmospheric disturbances in high bandwidth. The stiffness model is based on the equations of 

motion, using Lagrangean dynamics. To avoid singularity and to have simpler eigenfrequency 

equations, Bryant angles have been chosen for the generalized kinematic modeling. It is 

suggested that to increase the actuation bandwidth of such a system, an eigenfrequency cost 

function can be defined and optimized to avoid resonances in six degrees of freedom. It is also 

concluded that, considering the actuators length-flexibility dependency, more realistic optimum 

results can be obtained. 

References 

[1] Torben Andersen, Anita Enmark, Integrated Modeling of Telescopes, Springer 

New York, 2011. 

[2] Pierre Y. Bely, The Design and Construction of Large Optical Telescopes, 

Springer, 2003 

[3] Roddier, Francois; Northcott, Malcolm; Graves, J. Elon, A simple low-order 

adaptive optics system for near-infrared applications, Astronomical Society of the 

Pacific, 103:131-149, 1991.  

[4] P. Schipani, L. Marty, Stewart platform kinematics and secondary mirror 

aberration control, Optomechanical Technologies for Astronomy, 62733B, 2006. 

[5] Y. D. Patel, P. M. George, Parallel Manipulators Applications-A Survey, Modern 

Mechanical Engineering, 1(1): 57-64, 2012. 

[6] Bhaskar Dasguptaa, T.S. Mruthyunjaya, The Stewart platform manipulator: a 

review, Mechanism and Machine Theory, 35:15-40, 2000. 

[7] J. Chen, F. Lan, Instantaneous stiffness analysis and simulation for hexapod 

machines, Simulation Modelling Practice and Theory, 16:419-428, 2008.  

[8] Jokin Aginaga, Isidro Zabalza, Oscar Altuzarra, Jasiel Nájera, Improving static 

stiffness of the parallel manipulator using inverse singularities, Robotics and 

Computer-Integrated Manufacturing, 28(4):458-471, 2012. 

[9] V.T. Portman, V.S. Chapsky, Y. Shneor, Workspace of parallel kinematics 

machines with minimum stiffness limits: Collinear stiffness value based approach, 

Mechanism and Machine Theory, 49:67-86, 2012. 

[10] Hong-Zhou Jiang, Jing-Feng He, Zhi-Zhong Tong, Characteristics analysis of joint 

space inverse mass matrix for the optimal design of a 6-DOF parallel manipulator, 

Mechanism and Machine Theory, 45(5): 722-739, 2010. 

[11] Hong-zhou Jiang, Jing-feng He, Zhi-zhong Tong, Wei Wang, Dynamic isotropic 

design for modified Gough–Stewart platforms lying on a pair of circular 

hyperboloids, Mechanism and Machine Theory, 46(9):1301-1315, 2011 



Proceedings of the 25th Nordic Seminar on Computational Mechanics  
K. Persson, J.Revstedt, G. Sandberg, M. Wallin (Eds.)        
© Lund University, 2012                                                                                                                                                   

An analytical approach to solving the rigid sliding 
rod on the smooth walls  

Ali Mohammadi1, Mohammadhassan Mohammadi2 

 

(1) Young Researchers Club, Shiraz Branch, Islamic Azad University, Shiraz, Iran, 
Email: amohammadi@iaushiraz.ac.ir 
(2) Young Researchers Club, Shiraz Branch, Islamic Azad University, Shiraz, Iran, 
Email: mohmoh@kth.se 

 

SummarySummarySummarySummary. This paper applies He’s max-min method to solve analytically the nonlinear 
equations arising the motion of a rigid sliding rod on the smooth walls. Study of a dynamical 
system with high nonlinearity and under periodic forcing is 
one of the most important problems of nonlinear science. Therefore, an analytical approach for 
such problems could be interesting. Max- Min technique as a promising tool for solving 
nonlinear equations is employed and to show the efficiency and accuracy of the method a 
comparison is made with numerical solution developed by authors. Finally, it is shown that this 
method can simply be used in the same way for other problems in nonlinear dynamics and 
vibration 
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Summary. Pressurized thin membranes are frequently encountered in engineering and medical con-
texts. Membranes subjected to pneumatic pressurization respond by changing volume and internal over-
pressure, and can exhibit different instability conditions. The response is significantly dependent on
parameters for the loading, geometry and material. We used generalized equilibrium path and surface
evaluation algorithms to describe and investigate the parameter dependence in different response aspects.
We describe the algorithmic setting, but also give some aspects of quasi-static instability for pneumatically
pressurized thin membranes. Two examples are used to illustrate the methodology and the obtainable
results.

Key words: Thin membranes, Pneumatic pressurization, Multi-parametric setting, Instability

Introduction and formulation

A large variety of thin three dimensional pressurized structures are studied in engineering and
medical contexts. In the present work, pneumatically loaded balloon-like structures were consid-
ered, with simulations based purely on the membrane behavior. Only quasi-static surface-normal
pressure loads were present, demanding that any combination of pressure and volume can be
immediately introduced, without dynamic or thermal effects. It was assumed that the pressure
came from a compressible medium with negligible density. A hyper-elastic flat triangular mem-
brane element in a total Lagrangian (‘TL’) reference frame was used for the large displacement
analysis. The element is based on the common ‘CST’ (constant strain triangle), but includes full
non-linear strain components, is restricted to local in-plane stresses, and assumes incompressibil-
ity. The pressure loading on a deformed geometry demands some consideration of the tangential
stiffness matrix, used both in equilibrium iterations and as a quantitative stability indicator of
equilibrium states. This tangential stiffness matrix is symmetric for a suitably closed structure,
even if the element contributions are non-symmetric.

One main focus of the present work was the detailed phenomenological description of quasi-
static structural instabilities. Evaluations of these are useful tools for understanding the behavior
of many structures, particularly as they are often the attractors of dynamic response. The
simulations demand methods for finding all occurring critical equilibrium states. This is thereby
based on the diagonalization of the tangential stiffness matrix of the discretized problem, showing
the principal stiffness directions and values.

The instability investigations of any class of optimized structures demand elaborate solution
methods. Previous papers have described generalized path-following methods for non-linear
quasi-static discretized structural problems. The methods thereby make possible the calculation
of more general paths, e.g., the parameter dependence in different aspects of structural response:
deflections, stresses, critical loads, et cetera. The term parameter dependence also implies that



these go beyond sensitivity investigations, but rather consider finite length deviations. The
generalized equilibrium paths and surfaces allow the evaluation of these parameter dependent
aspects in a systematic manner, giving important information on the generic behavior variations
of a basic structure. The present work has focused on the dependence of the criticality (maximum
and minimum pressures during inflation) on the constitutive constants in the Mooney-Rivlin
hyper-elastic material model, on the criticality seen as related to either the pressure or the
injected amount of gas, and on the effects of pre-stressing the membrane before pressurization,
but also other types of parameterizations are used for illustration purposes.

The present work thereby discusses the numerical treatment of pneumatically pressurized
membranes under different internal and ambient conditions. The details of a numerical finite
element model are given in [1], and the path-following methods are discussed in [2, 3, 4, and
further references therin].

Numerical demonstration

A finite element model of an inflated spherical membrane is used as the main numerical example,
with variations of parameters for the membrane itself and the environment as the main objective.
The necessary terms are, however, first introduced and described for a pre-stretched circular
membrane.

Although essentially a one-dimensional problem, in order to see the behavior of the algo-
rithms in a more general context, a detailed 5120 element model was used for the spherical
membrane of radius r = 10mm, thickness t = 0.1mm, and shear modulus µ = 0.4225MPa. A
temperature Tc = 20 ◦C and an ambient pressure ψ0 = 100 kPa was assumed at initial inflation.

Basic tests introduced different ratios k = c2/c1 for the constitutive coefficients in the
Mooney-Rivlin model. Pressure-expansion curves were evaluated for different k, Fig. 1(a), with
non-linear response and critical states. Starting from equilibrium solutions B and C on the path
for k = 0.1, the responses to the same over-pressures were evaluated from generalized equilib-
rium paths, where the membrane thickness t was varied. The equilibrium solutions were thereby
found without complete non-linear response analysis. Also, the dependence of the critical —
maximum and minimum — pressure states on the constitutive ratio k = c2/c1 were studied
by following a fold line, with criticality as an augmenting equation. The relation is shown in
Fig. 1(c), isolating to very high accuracy the ratio k for which the limit pressure states disap-
pear; for higher k, the expansion is monotonically increasing with pressure. It is noted that
simulations where the injected amount of gas is seen as the loading parameter will give other
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Figure 1. Simulations of inflated spherical membrane. (a) Pressure-expansion for different k, with
t = 0.1mm; (b) Expansion for two pressures at different t, with k = 0.1; (c) Critical pressures as function
of k, with t = 0.1mm.



conclusions regarding the stability of the loading process.
Further simulations of the same basic problem included the ambient pressure and the tem-

perature as variables. Varying these parameters, independently or simultaneously, show how a
balloon inflated to a certain state in typical sea-level conditions will behave when subjected to
other ambient variables. For instance, a simulated atmospheric variation of both temperature
and pressure with height can be introduced, and the response for the balloon evaluated by fol-
lowing one generalized path. The work also shows how a solution surface can be used to give
further information on how the response depends on pressure and constitutive constants.

The work has also studied the stability of long cylindrical balloons, with both analytical and
numerical methods. These long pressurized closed membranes will have some similarities with
the spherical balloons, but will also show some significant differences in instability behavior.

Conclusions

A conclusion from the study is that the generalized equilibrium path and surface calculations can
be valuable tools for understanding the qualitative behavior of instability sensitive structures,
e.g., thin membranes. In particular, the methods allow the determination on how different
parametric regions can lead to qualitatively different responses to loading. The methods can
also be efficient in the design of membranes, as variations in parameters can be easily studied
without the need for complete non-linear response evaluations.
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Summary. This article describes the development of a semi-analytic buckling model for steel-elastomer
sandwich plates using the Rayleigh-Ritz method. The model includes transverse shear deformations
which are important in this type of plate. The unknowns - the deflections and cross-sectional rotations -
are approximated by Fourier series. All combinations of in-plane tensile, compressive and shear loads are
allowed. Pre-stressing of the plate and elastic springs on the boundary are also included. The model has
been implemented in a FORTRAN programme and the results have been compared with results from the
finite element programme ABAQUS.

Key words: Buckling, eigenvalues, Rayleigh-Ritz, sandwich plates

Introduction

In the maritime industry, structures have traditionally been constructed with stiffened steel pan-
els. Recently a type of sandwich plates for heavy construction has been introduced to replace
stiffened steel panels in secondary ship structures, such as hatch covers and superstructures.
This type of plate is easier to manufacture and maintain and offers an increased stiffness to
weight ratio. Consisting of a lightweight polyurethane core bonded on both sides with steel face
plates, the sandwich plate can be used for new-building, but also to repair damaged structures.
DNV has recently completed a classification note [1] on this type of sandwich plates.

In order to calculate the elastic buckling loads for such plates one must take the transverse
shear deformations, or cross-sectional rotations, into account. Because the core material is weak
compared to the face material, the two face plates will slide relative to each other in bending
deformations. The method presented here is a Rayleigh-Ritz approach used to approximate the
eigenvalue solution of the plate differential equation by representing the unknowns by Fourier
series. The model includes in-plane tensile, compressive and shear loading in any combination.
Elastic springs are included around the plate so that any boundary condition between, and
including, simply supported and fully clamped can be modelled. The springs can be activated
individually to model a wide range of boundary conditions. The plate can be pre-stressed before
the buckling analysis is started. A more thorough description of the model is available in [2].

Eigenvalue model for buckling

The Rayleigh-Ritz method is based on the potential energy of the plate. The method has
previously been used by Brubak, Hellesland and Steen [3] for irregularly stiffened plates. For the
type of plate considered here, the internal strain energy is not only due to the moments doing
work through curvature, but also the transverse shear forces doing work through transverse



shear deformations. The boundary springs will store energy through their rotations. The total
potential energy of the plate is Π = Uplate + Usprings −W . The strain energy for the plate is
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The strain energy for the springs is on the form
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where kx0 is the spring stiffness coefficient for the edge x = 0. The potential of external loads is
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Because the plate is considered isotropic in the x-y-plane, the stiffness coefficients found in
Zenkert [4] are used:
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4(1 − ν2f )
(tf1(tc + tf1)
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Here Ef and νf are the Young’s modulus and the Poisson ratio of the face plate material, Ec

and νc are the same for the core material. The thicknesses of the two face plates are denoted
by tf1 and tf2 and the core thickness is tc. Gc is the shear modulus of the core material and is
defined by Gc = Ec/(2(1 + νc)).

The three unknown displacement fields are approximated by the following Fourier series

w =

∞∑
m=1

∞∑
n=1

Amnsin
mπx

a
sin

nπy

b
(5)

γxz =
∞∑

m=1

∞∑
n=1

Bmncos
mπx

a
sin

nπy

b
γyz =

∞∑
m=1

∞∑
n=1

Cmnsin
mπx

a
cos

nπy

b

where a and b are the longitudinal and transverse dimensions of the plate and Amn, Bmn and
Cmn are the amplitudes. When the displacement fields are differentiated with respect to x and
y and inserted into the potential energy, the continuous problem described by the differential
equation has been converted into a set of algebraic equations with coefficients Amn, Bmn and
Cmn.

The requirement for equilibrium of the system is that the potential energy has a stationary
value, this is fulfilled when the bracketed term in Eq. 6 is zero. The eigenvalue problem for a
system which in addition to the plate itself also includes elastic springs on the boundary and
the effects of pre-stressing the plate before the eigenvalue analysis is defined as

[(KM + KS −Kpre) − ΛKG]A = 0 (6)



where the material stiffness matrix, KM , is defined as
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in which each of the nine sub-matrices is the potential energy twice differentiated with respect
to the coefficients Amn, Bmn and Cmn. The first sub-matrix is
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and the other nine sub-matrices in the material stiffness matrix, KM , are computed in the same
way. In the geometric stiffness matrix, however, the only non-zero sub-matrix is KG

AA. The
reason is that the expression for the potential of external loads, W , from which the geometric
stiffness matrix is derived (in the same way as the material stiffness matrix was derived from
the internal strain energy), is only a function of the single displacement field, w, and hence the
coefficients, Bmn and Cmn, do not enter the expression at all.

The stiffness matrix for the elastic springs, KS , is found by twice differentiating Eq. (2). If
a clamped boundary condition or an intermediary between simply supported and clamped is
wanted, this stiffness matrix should be added to the material stiffness matrix, as indicated by
Eq. (6). This will raise the overall stiffness of the system, enabling the plate to carry higher
external loads by storing energy in the elastic springs. To account for any existing loads in the
plate before doing an eigenvalue analysis a pre-stress matrix, Kpre, is derived in the same way
as the geometric stiffness matrix from the potential of external loads and also included. This
matrix will reduce the overall stiffness of the plate, as can be seen by the negative sign in the
eigenvalue equation (6).

Results and conclusions

The model was implemented in a FORTRAN programme. Fig. 1 shows two plots comparing
the current Rayleigh-Ritz model with ABAQUS. The plate considered had in-plane dimensions
a = 4190mm and b = 2800mm and thicknesses tf1 = tf2 = 4mm and tc = 25mm. The face
plates were of steel with a Young’s modulus of Ef = 208000MPa and Poisson’s ratio of νf = 0.3.
The core had a Young’s modulus of Ec = 750MPa and a Poisson’s ratio of νc = 0.3, giving a
core shear modulus of Gc = 288MPa. The applied forces are shown in Fig. 1.(d).

Fig. 1(a) shows an interaction curve plot for a simply supported plate with varying combination
of normal longitudinal, Nx, and transverse, Ny, loading, with different levels of pre-loading of
shear, Nxy. Fig. 1(c) shows the same for a clamped plate with a combination of normal lon-
gitudinal, Nx, and shear, Nxy, with different levels of pre-loading of normal transverse force,
Ny. The results show very good agreement between the Rayleigh-Ritz model and ABAQUS.
For clamped plates, the results differ somewhat. This is due to the fact that a larger number of
terms is needed in the series to achieve convergence of the plate with springs.

Acknowledgments: The authors would like to express their thanks to Philippe Noury, Kristof-
fer Brinchmann and Gabriele Notaro at DNV for their support and contributions.



(a) (b)

(c) (d)

Figure 1: Rayleigh-Ritz results compared to the ABAQUS results (a-c) and the forces acting on
the plate (d).
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Summary. This paper describes a part of an on-going project with multiple objectives, its main problem
being defined as ambiguity of force flow as a result of morphological redundancy. The primary objective
is to develop a new method for structural analysis based on graph theory, in order to better understand
the impact of morphology on structural behaviour. The approach aims to unlock both the knowledge-
generating and the innovative potential of morphology analysis. As a first step, element redundancy
factors in trusses are introduced as a way to visualise the structural redundancy in a complex truss, so
that non-redundant regions could be distinguished from over-redundant regions.

Key words: conceptual design, structural morphology, static redundancy, redundancy factor

Back to basics

“In practice a great many problems are solved by what is called judgment. The better a man
understands how the stresses follow through a member or structure, the better his judgment will
be” [1]

The section title Back to basics refers to the overall approach of the research that this paper
gives a very brief account of, a piece of research prompted by the acknowledgement of what
appears to be a gradually weakened knowledge basis of the structural engineering profession.
Coupled with the increased usage of ever more advanced tools, this weakening is stifling inno-
vation within the field, since ill-informed creativity may lead to dire consequences [3, 4]. The
present research, [2], seeks to activate powerful basics, like basic human skills and first principles,
in the strive to improve our understanding of structural morphology via an approach based on
graph theory. The proposed methodology seeks to help reconstruct the intuitive understand-
ing of the fundamental characteristics of structural systems, i.e. the relation between structural
morphology and force flow, boosting the structural engineer’s knowledge basis that is required
in order to successfully tackle the ever more challenging design tasks of today.

Impact of redundancy

“For a structural system to survive unforeseen events or circumstances, with its intended func-
tions intact, it must possess sufficient reserve capacity.” [4]

The necessity as well as difficulty to properly and efficiently account for the relation between
structural morphology and force flow becomes acutely felt when confronted with redundant
structural systems, especially when redundancy is accompanied by irregularity. Contemporary
design proposals are increasingly striving to adopt these two characteristics for aesthetic reasons.
However, there are important structural benefits of redundancy, and possibly also irregularity,



the primary one being structural robustness [3]. An approach exploiting morphological redun-
dancy has got the potential to be weight-optimised. It may therefore challenge the current
juxtaposition between robustness and optimisation, [4], also enabling for the development of a
strategy with an ability to account for multiple, combined loading scenarios in a holistic manner.
Following on from the above, ambiguity of force flow as a result of morphological redundancy was
identified as an equally imperative and complicated problem to be addressed. Assuming that
morphological redundancy may indeed offer a new approach to robustness, this would provide
valuable support to the structural engineer, at a time when the building codes greatly emphasise
the importance of robustness [4]. Furthermore, the Eurocodes stipulate that “potential damage
shall be avoided or limited by appropriate choice of one or more of the following: selecting a
structural form which has low sensitivity to the hazards considered; selecting a structural form
and design that can survive adequately the accidental removal of an individual member or a
limited part of the structure, or the occurrence of acceptable localised damage; tying the struc-
tural members together...” [5]. It is proposed that developing a better understanding of the
relation between structural properties and structural behaviour may inform a new strategy for
addressing robustness and for developing appropriate structural forms with a “low sensitivity
to the hazards considered” that “can survive adequately the accidental removal of an individ-
ual member or a limited part of the structure”. The difficulty experienced by the structural
engineer when attempting to analyse morphologically redundant systems is intimately related
to the difficulty to visually assess them. This means that even though one might be able to
successfully produce results using a wide selection of readily available commercial packages in
order to perform the structural analysis, it is still difficult to make sense of and interpret the
results from multiple load cases. Structural morphology is a rather unknown field, which means
that its specific characteristics largely remain hidden from us. This in turn means that what
might indeed be structurally beneficial characteristics of structural morphology is currently not
being appreciated to their fullest extent.

Redundancy factors in trusses

Here, redundancy factors are introduced as a way of visually assess the redundancy of 3D trusses
without considering specific load cases and only indirectly the material stiffness, so the focus is
only on the topology and geometry.

Degree of static indeterminacy

Consider a 3D pin-jointed truss with j joints and b bars acted upon by external forces at the
joints. The framework is restrained in 3D by c kinematic constraints. The number of states of
self-stress s and the number of mechanisms m is expressed by the generalised Maxwell’s rule

m− s = 3j − b− c (1)

Here, we assume that the framework is kinematically determinate, m = 0. The set of equilibrium
equations for the framework is written as

Ht = f (2)

where H is the 3j − c× b equilibrium matrix, t is the internal force vector of length b, and f is
the external force vector of length 3j − c. The external forces give rise to displacements which
must be compatible with the elongations of the bars. The set of linear compatibility equations
is

Cd = e (3)

where C = HT is the b×3j−c compatibility matrix, d is the joint displacement vector of length
3j − c, and e is the bar elongation vector of length b [7]. The number of states of self-stress or



the degree of static indeterminacy is

s = b− rank(H) (4)

where rank(H) is found from a singular value decomposition of H, [7].

Redundancy factors

Assuming linear-elastic material, the element forces t are related to the bar elongations e by the
elements flexibility matrix Φ as

e = e0 +Φt, (5)

where e0 is the vector of initial bar elongations. The b × b diagonal elements flexibility matrix
Φ has ϕi = li/AiEi as its entry of position (i, i). The inverse of the flexibility matrix is the
diagonal elements stiffness matrix

Ψ = Φ−1 (6)

with ψi = AiEi/li at position (i, i). Using (6) and (3), (5) can be re-written as

t = Ψ(Cd− e0) (7)

Combining (2)–(7) yields

t = ΨHT(HΨHT)−1f︸ ︷︷ ︸
tf

−Ψ
[
I−HT(HΨHT)−1HΨ

]
e0︸ ︷︷ ︸

te0

(8)

Hence, the total element force t may be separated into two parts: tf due to the external loads f
and te0 due to initial element elongations e0, i.e. imperfections, pretension, temperature effects,
etc. The expression for the element forces due to initial elongations is re-written

te0 = −ΨΛe0 (9)

where Λ is a scaling matrix expressing the stiffness of the structure surrounding a specific
element. For kinematically determinate frameworks, m = 0, it is shown, [6], that the trace of
the scaling matrix Λ is equal to the degree of statical indeterminacy

Tr(Λ) = s (10)

The diagonal element λii can thus be interpreted as the contribution of element i to the total
degree of static indeterminacy or redundancy s and is therefore denoted static redundancy factor.

Redundancy factors in design

Figure 1 shows a 2D truss with the normalised redundancy factor for elements with equal
flexibility, l/AE. A normalised redundancy factor of 0% (blue colour) means that the element
cannot be removed as its removal will render the framework unstable whereas a factor equal
to 100% (red) means that the element is highly redundant. This redundancy analysis is done
without considering a specific load case, only the topology, geometry, constraints and element
flexibilities are considered. The robustness in terms of redundancy is shown in Fig. 1 as elements
are added and removed. The diagonal bracing elements for each square is more redundant that
the elements forming the sides of the square, which is obvious since the side elements provide
more stiffness than the diagonal elements in the horizontal–vertical plane.
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Figure 1. Normalised redundancy factors for a four-floor 2D truss.

Conclusions

This paper seeks to communicate the potent power inherent in a structural analysis approach
that is based on engineering basics rather than specifics, with the intention to create order out
of chaos. Redundancy factors have the potential to visualise the non-redundant regions in an
overall over-redundant complex 3D truss and thus serve as useful tool for the conceptual design
of robust structures.
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Summary. Touch and multi-touch user interface has become widely available by the introduction of the
iPad and android tablets. These user interfaces are very direct and users often interact with applications
in different ways that conventional user interfaces. This paper describe some of the user interfaces that
we have developed that take advantage of this new interaction model in structural mechanics software.
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Introduction

During the last years, the popularity of touch and multi-touch user interfaces has increased with
the introduction of the iPhone, iPad and other touch based devices. User interfaces for these
devices are often very direct and also use direct-manipulation interfaces. This gives the user the
feeling of directly manipulating objects on the screen compared to using an extra device such as a
mouse. This direct modeling using touch and multi-touch is well suited for structural mechanics
software for increasing the efficiency of previously developed mouse based applications.

At Structural Mechanics in Lund we have a long experience in developing novel user interfaces
that support conceptual design and modeling by using direct-manipulation interfaces. The best
example of this is the ForcePAD [1, 2] application that can be used for creating conceptual 2D
structures by ”painting” with stiffness. This application is implemented as a standard window
based application using either a mouse or a stylus for input.

This paper, describes how touch and multi-touch can be used to enhance the user experience
in existing and new applications developed at Structural Mechanics.

SmartBoard enabled ForcePAD

At the Science Center at LTH [3], they wanted an exhibition where people could experiment with
forces and structures. ForcePAD is a good tool for visualizing forces in structures. At exhibition
they have installed a so called SmartBoard. A SmartBoard is a combination of a touch-enabled
white screen onto which a standard computer project displays it output. This device enables
users to use fingers to touch the projected screen and interact with the application. As the
white screen is over 100 inches wide it can be used in the same way as a white board in teaching.
Several people can also interact with the application at the same time. Figure 1 shows the actual
setup in he Science Center.

Using ForcePAD on the SmartBoard required some modification of the user interface. As
the exhibition is public and for the casual passers by, the user interface was simplified. The
application menu was removed and the window was made fullscreen by default. To enable
experimenting with different structures a special floating window was implemented with the



Figure 1. SmartBoard setup in the LTH science center

Figure 2. SmartBoard enabled ForcePAD with additional tool window

most used functions displayed. It also contains a grid of 9 standard examples that can be
quickly loaded without a file selection dialog. Figure 2 shows the floating tool window.

The exhibition has been used successfully for a couple events in the Science Center. It is very
powerful to work with the application at the larger screen sizes that the white screen enables.
The touch-screen eliminates the need for a mouse and makes the interaction more direct. It also
creates a virtual ”white board” that can be used effectively to illustrate phenomena interactively
for the audience. However, users still needs some additional instruction for using the application.
An interactive instructional video will probably be added to the exhibition, to help users working
with the application.

Sketch-a-frame

The iPad and iPhone made multi-touch technologies available for a wide range of users. To
investigate the use of multi-touch in structural mechanics application we decided to develop a
concept application, Sketch-a-frame. Sketch-a-frame is a very simple finite element application
for studying simple 2D frame and truss structures, which builds on and extends concepts from
the PointSketch application [5] with multi-touch gestures. The basic idea of the application is
to make it completely interactive without any intermediate calculation steps. Moving nodes
and forces will automatically update forces and deflections. The application also automatically
determines if the structure is stable or a mechanism. Figure 3 shows the user interface of the
Sketch-a-frame application.

During the development of the application, it was apparent that many of the normal inter-
action models for using a mouse were not suitable when using a multi-touch interface. Graphics



Figure 3. The Sketch-a-frame application

and user interface elements need to be adapted for use with fingers as the precision of using a
mouse is lost. Graphics have to be larger and have larger tolerances during selection operations.

Sketch-a-frame, can be seen as a conceptual sketchpad for 2D structure, enabling experi-
mentation with different structural concepts. The direct feedback of the user interface enables
the user to get a direct understanding of the structural behavior, which is also enhanced by the
touch interface.

Conclusions

Using touch and multi-touch greatly enhances the application experiences by providing a more
direct interacting with the application. For structural mechanics application means that the
phenomena studied can be visualised more directly and also encourages experimentation in
a more direct ways. The SmartBoard device also adds an additional dimension to a touch
application by enabling more people to simultaneously using an application. It can effectively
used in a educational settings as an interactive ”white board” for visualizing structural concepts.
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Summary. The work presented in this paper has been done to investigate the possibilities of 
using three dimensional finite element calculations to establish reliable alert and stop limits for 
excavations using diaphragm walls. A finite element analysis has been performed on the 
construction of lower parts of Malmö central station where extensive measurements were 
recorded during the construction. 
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Introduction 

When building underground construction in close proximity to sensitive existing buildings the 
regulations regarding soil deformation can be very strict. Conventional methods of predicting 
soil behaviour are then often too crude and finite element (FEM) calculations are therefore 
becoming an increasingly important tool used for predicting soil behaviour. 
 
Malmö central station  
 
The lower parts of Malmö central station, a part of the Citytunnel project creating a faster 
commute between Sweden and Denmark, was built as a 20 meter deep cut and cover 
construction. As there were three listed buildings in close proximity of the excavation pit the 
vertical and horizontal displacements along the most sensitive areas were restricted to 10 mm 
and 5 mm respectively. To be able to handle these restrictions diaphragm walls were used along 
the most vulnerable parts of the pit. During the construction measurements were taken to ensure 
that the allowed deformations were not exceeded. 
 
 

 

 



 
Figure 1. Finite element model used to simulate the excavation down to second anchoring level.  

Objective and Method 

The work presented in this paper was carried out to investigate the possibilities of establishing 
reliable alert and stop limits for excavations with diaphragm walls using three dimensional finite 
element simulations, see Figure 1. An analysis has been performed on the displacements of the 
soil and diaphragm wall used in the construction of Malmö central station. The finite element 
simulations were conducted in steps to resemble the actual workflow at the construction site. 
The measurements taken during construction have been used to validate the finite element 
model used. The material parameters used have been evaluated from experimental 
investigations at site. 
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of nanowires
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Summary. This talk describes a recently derive continuum model for estimating the flexural rigidity of
nanowires. The model is linear elastic and includes contributions of surface stiffness as a result of lowered
coordination. Predictions of the model are validated by comparison to benchmark molecular dynamics
and statics simulations via two examples: resonant properties of top-down nanowires and buckling of
nanowires. Overall, the present work demonstrates that continuum mechanics can be utilized to study
the elastic and mechanical behavior and properties of ultrasmall nanowires if surface elastic contributions
to the flexural rigidity are accounted for.
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Introduction

Over the past two decades, dramatic technological progress made in the field of nanotechnology
has made it possible not only to visualize but also manipulate, assemble and organize matter
with high precision on the atomic scale. This has opened the possibility of fabricating structural
nanodevices by piecing basic nanosized building blocks together to form grander, more complex
and more elaborate systems; the so-called bottom-up strategy. This has led to a gain in interest
from many different branches and disciplines in the scientific community, which has paved the
way for the discovery and recognition of many novel physical properties of nanostructures that
differ significantly from those of macroscopic structures [1].

However, applications where the mechanical properties are of importance have been plagued
with difficulties in predicting the mechanical response accurately. An examples of this is, for
instance, nanoscale resonators where the flexural rigidity plays a central role [2]. The flexural
rigidity of nanowires is highly affected by surface elastic contributions as a result of the high
surface to volume ratio of nanostructures and the lowered coordination of surface atoms.

The purpose of this talk is to discuss a recently derived continuum model for estimating
the flexural rigidity of nanowires. The model is linear elastic and includes the surface elastic
contributions to the flexural rigidity through the second moment, which accounts for the fact
that surfaces are subjected to the greatest amounts of strain in bending. Details of the model
can be found in [3].

Continuum model

Based on the seminal work by Dingreville and coworkers [4], it is assumed that the surface
energy density, Γ, can be expanded in terms of the surface strains, ǫsαβ ,

Γ(ǫsαβ) = Γ0 +
∂Γ
∂ǫsαβ

ǫ
s
αβ + 1

2
∂2Γ

∂ǫsαβǫ
s
γη
ǫ
s
αβǫ

s
γη + · · · =

= Γ0 + Γ
(1)
αβǫ

s
αβ + 1

2Γ
(2)
αβγηǫ

s
αβǫ

s
γη + · · · (1)



where Γ0, Γ
(1)
αβ , and Γ

(2)
αβγη are the area specific surface energy density, the surface stress, and

the surface elastic constants, respectively. Greek indices are 1 and 2 and repeated indices are
summed. These surfaces are assumed to be flat and of infinitesimal thickness, which is an
approximation as the influence of the surfaces has a finite range. Moreover, it is assumed that
the potential energy of the bulk can be expanded in terms of the bulk strains

Φ(ǫij) = Φ0 +
∂Φ
∂ǫij

ǫij +
1
2

∂2Φ
∂ǫij∂ǫkl

ǫijǫkl + · · · =
= Φ0 + σijǫij +

1
2Cijklǫijǫkl + · · · (2)

where Φ0, σij , and Cijkl are the volume specific energy density, the bulk stress tensor, and the
bulk elastic constants, respectively. Roman indices range from 1 to 3 and repeated indices are
summed. The surface and bulk contributions add up to the total strain energy

U(ǫij) =

∫
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∫ ǫij

0
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∂eij
deijdV +

∫
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0
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de
s
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The surfaces are assumed to be rigidly attached to the bulk, which means that the surface strains
can be obtained from the bulk strains simply through an appropriate projection operation. The
flexural rigidity can the be found from by taking a weighted integral of the elastic properties
over the cross section and bounding surface

µ
(2) =

∫

A
Ebz

2
dA+

∮

S
Esz

2
dS (4)

where Young’s modulus of the bulk and the surfaces are denoted Eb and Es, respectively. This
way the composite character of the elastic properties across the nanowire cross section is ac-
counted for, which gives an improved estimate of the flexural rigidity.

Atomistic simulations

To benchmark the continuum formulation we consider the special cases of slender 〈100〉/{100}
and 〈100〉/{110} metallic face centered cubic (fcc) doubly clamped nanowires with square cross
sections. Two different boundary value problems have been considered: the fundamental eigen-
frequency of top-down nanowires subjected to transverse vibrations, and the critical compressive
strain leading to buckling instability. We have obtained benchmark results for both boundary
value problems using both classical molecular statics (MS) and molecular dynamics (MD) sim-
ulations. The interatomic interaction is modelled through an embedded atom method (EAM)
potential fitted to properties for gold [5]. The relevant surface properties are evaluated using
the free surface strain meshing technique suggested by Shenoy [6].

Resonant properties

The nanowires are called top-down as they can be considered to have been etched out from a
bigger piece of matter while being rigidly constrained at both ends. Because of this, the inter-
planar distance along the wire axis corresponds to that of the ideal. The atomistic simulations
are performed at liquid Helium temperature, e.g. 4.2 K, as described by [5] and the reader is
referred to that paper for numerical details.

In Fig. 1 we have compared the fundamental eigenfrequency attained from atomistic simula-
tions of 〈100〉/{100} top-down nanowires with the aspect ratio 12, with predictions of the newly
derived continuum model and the those of macroscopic Bernoulli-Euler beam theory for different
cross sectional widths. It can be seen that the atomistic results are in great agreement with
those derived from the continuum model, while macroscopic continuum beam theory severely
underestimates the fundamental eigenfrequency. This discrepancy is attributed to two separate
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Figure 1. The fundamental eigenfrequency for 〈100〉/{100} top-down nanowires of different cross sectional
dimensions. The aspect ratio of all nanowires is 12. The markers correspond to atomistic results, the
solid and dashed lines are predictions from the newly derived continuum model and macroscopic beam
theory, respectively.

Figure 2. Critical buckling strain for (a) 〈100〉/{100} and (b) 〈100〉/{110} nanowires with 2.45×2.45nm2

cross sections for different aspect ratios.

contributions. First, the lack of influence of surface elastic properties on the flexural rigidity.
The second and most important mechanism is the lack of surface stress in the macroscopic beam
picture. Both of these contributions are accounted for in the newly derived continuum model.

Buckling

The most important test of the new formulation is to evaluate how well buckling can be de-
scribed by the present formulation. The reason why buckling is of greater interest than the
eigenfrequency spectra of nanowires is due to the dependence of each boundary value problem



on the flexural rigidity. The atomistic results are taken from [7] where the numerical details are
given.

In Figs. 2(a) and (b) we have compared the critical buckling strain for 〈100〉/{100} and
〈100〉/{110} nanowires with 2.45×2.45 nm2 cross sections for different aspect ratios, respectively.
It can be seen that the bulk predictions overestimate the atomistic results and the newly derived
continuum model predicts critical strains that are in excellent agreement with the atomistic
results. This is an effect that emanates solely from the heterogeneous description of the cross
section when calculating the flexural rigidity.

Conclusions

In this presentation we have described a novel continuum formulation for dealing with the
influence of surface effects influence on the mechanical properties of nanowires. The model
has been compared with results from atomistic simulations and has been proven to show great
accuracy. In addition to the benchmark tests in this abstract a plethora of comparisons have
been documented in [3].
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Modelling of stress driven material dissolution
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Summary. The evolution of surfaces exposed to an aggressive environment and mechanical load is
studied. The evolution is the initial part of a stress corrosion process that leads to pitting, crack initiation
and growing cracks. In conventional fracture analyses requires a known or a postulated crack. A serious
drawback is that a large part of the lifetime of a crack or a surface flaw is spent during the initiation
of the crack. The knowledge of the mechanisms leading from a pit, flaw, scratch, etc. to a crack is
very limited. One reason is the complication caused by the less definite defined original geometry. The
motivation for the present study is to increase the understanding of the transition from stress induced
pitting to growing cracks.

Key words: Surface morphology, pitting, crack initiation, phase field model

Introduction

A strained body exposed to an aggressive environment may su↵er from continuous material dis-
solution during corrosion. The result is a progressive roughening of its surfaces. After roughening
pitting occurs and eventually cracks will form and grow into the body. Apart from an aggressive
environment and a mechanical stress the material needs to have an inherent sensitivity or to
be sensitized to the environment. This can be due to local heating, plastic deformation, fatigue
damage, etc. The aggressive environment can be a bulk aqueous environment surrounding the
body or a micro environment, such as moist in pits, crevices, under deposits and not seldom
very local environments created by microbial colonies established on the body surface.

The focus here is on the evolving surface morphology and initiation of cracks caused by the
corrosion. The mechanism is the mass transportation resulting after dissolution and di↵usion
of matter into the environment or surface di↵usion. The strain energy and the chemical energy
provide driving forces for dissolution and transport of molecules. The observation an evolving
surface waviness that was explained theoretically by [1,2]. The spectrum of the waves depends
on the strain energy of the body surface and the surface energy. Experimental results by Kim
et al. [3] show that the typical wavelength in, e.g., aluminium is on the scale of a few hundred
nanometres when the stress is large and comparable to the yield stress. Several non-linear
analyses show that the indents grow markedly faster and the peaks of the surface grow slower.
This sharpens the indents and leads to a formation of pits. Thereafter, growth continues in
the form of a blunted crack or, in a strict sense a deep notch with a relatively sharp tip. The
crack tip always preserves a finite radius that may depend on the crack tip driving force and the
thermodynamic chemical and mechanical properties of the surface. Further, the crack frequently
branches and the crack width becomes slightly larger as the crack gets longer.

Phase field modeling of the evolving surface morphology

For a virtually sharp surface, treated as a discontinuity, specific chemical and mechanical prop-
erties may be ascribed to the surface. This simplifies the analysis and has normally no significant



influence on the thermodynamical behaviour of the body. However, when the distance between
structural inhomogeneities or other characteristic distances are of the same order of magnitude
as the thickness of the surface, e.g., as at a rough surface, at the tip of a crack or during emission
of dislocations etc., the thickness of the surface may play a role and the negligence thereof may
lead to unrealistic predictions. As opposed to this, a di↵use surface model assumes a contin-
uous variation of composition, structure and other properties within the modelled region (cf.
Landau and Lifshitz [4,5]). This includes the body, the di↵use surface and the surrounding
environment. Here, the total free energy of the continuous body is formulated as a function of
the material composition. The width of the surface layer is not assumed given, but instead the
model predicts surface layers with a finite width and the associated surface energy is a result of
the thermodynamical state of the material composition of the surface.

The total free energy of the system is formulated as a function of the phase fields and the
variation of the free energy with respect to the fields act as driving forces for the evolution over
time. In the proposed study an order parameter is used to distinguish empty space from the
solid and to model the properties of the surface of the body. Phase field models formulated with
phenomenological order parameters have been utilized as a numerical technique to avoid moving
boundary tracking in describing the evolving body geometry.

The governing equations constitute a system of nonlinear elliptic-parabolic equations. So-
lutions for given initial conditions and boundary conditions is obtained by combining splitting
methods with a semi-implicit time stepping scheme using finite di↵erences. The calculations
are performed in a moving coordinate system where the known solution for a straight corroding
edge is subtracted from the sought solution.

Conclusions

Stress corrosion can be modelled as a moving boundary problem. Phase field modelling simplifies
the analysis and the tracking of the moving boundary. The instability of a flat surface subjected
to mechanical load is in agreement with results from traditional analyses. Formation cracks and
crack growth are captured.
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Summary. We consider mixed finite element methods for the standard linear solid model of viscoelastic
materials. We use mixed finite elements for elasticity with weak symmetry of stress and show the a priori
error analysis.
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Introduction

A material is called viscoelastic when it shows kinematic features of both solids and fluids.
It is involved in applications of various areas including geophysics, chemical and biomedical
engineering. Depending on the manner that the features of solids and fluids are combined, there
are numerous different viscoelastic materials. In this paper, we study numerical algorithms for
linear viscoelastic solids using mixed finite elements for elasticity with weak symmetry. We are
particularly interested in the standard linear solid model, or the Zener model in some literatures,
of viscoelastic materials.

Governing equations

Let Ω ⊂ Rn with n = 2, 3. The standard linear solid model can be described as in Figure ?? as
a mechanical model. The stresses from the Maxwell component and from the other spring unit,

σ0

1

Figure 1. A mechanical model of the standard linear solids.

are denoted by σ0 and σ1. Then the total stress is σ = σ0 + σ1. By splitting the displacement
~u into ~u = ~u0 + ~u1 where ~u0, ~u1 are the displacement parts involved in the spring and dashpot
of the Maxwell component. By the generalized Hooke’s law, σ1 = C1ε(~u) for the spring unit
where ε is the symmetric gradient. In the Maxwell component, σ0 = C0ε(~u0) = C ′0∂tε(~u1) where
C0, C

′
0 are the stiffness tensor given by the spring and dashpot units. Using A0, A

′
0, A1 for the

inverses of C0, C
′
0, C1, we have A1σ1 = ε(~u), A0∂tσ0 = ∂tε(~u0), and A′0σ0 = ∂tε(~u1). From the



addition of the second and third equations with ~u = ~u0 + ~u1, from the first equation, and from
the balance of linear momentum, we have

A0∂tσ0 +A′0σ0 = ∂tε(~u), A1σ1 = ε(~u), ρ∂2t ~u− div(σ0 + σ1) = ~f,

where ~f is an external body force and ρ is the mass density. By introducing ~v = ∂t~u, the
equations are

A0∂tσ0 +A′0σ0 = ε(~v), A1∂tσ1 = ε(~v), ρ∂t~v − div(σ0 + σ1) = ~f.

A weak formulation with weak symmetry

For a weak symmetry approach we use γ = skw grad ~u, the skew-symmetric part of grad ~u, as
a Lagrange multiplier for the symmetry of stress. Our mixed method is based on the finite
element spaces

M h ×M h × Vh ×K h ⊂ H(div,Ω;Rn×n)×H(div,Ω;Rn×n)× L2(Ω;Rn)× L2(Ω;Rn×n
skw ),

where (M h, Vh,K h) is a triple of the elements in [?, ?, ?, ?, ?], which are stable mixed finite
elements for elasticity with weak symmetry.

We extend the tensors A0, A
′
0 and A1, which are defined only for symmetric tensors, to be

defined for all tensors. For time discretizations, we use the Crank–Nicolson method. Let k > 0
be the time step interval. For simplicity, we define
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k
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2
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For the homogeneous Dirichlet boundary condition, ~u ≡ 0, a weak formulation is to seek
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When an initial displacement ~u 0
h is given, a numerical solution for the displacement vector is

obtained by

~u i
h = ~u 0

h + k

i−1∑
j=0

~̂v
j+ 1

2
h ,

using the trapezoidal rule.

A weakly symmetric elliptic projection for error analysis

Let M h be the finite element space for stress in [?, ?, ?, ?, ?]. For σ ∈ H1(Ω;Rn×n), there
exists a projection Π̃h : H1(Ω;Rn×n) → M h such that ‖Π̃hσ‖0 ≤ c‖σ‖1 with c > 0 which is
uniformly bounded in h. Furthermore,

‖σ − Π̃hσ‖0 ≤ c‖σ −Πhσ‖0, (2)

div Π̃hσ = Ph divσ, (Π̃hσ,η) = (σ,η), η ∈ K h, (3)

where Ph is the orthogonal L2 projection onto Vh. Note that Π̃h maps a symmetric tensor to a
weakly symmetry one and it plays an important role in the error analysis.



Postprocessing

When the elements in [?, ?, ?] are used and the mass density is piecewise Lipschitz adapted to
triangulations, a postprocessing is eligible for numerical solutions of displacement vector. For
the postprocessing, we use V ∗h , the space of piecewise polynomials of one degree higher than Vh,

and define Ṽh as the orthogonal complement of Vh in V ∗h . A new numerical solution ~u i,∗
h ∈ V ∗h

is defined by

(gradh ~u
i,∗
h , gradh ~w) = (A1σ

i
1,h + γi

h, gradh ~w), ~w ∈ Ṽh,

(~u i,∗
h , ~w) = (~u i

h, ~w), ~w ∈ Vh,

where gradh is the piecewise gradient operator adapted to triangulations. Since the space V ∗h
consists of discontinuous piecewise polynomials, this postprocessing process is done element-
wise, so its computational cost is small. Note also that this postprocessing does not need
postprocessings of the previous time steps.

Numerical results

For numerical simulations we use the Arnold–Falk–Winther elements in [?] of degree 2. All
numerical examples are implemented using the Dolfin Python module of FEniCS project [?].

We assume that the medium is homogeneous with the mass density ρ = 1, and compliance
tensors A0, A

′
0, A1 are given as the compliance tensors of homogeneous isotropic materials with

parameters µ0, λ0, µ
′
0, λ

′
0, µ1, λ1. For simplicity, we put µ0 = λ0 = 1, µ′0 = λ′0 = 5, and

µ1 = λ1 = 10. Let the displacement field be

~u(t, x, y) =

(
(1− x)x2 sin(πy) cos t
(1 + t) sin(πx) sin(πy)

)
, (4)

and σ0(0) = 0. The numerical result for (??) is in Table ??.

Table 1. Order of convergence for the exact solution with the displacement as in (??) and σ0(0) = 0
(µ0 = λ0 = 1, µ′

0 = λ′0 = 5, µ1 = λ1 = 10, h = k and errors are evaluated at T0 = 1).

1
h

‖σ0 − σ0,h‖0 ‖σ1 − σ1,h‖0 ‖~v − ~vh‖0 ‖γ − γh‖0
error order error order error order error order

4 2.37e-01 – 1.08e+00 – 1.96e-02 – 5.77e-02 –

8 3.15e-02 2.91 1.83e-01 2.55 4.88e-03 2.01 1.46e-02 1.99

16 4.81e-03 2.71 3.82e-02 2.26 1.22e-03 2.00 3.64e-03 2.00

32 9.11e-04 2.40 8.93e-03 2.10 3.05e-04 2.00 9.09e-04 2.00

64 2.05e-04 2.15 2.18e-03 2.03 7.62e-05 2.00 2.27e-04 2.00

For another numerical example, we consider wave propagation in domains consisting of
subdomains with different material parameters. Purely elastic materials are simply described
in our model by assuming A′0 ≡ 0. The diagrams of domains for model problems are drawn in
Figure ??. For reflected waves we observe a damping effect of viscoelastic materials in Figure
??.

Conclusions

We propose a mixed method for the standard linear solid model of viscoelasticity and carry out
the a priori error analysis. In our approach, the problem is described as a differential equation
and no numerical time integration is needed. It also provides a unified numerical framework for
a composition of elastic and viscoelastic solids.
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Figure 2. The diagram of domains with different material features.
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Figure 3. Reflected waves for domains with purely elastic materials and a composition of elas-
tic/viscoelastic materials.
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Debonding analyses in anisotropic materials with strain-
gradient effects
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2800, Denmark

Summary. A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy
on damage evolution in a micro-reinforced composite. The matrix material exhibit size effects and a
visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted. A
conventional cohesive law is extended such that both the average as well as the jump in plastic strain
across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic
and anisotropic materials as well as for higher order isotropic and anisotropic materials with and without
debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared
to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain
response curve due to fiber-matrix debonding and the results show that a change in yield stress, which
is caused by plastic anisotropy, affects the overall composite failure strain.

Key words: Debonding, Plastic Anisotropy, Strain-Gradient Plasticity

Introduction
For a composite reinforced at the micron scale, two competing mechanisms affect the overall
behavior: (I) interfacial failure reduces the strength and (II) strain-gradient effects enhance the
strength. When analyzing such composites in general a full 3D analysis is required in order
to fully represent the geometry, the loading and the boundary conditions. Such analyses are
complicated and the computations become very time consuming when anisotropic plasticity
and progressive debonding is to be accounted for. Thus, assuming a periodical distribution of
the reinforcement allows for greatly simplified approaches. Here, a composite material having a
periodical distribution of reinforcement is analyzed using a plane strain unit cell approach. Thus,
the results presented in this study approximate a composite of rather long, almost aligned, stiff
reinforcement which is subjected to a fixed stress state that is acting mainly in the transverse
direction of the reinforcement. Fig. 1(a) shows the distribution of fibers and Fig. 1(b) shows the
unit cell adopted here. The orthonormal basis, ni, of the principal axes of plastic anisotropy, x̂i, is
defined by the angle θ, from from the global Cartesian coordinate system, xi. The displacements
∆1 and ∆2 are prescribed such that ratio, κ, of the average stress at the cell edges remains
constant. Fig. 1(c) shows an example of the finite element mesh adopted. The element type is
8-node elements.

Material models
Higher order elasto-plastic constitutive model

The fibers are assumed to be purely elastic with a stiffness much larger than the elasto-plastic
matrix material, which is assumed to obey the strain gradient model proposed by Fleck and
Hutchinson [1]. In addition, plastic anisotropy is accounted for using the anisotropic version of
the Fleck and Hutchinson model suggested by Legarth [2]. Thus, the effective plastic strain, Ėp,
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Figure 1. The plane strain cell model for the composite. (a) Periodically distributed fibers. (b) The cell
used for modeling with initial dimensions, loads, supports and coordinate systems. (c) Example of finite
element mesh using adopted, af

bf
= ac

bc
= 1.

is enriched by the gradients of the conventional effective plastic strain, ǫ̇p, and a material length
scale parameter, l∗, as

Ėp =

√

2

3
ǫ̇
p
ij ǫ̇

p
ij + l2

∗
ǫ̇,

p
i ǫ̇,

p
i ; ǫ̇

p
ij = ǫ̇p ∂Γ

∂σij
; ǫ̇p =

√

2

3
ǫ̇
p
ij ǫ̇

p
ij (1)

The work-conjugate effective stress is denoted σc and is given in table 1. Plastic anisotropy
is accounted for by the classical anisotropic Hill yield surface. For the case of plane strain
conditions with σ13 = σ23 = 0 the yield surface is

Γ =
√

3

2(F+G+H)
[F (σ̂22 − σ̂33)2 + G(σ̂33 − σ̂11)2+ H(σ̂11 − σ̂22)2 + 2Nσ̂2

12

]

(2)

where the Cauchy stresses, σ̂ij , refer to the principal axes of plastic anisotropy. For F = G =
H = 1 and N = L = M = 3, Eq. (2) equals the isotropic Mises yield surface, σe. A higher-order
stress measure is also introduced as ρi.

Conventional materials Higher order materials
(l∗ = 0, ρi = 0) (l∗ 6= 0, ρi 6= 0)

Isotropic ρi,i = 0 ρi,i = q − σe

(Γ = σe) σc = σe σc =
√

(σe + ρi,i)2 + l−2
∗ ρiρi

Anisotropic ρi,i = 0 ρi,i = q − Γ

σc = Γ σc =
√

(Γ + ρi,i)2 + l−2
∗ ρiρi

Table 1. Summary of the effective stress, σc, for different materials.

Higher-order cohesive model

The bi-axial loading on the unit cell, Fig. 1, will tend to cause both normal and tangential
interfacial separation, un and ut, respectively, at the fiber-matrix interface. The cohesive zone
model proposed by Tvergaard [3] takes both types of separation into account and therefore this
model may seem suitable for the present study. However, due to the existence of the higher order
stress, ρi and corresponding higher order tractions, ρini additional terms need to be included in
order to have a conventional as well as higher order stress-free surface after debonding failure.
Hence, a non-dimensional damage parameter is introduces as [4]

λ =

√

√

√

√

(

un

δn

)2

+

(

ut

δt

)2

+ l2
∗

[

(

< ǫp >

lA

)2

+

(

[ǫp]

lJ

)2
]

(3)



where < ǫp > is the average (subscript A) and [ǫp] is the half jump (subscript J) in plastic strain
across the interface, respectively, whereas lA and lJ are corresponding critical interfacial length
scale parameters. For λ ≥ 1 total separation have occurred. It is noted, that since the fiber is
taken to be purely elastic, < ǫp >=[ǫp]. The corresponding tractions are

Tn =
un

δn
F (λ) ; Tt = α

ut

δt
F (λ) ; TA = l2

∗

δn

l2A
F (λ) < ǫp > ; TJ = l2

∗

δn

l2J
F (λ)[ǫp] (4)

with α = δn/δt and F (λ) = 27

4
σmax(1− 2λ + λ2) for 0 ≤ λ ≤ 1. The maximum interfacial stress

is denoted σmax.

Results
Fig. 2 shows results for a load case with κ = σ2

σ1
= 0.5 corresponding to bi-axial plane

strain tension. The fiber volume fraction is Vf =
πaf bf

4acbc
, with

af

bf
= ac

bc
= 1. The initial

yield stress is σ0/E = 0.003, where E is Young’s modulus. The coefficients of anisotropy
are F = 0.7, G = 3.33, H = 1 and N = 9.6 with θ = 0o and σmax = 3σ0.
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Figure 2. Bi-axial tension results, κ = 0.5. (a) Average stress-strain curves (b) Contours of effective
plastic strain for a conventional anisotropic material with debonding (c) Contours of effective plastic
strain for a higher order anisotropic material without debonding.

For both isotropic and anisotropic behavior the effect of the material length scale parameter,
l∗, is an increased load carrying capacity, Fig. 2(a). A sudden stress drop occurs due to
debonding, Fig. 2(a), and in Fig. 2(b) the corresponding void at the fiber-matrix interface is
shown. Fig. 2(c) illustrates, that at the fiber-matrix interface the plastic strain is suppressed
and the strain is smaller compared to the conventional case with severe plastic deformations at
the tip of the void, Fig. 2(b).

The failure strain is depicted in Fig. 3 as function of the new cohesive length scale parameter,
LJ , normalized against the matrix material length scale parameter, l∗. Both isotropic results as
well as anisotropic results are shown. In addition to the yield function of Hill, Eq. (2), results
using the anisotropic yield function of Barlat et al. are shown [5]. The coefficients of anisotropy
in the two yield functions are choosen such that an identical 0o uniaxial stress strain curve in
the x1-directions is reproduced. It is seen that the cohesive length scale parameter, LJ , greatly
affect the failure strain as it becomes smaller and smaller. On the other hand, for increasing
larger LJ -values the plastic behaviour of the cohesive law is supressed and conventional results
are obtained as shown by the asymptotic lines. For the Hill material the effect is very small,
as debonding failure occurs at a rather small plastic strain, see Fig. 2. Thus, the iunfluence of
plasticity in the cohesive law is limited.
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Figure 3. The failure strain as function of the new cohesive length scale parameter, LJ , normalized
against the matrix material length scale parameter, l∗. Isotropic as well as anisotropic results are shown
for κ = 0.5 .

Conclusion
In conclusion, this study analyzes numerically the combined effects of plastic anisotropy, size-
effects and debonding in a composite material. Debonding is seen as a sudden stress drop and
plastic anisotropy highly affects the failure strain, while the size-effect is observed as an increased
load carrying capacity. The material length scale of the cohesive law tends to reduce the failure
strain of the composite, but as the parameter becomes sufficient large conventional results are
predicted. This holds for both isotropic as well as anisotropic materials.
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Summary. The need for reliable modelling and predictive simulation techniques continue to increase
as the industrial applications of electroactive polymers continue to grow. The so-called micro-sphere
framework enables the transformation of physics-based models for individual polymer chains as well as
chain networks to the three-dimensional continuum level. In this contribution a previously established
electromechanically coupled micro-sphere formulation is extended to include non-affine kinematics in com-
bination with tube-type constraints on the movements of the chains in a polymer network. A numerical
example is discussed which shows that the formulation proposed produces physically sound results.

Key words: non-linear electroelasticity, electroactive polymers, smart materials, coupled micro-sphere

framework

Introduction

With the capability to convert electrical energy into mechanical energy, electroactive polymers
(EAP) continuously keep generating and finding new and advanced applications. Their ability
to considerably change in size and shape together with low cost and weight makes them suitable
for technological applications in robotics and biomimetics as actuators and sensors.

Advanced modelling of EAP in combination with predictive simulation methods constitutes
an active area of interdisciplinary research; see the finite-element formulation in [1] and the
constitutive models for viscous EAP in [2, 3] as well as references cited therein. In view of physics-
based modelling of polymers, so-called chain models have been established. Such statistics-based
one-dimensional models can be extended to the three-dimensional continuum level by means of
the so-called micro-sphere framework as established in [4, 5, 6]. As this work proceeds, the
electromechanically coupled micro-sphere formulation proposed in [7] is now further extended
by adopting the non-affine and tube-constrained kinematic framework introduced in [4]. The
formulation will be restricted to isotropic material behaviour. In view of the incorporation
of anisotropic elasticity, the reader is referred to [8], whereas formulations and applications of
deformation-induced anisotropy evolution are discussed in, for example, [9, 10].

Basic equations

In this section the basic equations of electroelasticity are briefly reviewed together with the
constitutive framework used. For detailed background information the reader is referred to [11].



Local balance equations

Adopting standard notation, placements of position vectors in a reference configuration are
denoted by X and their spatial counterpart by x = ϕ(X , t), with t representing time. The so-
called deformation gradient is denoted by F = ∇Xϕ with J = det(F ) > 0 and cof(F ) = J F−t

as well as F̄ = J
−1/3 F .

In the absence of magnetic fields, the electric displacement d and electric field e in the
current configuration are governed by the following equations in local form,

∇x · d = 0 and ∇t
x × e = 0 . (1)

In consequence, the electric field e can be represented as the gradient of a scalar potential, in this
case the electric potential φ(X , t), such that e = −∇xφ = E · F−1, where E is the referential
counterpart to e . The polarisation p, the electric field e and the electric displacement d are
related through d = ε0 e + p = D · cof(F−1), where ε0 is the vacuum electric permittivity and
D represents the referential counterpart of d .

In view of a representation of the quasi-static local form of the balance of linear momentum
in the presence of electric fields, the electric-field-related volume forces ∇xe · p are transferred
to the stresses. This renders the total spatial stresses, present in the local balance of linear
momentum relation

∇x · τ + f mec
t = 0 , (2)

to be symmetric. Note that f mec
t collects purely mechanical volume forces. Alternatively, eq.(2)

can be referred to the reference configuration, i.e. ∇X ·T + f mec
0 = 0, with the Piola-type total

stresses T = τ · cof(F ) and f mec
0 = J f mec

t .

Constitutive equations

The subsequently elaborated constitutive model makes use of the introduction of a free amended
energy function Ω as introduced in [12]. This energy function is split into the following contri-
butions

Ω(F ,E) = Ω
vol(J) +Ω

iso(F̄ ) +Ω
mel(F̄ ,E ) +Ω

ele(E) + 1
2 ε0 J e ·F−1 · F−t · e . (3)

Micro-sphere formulation

The micro-sphere approach and kinematic framework established in [4] is adopted as this work
proceeds. The non-affine micro-sphere stretch is introduced as a p-root average of the affine
micro-sphere stretches. Moreover, the tube-related constraint on the chain deformation is
adopted. In view of the electromechanical coupling, the extension established in [7] is used,
here in combination with the non-affine and tube-related deformation measures. From a con-
ceptual point of view, the energy function, the electromechanical flux terms, and related tangent
operators, are evaluated by numerical integration over the unit-sphere U

2. To give an example,
let • denote a scalar-valued quantity so that numerical integration over U2 results in

∫

U2

• dA ≈
m

∑

i=1

•i wi , (4)

where the index i refers to a referential integration direction r i ∈ U
2 so that •i is the value of •

in the direction of r i. The non-negative integration weights and directions are constrained by
∑m

i=1wi = 1 and
∑m

i=1 r i ⊗ r i wi =
1
3 I , with I as the second-order identity tensor.

As basic scalar-valued isochoric deformation measures referred to the individual integration
directions, we adopt the affine quantities

λ̄i = ‖F̄ · r i‖ and ν̄i = ‖r i · cof(F̄ )‖ = ‖F̄−1 · r i‖ . (5)



The affine stretch λ̄i is transformed to the non-affine stretch measure via

λ̄ =

[

m
∑

i=1

λ̄
p
i ωi

]1/p

, (6)

see [4]. In view of the contribution of the electric field on the micro-sphere level, the projection

Ei = E · r i . (7)

is introduced, cf. [7].
With these quantities in hand and by splitting the elastic isochoric energy contribution Ω

iso

additively into a non-affine stretch stretch part Ω
iso,s and a tube part Ω

iso,t, the free energy
function Ω is approximated in the context of the micro-sphere formulation as

Ω(F ,E ) ≈ Ω
vol(J) +

∑m

i=1

[

Ω
iso,s
i (λ̄) +Ω

iso,t
i (ν̄i) +Ω

mel
i (λ̄i, Ei) +Ω

ele
i (Ei)

]

wi (8)

with the free space contribution including the parameter ε0 being neglected. Note that different
forms and representations of, for example Ω

mel
i , can be chosen. Hyper-elastic-type forms then

render the electromechanical flux terms represented in, for instance, referential form so that

D = − ∂Ω

∂E
≈ −

∑m

i=1

∂
[

Ω
mel
i +Ω

ele
i

]

∂E
wi , (9)

and

T =
∂Ω

∂F
≈ ∂Ω

vol

∂J
cof(F ) +

∑m

i=1

∂
[

Ω
iso,s
i +Ω

iso,t
i +Ω

mel
i

]

∂F
wi . (10)

Numerical example

To show that the chosen form of energy function together with the electromechanically coupled
micro-sphere framework captures the essential behaviour of non-linear electroelasticity, a numer-
ical example of a homogeneous deformation is discussed. A cube of initial dimensions L×W×W

is put under a difference in electric potential at the boundaries so that a homogeneous electric
field is produced. The electrical loading is applied in the x-direction with related initial length
L. The specific form of the respective contributions to the energy function Ω as well as the in-
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Figure 1. Homogeneous deformation under tension: (a) longitudinal electric field Ex plotted vs. absolute
value of longitudinal electric displacement Dx; (b) longitudinal electric field Ex plotted vs. longitudinal
stretch λx and transverse stretches λy and λz .



corporated material parameters adopted are not summarised here; instead the reader is referred
to [4] and [7] for more details.

Figure 1(a) shows the expected linear relation between the electric field E and the electric
displacements D in the reference configuration, both in the direction of the applied electrical
loading. In figure 1(b) the nonlinear relationship between the electric field E and the stretches
λx = l/L, λy = w/W and λz = w/W is clearly shown. Note that the deformation is not
prescribed so that the results in figure 1(b) are calculated within an iterative scheme.
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Summary. In order to model the material behavior in machining simulations it is proposed to use a continuum
damage approach on the basis of the Johnson-Cook (JC) plasticity model for the ductile continuous behavior up
to the critical stress–strain states where discontinuous bifurcation may occur. Whenever a critical state has been
diagnosed, a Cohesive Zone (CZ) is established so that the actual critical stress state is located right at the onset of
stress degradation in the CZ. Both pre–peak continuum damage and post–peak CZ damage are considered in the
formulation. The localized cohesive zone damage is kinematically realized as an element embedded discontinuity,
cf. [2], which is introduced elementwise, thereby facilitating the model developments in standard FE-packages.

Key words: Enhanced strain approach, Strong discontinuity, Finite strain, Dynamic, Ductile fracture

Pathological mesh dependence

A major driving force for the industry to simulate various manufacturing processes is the incorporation
of new design materials to promote lightweight design. Machining is one of the operations where this
may be efficiently achieved based on computational mechanics based modeling. In the current contribu-
tion we are concerned with the modeling of Compacted Graphite Iron (CGI) with respect to orthogonal
machining simulations. The orthogonal machining simulations show that the used standard continuum
damage model exhibit a pathological mesh size dependence, cf. Fig. 1.

Figure 1. Pathological mesh sensitivity pertinent to standard damage visco–inelastic response of a dynamically
loaded plate in shear. Three different mesh sizes are considered.



Ductile fracture using embedded discontinuities

A continuum damage approach is adopted on the basis of the Johnson-Cook (JC) plasticity model for
the ductile continuous behavior up to the critical stress–strain states where discontinuous bifurcation
may occur. Whenever a critical state has been diagnosed, a Cohesive Zone (CZ) is established so that
the actual critical stress state is located right at the onset of stress degradation in the CZ. Both pre–
peak continuum damage and post–peak CZ damage are considered in the formulation. The localized
cohesive zone damage is kinematically realized as an element embedded discontinuity, cf. [2], which
is introduced elementwise, thereby facilitating the model developments in standard FE-packages. In
particular, due to the adopted structure of the enhanced strain field involving the embedded band, cf. Fig.
2, the elementwise projection problem corresponds to the generalized traction continuity problem

−1

l

∫
B0e

d̄ · t1dB +

∫
ΓS0e

d̄ · t1dΓ = 0 (1)

where t1 = Σt
1 · N nominal traction vector t1. To formulate a cohesive zone model representing the

post–peak respone of the ductile fracture behaviour of the pearlite phase of the CGI, we follow the
developments in [1] and consider the fracture process as a damage-plasticity process, where the energy
dissipation is confined to the development of a propagating cohesive zone. To formulate the CZ with
t1 = t1[d, φ], let us introduce the material Mandel traction vector Q defined as

Q = T ·N = (1 − φ)Q̄ (2)

where T = F t
c · Σt

1 (F c is the compatible part of the deformation gradient) is the material Mandel
stress tensor and 0 ≤ φ ≤ 1 is the scalar damage variable of the embedded band. It follows that the
transformation between the effective traction vectors t̄1 and Q̄ are obtained as t̄1 = F−t

c · Q̄. As to the
cohesive zone law, we thus propose to formulate effective stress Q̄ vector in terms of the material jump
J = F−1

c · d, and we formulate the condition for fracture initiation defined as

F = σf

(
Q̄t

γσf

)
2 +

σf
γ

(γ − 2µ)

(〈
Q̄n

〉
σf

)
2 − 1

γ

(
γσf − 2µQ̄n

)
(3)

where σf is the failure stress in simple tension and the parameter γ = τf/σf defines the ratio between
failure stress in simple shear and simple tension. Let us next define the evolution of the internal variables
J̇ ≈ J̇

p
and φ̇ as

J̇
p

= λ̇
∂F

∂Q̄
, φ̇ =

λ̇

S(1 − φ)
with F ≤ 0, λ̇ ≥ 0, F λ̇ = 0 (4)

Preliminary results

Preliminary results from simulations, cf. Fig. 3 show that when the adopted element embedded discon-
tinuity approach (where the cohesive zone enhancement of the model is added) the pathological mesh
dependence is removed. The modeling framework allows for the representation of the ductile fracture in
terms of dissipated fracture energy in the post–localized response.
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Summary. We recently developed a simulation tool to simulate a quite wide class of 
composites manufacturing processes based on a compressible porous media theory formulation 
involving three constituents, solid, fluid and pore gas embedded in the voids. The aim of this 
tool is: firstly to model the highly deformable preform and its interaction with external loading 
and the intrinsic fluid pressure as well as the resulting changes in permeability, compaction and 
level of saturation. Secondly, the aim is to track the resin flow front during the infusion process 
using the continuum formulation itself, thereby avoiding methods like level set, etc. [1].  

Keywords: liquid resin infusion, phase compressible continuum, free surface migration  

Introduction 

Darcy law is commonly used to model the resin flow in composite processing. This model 
describes the fluid flow in porous media and it typically relates the flow rate Q to the pressure 
difference over the specimen (∆𝑝 𝐿⁄ ) defined as  

𝑄 = 𝐾
𝐴
𝜇
∆𝑝
𝐿

, (1) 

where 𝜇 is the viscosity and 𝐾 the permeability. Since both the mechanical and the fluid flow 
properties (i.e. the permeability) of composites are to a large extent determined by fiber volume 
fraction, it is common to study the permeability variation with fiber volume fraction, as 
proposed by Carman [2]. However, in case of unidirectional reinforcement, where the transverse 
flow is much more constrained as compared to flow along the fibers, isotropic predictions of 
permeability are false. In this context, a permeability model of an idealized unidirectional 
reinforcement consisting of regularly ordered, parallel fibers was derived both for flow along 
and perpendicular to the fibers by Gebart [3]. In the present work we approach the problem 
similar to Gebart; however, here we consider the partially impregnated layers of prepregs, the so 
called EvaC pregpregs [4]. In such a prepreg the fiber bed is kept dry and the matrix cover both 
sides of the preform. Therefore, we assume that during the manufacturing processes two kinds 
of flow will develop; (i) the macroscopic flow between the layers and (ii) the infiltration flow 



into the dry fiber bed. In summary, the flow is restricted perpendicular to the plies and fairly 
unrestricted parallel to the plies. 

The goal of this paper is to combine the theory of porous media with respect to the liquid 
resin infusion problem, as developed in [1], with the constitutive relation for anisotropic 
permeability introduced in following section.  

A homogenized theory of porous media 

The fiber bed during infusion is considered as a porous material which its pores are either 
partially filled by liquid resin or contains unfilled void space. The macroscopic volume fractions 
for the solid and the fluid phases 𝑛𝑠 and 𝑛𝑓, respectively, are defined as 

  𝑛𝑠 =
𝑉𝑠

𝑉
, 𝑛𝑓 =

𝑉𝑓

𝑉
          with          𝑛𝑠 + 𝑛𝑓 = 1        (2) 

where 𝑉𝑠 is the volume portion of the solid relative to a representative volume with volume 𝑉, 
and 𝑉𝑓 is the compressible fluid volume portion of the pore space. The volume fractions are 
connected via the saturation constraint [1]. 

The fluid phase mixture may be further described upon introducing the degree of liquid 
saturation 0 ≤ 𝜉[𝑥, 𝑡] ≤ 1, where 𝜉 = 0 corresponds to gas-filled pores and 𝜉 = 1 corresponds 
to the situation of complete liquid saturation. 

Governing and Constitutive equations 

To formulate the coupled problem of partially fluid saturated solid, mass balance and 
momentum balance is used 

𝜌𝑓𝛁 ∙ 𝒗 − 𝑛𝑓�̇�𝑓 = −𝛁 ∙ (𝜌𝑓𝒗𝑑), (3) 
𝝈 ∙ ∇ + 𝜌�𝒈 = 𝟎   ∀𝒙 ∈ 𝐵, (4) 

where 𝒗𝑑 is the Darcian velocity defined as 𝒗𝑑 = 𝑛𝑓𝒗𝑟 and 𝝈 = 𝝈𝑠 + 𝝈𝑓 is the total Cauchy 
stress. In turn, 𝝈� is related to the effective (constitutive) stress 𝝈 and the fluid pressure p via the 
Terzaghi effective stress principle as  𝝈� = 𝝈 − 𝑝𝟏. 

Assuming hyper-elasticity for the effective stress response for a Neo-Hookean elastic 
material we obtain the free energy 𝜓 [𝑪] for the solid phase which correspond constitutive state 
equations as 

𝑺 = 2𝜌�0𝑠
𝜕𝜓
𝜕𝑪

, (5) 

𝑝 = �𝜌𝑓�2
𝜕𝜓𝑓

𝜕𝜖
, (6) 

where 𝑺 = 𝑺� – 𝐽𝑪−1𝑝 is the consequent effective second Piola Kirchhoff stress due to the 
Terzaghi effective stress principle.  

In order to assess the pressure dependence in the fluid density, it is assumed that the same 
pressure prevails in the liquid and gas constituents and that the highly compressible gas 
constituent is pressure dependent in the spirit of the ideal gas law. It should be noted that the 
rate behavior of the fluid density may be characterized in terms of the compression modulus of 
the liquid-gas mixture. 

𝜌𝑓 = 𝜉𝜌𝑙 + (1 − 𝜉)𝜌𝑔 (7) 

�̇�𝑓 =
1
𝐾𝑓

�̇� + �𝜌𝑙 − 𝜌𝑔��̇�     𝑤𝑖𝑡ℎ 𝐾𝑓 =
1

(1 − 𝜉)𝑘𝑔
 (8) 

Indeed, the value of 𝐾𝑓 increases for increased saturation and decreased gas-compliance 𝑘𝑔. For 
continued saturation towards 𝜉 = 1, we obtain that 𝐾𝑓 → ∞ and 𝜉 = 0 leading to fluid 
incompressibility, i.e. 𝜌𝑓 → 𝜌𝑙. c.f. Larsson et. al. [1] for further details. 



Solid-fluid interaction 

A key feature of the present contribution is the solid-fluid interaction model, where it is 
assumed that two types of flow will develop during the composites processing; (i) the 
macroscopic flow between the layers and (ii) the infiltration flow into the dry fiber bed.  

𝒗𝑑 = −
1

𝜈(1 −𝜙𝑝) ��𝐾𝑓𝐵
(1 − 𝜙𝑙) + 𝐾𝐶ℎ𝜙𝑙�(𝟏 −𝑴) + 𝐾𝑓𝐵𝑴� ⋅ 𝒉𝑒

𝑓 , (9) 

where 𝐾𝑓𝐵 is the permeability through the fiber, 𝐾𝐶ℎ is the permeability through the channel, 𝜙𝑙 
is liquid volume fraction, structural tensor 𝑴 = 𝑻⊗𝑻 ∈  𝐵0 , where 𝑻 is a unit vector 
transverse to the fibre bed. 

The permeability through the fiber bed 𝐾𝑓𝐵 is represented using the Gebart equation as in 
(10). The permeability through the channel may be approximated considering the resistance to 
viscous flow within a rectangular channel, [5] 

𝐾𝑓𝐵 =
16𝑟2

9𝜋√2
��

𝜋

2 �𝜙0𝐽 �√3
− 1�

5
2

, 
(10) 

 

𝐾𝐶ℎ =
�ℎ𝑓�2

12
, (11) 

where ℎ𝑓 is the channel height.  

A smooth free surface problem 

The key idea of paper is to consider the motion of flow front in terms of the evolution of the 
fluid saturation field 𝜉 = 𝜉[𝒙, 𝑡]. Clearly, at the initiation of a wetting process the initial 
condition is that 𝜉[𝒙, 𝑡] = 0 in order to define the one phase non-wet region, whereas the fully 
saturated region is defined by 𝜉[𝒙, 𝑡] = 1. We thereby replace the strictly discontinuous free 
surface problem by a smooth transition of the liquid front in terms of the evolution of the fluid 
saturation field �̇� = �̇�[𝒙, 𝑡]. We can recall the saturation evolution [1] along with the Darcian 
flow model which is to be satisfied locally according to 

𝑛𝑓�̇� +
𝐽̇
𝐽
𝜉 + 𝛁 ∙ 𝒗𝑑 = 0 (12) 

whereby the saturation degree variable may be regarded as a local field variable 𝜉 = 𝜉[𝒙, 𝑡] or, 
simply, as an internal variable governed by equation (12). 

Numerical results and concluding remarks 

A simulation of liquid resin infusion with a flexible fiber bed based on hyper elastic material 
model is considered using the same boundary conditions and material parameter as in Larsson 
et. al. [1]. The goal is to assess the permeability model developed in this paper invoked to the 
infusion simulation algorithm. 
As to the assessment of the global saturation degree for the numerical solution, we simply 
consider 𝜉 as the average value of the saturation degree in the elements, i.e. 𝜉 =< 𝜉 >.  

In Figure 1, the deformation of the preform is shown along with the distribution of 𝜉. A non-
uniform compaction of the preform is induced by the vacuum pressure and so is the temporal 
evolution of the diffusive flow front. During the infusion, as the fluid pressure increases, some 
of the deformation will be balanced off, leading to a difference in deformation in the saturated 
and in the non-saturated regions. Preform deformation has a direct influence on the 
permeability, porosity and the Darcian liquid flow advancement. Figure 1 also shows the 
resulting fluid pressure distribution, which is the key mechanism driving the resin infusion via 



the anisotropic permeability. As time passes, the Darcian velocity decreases due to the decrease 
in the pressure gradient, and the process is significantly slowed down, as shown in Figure 2. The 
convergence of the solution upon mesh refinements is also shown in Figure 2 and it can be 
noted that the total infusion time is around 𝑇 ≈ 60 minutes. 

 
Figure 1. Preform deformation during infusion process along with current state of saturation and 

pressure 

In the present paper we have framed the liquid resin infusion of composites (and other 
related processes) into a free surface formulation based on two-phase porous media theory while 
the driving flow is modeled by Darcy law with an anisotropic permeability model. As compared 
to other methods available in the literature for these types of problems, typically restricted to 
simplified 1D approximations with isotropic assumption for the flow, the approach is quite 
general in the sense that it provides the coupling between the preform deformation and the free 
surface migration in one and the same formulation considering flow properties different in 
different directions.  

 
Figure 2. Global saturation degree versus time, mesh sensitivity analysis 
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